Sample records for early paleozoic sedimentary

  1. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  2. Early Paleozoic paleogeography of the northern Gondwana margin: new evidence for Ordovician-Silurian glaciation

    NASA Astrophysics Data System (ADS)

    Semtner, A.-K.; Klitzsch, E.

    1994-12-01

    During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana margin were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent. The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana margin to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the ice-cap. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria. The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian ice advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.

  3. Two possibilities for New Siberian Islands terrane tectonic history during the Early Paleozoic based on paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Metelkin, Dmitry V.; Chernova, Anna I.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    The New Siberian Islands (NSI), located in the East Siberian Sea in the junction region of various structural elements, are a key target for deciphering the tectonic evolution of the Eastern Arctic. In recent years, we went on several expeditions and gathered an extensive geological material for this territory. Among other things, we could prove that the basement of the De Long and Anjou archipelagos structures is Precambrian and the overlying Paleozoic sections formed within the same terrane. The form of the boundaries of the NSI terrane are actively debated and are probably continued from the Lyakhovsky islands in the south-west to the southern parts of the submerged Mendeleev Ridge, for which there is increasing evidence of continental crust. Today there are several models that interpret the Paleozoic-Mesozoic tectonic history and structural affiliation of the NSI terrane. Some propose that the Paleozoic sedimentary section formed in a passive margin setting of the Siberian paleocontinent. Others compare its history with marginal basins of the Baltica and Laurentia continents or consider the NSI terrane as an element of the Chukotka-Alaska microplate. These models are mainly based on results of paleobiogeographical and lithological-facies analyses, including explanations of probable sources for detrital zircons. Our paleomagnetic research on sedimentary, volcanogenic-sedimentary and igneous rocks of the Anjou (Kotelny and Bel'kovsky islands) and De Long (Bennett, Jeannette and Henrietta islands) archipelagos let us calculate an apparent polar wander path for the early Paleozoic interval of geological history, which allows us to conclude that the NSI terrane could not have been a part of the continental plates listed above, but rather had active tectonic boundaries with them. Our paleomagnetic data indicate that the NSI terrane drifted slowly and steadily in the tropical and subtropical regions no higher than 40 degrees. However, the main uncertainty for the

  4. Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Ayuso, Robert A.; Aleinikoff, John N.; Amato, Jeffrey M.; Slack, John F.; Shanks, W.C. Pat

    2014-01-01

    The Nome Complex is a large metamorphic unit that sits along the southern boundary of the Arctic Alaska–Chukotka terrane, the largest of several micro continental fragments of uncertain origin located between the Siberian and Laurentian cratons. The Arctic Alaska–Chukotka terrane moved into its present position during the Mesozoic; its Mesozoic and older movements are central to reconstruction of Arctic tectonic history. Accurate representation of the Arctic Alaska–Chukotka terrane in reconstructions of Late Proterozoic and early Paleozoic paleogeography is hampered by the paucity of information available. Most of the Late Proterozoic to Paleozoic rocks in the Alaska–Chukotka terrane were penetratively deformed and recrystallized during the Mesozoic deformational events; primary features and relationships have been obliterated, and age control is sparse. We use a variety of geochemical, geochronologic, paleontologic, and geologic tools to read through penetrative deformation and reconstruct the protolith sequence of part of the Arctic Alaska–Chukotka terrane, the Nome Complex. We confirm that the protoliths of the Nome Complex were part of the same Late Proterozoic to Devonian continental margin as weakly deformed rocks in the southern and central part of the terrane, the Brooks Range. We show that the protoliths of the Nome Complex represent a carbonate platform (and related rocks) that underwent incipient rifting, probably during the Ordovician, and that the carbonate platform was overrun by an influx of siliciclastic detritus during the Devonian. During early phases of the transition to siliciclastic deposition, restricted basins formed that were the site of sedimentary exhalative base-metal sulfide deposition. Finally, we propose that most of the basement on which the largely Paleozoic sedimentary protolith was deposited was subducted during the Mesozoic.

  5. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Griffin, William L.; Stern, Robert J.; Thomsen, Tonny B.; Meinhold, Guido; Aharipour, Reza; O'Reilly, Suzanne Y.

    2017-01-01

    In this study we use detrital zircons to probe the Early Paleozoic history of NE Iran and evaluate the link between sediment sources and Gondwanan pre-Cadomian, Cadomian and younger events. U-Pb zircon ages and Hf isotopic compositions are reported for detrital zircons from Ordovician and Early Devonian sedimentary rocks from NE Iran. These clastic rocks are dominated by zircons with major age populations at 2.5 Ga, 0.8-0.6 Ga, 0.5 Ga and 0.5-0.4 Ga as well as a minor broad peak at 1.0 Ga. The source of 2.5 Ga detrital zircons is enigmatic; they may have been supplied from the Saharan Metacraton (or West African Craton) to the southwest or Afghanistan-Tarim to the east. The detrital zircons with age populations at 0.8-0.6 Ga probably originated from Cryogenian-Ediacaran juvenile igneous rocks of the Arabian-Nubian Shield; this inference is supported by their juvenile Hf isotopes, although some negative εHf (t) values suggest that other sources (such as the West African Craton) were also involved. The age peak at ca 0.5 Ga correlates with Cadomian magmatism reported from Iranian basement and elsewhere in north Gondwana. The variable εHf (t) values of Cadomian detrital zircons, resembling the εHf (t) values of zircons in magmatic Cadomian rocks from Iran and Taurides (Turkey), suggest an Andean-type margin and the involvement of reworked older crust in the generation of the magmatic rocks. The youngest age population at 0.5-0.4 Ga is interpreted to represent Gondwana rifting and the opening of Paleotethys, which probably started in Late Cambrian-Ordovician time. A combination of U-Pb dating and Hf-isotope data from Iran, Turkey and North Gondwana confirms that Iran and Turkey were parts of Gondwana at least until late Paleozoic time.

  6. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny?

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Yu, J.; Zhao, G.

    2013-12-01

    The significant late Paleozoic magmatism has been widely recognized in the East Asian Blocks, which sheds a light on the assembly and break-up of the Pangea supercontinent. As one of major components in East Asia, however, the South China Block (SCB) does not have much late Paleozoic magmatism recognized. Here we report a gneissic granite intrusion in northeastern Fujian Province, eastern SCB. It is a S-type granite characterized by high K2O and Al2O3, and low SiO2 and Na2O with a high A/CNK ratio of 1.22. Zircons with stubby morphology from this gneissic granite yield 206Pb/238U ages ranging from 326 Ma to 301 Ma with a weighted average age of 313×4 Ma, and negative epsilonHf(t) values from -8.35 to -1.74 with two-stage Hf model ages of 1.43 to 1.84 Ga. This S-type granite was probably originated from late Paleoproterozoic crust during an intracontinental orogeny, not under oceanic subduction. Integrated with previous results on the paleogeographic reconstruction of the SCB, the nature of Paleozoic basins, Early Permian volcanism and U-Pb-Hf isotope of detrital zircons from the late Paleozoic to early Mesozoic sedimentary rocks, our data support a late Paleozoic orogeny in the SCB, which may have included Late Carboniferous (340-310 Ma) compressive episode and Early Permian (287-270 Ma) post-orogenic or intraplate extensive episode. Our interpretation is consistent with the late Paleozoic orogenic events recognized in other Pangea microcontinents, and thus provides a window for the reconstruction of Pangea. Acknowledgements: NSFC (41190070, 41190075)

  7. Geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary sequence, Easton quadrangle, PA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.M.; Malinconico, L.L. Jr.

    1993-03-01

    This project involves the geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary cover rocks near Easton, Pennsylvania. The Precambrian rocks have generally been assumed to have been emplaced on the Paleozoic sequence along a shallow thrust fault. However, at present time the attitude of the faults bordering the Precambrian terranes are all very steeply dipping. This was explained by the subsequent folding of the whole sequence during later orogenic activity. The objective of this work is to determine the attitude and depth of the fault contact between the Precambrian crystalline rocks andmore » the Paleozoic sedimentary rocks. A series of traverses (each separated by approximately one mile) were established perpendicular to the strike of the Precambrian rocks. Along each traverse both gravity and magnetic readings were taken at 0.2 kilometer intervals. The data were reduced and presented as profiles and contour maps. Both the magnetic and gravity data show positive anomalies that correlate spatially with the location of the Precambrian rocks. The gravity data have a long wavelength regional trend increasing to the north with a shorter wavelength anomaly of 2 milligals which coincides with the Precambrian rocks. The magnetic data have a single positive anomaly of almost 1,000 gammas which also coincides with the Precambrian terrane. These data will now be used to develop two dimensional density and susceptibility models of the area. From these models, the thickness of each formation and the structural relationships between them, as well as the attitude and depth of the fault contact will be determined.« less

  8. Paleozoic tectonics of the Ouachita Orogen through Nd isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, J.D.; Patchett, P.J.; Dickinson, W.R.

    1992-01-01

    A combined isotopic and trace-element study of the Late Paleozoic Ouachita Orogenic belt has the following goals: (1) define changing provenance of Ouachita sedimentary systems throughout the Paleozoic; (2) constrain sources feeding into the Ouachita flysch trough during the Late Paleozoic; (3) isolate the geochemical signature of proposed colliding terranes to the south; (4) build a data base to compare with possible Ouachita System equivalents in Mexico. The ultimate aim is to constrain the tectonic setting of the southern margin of North America during the Paleozoic, with particular emphasis on collisional events leading to the final suturing of Pangea. Ndmore » isotopic data identify 3 distinct groups: (1) Ordovician passive margin sequence; (2) Carboniferous proto-flysch (Stanley Fm.), main flysch (Jackfork and Atoka Fms.) and molasse (foreland Atoka Fm.); (3) Mississippian ash-flow tuffs. The authors interpret the Ordovician signature to be essentially all craton-derived, whereas the Carboniferous signature reflects mixed sources from the craton plus orogenic sources to the east and possibly the south, including the evolving Appalachian Orogen. The proposed southern source is revealed by the tuffs to be too old and evolved to be a juvenile island arc terrane. They interpret the tuffs to have been erupted in a continental margin arc-type setting. Surprisingly, the foreland molasse sequence is indistinguishable from the main trough flysch sequence, suggesting the Ouachita trough and the craton were both inundated with sediment of a single homogenized isotopic signature during the Late Carboniferous. The possibility that Carboniferous-type sedimentary dispersal patterns began as early as the Silurian has important implications for the tectonics and paleogeography of the evolving Appalachian-Ouachita Orogenic System.« less

  9. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  10. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen

    NASA Astrophysics Data System (ADS)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong

    2018-05-01

    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  11. Sedimentary record of late Paleozoic to Recent tectonism in central Asia — analysis of subsurface data from the Turan and south Kazak domains

    NASA Astrophysics Data System (ADS)

    Thomas, J. C.; Cobbold, P. R.; Shein, V. S.; Le Douaran, S.

    1999-11-01

    The Turan and south Kazak domains (TSK) are in central Asia, between the Caspian Sea and the Tien Shan. The area is covered by sediments, deposited since the Late Permian during a series of tectonic events closely related to the history of two oceanic domains, Paleotethys and Neotethys. Sedimentary basins on the TSK therefore provide constraints on the tectonic development of the southern margin of Eurasia since the Late Permian. Our study is based on structure-contour maps and isopach maps of five key stratigraphic markers, of Late Permian to Tertiary age. Isopach maps help locate major faults and delimit sedimentary basins, providing information on vertical motions and, in some instances, horizontal motions. Subsidence associated with extension appears to have dominated the TSK, from the Late Permian to the Eocene. The extension may have been of back-arc type in southern Eurasia, next to the active margin, where the Paleotethys and Neotethys successively subducted toward the north. Here, sedimentary basins are both wide and deep (up to 15 km). During the Mesozoic, two compressional events of regional significance occurred in association with accretion of continental blocks at the southern margin of Eurasia. The first one, at the end of the Triassic, led to strong selective inversion of basins over the Turan domain. The second one, during the Late Jurassic-Early Cretaceous, had weaker effects. Since the Oligocene, following collision of both India and Arabia with Eurasia, inversion has become more generalized and compressional basins have formed on the TSK. Throughout the entire history of development of the TSK, from the Late Permian to the Tertiary, structures of Paleozoic and early Mesozoic age have exerted a strong control on sedimentation and especially on the location of depocenters. The south Kazak domain has registered little subsidence, in comparison with the Turan domain, where some basins have become very deep.

  12. Early Paleozoic tectonics for the New Siberian Islands terrane (Eastern Arctic)

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Vernikovsky, V. A.; Matushkin, N. Yu.

    2017-11-01

    The New Siberian Islands archipelago is one of the few research objects accessible for direct study on the eastern Arctic shelf. There are several models that have different interpretations of the Paleozoic tectonic history and the structural affinity of the New Siberian Islands terrane. Some infer a direct relationship with the passive continental margin of the Siberian paleocontinent. Others connect it with the marginal basins of Baltica and Laurentia, or the Chukotka-Alaska microplate. Our paleomagnetic investigation led us to create an apparent polar wander path for the early Paleozoic interval of geological history. Based on it we can conclude that the New Siberian Islands terrane could not have been a part of these continental plates. This study considers the possible tectonic scenarios of the Paleozoic history of the Earth, presents and discusses the corresponding global reconstructions describing the paleogeography and probable mutual kinematics of the terranes of the Eastern Arctic.

  13. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  14. Early Paleozoic subduction initiation volcanism of the Iwatsubodani Formation, Hida Gaien belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsukada, Kazuhiro; Yamamoto, Koshi; Gantumur, Onon; Nuramkhaan, Manchuk

    2017-06-01

    In placing Japanese tectonics in an Asian context, variation in the Paleozoic geological environment is a significant issue. This paper investigates the geochemistry of the lower Paleozoic basalt formation (Iwatsubodani Formation) in the Hida Gaien belt, Japan, to consider its tectonic setting. This formation includes the following two types of rock in ascending order: basalt A with sub-ophitic texture and basalt B with porphyritic texture. Basalt A has a high and uniform FeO*/MgO ratio, moderate TiO2, high V, and low Ti/V. The HFSE and REE are nearly the same as those in MORB, and all the data points to basalt A being the "MORB-like fore-arc tholeiitic basalt (FAB)" reported, for example, from the Izu-Bonin-Mariana arc. By contrast, basalt B has a low FeO*/MgO ratio, low TiO2, and low V and Ti/V. It has an LREE-enriched trend and a distinct negative Nb anomaly in the MORB-normalized multi-element pattern and a moderately high LREE/HREE. All these factors suggest that basalt B is calc-alkaline basalt. It is known that FAB is erupted at the earliest stage of arc formation—namely, subduction initiation—and that boninitic/tholeiitic/calc-alkaline volcanism follows at the supra-subduction zone (SSZ). Thus, the occurrence of basalts A (FAB) and B (calc-alkaline rock) is strong evidence of early Paleozoic arc-formation initiation at an SSZ. Evidence for an early Paleozoic SSZ arc is also recognized from the Oeyama, Hayachine-Miyamori, and Sergeevka ophiolites. Hence, both these ophiolites and the Iwatsubodani Formation probably coexisted in a primitive SSZ system in the early Paleozoic.

  15. Chondrites isp. Indicating Late Paleozoic Atmospheric Anoxia in Eastern Peninsular India

    PubMed Central

    Bhattacharya, Biplab; Banerjee, Sudipto

    2014-01-01

    Rhythmic sandstone-mudstone-coal succession of the Barakar Formation (early Permian) manifests a transition from lower braided-fluvial to upper tide-wave influenced, estuarine setting. Monospecific assemblage of marine trace fossil Chondrites isp. in contemporaneous claystone beds in the upper Barakar succession from two Gondwana basins (namely, the Raniganj Basin and the Talchir Basin) in eastern peninsular India signifies predominant marine incursion during end early Permian. Monospecific Chondrites ichnoassemblage in different sedimentary horizons in geographically wide apart (~400 km) areas demarcates multiple short-spanned phases of anoxia in eastern India. Such anoxia is interpreted as intermittent falls in oxygen level in an overall decreasing atmospheric oxygenation within the late Paleozoic global oxygen-carbon dioxide fluctuations. PMID:24616628

  16. Biostratigraphy and petrography of upper Paleozoic rocks of Sierra Las Pintas, northern Baja California

    NASA Astrophysics Data System (ADS)

    Navas-Parejo, Pilar; Lara-Peña, R. Aaron; Torres-Martínez, Miguel Angel; Martini, Michelangelo

    2018-07-01

    A transported crinoid fauna is herein described for the first time in the Paleozoic succession cropping out in the Sierra Las Pintas, northern Baja California, northwestern Mexico. The fossil association includes Heterostelechus texanus Moore and Jeffords, Preptopremnum laeve? Moore and Jeffords, and Mooreanteris perforatus Moore and Jeffords, which indicates a Middle Pennsylvanian-early Permian time-averaged age. The studied area corresponds with the northernmost outcrop of definitely late Paleozoic deep-water facies in northwestern Mexico and the southern United States. Petrographic analyses indicate that the studied metasandstones were primarily derived from high-grade metamorphic rocks and from a shallow-water platform environment dominated by crinoid meadows. These results allow the correlation of the studied metasedimentary rocks with the Carboniferous Rancho Nuevo Formation of the Sonora allochthon, which crops out in central Sonora. The Sonora allochthon includes an Early Ordovician-Late Pennsylvanian sedimentary succession that was deposited in the oceanic basin located south of the Laurentian craton. Therefore, upper Paleozoic metasedimentary rocks of the Sierra Las Pintas were deposited along the same continental margin of Laurentia as those rocks in the Sonora allochthon, and were mostly derived from metamorphic rocks of the continental craton and by the typical Carboniferous encrinites, which characterize the shallow-water rocks of central and northern Sonora.

  17. Early Paleozoic magmatic events in the eastern Klamath Mountains, northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, E.T.; Mattinson, J.M.; Potter, A.W.

    1988-02-01

    New U-Pb zircon ages for nine samples of tonalite and pegmatitic trondhjemite from the Trinity ophiolite and associated melange reveal a complex history of magmatic activity extending back into the earliest Cambrian, much older than previously believed. Earlier investigations, based on limited data, recognized lower Paleozoic crustal elements in the eastern Klamath terrane (EKT) ranging in age from Middle Ordovician to Early to Middle Devonian. The new work in the Yreka-Callahan area of the EKT confirms the Ordovician (440-475 Ma) and younger ages, but reveals for the first time the presence of tonalitic rocks that crystallized during a narrow timemore » interval at about 565-570 Ma. The authors also recognize younger, Late Silurian magmatism at 412 Ma. In the context of available mapping, these ages indicate that the Trinity ophiolite is broadly polygenetic because parts of it yield crystallization ages that span approximately 150 m.y. Superjacent dismembered units of probable early Paleozoic age may be tectonostratigraphically equivalent to the Sierra City melange in the northern Sierra Nevada.« less

  18. Sedimentary rocks of the coast of Liberia

    USGS Publications Warehouse

    White, Richard William

    1969-01-01

    Two basins containing sedimentary rocks o# probable Cretaceous age have been recognized near the coast of Liberia in the area between Monrovia and Buchanan; geophysical evidence suggests that similar though larger basins exist on the adjacent continental shelf. The oldest sedimentary unit recognized, the Paynesville Sandstone of possible early to middle Paleozoic age, is intruded by dikes and sills of diabase of early Jurassic age and lies unconformably on crystalline rocks of late Precambrian age. Dips in the Paynesville Sandstone define a structural basin centered south of Roberts International Airport (formerly called Roberts Field) about 25 miles east of Monrovla. Wackes and conglomerates of Cretaceous age, herein named the Farmington River Formation, unconformably overlie the Paynesville Sandstone and constitute the sedimentary fill in the Roberts basin. The Bassa basin lies to the southeast of the Roberts basin and is separated from it by an upwarp of crystalline rocks. The basin is occupied by wackes and conglomerates of the Farmington River Formation, which apparently lie directly on the crystalline basement. Both basins are bounded on the northeast by northwest-trending dip-slip faults. The best potential for petroleum deposits that exists in Liberia is beneath the adjacent continental shelf and slope. Geophysical exploration and drilling will be required to evaluate this potential.

  19. The Paleozoic ichthyofauna of the Amazonas and Parnaíba basins, Brazil

    NASA Astrophysics Data System (ADS)

    Figueroa, Rodrigo Tinoco; Machado, Deusana Maria da Costa

    2018-03-01

    The Brazilian Paleozoic ichthyofauna from the Parnaíba and Amazonas basins regard a sparsely known diversity, including chondrichthyans and acanthodians, besides some osteichthyan remains. This work proposes a revision of the fossil material from these two sedimentary basins and synthesizes the morphological aspect of such material trying to understand the influences of those fossils to the paleontology of the region, comparing the Brazilian fossils with other gondwanan faunas. The Brazilian Paleozoic fish fauna shows great resemblance to those of Bolivia, especially during the Devonian. Many of the Acanthodian spines from the Manacapuru Formation (Amazonas Basin), and the Pimenteira Formation (Parnaíba Basin), are comparable to the taxa found in Bolivia. The lack of more Placoderm remains in the Brazilian outcrops is similar to the low diversity of this group in Bolivia, when compared to other South American and Euramerican localities. The most diverse Brazilian ichthyofauna is encountered in the Permian Pedra de Fogo Formation where numerous chondrichthyans and 'paleopterygians' remains are found, together with dipnoans and actinistians. Despite the apparent lack of more representative Paleozoic ichthyofaunas in Brazil, the available material that ranges from Lower Devonian to early Permian from Brazil bears important taxa that could address valuable taxonomic and biogeographic informations.

  20. Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.

    2007-12-01

    The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.

  1. Late Paleozoic transpression in Buenos Aires and northeast Patagonia ranges, Argentina

    NASA Astrophysics Data System (ADS)

    Rossello, E. A.; Massabie, A. C.; López-Gamundí, O. R.; Cobbold, P. R.; Gapais, D.

    1997-12-01

    Paleozoic sediments are present in three regions in eastern central Argentina: (1) the Sierras Australes of Buenos Aires, (2) Sierras Septentrionales of Buenos Aires and (3) Northeast Patagonia. All of these deposits share a common deformational imprint imparted by late Paleozoic Gondwanan deformation. Exposures of these rocks are scattered, variably deformed, and isolated by younger sediments deposited in basins related to the Mesozoic through Tertiary opening of the South Atlantic such as the offshore Colorado Basin. The Sierras Australes of Buenos Aires outcrops are the best preserved. They are mostly located along the Sierras Australes foldbelt, with minor outliers distributed in the adjacent Claromec-basin. The Tunas Formation (early-early late? Permian) is the uppermost unit of the Pillahuincó Group (late Carboniferous-Permian) and is crucial to the understanding of the tectono-sedimentary evolution of the region during the late Paleozoic. The underlying units of the Pillahuincó Group (Sauce Grande, Piedra Azul and Bonete Formations) exhibit a depositional and compositional history characterized by glaciomarine sedimentation and postglacial transgression. They are also characterized by rather uniform quartz-rich compositions indicative of a cratonic provenance from the La Plata craton to the NE. In contrast, the sandstone-rich Tunas Formation has low quartz contents, and abundant volcanic and metasedimentary fragments; paleocurrents are consistently from the SW. Glassrich tuffs are interbedded with sandstone in the upper half of the Tunas Formation. The age of the deformation in the Sierras Australes is Permian and early-middle Triassic. This is based on metamorphic events indicated by formation of illite at 282 ± 3 Ma, 273 ± 8 Ma, 265 ± 3 Ma, and 260 ± 3 Ma ( {K}/{Ar} illite) in the Silurian Curamalal Group. Evidence of syntectonic magmatism is provided by a radiometric date of 245 ± 12 Ma ( {K}/{Ar} hornblende) for the López Lecube Granite

  2. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  3. Precambrian Continent Arctida: A New Kinematic Reconstruction of Late Precambrian - Early Paleozoic Arctida U Europe (baltia) Collision

    NASA Astrophysics Data System (ADS)

    Borisova, T. P.; Guertseva, M. V.; Egorov, A. Ju.; Kononov, M. V.; Kouznetsov, N. B.

    In according to L.P.Zonenshain and L.M.Natapov (1988, 1990), different size conti- nental blocks locating at the margins and inside of present-day Arctic ocean composed the hypothetical early Paleozoic paleocontinent Arctida. The blocks are Kara block (north part of Taymir peninsula, Severnaja Zemlja archipelago and Franz Joseph Land archipelago), north part of Alaska (northward Bruks ridge), Chukchi block, Novosi- birsky block (Novosibirskiye islands together their shelves), several fragments north- ward to the Innuitian orogen (north parts of Peary Land and Ellesmere Island), and Lomonosov ridgeSs block. In the previous kinematic reconstruction it was believed that Arctida as a whole collided with north flanks of Laurentia (Innuitian margin) and Europe (Baltia, Barentsia margin) in middle Paleozoic time. Later, the Arctida (been a fragment of supercontinent Pangea) was fragmented due to a spreading in the Arctic ocean and north part of Atlantic ocean in late Mesozoic and Cenozoic times. Then ArctidaSs fragments were accreted to the Eurasia and North America conti- nents. During the last decade "AEROGEOLOGIA" company has been gathered new data (geologic, stratigraphical, paleomagnetic, and others) of Russian Arctic sector and Svalbard. The data were summarized into "Paleogeographical Atlas for the Rus- sian Arctic sector and Svalbard from Vendian to Jurassic times" (see Abstact SE1.04, ID-NR: EGS02-A-02453). An analyzing of the maps for Vend and Cambrian times allows us to reconsider a few stages of kinematic scenario of late Precambrian - early Paleozoic Arctida U Europe collision. 1) Old interpretation: Arctida was considered as an isolated paleocontinent during early Paleozoic time. New interpretation: during the early Paleozoic Arctida together Europe (Baltia) were assembled into a paleo- continent named us Arcteurope. This conclusion is based on excellent coincidence of Paleozoic paleomagnetic poles of the Kara block (which is a part of Arctida) and Europe

  4. Shifting locus of carbonate sedimentation and the trajectory of Paleozoic pCO2

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.

    2016-12-01

    The burial of calcium carbonate is a determinant of planetary habitability, dictated by CO2 input to the surface environment and rates of chemical weathering. An important source of CO2 is the metamorphism of carbon-bearing sediments, which is responsive to the locus of sedimentation. For example, deep sea sediments are prone to recycling as sea floor is consumed at convergent margins; by contrast, sediments deposited on continental crust can be stable for billions of years.The predominant feature in the empirical sedimentary rock record, as measured by Macrostrat (https://macrostrat.org) and global geological syntheses, is a step-wise increase in continental sedimentation at the Neoproterozoic-Paleozoic transition. Although early Paleozoic carbonate volumes are sufficient to account for a CO2 flux 5x greater than present, Proterozoic continental burial fluxes were likely below the modern estimate. This observation implies that most carbonate sedimentation in the Proterozoic took place on the deep sea floor. The establishment of persistent, widespread continental flooding during the Paleozoic shifted the locus of carbonate sedimentation to continental interiors. A major implication of this shift is that CO2 flux declined during the Paleozoic as carbonate-laden Precambrian seafloor was metamorphosed and recycled. This prediction is consistent with independent proxy records and our model for Phanerozoic carbonate burial. An important corollary is that as carbonate-rich Precambrian seafloor was progressively destroyed, the carbonate content of deep sea sediments decreased concordantly because Paleozoic continents effectively captured global alkalinity fluxes. This process culminated near the Permian/Triassic, with metamorphic CO2 flux at a Phanerozoic minimum and the global ocean uniquely unbuffered against acidification. Such a condition could enhance the environmental effects of transient CO2 injections. Because the mid-Mesozoic appearance of pelagic calcifiers and

  5. Late Paleozoic orogeny in Alaska's Farewell terrane

    USGS Publications Warehouse

    Bradley, D.C.; Dumoulin, Julie A.; Layer, P.; Sunderlin, D.; Roeske, S.; McClelland, B.; Harris, A.G.; Abbott, G.; Bundtzen, T.; Kusky, T.

    2003-01-01

    Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100-200 km apart. In the northern belt, metamorphic rocks dated at 284-285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada. Published by Elsevier B.V.

  6. Assessment of Paleozoic terrane accretion along the southern central Andes using detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.

    2015-12-01

    Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the

  7. Early paleozoic gabbro-amphibolites in the structure of the Bureya Terrane (eastern part of the Central Asian Fold Belt): First geochronological data and tectonic position

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. V.; Sorokin, A. A.; Kudryashov, N. M.

    2012-07-01

    Resulting from U-Pb geochronological study, it has been found that the gabbro-amphibolites composing the Bureya (Turan) Terrane in the eastern part of the Central Asian Fold Belt are Early Paleozoic (Early Ordovician; 455 ± 1.5 Ma) in age rather than Late Proterozoic as was believed earlier. The gabbro-amphibolites and associated metabasalts are close to tholeiites of the intraoceanic island arcs in terms of the geochemical properties. It is suggested that the tectonic block composed of these rocks was initially a seafloor fragment that divided the Bureya and Argun terranes in the Early Paleozoic and was later tectonically incorporated into the modern structure of the Bureya Terrane as a result of Late Paleozoic and Mesozoic events.

  8. The beginning of the Buntsandstein cycle (Early-Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Galán-Abellán, Belén; López-Gómez, José; Barrenechea, José F.; Marzo, Mariano; De la Horra, Raúl; Arche, Alfredo

    2013-10-01

    The Early-Middle Triassic siliciclastic deposits of the Catalan Ranges, NE Spain, are dominated by aeolian sediments indicating a predominance of arid climate during this time span, in sharp contrast with the coeval fluvial sediments found in the Castilian Branch of the Iberian Ranges, 300 km to the SW. The NE-SW-oriented Catalan Basin evolved during the Middle-Late Permian as the result of widespread extension in the Iberian plate. This rift basin was bounded by the Pyrenees, Ebro and Montalbán-Oropesa highs. The Permian-Early Triassic-age sediments of the Catalan Basin were deposited in three isolated subbasins (Montseny, Garraf, Prades), separated by intrabasinal highs, but linked by transversal NW-SE oriented faults. The three subbasins show evidence of diachronic evolution with different subsidence rates and differences in their sedimentary records. The Buntsandstein sedimentary cycle started in the late Early Triassic (Smithian-Spathian) in the central and southern domains (Garraf and Prades), with conglomerates of alluvial fan origin followed by fluvial and aeolian sandstones. Source area of the fluvial sediments was nearby Paleozoic highs to the north and west, in contrast with the far-away source areas of the fluvial sediments in the Iberian Ranges, to the SW. These fluvial systems were interacting with migrating aeolian dune fields located towards the S, which developed in the shadow areas behind the barriers formed by the Paleozoic highs. These highs were separating the subbasins under arid and semi-arid climate conditions. The dominating winds came from the east where the westernmost coast of the Tethys Sea was located, and periods of water run-off and fields of aeolian dunes development alternated. Some of the fluvial systems were probably evaporating as they were mixed into the interdune areas, never reaching the sea. From the end of the Smithian to the Spathian, the Catalan Basin and neighbour peri-Tethys basins of the present-day southern France

  9. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  10. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  11. Paleomagnetism of Early Paleozoic Rocks from the de Long Archipelago and Tectonics of the New Siberian Islands Terrane

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Matushkin, N. Y.; Vernikovskiy, V. A.

    2017-12-01

    The De Long archipelago is located to the north of the Anjou archipelago as a part of a large group between the Laptev Sea and the East Siberian Sea - the New Siberian Islands and consists of Jeannette Island, Bennett Island and Henrietta Island. These islands have been shown to be part of a single continental terrane, whose tectonic history was independent of other continental masses at least since the Ordovician. Paleomagnetic and precise geological data for the De Long archipelago were absent until recently. Only in 2013 special international field trips to the De Long Islands could be organized and geological, isotope-geochronological and paleomagnetic studies were carried out.On Jeannette Island a volcanic-sedimentary sequence intruded by mafic dikes was described. The age of these dikes is more likely Early Ordovician, close to 480 Ma, as evidenced by the results of our 40Ar/39Ar and paleomagnetic investigations of the dolerites as well as the result from detrital zircons in the host rocks published before. On Bennett Island, there are widespread Cambrian-Ordovician mainly terrigenous rocks. Paleomagnetic results from these rocks characterize the paleogeographic position of the De Long archipelago at 465 Ma and perhaps at 530 Ma, although there is no evidence for the primary origin of magnetization for the latter. On Henrietta Island the Early Cambrian volcanic-sedimentary section was investigated. A paleomagnetic pole for 520 Ma was obtained and confirmed by new 40Ar/39Ar results. Adding to our previous paleomagnetic data for the Anjou archipelago the extended variant of the apparent polar wander path for the New Siberian Island terrane was created. The established paleolatitudes define its location in the equatorial and subtropical zone no higher than 40 degrees during the Early Paleozoic. Because there are no good confirmations for true polarity and related geographic hemisphere we present two possibilities for tectonic reconstruction. But both these

  12. Closure Time of the Junggar-Balkhash Ocean: Constraints From Late Paleozoic Volcano-Sedimentary Sequences in the Barleik Mountains, West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Han, Bao-Fu; Chen, Jia-Fu; Ren, Rong; Zheng, Bo; Wang, Zeng-Zhen; Feng, Li-Xia

    2017-12-01

    The Junggar-Balkhash Ocean was a major branch of the southern Paleo-Asian Ocean. The timing of its closure is important for understanding the history of the Central Asian Orogenic Belt. New sedimentological and geochronological data from the Late Paleozoic volcano-sedimentary sequences in the Barleik Mountains of West Junggar, NW China, help to constrain the closure time of the Junggar-Balkhash Ocean. Tielieketi Formation (Fm) is dominated by littoral sediments, but its upper glauconite-bearing sandstone is interpreted to deposit rapidly in a shallow-water shelf setting. By contrast, Heishantou Fm consists chiefly of volcanic rocks, conformably overlying or in fault contact with Tielieketi Fm. Molaoba Fm is composed of parallel-stratified fine sandstone and sandy conglomerate with graded bedding, typical of nonmarine, fluvial deposition. This formation unconformably overlies the Tielieketi and Heishantou formations and is conformably covered by Kalagang Fm characterized by a continental bimodal volcanic association. The youngest U-Pb ages of detrital zircons from sandstones and zircon U-Pb ages from volcanic rocks suggest that the Tielieketi, Heishantou, Molaoba, and Kalagang formations were deposited during the Famennian-Tournaisian, Tournaisian-early Bashkirian, Gzhelian, and Asselian-Sakmarian, respectively. The absence of upper Bashkirian to Kasimovian was likely caused by tectonic uplifting of the West Junggar terrane. This is compatible with the occurrence of coeval stitching plutons in the West Junggar and adjacent areas. The Junggar-Balkhash Ocean should be finally closed before the Gzhelian, slightly later or concurrent with that of other ocean domains of the southern Paleo-Asian Ocean.

  13. New age constraints on the palaeoenvironmental evolution of the late Paleozoic back-arc basin along the western Gondwana margin of southern Peru

    NASA Astrophysics Data System (ADS)

    Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.

    2018-03-01

    The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in

  14. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China

    NASA Astrophysics Data System (ADS)

    Sun, Hanshen; Li, Jianhua; Zhang, Yueqiao; Dong, Shuwen; Xin, Yujia; Yu, Yingqi

    2018-05-01

    The Shaoxing-Jiangshan fault zone (SJFZ), as a fundamental Neoproterozoic block boundary that separates the Yangtze Block from the Cathaysia Block, is the key to understanding the evolution of South China from Neoproterozoic block amalgamation to early Paleozoic crustal reworking. New structural observations coupled with geochronological ages from the Chencai domain indicate that intense ductile deformation and metamorphism along the SJFZ occurred at ∼460-420 Ma, in response to the early Paleozoic orogeny in South China. To the east of the SJFZ, the deformation involves widespread generations of NE-striking foliation, intrafolial folds, and local development of sinistral-oblique shear zones. The shearing deformation occurred under amphibolite facies conditions at temperatures of >550 °C (locally even >650 °C). To the west of the SJFZ, the deformation corresponds to sinistral-oblique shearing along NE-striking, steep-dipping zones under greenschist facies conditions at temperatures of 400-500 °C. These deformation styles, as typical mid-crustal expressions of continental reworking, reflect tectonic reactivation of the pre-existing, deeply rooted Neoproterozoic block boundary in the early Paleozoic. We infer that the tectonic reactivation, possibly induced by oblique underthrusting of north Cathaysia, facilitated ductile shearing and burial metamorphic reactions, giving rise to the high-strain zones and high-grade metamorphic rocks. With respect to pre-existing mechanical weakness, our work highlights the role of tectonic reactivation of early structures in localizing later deformation before it propagates into yet undeformed domains.

  15. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, J.; Wagner, M.E.; Srogi, L.A.

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in themore » PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.« less

  16. Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Gagiev, Mussa; Bradley, Dwight C.; Repetski, John E.

    2002-01-01

    Lower Paleozoic platform carbonate strata in northern Alaska (parts of the Arctic Alaska, York, and Seward terranes; herein called the North Alaska carbonate platform) and central Alaska (Farewell terrane) share distinctive lithologic and faunal features, and may have formed on a single continental fragment situated between Siberia and Laurentia. Sedimentary successions in northern and central Alaska overlie Late Proterozoic metamorphosed basement; contain Late Proterozoic ooid-rich dolostones, Middle Cambrian outer shelf deposits, and Ordovician, Silurian, and Devonian shallow-water platform facies, and include fossils of both Siberian and Laurentian biotic provinces. The presence in the Alaskan terranes of Siberian forms not seen in wellstudied cratonal margin sequences of western Laurentia implies that the Alaskan rocks were not attached to Laurentia during the early Paleozoic.The Siberian cratonal succession includes Archean basement, Ordovician shallow-water siliciclastic rocks, and Upper Silurian–Devonian evaporites, none of which have counterparts in the Alaskan successions, and contains only a few of the Laurentian conodonts that occur in Alaska. Thus we conclude that the lower Paleozoic platform successions of northern and central Alaska were not part of the Siberian craton during their deposition, but may have formed on a crustal fragment rifted away from Siberia during the Late Proterozoic. The Alaskan strata have more similarities to coeval rocks in some peri-Siberian terranes of northeastern Russia (Kotelny, Chukotka, and Omulevka). Lithologic ties between northern Alaska, the Farewell terrane, and the peri-Siberian terranes diminish after the Middle Devonian, but Siberian afµnities in northern and central Alaskan biotas persist into the late Paleozoic.

  17. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of

  18. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  19. Early Paleozoic development of the Maine-Quebec boundary Mountains region

    USGS Publications Warehouse

    Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.

    2006-01-01

    Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.

  20. Paleoclimatic and paleomagnetic constraints on the Paleozoic reconstructions of south China, north China and Tarim

    NASA Astrophysics Data System (ADS)

    Shangyou, Nie

    1991-10-01

    Paleomagnetic and paleoclimatic data provide the most useful latitudinal constraints for plate reconstructions. Distributions through the Paleozoic of five types of climatically sensitive sediments (coals, evaporites, reefs, dolomites and limestones) for south China, north China and Tarim are shown on 15 maps that include 1578 reliable data points. These paleoclimatic data agree reasonably well with available paleomagnetic directions, although significant divergence between the two exists for the Early Paleozoic. These data indicate the following: (1) South China was in low latitudes during the entire Paleozoic, with a subtropical position in the Cambrian. (2) North China also remained near the equator in the Early and Late Paleozoic, except for the Ordovian and the Late Permian when extensive evaporites suggest slightly higher latitudinal positions, while its Middle Paleozoic position is uncertain due to the missing stratigraphie record. (3) In south China, local tectonics appears to have played a dominant role in determining paleogeography and therefore marine sedimentation, especially after the Late Ordovician-Early Silurian, because the areal coverage of marine sediments through time is distinctly different from what would be expected from published global sea-level curves. (4) Paleoclimatic and paleomagnetic data are compatible with biogeographic data which suggest that south China was part of eastern Gondwana in the Early Paleozoic, but was widely separated from Gondwana in the Late Paleozoic, and the split between the two probably happened in the Devonian, giving rise to a major break-up unconformity in central south China.

  1. Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.

    1983-01-01

    Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.

  2. Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu

    2017-08-01

    The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu

  3. Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview

    NASA Astrophysics Data System (ADS)

    Soua, Mohamed

    2014-12-01

    During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete

  4. Facies patterns and conodont biogeography in Arctic Alaska and the Canadian Arctic Islands: Evidence against juxtaposition of these areas during early Paleozoic time

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, A.G.; Bradley, D.C.; De Freitas, T. A.

    2000-01-01

    Differences in lithofacies and biofacies suggest that lower Paleozoic rocks now exposed in Arctic Alaska and the Canadian Arctic Islands did not form as part of a single depositional system. Lithologic contrasts are noted in shallow- and deep-water strata and are especially marked in Ordovician and Silurian rocks. A widespread intraplatform basin of Early and Middle Ordovician age in northern Alaska has no counterpart in the Canadian Arctic, and the regional drowning and backstepping of the Silurian shelf margin in Canada has no known parallel in northern Alaska. Lower Paleozoic basinal facies in northern Alaska are chiefly siliciclastic, whereas resedimented carbonates are volumetrically important in Canada. Micro- and macrofossil assemblages from northern Alaska contain elements typical of both Siberian and Laurentian biotic provinces; coeval Canadian Arctic assemblages contain Laurentian forms but lack Siberian species. Siberian affinities in northern Alaskan biotas persist from at least Middle Cambrian through Mississippian time and appear to decrease in intensity from present-day west to east. Our lithologic and biogeographic data are most compatible with the hypothesis that northern Alaska-Chukotka formed a discrete tectonic block situated between Siberia and Laurentia in early Paleozoic time. If Arctic Alaska was juxtaposed with the Canadian Arctic prior to opening of the Canada basin, biotic constraints suggest that such juxtaposition took place no earlier than late Paleozoic time.

  5. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  6. Geochemistry and chronology of the early Paleozoic diorites and granites in the Huangtupo volcanogenic massive sulfide (VMS) deposit, Eastern Tianshan, NW China: Implications for petrogenesis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Zheng, Jiahao; Chai, Fengmei; Feng, Wanyi; Yang, Fuquan; Shen, Ping

    2018-03-01

    The Eastern Tianshan orogen contains many late Paleozoic porphyry Cu and magmatic Cu-Ni deposits. Recent studies demonstrate that several early Paleozoic volcanogenic massive sulfide (VMS) Cu-polymetallic and porphyry Cu deposits were discovered in the northern part of Eastern Tianshan. This study presents zircon U-Pb, whole-rock geochemical, and Sr-Nd isotopic data for granites and diorites from the Huangtupo VMS Cu-Zn deposit, northern part of the Eastern Tianshan. Our results can provide constraints on the genesis of intermediate and felsic intrusions as well as early Paleozoic geodynamic setting of the northern part of Eastern Tianshan. LA-ICP-MS zircon U-Pb analyses suggest that the granites and diorites were formed at 435 ± 2 Ma and 440 ± 2 Ma, respectively. Geochemical characteristics suggest that the Huangtupo granites and diorites are metaluminous rocks, exhibiting typical subduction-related features such as enrichment in LILE and LREE and depletion in HFSE. The diorites have moderate Mg#, positive εNd(t) values (+6.4 to +7.3), and young Nd model ages, indicative of a depleted mantle origin. The granites exhibit mineral assemblages and geochemical characteristics of I-type granites, and they have positive εNd(t) values (+6.7 to +10.2) and young Nd model ages, suggesting a juvenile crust origin. The early Paleozoic VMS Cu-polymetallic and porphyry Cu deposits in the northern part of Eastern Tianshan were genetically related. The formation of the early Paleozoic magmatic rocks as well as VMS and porphyry Cu deposits in the northern part of Eastern Tianshan was due to a southward subduction of the Junggar oceanic plate.

  7. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Li, Shuangying; Jin, Fuquan; Wan, Yusheng; Zhang, Shukun

    2004-04-01

    A suite of slightly metamorphosed Carboniferous sedimentary strata occurs in the northern margin of the Dabie Mountains, central China. It consists, in ascending order, of the upper Huayuanqiang Formation (C 1), the Yangshan Formation (C 1), the Daorenchong Formation (C 1-2), the most widely distributed Huyoufang Formation (C 2) and the Yangxiaozhuang Formation (C 2). The provenance of the Carboniferous sedimentary rocks is constrained by the integration of trace elements, detrital mineral chemistry and sensitive high resolution ion microprobe (SHRIMP) dating of detrital zircons, which can help to understand the connection between the provenance and the Paleozoic tectonic evolution of the Qinling-Dabie Orogen. The trace element compositions indicate that the source terrain was probably a continental island arc. Detrital tourmalines were mainly derived from aluminous and Al-poor metapelites and metapsammites, and some are sourced from Li-poor granitoids, pegmatites and aplites. Detrital garnets, found only in the uppermost Huyoufang Formation, are almandine and Mn-almandine garnets, indicating probable sources mainly from garnetiferous schists, and partly from granitoid rocks. The detrital white K-micas are muscovitic in the Huayuanqiang, Daorenchong and Huyoufang Formations, and phengitic with Si contents (p.f.u.) from 3.20 up to max. 3.47-3.53 in the uppermost Huyoufang and the Yangxiaozhuang Formations, a meta-sedimentary source. Major components in the detrital zircon age structure for the Huyoufang Formation range from 506 to 363 Ma, centering on ˜400 and ˜480 Ma, which is characteristic of the Qinling and Erlangping Groups in the Qinling and Tongbai Mountains, central China. Evidently, the major source of the Carboniferous sedimentary rocks in the northern margin of Dabie Mountains was from the southern margin of the Sino-Korean Craton represented by the Qinling and Erlangping Groups. The source area was an island-arc system during the Early Paleozoic that

  8. Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales island: an early Paleozoic Alaskan-type ultramafic body

    USGS Publications Warehouse

    Loney, R.A.; Himmelberg, G.R.

    1992-01-01

    The early Paleozoic Salt Chuck intrusion has petrographic and chemical characteristics that are similar to those of Cretaceous Alaskan-type ultramafic-mafic bodies. The intrusion is markedly discordant to the structure of the early Paleozoic Descon Formation, in which it has produced a rather indistinct contact aureole a few meters wide. Mineral assemblages, sequence of crystallization, and mineral chemistry suggest that the intrusion crystallized under low pressures (~2 kbar) with oxidation conditions near those of the NNO buffer, from a hydrous, silica-saturated, orthopyroxene-normative parental magma. The Salt Chuck deposit was probably formed by a two-stage process: 1) a stage of magmatic crystallization in which the sulfides and PGE accumulated in a disseminated manner in cumulus deposits, possibly largely in the gabbro, and 2) a later magmatic-hydrothermal stage during which the sulfides and PGE were remobilized and concentrated in veins and fracture-fillings. In this model, the source of the sulfides and PGE was the magma that produced the Salt Chuck intrusion. -from Authors

  9. Geochronology and geochemistry of early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Xu, Wen-Liang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.

    2018-02-01

    This paper presents new geochronological and geochemical data for early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East, with the aim of elucidating the Paleozoic evolution and tectonic attributes of the Khanka Massif. New U-Pb zircon data indicate that early Paleozoic magmatism within the Khanka Massif can be subdivided into at least four stages: 502, 492, 462-445, and 430 Ma. The 502 Ma pyroxene diorites contain 58.28-59.64 wt% SiO2, 2.84-3.69 wt% MgO, and relatively high Cr and Ni contents. Negative εHf(t) values (- 1.8 to - 0.4), along with other geochemical data, indicate that the primary magma was derived from partial melting of mafic lower crust with the addition of mantle material. The 492 Ma syenogranites have high SiO2 and K2O contents, and show positive Eu anomalies, indicating the primary magma was generated by partial melting of lower crust at relatively low pressure. The 445 Ma Na-rich trondhjemites display high Sr/Y ratios and positive εHf(t) values (+ 1.8 to + 3.9), indicating the primary magma was generated by partial melting of thickened hydrous mafic crust. The 430 Ma granitoids have high SiO2 and K2O contents, zircon εHf(t) values of - 5.4 to + 5.8, and two-stage model ages of 1757-1045 Ma, suggesting the primary magma was produced by partial melting of heterogeneous Proterozoic lower crustal material. The geochemistry of these early Paleozoic intrusive assemblages indicates their formation in an active continental margin setting associated with the subduction of a paleo-oceanic plate beneath the Khanka Massif. The εHf(t) values show an increasingly negative trend with increasing latitude, revealing a lateral heterogeneity of the lower crust beneath the Khanka Massif. Regional comparisons of the magmatic events indicate that the Khanka Massif in the Russian Far East has a tectonic affinity to the Songnen-Zhangguangcai Range Massif rather than the adjacent Jiamusi Massif.

  10. Sequential filling of a late paleozoic foreland basin

    USGS Publications Warehouse

    Mars', J. C.; Thomas, W.A.

    1999-01-01

    Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession

  11. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-wei; Xu, Wen-liang; Pei, Fu-ping; Wang, Feng; Guo, Peng

    2016-09-01

    This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China, in order to constrain the early Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt (CAOB). Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern Songnen-Zhangguangcai Range Massif (SZM) can be subdivided into four stages: Middle Cambrian ( 505 Ma), Late Cambrian ( 490 Ma), Early-Middle Ordovician ( 470 Ma), and Late Ordovician (460-450 Ma). The Middle Cambrian monzogranites are K-rich, weakly to strongly peraluminous, and characterized by pronounced heavy rare earth element (HREE) depletions, high Sr/Y ratios, low Y concentrations, low primary zircon εHf(t) values (- 6.79 to - 1.09), and ancient two-stage model (TDM2) ages (1901-1534 Ma). These results indicate derivation from partial melting of thickened ancient crustal materials that formed during the amalgamation of the northern SZM and the northern Jiamusi Massif (JM). The Late Cambrian monzonite, quartz monzonite, and monzogranite units are chemically similar to A-type granites, and contain zircons with εHf(t) values of - 2.59 to + 1.78 and TDM2 ages of 1625-1348 Ma. We infer that these rocks formed from primary magmas generated by partial melting of Mesoproterozoic accreted lower crustal materials in a post-collisional extensional environment. The Early-Middle Ordovician quartz monzodiorite, quartz monzonite, monzogranite, and rhyolite units are calc-alkaline, relatively enriched in light REEs (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), depleted in HREEs and high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and contain zircons with εHf(t) values of - 7.33 to + 4.98, indicative of formation in an active continental margin setting. The Late Ordovician alkali-feldspar granite and rhyolite units have A-type granite affinities that suggest they formed in an

  12. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min

    2017-04-01

    The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of

  13. Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth

    NASA Astrophysics Data System (ADS)

    Insel, N.; Grove, M.; Haschke, M.; Barnes, J. B.; Schmitt, A. K.; Strecker, M. R.

    2012-12-01

    Constraining the pre-Neogene history of the Puna plateau is crucial for establishing the initial conditions that attended the early stage evolution of the southern extent of the Andean plateau. We apply high- to low-temperature thermochronology data from plutonic rocks in northwestern Argentina to quantify the Paleozoic, Mesozoic and early Tertiary cooling history of the Andean crust. U-Pb crystallization ages of zircons indicate that pluton intrusion occurred during the early mid-Ordovician (490-470 Ma) and the late Jurassic (160-150 Ma). Lower-temperature cooling histories from 40Ar/39Ar analyses of K-feldspar vary substantially. Basement rocks underlying the western Puna resided at temperatures below 200°C (<6 km depth) since the Devonian (˜400 Ma). In contrast, basement rocks underlying the southeastern Puna were hotter (˜200-300°C) throughout the Paleozoic and Jurassic and cooled to temperatures of <200°C by ˜120 Ma. The southeastern Puna basement records a rapid cooling phase coeval with active extension of the Cretaceous Salta rift at ˜160-100 Ma that we associate with tectonic faulting and lithospheric thinning. The northeastern Puna experienced protracted cooling until the late Cretaceous with temperatures <200°C during the Paleocene. Higher cooling rates between 78 and 55 Ma are associated with thermal subsidence during the postrift stage of the Salta rift and/or shortening-related flexural subsidence. Accelerated cooling and deformation during the Eocene was focused within a narrow zone along the eastern Puna/Eastern Cordillera transition that coincides with Paleozoic/Mesozoic structural and thermal boundaries. Our results constrain regional erosion-induced cooling throughout the Cenozoic to have been less than ˜150°C, which implies total Cenozoic denudation of <6-4 km.

  14. Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Liu, Yongjiang; Li, Weimin; Feng, Zhiqiang; Neubauer, Franz

    2017-04-01

    The Central Asian Orogenic Belt (CAOB) is the largest accretionary orogen in the world, which is responsible for considerable Phanerozoic juvenile crustal growth. The NE China and its adjacent areas compose the eastern segment of the CAOB, which is a key area for providing important evidence of the CAOB evolution and understanding the NE Asian tectonics. The eastern segment of the CAOB is composed tectonically of four micro-blocks and four sutures, i.e. Erguna block (EB), Xing'an block (XB), Songliao-Xilinhot block (SXB), Jiamusi block (JB), Xinlin-Xiguitu suture (XXS), Heihe-Hegenshan suture (HHS), Mudanjiang-Yilan suture (MYS) and Solonker-Xar Moron-Changchun-Yanji suture (SXCYS). The EB and XB were amalgamated by westward subduction, oceanic island accretions and final collision in ca. 500 Ma. The XB and SXB were amalgamated by subduction-related Early Paleozoic marginal arc, Late Paleozoic marginal arc and final collision in the late Early Carboniferous to early Late Carboniferous. The JB probably had been attached to the SXB in the Early Paleozoic, but broken apart from the SXB in the Triassic and collided back in the Jurassic. The closure of Paleo-Asian Ocean had experienced a long continue/episodic subduction-accretion processes on margins of the NCC to the south and the SXB to the north from the Early to Late Paleozoic. The final closure happened along the SXCYS, from west Solonker, Sonid Youqi, Kedanshan (Keshenketengqi), Xar Moron River through Songliao Basin via Kailu, Tongliao, Horqin Zuoyizhongqi, Changchun, to the east Panshi, Huadian, Dunhua, Yanji, with a scissors style closure in time from the Late Permian-Early Triassic in the west to the Late Permian-Middle Triassic in the east. The amalgamated blocks should compose a united micro-continent, named as Jiamusi-Mongolia Block (JMB) after Early Carboniferous, which bounded by Mongo-Okhotsk suture to the northwest, Solonker-Xar Moron-Changchun suture to the south and the eastern margin of JB to the

  15. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids

    NASA Astrophysics Data System (ADS)

    Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna

    2018-06-01

    Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from

  16. Paleozoic Hydrocarbon-Seep Limestones

    NASA Astrophysics Data System (ADS)

    Peckmann, J.

    2007-12-01

    To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods

  17. The global record of local iron geochemical data from Proterozoic through Paleozoic basins

    NASA Astrophysics Data System (ADS)

    Sperling, E. A.; Wolock, C.; Johnston, D. T.; Knoll, A. H.

    2013-12-01

    Iron-based redox proxies represent one of the most mature tools available to sedimentary geochemists. These techniques, which benefit from decades of refinement, are based on the fact that rocks deposited under anoxic conditions tend to be enriched in highly-reactive iron. However, there are myriad local controls on the development of anoxia, and no local section is an exemplar for the global ocean. The global signal must thus be determined using techniques like those developed to solve an analogous problem in paleobiology: the inference of global diversity patterns through time from faunas seen in local stratigraphic sections. Here we analyze a dataset of over 4000 iron speciation measurements (including over 600 de novo analyses) to better understand redox changes from the Proterozoic through the Paleozoic Era. Preliminary database analyses yield interesting observations. We find that although anoxic water columns in the middle Proterozoic were dominantly ferruginous, there was a statistical tendency towards euxinia not seen in early Neoproterozoic or Ediacaran data. Also, we find that in the Neoproterozoic oceans, oxic depositional environments-the likely home for early animals-have exceptionally low pyrite contents, and by inference low levels of porewater sulfide. This runs contrary to notions of sulfide stress on early metazoans. Finally, the current database of iron speciation data does not support an Ediacaran or Cambrian oxygenation event. This conclusion is of course only as sharp as the ability of the Fe-proxy database to track dissolved oxygen and does not rule out the possibility of a small-magnitude change in oxygen. It does suggest, however, that if changing pO2 facilitated animal diversification it did so by a limited rise past critical ecological thresholds, such as seen in the modern Oxygen Minimum Zones benthos. Oxygen increase to modern levels thus becomes a Paleozoic problem, and one in need of better sampling if a database approach is to be

  18. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Rudolph, Maxwell L.

    2015-05-01

    The seismic structure of the Earth's lower mantle is characterized by a dominantly degree-2 pattern with the African and Pacific large low shear velocity provinces (i.e., LLSVP) that are separated by circum-Pacific seismically fast anomalies. It is important to understand the origin of such a degree-2 mantle structure and its temporal evolution. In this study, we investigated the effects of plate motion history and mantle viscosity on the temporal evolution of the lower mantle structure since the early Paleozoic by formulating 3-D spherical shell models of thermochemical convection. For convection models with realistic mantle viscosity and no initial structure, it takes about ˜50 Myr to develop dominantly degree-2 lower mantle structure using the published plate motion models for the last either 120 Ma or 250 Ma. However, it takes longer time to develop the mantle structure for more viscous mantle. While the circum-Pangea subduction in plate motion history models promotes the formation of degree-2 mantle structure, the published pre-Pangea plate motions before 330 Ma produce relatively cold lower mantle in the African hemisphere and significant degree-1 structure in the early Pangea (˜300 Ma) or later times, even if the lower mantle has an initially degree-2 structure and a viscosity as high as 1023 Pas. This suggests that the African LLSVP may not be stationary since the early Paleozoic. With the published plate motion models and lower mantle viscosity of 1022 Pas, our mantle convection models suggest that the present-day degree-2 mantle structure may have largely been formed by ˜200 Ma.

  19. The Implementation of 2-D Resistivity Method in Verifying Paleozoic Aquifer Properties at Bukit Chondong, Perlis (Malaysia)

    NASA Astrophysics Data System (ADS)

    Maslinda, Umi; Nordiana, M. M.; Bery, A. A.; Afiq Saharudin, Muhamad; Hisham, Hazrul; Taqiuddin, Z. M.; Sulaiman, Nabila; Nur Amalina, M. K. A.; Nordiana, A. N.

    2017-04-01

    The research was conducted using 2-D resistivity in verifying Paleozoic aquifer. Since most geologic materials behave as electrical insulators, surface measurements of earth resistivity are controlled by the electrolytic ability of interstitial water. The subsurface distribution of water is controlled by the porosity of the formations. The study area is at Bukit Chondong, Beseri, Perlis. Bukit Chondong is made of sedimentary rock which mostly is sandstone. Bukit Chondong is from uppermost of the Kubang Pasu Formation that represented by a thick unit of grey mudstone interbedded with sandstone. The Kubang Pasu Formation was influenced by shallow marine during the early age. Paleocurrent and fossils traces were found on the mudstone at the study area. The area is suspected to be a Paleozoic aquifer because the sandstone can be a productive aquifer with diffuse flow. The water movement in sandstone is through the fractures and joints. Most of the water stores and transmits in sandstone. The interbedded sandstone and mudstone is one of the aquifer characteristic. Sandstone and mudstone are water-bearing rocks and low-permeable rocks respectively. The data was processed according to the geological information of the study area since there was an outcrop. The study area have low resistivity value which both sandstone and mudstone give less than 800 Ohm-m due to the water content (Sulphide and clay).

  20. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early

  1. Sedimentary facies of the upper Cambrian (Furongian; Jiangshanian and Sunwaptan) Tunnel City Group, Upper Mississippi Valley: new insight on the old stormy debate

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2014-01-01

    New data from detailed measured sections permit a comprehensive revision of the sedimentary facies of the Furongian (upper Cambrian; Jiangshanian and Sunwaptan stages) Tunnel City Group (Lone Rock Formation and Mazomanie Formation) of Wisconsin and Minnesota. Heterogeneous sandstones, comprising seven lithofacies along a depositional transect from shoreface to transitional-offshore environments, record sedimentation in a storm-dominated, shallow-marine epicontinental sea. The origin of glauconite in the Birkmose Member and Reno Member of the Lone Rock Formation was unclear, but its formation and preserved distribution are linked to inferred depositional energy rather than just net sedimentation rate. Flat-pebble conglomerate, abundant in lower Paleozoic strata, was associated with the formation of a condensed section during cratonic flooding. Hummocky cross-stratification was a valuable tool used to infer depositional settings and relative paleobathymetry, and the model describing formation of this bedform is expanded to address flow types dominant during its genesis, in particular the importance of an early unidirectional component of combined flow. The depositional model developed here for the Lone Rock Formation and Mazomanie Formation is broadly applicable to other strata common to the early Paleozoic that document sedimentation along flooded cratonic interiors or shallow shelves.

  2. Unroofing history of Late Paleozoic magmatic arcs within the ``Turan Plate'' (Tuarkyr, Turkmenistan)

    NASA Astrophysics Data System (ADS)

    Garzanti, E.; Gaetani, M.

    2002-07-01

    Stratigraphic, sedimentologic and petrographic data collected on the Kizilkaya sedimentary succession (Western Turkmenistan) demonstrate that the "Turan Plate" consists in fact of an amalgamation of Late Paleozoic to Triassic continental microblocks separated by ocean sutures. In the Kizilkaya area, an ophiolitic sequence including pyroxenite, gabbro, pillow basalt and chert, interpreted as the oceanic crust of a back-arc or intra-arc basin, is tectonically juxtaposed against volcaniclastic redbeds documenting penecontemporaneous felsic arc magmatism (Amanbulak Group). A collisional event took place around ?mid-Carboniferous times, when oceanic rocks underwent greenschist-facies metamorphism and a thick volcaniclastic wedge, with pyroclastic rocks interbedded in the lower part, accumulated (Kizilkaya Formation). The climax of orogenic activity is testified by arid fanglomerates shed from the rapid unroofing of a continental arc sequence, including Middle-Upper Devonian back-reef carbonates and cherts, and the underlying metamorphic and granitoid basement rocks (Yashmu Formation). After a short period of relative quiescence, renewed tectonic activity is indicated by a conglomeratic sequence documenting erosion of a sedimentary and metasedimentary succession including chert, sandstone, slate and a few carbonates. A final stage of rhyolitic magmatism took place during rapid unroofing of granitoid basement rocks (Kizildag Formation). Such a complex sequence of events recorded by the Kizilkaya episutural basin succession documents the stepwise assemblage of magmatic arcs and continental fragments to form the Turan microblock collage during the Late Paleozoic. Evolution of detrital modes is compatible with that predicted for juvenile to accreted and unroofed crustal blocks. The deposition of braidplain lithic arkoses in earliest Triassic time indicates that strong subsidence continued after the end of the volcanic activity, possibly in retroarc foreland basin settings

  3. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  4. Paleozoic Orogens of Mexico and the Laurentia-Gondwana Connections: an Update

    NASA Astrophysics Data System (ADS)

    Ortega-Gutierrez, F.

    2009-05-01

    The present position of Mexico in North America and the fixist tectonic models that prevailed prior to the seventies of the past century, have considered the main Paleozoic tectonic systems of Mexico as natural extensions of the orogens that fringed the eastern and southern sides of the Laurentian craton. Well known examples of pre-Mesozoic orogens in Mexico are the Oaxacan, Acatlan, and Chiapas polymetamorphic terranes, which have been correlated respectively with the Grenville and Appalachian-Ouachitan orogens of eastern North America. Nonetheless, several studies conducted during the last decade in these Mexican orogenic belts, have questioned their Laurentian connections, regarding northwestern Gondwana instead as the most plausible place for their birth and further tectonic evolution. This work pretends to approach the problem by briefly integrating the massive amount of new geological information, commonly generated through powerful dating methods such as LA-ICPM-MS on detrital zircon of sedimentary and metasedimentary units in the Paleozoic crustal blocks, which are widely exposed in southern and southeastern Mexico. The Acatlan Complex bears the closest relationships to the Appalachian orogenic system because it shows thermotectonic evidence for opening and closure of the two main oceans involved in building the Appalachian mountains in eastern Laurentia, whereas two other Paleozoic terranes in NW and SE Mexico, until recently rather geologically unknown, may constitute fundamental links between the Americas for the last-stage suturing and consolidation of western Pangea. The buried basement of the Yucatan platform (400,000 squared km) on the other hand, remains as one of the most relevant problems of tectonostratigraphic correlations across the Americas, because basement clasts from the Chicxulub impact ejecta reveal absolute and Nd-model ages that suggest close Gondwanan affinities. Major changes in the comprehension of the Paleozoic orogens in Mexico

  5. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  6. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    USGS Publications Warehouse

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  7. The Boundary of Tectonic Units of the South China Continent in the Meso-Neoproterozoic - Early Paleozoic: Insights from Integrated Geophysical Study

    NASA Astrophysics Data System (ADS)

    Guo, L.; Gao, R.; Meng, X.; Zhang, J.; Wang, H.; Liu, Y.

    2013-12-01

    The South China continent (SCC), located in the transition zone of the Eurasia, India and Pacific plates, formed in the Meso-Neoproterozoic by collision of the Yangtze block and the Cathaysia block. However, the boundaries of the two blocks before the late Paleozoic (from Meso-Neoproterozoic to early Paleozoic) remain debated in the literature due to strong and complex tectonic and magmatic activities since then. The south of Jiangnan archicontinent is covered mostly by the thick strata since the late Paleozoic, the surface of which is widely covered by the vegetation. And the regional tectonic deformation is extremely complicated with few basal outcrops. For decades, a variety of geophysical detections have been performed in the SCC for understanding the deep structure and tectonic evolution, including deep seismic sounding (DSS) profiles, magnetotelluric sounding (MT) profiles, gravity and magnetic surveys and a small amount of deep seismic reflection profiles. However, due to the limitations of resolution and accuracy of the observed geophysical data in the past, especially short of the deep seismic reflection profiles to reveal fine lithosphere structure, different scientists presented various views on the division of tectonic units in the SCC. In quite recent years, the SinoProbe-02 project launched a long profile of geophysical detections across the two blocks in the SCC, including deep seismic reflection, DSS, MT, and broadband seismic observation, the resolution and accuracy of which had been improved greatly. These newly data will benefit better understanding the deep structure and tectonic evolution of the SCC. Here, we assembled high-resolution Bouguer gravity anomalies and aeromagnetic anomalies data in the SCC. The magnetic data were reduced to the pole by used a varying magnetic inclinations algorithm. We then performed anomaly separation and multi-scales lineation structure analysis on the gravity and RTP magnetic data, and then did 3D fusion

  8. Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Song, Guangzeng; Wang, Hua; Huang, Chuanyan; Zhang, Lidong; Tang, Jianrong

    2016-09-01

    The geology in the Wuliji area (including the Enger Us and Quagan Qulu areas) is important for understanding the Late Paleozoic tectonics of the Solonker Zone. Ultramafic/mafic rocks in the Enger Us area, previously interpreted as an ophiolitic suture, are actually lava flows and sills in a Permian turbiditic sequence and a small body of fault breccia containing serpentinite. Subduction zone features, such as accretionary complexes, magmatic arc volcanics or LP/HP metamorphism are absent. Early Permian N-MORB mafic rocks and Late Permian radiolarian cherts accompanied by turbidites and tuffeous rocks indicate a deep water setting. In the Quagan Qulu area, outcrops of the Late Carboniferous to Permian Amushan Formation are composed of volcano-sedimenary rocks and guyot-like reef limestone along with a Late Permian volcano-sedimentary unit. A dacite lava in the Late Permian volcano-sedimentary unit yields a zircon U-Pb age of 254 Ma. The gabbros in the Quagan Qulu area are intruded into the Amushan Formation and caused contact metamorphism of country rocks. Sandstones in the Upper Member of the Amushan Formation contain detrital clasts of volcanic fragments and mineral clasts of crystalline basement rocks (i.e. biotite, muscovite and garnet). Geochemical analysis of volcaniclastic sandstones shows a magmatic affinity to both continental island arc (CIA) and active continental margin (ACM) tectonic settings. A Late Permian incipient rift setting is suggested by analyzing the lithostratigraphic sequence and related magmatism in the Wuliji area. The volcano-sedimentary rocks in the Wuliji area experienced a nearly N-S shortening that was probably related to the Early Mesozoic nearly N-S compression well developed in other areas close to the Wuliji area.

  9. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    NASA Astrophysics Data System (ADS)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  10. A New Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and Cladistic Analysis of Early Chondrichthyans

    PubMed Central

    Pradel, Alan; Tafforeau, Paul; Maisey, John G.; Janvier, Philippe

    2011-01-01

    Background The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters. Methodology/Principal Findings On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters. Conclusions/Significance Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters. PMID:21980367

  11. A new paleozoic Symmoriiformes (Chondrichthyes) from the late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans.

    PubMed

    Pradel, Alan; Tafforeau, Paul; Maisey, John G; Janvier, Philippe

    2011-01-01

    The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters. On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters. Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters.

  12. Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.

    PubMed

    Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song

    2018-01-23

    The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.

  13. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left

  14. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse

  15. The Juchatengo complex: an upper-level ophiolite assemblage of late Paleozoic age in Oaxaca, southern Mexico

    NASA Astrophysics Data System (ADS)

    Grajales-Nishimura, José Manuel; Ramos-Arias, Mario Alfredo; Solari, Luigi; Murillo-Muñetón, Gustavo; Centeno-García, Elena; Schaaf, Peter; Torres-Vargas, Ricardo

    2018-04-01

    The Juchatengo complex (JC) suite is located between the Proterozoic Oaxacan complex to the north and the Xolapa complex to the south, and was amalgamated by late Paleozoic magmatism. It consists of mafic and sedimentary rocks that have oceanic affinities, with internal pseudostratigraphic, structural and metamorphic characteristics, which resemble a typical upper-level ophiolite assemblage. New U-Pb zircon and previous hornblende K-Ar analyses yield ages of ca. 291-313 Ma (U-Pb) for plagiogranites and ca. 282-277 Ma for tonalites intruding the entire sequence, including pelagic sediments at the top, with a maximum deposition age of ca. 278 Ma and noteworthy local provenance. These data constrain the age of the JC to the Late Pennsylvanian-Early Permian period. Hf isotopic analyses obtained from zircons in the JC plagiogranite and tonalite show that they come from a similar primitive mantle source (176Hf/177Hf: 0.282539-0.283091; ƐHf(t): + 3.2 to + 15.0). ƐHf(t) values from near 0 to - 2.8 in the tonalites indicate a contribution from the continental crust. Trace elements and REE patterns in whole rock and zircons point to a primitive mantle source for differentiated mafic, plagiogranite dykes and tonalitic plutons. Geochronological and geochemical data address the generation of new oceanic crust above the subduction zone, probably in a backarc setting. In this tectonic scenario, the JC ophiolite originated due to the convergence of the paleo-Pacific plate below the already integrated Oaxacan and Acatlán complexes in western Pangea. The dextral displacement places the deformation in a transtensional regime during the late Paleozoic age.

  16. Tectonic transition associated with Kazakhstan Orocline in the Late Paleozoic: magmatic archives of western Chinese Tianshan

    NASA Astrophysics Data System (ADS)

    Cai, Keda

    2016-04-01

    Kazakhstan accretionary system was a principle component of the Central Asian Orogenic Belt (CAOB) that is one of the largest accretionary orogens on earth. The Kazakhstan composite continent could have been established in the Early Paleozoic by the Kazakhstan accretionary system in the form of progressively amalgamations of diverse tectonic units, such as continental ribbon, accretionary prim, oceanic remnant and arc material. Subsequently, the composite continent was bended to form a spectacular U-shaped architecture that probably occurred in the Late Paleozoic. The western Chinese Tianshan is situated on the south wing of the Kazakhstan Orocline, featured by extensive magmatim, intense deformation and voluminous mineralization. Our new geochronological and geochemical data suggest a noticeable magmatic gap between Late Devonian and Early carboniferous and contrasting magma sources of these magmatic rocks. The significant shifts correspond to the tectonic transition from terrane amalgamation to mountain bending in the Early Paleozoic. This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (2014CB448000), Xinjiang outstanding youth scientific grant (2013711003) and the Talent Awards to KDC from the China Government under the 1000 Talent Plan.

  17. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of

  18. Evolution of a Permo-Triassic sedimentary melange, Grindstone terrane, east-central Oregon

    USGS Publications Warehouse

    Blome, C.D.; Nestell, M.K.

    1991-01-01

    Perceives the Grindstone rocks to be a sedimentary melange composed of Paleozoic limestone slide and slump blocks that became detached from a carbonate shelf fringing a volcanic knoll or edifice in Late Permian to Middle Triassic time and were intermixed with Permian and Triassic slope to basinal clastic and volcaniclastic rocks in a forearc basin setting. Paleogeographic affinities of the Grindstone limestone faunas and volcaniclastic debris in the limestone and clastic rocks all indicate deposition in promixity to an island-arc system near the North American craton. -from Authors

  19. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  20. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  1. Global deglaciation and the re-appearance of microbial matground-dominated ecosystems in the late Paleozoic of Gondwana.

    PubMed

    Buatois, L A; Netto, R G; Gabriela Mángano, M; Carmona, N B

    2013-07-01

    The extensive matgrounds in Carboniferous-Permian open-marine deposits of western Argentina constitute an anachronistic facies, because with the onset of penetrative bioturbation during the early Paleozoic microbial mats essentially disappeared from these settings. Abundant microbially induced sedimentary structures in the Argentinean deposits are coincident with the disappearance of trace and body fossils in the succession and with a landward facies shift indicative of transgressive conditions. Deposits of the Late Carboniferous-Early Permian glacial event are well developed in adjacent basins in eastern Argentina, Brazil, South Africa and Antarctica, but do not occur in the western Andean basins of Argentina. However, the deglaciation phase is indirectly recorded in the studied region by a rapid rise in sea level referred to as the Stephanian-Asselian transgression. We suggest that an unusual release of meltwater during the final deglaciation episode of the Gondwana Ice Age may have dramatically freshened peri-Gondwanan seas, impacting negatively on coastal and shallow-marine benthic faunas. Suppression of bioturbation was therefore conducive to a brief re-appearance of matground-dominated ecosystems, reminiscent of those in the precambrian. Bioturbation is essential for ecosystem performance and plays a major role in ocean and sediment geochemistry. Accordingly, the decimation of the mixed layer during deglaciation in the Gondwana basins may have altered ecosystem functioning and geochemical cycling. © 2013 John Wiley & Sons Ltd.

  2. A- and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Badr, Afsaneh; Davoudian, Ali Reza; Shabanian, Nahid; Azizi, Hossein; Asahara, Yoshihiro; Neubauer, Franz; Dong, Yunpeng; Yamamoto, Koshi

    2018-02-01

    The North Shahrekord Metamorphic Complex (NSMC) of the central Sanandaj-Sirjan Zone (SaSZ) consists of metagranitoid bodies, which were metamorphosed within high pressure-low temperature conditions. Whole rock chemistry shows relatively high amounts of SiO2 (65-77 wt%) and Al2O3 (12-15 wt%), low amounts of Nb, P, Sr, Ti, a high ratio of Ga/Al (4-9) and a negative Eu anomaly. The chemical compositions of metagranites are reasonably similar to A- and I-type granites. U-Pb zircon ages of three samples of metagranites indicate that crystallization of the granites occurred at 521.6 ± 9.1 to 513.5 ± 8.5 Ma, Middle Cambrian. The initial 87Sr/86Sr and 143Nd/144Nd ratios of samples vary from 0.7057-0.7239 and 0.511801-0.511890, respectively. High initial 87Sr/86Sr ratios and low εNd(t) values (- 3.39 to - 1.07) associated with high ratios of 206Pb/204Pb(t) = 17.8557-18.8045, 207Pb/204Pb(t) = 15.6721-15.7220, and 208Pb/204Pb(t) = 37.7490-38.4468 infer a significant contribution of continental crust in generating the source magma of the metagranite bodies. The results reveal that the metagranites were mainly produced through mixing of basaltic melts with components similar to metasedimentary sources. The new results show that crystallization of the metagranites occurred in Early Paleozoic times and much earlier than break-up and drifting of the SaSZ from the Arabian plate, suggesting that the metagranites were mainly produced in the western Iran after the closure of the Proto-Tethys Ocean. This model is consistent with the previously suggested models for formation of an Early Paleozoic granitoid belt along the northern rim of Gondwana.

  3. Paleozoic sedimentary rocks in the Red Dog Zn-Pb-Ag district and vicinity, western Brooks Range, Alaska: provenance, deposition, and metallogenic significance

    USGS Publications Warehouse

    Slack, John F.; Dumoulin, Julie A.; Schmidt, J.M.; Young, L.E.; Rombach, Cameron

    2004-01-01

    The distribution and composition of Paleozoic strata in the western Brooks Range may have played a fundamental role in Zn-Pb mineralization of the Red Dog district. In our model, deposition and early lithification of biogenic chert and bedded siliceous rocks in the upper part of the Kuna Formation served as a regional hydrologic seal, acting as a cap rock to heat and hydrothermal fluids during Late Mississippian base-metal mineralization. Equally important was the iron-poor composition of black shales of the Kuna Formation (i.e., low Fe/Ti ratios), which limited synsedimentary pyrite formation in precursor sediments, resulting in significant H2S production in pore waters through the interaction of aqueous sulfate with abundant organic matter. This H2S may have been critical to the subsurface deposition of the huge quantities of Zn and Pb in the district. On the basis of this model, we propose that low Fe/Ti and S/C ratios in black shale sequences are potential basin-scale exploration guides for giant sediment-hosted, stratiform Zn-Pb-Ag deposits.

  4. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.

    PubMed

    Crampton, James S; Meyers, Stephen R; Cooper, Roger A; Sadler, Peter M; Foote, Michael; Harte, David

    2018-05-29

    Periodic fluctuations in past biodiversity, speciation, and extinction have been proposed, with extremely long periods ranging from 26 to 62 million years, although forcing mechanisms remain speculative. In contrast, well-understood periodic Milankovitch climate forcing represents a viable driver for macroevolutionary fluctuations, although little evidence for such fluctuation exists except during the Late Cenozoic. The reality, magnitude, and drivers of periodic fluctuations in macroevolutionary rates are of interest given long-standing debate surrounding the relative roles of intrinsic biotic interactions vs. extrinsic environmental factors as drivers of biodiversity change. Here, we show that, over a time span of 60 million years, between 9 and 16% of the variance in biological turnover (i.e., speciation probability plus species extinction probability) in a major Early Paleozoic zooplankton group, the graptoloids, can be explained by long-period astronomical cycles (Milankovitch "grand cycles") associated with Earth's orbital eccentricity (2.6 million years) and obliquity (1.3 million years). These grand cycles modulate climate variability, alternating times of relative stability in the environment with times of maximum volatility. We infer that these cycles influenced graptolite speciation and extinction through climate-driven changes to oceanic circulation and structure. Our results confirm the existence of Milankovitch grand cycles in the Early Paleozoic Era and show that known processes related to the mechanics of the Solar System were shaping marine macroevolutionary rates comparatively early in the history of complex life. We present an application of hidden Markov models to macroevolutionary time series and protocols for the evaluation of statistical significance in spectral analysis.

  5. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and

  6. Hierarchy of sedimentary discontinuity surfaces and condensed beds from the middle Paleozoic of eastern North America: Implications for cratonic sequence stratigraphy

    USGS Publications Warehouse

    McLaughlin, P.I.; Brett, Carlton E.; Wilson, M.A.

    2008-01-01

    Sedimentological analyses of middle Paleozoic epeiric sea successions in North America suggest a hierarchy of discontinuity surfaces and condensed beds of increasing complexity. Simple firmgrounds and hardgrounds, which are comparatively ephemeral features, form the base of the hierarchy. Composite hardgrounds, reworked concretions, authigenic mineral crusts and monomictic intraformational conglomerates indicate more complex histories. Polymictic intraformational conglomerates, ironstones and phosphorites form the most complex discontinuity surfaces and condensed beds. Complexity of discontinuities is closely linked to depositional environments duration of sediment starvation and degree of reworking which in turn show a relationship to stratigraphic cyclicity. A model of cratonic sequence stratigraphy is generated by combining data on the complexity and lateral distribution of discontinuities in the context of facies successions. Lowstand, early transgressive and late transgressive systems tracts are representative of sea-level rise. Early and late transgressive systems tracts are separated by the maximum starvation surface (typically a polymictic intraformational conglomerate or condensed phosphorite), deposited during the peak rate of sea-level rise. Conversely the maximum flooding surface, representing the highest stand of sea level, is marked by little to no break in sedimentation. The highstand and falling stage systems tracts are deposited during relative sea-level fall. They are separated by the forced-regression surface, a thin discontinuity surface or condensed bed developed during the most rapid rate of sea-level fall. The lowest stand of sea level is marked by the sequence boundary. In subaerially exposed areas it is occasionally modified as a rockground or composite hardground.

  7. Derivation of S and Pb in phanerozoic intrusion-related metal deposits from neoproterozoic sedimentary pyrite, Great Basin, United States

    USGS Publications Warehouse

    Vikre, Peter G.; Poulson, S.R.; Koenig, Alan E.

    2011-01-01

    The thick (≤8 km), regionally extensive section of Neoproterozoic siliciclastic strata (terrigenous detrital succession, TDS) in the central and eastern Great Basin contains sedimentary pyrite characterized by mostly high δ34S values (−11.6 to 40.8‰, >70% exceed 10‰; 51 analyses) derived from reduction of seawater sulfate, and by markedly radiogenic Pb isotopes (207Pb/204Pb >19.2; 15 analyses) acquired from clastic detritus eroded from Precambrian cratonal rocks to the east-southeast. In the overlying Paleozoic section, Pb-Zn-Cu-Ag-Au deposits associated with Jurassic, Cretaceous, and Tertiary granitic intrusions (intrusion-related metal deposits) contain galena and other sulfide minerals with S and Pb isotope compositions similar to those of TDS sedimentary pyrite, consistent with derivation of deposit S and Pb from TDS pyrite. Minor element abundances in TDS pyrite (e.g., Pb, Zn, Cu, Ag, and Au) compared to sedimentary and hydrothermal pyrite elsewhere are not noticeably elevated, implying that enrichment in source minerals is not a precondition for intrusion-related metal deposits.Three mechanisms for transferring components of TDS sedimentary pyrite to intrusion-related metal deposits are qualitatively evaluated. One mechanism involves (1) decomposition of TDS pyrite in thermal aureoles of intruding magmas, and (2) aqueous transport and precipitation in thermal or fluid mixing gradients of isotopically heavy S, radiogenic Pb, and possibly other sedimentary pyrite and detrital mineral components, as sulfide minerals in intrusion-related metal deposits. A second mechanism invokes mixing and S isotope exchange in thermal aureoles of Pb and S exsolved from magma and derived from decomposition of sedimentary pyrite. A third mechanism entails melting of TDS strata or assimilation of TDS strata by crustal or mantle magmas. TDS-derived or assimilated magmas ascend, decompress, and exsolve a mixture of TDS volatiles, including isotopically heavy S and

  8. Inferred Early Permian Arc Rifting in Bogda Mountain, Southernmost of the Central Asia Orogenic Belt: Evidence from a Peperite Bearing Volcano-Sedimentary Succession

    NASA Astrophysics Data System (ADS)

    Memtimin, M.; Guo, Z.

    2017-12-01

    Late Paleozoic tectonic history, especially Carboniferous-Permian periods, of the Central Asia Orogenic Belt (CAOB) is considered to be the turning point for the termination of terrane amalgamation and closure of the Paleoasian Ocean. However, the debate about the paleoenvironment and tectonic setting of the region during the period is still not resolved. In this study, we report a set of volcano-sedimentary sequence in the Bogda Mountain of the southernmost of CAOB, which is associated with contemporaneous subaqueous emplacement of and interaction between mafic lava and carbonate sediments. The succession contains four distinct facies including closely packed pillow basalts, pillow basalts with interstitial materials, hyaloclastites and peperites. We discuss their formation and emplacement mechanism, interaction between hot magma-water/unconsolidated sediments and thermal metamorphism during the interaction. Textural features of the sequence, especially hyaloclastites and peperites, provide clear evidence for in situ autofragmentation of lava flows, synvolcanic sedimentation of carbonates, fuel coolant interaction when hot magma bulldozed into wet unconsolidated sediments, and represent autochthonous origin of the succession. Lateral transition of the lithofacies indicate a progressively deepening subaqueous environment, resembling a stepwise evolution from early stage of volcanic intrusion with lower lava flux in shallower water level to increasingly subsiding basin with more lava flux in greater depth. Previous studies determined that the mafic magma was intruded around the Carboniferous-Permian boundary ( 300Ma), and geochemical studies showed the magma was originated from dry depleted mantle with little crustal contamination. Nevertheless, the succession was thought to be fault related allochthones formation which was transferred in as part of a Carboniferous intraplate arc. Combining our findings with the previous study results, we propose a new model to

  9. Provenance analysis of the Late Paleozoic sedimentary rocks in the Xilinhot Terrane, NE China, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhou, Jian-Bo; Wilde, Simon A.; Song, Min-Chun

    2017-08-01

    The Xilinhot Terrane is located in the eastern segment of the Central Asian Orogenic Belt in NE China, and is a key to a hotly debated issue on the Paleozoic tectonic evolution of this giant progenic belt. To constrain the tectonic evolution of the Xilinhot Terrane in the Late Paleozoic, we undertook zircon U-Pb dating and geochemical analyses of the Zhesi and Benbatu formations in the Suolun and Xi Ujimqin areas in the Xilinhot Terrane. Samples of the Benbatu Formation yield detrital zircon U-Pb ages ranging from 2659 Ma to 316 Ma, with four age populations at: 2659-1826 Ma, 1719-963 Ma, 590-402 Ma, and 396-316 Ma, whereas samples from the Zhesi Formation yield detrital zircon U-Pb ages ranging from 1967 Ma to 250 Ma, with four age populations at: 1967-1278 Ma, 971-693 Ma, 561-403 Ma, and 399-250 Ma. The age groups of both the Benbatu and Zhesi formations in the Xilinhot Terrane are similar to those in other parts of the Central Asian Orogenic Belt (CAOB). This evidence indicates that the Xilinhot Terrane is a microcontinent, and not an accretionary complex as previously thought. Furthermore, the youngest zircon grains in the Benbatu and Zhesi formations yield weighted mean 206Pb/238U ages of 322 ± 12 Ma (MSDW = 0.12, n = 4) and 257 ± 2.8 Ma (MSDW = 1.6, n = 8), respectively. Combined with fossil data, our new data suggest that the Benbatu and Zhesi formations in the Xilinhot Terrane were possibly deposited at ∼322 Ma and ∼257 Ma, respectively. Based on the provenance of the Carboniferous-Permian sandstones came from the blocks of NE China, we speculate that the Xilinhot Terrane is the western part of the Songliao block.

  10. Sedimentary petrography of the Early Proterozoic Pretoria Group, Transvaal Sequence, South Africa: implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Schreiber, U. M.; Eriksson, P. G.; van der Neut, M.; Snyman, C. P.

    1992-11-01

    Sandstone petrography, geochemistry and petrotectonic assemblages of the predominantly clastic sedimentary rocks of the Early Proterozoic Pretoria Group, Transvaal Sequence, point to relatively stable cratonic conditions at the beginning of sedimentation, interrupted by minor rifting events. Basement uplift and a second period of rifting occurred towards the end of Pretoria Group deposition, which was followed by the intrusion of mafic sill swarms and the emplacement of the Bushveld Complex in the Kaapvaal Craton at about 2050 Ma, the latter indicating increased extensional tectonism, and incipient continental rifting. An overall intracratonic lacustrine tectonic setting for the Pretoria Group is supported by periods of subaerial volcanic activity and palaeosol formation, rapid sedimentary facies changes, significant arkosic sandstones, the presence of non-glacial varves and a highly variable mudrock geochemistry.

  11. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by

  12. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch

  13. Late Paleozoic paleolatitude and paleogeography of the Midland basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.A.; Golonka, J.; Reid, A.M.

    1992-04-01

    During the Late Pennsylvanian through Early Permian, the Midland basin was located in the low latitudes. In the Desmoinesian (Strawn), the basin was astride the equator; during the Missourian (Canyon), the center of the basin had migrated northward so it was located at 1-2N latitude. In the Virgilian (Cisco), the basin center was located around 2-4N latitude, and by the Wolfcampian, it was positioned at around 4-6N latitude. From the Desmoinesian (312 Ma) through the Missourian (306 Ma), the relative motion of the basin was 63NE. Later during the Virgilian (298 Ma) to Wolfcampian (280 Ma), the direction of motionmore » was 24NE. This change in motion reflects a major tectonic event, occurring between the Missourian and Virgilian, that greatly modifed the movement of the Laurentian (North American) plate. At that time, Laurentia had collided with Gondwana and become part of the supercontinent Pangea. Throughout the late Paleozoic, Laurentia was rotated so the Midland basin was oriented 43{degree} northeast from its current setting. Late Paleozoic paleogeography and paleolatitude controlled the direction of prevailing winds and ocean currents, thereby influencing the distribution of carbonate facies in the Midland basin. Present prevailing winds and ocean currents have been shown to have a major impact on modern carbonate sedimentation and facies distribution in Belize, the Bahamas and Turks, and Caicos. A clearer understanding of how late Paleozoic latitude and geography affected sedimentation helps explain and predict the distribution of carbonates throughout the Midland basin.« less

  14. North American Paleozoic land snails with a summary of other Paleozoic nonmarine snails

    USGS Publications Warehouse

    Solem, Alan; Yochelson, Ellis Leon

    1979-01-01

    Land snails from the Paleozoic of North America are known from the coal fields of eastern Canada, from the Dunkard basin west of the Allegheny Mountains, and from the western margin of the Illinois basin. The earliest finds were made about 125 years ago; essentially no new information has been recorded for a century. Large collections of Anthracopupa from the Dunkard basin sparked inquiry into the land snails from the other two areas. Studies using the SEM (scanning electron microscope) have provided considerable insight into microdetails of shell structure, which allow systematic assignment of these gastropods. All may be assigned to extant families, except one, for which insufficient material allows only superfamily assignment. The prosobranch Dawsonella is confirmed as being a terrestrial neritacean gastropod. To date, it is known only from the upper Middle Pennsylvanian of Illinois and Indiana. All the other Paleozoic land snails are stylommatophoran pulmonates; their current classification as nonmarine cyclophoraceans is not correct. Restudy of material from the Joggins section of Nova Scotia indicates that representatives of two ordinal groups of pulmonates appeared simultaneously in upper Lower Pennsylvanian strata; the oldest land prosobranch is found in only very slightly younger rocks. Zonites (Conulus) priscus is reassigned to the new genus Protodiscus in the extant family Discidae. Dendropupa is placed within the family Enidae, Anthraaopupa is placed in the family Tornatellinidae, and 'Pupa' bigsbii is assigned to the superfamily Pupillacea. All four of these family-level taxa are diverse and belong to two orders within the superorder Stylommatophora, heretofore considered a derived rather than an ancestral stock. Anthracopupa ohioensis Whitfield is a highly variable species, and two other species Naticopsis (?) diminuta and A.(?) dunkardona, both named by Stauffer and Schroyer, are placed in synonymy with it. To obtain taxonomic data to support the

  15. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which

  16. Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets Basin, Ukraine).

    PubMed

    van Hinsbergen, Douwe J J; Abels, Hemmo A; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G; Geluk, Mark; Stephenson, Randell A

    2015-03-20

    The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential.

  17. Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets basin, Ukraine)

    PubMed Central

    van Hinsbergen, Douwe J. J.; Abels, Hemmo A.; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G.; Geluk, Mark; Stephenson, Randell A.

    2015-01-01

    The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential. PMID:25791400

  18. Geochemistry of Early Paleozoic boninites from the Central Qilian block, Northwest China: Constraints on petrogenesis and back-arc basin development

    NASA Astrophysics Data System (ADS)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Pan, Fa-Bin

    2018-06-01

    Early Paleozoic boninites occur in the Central Qilian orogenic belt, Northwest China. Their petrogenesis provides insights into lithosphere process and tectonic evolution of the Qilian block. In this paper, we carry out a study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic boninites in the Lajishan area of the Central Qilian block. The Lajishan boninites (∼483 Ma) have high Al2O3/TiO2 (36.7-64.7) and CaO/TiO2 (31.1-49.6) ratios, and high MgO (7.86-10.47 wt%), Cr (439-599 ppm) and Ni (104-130 ppm) contents, indicating that the boninites result from a refractory mantle source. They are depleted in high field-strength elements (HFSE) and enriched in large ion lithophile elements (LILE), coupled with slightly high initial 87Sr/86Sr values of 0.7059-0.7074 and low εNd(t) values of -1.05 to +2.66, indicating that the mantle source was metasomatized by subducted slab-derived components. We found that an assemblage of low-Ca group and high-Ca group boninites occurred in the Lajishan belt. The high-Ca group boninites were derived from relatively fertile mantle with slightly higher melting degree, whereas the low-Ca group boninites were generated by partial melting of more refractory mantle wedge peridotites with slightly lower melting degree. The assemblage of low-Ca group and high-Ca group boninites reveals that the low-Ca group boninites were generated by the further melting of the more refractory mantle source after the segregation of the high-Ca group boninitic magmas in response to the back-arc basin opening. In the light of reported boninites worldwide, a diagram of Zr/Y vs. CaO/Al2O3 is used to identify boninites in fore-arc and back-arc regions. We suggest that the Lajishan boninites represent the products of back-arc basin development in response to the northward subduction of the Qaidam-West Qinling ocean slab.

  19. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  20. Land plants, weathering, and Paleozoic climatic evolution

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien

    2017-04-01

    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  1. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  2. Late Paleozoic tectonic evolution of the Central Asian Orogenic Belt: Constraints from multiple arc-basin systems in Altai-Junggar area, NW China

    NASA Astrophysics Data System (ADS)

    Li, D.

    2015-12-01

    In this study, we report results from integrated geological, geophysical and geochemical investigations on the Wulungu Depression of the Junggar Basin to understand the Late Paleozoic continental growth of the Junggar area and its amalgamation history with the Altai terrane, within the broad tectonic evolution of the Altai-Junggar area. Based on seismic and borehole data, the Wulungu Depression can be divided into two NW-trending tectonic units by southward thrust faults. The Suosuoquan Sag is composed of gray basaltic andesite, andesite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava gushes and marine sediments from a proximal juvenile provenance, compared to the andesite in the Hongyan High. The SIMS Zircon U-Pb ages for andesites from Late Paleozoic strata indicate that these volcanics in Suosuoquan Sag and Hongyan High erupted at 376.3Ma and 313.4Ma, respectively. Most of the intermediate-mafic volcanic rocks exhibit calc-alkaline affinity, low initial 87Sr/86Sr and positive ɛNd(t) and ɛHf(t) values. Furthermore, these rocks have high Th/Yb and low Ce/Pb and La/Yb ratios as well as variable Ba/Th and Ba/La ratios. These features imply that the rocks were derived from partial melting of a mantle wedge metasomatized by subduction-related components in an island arc setting. The basin filling pattern and the distribution of island arc-type volcanics and their zircon Hf model ages with the eruptive time suggest that the Wulungu Depression represents an island arc-basin system with the development of a Carboniferous retro-arc basin. The gravity and magnetic anomaly data suggest that Altai-Junggar area incorporates three arc-basin belts from north to south: the Karamaili-Luliang-Darbut, Yemaquan-Wulungu, and Dulate-Fuhai-Saur. The recognition of the Wulungu arc-basin system demonstrates that the northern Junggar area is built by amalgamation of multiple Paleozoic linear arcs and accretionary

  3. Criteria for the recognition and correlation of sandstone units in the Precambrian and Paleozoic-Mesozoic clastic sequence in the near east

    NASA Astrophysics Data System (ADS)

    Weissbrod, T.; Perath, I.

    A systematic study of the Precambrian and Paleozoic-Mesozoic clastic sequences (Nubian Sandstone) in Israel and Sinai, and a comparative analysis of its stratigraphy in neighbouring countries, has shown that besides the conventional criteria of subdivision (lithology, field appearance, photogeological features, fossil content), additional criteria can be applied, which singly or in mutual conjuction enable the recognition of widespread units and boundaries. These criteria show lateral constancy, and recurrence of a similar vertical sequence over great distances, and are therefore acceptable for the identification of synchronous, region-wide sedimentary units (and consequently, major unconformities). They also enable, once the units are established, to identify detached (not in situ) samples, samples from isolated or discontinous outcrops, borehole material or archive material. The following rock properties were tested and found to be usefuls in stratigraphic interpretation, throughout large distribution areas of the clastic sequence: Landscape, which is basically the response of a particular textural-chemic al aggregate to atmospheric weathering. Characteristic outcrop feature — styles of roundness or massivity, fissuring or fliatin, slope profile, bedding — express a basic uniformity of these platform-type clastics. Colors are often stratigraphically constant over hundreds of kilometers, through various climates and topographies, and express some intrinsic unity of the rock bodies. Grain size and sorting, when cross-plotted, enable to differentiate existing unit. The method requires the analysis of representative numbers of samples. Vertical trends of median grain size and sorting show reversals, typically across unconformities. Feldstar content diminishes from 15-50% in Precambrian-Paleozoic rocks to a mere 5% or less in Mesozoic sandstones — a distinctive regionwide time trend. Dominance of certain feldstar types characterizes Precambrian and Paleozoic

  4. Paleomagnetism and alteration of lower Paleozoic rocks and Precambrian basement in the SHADS No. 4 drill core, Oklahoma

    NASA Astrophysics Data System (ADS)

    Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.

    2017-12-01

    The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement

  5. Lower paleozoic of Baltic Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselton, T.M.; Surlyk, F.

    The Baltic Sea offers a new and exciting petroleum play in northwestern Europe. The Kaliningrad province in the Soviet Union, which borders the Baltic Sea to the east, contains an estimated 3.5 billion bbl of recoverable oil from lower Paleozoic sandstones. To the south, in Poland, oil and gas fields are present along a trend that projects offshore into the Baltic. Two recent Petrobaltic wells in the southern Baltic have tested hydrocarbons from lower Paleozoic sandstone. Minor production comes from Ordovician reefs on the Swedish island of Gotland in the western Baltic. The Baltic synclise, which began subsiding in themore » late Precambrian, is a depression in the East European platform. Strate dip gently to the south where the Baltic Synclise terminates against a structurally complex border zone. Depth to the metamorphosed Precambrian basement is up to 4,000 m. Overlying basement is 200-300 m of upper Precambrian arkosic sandstone. The Lower Cambrian consists of shallow marine quartzites. During Middle and Late Camnbrian, restricted circulation resulted in anoxic conditions and the deposition of Alum shale. The Lower Ordovician consists of quartzites and shale. The Upper Ordovician includes sandstones and algal reefs. The Silurian contains marginal carbonates and shales. For the last 25 years, exploration in northwest Europe has concentrated on well-known Permian sandstone, Jurassic sandstone, and Cretaceous chalk plays. Extrapolation of trends known and exploited in eastern Europe could open an entirely new oil province in the lower Paleozoic in the Baltic.« less

  6. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  7. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han

    2017-08-01

    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  8. Devonian paleomagnetism of the North Tien Shan: Implications for the middle-Late Paleozoic paleogeography of Eurasia

    NASA Astrophysics Data System (ADS)

    Levashova, Natalia M.; Mikolaichuk, Alexander V.; McCausland, Philip J. A.; Bazhenov, Mikhail L.; Van der Voo, Rob

    2007-05-01

    The Ural-Mongol belt (UMB), between Siberia, Baltica and Tarim, is widely recognized as the locus of Asia's main growth during the Paleozoic, but its evolution remains highly controversial, as illustrated by the disparate paleogeographic models published in the last decade. One of the largest tectonic units of the UMB is the Kokchetav-North Tien Shan Domain (KNTD) that stretches from Tarim in the south nearly to the West Siberian Basin. The KNTD comprises several Precambrian microcontinents and numerous remnants of Early Paleozoic island arcs, marginal basins and accretionary complexes. In Late Ordovician time, all these structures had amalgamated into a single contiguous domain. Its paleogeographic position is of crucial importance for elucidating the Paleozoic evolution of the UMB in general and of the Urals in particular. The Aral Formation, located in Kyrgyzstan in the southern part of the KNTD, consists of a thick Upper Devonian (Frasnian) basalt-andesite sequence. Paleomagnetic data show a dual-polarity characteristic component (Dec/Inc = 286° / + 56°, α95 = 9°, k = 21, N = 15 sites). The primary origin of this magnetization is confirmed by a positive test on intraformational conglomerates. We combine this result with other Paleozoic data from the KNTD and show its latitudinal motion from the Late Ordovician to the end of the Paleozoic. The observed paleolatitudes are found to agree well with the values extrapolated from Baltica to a common reference point (42.5°N, 73°E) in our sampling area for the entire interval; hence coherent motion of the KNTD and Baltica is strongly indicated for most of the Paleozoic. This finding contradicts most published models of the UMB evolution, where the KNTD is separated from Baltica by a rather wide Ural Ocean containing one or more major plate boundaries. An exception is the model of Şengör and Natal'in [A.M.C. Şengör, B.A. Natal'in, Paleotectonics of Asia: fragments of a synthesis, in: A. Yin and M. Harrison (eds

  9. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gang; Hu, Xiumian; Garzanti, Eduardo; Ji, Wei-Qiang; Liu, Zhi-Chao; Liu, Xiao-Chi; Wu, Fu-Yuan

    2017-07-01

    Constraining the timing of early topographic growth on the Tibetan plateau is critical for any models of India-Asia collision, Himalayan orogeny and subsequent plateau development in the Cenozoic. Stratigraphic, sedimentological and provenance analysis of the Lower Cretaceous red-beds of the Damxung Conglomerate provide new key information to reconstruct the paleogeography and the tectonic evolution of the Lhasa terrane at the time. The over 700-m-thick Damxung Conglomerate documents distal alluvial fan to braidplain sedimentation passing upward to proximal alluvial fan sedimentation. Deposition began near sea level, as documented by limestone beds occurring at the base of the unit. Zircon U-Pb dating of interbedded tuff layers constrain deposition age at ca. 111 Ma. Abundance of volcanic clasts, Cretaceous U-Pb ages and Hf isotopes of detrital zircons yielding mainly negative ɛHf(t) values together with paleocurrent data indicate an active volcanic source located in the North Lhasa subterrane. Pre-Mesozoic-aged zircon, recycled quartz and (meta) sedimentary rock fragments increase up-section, indicating progressive erosional exhumation of the Paleozoic sedimentary/metasedimentary basement. The Damxung Conglomerate thus records a significant uplift and unroofing stage in the source region, implying initial topographic growth on the Lhasa terrane at early Albian time. Early Cretaceous topographic growth on the Lhasa terrane is supported by the stratigraphic record in the Linzhou basin, the Xigaze forearc basin and the southern Nima basin. In contrast, marine strata in the central-western Lhasa terrane lasted until the early Cenomanian (ca. 96 Ma), indicating diachronous marine regression on the Lhasa terrane from east to west.

  10. A paleozoic pangaea.

    PubMed

    Boucot, A J; Gray, J

    1983-11-11

    Paleozoic paleogeographies should be consistent with all available, reliable data. However, comparison of three different Devonian paleogeographies that are based largely or wholly on the data of remanent magnetism show them to be inconsistent in many regards. When these three paleogeographies are provided with possible ocean surface current circulation patterns, and have added to them lithofacies and biogeographic data, they also are shown to be inconsistent with such data. A pangaeic reconstruction positioned in the Southern Hemisphere permits the lithofacies and biogeographical data to be reconciled in a plausible manner.

  11. Paleozoic carbonate buildup (reef) inventory, central and southeastern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacson, P.E.

    1987-08-01

    Knowledge of central and southeastern Idaho's Paleozoic rocks to date suggest that three styles of buildup (reef) complexes occur in Late Devonian, Mississippian, and Pennsylvanian-Permian time. The Late Devonian Jefferson Formation has stromatoporoid and coral (both rugosan and tabulate) organisms effecting a buildup in the Grandview Canyon vicinity; Early Mississippian Waulsortian-type mud mounds occur in the Lodgepole formation of southeastern Idaho; there are Late Mississippian Waulsortian-type mounds in the Surrett Canyon Formation of the Lost River Range; and cyclic Pennsylvanian-Permian algal and hydrozoan buildups occur in the Juniper gulch Member of the Snaky Canyon Formation in the Arco Hills andmore » Lemhi Range. Late Devonian (Frasnian) carbonates of the Jefferson formation show buildup development on deep ramp sediments.« less

  12. Tectono-thermal Evolution of the Lower Paleozoic Petroleum Source Rocks in the Southern Lublin Trough: Implications for Shale Gas Exploration from Maturity Modelling

    NASA Astrophysics Data System (ADS)

    Botor, Dariusz

    2018-03-01

    The Lower Paleozoic basins of eastern Poland have recently been the focus of intensive exploration for shale gas. In the Lublin Basin potential unconventional play is related to Lower Silurian source rocks. In order to assess petroleum charge history of these shale gas reservoirs, 1-D maturity modeling has been performed. In the Łopiennik IG-1 well, which is the only well that penetrated Lower Paleozoic strata in the study area, the uniform vitrinite reflectance values within the Paleozoic section are interpreted as being mainly the result of higher heat flow in the Late Carboniferous to Early Permian times and 3500 m thick overburden eroded due to the Variscan inversion. Moreover, our model has been supported by zircon helium and apatite fission track dating. The Lower Paleozoic strata in the study area reached maximum temperature in the Late Carboniferous time. Accomplished tectono-thermal model allowed establishing that petroleum generation in the Lower Silurian source rocks developed mainly in the Devonian - Carboniferous period. Whereas, during Mesozoic burial, hydrocarbon generation processes did not develop again. This has negative influence on potential durability of shale gas reservoirs.

  13. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    NASA Astrophysics Data System (ADS)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions

  14. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  15. A New Model of the Early Paleozoic Tectonics and Evolutionary History in the Northern Qinling, China

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng; Zhang, Guowei; Yang, Zhao; Qu, Hongjun; Liu, Xiaoming

    2010-05-01

    The Qinling Orogenic Belt extends from the Qinling Mountains in the west to the Dabie Mountains in the east. It lies between the North China and South China Blocks, and is bounded on the north by the Lushan fault and on the south by the Mianlue-Bashan-Xiangguang fault (Zhang et al., 2000). The Qinling Orogenic Belt itself is divided into the North and South Qinling Terranes by the Shangdan suture zone. Although the Shangdan zone is thought to represent the major suture separating the two blocks, there still exists debate about the timing and mechanism of convergence between these two blocks. For instance, some authors suggested an Early Paleozoic collision between the North China Block and South China Block (Ren et al., 1991; Kroner et al., 1993; Zhai et al., 1998). Others postulated left-lateral strike-slip faulting along the Shangdan suture at ca. 315 Ma and inferred a pre-Devonian collision between the two blocks (Mattauer et al., 1985; Xu et al., 1988). Geochemistry of fine-grained sediments in the Qinling Mountains was used to argue for a Silurian-Devonian collision (Gao et al., 1995). A Late Triassic collision has also been proposed (Sengor, 1985; Hsu et al., 1987; Wang et al., 1989), based on the formation of ultrahigh-pressure metamorphic rocks in the easternmost part of the Qinling Orogenic Belt at ~230 Ma (e.g., Li et al., 1993; Ames et al., 1996). Paleomagnetic data favor a Late Triassic-Middle Jurassic amalgamation of the North China and South China Blocks (Zhao and Coe, 1987; Enkin et al., 1992). It is clear that most authors thought that the Qinling Mountains are a collisional orogen, even they have different methods about the timing of the orogeny. Based on new detailed investigations, we propose a new model of the Early Paleozoic Tectonics and Evolutionary History between the North China and South China Blocks along the Shangdan Suture. The Shangdan suture is marked by a great number of ophiolites, island-arc volcanic rocks and other related rock

  16. Synthesis of late Paleozoic and Mesozoic eolian deposits of the Western Interior of the United States

    USGS Publications Warehouse

    Blakey, R.C.; Peterson, F.; Kocurek, G.

    1988-01-01

    Late Paleozoic and Mesozoic eolian deposits include rock units that were deposited in ergs (eolian sand seas), erg margins and dune fields. They form an important part of Middle Pennsylvanian through Upper Jurassic sedimentary rocks across the Western Interior of the United States. These sedimentary rock units comprise approximately three dozen major eolian-bearing sequences and several smaller ones. Isopach and facies maps and accompanying cross sections indicate that most eolian units display varied geometry and complex facies relations to adjacent non-eolian rocks. Paleozoic erg deposits are widespread from Montana to Arizona and include Pennsylvanian formations (Weber, Tensleep, Casper and Quadrant Sandstones) chiefly in the Northern and Central Rocky Mountains with some deposits (Hermosa and Supai Groups) on the Colorado Plateau. Lower Permian (Wolfcampian) erg deposits (Weber, Tensleep, Casper, Minnelusa, Ingleside, Cedar Mesa, Elephant Canyon, Queantoweap and Esplanade Formations) are more widespread and thicken into the central Colorado Plateau. Middle Permian (Leonardian I) erg deposits (De Chelly and Schnebly Hill Formations) are distributed across the southern Colorado Plateau on the north edge of the Holbrook basin. Leonardian II erg deposits (Coconino and Glorieta Sandstones) are slightly more widespread on the southern Colorado Plateau. Leonardian III erg deposits formed adjacent to the Toroweap-Kaibab sea in Utah and Arizona (Coconino and White Rim Sandstones) and in north-central Colorado (Lyons Sandstone). Recognized Triassic eolian deposits include major erg deposits in the Jelm Formation of central Colorado-Wyoming and smaller eolian deposits in the Rock Point Member of the Wingate Sandstone and upper Dolores Formation, both of the Four Corners region. None of these have as yet received a modern or thorough study. Jurassic deposits of eolian origin extend from the Black Hills to the southern Cordilleran arc terrain. Lower Jurassic intervals

  17. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration

    PubMed Central

    Scott, Andrew C.; Glasspool, Ian J.

    2006-01-01

    By comparing Silurian through end Permian [≈250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (≈420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the “fire window”). Herein, we observe that, as predicted, atmospheric oxygen levels rise from ≈13% in the Late Devonian to ≈30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence. PMID:16832054

  18. Archean sedimentary systems and crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1985-01-01

    Current knowledge of preserved Archean sedimentary rocks suggests that they accumulated in at least three major depositional settings. These are represented generally by sedimentary units: (1) in early Archean, pre-3.0 Ga old greenstone belts, (2) on late Archean sialic cratons, and (3) in late Archean, post-3.0 Ga old greenstone belts. Research suggests that the Archean was characterized by at least two distinctive and largely diachronous styles of crustal evolution. Thick, stable early Archean simatic platforms, perhaps analogous to modern oceanic islands formed over hot spots, underwent a single cycle of cratonization to form stable continental blocks in the early Archean. Later formed Archean continents show a two stage evolution. The initial stage is reflected in the existence of older sialic material, perhaps representing incompletely cratonized areas or microcontinents of as yet unknown origin. During the second stage, late Archean greenstone belts, perhaps analogous to modern magmatic arcs or back arc basins, developed upon or adjacent to these older sialic blocks. The formation of this generation of Archean continents was largely complete by the end of the Archean. These results suggest that Archean greenstone belts may represent a considerable range of sedimentological and tectonic settings.

  19. Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa

    NASA Astrophysics Data System (ADS)

    Vos, Richard G.; Tankard, Anthony J.

    1981-07-01

    Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.

  20. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  1. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the

  2. Variscan orogeny in the Black Sea region

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Topuz, Gültekin

    2017-03-01

    Two Gondwana-derived Paleozoic belts rim the Archean/Paleoproterozoic nucleus of the East European Platform in the Black Sea region. In the north is a belt of Paleozoic passive-margin-type sedimentary rocks, which extends from Moesia to the Istanbul Zone and to parts of the Scythian Platform (the MOIS Block). This belt constituted the south-facing continental margin of the Laurussia during the Late Paleozoic. This margin was deformed during the Carboniferous by folding and thrusting and forms the Variscan foreland. In the south is a belt of metamorphic and granitic rocks, which extends from the Balkanides through Strandja, Sakarya to the Caucasus (BASSAC Block). The protoliths of the metamorphic rocks are predominantly late Neoproterozoic granites and Paleozoic sedimentary and igneous rocks, which were deformed and metamorphosed during the Early Carboniferous. There are also minor eclogites and serpentinites, mostly confined to the northern margin of the BASSAC Block. Typical metamorphism is of low pressure-high temperature type and occurred during the Early Carboniferous (Visean, 340-330 Ma) coevally with that observed in the Central Europe. Volumetrically, more than half of the crystalline belt is made up of Carboniferous-earliest Permian (335-294 Ma) granites. The type of metamorphism, its concurrent nature over 1800 km length of the BASSAC Block and voluminous acidic magmatism suggest that the thermal event probably occurred in the deep levels of a continental magmatic arc. The BASSAC arc collided with Laurussia in the mid-Carboniferous leading to the foreland deformation. The ensuing uplift in the Permian resulted in the deposition of continental red beds, which are associated with acidic magmatic rocks observed over the foreland as well as over the BASSAC Block. In the Black Sea region, there was no terminal collision of Laurussia with Gondwana during the Late Paleozoic and the Laurussia margin continued to face the Paleo-Tethyan ocean in the south.

  3. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  4. Facies architecture of a Triassic rift-related Silicic Volcano-Sedimentary succession in the Tethyan realm, Peonias subzone, Vardar (Axios) Zone, northern Greece; Regional implications

    NASA Astrophysics Data System (ADS)

    Asvesta, Argyro; Dimitriadis, Sarantis

    2010-06-01

    In northern Greece, along the western edge of the Paleozoic Vertiscos terrane (Serbomacedonian massif) and within the Peonias subzone - the eastern part of the Vardar (Axios) Zone - a Silicic Volcano-Sedimentary (SVS) succession of Permo(?)-Skythian to Mid Triassic age records the development of a faulted continental margin and the formation of rhyolitic volcanoes along a continental shelf fringed by neritic carbonate accumulations. It represents the early rifting extensional stages that eventually led to the opening of the main oceanic basin in the western part of the Vardar (Axios) Zone (the Almopias Oceanic Basin). Even though the SVS succession is deformed, altered, extensively silicified and metamorphosed in the low greenschist facies, primary textures, original contacts and facies relationships are recognized in some places allowing clues for the facies architecture and the depositional environment. Volcanic and sedimentary facies analysis has been carried out at Nea Santa and Kolchida rhyolitic volcanic centres. Pyroclastic facies, mostly composed of gas-supported lapilli tuffs and locally intercalated accretionary lapilli tuffs, built the early cones which were then overridden by rhyolitic aphyric and minor K-feldspar-phyric lava flows. The characteristics of facies, especially the presence of accretionary lapilli, imply subaerial to coastal emplacement at this early stage. The mature and final stages of volcanism are mostly represented by quartz-feldspar porphyry intrusions that probably occupied the vents. At Nea Santa area, the presence of resedimented hyaloclastite facies indicates subaqueous emplacement of rhyolitic lavas and/or lobes. Moreover, quartz-feldspar-phyric sills and a partly extrusive dome featuring peperites at their margins are inferred to have intruded unconsolidated, wet carbonate sediments of the overlying Triassic Neritic Carbonate Formation, in a shallow submarine environment. The dome had probably reached above wave-base as is

  5. Inventory of Neoproterozoic and Paleozoic strata in Sonora, Mexico

    USGS Publications Warehouse

    Stewart, John H.; Poole, Forrest G.

    2002-01-01

    This compilation is an inventory of all known outcrops of Neoproterozoic and Paleozoic strata in Sonora, Mexico. We have not attempted an interpretation of the regional stratigraphic or structural setting of the strata. Brief summaries of the stratigraphic setting of the Sonora rocks are given in Poole and Hayes (1971), Rangin (1978), Stewart and others (1984, 1990), and Poole and Madrid (1986; 1988b). More specific information on the setting of strata of specific ages are given by Stewart and others (2002) for the Neoproterozoic and Cambrian; by Poole and others (1995a) for Ordovician shelf strata; by Poole and others (1995b) for Ordovician deep-water openbasin strata; by Poole and others (1997, 1998, 2000a) for Silurian strata; and by Poole and others (2000a) for Mississippian strata. Other reports that discuss regional aspects of Paleozoic stratigraphy include López-Ramos (1982), Peiffer-Rangin, (1979, 1988), Pérez-Ramos (1992), and Stewart and others (1997, 1999a). Structurally, the major Paleozoic feature of Sonora is the Sonora allochthon, consisting of deep-water (eugeoclinal) strata emplaced in the Permian over shelf (miogeoclinal) deposits (Poole and others, 1995a,b; Poole and Perry, 1997; 1998). The emplacement structure is generally considered to be a major Permian continental margin thrust fault that emplaced the deep-water rocks northward over shelf (miogeoclinal) deposits. An alternate interpretation has been presented by Stewart and others (2002). He proposed that the emplacement of the Sonora allochthon was along a major Permian transpressional structure that was primarily a strike-slip fault with only a minor thrust component . The Mojave-Sonora megashear has been proposed to disrupt Neoproterozoic and Paleozoic trends in Sonora. This feature is a hypothetical, left-lateral, northwest-striking fault extending across northern Sonora and the southwestern United States (Silver and Anderson, 1974; Anderson and Schmidt, 1983). It is proposed to have

  6. Late Paleozoic to Jurassic chronostratigraphy of coastal southern Peru: Temporal evolution of sedimentation along an active margin

    NASA Astrophysics Data System (ADS)

    Boekhout, F.; Sempere, T.; Spikings, R.; Schaltegger, U.

    2013-11-01

    We present an integrated geochronological and sedimentological study that significantly revises the basin and magmatic history associated with lithospheric thinning in southern coastal Peru (15-18°S) since the onset of subduction at ˜530 Ma. Until now, estimating the age of the sedimentary and volcanic rocks has heavily relied on paleontologic determinations. Our new geochronological data, combined with numerous field observations, provide the first robust constraints on their chronostratigraphy, which is discussed in the light of biostratigraphical attributions. A detailed review of the existing local units simplifies the current stratigraphic nomenclature and clarifies its absolute chronology using zircon U-Pb ages. We observe that the Late Paleozoic to Jurassic stratigraphy of coastal southern Peru consists of two first-order units, namely (1) the Yamayo Group, a sedimentary succession of variable (0-2 km) thickness, with apparently no nearby volcanic lateral equivalent, and (2) the overlying Yura Group, consisting of a lower, 1-6 km-thick volcanic and volcaniclastic unit, the Chocolate Formation, and an upper, 1-2 km-thick sedimentary succession that are in markedly diachronous contact across the coeval arc and back-arc. We date the local base of the Chocolate Formation, and thus of the Yura Group, to 216 Ma, and show that the underlying Yamayo Group spans a >110 Myr-long time interval, from at least the Late Visean to the Late Triassic, and is apparently devoid of significant internal discontinuities. The age of the top of the Chocolate Formation, i.e. of the volcanic arc pile, varies from ˜194 Ma to less than ˜135 Ma across the study area. We suggest that this simplified and updated stratigraphic framework can be reliably used as a reference for future studies.

  7. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  8. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  9. Late Mesozoic and possible early Tertiary accretion in western Washington State: the Helena-Haystack melange and the Darrington- Devils Mountain fault zone

    USGS Publications Warehouse

    Tabor, R.W.

    1994-01-01

    The Helena-Haystack melange (HH melange) and coincident Darrington-Devils Mountain fault zone (DDMFZ) in northwestern Washington separate two terranes, the northwest Cascade System (NWCS) and the western and eastern melange belts (WEMB). The two terranes of Paleozoic and Mesozoic rocks superficially resemble each other but record considerable differences in structural and metamorphic history. The HH melange is a serpentinite-matrix melange containing blocks of adjacent terranes but also exotic blocks. The HH melange must have formed between early Cretaceous and late middle Eocene time, because it contains tectonic clasts of early Cretaceous Shuksan Greenschist and is overlain by late middle Eocene sedimentary and volcanic rocks. The possible continuation of the DDMFZ to the northwest as the San Juan and the West Coast faults on Vancouver Island suggests that the structure has had a major role in the emplacement of all the westernmost terranes in the Pacific Northwest. -from Author

  10. Electrical structures in the northwest margin of the Junggar basin: Implications for its late Paleozoic geodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Xu, Yixian; Jiang, Li; Yang, Bo; Liu, Ying; Griffin, W. L.; Luo, Yong; Huang, Rong; Zhou, Yong; Zhang, Liangliang

    2017-10-01

    Recent geological, geochemical and geophysical data have inclined to support the presence of a remnant Paleozoic oceanic lithosphere beneath the Western Junggar, southwestern Chinese Altaids. However, regional high-resolution geophysical data have been rarely deployed to image its geometry, making it difficult to trace its evolution and final geodynamic setting. Presently, two magnetotelluric (MT) profiles are deployed across the northwest margin of the Junggar basin and the southern Darbut belt to image the electrical structure of the crust and lithospheric mantle. High-quality data at 102 sites and the quasi-2D indications of phase tensor skew angles and impedance phase ellipses for relatively short periods (up to 500 s) allow us to invert the two profile data by a 2-D scheme. The resistivity cross-section of a NW-SE striking LINE2 sheds light on a fossil intraoceanic subduction system, and reveals the Miaoergou intrusions as a bowl-like pluton, indicating that the multi-phase intrusions primarily formed in a post-collisional setting. The resistivity cross-section of striking NE-SW LINE1 reveals a possible oceanic slab with relatively lower resistivity underlying the low-resistivity sedimentary strata and high-resistivity mélange. Given that the profile of LINE1 cuts the out-rise zone of a subducted slab developed during the late Paleozoic, the 2-D resistivity model may thus represent the zone that have experienced heterogeneous deformation, reflecting subduction with barrier variation parallel to the ancient trench. Moreover, as shown in previous results, the new MT data also illustrate that the Darbut Fault is a thin-skinned structure, which has been erased at depths during the subsequent magmatism.

  11. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are

  12. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  13. The Neoproterozoic-Paleozoic Arctic Margins: early stages of geodynamic evolution and plate reconstructions

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Yu.; Lobkovsky, L. I.; Shipilov, E. V.

    2012-04-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the

  14. Early Tertiary Anaconda metamorphic core complex, southwestern Montana

    USGS Publications Warehouse

    O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.

    2004-01-01

    A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts

  15. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  16. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  17. The Paleozoic - Mesozoic Mekele Sedimentary Basin in Ethiopia: An example of an exhumed IntraCONtinental Sag (ICONS) basin

    NASA Astrophysics Data System (ADS)

    Alemu, Tadesse; Abdelsalam, Mohamed G.; Dawit, Enkurie L.; Atnafu, Balemwal; Mickus, Kevin L.

    2018-07-01

    We investigated the evolution of the Mekele Sedimentary Basin (MSB) in northern Ethiopia using geologic field and gravity data. The depth to Moho and lithospheric structure beneath the basin was imaged using two-dimensional (2D) radially-averaged power spectral analysis, Lithoflex three-dimensional (3D) forward and inverse modeling, and 2D forward modeling of the Bouguer gravity anomalies. Previous studies proposed that the basin was formed as part of a multi-branched rift system related to the breakup of Gondwana. Our results show that the MSB: (1) is circular to elliptical in map view and saucer shaped in cross sectional view, (2) is filled with terrestrial and shallow marine sedimentary rocks, (3) does not significantly structurally control the sedimentation and the major faults are post-depositional, (4) is characterized by a concentric gravity minima, (5) is underlain by an unstretched crust (∼40 km thick) and thicker lithosphere (∼120 km thick). These features compare positively with a group of basins known as IntraCONtinental Sags (ICONS), especially those ICONS formed over accretionary orogenic terranes. Since the MSB is located above the Neoproterozoic accretionary orogenic terranes of the Arabian-Nubian Shield (ANS), we propose that the formation of the MSB to be related to cooling and thickening of a juvenile sub-continental lithospheric mantle beneath the ANS, which most probably provided negative buoyancy, and hence subsidence in the MSB, leading to its formation as an ICONS. The MSB could be used as an outcrop analog for information about the internal facies architecture of ICONS because it is completely exhumed due to tectonic uplift on the western flank of the Afar Depression.

  18. Prediction of sedimentary facies of x-oilfield in northwest of China by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Ling, Ke; Tingting, He

    2017-03-01

    In the early stage of oilfield development, there are only a few wells and well spacing can reach several kilometers. for the alluvial fans and other heterogeneous reservoirs, information from wells alone is not sufficient to derive detailed reservoir information. In this paper, the method of calculating sand thickness through geostatistics inversion is studied, and quantitative relationships between each sedimentary micro-facies are analyzed by combining with single well sedimentary facies. Further, the sedimentary facies plane distribution based on seismic inversion is obtained by combining with sedimentary model, providing the geological basis for the next exploration and deployment.

  19. The Early Toarcian Oceanic Anoxic Event and its sedimentary record in Switzerland

    NASA Astrophysics Data System (ADS)

    Fantasia, Alicia; Föllmi, Karl B.; Adatte, Thierry; Spangenberg, Jorge E.; Montero-Serrano, Jean-Carlos

    2015-04-01

    In the Jurassic period, the Early Toarcian Oceanic Anoxic Event (T-OAE), about 183 Ma ago, was a global perturbation of paleoclimatic and paleoenvironmental conditions. This episode was associated with a crisis in marine carbonate accumulation, climate warming, an increase in sea level, ocean acidification, enhanced continental weathering, whereas organic-rich sediments are noticeable for example in the Atlantic and in the Tethys. This episode is associated with a negative carbon excursion, which is recorded both in marine and terrestrial environments. The cause(s) of this environmental crisis remain(s) still controversial. Nevertheless, the development of negative δ13C excursions is commonly interpreted as due to the injection of isotopically-light carbon associated with gas hydrate dissociation, the thermal metamorphism of carbon-rich sediments and input of thermogenic and volcanogenic carbon related to the formation of the Karoo-Ferrar basaltic province in southern Gondwana (Hesselbo et al., 2000, 2007; Beerling et al., 2002; Cohen et al., 2004, 2007; McElwain et al., 2005, Beerling and Brentnall, 2007; Svensen et al., 2007; Hermoso et al., 2009, 2012; Mazzini et al., 2010). Several studies of the T-OAE have been conducted on sediments in central and northwest Europe, but only few data are available concerning the Swiss sedimentary records. Therefore, we focused on two sections in the Jura Plateau (canton Aargau): the Rietheim section (Montero-Serrano et al., submitted) and the Gipf section (current study). A multidisciplinary approach has been chosen and the tools to be used are based on sedimentological observations (sedimentary condensation, etc.), biostratigraphy, mineralogy (bulk-rock composition), facies and microfacies analysis (presence or absence of benthos), clay-mineralogy composition (climatic conditions), major and trace-element analyses (productivity, redox conditions, etc.), phosphorus (trophic levels, anoxia), carbon isotopes and organic

  20. Middle to Upper Jurassic sedimentary sequences and marine biota of the early Indian Ocean (Southwest Madagascar): some biostratigraphic, palaeoecologic and palaeobiogeographic conclusions

    NASA Astrophysics Data System (ADS)

    Mette, Wolfgang

    2004-03-01

    As part of an intradisciplinary project which was concerned with the early rifting processes between Madagascar and East Africa, the Middle to Upper Jurassic sedimentary sequences of the Morondava Basin in Southwest Madagascar has been investigated with respect to biostratigraphy, sedimentary facies and palaeoecology. The transgressive sedimentary sections in the Bajocian and Callovian-Oxfordian yield rich macro- and microfossil assemblages which improved the biostratigraphic framework and gave some important information about the palaeoenvironments. Palaeogeographic distribution patterns of the Bajocian ostracod Paradoxorhyncha are suggestive of a migration along the southern shores of Gondwana between Madagascar, Australia and South America. The Callovian ostracods show strong affinities to the Indian faunas, indicating existence of a free migration route for shallow marine benthic organisms between Madagascar and India. Significant faunal differences between Madagascar and Tanzania suggest a physical or environmental migration barrier between Madagascar and East Africa during the Callovian to Kimmeridgian interval. The Upper Jurassic ostracods from the northern and eastern margin of Gondwana show a very high degree of endemism and they can be assigned to two faunal provinces in North Gondwana (Arabia, Near East, North Africa) and South Gondwana (India, Madagascar, East Africa).

  1. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

    PubMed

    McLennan, S M; Anderson, R B; Bell, J F; Bridges, J C; Calef, F; Campbell, J L; Clark, B C; Clegg, S; Conrad, P; Cousin, A; Des Marais, D J; Dromart, G; Dyar, M D; Edgar, L A; Ehlmann, B L; Fabre, C; Forni, O; Gasnault, O; Gellert, R; Gordon, S; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; King, P L; Le Mouélic, S; Leshin, L A; Léveillé, R; Lewis, K W; Mangold, N; Maurice, S; Ming, D W; Morris, R V; Nachon, M; Newsom, H E; Ollila, A M; Perrett, G M; Rice, M S; Schmidt, M E; Schwenzer, S P; Stack, K; Stolper, E M; Sumner, D Y; Treiman, A H; VanBommel, S; Vaniman, D T; Vasavada, A; Wiens, R C; Yingst, R A

    2014-01-24

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  2. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  3. Nd Isotopic Provenance of Sedimentary Rocks Along Margins of North America: ten Years of Study

    NASA Astrophysics Data System (ADS)

    Patchett, J.; Ross, G. M.

    2001-12-01

    Ten years of effort, principally employing Nd isotopes, have resulted in substantial advances in understanding of the movements of sedimentary material around North America from Cambrian to Cretaceous time. This synthesis has depended upon work of current and former students S. Samson, J. Gleason, N. Boghossian, C. Garzione, M. Roth, B. Canale and E. Rosenberg, as well as collaborators W. Dickinson and A. Embry, among others. Nd isotopes are particularly good at documenting movements of sedimentary material on the largest (continental) scale and over extended times. What has emerged is a picture of a largely exposed North America-Greenland craton from Neoproterozoic to Ordovician time, a partial to complete burial by detritus from Caledonian-Appalachian mountains starting in the Ordovician, a gradual exhumation during Late Paleozoic and Mesozoic time, followed by a partial burial with Cordilleran detritus during Late Jurassic to Tertiary time. One current question is the nature of the Mesozoic and Tertiary sedimentary material eroded from the North American Cordillera, and its relevance for Cordilleran orogenesis. Another current question is the extent to which Caledonian-Appalachian detritus covered the craton in Devonian-Carboniferous time, and the timing and manner of its removal during Mesozoic time. At first glance, available Nd isotopic data appear to suggest that the Canada-Greenland Shield was largely covered during most of Mesozoic time, a conclusion that would have profound effects on models of dynamic topography. However, this conclusion is also very dependent on the relationship between topography and erosion, because in certain situations a geographically-restricted cover sequence could dominate over low-relief cratonic terrain as a sediment source.

  4. The case for metamorphic base metal mineralization: pyrite chemical, Cu and S isotope data from the Cu-Zn deposit at Kupferberg in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.

    2017-12-01

    The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn-sedimentary/early

  5. The organic geochemistry of black sedimentary barite: significance and implications of trapped fatty acids

    USGS Publications Warehouse

    Miller, R.E.; Brobst, D.A.; Beck, P.C.

    1977-01-01

    Fatty acids isolated in sedimentary black barite (BaSO4) from Arkansas and Nevada were identified by gas chromatography-mass spectroscopy. The dominant or major fatty acids found in these beds of barite are C16:0, C18:0, and C18:1. The occurrence and distribution of these acids in this type of rock may serve as "molecular fingerprints" of microbial biogeochemical processes. The organic matter and associated microorganisms are shown to be trapped within the finely crystalline barite, thus forming a closed system for microbial diagenesis. Important differences that occur in the distribution of the lesser or minor fatty acids probably result from: (1) the nature of the progenitor organic detritus in the environment of barite deposition: and (2) the subsequent degree of microbiological alteration of the parent organic debris swept into and trapped in the depositional environment. Three general models of sedimentary environments are proposed in which anoxic conditions may prevail and where barium sulfate (BaSO4) may precipitate: (1) in a silled basin with semi-restricted circulation; (2) on an outer continental shelf where the slope is encroached upon by water of the oxygen minimum layer; (3) on a low-energy, inner shelf or semi-restricted embayment impinged by a wedge of anoxic water. The major geochemical and geological parameters which are believed to be the significant factors controlling the formation and high grade of these organic-rich, black bedded barites are: (1) a unique source of barium-rich fluid that only contains trace amounts of other elements; (2) the presence of an anoxic bottom environment within the depositional basin; (3) a reflux source of sulfate ion; (4) an adequate source of organic matter. The results of this study may serve as guidelines for future exploration in similar, untested sedimentary basins, especially those with rocks of middle Paleozoic age. ?? 1977.

  6. The impact of fire on the Late Paleozoic Earth system

    PubMed Central

    Glasspool, Ian J.; Scott, Andrew C.; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world. PMID:26442069

  7. The impact of fire on the Late Paleozoic Earth system.

    PubMed

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  8. Conodont color alteration index and upper Paleozoic thermal history of the Amazonas Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Cardoso, Cassiane Negreiros; Sanz-López, Javier; Blanco-Ferrera, Silvia; Lemos, Valesca Brasil; Scomazzon, Ana Karina

    2015-12-01

    The conodont color alteration index (CAI) was determined in elements from core samples of the Frasnian Barreirinha Formation (one well) and of the Pennsylvanian-Permian Tapajós Group (twenty three wells and one limestone quarry) in the Amazonas Basin. The thermal history of the basin is analyzed using the CAI value distribution represented in maps and stratigraphic sections through correlation schemes, and in conjunction with previously published data. The pattern of palaeotemperatures for CAI values of 1.5-3 is coincident with organic matter maturation under a sedimentary overburden providing diagenetic conditions in the oil/gas window. Locally, conodonts show metamorphism (CAI value of 6-7) in relation to the intrusion of diabase bodies in beds including high geothermal gradient evaporites. Microtextural alteration on the surface conodonts commonly shows several types of overgrowth microtextures developed in diagenetic conditions. Locally, recrystallization in conodonts with a high CAI value is congruent with contact metamorphism in relation to Mesozoic intrusions. The CAI values of 1.5 or 2 observed close to the surface in several areas of the basin may be interpreted in relation to a high thermal palaeogradient derived from the magmatic episode or/and to the local denudation of the upper part of the Paleozoic succession prior to this thermal event.

  9. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    NASA Astrophysics Data System (ADS)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative

  10. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  11. Detrital Zircon Signature of Proterozoic Metasedimentary Rocks of the Pearya Terrane, Northern Ellesmere Island: Implications for Terrane Stratigraphy and Circum-Arctic Terrane Correlations

    NASA Astrophysics Data System (ADS)

    Malone, S. J.; McClelland, W.

    2012-12-01

    The Pearya Terrane, currently recognized as the only exotic terrane in the Canadian Arctic margin, includes early Tonian metaigneous rocks and a sequence of sedimentary rocks ranging from Proterozoic shallow marine to Silurian arc-accretionary units. Succession II (Trettin, 1987) of the Pearya Terrane represents variably metamorphosed metasedimentary rocks of presumed Neoproterozoic to early Ordocician age. These units are structurally juxtaposed with earliest Neoproterozoic orthogneiss of Succession I and the overlaying sedimentary rocks of the Paleozoic section. Detrital zircon age spectra from seven samples of Neoproterozoic meta-sedimentary rocks define three groups on the basis of dominant age peaks and the age of the youngest peaks. Group I, representing three quartzite samples, contains young zircon age peaks at c. 1050 Ma with numerous c. 1100 Ma to 1800 Ma peaks. Detrital zircon spectra from Group I correlate closely with data from the latest Mesoproterozoic Brennevinsfjorden Group of Northeastern Svalbard, suggesting that the base of Succession II may be older than the Succession I orthogneiss, and that the contact between them is tectonic. Group II is defined by a dominant c. 970 Ma age peak that overlaps with ages determined for basement orthogneiss units and indicates that local sedimentary sources, possibly relating to Tonian igneous activity, dominated. Group III displays a similar pattern of c. 1000 Ma to 1800 Ma age peaks to Group I, but contains a small population of c. 600 Ma to 700 Ma grains that are likely sourced from elements of the Timanide orogen and/or the Arctic Alaska-Chukotka (AAC) microplate. The ubiquitous Mesoproterozoic ages suggest extensive sediment input from the Grenville-Svegonorwegian domains of Laurentia and Baltica, either directly or by sediment recycling. This is consistent with detrital zircon datasets from other North Atlantic-Arctic Caledonide terranes, reinforcing stratigraphic links between the Pearya Terrane

  12. Ages of the Xinghuadukou Group in the Erguna Block, NE China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Hou, W.

    2016-12-01

    The Xinghuadukou group is outcropped in the Erguna block (EB) of NE China, which is an important component of the eastern segment of the Central Asian Orogenic Belt (CAOB). This group was previously classified as Paleoproterozoic in age. However, recent studies reported Paleozoic ages from the meta-volcanic rocks, Paleoproterozoic to Neoarchean detrital zircon ages from the meta-sedimentary rocks and Neoproterozoic ages from the granitoids. The tectonic affinity of the EB is still debated. In order to clarify the aforementioned issues, 19 samples were collected from the Xinghuadukou group from the Mohe region in NE China. All samples underwent gneiss facies metamorphism, including two-mica granitic gneiss and quartz biotite gneiss. Based on the protolith discrimination diagram of Si—(al+fm)-(c+alk) system, 7 samples originated from sedimentary rocks and the other 12 of igneous origin. The orthogneiss samples were plotted as diorite, granodiorite and granite respectively in TAS, showing felsic character (SiO2 57% - 74%). One orthogneiss and one paragneiss samples were chosen to conduct the LA-ICP-MS U-Pb zircon age analysis. Apart from one zircon with the age of 742 Ma shows evident metamorphic rim, all zircons from the orthogneiss show euhedral to subhedral prismatic shape and typical concentric or oscillatory structure indicating the igneous origin. The concordant age of 2478±26 Ma was generated, indicating the existence of the near Archean basement of the EB. The detrital zircons from the paragneiss produced age populations cluster at 0.6, 0.8, 1.9, 2.6 and 2.7 Ga, lacking of the Grenville event age. The youngest zircon age is 395 Ma, taken as the maximum depositional age of the sedimentary protolith. According to the new data obtained, it is suggested that the Xinghuadukou group comprises the early Paleoproterozoic granite-gneiss, which proves the granitic basement of the Erguna block. The sedimentary rocks formed overlying the basement during the early

  13. Sedimentary facies and gas accumulation model of Lower Shihezi Formation in Shenguhao area, northern Ordos basin, China

    NASA Astrophysics Data System (ADS)

    Lin, Weibing; Chen, Lin; Lu, Yongchao; Zhao, Shuai

    2017-04-01

    The Lower Shihezi formation of lower Permian series in Shenguhao develops the highest gas abundance of upper Paleozoic in China, which has already commercially produced on a large scale. The structural location of Shenguhao belongs to the transition zone of Yimeng uplift and Yishan slope of northern Ordos basin, China. Based on the data of core, well logging and seismic, the sedimentary facies and gas accumulation model have been studied in this paper. Sedimentary facies analysis shows that the braided delta is the major facies type developed in this area during the period of Lower Shihezi formation. The braided delta can be further divided into two microfacies, distributary channel and flood plain. The distributary channel sandbody develops the characteristics of scour surface, trough cross beddings and normal grading sequences. Its seismic reflection structure is with the shape of flat top and concave bottom. Its gamma-ray logging curve is mainly in a box or bell shape. The flood plain is mainly composed of thick mudstones. Its seismic reflection structure is with the shape of parallel or sub-parallel sheet. Its gamma-ray logging curve is mainly in a linear tooth shape. On the whole, the distribution of sandbody is characterized by large thickness, wide area and good continuity. Based on the analysis of the sea level change and the restoration of the ancient landform in the period of Lower Shihezi formation, the sea level relative change and morphology of ancient landform have been considered as the main controlling factors for the development and distribution of sedimentary facies. The topography was with big topographic relief, and the sea level was relatively low in the early stage of Low Shihezi formation. The sandbody distributed chiefly along the landform depressions. The sandbody mainly developed in the pattern of multiple vertical superpositions with thick layer. In the later stage, landform gradually converted to be flat, and strata tended to be gentle

  14. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  15. Paleozoic-involving thrust array in the central Sierras Interiores (South Pyrenean Zone, Central Pyrenees): regional implications

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    This work deals with the structural evolution of the Sierras Interiores between the Tena and Aragon valleys. The Sierras Interiores is a WNW-trending mountain range that bounds the South Pyrenean Zone to the north and that is characterized by a thrust-fold system with a strong lithological control that places preferably decollements in Triassic evaporites. In the studied area of the Sierras Interiores Cenomanian limestones cover discordantly the Paleozoic rocks of the Axial Zone because there is a stratigraphic lacuna developed from Triassic to Late Cretaceous times. A simple lithostratigraphy of the study area is made up of Late Cenomanian to Early Campanian limestones with grey colour and massive aspect in landscape (170 m, Lower calcareous section), Campanian to Maastrichtian brown coloured sandstones (400-600 m, Marboré sandstones) and, finally, Paleocene light-coloured massive limestones (130-230 m), that often generate the higher topographic levels of the Sierras Interiores due to their greater resistance to erosion. Above the sedimentary sequence of the Sierras Interiores, the Jaca Basin flysch succession crops out discordantly. Based on a detailed mapping of the studied area of the Sierras Interiores, together with well and structural data of the Jaca Basin (Lanaja, 1987; Rodríguez and Cuevas, 2008) we have constructed a 12 km long NS cross section, approximately parallel to the movement direction deduced for this region (Rodríguez et al., 2011). The main structure is a thrust array made up of at least four Paleozoic-involving thrusts (the deeper thrust system) of similar thickness in a probably piggyback sequence, some of which are blind thrusts that generate fold-propagation-folds in upper levels. The higher thrust of the thrust array crops out duplicating the lower calcareous section all over the Sierras Interiores. The emplacement of the deeper thrust system generated the tightness of previous structures: south directed piggyback duplexes (the upper

  16. Redescription of Bellerophon asiaticus Wirth (Early Triassic: Gastropoda) from China, and a survey of Triassic Bellerophontacea.

    USGS Publications Warehouse

    Yochelson, E.Y.; Yin, Hongfu

    1985-01-01

    The bilaterally symmetrical gastropod Bellerophon asiaticus Wirth is redescribed from specimens collected in Guizhou Province, PRC. The species is reassigned to Retispira, a common late Paleozoic taxon. Retispira is another example of a Paleozoic gastropod genus that crossed the era boundary. Associated pelecypods that date these Guizhou occurrences as Early Triassic are well known species in PRC and are illustrated. Both Bellerophon and Euphemites probably occur in the Early Triassic, though the quality of illustrations leaves some uncertainty; the existence of Stachella in the Triassic is more problematic. There was no dramatic reduction of the Bellerophontacea from their abundance and diversity in the Permian. It may be a general phenomenon that most late Paleozoic family-level and many generic-level taxa of gastropods were unaffected by the late Permian 'crisis'. from Authors

  17. The potential of paleozoic nonmarine trace fossils for paleoecological interpretations

    USGS Publications Warehouse

    Maples, C.G.; Archer, A.W.

    1989-01-01

    Many Late Paleozoic environments have been interpreted as marine because of the co-occurrence of supposedly exclusively marine trace fossils. Beginning in the Late Ordovician, however, nonmarine trace-fossil diversity increased throughout the Paleozoic. This diversification of nonmarine organisms and nonmarine trace fossils was especially prevalent in Devonian and later times. Diversification of freshwater organisms is indicated by the large number of freshwater fish, arthropods, annelids and molluscs that had developed by the Carboniferous. In addition to diverse freshwater assemblages, entirely terrestrial vertebrate and invertebrate ecosystems had developed by the Devonian. This rapid diversification of freshwater and terrestrial organisms is inherently linked to development and diversification of land plants and subsequent shedding of large quantities of organic detritus in nonmarine and marginal-marine areas. Nearshore marine organisms and their larvae that are able to tolerate relatively short periods of lowered salinities will follow salt-water wedges inland during times of reduced freshwater discharge. Similarly, amphidromous marine organisms will migrate periodically inland into nonmarine environments. Undoubtedly, both of these processes were active in the Paleozoic. However, both processes are restricted to stream/distributary channels, interdistributary bays, or estuaries. Therefore, the presence of diverse trace-fossil assemblages in association with floodplain deposits is interpreted to reflect true nonmarine adaptation and diversity. Conversely, diverse trace-fossil assemblages in association with stream/distributary channel deposits, interdistributary-bay deposits, or estuarine deposits may reflect migration of salt-water wedges inland, or migration of marine organisms into freshwater environments (amphidromy), or both. ?? 1989.

  18. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  19. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing

    NASA Astrophysics Data System (ADS)

    Ma, Anlin; Hu, Xiumian; Garzanti, Eduardo; Han, Zhong; Lai, Wen

    2017-07-01

    The Mesozoic stratigraphic record of the southern Qiangtang basin in central Tibet records the evolution and closure of the Bangong-Nujiang ocean to the south. The Jurassic succession includes Toarcian-Aalenian shallow-marine limestones (Quse Formation), Aalenian-Bajocian feldspatho-litho-quartzose to feldspatho-quartzo-lithic sandstones (shallow-marine Sewa Formation and deep-sea Gaaco Formation), and Bathonian outer platform to shoal limestones (Buqu Formation). This succession is truncated by an angular unconformity, overlain by upper Bathonian to lower Callovian fan-delta conglomerates and litho-quartzose to quartzo-lithic sandstones (Biluoco Formation) and Callovian shoal to outer platform limestones (Suowa Formation). Sandstone petrography coupled with detrital-zircon U-Pb and Hf isotope analysis indicate that the Sewa and Gaaco formations contain intermediate to felsic volcanic detritus and youngest detrital zircons (183-170 Ma) with ɛHf(t) ranging widely from +13 to -25, pointing to continental-arc provenance from igneous rocks with mixed mantle and continental-crust contributions. An arc-trench system thus developed toward the end of the Early Jurassic, with the southern Qiangtang basin representing the fore-arc basin. Above the angular unconformity, the Biluoco Formation documents a change to dominant sedimentary detritus including old detrital zircons (mainly >500 Ma ages in the lower part of the unit) with age spectra similar to those from Paleozoic strata in the central Qiangtang area. A major tectonic event with intense folding and thrusting thus took place in late Bathonian time (166 ± 1 Ma), when the Qiangtang block collided with another microcontinental block possibly the Lhasa block.

  20. Stratigraphy of Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    USGS Publications Warehouse

    Shawe, Daniel R.; Simmons, George C.; Archbold, Norbert L.

    1968-01-01

    The Slick Rock district covers about 570 square miles in western San Miguel and Dolores Counties, in southwestern Colorado. It is at the south edge of the salt-anticline region of southwestern Colorado and southeastern Utah and of the Uravan mineral belt.Deposition of Paleozoic sedimentary rocks in the district and vicinity was principally controlled by development of the Paradox Basin, and of Mesozoic rocks by development of a depositional basin farther west. The Paleozoic rocks generally are thickest at the northeast side of the Paradox Basin in a northwest- trending trough which seems to be a wide graben in Precambrian igneous and metamorphic basement rocks; Mesozoic rocks generally thicken westward and southwestward from the district.Sedimentary rocks rest on a Precambrian basement consisting of a variety of rocks, including granite and amphibolite. The surface of the Precambrian rocks is irregular and generally more than 2,000 feet below sea level and 7,000-11,000 feet below the ground surface. In the northern part of the district the Precambrian surface plunges abruptly northeastward into the trough occupying the northeast side of the Paradox Basin, and in the southern part it sags in a narrow northeasterly oriented trough. Deepening of both troughs, or crustal deformation in their vicinity, influenced sedimentation during much of late Paleozoic and Mesozoic time.The maximum total thickness of sedimentary rocks underlying the district is 13,000 feet, and prior to extensive erosion in the late Tertiary and the Quaternary it may have been as much as about 18,000 feet. The lower 5,000 feet or more of the sequence of sedimentary rocks consists of arenaceous strata of early Paleozoic age overlain by dominantly marine carbonate rocks and evaporite beds interbedded with lesser amounts of clastic sediments of late Paleozoic age. Overlying these rocks is about 4,500 feet of terrestrial clastic sediments, dominantly sandstone with lesser amounts of shale, mudstone

  1. Deposition of a saline giant in the Mississippian Windsor Group, Nova Scotia, and the nascent Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    MacNeil, Laura A.; Pufahl, Peir K.; James, Noel P.

    2018-01-01

    Saline giants are vast marine evaporite deposits that currently have no modern analogues and remain one of the most enigmatic of chemical sedimentary rocks. The Mississippian Windsor Group (ca. 345 Ma), Maritimes Basin, Atlantic Canada is a saline giant that consists of two evaporite-rich sedimentary sequences that are subdivided into five subzones. Sequence 1 is composed almost entirely of thick halite belonging to Subzone A (Osagean). Sequence 2 is in unconformable contact and comprised of stacked carbonate-evaporite peritidal cycles of Subzones B through E (Meramecian). Subzone B, the focus of research herein, documents the transition from wholly evaporitic to open marine conditions and thus, preserves an exceptional window into the processes forming saline giants. Lithofacies stacking patterns in Subzone B reveal that higher-order fluctuations in relative sea level produced nine stacked parasequences interpreted to reflect high frequency glacioeustatic oscillations during the onset of the Late Paleozoic Ice Age. Each parasequence reflects progradation of intertidal and sabkha sediments over subtidal carbonate and evaporite deposits. Dissimilarities in cycle composition between sub-basins imply the development of contrasting brine chemistries from differing recharge rates with the open ocean. What the Windsor Group shows is that evaporite type is ostensibly linked to the amplitude and frequency of sea level rise and fall during deposition. True saline giants, like the basinwide evaporites of Sequence 1, apparently require low amplitude, long frequency changes in sea level to promote the development of stable brine pools that are only periodically recharged with seawater. By contrast, the high amplitude, short frequency glacioeustatic variability in sea level that controlled the accumulation of peritidal evaporites in Subzone B produce smaller, subeconomic deposits with more complex facies relationships.

  2. Deformational history of part of the Acatlán Complex: Late Ordovician Early Silurian and Early Permian orogenesis in southern Mexico

    NASA Astrophysics Data System (ADS)

    Malone, J. R.; Nance, R. D.; Keppie, J. D.; Dostal, J.

    2002-10-01

    The Paleozoic Acatlán Complex of southern Mexico comprises polydeformed metasedimentary, granitoid, and mafic-ultramafic rocks variously interpreted as recording the closure of the Iapetus, Rheic, and Ouachitan Oceans. The complex is tectonically juxtaposed on its eastern margin against Grenville-age gneisses (Oaxacan Complex) that are unconformably overlain by Lower Paleozoic strata containing fossils of Gondwanan affinity. A thick siliciclastic unit (Chazumba and Cosoltepec Formations) at the base of the complex is considered part of a Lower Paleozoic accretionary prism with a provenance that isotopically resembles the Oaxacan Complex. This unit is tectonically overridden by a locally eclogitic mafic-ultramafic unit interpreted as a westward-obducted ophiolite, the emplacement of which was synchronous with mylonitic granitoid intrusion at ca. 440 Ma. Both units are unconformably overlain by a deformed volcano-sedimentary sequence (Tecomate Formation) attributed to a volcanic arc of presumed Devonian age. Deformed granitoids in contact with this sequence have been dated at ca. 371 (La Noria granite) and 287 Ma (Totoltepec pluton). Three phases of penetrative deformation (D 1-3) affect the Cosoltepec Formation; the last two correlate with two penetrative deformational phases that affect the Tecomate Formation. D 1 is of unknown kinematics but predates deposition of the Tecomate Formation and likely records obduction at ca. 440 Ma (Acatecan orogeny). A folded foliation in the Totoltepec pluton appears to record both deformational phases in the Tecomate Formation, bracketing D 2 and D 3 between 287 Ma and the deposition of the nonconformably overlying Leonardian Matzitzi Formation. D 2 records north-south dextral transpression and south-vergent thrusting and is attributed to the collision of Gondwana and southern Laurentia (Ouachitan orogeny) at ca. 290 Ma, the kinematics being consistent with the northward motion of Mexico that is required by most continental

  3. Evolution of the Arctic-North Atlantic and the Western Tethys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, P.A.

    1988-01-01

    This volume provides an overview of the late Paleozoic to recent geological evolution of the continents and shelves bordering the North Atlantic Ocean, the Norwegian-Greenland Sea, the Arctic Ocean, and the Mediterranean Sea. The evolution of these seas has been the subject of many studies and compilations, which discuss the evolution of oceanic basins on the basis of their magnetic sea-floor anomalies. The volume presented combines this information with geological data from the adjacent shelf and onshore areas. It retraces the evolution of sedimentary basins developed during the rifting phases that preceded the opening of these oceans and highlights themore » scope of the associated intra-plate phenomena. The author presents a reconstruction of the late Paleozoic and early Mesozoic development of Europe, northernmost Africa and northeastern North America-Greenland and discusses the different orogenic cycles that accompanied the stepwise assembly of Pangea and the early rifting phases heralding its break-up.« less

  4. Paleozoic strata of the Dyckman Mountain area, northeastern Medfra quadrangle, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.

    2000-01-01

    Paleozoic rocks in the Dyckman Mountain area (northeastern Medfra quadrangle; Farewell terrane) include both shallowand deep-water lithologies deposited on and adjacent to a carbonate platform. Shallow-water strata, which were recognized by earlier workers but not previously studied in detail, consist of algal-laminated micrite and skeletal-peloidal wackestone, packstone, and lesser grainstone. These rocks are, at least in part, of Early and (or) Middle Devonian age but locally could be as old as Silurian; they accumulated in shallow subtidal to intertidal settings with periodically restricted water circulation. Deepwater facies, reported here for the first time, are thin, locally graded beds of micrite and calcisiltite and subordinate thick to massive beds of lime grainstone and conglomerate. Conodonts indicate an age of Silurian to Middle Devonian; the most tightly dated intervals are early Late Silurian (early to middle Ludlow). These strata formed as hemipelagic deposits, turbidites, and debris flows derived from shallow-water lithologies of the Nixon Fork subterrane. Rocks in the Dyckman Mountain area are part of a broader facies belt that is transitional between the Nixon Fork carbonate platform to the west and deeper water, basinal lithologies (Minchumina “terrane”) to the east. Transitional facies patterns are complex because of Paleozoic shifts in the position of the platform margin, Mesozoic shortening, and Late Cretaceous-Tertiary disruption by strike-slip faulting.

  5. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the

  6. Paleozoic and Lower Mesozoic magmas from the eastern Klamath Mountains (North California) and the geodynamic evolution of northwestern America

    NASA Astrophysics Data System (ADS)

    Lapierre, H.; Brouxel, M.; Albarede, F.; Coulin, C.; Lecuyer, C.; Martin, P.; Mascle, G.; Rouer, O.

    1987-09-01

    The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430-480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin. A consistent plate-tectonic model is proposed for the area, consisting of six main stages: (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin; (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc; (3) opening and development of the Trinity back-arc basin around 430-480 Ma ago; (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock; (5) break in volcanic activity from the Early Devonian to the Early Permian; and (6) development of

  7. Fold-structure analysis of paleozoic rocks in the Variscan Harz Mountains (Lautenthal, Central Germany) based on laserscanning and 3D modelling

    NASA Astrophysics Data System (ADS)

    Wagner, Bianca; Leiss, Bernd; Stöpler, Ralf; Zahnow, Fabian

    2017-04-01

    Folded paleozoic sedimentary rocks of Upper Devonian to Lower Carboniferous age are very well exposed in the abandoned chert quarry of Lautenthal in the western Harz Mountains. The outcrop represents typical structures of the Rhenohercynian thrust and fold belt of the Variscan orogen and therefore allows quantitative studies for the understanding of e.g. fold mechanisms and the amount of shortening. The sequence is composed of alternating beds of cherts, shales and tuffites, which show varying thicknesses, undulating and thinning out of certain layers. Irregularly occurring lenses of greywackes are interpreted as sedimentary intrusions. The compressive deformation style is expressed by different similar and parallel fold structures at varying scales as well as small-scale reverse faults and triangle structures. An accurate mapping of the outcrop in the classical way is very challenging due to distant and unconnected outcrop parts with differing elevations and orientations. Furthermore, the visibility is limited because of nearby trees, diffuse vegetation cover and no available total view. Therefore, we used a FARO 120 3D laserscanner and Trimble GNSS device to generate a referenced and drawn to scale point cloud of the complete quarry. Based on the point cloud a geometric 3D model of prominent horizons and structural features of various sizes was constructed. Thereafter, we analyzed the structures in matters of orientation and deformation mechanisms. Finally, we applied a retrodeformation algorithm on the model to restore the original sedimentary sequence and to calculate shortening including the amount of pressure solution. Only digital mapping allows such a time-saving, accurate and especially complete 3D survey of this excellent study object. We demonstrated that such 3D-models enable spatial correlations with other complex structures cropping out in the area. Moreover, we confirmed that a structural upscaling to the 100 to 1000 m scale is much easier and much

  8. Hg concentrations from Late Triassic and Early Jurassic sedimentary rocks: first order similarities and second order depositional and diagenetic controls

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    Mercury concentrations in sediments have recently gained prominence as a potential tool for identifying large igneous province (LIP) volcanism in sedimentary records. LIP volcanism coincides with several mass extinctions during the Phanerozoic, but it is often difficult to directly tie LIP activity with the record of extinction in marine successions. Here, we build on mercury concentration data reported by Thibodeau et al. (Nature Communications, 7:11147, 2016) from the Late Triassic and Early Jurassic of New York Canyon, Nevada, USA. Increases in Hg concentrations in that record were attributed to Central Atlantic Magmatic Province (CAMP) activity in association with the end-Triassic mass extinction. We expand the measured section from New York Canyon and report new mercury concentrations from Levanto, Peru, where dated ash beds provide a discrete chronology, as well as St. Audrie's Bay, UK, a well-studied succession. We correlate these records using carbon isotopes and ammonites and find similarities in the onset of elevated Hg concentrations and Hg/TOC in association with changes in C isotopes. We also find second order patterns that differ between sections and may have depositional and diagenetic controls. We will discuss these changes within a sedimentological framework to further understand the controls on Hg concentrations in sedimentary records and their implications for past volcanism.

  9. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  10. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2018-06-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  11. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    USGS Publications Warehouse

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  12. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  13. Assessment of Appalachian Basin Oil and Gas Resources: Utica-Lower Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Ryder, Robert T.

    2008-01-01

    The Utica-Lower Paleozoic Total Petroleum System (TPS) is an important TPS identified in the 2002 U.S. Geological Survey (USGS) assessment of undiscovered, technically recoverable oil and gas resources in the Appalachian basin province (Milici and others, 2003). The TPS is named for the Upper Ordovician Utica Shale, which is the primary source rock, and for multiple lower Paleozoic sandstone and carbonate units that are the important reservoirs. Upper Cambrian through Upper Silurian petroleum-bearing strata that constitute the Utica-Lower Paleozoic TPS thicken eastward from about 2,700 ft at the western margin of the Appalachian basin to about 12,000 ft at the thrust-faulted eastern margin of the Appalachian basin. The Utica-Lower Paleozoic TPS covers approximately 170,000 mi2 of the Appalachian basin from northeastern Tennessee to southeastern New York and from central Ohio to eastern West Virginia. The boundary of the TPS is defined by the following geologic features: (1) the northern boundary (from central Ontario to northeastern New York) extends along the outcrop limit of the Utica Shale-Trenton Limestone; (2) the northeastern boundary (from southeastern New York, through southeastern Pennsylvania-western Maryland-easternmost West Virginia, to northern Virginia) extends along the eastern limit of the Utica Shale-Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (3) the southeastern boundary (from west-central and southwestern Virginia to eastern Tennessee) extends along the eastern limit of the Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (4) the southwestern boundary (from eastern Tennessee, through eastern Kentucky, to southwestern Ohio) extends along the approximate facies change from the Trenton Limestone with thin black shale interbeds (on the east) to the equivalent Lexington Limestone without black shale interbeds (on the west); (5) the northern part of the boundary in southwestern Ohio

  14. The main features of the Uralian Paleozoic magmatism and the epioceanic nature of the orogen

    NASA Astrophysics Data System (ADS)

    Fershtater, G. B.

    2013-02-01

    The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460-390 Ma) to mantle-crust gabbro-granitic complexes (370-315 Ma) followed by pure crustal granite magmatism (290-250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.

  15. Major Perspectives of The Dfg-research Programm (schwerpunktprogramm) Dynamics of Sedimentary Systems Under Varying Stress Conditions By Example of The Central European Basin-system

    NASA Astrophysics Data System (ADS)

    Bayer, U.; Littke, R.; Gajewski, D.; Brink, H.-J.

    In 2001 a major research program "Dynamics of Sedimentary Systems under Varying Stress Conditions" has been established by the German Science Foundation (DFG). The programme effectively will start early in 2002 and in some sense provides a continuation of the EUROPROBE project TESZ. However, it will focus mainly on post-Paleozoic processes. The following sub-themes for this programme capture a wide range of areas of interest, calling for interdisciplinary research: 1. Structure and evolution of the crust. This topic will be based on the three- dimensional structural interpretation, pre-stack migration, and modelling of geophysi- cal data such as seismic, gravimetric, magnetic, and magnetotelluric data. The deriva- tion of interval velocities and the prediction of lateral inhomogeneities will be essential for the interpretation of rheological properties on one hand and historical geodynamic processes on the other. 2. Basin dynamics in space and time. Methods of basin anal- ysis, seismic stratigraphy,sedimentology, sequence- and event stratigraphy should be used in combination with subsidence analysis and basin modelling to interpret facies distributions within the evolving accomodation space of a sedimentary basin. An ad- vanced interpretation of seismic lines using new modelling tools is of key interest to extract facies patterns and related petrophysical properties for the three dimensional space of a sedimentary basin. 3. Fluid- and salt dynamics. Salt dynamics is related to the recent and historic stress fields of a basin and greatly governs the sedimentation and erosion processes at the surface. In addition, the rheology of the upper crust and the temperature field within sedimentary basins greatly depends on salt doming. Fluid dynamics is coupled to the temperature and pressure field, but depends also on the permeability of sedimentary rocks which varies by more than 15 orders of magnitude. The origin of non-hydrocarbon gases (CO2, N2, H2S), each dominating

  16. Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States

    USGS Publications Warehouse

    Nelson, Philip H.; Gianoutsos, Nicholas J.; Drake, Ronald

    2015-01-01

    Potentiometric surfaces for Paleozoic strata, based on water well levels and selected drill-stem tests, reveal the control on hydraulic head exerted by outcrops in eastern Kansas and Oklahoma. From outcrop in the east, the westward climb of hydraulic head is much less than that of the land surface, with heads falling so far below land surface that the pressure:depth ratio in eastern Colorado is less than 5.7 kPa/m (0.25 psi/ft). Permian evaporites separate the Paleozoic hydrogeologic units from a Lower Cretaceous (Dakota Group) aquifer, and a highly saline brine plume pervading Paleozoic units in central Kansas and Oklahoma is attributed to dissolution of Permian halite. Underpressure also exists in the Lower Cretaceous hydrogeologic unit in the Denver Basin, which is hydrologically separate from the Paleozoic units. The data used to construct the seven potentiometric surfaces were also used to construct seven maps of pressure:depth ratio. These latter maps are a function of the differences among hydraulic head, land-surface elevation, and formation elevation. As a consequence, maps of pressure:depth ratio reflect the interplay of three topologies that evolved independently with time. As underpressure developed, gas migrated in response to the changing pressure regime, most notably filling the Hugoton gas field in southwestern Kansas. The timing of underpressure development was determined by the timing of outcrop exposure and tilting of the Great Plains. Explorationists in western Kansas and eastern Colorado should not be surprised if a reservoir is underpressured; rather, they should be surprised if it is not.

  17. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins

    NASA Astrophysics Data System (ADS)

    Sato, Ana María; Llambías, Eduardo J.; Basei, Miguel A. S.; Castro, Carlos E.

    2015-11-01

    The intermediate to acid Choiyoi Magmatic Province is the most conspicuous feature along the Late Paleozic continental margin of southwestern Gondwana, and is generally regarded as the possible source for the widespread ash fall deposits interlayered with sedimentary sequences in the adjacent Gondwana basins. The Choiyoi magmatism is geologically constrained between the early Permian San Rafael orogenic phase and the Triassic extensional Huarpica phase in the region of Argentine Frontal Cordillera, Precordillera and San Rafael Block. In order to better assess the Choiyoi magmatism in Argentine Frontal Cordillera, we obtained 6 new LA-ICPMS U-Pb ages between 278.8 ± 3.4 Ma and 252.5 ± 1.9 Ma from plutonic rocks of the Colangüil Batholith and an associated volcanic rock. The global analysis of age data compiled from Chilean and Argentine Late Paleozoic to Triassic outcrops allows us to identify three stages of magmatism: (1) pre-Choiyoi orogenic magmatism, (2) Choiyoi magmatism (286-247 Ma), and (3) post-Choiyoi magmatism related to extensional tectonics. In the Choiyoi stage is there an eastward shift and expansion of the magmatism to the southeast, covering an extensive region that defines the Choiyoi magmatic province. On the basis of comparison with the ages from volcanogenic levels identified in the coeval Gondwana basins, we propose: (a) The pre-Choiyoi volcanism from the Paganzo basin (320-296 Ma) probably has a local source in addition to the Frontal Cordillera region. (b) The pre-Choiyoi and Choiyoi events identified in the Paraná basin (304-275 Ma) are likely to have their source in the Chilean Precordillera. (c) The early stage of the Choiyoi magmatism found in the Sauce Grande basin (284-281 Ma) may have come from the adjacent Las Matras to Chadileuvú blocks. (d) The pre-Choiyoi and Choiyoi events in the Karoo basins (302-253 Ma) include the longest Choiyoi interval, and as a whole bear the best resemblance to the age records along the Chilean and

  18. Late paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: Characteristics and geodynamic setting

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Wang, Y.; Hart, C.J.; Wang, Z.; Yang, J.

    2005-01-01

    The East Tianshan is a remote Gobi area located in eastern Xinjiang, northwestern China. In the past several years, a number of gold, porphyry copper, and Fe(-Cu) and Cu-Ag-Pb-Zn skarn deposits have been discovered there and are attracting exploration interest. The East Tianshan is located between the Junggar block to the north and early Paleozoic terranes of the Middle Tianshan to the south. It is part of a Hercynian orogen with three distinct E-W-trending tectonic belts: the Devonian-Early Carboniferous Tousuquan-Dananhu island arc on the north and the Carboniferous Aqishan - Yamansu rift basin to the south, which are separated by rocks of the Kanggurtag shear zone. The porphyry deposits, dated at 322 Ma, are related to the late evolutionary stages of a subduction-related oceanic or continental margin arc. In contrast, the skarn, gold, and magmatic Ni-Cu deposits are associated with post-collisional tectonics at ca. 290-270 Ma. These Late Carboniferous - Early Permian deposits are associated with large-scale emplacement and eruption of magmas possibly caused by lithosphere delamination and rifting within the East Tianshan.

  19. The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany

    USGS Publications Warehouse

    Wedepohl, K.H.; Delevaux, M.H.; Doe, B.R.

    1978-01-01

    New lead isotopic compositions have been measured for Paleozoic bedded and vein ore deposits of Europe by the high precision thermal emission (triple filament) technique. Eleven samples have been analyzed from the Upper Permian Kupferschiefer bed with representatives from Poland to England, three samples from the Middle Devonian Rammelsberg deposit and one from the Middle Devonian Meggen deposit, both of which are conformable ore lenses and are in the Federal Republic of Germany (FRG); and also two vein deposits from the FRG were analyzed, from Ramsbeck in Devonian host rocks and from Grund in Carboniferous host rocks. For Kupferschiefer bed samples from Germany, the mineralization is of variable lead isotopic composition and appears to have been derived about 250 m.y. ago from 1700 m.y. old sources, or detritus of this age, in Paleozoic sedimentary rocks. Samples from England, Holland, and Poland have different isotopic characteristics from the German samples, indicative of significantly different source material (perhaps older). The isotopic variability of the samples from the Kupferschiefer bed in Germany probably favors the lead containing waters coming from shoreward (where poor mixing is to be expected) rather than basinward (where better mixing is likely) directions. The data thus support the interpretation of the metal source already given by Wedepohl in 1964. Data on samples from Rammelsberg and Meggen tend to be slightly less radiogenic than for the Kupferschiefer, about the amount expected if the leads were all derived from the same source material but 100 to 150 m.y. apart in time. The vein galena from Ramsbeck is similar to that from Rammelsberg conformable ore lenses, both in rocks of Devonian age; vein galena from Grund in Upper Carboniferous country rocks is similar to some bedded Kupferschiefer mineralization in Permian rocks, as if the lead composition was formed at about the same time and from similar source material as the bedded deposits

  20. Sedimentary and Enhanced Geothermal Systems | Geothermal Technologies |

    Science.gov Websites

    NREL Sedimentary and Enhanced Geothermal Systems Sedimentary and Enhanced Geothermal Systems To innovative technologies, such as sedimentary and enhanced geothermal systems (EGS). Photo of a geothermal power plant in Imperial California. Capabilities To advance EGS and sedimentary geothermal systems, NREL

  1. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  2. Tectonics of Antarctica

    USGS Publications Warehouse

    Hamilton, W.

    1967-01-01

    Antarctica consists of large and wholly continental east Antarctica and smaller west Antarctica which would form large and small islands, even after isostatic rebound, if its ice cap were melted. Most of east Antarctica is a Precambrian Shield, in much of which charnockites are characteristic. The high Transantarctic Mountains, along the Ross and Weddell Seas, largely follow a geosyncline of Upper Precambrian sedimentary rocks that were deformed, metamorphosed and intruded by granitic rocks during Late Cambrian or Early Ordovician time. The rocks of the orogen were peneplained, then covered by thin and mostly continental Devonian-Jurassic sediments, which were intruded by Jurassic diabase sheets and overlain by plateau-forming tholeiites. Late Cenozoic doming and block-faulting have raised the present high mountains. Northeastern Victoria Land, the end of the Transantarctic Mountains south of New Zealand, preserves part of a Middle Paleozoic orogen. Clastic strata laid unconformably upon the Lower Paleozoic plutonic complex were metamorphosed at low grade, highly deformed and intruded by Late Devonian or Early Carboniferous granodiorites. The overlying Triassic continental sedimentary rocks have been broadly folded and normal-faulted. Interior west Antarctica is composed of miogeosynclinal clastic and subordinate carbonate rocks which span the Paleozoic Era and which were deformed, metamorphosed at generally low grade, and intruded by granitic rocks during Early Mesozoic time and possibly during other times also. Patterns of orogenic belts, if systematic, cannot yet be defined; but fragmentation and rotation of crustal blocks by oroclinal folding and strike-slip faulting can be suggested. The Ellsworth Mountains, for example, consist of Cambrian-Permian metasedimentary rocks that strike northward toward the noncorrelative and latitudinally striking Mesozoic terrane of the Antarctic Peninsula in one direction and southward toward that of the Lower Paleozoic: terrane

  3. Petrogenesis and tectonic implications of the Early Paleozoic granites in the western segment of the North Qilian orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Wu, Cai-Lai; Lei, Min; Chen, Hong-Jie

    2018-07-01

    Early Paleozoic granitic magmatism in the North Qilian orogenic belt records a complete Wilson cycle and provides critical geological clues for unraveling the regional tectonic history. In this study, we report the results of zircon U-Pb ages, Hf isotopic analysis and systematic whole-rock geochemical data for the Late Ordovician Hongliuhe granite and Early Silurian Qingshan monzogranite in the western segment of the North Qilian orogenic belt to constrain their emplacement ages, petrogenesis, and regional evolution history. U-Pb dating reveals that the Hongliuhe granite was emplaced around 453-452 Ma, and the Qingshan monzogranite was emplaced about 440-438 Ma. A geochemical study shows that the two granites belong to the calc-alkaline to high-K calc-alkaline series. The Hongliuhe granite shows adakitic and peraluminous features, while the Qingshan monzogranite belongs to metaluminous to weak peraluminous granites. Zircons in the Hongliuhe granite show εHf(t) values ranging from -15.1 to +11.7 with two-stage Hf model ages (tDM2) of 687-2398 Ma, whereas zircons in the Qingshan monzogranite show εHf(t) values ranging from +5.7 to +11.0 with two-stage Hf model ages from 814 to 1057 Ma. The geochemical characteristics indicate that the Hongliuhe granite was a transitional I/S-type granite and was generated from a thickened lower crust with the addition of minor Paleo- to Mesoproterozoic crustal materials, which left a rutile + garnet + pyroxene ± plagioclase residue. The Qingshan monzogranite formed from the partial melting of mafic crust with minor mantle-derived materials, and the fractionation of Ti-bearing phases, apatite and pyroxene occurred during the magma's evolution, which left an amphibole and plagioclase residue. We infer that the Hongliuhe granite formed during the northward subduction of the North Qilian Ocean, while the Qingshan monzogranite was generated during the post-collision stage between the Qilian and Alxa blocks. This observation indicates

  4. Environmental trends in extinction during the Paleozoic

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.

    1987-01-01

    Extinction intensities calculated from 505 Paleozoic marine assemblages divided among six environmental zones and 40 stratigraphic intervals indicate that whole communities exhibit increasing extinction offshore but that genera within individual taxonomic classes tend to have their highest extinction onshore. The offshore trend at the community level results from a concentration of genera in classes with low characteristic extinction rates in nearshore environments. This finding is consistent with the ecologic expectation that organisms inhabiting unpredictably fluctuating environments should suffer more extinction than counterparts living under more predictably equitable conditions.

  5. High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: The role of special conditions of cratonic interiors in development of stratal architecture

    USGS Publications Warehouse

    Runkel, Anthony C.; Miller, J.F.; McKay, R.M.; Palmer, A.R.; Taylor, John F.

    2007-01-01

    Well-known difficulties in applying sequence stratigraphic concepts to deposits that accumulated across slowly subsiding cratonic interior regions have limited our ability to interpret the history of continental-scale tectonism, oceanographic dynamics of epeiric seas, and eustasy. We used a multi-disciplinary approach to construct a high-resolution stratigraphic framework for lower Paleozoic strata in the cratonic interior of North America. Within this framework, these strata proved readily amenable to modern sequence stratigraphic techniques that were formulated based on successions along passive margins and in foreland basins, settings markedly different from the cratonic interior. Parasequences, parasequence stacking patterns, systems tracts, maximum flooding intervals, and sequence-bounding unconformities can be confidently recognized in the cratonic interior using mostly standard criteria for identification. The similarity of cratonic interior and foreland basin successions in size, geometry, constituent facies, and local stacking patterns of nearshore parasequences is especially striking. This similarity indicates that the fundamental processes that establish shoreface morphology and determine the stratal expression of retreat and progradation were likewise generally the same, despite marked differences in tectonism, physiography, and bathymetry between the two settings. Our results do not support the widespread perception that Paleozoic cratonic interior successions are so anomalous in stratal geometries, and constitute such a poor record of time, that they are poorly suited for modern sequence stratigraphic analyses. The particular arrangement of stratal elements in the cratonic interior succession we studied is no more anomalous or enigmatic than the variability in architecture that sets all sedimentary successions apart from one another. Thus, Paleozoic strata of the cratonic interior are most appropriately considered as a package that belongs in a

  6. Age and provenance constraints on seismically-determined crustal layers beneath the Paleozoic southern Central Asian Orogen, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Jian, Ping; Kröner, Alfred; Shi, Yuruo; Zhang, Wei; Liu, Yaran; Windley, Brian F.; Jahn, Bor-ming; Zhang, Liqao; Liu, Dunyi

    2016-06-01

    We present 110 ages and 51 in-situ δ18O values for zircon xenocrysts from a post-99 Ma intraplate basaltic rock suite hosted in a subduction-accretion complex of the southern Central Asian Orogenic Belt in order to constrain a seismic profile across the Paleozoic Southern Orogen of Inner Mongolia and the northern margin of the North China Craton. Two zircon populations are recognized, namely a Phanerozoic group of 70 zircons comprising granitoid-derived (ca. 431-99 Ma; n = 31; peak at 256 Ma), meta-granitoid-derived (ca. 449-113 Ma; n = 24; peak at 251 Ma) and gabbro-derived (436-242 Ma; n = 15; peaks at 264 and 244 Ma) grains. Each textural type is characterized by a distinct zircon oxygen isotope composition and is thus endowed with a genetic connotation. The Precambrian population (2605-741 Ma; n = 40) exhibits a prominent age peak at 2520 Ma (granulite-facies metamorphism) and four small peaks at ca. 1900, 1600, and 800 Ma. Our new data, together with literature zircon ages, significantly constrain models of three seismically-determined deep crustal layers beneath the fossil subduction zone-forearc along the active northern margin of the North China Craton, namely: (1) an upper arc crust of early to mid-Paleozoic age, intruded by a major Permian-Triassic composite granitoid-gabbroic pluton (8-20 km depth); (2) a middle crust, predominantly consisting of mid-Meso- to Neoproterozoic felsic and mafic gneisses; and (3) a lower crust composed predominantly of late Archean granulite-facies rocks. We conclude that the Paleozoic orogenic crust is limited to the upper crustal level, and the middle to lower crust has a North China Craton affinity. Furthermore, integrating our data with surface geological, petrological and geochronological constraints, we present a new conceptual model of orogenic uplift, lithospheric delamination and crustal underthrusting for this key ocean-continent convergent margin.

  7. Geochemical Aspects of Formation of Large Oil Deposits in the Volga-Ural Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Plotnikova, I.; Nosova, F.; Pronin, N.; Nosova, J.; Budkevich, T.

    2012-04-01

    The study of the rocks domanikoid type in the territory of the Ural-Volga region has an almost century-long history, beginning with the first studies of A.D. Archangelsky in the late 20's of last century. But nevertheless the question of the source of oil that formed the industrial deposits of Volga-Ural oil and gas province (OGP), where Romashkinskoye oil field occupies a special place, remains unresolved and topical. According to the sedimentary-migration theory of origin of oil and gas, it is supposed that the primary source of hydrocarbons in this area are the deposits of domanikoid type that contain a large ammount of sapropel organic matter (OM). Semiluki (domanik) horizon of srednefranski substage of the Upper Devonian is considered to be a typical domanikoid stratum. Investigation of the OM of the rocks and oils of the sedimentary cover on the basis of chromato-mass spectrometry method allows us to study the correlations between rock and oil and to assess the location (or absence) of the sources of hydrocarbons in the Paleozoic sedimentary cover. The results of geochemical study of dispersed organic matter (DOM) of rocks from Semiluksky horizon of the Upper Devonian and of the oil from Pashiysky horizon of the Middle Devonian form the basis of this paper. The objectives of this study were the following: to determine the original organic matter of the rocks, which would indicate the conditions of sedimentation of the supposed rock-oil sources; the study of chemofossils (biomarkers) in oil from Pashiyskiy horizon; and the identification of genetic association of DOM rocks from Semiluksky horizon with this oil on the basis of the oil-DOM correlation. The study of biomarkers was carried out with the help of chromato-mass spectrometry in the Laboratory of Geochemistry of Fossil Fuels (Kazan Federal University). In this study we used several informative parameters characterizing the depositional environment, the type of source OM and its maturity: STER / PENT, h

  8. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Breitkreuz, C.

    The geodynamic evolution of the Paleozoic continental margin of Gondwana in the region of the southern Central Andes is characterized by the westward progression of orogenic basin formation through time. The Ordovician basin in the northwest Argentinian Cordillera Oriental and Puna originated as an Early Ordovician back-arc basin. The contemporaneous magmatic arc of an east-dipping subduction zone was presumably located in northern Chile. In the back-arc basin, a ca. 3500 meter, fining-up volcaniclastic apron connected to the arc formed during the Arenigian. Increased subsidence in the late Arenigian allowed for the accomodation of large volumes of volcaniclastic turbidites during the Middle Ordovician. Subsidence and sedimentation were caused by the onset of collision between the para-autochthonous Arequipa Massif Terrane (AMT) and the South American margin at the Arenigian-Llanvirnian transition. This led to eastward thrusting of the arc complex over its back-arc basin and, consequently, to its transformation into a marine foreland basin. As a result of thrusting in the west, a flexural bulge formed in the east, leading to uplift and emergence of the Cordillera Oriental shelf during the Guandacol Event at the Arenigian-Llanvirnian transition. The basin fill was folded during the terminal collision of the AMT during the Oclóyic Orogeny (Ashgillian). The folded strata were intruded post-tectonically by the presumably Silurian granitoids of the "Faja Eruptiva de la Puna Oriental." The orogeny led to the formation of the positive area of the Arco Puneño. West of the Arco Puneño, a further marine basin developed during the Early Devonian, the eastern shelf of which occupied the area of the Cordillera Occidental, Depresión Preandina, and Precordillera. The corresponding deep marine turbidite basin was located in the region of the Cordillera de la Costa. Deposition continued until the basin fill was folded in the early Late Carboniferous Toco Orogeny. The basin

  9. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes

    NASA Astrophysics Data System (ADS)

    Han, Seokyoung; de Jong, Koen; Yi, Keewook

    2017-08-01

    Sensitive High-Resolution Ion Microprobe (SHRIMP) U-Th-Pb isotopic data of detrital zircons from mature, quartz-rich meta-sandstones are used to constrain possible tectonic affinities and source regions of the rhythmically layered and graded-bedded series in the Yeoncheon Complex (Imjingang Belt) and the correlative Taean Formation. These metamorphic marine turbidite sequences presently occur along the Paleoproterozoic (1.93-1.83 Ga) Gyeonggi Massif, central Korea's main high-grade metamorphic gneiss terrane. Yet, detrital zircons yielded highly similar multimodal age spectra with peaks that do not match the age repartition in these basement rocks, as late (1.9-1.8 Ga) and earliest (∼ 2.5 Ga) Paleoproterozoic detrital modes are subordinate but, in contrast, Paleozoic (440-425 Ma) and Neoproterozoic (980-920 Ma) spikes are prominent, yet the basement essentially lacks lithologies with such ages. The youngest concordant zircon ages in each sample are: 378, 394 and 423 Ma. The maturity of the meta-sandstones and the general roundness of zircons of magmatic signature, irrespective of their age, suggest that sediments underwent considerable transport from source to sink, and possibly important weathering and recycling, which may have filtered out irradiation-weakened metamorphic zircon grains. In combination with these isotopic data, presence of a low-angle ductile fault contact between the Yeoncheon Complex and the Taean Formation and the underlying mylonitized Precambrian basement implies that they are in tectonic contact and do not have a stratigraphic relationship, as often assumed. Consequently, in all likelihood, both meta-sedimentary formations: (1) are at least of early Late Devonian age, (2) received much of their detritus from distant (reworked) Silurian-Devonian and Early Neoproterozoic magmatic sources, not present in the Gyeonggi Massif, (3) and not from Paleoproterozoic crystalline rocks of this massif, or other Korean Precambrian basement terranes, and

  10. The Cannery Formation--Devonian to Early Permian arc-marginal deposits within the Alexander Terrane, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.

    2011-01-01

    cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,

  11. Early rifting deposition: examples from carbonate sequences of Sardinia (Cambrian) and Tuscany (Triassic-Jurassic), Italy: an analogous tectono-sedimentary and climatic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozza, T.; Gandin, A.

    Lower Cambrian Ceroide Limestone (Sardinia) and Lower Jurassic Massiccio Limestone (Tuscany) belong to sequences deposited in analogous tectono-sedimentary context: the former linked to the Caledonian Sardic Phase, the latter to the Alpine Orogeny. Both units consist of massive pure limestone characterized by marginal and lagoonal sequences repeatedly interfingering in the same geological structure. This distribution indicates a morphology of the platforms composed of banks (marginal facies) and shallow basins (lagoonal facies) comparable with a Bahamian complex. Dolomitization affects patchily the massive limestone bodies, and karstic features, breccias, and sedimentary dikes occur at their upper boundary. Both units overlie early dolomitemore » and evaporites (sabkha facies) containing siliciclastic intercalations in their lower and/or upper part and are unconformably covered by open-shelf red (hematitic), nodular limestone Ammonitico Rosso facies). The sedimentary evolution of the two sequences appears to have been controlled by synsedimentary tectonics whose major effects are the end of the terrigenous input, the bank-and-basin morphology of the platform, the irregular distribution of the dolomitization, and the nodular fabric of the overlying facies. The end of the Bahamian-type system is marked by the karstification of the emerged blocks and is followed by their differential sinking and burial under red-nodular facies. From a geodynamic viewpoint, sequences composed of Bahamian-like platform carbonates followed by Ammonitico Rosso facies imply deposition along continental margins subjected to block-faulting during an extensional regime connected with the beginning of continental rifting. Moreover, the variation from sabkha to Bahamian conditions suggests the drifting of the continent from arid to humid, tropical areas.« less

  12. Late Paleozoic tectonic evolution and concentrated mineralization in Balkhash and West Junggar, western part of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Chen, Xuanhua; Chen, Zhengle

    2016-04-01

    course thermo-history of the minearl deposits from their formation in the deep to the exhumation in the surface. It reveals the arc-related granitic magmatism and the metallogeneses of skarn Cu, porphyry Cu-Mo, quartz-vein/greisen W-Mo, and orogenic Au in Late Paleozoic, the medium-temperature regional cooling in Late Paleozoic and Early Mesozoic, and the low-temperature exhumation of the deposits in Mesozoic. The timing, combined with geochemistry of granitoids, suggests a transition of tectonic environment from syn-collision and volcanic arc in Late Carboniferous to post-collision extension in Early Permian, and the concentrated mineralization of Cu, Mo, rare metals, and Au during this tectonic transition. The complete metallogenic series for the concentrated mineralization are from skarn and porphyry Cu-Mo deposits to rare metal and gold deposits. Key words: Late Paleozoic; Tectonic evolution; Concentrated mineralization; Balkhash-Junggar tectono-metallogenic belt; Central Asian Orogenic Belt

  13. Burning experiments and late Paleozoic high O2 levels

    NASA Astrophysics Data System (ADS)

    Wildman, R.; Essenhigh, R.; Berner, R.; Hickey, L.; Wildman, C.

    2003-04-01

    The Paleozoic rise of land plants brought about increased burial of organic matter and a resulting increase in atmospheric oxygen concentrations. Levels as high as 30-35% O2 may have been reached during the Permo-Carboniferous (Berner and Canfield, 1989; Berner, 2001). However, burning experiments based solely on paper (Watson, 1978) have challenged these results, the claim being that if the oxygen made up more than 25% of the atmosphere, the frequency and intensity of forest fires would increase sufficiently to prevent the continued existence of plant life. Thus, since plants have persisted, it is possible that fires served as a negative feedback against excessive oxygen levels. An initial study of Paleozoic wildfire behavior via thermogravimetric analysis (TGA) was conducted under ambient and enriched oxygen conditions to simulate present and ancient atmospheres. The tests focused on natural fuels, specifically tree leaves and wood, tree fern fibers, and sphagnum peat-moss, simulating Permo-Carboniferous upland and swampland ecosystems, respectively. Three conclusions are: (1) enriched oxygen increases the rate of mass loss during burning; (2) fuel chemistry (cellulose vs. lignin) influences burning patterns; and (3) in geometrically heterogeneous fuels, geometry affects burning rate significantly. Both geometrically and chemically, paper resists fire poorly; thus, we found that it loses its mass at lower temperatures than forest materials and is therefore a poor proxy for Paleozoic ecosystems. Further study of Paleozoic wildfire spread behavior is currently being conducted. Fires are lit using pine dowels, which allow for reproducible fuel density. Steady-state, one-dimensional flame-spread is measured with thermocouples anchored two inches above the fuel bed. Both oxygen concentration of the air supply to the fire and moisture content of the fuels are varied, as we suspect that these are two main controls of wildfire spread. Burning fuels of varying moisture

  14. Late paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia.

    PubMed

    Payne, Jonathan L; Groves, John R; Jost, Adam B; Nguyen, Thienan; Moffitt, Sarah E; Hill, Tessa M; Skotheim, Jan M

    2012-09-01

    Atmospheric hyperoxia, with pO(2) in excess of 30%, has long been hypothesized to account for late Paleozoic (360-250 million years ago) gigantism in numerous higher taxa. However, this hypothesis has not been evaluated statistically because comprehensive size data have not been compiled previously at sufficient temporal resolution to permit quantitative analysis. In this study, we test the hyperoxia-gigantism hypothesis by examining the fossil record of fusulinoidean foraminifers, a dramatic example of protistan gigantism with some individuals exceeding 10 cm in length and exceeding their relatives by six orders of magnitude in biovolume. We assembled and examined comprehensive regional and global, species-level datasets containing 270 and 1823 species, respectively. A statistical model of size evolution forced by atmospheric pO(2) is conclusively favored over alternative models based on random walks or a constant tendency toward size increase. Moreover, the ratios of volume to surface area in the largest fusulinoideans are consistent in magnitude and trend with a mathematical model based on oxygen transport limitation. We further validate the hyperoxia-gigantism model through an examination of modern foraminiferal species living along a measured gradient in oxygen concentration. These findings provide the first quantitative confirmation of a direct connection between Paleozoic gigantism and atmospheric hyperoxia. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  15. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  16. Geochemistry of host rocks in the Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary environments of Zn-Pb and phosphate mineralization

    USGS Publications Warehouse

    Slack, John F.; Falck, Hendrik; Kelley, Karen D.; Xue, Gabriel G.

    2017-01-01

    Detailed lithogeochemical data are reported here on early Paleozoic sedimentary rocks that host the large Howards Pass stratiform Zn-Pb deposits in Yukon-Northwest Territories. Redox-sensitive trace elements (Mo, Re, V, U) and Ce anomalies in members of the Duo Lake Formation record significant environmental changes. During the deposition of lower footwall units (Pyritic siliceous and Calcareous mudstone members), bottom waters were anoxic and sulphidic, respectively; these members formed in a marginal basin that may have become increasingly restricted with time. Relative to lower members, a major environmental change is proposed for deposition of the overlying Lower cherty mudstone member, which contains phosphorite beds up to ∼0.8 m thick in the upper part, near the base of the Zn-Pb deposits. The presence of these beds, together with models for modern phosphorite formation, suggests P input from an upwelling system and phosphorite deposition in an upper slope or outer shelf setting. The overlying Active mudstone member contains stratabound to stratiform Zn-Pb deposits within black mudstone and gray calcareous mudstone. Data for unmineralized black mudstone in this member indicate deposition under diverse redox conditions from suboxic to sulphidic. Especially distinctive in this member are uniformly low ratios of light to heavy rare earth elements that are unique within the Duo Lake Formation, attributed here to the dissolution of sedimentary apatite by downward-percolating acidic metalliferous brines. Strata that overlie the Active member (Upper siliceous mudstone member) consist mainly of black mudstone with thin (0.5–1.5 cm) laminae of fine-grained apatite, recording continued deposition on an upper slope or outer shelf under predominantly suboxic bottom waters. Results of this study suggest that exploration for similar stratiform sediment-hosted Zn-Pb deposits should include the outer parts of ancient continental margins, especially at and near

  17. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    USGS Publications Warehouse

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  18. Assessment of Paleozoic shale gas resources in the Sichuan Basin of China, 2015

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Charpentier, Ronald R.; Gaswirth, Stephanie B.; Klett, Timothy R.; Leathers, Heidi M.; Brownfield, Michael E.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.

    2015-10-14

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 23.9 trillion cubic feet of technically recoverable shale gas resources in Paleozoic formations in the Sichuan Basin of China.

  19. Plutonism in the central part of the Sierra Nevada Batholith, California

    USGS Publications Warehouse

    Bateman, Paul C.

    1992-01-01

    The Sierra Nevada batholith comprises the plutonic rocks of Mesozoic age that underlie most of the Sierra Nevada, a magnificent mountain range that originated in the Cenozoic by the westward tilting of a huge block of the Earth's crust. Scattered intrusions west of the batholith in the western metamorphic belt of the Sierra Nevada and east of the Sierra Nevada in the Benton Range and the White and Inyo Mountains are satellitic to but not strictly parts of the Sierra Nevada batholith. Nevertheless, all the plutonic rocks are related in origin. The batholith lies along the west edge of the Paleozoic North American craton, and Paleozoic and early Mesozoic oceanic crust underlies its western margin. It was emplaced in strongly deformed but weakly metamorphosed strata ranging in age from Proterozoic to Cretaceous. Sedimentary rocks of Proterozoic and Paleozoic age crop out east of the batholith in the White and Inyo Mountains, and metamorphosed sedimentary and volcanic rocks of Paleozoic and Mesozoic age crop out west of the batholith in the western metamorphic belt. A few large and many small, generally elongate remnants of metamorphic rocks lie within the batholith. Sparse fossils from metasedimentary rocks and isotopic ages for metavolcanic rocks indicate that the metamorphic rocks in the remnants range in age from Early Cambrian to Early Cretaceous. Within the map area (the Mariposa 1 0 by 2 0 quadrangle), the bedding, cleavage, and axial surfaces of folds generally trend about N. 35 0 W., parallel to the long axis of the Sierra Nevada. The country rocks comprise strongly deformed but generally coherent sequences; however, some units in the western metamorphic belt may partly consist of melanges. Most sequences are in contact with other sequences, at least for short distances, but some sequences within the batholith are bounded on one or more sides by plutonic rocks. Proterozoic and Paleozoic sedimentary strata east of the Sierra Nevada and Paleozoic strata in

  20. Exotic island arc Paleozoic terranes on the eastern margin of Gondwana: Geochemical whole rock and zircon U-Pb-Hf isotope evidence from Barry Station, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Manton, Ryan J.; Buckman, Solomon; Nutman, Allen P.; Bennett, Vickie C.

    2017-08-01

    Early Paleozoic intra-oceanic terranes crop out along the Peel-Manning Fault System, in the southern New England Orogen, NSW Australia. These are the Cambrian ophiolitic Weraerai terrane and the Siluro-Devonian island arc Gamilaroi terrane. There has been debate whether these terranes formed at the Gondwana margin or if they are intra-oceanic, and were accreted to Gondwana later in the Paleozoic. Major-trace-REE elemental data indicate Weraerai terrane formed in a supra-subduction environment. Rare zircons extracted from Weraerai terrane gabbro-plagiogranite suites at Barry Station yield a U-Pb zircon date of 504.9 ± 3.5 Ma with initial εHf values of + 11.1 indicating a juvenile source. Amphibole-bearing felsic dykes and net-vein complexes are also found within the gabbro with a U-Pb zircon date of 503.2 ± 5.7 Ma and initial εHf values of + 11.6. These are coeval in age with their host rocks and we propose they represent partial melts of the mafic crust during the circulation of seawater. The Gamilaroi trondhjemites of prehnite-pumpellyite-greenschist metamorphic grade terrane yielded very few zircons with an age of 413 ± 8.7 Ma. Zircon initial εHf values range from + 5.0 to + 2.9, indicating an input from an evolved crustal source, unlike the purely oceanic Weraerai terrane. Gamilaroi terrane trondhjemites are enriched in LREE have low K2O and K2O/Na2O ratios and strong negative Nb anomalies consistent with supra-subduction zone environments. Multiple subduction zones may well have existed within the Panthalassa Ocean during the early-mid Paleozoic with the Weraerai-Gamilaroi being accreted onto the Gondwanan margin during the latest Devonian.

  1. The rise and fall of late Paleozoic trilobites of the United States

    USGS Publications Warehouse

    Brezinski, D.K.

    1999-01-01

    Based on range data and generic composition, four stages of evolution are recognized for late Paleozoic trilobites of the contiguous United States. Stage 1 occurs in the Lower Mississippian (Kinderhookian-Osagean) and is characterized by a generically diverse association of short-ranging, stenotopic species that are strongly provincial. Stage 2 species are present in the Upper Mississippian and consist of a single, eurytopic, pandemic genus, Paladin. Species of Stage 2 are much longer-ranging than those of Stage 1, and some species may have persisted for as long as 12 m.y. Stage 3 is present within Pennsylvanian and Lower Permian strata and consists initially of the eurytopic, endemic genera Sevillia and Ameura as well as the pandemic genus Ditomopyge. During the middle Pennsylvanian the very long-ranging species Ameura missouriensis and Ditomopyge scitula survived for more than 20 m.y. During the late Pennsylvanian and early Permian, a number of pandemic genera appear to have immigrated into what is now North America. Stage 4 is restricted to the Upper Permian (late Leonardian-Guadalupian) strata and is characterized by short-ranging, stenotopic, provincial genera. The main causal factor controlling the four-stage evolution of late Paleozoic trilobites of the United States is interpreted to be eustacy. Whereas Stage 1 represents an adaptive radiation developed during the Lower Mississippian inundation of North America by the Kaskaskia Sequence, Stage 2 is present in strata deposited during the regression of the Kaskaskia sea. Stage 3 was formed during the transgression and stillstand of the Absaroka Sequence and, although initially endemic, Stage 3 faunas are strongly pandemic in the end when oceanic circulation patterns were at a maximum. A mid-Leonardian sea-level drop caused the extinction of Stage 3 fauna. Sea-level rise near the end of the Leonardian and into the Guadalupian created an adaptive radiation of stentopic species of Stage 4 that quickly became

  2. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Jiyuan; Guo, Lin; Li, Jianxing; Li, Yanguang; Smithies, Robert H.; Wingate, Michael T. D.; Meng, Yong; Chen, Shefa

    2016-07-01

    Ordovician to Devonian sodic granites dominate the newly recognized Luotuojuan composite granite in the Lebaquan-Luotuojuan-Niujuanzi region of Beishan, along the southern margin of the Central Asian Orogenic Belt in NW China. The granites include sodic (K2O/Na2O > 0.5) tonalites with low Y (< 7 ppm), Yb (< 0.7 ppm), high Sr/Y (> 68) that formed during at least two events at c. 435 and c. 370-360 Ma. Their compositions are consistent with high-pressure melting of basaltic crust, although relatively non-radiogenic Nd isotope compositions (εNd(t) + 0.9) require some crustal assimilation. The interpretation that these granites reflect melts of a subducted slab (i.e. adakite) is supported by independent local and regional geological evidence for an oceanic subduction-accretion setting, including a long history of calc-alkaline magmatism and the identification of a series of early Paleozoic ophiolite belts. Other sodic granites forming the Luotuojuan composite granite are mainly quartz-diorite and granodiorite formed between c. 391 and c. 360 Ma. These rocks are not adakites, having Sr concentrations and Sr/Y ratios too low and Y and Yb concentrations too high. They are low- to medium-K calc-alkaline rocks more typical of magmas derived through melting in a subduction modified mantle wedge. Compositional changes from sodic to potassic granites, over time frames consistent with subduction processes, suggest at least two separate cycles, or pulses, of hot subduction in the Lebaquan-Luotuojuan-Niujuanzi region. Although early Paleozoic adakites have been inferred to exist elsewhere in the Beishan region, many of the reported adakitic rocks have compositions inconsistent with melting of subducted oceanic lithosphere and so tectonic interpretation of hot subduction might not be valid in these cases. A study of regional granite data also shows not only that adakite magmatism does not extend into the Permian but that if subduction-accretion processes extended into the late

  3. Relations between extensional tectonics and magmatism within the Southern Oklahoma aulacogen

    NASA Technical Reports Server (NTRS)

    Mcconnell, D. A.; Gilbert, M. C.

    1985-01-01

    Variations in the geometry, distribution and thickness of Cambrian igneous and sedimentary units within southwest Oklahoma are related to a late Proterozoic - early Paleozoic rifting event which formed the Southern Oklahoma aulacogen. These rock units are exposed in the Wichita Mountains, southwest Olkahoma, located on the northern margin of a Proterozoic basin, identified in the subsurface by COCORP reflection data. Overprinting of the Cambrian extensional event by Pennyslvanian tectonism obsured the influence of pre-existing basement structures and contrasting basement lithologies upon the initial development of the aulacogen.

  4. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  5. A problematic early tetrapod from the Mississippian of Nevada

    USGS Publications Warehouse

    Thomson, K.S.; Shubin, N.S.; Poole, F.G.

    1998-01-01

    We report here the discovery of a new taxon of Paleozoic tetrapod from the Late Mississippian of Nevada (330-340 Ma). It has a unique vertebral column with principal centra having vertical anterior and posterior faces, ventrally incomplete accessory centra located antero-dorsally in each centrum, and enlarged presacral/sacral vertebrae. The head and pectoral girdle were not preserved but the large femur, robust pelvic girdle and enlarged sacral vertebrae possibly indicate a terrestrial mode of life. This new form significantly extends the western geographic range of known Mississippian tetrapods. It presents a mosaic of primitive and derived features, indicating that continued revision of traditional accounts of vertebral homology and the early diversifications of Paleozoic tetrapods will be necessary.

  6. To what extent can intracrater layered deposits that lack clear sedimentary textures be used to infer depositional environments?

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; Kah, Linda C.

    2015-03-01

    Craters within Arabia Terra, Mars, contain hundreds of meters of layered strata showing systematic alternation between slope- and cliff-forming units, suggesting either rhythmic deposition of distinct lithologies or similar lithologies that experienced differential cementation. On Earth, rhythmically deposited strata can be examined in terms of stratal packaging, wherein the interplay of tectonics, sediment deposition, and base level (i.e., the position above which sediment accumulation is expected to be temporary) result in changes in the amount of space available for sediment accumulation. These predictable patterns of sediment deposition can be used to infer changes in basin accommodation regardless of the mechanism of deposition (e.g. fluvial, lacustrine, or aeolian). Here, we analyze sedimentary deposits from three craters (Becquerel Crater, Danielson Crater, Crater A) in Arabia Terra. Each crater contains layered deposits that are clearly observed in orbital images. Although orbital images are insufficient to specifically determine the origin of sedimentary deposits, depositional couplets can be interpreted in terms of potential accommodation space available for deposition, and changes in the distribution of couplet thickness through stratigraphy can be interpreted in terms of changing base level and the production of new accommodation space. Differences in stratal packaging in these three craters suggest varying relationships between sedimentary influx, sedimentary base level, and concomitant changes in accommodation space. Previous groundwater upwelling models hypothesize that layered sedimentary deposits were deposited under warm climate conditions of early Mars. Here, we use observed stacking patterns to propose a model for deposition under cold climate conditions, wherein episodic melting of ground ice could raise local base level, stabilize sediment deposition, and result in differential cementation of accumulated strata. Such analysis demonstrates that

  7. A Guide to Oceanic Sedimentary Layering.

    DTIC Science & Technology

    1983-07-28

    Profiling," J. Geophys. Res. 73, 2597-2614. L3 Lee, H. J., 1980. "Physical Properties of Northeast Pacific Sedi- ments Related to Sedimentary Environment and...7i -AI33 060 A GUIDE TO OCEANIC SEDIMENTARY LAYERING(U) TEXAS UNIV 1/i AT AUSTIN APPLIED RESEARCH LABS C B BENNETT ET AL, 28 JUL 83 RRL-TR-83-25...Copy No. 3 A GUIDE TO OCEANIC SEDIMENTARY LAYERING Christopher B. Bennett J. Mark Daniels APPLIED RESEARCH LABORATORIES THE UNIVERSITY OF TEXAS AT

  8. A Cambrian mixed carbonate-siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin

    NASA Astrophysics Data System (ADS)

    Ramacciotti, Carlos D.; Casquet, César; Baldo, Edgardo G.; Galindo, Carmen; Pankhurst, Robert J.; Verdecchia, Sebastián O.; Rapela, Carlos W.; Fanning, Mark

    2018-05-01

    The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to the early Paleozoic tectonic evolution of SW Gondwana. Two well-known orogenies took place at the proto-Andean margin of Gondwana in the Cambrian and the Ordovician, i.e., the Pampean (545-520 Ma) and Famatinian (490-440 Ma) orogenies, respectively. Between them, an extensive continental platform was developed, where mixed carbonate-siliciclastic sedimentation occurred. This platform was later involved in the Famatinian orogeny when it underwent penetrative deformation and metamorphism. The platform apparently extended from Patagonia to northwestern Argentina and the Eastern Sierras Pampeanas, and has probable equivalents in SW Africa, Peru, and Bolivia. The WSP record the outer (deepest) part of the platform, where carbonates were deposited in addition to siliciclastic sediments. Detrital zircon U-Pb SHRIMP ages from clastic metasedimentary successions and Sr-isotope compositions of marbles from the WSP suggest depositional ages between ca. 525 and 490 Ma. The detrital zircon age patterns further suggest that clastic sedimentation took place in two stages. The first was sourced mainly from re-working of the underlying Neoproterozoic metasedimentary rocks and the uplifted core of the early Cambrian Pampean orogen, without input from the Paleoproterozoic Río de la Plata craton. Sediments of the second stage resulted from the erosion of the still emerged Pampean belt and the Neoproterozoic Brasiliano orogen in the NE with some contribution from the Río de la Plata craton. An important conclusion is that the WSP basement was already part of SW Gondwana in the early Cambrian, and not part of the exotic Precordillera/Cuyania terrane, as was previously thought.

  9. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  10. Mesozoic architecture of a tract of the European-Iberian continental margin: Insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Santantonio, Massimo; Fabbi, Simone; Aldega, Luca

    2016-01-01

    The sedimentary successions exposed in northeast Calabria document the Jurassic-Early Cretaceous tectonic-sedimentary evolution of a former segment of the European-Iberian continental margin. They are juxtaposed today to units representing the deformation of the African and Adriatic plates margins as a product of Apenninic crustal shortening. A complex pattern of unconformities reveals a multi-stage tectonic evolution during the Early Jurassic, which affected the facies and geometries of siliciclastic and carbonate successions deposited in syn- and post-rift environments ranging from fluvial to deep marine. Late Sinemurian/Early Pliensbachian normal faulting resulted in exposure of the Hercynian basement at the sea-floor, which was onlapped by marine basin-fill units. Shallow-water carbonate aprons and reefs developed in response to the production of new accommodation space, fringing the newborn islands which represent structural highs made of Paleozoic crystalline and metamorphic rock. Their drowning and fragmentation in the Toarcian led to the development of thin caps of Rosso Ammonitico facies. Coeval to these deposits, a thick (> 1 km) hemipelagic/siliciclastic succession was sedimented in neighboring hanging wall basins, which would ultimately merge with the structural high successions. Footwall blocks of the Early Jurassic rift, made of Paleozoic basement and basin-margin border faults with their onlapping basin-fill formations, are found today at the hanging wall of Miocene thrusts, overlying younger (Middle/Late Jurassic to Late Paleogene) folded basinal sediments. This paper makes use of selected case examples to describe the richly diverse set of features, ranging from paleontology to sedimentology, to structural geology, which are associated with the field identification of basin-margin unconformities. Our data provide key constraints for restoring the pre-orogenic architecture of a continental margin facing a branch of the Liguria-Piedmont ocean in the

  11. Integrated interpretation of geophysical data of the Paleozoic structure in the northwestern part of the Siljan Ring impact crater, central Sweden

    NASA Astrophysics Data System (ADS)

    Muhamad, Harbe; Juhlin, Christopher; Malehmir, Alireza; Sopher, Daniel

    2018-01-01

    The Siljan Ring impact structure is the largest known impact structure in Europe and is Late Devonian in age. It contains a central uplift that is about 20-30 km in diameter and is surrounded by a ring-shaped depression. The Siljan area is one of the few areas in Sweden where the Paleozoic sequence has not been completely eroded, making it an important location for investigation of the geological and tectonic history of Baltica during the Paleozoic. The Paleozoic strata in this area also provide insight into the complex deformation processes associated with the impact. In this study we focus on the northwestern part of the Siljan Ring, close to the town of Orsa, with the main objective of characterizing the subsurface Paleozoic succession and uppermost Precambrian crystalline rocks along a series of seismic reflection profiles, some of which have not previously been published. We combine these seismic data with gravity and magnetic data and seismic traveltime tomography results to produce an integrated interpretation of the subsurface in the area. Our interpretation shows that the Paleozoic sequence in this area is of a relatively constant thickness, with a total thickness typically between 300 and 500 m. Faulting appears to be predominantly extensional, which we interpret to have occurred during the modification stage of the impact. Furthermore, based on the geophysical data in this area, we interpret that the impact related deformation to differ in magnitude and style from other parts of the Siljan Ring.

  12. Correlation of Late Precambrian and Paleozoic events in the East European platform and the adjacent paleooceanic domains

    NASA Astrophysics Data System (ADS)

    Kheraskova, T. N.; Volozh, Yu. A.; Antipov, M. P.; Bykadorov, V. A.; Sapozhnikov, R. B.

    2015-01-01

    The correlation of geological events and structure-forming processes occurring contemporaneously in the inner parts of cratons and the adjacent paleooceanic basins is discussed in order to understand the effects of these processes on sedimentation and structural rearrangements. For this purpose, a series of paleodynamic reconstructions of the Riphean, Vendian, and Paleozoic epicontinental basins of the East European Platform and zones of their transition to marginal basins of the same age once situated in the Ural, Timan, Caucasus, Scandinavian fold regions and in the Scythian-Turan Plate have been performed on the basis of the available original and published data combined with interpretation of seismic profiles. As a result, a set of structural-facies maps of this territory have been compiled for several time intervals from the Late Riphean to Early Permian.

  13. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    Patagonia during the Early Jurassic (Sinemurian-Pliensbachian) was responsible for the partial (re)exhumation of the mid-crustal Paleozoic basement along reactivated discrete NE-SW to ENE-WSW lineaments and the resetting of isotopic systems. These new thermochronological data indicate that Early Permian magmatic rocks of the Nahuel Niyeu block were below 300 °C for ca. 20 Ma prior to the onset of the main magmatic episode of the Late Permian to Triassic igneous and metaigneous rocks of the Yaminué block.

  14. The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth

    NASA Astrophysics Data System (ADS)

    Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.

    2001-12-01

    Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled

  15. Examining the association of DDX compounds to sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Weathers, N.; Rowlett, K.; Geng, Z.; Morrison, A.; White, H. K.

    2016-02-01

    The association of hydrophobic organic contaminants (HOCs) with sedimentary organic matter (OM) influences their mobility and bioavailability in the environment. Determining whether these associations result from mechanisms such as sorption, chemical binding or encapsulation is critical for predicting their long-term fate. The pesticide DDT (dichlorodiphenyltrichloroethane) has been previously observed to form bound residues with sedimentary OM although the mechanisms of this association are yet to be fully explored. DDT, which was sprayed ubiquitously in the 1950s and early 1960s, can still be found in the environment today along with its three major metabolites, DDE, DDD and DDMU (collectively known as DDX compounds), and therefore presents a unique opportunity to further explore its long-term associations with OM. To this end, a sediment core from a salt marsh in Dover, Delaware known to contain DDX compounds was collected. A maximum concentration of DDX compounds was found at sediment depths corresponding to the time of the widespread usage of DDT. An initial solvent extraction with toluene provided data on the loosely associated DDX fraction followed by subsequent treatments with sulfuric acid and saponification to release DDX that was encapsulated or bound to the sedimentary matrix. Determining the physical disposition of DDX compounds that persist in sediments for several decades is integral to determining the extent to which they are mobile, bioavailable or sequestered in the marsh.

  16. A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Kazemi, Tahmineh; Asahara, Yoshihiro

    2017-07-01

    The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5-1280 ppm), Zn (43.7-358 ppm), Y(17.9-177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (< + 3) and high variation of 87Sr/86Sr(initial) ratios are evidence of the role of the continental component for the evolution of A-type granitoids in the Hasansalaran area. Because of the high contents of Ta, Yb, Nb and Y, all samples are plotted in the within-plate tectonic regime without interfering oceanic released fluids in the subduction zone. These high Nb content rocks (37.2-342 ppm without one sample) are classified as A1-type granitoids. Based on the distribution of A1- and A2-type granitoids in the Late Paleozoic in northwest Iran, the existence of some gabbroic rocks with tholeiitic to alkali composition and a long gap for magmatic activities in the area from 550 to 360 Ma (approximately 180 my.a.) between the Zagros and Tabriz faults, we suggest a new thematic model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.

  17. The development of floristic provinciality during the Middle and Late Paleozoic

    USGS Publications Warehouse

    Wnuk, C.

    1996-01-01

    Phytogeographic reconstructions have been published for most Paleozoic series since the Pr??i??doli??, but there have been few attempts to synthesize this data into a comprehensive review of the characteristics and causes of the changing phytogeographic patterns for the whole Paleozoic history of the vascular flora. Existing floristic analyses have been compiled in this manuscript and the resulting data are used to reconstruct the evolution of floristic provinces since the Silurian. The earliest plant fossil records indicate that provinciality was characteristic of terrestrial vascular plant distributions right from the beginning of terrestrial colonization by vascular plants. This interpretation differs markedly from the views of many workers who still maintain that pre-Upper Carboniferous floras were uniform and cosmopolitan in distribution. Three of the four major phytogeographic units, i.e. Angara, Euramerica, and Gondwana, can be recognized in the earliest fossil floras. The fourth unit, Cathaysia, differentiated from Euramerica during the late Upper Carboniferous. Phytogeographic differentiation occurs in direct response to climatic gradients and physiographic barriers. As these gradients and barriers change, provincial boundaries expand and contract, fragment, reassemble and reassort. Phytogeographic units are dynamic through time. ?? 1996 Elsevier Science B.V. All rights reserved.

  18. Global plate boundary evolution and kinematics since the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  19. Clastic sedimentary rocks of the Michipicoten Volcanic-sedimentary belt, Wawa, Ontario

    NASA Technical Reports Server (NTRS)

    Ojakangas, R. W.

    1983-01-01

    The Wawa area, part of the Michipicoten greenstone belt, contains rock assemblages representative of volcanic sedimentary accumulations elsewhere on the shield. Three mafic to felsic metavolcanic sequences and cogenetic granitic rocks range in age from 2749 + or - 2Ma to 2696 + or - 2Ma. Metasedimentary rocks occur between the metavolcanic sequences. The total thickness of the supracrustal rocks may be 10,000 m. Most rocks have been metamorphosed under greenschist conditions. The belt has been studied earlier and is currently being remapped by Sage. The sedimentrologic work has been briefly summarized; two mainfacies associations of clastic sedimentary rocks are present - a Resedimented (Turbidite) Facies Association and a Nonmarine (Alluvial Fan Fluvial) Facies Association.

  20. A bibliography of Paleozoic Crustacea from 1698 to 1889, including a list of North American species and a systematic arrangement of genera

    USGS Publications Warehouse

    Vogdes, Anthony Wayne

    1890-01-01

    The sole object of this bulletin is to give a general view of the literature on the Paleozoic Crustacea and to aid students and paleontologists in their researches. It is the result of more or less constant work during the past ten years.In its compilation I have examined almost every reference before recording it; those not so examined are indicated by a star (*) following the title.For convenience, the subject-matter has been arranged as follows:Part I. List of authors, including a brief index of the genera described in each work. Part II. A catalogue of the North American Paleozoic trilobites. Part III. The non-trilobitic Paleozoic Crustacea, with a list of the species.

  1. Paleobiogeography, high-resolution stratigraphy, and the future of Paleozoic biostratigraphy: Fine-scale diachroneity of the Wenlock (Silurian) conodont Kockelella walliseri

    USGS Publications Warehouse

    Cramer, Bradley D.; Kleffner, Mark A.; Brett, Carlton E.; McLaughlin, P.I.; Jeppsson, Lennart; Munnecke, Axel; Samtleben, Christian

    2010-01-01

    The Wenlock Epoch of the Silurian Period has become one of the chronostratigraphically best-constrained intervals of the Paleozoic. The integration of multiple chronostratigraphic tools, such as conodont and graptolite biostratigraphy, sequence stratigraphy, and ??13Ccarb chemostratigraphy, has greatly improved global chronostratigraphic correlation and portions of the Wenlock can now be correlated with precision better than ??100kyr. Additionally, such detailed and integrated chronostratigraphy provides an opportunity to evaluate the fidelity of individual chronostratigraphic tools. Here, we use conodont biostratigraphy, sequence stratigraphy and carbon isotope (??13Ccarb) chemostratigraphy to demonstrate that the conodont Kockelella walliseri, an important guide fossil for middle and upper Sheinwoodian strata (lower stage of the Wenlock Series), first appears at least one full stratigraphic sequence lower in Laurentia than in Baltica. Rather than serving as a demonstration of the unreliability of conodont biostratigraphy, this example serves to demonstrate the promise of high-resolution Paleozoic stratigraphy. The temporal difference between the two first occurrences was likely less than 1million years, and although it is conceptually understood that speciation and colonization must have been non-instantaneous events, Paleozoic paleobiogeographic variability on such short timescales (tens to hundreds of kyr) traditionally has been ignored or considered to be of little practical importance. The expansion of high-resolution Paleozoic stratigraphy in the future will require robust biostratigraphic zonations that embrace the integration of multiple chronostratigraphic tools as well as the paleobiogeographic variability in ranges that they will inevitably demonstrate. In addition, a better understanding of the paleobiogeographic migration histories of marine organisms will provide a unique tool for future Paleozoic paleoceanography and paleobiology research. ?? 2010

  2. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification

    PubMed Central

    Wolkenstein, Klaus

    2015-01-01

    Secondary metabolites often play an important role in the adaptation of organisms to their environment. However, little is known about the secondary metabolites of ancient organisms and their evolutionary history. Chemical analysis of exceptionally well-preserved colored fossil crinoids and modern crinoids from the deep sea suggests that bioactive polycyclic quinones related to hypericin were, and still are, globally widespread in post-Paleozoic crinoids. The discovery of hypericinoid pigments both in fossil and in present-day representatives of the order Isocrinida indicates that the pigments remained almost unchanged since the Mesozoic, also suggesting that the original color of hypericinoid-containing ancient crinoids may have been analogous to that of their modern relatives. The persistent and widespread occurrence, spatially as well as taxonomically, of hypericinoid pigments in various orders during the adaptive radiation of post-Paleozoic crinoids suggests a general functional importance of the pigments, contributing to the evolutionary success of the Crinoidea. PMID:25730856

  3. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  4. Heating, cooling, and uplift during Tertiary time, northern Sangre de Cristo Range, Colorado ( USA).

    USGS Publications Warehouse

    Lindsay, D.A.; Andriessen, P.A.M.; Wardlaw, B.R.

    1986-01-01

    Paleozoic sedimentary rocks in a wide area of the northern Sangre de Cristo Range show effects of heating during Tertiary time. Heating is tentatively interpreted as a response to burial during Laramide folding and thrusting and also to high heat flow during Rio Grande rifting. Fission-track ages of apatite across a section of the range show that rocks cooled abruptly below 120oC, the blocking temperature for apatite, approx 19 Ma ago. Cooling was probably in response to rapid uplift and erosion of the northern Sangre de Cristo Range during early Rio Grande rifting.-from Authors

  5. Exploration in Ordovician of central Michigan Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, J.H.; Barratt, M.W.

    1985-12-01

    Deep wells in the central Michigan basin have provided sufficient data to define two new mappable formations - the Foster Formation and the Bruggers Formation. Recent conodont studies have corrected the age assignments of the strata containing these formations. Previously, the lower section (Foster) was classified as mostly Cambrian, and the upper unit (Bruggers) was identified as Early Ordovician. Conodont identifications indicate an Early and Middle Ordovician age for the Foster Formation and a Middle Ordovician age for the Bruggers Formation. The Michigan basin existed in embryonic form in the Late Cambrian, but the full outline of the present-day basinmore » did not develop until Early Ordovician. Gas and condensate are produced from the Bruggers Formation as deep as 11,252 ft (3429 m). Geothermal investigations suggest that gas production is possible to the base of the Paleozoic section in the central basin (17,000 ft or 5181 m). Paleotemperatures were higher during the Paleozoic owing to 3000-4000 ft (914-1291 m) of additional sedimentary cover. Five wells are producing from the Bruggers Formation. All are deeper tests in anticlines producing from Devonian reservoirs discovered earlier. The structures are the result of vertical movements of basement fault blocks activated by regional stresses. 12 figures, 2 tables.« less

  6. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    PubMed

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 μgL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    NASA Astrophysics Data System (ADS)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  8. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (13Ccarb) biochemostratigraphy across the Llandovery–Wenlock (Silurian) boundary: Is a unified Phanerozoic time scale achievable?

    USGS Publications Warehouse

    Cramer, Bradley D.; Loydell, David K.; Samtleben, Christian; Munnecke, Axel; Kaljo, Dimitri; Mannik, Peep; Martma, Tonu; Jeppsson, Lennart; Kleffner, Mark A.; Barrick, James E.; Johnson, Craig A.; Emsbo, Poul; Joachimski, Michael M.; Bickert, Torsten; Saltzman, Matthew R.

    2010-01-01

    The resolution and fidelity of global chronostratigraphic correlation are direct functions of the time period under consideration. By virtue of deep-ocean cores and astrochronology, the Cenozoic and Mesozoic time scales carry error bars of a few thousand years (k.y.) to a few hundred k.y. In contrast, most of the Paleozoic time scale carries error bars of plus or minus a few million years (m.y.), and chronostratigraphic control better than ??1 m.y. is considered "high resolution." The general lack of Paleozoic abyssal sediments and paucity of orbitally tuned Paleozoic data series combined with the relative incompleteness of the Paleozoic stratigraphic record have proven historically to be such an obstacle to intercontinental chronostratigraphic correlation that resolving the Paleozoic time scale to the level achieved during the Mesozoic and Cenozoic was viewed as impractical, impossible, or both. Here, we utilize integrated graptolite, conodont, and carbonate carbon isotope (??13Ccarb) data from three paleocontinents (Baltica, Avalonia, and Laurentia) to demonstrate chronostratigraphic control for upper Llando very through middle Wenlock (Telychian-Sheinwoodian, ~436-426 Ma) strata with a resolution of a few hundred k.y. The interval surrounding the base of the Wenlock Series can now be correlated globally with precision approaching 100 k.y., but some intervals (e.g., uppermost Telychian and upper Shein-woodian) are either yet to be studied in sufficient detail or do not show sufficient biologic speciation and/or extinction or carbon isotopic features to delineate such small time slices. Although producing such resolution during the Paleozoic presents an array of challenges unique to the era, we have begun to demonstrate that erecting a Paleozoic time scale comparable to that of younger eras is achievable. ?? 2010 Geological Society of America.

  9. Sedimentary facies and depositional history of the Swan Islands, Honduras

    NASA Astrophysics Data System (ADS)

    Ivey, Marvin L.; Breyer, John A.; Britton, Joseph C.

    1980-10-01

    Swan Island is a Honduran possession in the western Caribbean, located on the southeastern side of the Cayman Trench. Two sedimentary assemblages are found on the island: an older bedded sequence of mid-Tertiary age (Aquitanian or Burdigalian) and a younger sedimentary sequence of Late Pleistocene age. The older sequence is composed of a series of calcarenites, calcilutites, and siliciclastic mudstones; capping these are cliff-forming reefal carbonates of the younger sequence. The rocks of the older bedded sequence accumulated in deep water. Sedimentation consisted of a constant rain of pyroclastic debris interrupted by the episodic introduction of upslope carbonate material by turbidity currents. Uplift and deformation of this sequence was initiated sometime after the Early Miocene. By the Late Pleistocene, uplift had brought the rocks into water depths conducive to coral growth. Pleistocene sedimentation on the island was controlled by the interaction between tectonic uplift and eustatic sea-level changes. The primary controlling force on the tectonic history of the island is its proximity to the boundary between the North American and Caribbean plates.

  10. Sedimentary manganese metallogenesis in response to the evolution of the Earth system

    NASA Astrophysics Data System (ADS)

    Roy, Supriya

    2006-08-01

    The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O 2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn 2+ in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75 Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O 2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO 2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22 Ga). The spectacular sedimentary manganese deposits (at ca. 2.4 Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn 2+ transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06 Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0 Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1 Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO 2 drawdown causing glaciation on the Neoproterozoic Rodinia

  11. Microbial shaping of sedimentary wrinkle structures

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.

    2014-10-01

    Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.

  12. Miocene Antarctic ice dynamics in the Ross Embayment (Western Ross Sea, Antarctica): Insights from provenance analyses of sedimentary clasts in the AND-2A drill core

    NASA Astrophysics Data System (ADS)

    Cornamusini, Gianluca; Talarico, Franco M.

    2016-11-01

    A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.

  13. The South China - Indochina collision: a perspective from sedimentary basins analysis

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Roger, Françoise; Dabard, Marie-Pierre; Martini, Rossana; Villeneuve, Michel; Cornée, Jean-Jacques; Peyrotty, Giovan

    2017-04-01

    Sedimentary basins, through the sedimentary successions and the nature of the deposits, reflect the geology of the area from which the sediments were derived and thus provide valuable record of hinterland tectonism. As the collision between the South China and the Indochina blocks (i.e., the Indosinian orogeny) is still the object of a number of controversies regarding, for instance, its timing and the polarity of the subduction, the sedimentary basins associated with this mountain belt are likely to provide clues to reconstruct its geodynamic evolution. However, both the Sam Nua Basin (located to the south of the inner zones of the Indosinian orogeny and the Song Ma ophiolites) and the Song Da Basin (located to the north of the inner zones), northern Vietnam, are still lacking important information regarding the depositional environments and the ages of the main formations that they contain. Using sedimentological and dating analyses (foraminifers biostratigraphy and U-Pb dating on detrital zircon), we provide a new stratigraphic framework for these basins and propose a geodynamic evolution of the present-day northern Vietnam. During the Early Triassic, the Sam Nua Basin was mainly supplied by volcaniclastic sediments originating from an active volcanic activity. Geochemical investigations, combined with sedimentological and structural analyses, support an arc-related setting for this magmatism. This magmatic arc resulted from the subduction of a south dipping oceanic slab that once separated the South China from the Indochina blocks. During the Middle to the Late Triassic, the Sam Nua Basin underwent erosion that lead to the formation of a major unconformity, termed the Indosinian unconformity. This unconformity is interpreted to result from the erosion of the Indosinian mountain belt, built after the continental collision between the South China and the Indochina blocks. Later, during the Late Triassic, the Sam Nua Basin experienced the deposition of very coarse

  14. Gravity study of Libya;Evaluation and Integration with Geological Data

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur; Saheel, Ahmed

    2016-04-01

    Libya is located on the Mediterranean foreland of the African Shield and covers an area of approximately 1.8 million square kilometers. Since Early Paleozoic time, Libya has been a site of deposition of large sheets of continental clastics and several transgressions and regressions by the seas with consequent accumulations of a wide variety of sedimentary rocks. Several tectonic cycles affected the area and shaped the geological setting of the country. However, the regional geology and the structural framework have been highly influenced by the Caledonian, Hercynian, and Alpine tectonic events. As a result, a total of seven sedimentary basins, namely Ghadames, Murzuq, Al Kufra, Al Butnan, Sirt, and the Offshore Pelagian Basin, were developed and were separated by intervening uplifts and platforms ( Gargaf, Tibesti, Nafusah and Cyrenaica platform). Apart from Sirt and the offshore basins, all the above mentioned basins are active since Early Paleozoic time and received several thousand feet of sediments. The capability of providing regional information on the structure of sedimentary basins makes gravity mapping, in conjunction with geological information, potentially powerful tools. In this study we used gravity mapping as our primary tool of investigation however, we also used all available geological information to better understand the regional tectonics. The gravity dataset that were used in the Gravity compilation project of Libya is not homogenous. As a result, some irregularities, apparent spikes or misties, and large shifts were obtained and were taken into consideration. Evaluation of gravity Maps of Libya and their integration with geological data provide a better understanding of the role that gravity mapping plays in the geological exploration of sedimentary basins. Results confirm the known Sirt Basin regional tectonic elements and the possible presence of NW-SE lateral wrench tectonics, crossing Ajdabiya Trough at the center of Sirt Basin. The

  15. Quantitative characterisation of sedimentary grains

    NASA Astrophysics Data System (ADS)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  16. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  17. Supercomputer analysis of sedimentary basins.

    PubMed

    Bethke, C M; Altaner, S P; Harrison, W J; Upson, C

    1988-01-15

    Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.

  18. Oceanic crust within the paleozoic Granjeno Schist, northeastern Mexico. Remnants of the Rheic and paleo-Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Torres Sanchez, Dario; Aleman Gallardo, Eduardo; Abratis, Michael

    2015-04-01

    Late Paleozoic metamorphic rocks in Mexico are related to the Laurentia-Gondwana collision in Carboniferous time, during Pangaea amalgamation. Vestiges of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental. Field work and petrographic analysis reveal that the Granjeno Schist comprises metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and igneous (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as 40Ar/39Ar ages on metavolcanic and metaultramafic rocks indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C with 2.5 kbar during Carboniferous time (330±30 Ma). The presence of metabasalt, metacumulate, serpentinite and talc bodies suggests an oceanic tectonic setting for the evolution of the Granjeno Schist. Serpetinite rocks have mesh, granular and ribbon textures which indicate recrystallization and metasomatic events. The serpentinite rocks are enriched in the very large incompatible elements Cs, U, and Zr and depleted in Ba, Sr, Pb, Zr and Ce. Normalized REE patterns (LaN/YbN = 0.51 - 19.95 and LaN/SmN = 0.72 - 9.08) of the serpentinite and talc/soapstone are characteristic of peridotite from both suprasubduction and mid-ocean ridge zones. Serpentinite from the Granjeno Schist have spinel content which can reveal different stages of evolution in host serpentinite. The composition of chromite indicates that they belong to podiform chromite that may have crystallized from mid-ocean ridge magma. Al-chromite in the serpentinite is characterized by #Cr 0.48 to 0.55, which indicates a depleted mantle source affected by 17 to 18% of partial melting. The ferritchromite has #Cr values of 0.93 to 1.00 which indicates a metamorphic origin. Our study

  19. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  20. Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization

    USGS Publications Warehouse

    Hearn, P.P.; Sutter, J.F.; Belkin, H.E.

    1987-01-01

    Many Lower Paleozoic limestones and dolostones in the Valley and Ridge province of the central and southern Appalachians contain 10 to 25 weight percent authigenic potassium feldspar. This was considered to be a product of early diagenesis, however, 40Ar 39Ar analyses of overgrowths on detrital K-feldspar in Cambrian carbonate rocks from Pennsylvania, Maryland, Virginia, and Tennessee yield Late Carboniferous-Early Permian ages (278-322 Ma). Simple mass balance calculations suggest that the feldspar could not have formed isochemically, but required the flux of multiple pore volumes of fluid through the rocks, reflecting regional fluid migration events during the Late-Paleozoic Alleghanian orogeny. Microthermometric measurements of fluid inclusions in overgrowths on detrital K-feldspar and quartz grains from unmineralized rocks throughout the study area indicate homogenization temperatures from 100?? to 200??C and freezing point depressions of -14?? to -18.5??C (18-21 wt.% NaCl equiv). The apparent similarity of these fluids to fluid inclusions in ore and gangue minerals of nearby Mississippi Valley-type (MVT) deposits suggests that the regional occurrences of authigenic K-feldspar and MVT mineralization may be genetically related. This hypothesis is supported by the discovery of authigenic K-feldspar intergrown with sphalerite in several mines of the Mascot-Jefferson City District, E. Tennessee. Regional potassic alteration in unmineralized carbonate rocks and localized occurrences of MVT mineralization are both explainable by a gravity-driven flow model, in which deep brines migrate towards the basin margin under a hydraulic gradient established during the Alleghanian orogeny. The authigenic K-feldspar may reflect the loss of K during disequilibrium cooling of the ascending brines. MVT deposits are probably localized manifestations of the same migrating fluids, occurring where the necessary physical and chemical traps are present. ?? 1987.

  1. Revisions to the original extent of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Enomoto, Catherine B.; Rouse, William A.; Trippi, Michael H.; Higley, Debra K.

    2016-04-11

    Technically recoverable undiscovered hydrocarbon resources in continuous accumulations are present in Upper Devonian and Lower Mississippian strata in the Appalachian Basin Petroleum Province. The province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia, and Alabama. The Upper Devonian and Lower Mississippian strata are part of the previously defined Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) that extends from New York to Tennessee. This publication presents a revision to the extent of the Devonian Shale-Middle and Upper Paleozoic TPS. The most significant modification to the maximum extent of the Devonian Shale-Middle and Upper Paleozoic TPS is to the south and southwest, adding areas in Tennessee, Georgia, Alabama, and Mississippi where Devonian strata, including potential petroleum source rocks, are present in the subsurface up to the outcrop. The Middle to Upper Devonian Chattanooga Shale extends from southeastern Kentucky to Alabama and eastern Mississippi. Production from Devonian shale has been established in the Appalachian fold and thrust belt of northeastern Alabama. Exploratory drilling has encountered Middle to Upper Devonian strata containing organic-rich shale in west-central Alabama. The areas added to the TPS are located in the Valley and Ridge, Interior Low Plateaus, and Appalachian Plateaus physiographic provinces, including the portion of the Appalachian fold and thrust belt buried beneath Cretaceous and younger sediments that were deposited on the U.S. Gulf Coastal Plain.

  2. Geochemistry and metamorphism of the Paleozoic metasedimentary basement of the Sierra Madre Oriental, NE Mexico. Possible paths from their depositional environment?

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Alonso Ramirez Fernandez, Juan; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Abratis, Michael

    2013-04-01

    We present depositional conditions and possible protholits for Late Paleozoic metasediment in Mexico that were related to the Laurentia-Gondwana collision in Carboniferous time, during Pangea amalgamation. The study aims to reconstruct the depositional and metamorphic evolution of the Granjeno Schist in northeastern Mexico to get a better control on the timing of subduction and collision processes involving the two supercontinents. Remnants of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental in northeastern Mexico. We apply field mapping, petrographic investigations, whole-rock and mineral chemical analysis, as well as U-Pb zircon dating of both metasedimentary and metavolcanic rocks. Field work and petrographic analysis reveal that the Granjeno Schist comprises intercalations of metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and volcanic (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as U-Pb zircon ages on metapsammite indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C during the Carboniferous time (330±30 Ma). The geochemical composition of the metasedimentary rocks is in accordance with iron shale, wacke and quartz arenite protoliths. Some of the variations can be explained by the grain sizes (e. g., 69-74% and 78-96% SiO2 and 10-15% and 3-9% Al2O3 in metapelite and metapsammite, respectively). Our data suggest that the Granjeno Schist metasedimentary units represent a wide variety of clastic sediments derived from mixed felsic basic sources compositions (e. g., Ti/Nb 200-400). Furthermore, the trace element characteristics point to a continental island arc or active continental margin setting due to e. g., Th/Sc and Zr

  3. Sedimentary Geology Context and Challenges for Cyberinfrastructure Data Management

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Budd, D. A.

    2014-12-01

    A cyberinfrastructure data management system for sedimentary geology is crucial to multiple facets of interdisciplinary Earth science research, as sedimentary systems form the deep-time framework for many geoscience communities. The breadth and depth of the sedimentary field spans research on the processes that form, shape and affect the Earth's sedimentary crust and distribute resources such as hydrocarbons, coal, and water. The sedimentary record is used by Earth scientists to explore questions such as the continental crust evolution, dynamics of Earth's past climates and oceans, evolution of the biosphere, and the human interface with Earth surface processes. Major challenges to a data management system for sedimentary geology are the volume and diversity of field, analytical, and experimental data, along with many types of physical objects. Objects include rock samples, biological specimens, cores, and photographs. Field data runs the gamut from discrete location and spatial orientation to vertical records of bed thickness, textures, color, sedimentary structures, and grain types. Ex situ information can include geochemistry, mineralogy, petrophysics, chronologic, and paleobiologic data. All data types cover multiple order-of-magnitude scales, often requiring correlation of the multiple scales with varying degrees of resolution. The stratigraphic framework needs dimensional context with locality, time, space, and depth relationships. A significant challenge is that physical objects represent discrete values at specific points, but measured stratigraphic sections are continuous. In many cases, field data is not easily quantified, and determining uncertainty can be difficult. Despite many possible hurdles, the sedimentary community is anxious to embrace geoinformatic resources that can provide better tools to integrate the many data types, create better search capabilities, and equip our communities to conduct high-impact science at unprecedented levels.

  4. Sedimentary response to halfgraben dipslope faults evolution -Billefjorden Trough, Svalbard.

    NASA Astrophysics Data System (ADS)

    Smyrak-Sikora, Aleksandra; Kristensen, Jakob B.; Braathen, Alvar; Johannessen, Erik P.; Olaussen, Snorre; Sandal, Geir; Stemmerik, Lars

    2017-04-01

    Fault growth and linkage into larger segments has profound effect on the sedimentary architecture of rift basins. The uplifted Billefjorden Through located in central Spitsbergen is an excellent example of half-graben basin development. Detailed sedimentological and structural investigations supported by helicopter and ground base lidar scans along with photogrammetry analysis have been used to improve our understanding of the sedimentary response to faulting and along strike variations in footwall uplift and hanging wall subsidence. The early syn-rift basin fill, the Serpukhovian to Bashkirian Hultberget Formation and the Bashkirian Ebbaelven Member consists of fluvial to deltaic sandstones with minor marine incursions. During this early stage tens to hundred- meters-scale syn-tectonic faults disrupted the dipslope, and created local hanging wall depocentres where sediments were arrested. Changes in fluvial drainage pattern, development of small lacustrine basins along the faults, and the sharp based boundaries of some facies associations are interpreted as response to activity along these, mostly antithetic faults. The basin fill of the late syn-rift stage is composed of shallow marine to tidal mixed evaporite -carbonate facies in the hanging wall i.e. the Bashkirian Trikolorfjellet Member and the Moscovian Minkenfjellet Formation. These sediments interfinger with thick alluvial fan deposits outpouring from relay ramps on the master fault i.e. drainage from the footwall. The carbonate-evaporite cycles deposited on the hanging wall responded to both the eustatic sea level variations and tectonic movements in the rift basin. Intra-basinal footwall uplift of the dipslope controlled development of an internal unconformity and resulted in dissolution of the gypsum to produce stratiform breccia. In contrast thick gypsum-rich subbasins are preserved locally in hanging wall positions where they were protected from the erosion. The syn rift basin fill is capped by post

  5. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  6. Rock Slope Design Criteria

    DOT National Transportation Integrated Search

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  7. Low-angle faulting in strike-slip dominated settings: Seismic evidence from the Maritimes Basin, Canada

    NASA Astrophysics Data System (ADS)

    Pinet, Nicolas; Dietrich, Jim; Duchesne, Mathieu J.; Hinds, Steve J.; Brake, Virginia

    2018-07-01

    The Maritimes Basin is an upper Paleozoic sedimentary basin centered in the Gulf of St. Lawrence (Canada). Early phases of basin formation included the development of partly connected sub-basins bounded by high-angle faults, in an overall strike-slip setting. Interpretation of reprocessed seismic reflection data indicates that a low-angle detachment contributed to the formation of a highly asymmetric sub-basin. This detachment was rotated toward a lower angle and succeeded by high-angle faults that sole into the detachment or cut it. This model bears similarities to other highly extended terranes and appears to be applicable to strike-slip and/or transtensional settings.

  8. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared

  9. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  10. The distribution and tectonic framework of Late Paleozoic volcanoes in the Junggar basin and its adjacent area, NW China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, J. H.

    2012-04-01

    We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.

  11. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  12. Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Nilsen, E.B.; Delaney, M.L.

    2005-01-01

    This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.

  13. Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleozoic microfossils

    PubMed Central

    Graham, Linda E.; Wilcox, Lee W.; Cook, Martha E.; Gensel, Patricia G.

    2004-01-01

    Absence of a substantial pretracheophyte fossil record for bryophytes (otherwise predicted by molecular systematics) poses a major problem in our understanding of earliest land-plant structure. In contrast, there exist enigmatic Cambrian–Devonian microfossils (aggregations of tubes or sheets of cells or possibly a combination of both) controversially interpreted as an extinct group of early land plants known as nematophytes. We used an innovative approach to explore these issues: comparison of tube and cell-sheet microfossils with experimentally degraded modern liverworts as analogues of ancient early land plants. Lower epidermal surface tissues, including rhizoids, of Marchantia polymorpha and Conocephalum conicum were resistant to breakdown after rotting for extended periods or high-temperature acid treatment (acetolysis), suggesting fossilization potential. Cell-sheet and rhizoid remains occurred separately or together depending on the degree of body degradation. Rhizoid break-off at the lower epidermal surface left rimmed pores at the centers of cell rosettes; these were similar in structure, diameter, and distribution to pores characterizing nematophyte cell-sheet microfossils known as Cosmochlaina. The range of Marchantia rhizoid diameters overlapped that of Cosmochlaina pores. Approximately 14% of dry biomass of Marchantia vegetative thalli and 40% of gametangiophores was resistant to acetolysis. Pre- and posttreatment cell-wall autofluorescence suggested the presence of phenolic compounds that likely protect lower epidermal tissues from soil microbe attack and provide dimensional stability to gametangiophores. Our results suggest that at least some microfossils identified as nematophytes may be the remains of early marchantioid liverworts similar in some ways to modern Marchantia and Conocephalum. PMID:15263095

  14. Rock Slope Design Criteria : Executive Summary Report

    DOT National Transportation Integrated Search

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  15. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  16. Paleozoic Assemblage of the Northern Sierra Terrane: New Geochronology And Geochemical Data From the Stitching Late Devonian - Early Carboniferous Bowman Lake Batholith, and Associated Rocks

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Hanson, R. E.; Girty, G.; Tretiakov, A.

    2016-12-01

    Previous study (Grove et al., 2008) of detrital zircon ages and the timing of magmatism within the Northern Sierra terrane (NST) suggest that it is exotic relative to western Laurentia, and link it to the Paleozoic Arctic Realm, Baltica and Caledonides. NST is a composite terrane in the North America Cordillera, consisting of four distinct allochthons, thrusted upon each other. As a first step towards the understanding of the origin and tectonic development of the NST we have undertaken the SHRIMP-RG U-Pb zircon dating of the rocks from granites, granodiorites, trondhjemites, tonalites and hypabyssal intrusions, composing the Bowman Lake batholith. The batholith stitches the allochthons of the NST and its crystallization age signifies the timing of juxtaposition SHRIMP-RG analyses from 14 samples yielded an age range of ca. 352-369 Ma, which overlaps the Devonian-Mississipian boundary and constrains the minimum age for amalgamation. Additionally, we have acquired multiple XRF data, favoring the island arc provenance of the Bowman Lake batholith Batholith. Previously proposed ties between NST and Robert Mountains allochthon seem unlikely because the latter was accreted onto the western miogeocline of Laurentia during the Late Dev.-Early Miss. while the NST was most probably still situated within the Arctic Realm. This work has been supported by the grant #14.Z50.31.0017 of the Government of the Russian Federation and by the Russian Foundation for Basic Research grant #15-55-10055. We are grateful to Stanford-USGS SHRIMP-RG center, and personally to Marty Grove and Elizabeth Miller.

  17. Petroleum geology of the major producing basins of Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attar, A.; Chaouch, A.

    1988-08-01

    The South Atlas flexure divides Algeria into two contrasting geologic provinces: (1) the Saharan Atlas and offshore region in the north, both of which are part of the Mediterranean basin, and (2) the Saharan platform on the south, part of the North African craton. The limits of the various sedimentary basins on the Saharan platform are tied to late Paleozoic (Hercynian) crustal reactivation. Comparable structurally controlled basins in northern Algeria are the products of Mesozoic-Recent tectonism. The spatial and temporal distribution of hydrocarbons in the Algerian Sahara can be understood in terms of the geologic evolution of the region. Analysismore » of areas of proven hydrocarbon reserves permits the following generalizations. (1) There is a concentration of oil and gas fields northeast of a northwest-southeast-trending line connecting Hassi R'Mel with In Amenas. Production is also established in the Sbaa basin and in northern Algeria, where recent discoveries have been made in, respectively, upper Paleozoic and Mesozoic reservoirs. (2) Hydrocarbon are present throughout the entire sedimentary column, but major production currently is restricted to the lower Paleozoic (Cambrian-Ordovician and Lower Devonian) and Triassic reservoirs.« less

  18. Depositional systems and stratigraphy of Paleozoic and Lower Mesozoic rocks in outcrop, Tassili region, southwest Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertig, S.P.; Tye, R.S.; Coffield, D.Q.

    1991-08-01

    Paleozoic to Lower Mesozoic strata of the southeastern Algerian Tassili are traditionally subdivided by regionally extensive unconformities such as the Pan African, Taconic, Caledonian, and Hercynian. Using outcrop data from southeastern Algeria, this classic approach is modified by reinterpreting the genesis of these unconformities and rock sequences. Five prominent sequences, defined within the Paleozoic and lower Mesozoic section, usually consist of a succession of lowstand, transgressive, and highstand system tracts separated by sequence boundaries or transgressive surfaces. The Pan-African, Taconic, Caledonian, and Hercynian unconformities are sequence boundaries. Important sequence boundaries also occur within the Ordovician and Silurian sections. These sequencesmore » correlate with subsurface data in the Illizi basin and provide a framework for renewed exploration in the subsurface of the Algerian Sahara, where more than 30 billion bbl of recoverable oil and oil equivalent have been generated and trapped.« less

  19. Aptian-Albian boundary in Central Southern Atlas of Tunisia: New tectono-sedimentary facts

    NASA Astrophysics Data System (ADS)

    Ghanmi, Mohamed Abdelhamid; Barhoumi, Amine; Ghanmi, Mohamed; Zargouni, Fouad

    2017-08-01

    The Aptian-Albian boundary preserves one of the most important events in Central-Southern Atlas of Tunisia, which belongs to the Southern Tethyan margin. A major sedimentary break was recorded between Early Aptian and Albian series in Bouhedma-Boudouaou Mountains. This major hiatus probably linked to the ''Austrian phase'' and to the Aptian and Albian ''Crisis'' testify a period of major tectonic events. In this paper, field observations on the Mid-Cretaceous stratigraphy combined with seismic profile interpretation were used for the first time to characterize the Aptian-Albian boundary in Central-Southern Atlas of Tunisia. Our new results reveal that Aptian-Albian boundary marks a critical interval not only in Maknassy-Mezzouna orogenic system but also in the Tunisian Atlas. Furthermore, Aptian-Albian series outcrop is marked by the important sedimentary gaps as well as a dramatic thickness change from West to East and predominately from North to South. This is linked to the extensional tectonic features which characterize all the Central-Southern Atlas of Tunisia.

  20. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    NASA Astrophysics Data System (ADS)

    Xu, Weimu; Ruhl, Micha; Jenkyns, Hugh C.; Leng, Melanie J.; Huggett, Jennifer M.; Minisini, Daniel; Ullmann, Clemens V.; Riding, James B.; Weijers, Johan W. H.; Storm, Marisa S.; Percival, Lawrence M. E.; Tosca, Nicholas J.; Idiz, Erdem F.; Tegelaar, Erik W.; Hesselbo, Stephen P.

    2018-02-01

    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13 C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less

  2. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  3. Early Permian Pangea `B' to Late Permian Pangea `A'

    NASA Astrophysics Data System (ADS)

    Muttoni, Giovanni; Kent, Dennis V.; Garzanti, Eduardo; Brack, Peter; Abrahamsen, Niels; Gaetani, Maurizio

    2003-10-01

    The pre-drift Wegenerian model of Pangea is almost universally accepted, but debate exists on its pre-Jurassic configuration since Ted Irving introduced Pangea 'B' by placing Gondwana farther to the east by ˜3000 km with respect to Laurasia on the basis of paleomagnetic data. New paleomagnetic data from radiometrically dated Early Permian volcanic rocks from parts of Adria that are tectonically coherent with Africa (Gondwana), integrated with published coeval data from Gondwana and Laurasia, again only from igneous rocks, fully support a Pangea 'B' configuration in the Early Permian. The use of paleomagnetic data strictly from igneous rocks excludes artifacts from sedimentary inclination error as a contributing explanation for Pangea 'B'. The ultimate option to reject Pangea 'B' is to abandon the geocentric axial dipole hypothesis by introducing a significant non-dipole (zonal octupole) component in the Late Paleozoic time-averaged geomagnetic field. We demonstrate, however, by using a dataset consisting entirely of paleomagnetic directions with low inclinations from sampling sites confined to one hemisphere from Gondwana as well as Laurasia that the effects of a zonal octupole field contribution would not explain away the paleomagnetic evidence for Pangea 'B' in the Early Permian. We therefore regard the paleomagnetic evidence for an Early Permian Pangea 'B' as robust. The transformation from Pangea 'B' to Pangea 'A' took place during the Permian because Late Permian paleomagnetic data allow a Pangea 'A' configuration. We therefore review geological evidence from the literature in support of an intra-Pangea dextral megashear system. The transformation occurred after the cooling of the Variscan mega-suture and lasted ˜20 Myr. In this interval, the Neotethys Ocean opened between India/Arabia and the Cimmerian microcontinents in the east, while widespread lithospheric wrenching and magmatism took place in the west around the Adriatic promontory. The general

  4. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora

    PubMed Central

    Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang

    2015-01-01

    We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion. PMID:26124122

  5. The Chara-Sina dyke swarm in the structure of the Middle Paleozoic Vilyui rift system (Siberian Craton)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. I.; Konstantinov, K. M.; Yarmolyuk, V. V.; Ivanov, A. V.

    2016-11-01

    The formation of the Vilyui rift system in the eastern Siberian Craton was finished with breakdown of the continent and formation of its eastern margin. A characteristic feature of this rift system is the radial distribution of dyke swarms of basic rocks. This peculiarity allows us to relate it to the breaking processes above the mantle plume, the center of which was located in the region overlain in the modern structure by the foreland of the Verkhoyan folded-thrust belt. The Chara-Sina dyke swarm is the southern part of a large area of Middle Paleozoic basaltic magmatism in the eastern Siberian Craton. The OIB-like geochemical characteristics of dolerite allow us to suggest that the melting substrate for Middle Paleozoic basaltic magmatism was represented by a relatively homogeneous, mid-depleted mantle of the plume with geochemical parameters similar to those of OIB.

  6. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction

  7. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  8. Geologic Map of the Gold Creek Gold District, Elko County, Nevada

    USGS Publications Warehouse

    Ketner, Keith B.

    2007-01-01

    The Gold Creek, Nev. area displays important stratigraphic and structural relationships between Paleozoic and early Tertiary sedimentary strata in an area dominated by large intrusive bodies of Mesozoic age and extensive volcanic fields of middle to late Tertiary age. An autochthonous sequence includes the Cambrian and Proterozoic(?) Prospect Mountain Quartzite and the overlying Cambrian and Ordovician Tennessee Mountain Formation. This autochthon is overlain by three allochthonous plates each composed of a distinctive sequence of strata and having a distinctive internal structure. The structurally lowest plate is composed of the Havallah sequence, locally of Mississippian and Pennsylvanian age, which is folded on north-south trending axes. The next higher plate is composed of somewhat younger Pennsylvanian and Permian strata cut by east-west trending low-angle faults. The highest plate is composed of early Tertiary non-marine sedimentary and igneous rocks folded on varied but mainly north-south trending axes. The question of whether the allochthonous plates were emplaced by contractional or extensional forces is indeterminate from the local evidence. Mineral deposits include gold placers of moderate size and small pockets of base metals, none of which is currently being exploited.

  9. Detrital zircon age distribution from Devonian and Carboniferous sandstone in the Southern Variscan Fold-and-Thrust belt (Montagne Noire, French Massif Central), and their bearings on the Variscan belt evolution

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Faure, Michel; Li, Xian-hua; Chu, Yang; Ji, Wenbin; Xue, Zhenhua

    2016-05-01

    In the Southern French Massif Central, the Late Paleozoic sedimentary sequences of the Montagne Noire area provide clues to decipher the successive tectonic events that occurred during the evolution of the Variscan belt. Previous sedimentological studies already demonstrated that the siliciclastic deposits were supplied from the northern part of the Massif Central. In this study, detrital zircon provenance analysis has been investigated in Early Devonian (Lochkovian) conglomerate and sandstone, and in Carboniferous (Visean to Early Serpukhovian) sandstone from the recumbent folds and the foreland basin of the Variscan Southern Massif Central in Montagne Noire. The zircon grains from all of the samples yielded U-Pb age spectra ranging from Neoarchean to Late Paleozoic with several age population peaks at 2700 Ma, 2000 Ma, 980 Ma, 750 Ma, 620 Ma, 590 Ma, 560 Ma, 480 Ma, 450 Ma, and 350 Ma. The dominant age populations concentrate on the Neoproterozoic and Paleozoic. The dominant concordant detrital zircon age populations in the Lochkovian samples, the 480-445 Ma with a statistical peak around 450 Ma, are interpreted as reflecting the rifting event that separated several continental stripes, such as Armorica, Mid-German Crystalline Rise, and Avalonia from the northern part of Gondwana. However, Ediacaran and Cambrian secondary peaks are also observed. The detrital zircons with ages at 352 - 340 Ma, with a statistical peak around 350 Ma, came from the Early Carboniferous volcanic and plutonic rocks similar to those exposed in the NE part of the French Massif Central. Moreover, some Precambrian grains recorded a more complex itinerary and may have experienced a multi-recycling history: the Archean and Proterozoic grains have been firstly deposited in Cambrian or Ordovician terrigenous rocks, and secondly re-sedimented in Devonian and/or Carboniferous formations. Another possibility is that ancient grains would be inherited grains, scavenged from an underlying but not

  10. Sedimentary Cover of the Central Arctic

    NASA Astrophysics Data System (ADS)

    Kireev, Artem; Poselov, Viktor; Butsenko, Viktor; Smirnov, Oleg

    2017-04-01

    Partial revised Submission of the Russian Federation for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean is made to include in the extended continental shelf of the Russian Federation, in accordance with article 76 of the Convention, the seabed and its subsoil in the central Arctic Ocean which is natural prolongation of the Russian land territory. To submit partial revised Submission in 2016, in 2005 - 2014 the Russian organizations carried out a wide range of geophysical studies, so that today over 23000 km of MCS lines, over hundreds of wide-angle reflection/refraction seismic sonobuoy soundings and 4000 km of deep seismic sounding are accomplished. All of these MCS and seismic soundings data were used to establish the seismic stratigraphy model of the Arctic region. Stratigraphy model of the sedimentary cover was successively determined for the Cenozoic and pre-Cenozoic parts of the section and was based on correlation of the Russian MCS data and seismic data documented by existing boreholes. Interpretation of the Cenozoic part of the sedimentary cover was based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin, while interpretation of the Pre-Cenozoic part of the sedimentary cover was based on correlation with MCS and boreholes data from Chukchi sea shelf. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to estimate the total thickness of the sedimentary cover of the Arctic Ocean and adjacent Eurasian shelf using top of acoustic basement correlation data and bathymetry data

  11. Late Mesozoic tectonics of the Southern-Thai Peninsula: from transpression to basins opening

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2015-04-01

    The petroleum basins of the Southern Thailand Peninsula are poorly known and their final geometry is controlled by the Tertiary stress variations applied on pre-existing Paleozoic and Mesozoic basement structures. From the end of Mesozoic times, the arrival of Indian plate was accomodated by transpressionnal deformation along the Western Margin of Sunda Plate. Evidences of this strain are the motions along several regional strike Slip Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults) as well as compressional features (folds and thrusts) evidenced onshore. Due to changes in the boundary forces, these structures were reactivated during the Tertiary, leading to the opening of basins in this part of Sundaland. We present a structural analysis based on geomorphology, fieldwork and seismic interpretation of the Southern Thai Peninsula with emphasis on the deformation's style onshore from Ranong to Satun and offshore from Eastern Mergui to Songhkla. By analyzing morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), we highlight a predominance of N-S structures in the Southern Thai Peninsula: both in the granitic belt and in the sedimentary cover. The Triassic-Jurassic (Indosinian) post-collision granitic belt is intensely fractured, with 2 penetrative directions: N140 and N50. On both sides, the sedimentary units appear folded at a large wavelength (~20km). On most of the studied outcrops, Triassic to Early Cretaceous series are gently tilted and weakly fractured whereas the Paleozoic ones shows intense fracturation and steep dipping beds. Moreover, all the Paleozoic stratas display a constant N-S S1 which does not appear in the Mezosoic sediments. Althought most of the post-Mesozoic sediments do not crop out due to thick vegetal cover, several Tertiary basins can be easily seen from seismic data both onshore and offshore. These data suggest that rifting started in the Eocene and was accommodated by large

  12. Preservation of overmature, ancient, sedimentary organic matter in carbonate concretions during outcrop weathering.

    PubMed

    Loyd, S J

    2017-01-01

    Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13 C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ 13 C carb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ 13 C org ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings

  13. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  14. Early Archaean collapse basins, a habitat for early bacterial life.

    NASA Astrophysics Data System (ADS)

    Nijman, W.

    For a better definition of the sedimentary environment in which early life may have flourished during the early Archaean, understanding of the basin geometry in terms of shape, depth, and fill is a prerequisite. The basin fill is the easiest to approach, namely from the well exposed, low-grade metamorphic 3.4 - 3.5 Ga rock successions in the greenstone belts of the east Pilbara (Coppin Gap Greenstone Belt and North Pole Dome) in West Australia and of the Barberton Greenstone Belt (Buck Ridge volcano-sedimentary complex) in South Africa. They consist of mafic to ultramafic volcanic rocks, largely pillow basalts, with distinct intercalations of intermediate to felsic intrusive and volcanic rocks and of silicious sediments. The, partly volcaniclastic, silicious sediments of the Buck Ridge and North Pole volcano-sedimentary complexes form a regressive-transgressive sequence. They were deposited close to base level, and experienced occasional emersion. Both North Pole Chert and the chert of the Kittys Gap volcano-sedimentary complex in the Coppin Gap Greenstone Belt preserve the flat-and-channel architecture of a shallow tidal environment. Thickness and facies distribution appear to be genetically linked to systems, i.e. arrays, of syn-depositionally active, extensional faults. Structures at the rear, front and bottoms of these fault arrays, and the fault vergence from the basin margin towards the centre characterize the basins as due to surficial crustal collapse. Observations in the Pilbara craton point to a non-linear plan view and persistence for the basin-defining fault patterns over up to 50 Ma, during which several of these fault arrays became superposed. The faults linked high-crustal level felsic intrusions within the overall mafic rock suite via porphyry pipes, black chert veins and inferred hydrothermal circulations with the overlying felsic lavas, and more importantly, with the cherty sediments. Where such veins surfaced, high-energy breccias, and in the

  15. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  16. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  17. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan

    2016-05-01

    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  18. Passive margins: U.S. Geological Survey Line 19 across the Georges Bank basin

    USGS Publications Warehouse

    Klitgord, Kim D.; Schlee, John S.; Grow, John A.; Bally, A.W.

    1987-01-01

    Georges Bank is a shallow part of the Atlantic continental shelf southeast of New England (Emery and Uchupi, 1972, 1984). This bank, however, is merely the upper surface of several sedimentary basins overlying a block-faulted basement of igneous and metamorphic crystalline rock. Sedimentary rock forms a seaward-thickening cover that has accumulated in one main depocenter and several ancillary depressions, adjacent to shallow basement platforms of paleozoic and older crystalline rock. Georges Bank basin contains a thickness of sedimentary rock greater than 10 km, whereas the basement platforms that flank the basin are areas of thin sediment accumulation (less than 5 km).

  19. Eolian Dust and the Origin of Sedimentary Chert

    USGS Publications Warehouse

    Cecil, C. Blaine

    2004-01-01

    This paper proposes an alternative model for the primary source of silica contained in bedded sedimentary chert. The proposed model is derived from three principal observations as follows: (1) eolian processes in warm-arid climates produce copious amounts of highly reactive fine-grained quartz particles (dust), (2) eolian processes in warm-arid climates export enormous quantities of quartzose dust to marine environments, and (3) bedded sedimentary cherts generally occur in marine strata that were deposited in warm-arid paleoclimates where dust was a potential source of silica. An empirical integration of these observations suggests that eolian dust best explains both the primary and predominant source of silica for most bedded sedimentary cherts.

  20. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata

    NASA Astrophysics Data System (ADS)

    Present, Theodore M.; Paris, Guillaume; Burke, Andrea; Fischer, Woodward W.; Adkins, Jess F.

    2015-12-01

    Carbonate Associated Sulfate (CAS) is trace sulfate incorporated into carbonate minerals during their precipitation. Its sulfur isotopic composition is often assumed to track that of seawater sulfate and inform global carbon and oxygen budgets through Earth's history. However, many CAS sulfur isotope records based on bulk-rock samples are noisy. To determine the source of bulk-rock CAS variability, we extracted CAS from different internal sedimentary components micro-drilled from well-preserved Late Ordovician and early Silurian-age limestones from Anticosti Island, Quebec, Canada. Mixtures of these components, whose sulfur isotopic compositions vary by nearly 25‰, can explain the bulk-rock CAS range. Large isotopic variability of sedimentary micrite CAS (34S-depleted from seawater by up to 15‰) is consistent with pore fluid sulfide oxidation during early diagenesis. Specimens recrystallized during burial diagenesis have CAS 34S-enriched by up to 9‰ from Hirnantian seawater, consistent with microbial sulfate reduction in a confined aquifer. In contrast to the other variable components, brachiopods with well-preserved secondary-layer fibrous calcite-a phase independently known to be the best-preserved sedimentary component in these strata-have a more homogeneous isotopic composition. These specimens indicate that seawater sulfate remained close to about 25‰ (V-CDT) through Hirnantian (end-Ordovician) events, including glaciation, mass extinction, carbon isotope excursion, and pyrite-sulfur isotope excursion. The textural relationships between our samples and their CAS isotope ratios highlight the role of diagenetic biogeochemical processes in setting the isotopic composition of CAS.

  1. Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.

    1994-08-01

    Built upon the roots of a compressive orogenic belt of late Proterozoic-early Paleozoic age and once adjacent to North America, the present-day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present-day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ˜250 to ˜350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro-Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ˜115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (˜50 Ma). The amount of uplift ˜70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ˜7 km, with the likelihood of an additional ˜3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2-3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the

  2. Pre-lithification tectonic foliation development in a clastic sedimentary rock sequence from SW Ireland

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David

    2017-04-01

    The current orthodoxy regarding the development of regionally developed penetrative tectonic cleavage fabrics in sedimentary rocks is that it postdates lithification of those rocks. It is well established that fabric development under these circumstances is achieved by a combination of grain rigid body rotation, crystal-plastic deformation and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal nature of cleavage development commonly observed in low grade metamorphic rocks. While there have been advocates for the development of tectonic cleavages before host rock lithification these are currently viewed as essentially local aberrations without regional significance. In this study we combine new field observations with strain analysis, element mapping and modelling to characterise Acadian (>50%) crustal shortening in a Devonian clastic sedimentary sequence from the Dingle Peninsula of south west Ireland. Fabrics in these rocks reflect significant levels of tectonic shortening are a product of grain translation, rigid body rotation and repacking of intra- and extra-formational clasts during deformation of an unconsolidated clastic sedimentary sequence. There is an absence of the expected domainal cleavage structure and intra-clast deformation expected with conventional cleavage formation. This study requires geologists to consider the possibility such a mechanism contributing to tectonic strain in a wide range of geological settings and to look again at field evidence that indicates early sediment mobility during deformation.

  3. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    The nature of detrital sedimentary (siliciclastic) rocks is determined by geological processes that occur in the four main Earth surface environments encountered over the sediment's history from source to final sink: (i) the site of sediment production (provenance), where interactions among bedrock geology, tectonic uplift, and climate control weathering and erosion processes; (ii) the transport path, where the medium of transport, gradient, and distance to the depositional basin may modify the texture and composition of weathered material; (iii) the site of deposition, where a suite of physical, chemical, and biological processes control the nature of sediment accumulation and early burial modification; and (iv) the conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments. Many of these geological processes leave characteristic geochemical signatures, making detrital sedimentary rocks one of the most important archives of geochemical data available for reconstructions of ancient Earth surface environments. Although documentation of geochemical data has long been a part of the study of sedimentation (e.g., Twenhofel, 1926, 1950; Pettijohn, 1949; Trask, 1955), the development and application of geochemical methods specific to sedimentary geological problems blossomed in the period following the Second World War ( Degens, 1965; Garrels and Mackenzie, 1971) and culminated in recent years, as reflected by the publication of various texts on marine geochemistry (e.g., Chester, 1990, 2000), biogeochemistry (e.g., Schlesinger, 1991; Libes, 1992), and organic geochemistry (e.g., Tissot and Welte, 1984; Engel and Macko, 1993).Coincident with the growth of these subdisciplines a new focus has emerged in the geological sciences broadly represented under the title of "Earth System Science" (e.g., Kump et al., 1999). Geochemistry has played the central role in this revolution (e.g., Berner, 1980; Garrels and Lerman

  4. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Kenneth M.; Mustard, John F.; Salvatore, Mark R.

    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previousmore » and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe 3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.« less

  5. Origin and development of plains-type folds in the mid-continent (United States) during the late Paleozoic

    USGS Publications Warehouse

    Merriam, D.F.

    2005-01-01

    Plains-type folds are local, subtle anticlines formed in the thin sedimentary package overlying a shallow, crystalline basement on the craton. They are small in areal extent (usually less than 1-3 km 2 [0.4-1.2 mi2]), and their amplitude increases with depth (usually tens of meters), which is mainly the result of differential compaction of sediments (usually clastic units) over tilted, rigid, basement fault blocks. The development of these structural features by continuous but intermittent movement of the basement fault blocks in the late Paleozoic in the United States mid-continent is substantiated by a record of stratigraphic and sedimentological evidence. The recurrent structural movement, which reflects adjustment to external stresses, is expressed by the change in thickness of stratigraphic units over the crest of the fold compared to the flanks. By plotting the change in thickness for different stratigraphic units of anticlines on different fault blocks, it is possible to determine the timing of movement of the blocks that reflect structural adjustment. These readjustments are confirmed by sedimentological evidence, such as convolute, soft-sediment deformation features and small intraformational faults. The stratigraphic interval change in thickness for numerous structures in the Cherokee, Forest City, and Salina basins and on the Nemaha anticline of the mid-continent United States was determined and compared for location and timing of the adjustments. Most of the adjustment occurred during and after time of deposition of the Permian-Pennsylvanian clastic units, which, in turn, reflect tectonic disturbance in adjacent areas, and the largest amount of movement on the plains-type structures occurred on those nearest and semiparallel to major positive features, such as the Nemaha anticline. Depending on the time of origin and development of plains-type folds, they may control the entrapment and occurrence of oil and gas. Copyright ??2005. The American

  6. EGS in sedimentary basins: sensitivity of early-flowback tracer signals to induced-fracture parameters

    NASA Astrophysics Data System (ADS)

    Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin

    2015-04-01

    -effective aperture, in a water fracture (WF), or - fracture thickness and porosity, for a gel-proppant fracture (GPF). We find that parameter determination from SW early signals can significantly be improved by concomitantly using a number of solute tracers with different transport and retardation behaviour. We considered tracers of different sorptivity to proppant coatings, and to matrix rock surfaces, for GPF, as well as contrasting-diffusivity or -sorptivity tracers, for WF. An advantage of this SW approach is that it requires only small chaser volumes (few times the fracture volume), not relying on advective penetration into the rock matrix. Thus, selected tracer species are to be injected during the very last stage of the fracturing process, when fracture sizes and thus target parameters are supposed to attain more or less stable values. We illustrate the application of these tracer test design principles using hydro- and lithostratigraphy data from the Geothermal Research Platform at Groß Schönebeck [4], targeting a multi-layer reservoir (sedimentary and crystalline formations in 4-5 km depth) in the NE-German Sedimentary Basin. Acknowledgments: This work benefited from long-term support from Baker Hughes (Celle) and from the Lower-Saxonian Science and Culture Ministry (MWK Niedersachsen) within the applied research project gebo (Geothermal Energy and High-Performance Drilling, 2009-2014). The first author gratefully acknowledges continued financial support from the DAAD (German Academic Exchange Service) to pursuing Ph. D. work. References: [1] http://www.sciencedirect.com/science/article/pii/S1876610214017391 [2] http://www.geothermal-energy.org/cpdb/record_detail.php?id=7215 [3] http://www.geothermal-energy.org/cpdb/record_detail.php?id=19034 [4] http://www.gfz-potsdam.de/en/scientific-services/laboratories/gross-schoenebeck/

  7. Pedo-sedimentary record of human-environment interaction in ditches and waterlogged depressions on tableland (roman and early medieval period) : micromorphological cases studies from Marne-la-Vallée area (Paris Basin, France)

    NASA Astrophysics Data System (ADS)

    Cammas, C.; Blanchard, J.; Broutin, P.; Berga, A.

    2012-04-01

    On lœss derived soils located on the Stampien plateau from the Paris Basin (France), archaeological anthroposols and ancient cultivated soils are only preserved in very few places. Recent archaeological excavations showed the presence of a pattern of roman ditches and waterlogged depressions (« mares ») under the actual cultivated horizon (Ap). This presence strongly suggests extensive past agricultural practices and water management. An original system of ditches was found Near Marne-la-Vallée (France). It is composed of two parts, one being large ditches characterized by flat bottom and sometimes water layered deposits, called « fossés collecteurs » by the archaeologists, and the orher being smaller ditches with colluvial deposits. Our objectives was to use archaeological and micromorphological studies in order to study i) the agricultural function of these ditches and depressions, ii) their evolution with time. Observations conducted on the infilling of a « fossé collecteur » at Bussy-Saint-Georges suggest that it was not part of a drainage system, but that it was a linear water controlled system, with a ramp in one part, and a basin or a tank in another, and that it was used for others anthropic activities. In the same area, a large waterlogged depression was studied, and micromorphological analysis helped to elucidate its pedo-sedimentary formation processes. At the bottom, massive silty clayey matrix retained water. Thin layers composed of silt and clay (indicating low energy flows and decantation), sometimes impregnated and hardened by iron, alternated with silty deposit (indicating higher ernergy water layered deposits). The thin, non porous and iron impregnated crusts helped to raise the depression level, as well as, most likely the water table during roman period, maintaining waterlogging conditions. At the beginning of the early medival period, a slightly peaty event was discriminated. Higher in the profile, in more redoxic conditions

  8. Chronostratigraphy in karst records from the Epipaleolithic to the Mid/Early Neolithic (c. 13.0-6.0 cal ka BP) in the Catalan Coastal Ranges of NE Iberia: environmental changes, sedimentary processes and human activity

    NASA Astrophysics Data System (ADS)

    Bergadà, M. Mercè; Cervelló, Josep M.; Edo, Manel; Cebrià, Artur; Oms, F. Xavier; Martínez, Pablo; Antolín, Ferran; Morales, Juan Ignacio; Pedro, Mireia

    2018-03-01

    The stratigraphic, sedimentary and palaeoenvironmental features reflected in cavities in the Catalan Coastal Ranges of NE Iberia (Can Sadurní and Guineu caves) characterize the periods of pronounced climatic and human complexity that occurred c. 13.0-6.0 cal ka BP. This includes the stages of the Younger Dryas and Mid/Early Holocene, the latter being one of the periods of so-called Rapid Climatic Changes (RCCs). These caves, like others in Mediterranean contexts, are the result of an old duct originating in the saturated zone of the karst system and open to the outside; recording a succession of different detrital and anthropic episodes of the Epipaleolithic, Mesolithic and Neolithic communities. From this study it can be seen that paleoclimatic events do not always present clear signals in the karst records, especially c. 12.7-7.4 cal ka BP, corresponding to the Epipaleolithic and Mesolithic. It is characterized by a stratigraphic discontinuity in which there are phases with predominantly detrital sedimentation alternating with hiatus intervals. Detrital sedimentation formed by fine material colluvium with gravitational movements or solifluction processes in fresh and humid conditions. It appears in the following chronological intervals: 12.7-12.2 cal ka BP, 11.5/11.1-10.7/10.4 cal ka BP and 8.2-8.0 cal ka BP (less humid). Hiatus phases are represented in the rest of the sequence up to c. 7.4 cal ka BP. From the sedimentary point of view these stages of hiatus are indicative of phases of stability or lack of episodes with seasonal contrasts; a fact that would cause interruptions to detrital deposition in the interior of the caves. In contrast, in the period c. 7.4 to 6.0 cal ka BP, attributed to the Middle and Early Neolithic, there is a certain stratigraphic continuity. From the sedimentary point of view it is distinguished by a variability of processes that responds to accumulative episodes of short duration characteristic of morphogenesis of the slopes in an

  9. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution

    PubMed Central

    Hopkins, Melanie J.; Smith, Andrew B.

    2015-01-01

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with “early bursts” of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today’s oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis. PMID:25713369

  10. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.

    PubMed

    Hopkins, Melanie J; Smith, Andrew B

    2015-03-24

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.

  11. Sedimentary exhalative (sedex) zinc-lead-silver deposit model

    USGS Publications Warehouse

    Emsbo, Poul; Seal, Robert R.; Breit, George N.; Diehl, Sharon F.; Shah, Anjana K.

    2016-10-28

    This report draws on previous syntheses and basic research studies of sedimentary exhalative (sedex) deposits to arrive at the defining criteria, both descriptive and genetic, for sedex-type deposits. Studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins have also been used to select defining criteria. The focus here is on the geologic characteristics of sedex deposit-hosting basins that contain greater than 10 million metric tons of zinc and lead. The enormous size of sedex deposits strongly suggests that basin-scale geologic processes are involved in their formation. It follows that mass balance constraints of basinal processes can provide a conceptual underpinning for the evaluation of potential ore-forming mechanisms and the identification of geologic indicators for ore potential in specific sedimentary basins. Empirical data and a genetic understanding of the physicochemical, geologic, and mass balance conditions required for each of these elements are used to establish a hierarchy of quantifiable geologic criteria that can be used in U.S. Geological Survey national assessments.  In addition, this report also provides a comprehensive evaluation of environmental considerations associated with the mining of sedex deposits.

  12. Early metal pollution in southwestern Europe: the former littoral lagoon of El Almarjal (Cartagena mining district, S.E. Spain).A sedimentary archive more than 8000 years old.

    PubMed

    Manteca, José-Ignacio; Ros-Sala, Milagros; Ramallo-Asensio, Sebastián; Navarro-Hervás, Francisca; Rodríguez-Estrella, Tomás; Cerezo-Andreo, Felipe; Ortiz-Menéndez, José-Eugenio; de-Torres, Trinidad; Martínez-Andreu, Miguel

    2017-04-01

    A borehole drilling campaign has allowed the study of a former littoral lagoon located next to the harbour city of Cartagena in South-East Spain (close to the Sierra de Cartagena polymetallic ore deposits). This lagoon, which developed during the Holocene, was first a shallow sedimentary marine environment and later evolved into a swampy semi-endorheic basin named "Almarjal" (after the Arab term from the fourteenth century). The lagoon eventually dried out and at present forms part of the substratum of the modern sector of the city urban area. The basin representative sediments are sapropelic black silty facies forming a continuous sedimentary archive, accounting for more than 8000 years of depositional phenomena. The geochemical study of these sediments, together with their absolute calibrated dating by 14 C, allows definition of successive stages of mining and metallurgical activities in the area. In turn, this information provides a more comprehensive perspective regarding metal pollution, particularly lead contamination during different periods of the Recent Prehistory and the Classical Age. The results indicate that the beginning of contamination by lead and other heavy metals occurred as early as 4500 years ago, when the Final Chalcolithic period was taking place in the South-East of the Iberian Peninsula. This finding provides further insights regarding the debate on the origins of lead mining and metallurgy in SE Spain.

  13. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  14. Schiaparelli Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-403, 26 June 2003

    Some of the most important high resolution imaging results of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) experiment center on discoveries about the presence and nature of the sedimentary rock record on Mars. This old meteor impact crater in northwestern Schiaparelli Basin exhibits a spectacular view of layered, sedimentary rock. The 2.3 kilometer (1.4 miles) wide crater may have once been completely filled with sediment; the material was later eroded to its present form. Dozens of layers of similar thickness and physical properties are now expressed in a wedding cake-like stack in the middle of the crater. Sunlight illuminating the scene from the left shows that the circle, or mesa top, at the middle of the crater stands higher than the other stair-stepped layers. The uniform physical properties and bedding of these layers might indicate that they were originally deposited in a lake (it is possible that the crater was at the bottom of a much larger lake, filling Schiaparelli Basin); alternatively, the layers were deposited by settling out of the atmosphere in a dry environment. This picture was acquired on June 3, 2003, and is located near 0.9oS, 346.2oW.

  15. Geologic map of the Callville Bay Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Anderson, R. Ernest

    2003-01-01

    Report: 139 Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map and four cross sections of the Callville Bay 7-minute quadrangle in Clark County, Nevada and Mohave County, Arizona. An accompanying text describes 21 stratigraphic units of Paleozoic and Mesozoic sedimentary rocks and 40 units of Cenozoic sedimentary, volcanic, and intrusive rocks. It also discusses the structural setting, framework, and history of the quadrangle and presents a model for its tectonic development.

  16. Late Paleozoic to Cenozoic reconstruction of the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.G.

    1985-04-01

    The plate tectonic evolution of the Arctic is reassessed in the context of the known histories of the North Atlantic and North Pacific Oceans, and of the tectono-stratigraphic development of the lands around the Arctic Ocean. Computer map-drawing facilities were used to provide geometrical constraints on the reconstructions, which are presented to in the form of eight palinispatic maps. Stratigraphic similarities among presently dispersed continental areas identify fragments of a former Barents plate. Collision of this plate with the Euramerican plate was the cause of the Late Devonian Ellesmerian orogeny. In later Paleozoic time, the Siberian continent also joined Pangeamore » by collision with the combined Barents and Euramerican plates along the Ural-Taymyr suture. The Mesozoic-Cenozoic history of the Arctic is concerned with the fragmentation and dispersal of the former Barents plate, as well as the accretion of new continental fragments from the Pacific.« less

  17. Structural styles of Paleozoic intracratonic fault reactivation: A case study of the Grays Point fault zone in southeastern Missouri, USA

    USGS Publications Warehouse

    Clendenin, C.W.; Diehl, S.F.

    1999-01-01

    A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.

  18. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    ERIC Educational Resources Information Center

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  19. Geology and Ore Deposits of the Uncompahgre (Ouray) Mining District, Southwestern Colorado

    USGS Publications Warehouse

    Burbank, Wilbur Swett; Luedke, Robert G.

    2008-01-01

    The Uncompahgre mining district, part of the Ouray mining district, includes an area of about 15 square miles (mi2) on the northwestern flank of the San Juan Mountains in southwestern Colorado from which ores of gold, silver, copper, lead, and zinc have had a gross value of $14 to 15 million. Bedrock within the district ranges in age from Proterozoic to Cenozoic. The oldest or basement rocks, the Uncompahgre Formation of Proterozoic age, consist of metamorphic quartzite and slate and are exposed in a small erosional window in the southern part of the district. Overlying those rocks with a profound angular unconformity are Paleozoic marine sedimentary rocks consisting mostly of limestones and dolomites and some shale and sandstone that are assigned to the Elbert Formation and Ouray Limestone, both of Devonian age, and the Leadville Limestone of Mississippian age. These units are, in turn, overlain by rocks of marine transitional to continental origin that are assigned to the Molas and Hermosa Formations of Pennsylvanian age and the Cutler Formation of Permian age; these three formations are composed predominantly of conglomerates, sandstones, and shales that contain interbedded fossiliferous limestones within the lower two-thirds of the sequence. The overlying Mesozoic strata rest also on a pronounced angular unconformity upon the Paleozoic section. This thick Mesozoic section, of which much of the upper part was eroded before the region was covered by rocks of Tertiary age, consists of the Dolores Formation of Triassic age, the Entrada Sandstone, Wanakah Formation, and Morrison Formation all of Jurassic age, and the Dakota Sandstone and Mancos Shale of Cretaceous age. These strata dominantly consist of shales, mudstones, and sandstones and minor limestones, breccias, and conglomerates. In early Tertiary time the region was beveled by erosion and then covered by a thick deposit of volcanic rocks of mid-Tertiary age. These volcanic rocks, assigned to the San Juan

  20. Geologic map of the Mount Sherman 7.5' quadrangle, Lake and Park Counties, Colorado

    USGS Publications Warehouse

    Bohannon, Robert G.; Ruleman, Chester A.

    2013-01-01

    The Mount Sherman 7.5- minute quadrangle is located along the crest of the Mosquito Range in between Leadville and Fairplay, Colorado. There are eleven 13,000-foot peaks and one fourteener, Mount Sherman, within the quadrangle. General elevations range from 10,400–14,036 feet (3,200–4,278 meters). The western half of the quadrangle primarily consists of Proterozoic granitic rocks reverse faulted over Paleozoic sedimentary rocks during the Laramide orogeny of late Cretaceous and Paleocene time. Coeval to this contractional event, sills and laccoliths of the White porphyry group (which probably includes rocks equivalent to the Pando Porphyry) were emplaced in the surrounding country rocks. Igneous activity continued into the Late Eocene with the emplacement of the Sacramento Porphyry (about 43.9 Ma) and the Gray porphyry group (about 36.7 Ma), and as young as 29 Ma to the north within the Climax quadrangle. With the inception of the Rio Grande rift within the region, the Paleozoic sedimentary rocks and Late Cretaceous to early Oligocene igneous rocks were extensionally faulted and tilted to the east. This resulted in the present 20–30 degree dip-slope of these rocks on top of Proterozoic basement rocks within the eastern half of the quadrangle. This extensional regime has continued well into the Pliocene. Within the southwestern quadrant, suspicious lineaments, alignment of springs, and continuous, measureable escarpments provide reasonable evidence for Quaternary tectonic activity along the western flank of the range. Pleistocene glaciers have dramatically sculpted the region, providing exceptional exposure of the region’s bedrock and structure.

  1. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.

    2014-12-01

    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  2. Delayed fungal evolution did not cause the Paleozoic peak in coal production.

    PubMed

    Nelsen, Matthew P; DiMichele, William A; Peters, Shanan E; Boyce, C Kevin

    2016-03-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.

  3. Delayed fungal evolution did not cause the Paleozoic peak in coal production

    PubMed Central

    Nelsen, Matthew P.; DiMichele, William A.; Peters, Shanan E.; Boyce, C. Kevin

    2016-01-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea. PMID:26787881

  4. Tectonic Recycling in the Paleozoic Ouachita Assemblage from U-Pb Detrital Zircon Studies

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Gehrels, G. E.; Finney, S. C.

    2001-05-01

    The Paleozoic Ouachita deep-marine clastic sedimentary assemblage records a complex provenance over the course of its 200 m.y. history, with evidence for mixed sources and multiple dispersal paths. Combined neodymium and U-Pb detrital zircon work has established that most of the assemblage in Arkansas and Oklahoma is derived from Laurentian sources, meaning that regardless of the multiple pathways by which sediment was delivered to Ouachita seafloor, the material had its ultimate origin on the North American continent. More detailed work is in progress to elucidate specific dispersal paths, in particular for the middle to late Ordovician when a major change in provenance is recorded, and during the Carboniferous when voluminous turbidites entered the basin. We sampled three formations for U-Pb detrital zircon studies: the lower Middle Ordovician Blakely Sandstone, the Upper Ordovician/Lower Silurian Blaylock Sandstone, and the Pennsylvanian Jackfork Group. Individual zircon ages from these units document a major change in provenance between deposition of the Blakely Sandstone and Blaylock Sandstone, which is also reflected in the neodymium isotopic signature. Both units have a large population of Grenvillian-age zircons (1.0-1.2 Ga), and a less abundant population of 1.3-1.4 Ga zircons likely derived from sources in the mid-continent region. The Blakely Sandstone also contains abundant Archean zircons (2.5-2.7 Ga, likely derived from the Superior Province), and one grain apparently derived from the Penokean orogen (1.9 Ga). Zircon morphology (highly rounded, spherical), combined with the pure quartz sandstone lithology of the Blakely Sandstone, indicates very mature sedimentary sources. We conclude that zircons from this source were recycled ultimately from source terranes in the North American craton. This is reinforced by neodymium isotopes (eNd = -15), paleocurrents (from the north) and olistoliths (1.3 Ga granites), the latter indicating that Blakely turbidites

  5. Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates: Detrital zircon ages from Morocco and Canada

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Davies, Joshua H. F. L.; Youbi, Nasrrddine; Merle, Renaud; Dal Corso, Jacopo; Dunkley, Daniel J.; Fioretti, Anna Maria; Bellieni, Giuliano; Medina, Fida; Wotzlaw, Jörn-Frederik; McHone, Greg; Font, Eric; Bensalah, Mohamed Khalil

    2017-05-01

    The complex history of assemblage and disruption of continental plates surrounding the Atlantic Ocean is in part recorded by the distribution of detrital zircon ages entrained in continental sedimentary strata from Morocco (Central High Atlas and Argana basins) and Canada (Grand Manan Island, New Brunswick). Here we investigate detrital zircon from the latest Triassic (ca. 202 Ma) sedimentary strata directly underlying lava flows of the Central Atlantic magmatic province or interlayered within them. SHRIMP (Sensitive High-Resolution Ion MicroProbe) and LA-ICP-MS (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry) U-Pb ages for zircon range from Paleozoic to Archean with a dominant Neoproterozoic peak, and significant amounts of ca. 2 Ga zircon. These ages suggest a prevailing West African (Gondwanan) provenance at all sampling sites. Notably, the Paleoproterozoic zircon population is particularly abundant in central Morocco, north of the High Atlas chain, suggesting the presence of Eburnean-aged rocks in this part of the country, which is consistent with recent geochronologic data from outcropping rocks. Minor amounts of late Mesoproterozoic and early Neoproterozoic zircon ages (ca. 1.1-0.9 Ga) in Moroccan samples are more difficult to interpret. A provenance from Avalonia or Amazonia, as proposed by previous studies is not supported by the age distributions observed here. An involvement of more distal source regions, possibly located in north-eastern Africa (Arabian Nubian Shield) would instead be possible. Paleozoic zircon ages are abundant in the Canadian sample, pointing to a significant contribution from Hercynian aged source rocks. Such a signal is nearly absent in the Moroccan samples, suggesting that zircon-bearing Hercynian granitic rocks of the Moroccan Meseta block were not yet outcropping at ca. 200 Ma. The only Moroccan samples that yield Paleozoic zircon ages are those interlayered within the CAMP lavas, suggesting an increased dismantling

  6. 1-D/3-D geologic model of the Western Canada Sedimentary Basin

    USGS Publications Warehouse

    Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.

    2005-01-01

    The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous

  7. Off-platform Silurian sequences in the Ambler River quadrangle: A section in Geologic studies in Alaska by the U.S. Geological Survey during 1987

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.

    1988-01-01

    Lithofacies changes in coeval upper Paleozoic rocks have been used to unravel the tectonic history of northern Alaska (for example, Mayfield and others, 1983). Conodont biostratigraphy and detailed petrologic studies are now revealing facies differences in lower Paleozoic rocks that can also be used to constrain their tectono-sedimentary framework (Dumoulin and Harris, 1987). A basic element of basin analysis is the discrimination of shallow-water shelf and platform sequences from deeper water slope and basinal deposits. This report documents several new localities of deeper water, off-platform Silurian deposits in the Ambler River quadrangle and briefly outlines some of their paleogeographic implications.

  8. Tertiary sedimentary history and structure of the Valencia trough (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Maillard, A.; Mauffret, A.; Watts, A. B.; Torné, M.; Pascal, G.; Buhl, P.; Pinet, B.

    1992-03-01

    We present here main results of the Common Depth Point (CDP) data acquired during the Valsis 2 Cruise in 1988 in the Valencia trough. The profiles are tied in with industrial well data and this correlation allows the sedimentary and structural history of the region to be deduced. The Valsis Cruise seismic profiles have been supplemented by a very dense grid of industrial seismic lines and these data permit us to establish an accurate depth to basement map. The formation of the initial grabens, coeval with those of the Gulf of Lions, is related to the Early Miocene opening of the northwestern Mediterranean basin and the Barcelona graben is filled by the same sedimentary layers, including evaporites, as that of the Provençal region. Nevertheless, the Valencia-Catalan grabens have been reactivated by young extensional tectonics which could be a consequence of the convergence of Africa relative to Europe. The Valencia trough is segmented by transfer faults which trend NW-SE. These faults, which have a more accentuated structural expression than the Valencia and Catalonia grabens, may act as transform faults separating the individual Balearic Islands. The transfer faults are in strike with volcanic ridges which have been sampled during the DSDP Leg 13. The dense seismic grid allows us to delineate several widespread volcanic features in the Valencia trough which have been active from the Early Miocene to the Pleistocene. However, we note that the volcanic features are mainly Miocene in age whereas the recent volcanism is restricted to a narrow zone (Columbretes Islands). The compressional tectonics which deformed the Balearic Islands does not appear to extend far towards the North. We delineate the compressional front north of Ibiza, but we failed to determine any thrust or fold north of Mallorca, whereas an extensional tectonics is evident.

  9. Zircon U-Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin

    NASA Astrophysics Data System (ADS)

    Ortiz, Agustín; Hauser, Natalia; Becchio, Raúl; Suzaño, Néstor; Nieves, Alexis; Sola, Alfonso; Pimentel, Marcio; Reimold, Wolf

    2017-12-01

    The evolution of the rocks of the Lower Paleozoic Orogen in Puna, at the Southwestern Gondwana margin, has been widely debated. In particular, the scarce amount of geological and geochemical data available for the Diablillos Intrusive Complex, Eastern Magmatic Belt, Southern Puna, require a further study for new evidence towards the understanding of sources, magmatic processes and emplacement of magmas, in order to better comprehend the crustal evolution in this setting. We present new combined U-Pb and Hf isotope analyses on zircon by LA-MC-ICP-MS from monzogranite, granodiorite and diorite rocks of the Diablillos Intrusive Complex. We obtained 206Pb/238U concordant weighted average ages of 517 ± 3 Ma and 515 ± 6 Ma for the monzogranite and diorite, respectively, and a concordant age of 521 ± 4 Ma for the granodiorite. These ages permit to constrain the climax of magmatic activity in the Diablillos Complex around ∼515-520 Ma, while the emplacement of the complex took place between ∼540 Ma and 490 Ma (representing a ca. 50 Ma magmatic event). Major and trace element data, initial 87Sr/86Sr values varying from 0.70446 to 0.71278, positive and negative ɛNd(t) values between +2.5 and -4, as well as ɛHf(t) for zircon data between + 3 and -3 indicate that the analyzed samples represent contaminated magmas. The ɛHf(t) and the ɛNd(t) values for this complex specify that these rocks are derived from interaction of a dominant Mesoproterozoic crystalline and/or a metasedimentary source and juvenile mantle-derived magmas, with a TDM model age range of ∼1.2-1.5 Ga, with later reworking during lower Paleozoic times. The combined data obtained in this contribution together with previous data, allow us to suggest that the formation of the Eastern Magmatic Belt of the Puna was part of a long-lived magmatic event during Early Paleozoic times. Whereby the granitoids of the Eastern Magmatic Belt formed through intra-crustal recycling at an active continental margin, with

  10. A geochemical record of polycyclic aromatic hydrocarbons (PAHs) during the late Paleozoic Ice Age: The relationship between atmospheric pCO2, climate and fire.

    NASA Astrophysics Data System (ADS)

    Hren, M. T.; Harris, G.; Montanez, I. P.; DiMichele, W.; Eley, Y.; White, J. D.; Wilson, J. P.; McElwain, J.; Poulsen, C. J.

    2017-12-01

    The late Paleozoic Ice Age (LPIA) represents a dynamic period of widespread glacial/interglacial cycling as the earth underwent a major transition from an icehouse to greenhouse climate. During this transition period, pCO2 is shown to have varied by several hundred ppm and within the predicted range for anthropogenic change. Glacial/interglacial changes in atmospheric pCO2 during this time are associated with restructuring of tropical forests and carbon cycle dynamics. At present however, there is considerable debate over the potential hydrologic and fire-frequency feedbacks associated with this climatic variability. Polycyclic aromatic hydrocarbons (PAHs) are produced from the incomplete combustion of organic matter and are shown to be preserved over hundreds of millions of years. Thus, these organic compounds provide a potential record of the feedbacks between global biogeochemical systems and fire. We analyzed sedimentary organic matter from the Illinois Basin spanning the late Carboniferous glacial-interglacial cycles to assess the evolution of fire during this period. Our data show a decrease in the overall abundance of high molecular weight PAHs (HMW) from 312 to 304 Myr with significant variability that is coincident with the general timing of pCO2 cycling. Decreasing PAH abundance is also coincident with a proposed long-term change in pO2 and may reflect the influence of atmospheric oxygen in regulating fire occurrence and hydrologic cycling in tropical ecosystems in the late Carboniferous.

  11. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    USGS Publications Warehouse

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan

  12. Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District

    NASA Astrophysics Data System (ADS)

    Fontijn, Karen; Rawson, Harriet; Van Daele, Maarten; Moernaut, Jasper; Abarzúa, Ana M.; Heirman, Katrien; Bertrand, Sébastien; Pyle, David M.; Mather, Tamsin A.; De Batist, Marc; Naranjo, Jose-Antonio; Moreno, Hugo

    2016-04-01

    Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42°S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude ≥ 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordón Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaitén volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial.

  13. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    NASA Astrophysics Data System (ADS)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  14. Research into Surface Wave Phenomena in Sedimentary Basins.

    DTIC Science & Technology

    1981-12-31

    150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for

  15. Early Cretaceous stratigraphy, paleontology, and sedimentary tectonics in Paris overthrust foredeep (western Wyoming and southeastern Idaho) compared with Quaternary features of indo-gangetic plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, J.A. Jr.

    1983-08-01

    Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formationmore » - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.« less

  16. New Fossil Evidence on the Sister-Group of Mammals and Early Mesozoic Faunal Distributions

    NASA Astrophysics Data System (ADS)

    Shubin, Neil H.; Crompton, A. W.; Sues, Hans-Dieter; Olsen, Paul E.

    1991-03-01

    Newly discovered remains of highly advanced mammal-like reptiles (Cynodontia: Tritheledontidae) from the Early Jurassic of Nova Scotia, Canada, have revealed that aspects of the characteristic mammalian occlusal pattern are primitive. Mammals and tritheledontids share an homologous pattern of occlusion that is not seen in other cynodonts. The new tritheledontids represent the first definite record of this family from North America. The extreme similarity of North American and African tritheledontids supports the hypothesis that the global distribution of terrestrial tetrapods was homogeneous in the Early Jurassic. This Early Jurassic cosmopolitanism represents the continuation of a trend toward increased global homogeneity among terrestrial tetrapod communities that began in the late Paleozoic.

  17. Regional hydrogeology of the Navajo and Hopi Indian reservations, Arizona, New Mexico, and Utah, with a section on vegetation

    USGS Publications Warehouse

    Cooley, M.E.; Harshbarger, J.W.; Akers, J.P.; Hardt, W.F.; Hicks, O.N.

    1969-01-01

    The Navajo and Hopi Indian Reservations have an area of about 25,000 square miles and are in the south-central part of the Colorado Plateaus physiographic province. The reservations are underlain by sedimentary rocks that range in age from Cambrian to Tertiary, but Permian and younger rocks are exposed in about 95 percent of the area. Igneous and metamorphic basement rocks of Precambrian age underlie the sedimentary rocks at depths ranging from 1,000 to 10,000 feet. Much of the area is mantled by thin alluvial, eolian, and terrace deposits, which mainly are 10 to 50 feet thick.The Navajo country was a part of the eastern shelf area of the Cordilleran geosyncline during Paleozoic and Early Triassic time and part of the southwestern shelf area of the Rocky Mountain geosyncline in Cretaceous time. The shelf areas were inundated frequently by seas that extended from the central parts of the geosynclines. As a result, complex intertonguing and rapid facies changes are prevalent in the sedimentary rocks and form some of the principal controls on the ground-water hydrology. Regional uplift beginning in Late Cretaceous time , destroyed. the Rocky Mountain geosyncline and formed the structural basius that influenced sedimentation and erosion throughout Cenozoic time.

  18. Structural framework and hydrocarbon potential of Ross Sea, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, A.K.; Davey, F.J.

    The 400 to 1100-m deep continental shelf of the Ross Sea is underlain by three major sedimentary basins (Eastern basin, Central trough, and Victoria Land basin), which contain 5 to 6 km of sedimentary rock of Late Cretaceous(.) and younger age. An addition 6 to 7 km of older sedimentary and volcanic rocks lie within the Victoria Land basin. Eroded basement ridges of early Paleozoic(.) and older rocks similar to those of onshore Victoria Land separate the basins. The three basins formed initially in late Mesozoic time during an early period of rifting between East and West Antarctica. The Easternmore » basin is a 300-km wide, asymmetric basement trough that structurally opens into the Southern Ocean. A seaward-prograding sequence of late Oligocene and younger glacial deposits covers a deeper, layered sequence of Paleogene(.) and older age. The Central trough, a 100-km wide depression, is bounded by basement block faults and is filled with a nearly flat-lying sedimentary section. A prominent positive gravity anomaly, possibly caused by rift-related basement rocks, lies along the axis of the basin. The Victoria Land basin, unlike the other two basins, additionally contains a Paleogene(.) to Holocene rift zone, the Terror Rift. Rocks in the rift, near the axis of the 150-km wide basement half-graben, show extensive shallow faulting and magmatic intrusion of the sedimentary section. The active Terror rift and older basin structures extend at least 300 km along the base of the Transantarctic Mountains. Petroleum hydrocarbons have not been reported in the Ross Sea region, with possible exception of ethane gas found in Deep Sea Drilling Project cores from the Eastern basin. Model studies indicate that hydrocarbons could be generated at depths of 3.5 to 6 km within the sedimentary section. The best structures for hydrocarbon entrapment occur in the Victoria Land basin and associated Terror Rift.« less

  19. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas

    USGS Publications Warehouse

    Pollastro, R.M.; Jarvie, D.M.; Hill, R.J.; Adams, C.W.

    2007-01-01

    This article describes the primary geologic characteristics and criteria of the Barnett Shale and Barnett-Paleozoic total petroleum system (TPS) of the Fort Worth Basin used to define two geographic areas of the Barnett Shale for petroleum resource assessment. From these two areas, referred to as "assessment units," the U.S. Geological Survey estimated a mean volume of about 26 tcf of undiscovered, technically recoverable hydrocarbon gas in the Barnett Shale. The Mississippian Barnett Shale is the primary source rock for oil and gas produced from Paleozoic reservoir rocks in the Bend arch-Fort Worth Basin area and is also one of the most significant gas-producing formations in Texas. Subsurface mapping from well logs and commercial databases and petroleum geochemistry demonstrate that the Barnett Shale is organic rich and thermally mature for hydrocarbon generation over most of the Bend arch-Fort Worth Basin area. In the northeastern and structurally deepest part of the Fort Worth Basin adjacent to the Muenster arch, the formation is more than 1000 ft (305 m) thick and interbedded with thick limestone units; westward, it thins rapidly over the Mississippian Chappel shelf to only a few tens of feet. The Barnett-Paleozoic TPS is identified where thermally mature Barnett Shale has generated large volumes of hydrocarbons and is (1) contained within the Barnett Shale unconventional continuous accumulation and (2) expelled and distributed among numerous conventional clastic- and carbonate-rock reservoirs of Paleozoic age. Vitrinite reflectance (Ro) measurements show little correlation with present-day burial depth. Contours of equal Ro values measured from Barnett Shale and typing of produced hydrocarbons indicate significant uplift and erosion. Furthermore, the thermal history of the formation was enhanced by hydrothermal events along the Ouachita thrust front and Mineral Wells-Newark East fault system. Stratigraphy and thermal maturity define two gas

  20. Sedimentary Geochemistry of Martian Samples from the Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    McLennan, Scott M.

    2001-01-01

    The purpose of this research project was to evaluate the APXS data collected on soils and rocks at the Pathfinder site in terms of sedimentary geochemistry. Below are described the major findings of this research: (1) An influential model to explain the chemical variation among Pathfinder soils and rocks is a two component mixing model where rocks of fairly uniform composition mix with soil of uniform composition; (2) The very strong positive correlation between MgO and SO, points to a control by a MgSO4 mineral however, spectroscopic data continue to suggest that Fe-sulfates, notably schwertmannite and jarosite, may be important components; (3) In an attempt to better understand the causes of complexities in mixing relationships, the possible influence of sedimentary transport has been evaluated; (4) Another aspect of this research has been to examine the possibility of sedimentary silica being a significant phase on Mars; and (5) On Earth, the geochemistry of sedimentary rocks has been used to constrain the chemical composition of the continental crust and an important part of this research was to evaluate this approach for Mars.

  1. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah

    USGS Publications Warehouse

    Jackson, M.D.; Pollard, D.D.

    1990-01-01

    A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central

  2. Sedimentary Processes on Earth, Mars, Titan, and Venus

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Hayes, A. G.; Lamb, M. P.; McLennan, S. M.

    The production, transport and deposition of sediment occur to varying degrees on Earth, Mars, Venus, and Titan. These sedimentary processes are significantly influenced by climate that affects production of sediment in source regions (weathering), and the mode by which that sediment is transported (wind vs. water). Other, more geological, factors determine where sediments are deposited (topography and tectonics). Fluvial and marine processes dominate Earth both today and in its geologic past, aeolian processes dominate modern Mars although in its past fluvial processes also were important, Venus knows only aeolian processes, and Titan shows evidence of both fluvial and aeolian processes. Earth and Mars also feature vast deposits of sedimentary rocks, spanning billions of years of planetary history. These ancient rocks preserve the long-term record of the evolution of surface environments, including variations in climate state. On Mars, sedimentary rocks record the transition from wetter, neutral-pH weathering, to brine-dominated low-pH weathering, to its dry current state.

  3. Building a Bridge to Deep Time: Sedimentary Systems Across Timescales

    NASA Astrophysics Data System (ADS)

    Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.

    2013-12-01

    It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded

  4. The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.; Genise, Jorge F.; Taylor, T.N.

    1998-01-01

    The combined study of continental trace fossils and associated sedimentary facies provides valuable evidence of colonization trends and events throughout the Phanerozoic. Colonization of continental environments was linked to the exploitation of empty or under-utilized ecospace. Although the nonmarine trace fossil record probably begins during the Late Ordovician, significant invasion of nonmarine biotopes began close to the Silurian-Devonian transition with the establishment of a mobile arthropod epifauna (Diplichnites ichnoguild) in coastal marine to alluvial plain settings. Additionally, the presence of vertical burrows in Devonian high-energy fluvial deposits reflects the establishment of a stationary, deep suspension-feeding infauna of the Skolithos ichnoguild. The earliest evidence of plant-arthropod interaction occurred close to the Silurian-Devonian boundary, but widespread and varied feeding patterns are known from the Carboniferous. During the Carboniferous, permanent subaqueous lacustrine settings were colonized by a diverse, mobile detritus-feeding epifauna of the Mermia ichnoguild, which reflects a significant palaeoenvironmental expansion of trace fossils. Paleozoic ichnologic evidence supports direct routes to the land from marginal marine environments, and migration to lakes from land settings. All nonmarine sedimentary environments were colonized by the Carboniferous, and subsequent patterns indicate an increase in ecospace utilization within already colonized depositional settings. During the Permian, back-filled traces of the Scoyenia ichnoguild record the establishment of a mobile, intermediate-depth, deposit-feeding in-fauna in alluvial and transitional alluvial-lacustrine sediment. Diversification of land plants and the establishment of ecologically diverse plant communities through time provided new niches to be exploited by arthropods. Nevertheless, most ot the evolutionary feeding innovations took place relatively early, during the Late

  5. Sedimentary and Paleoceanographic Responses to the South China Sea Basin Evolution

    NASA Astrophysics Data System (ADS)

    Jian, Z.; Liu, Z.; Jin, H.; Larsen, H. C.; Alvarez Zarikian, C. A.; Stock, J. M.; Sun, Z.; Klaus, A.

    2017-12-01

    As the largest marginal sea of the western Pacific, the South China Sea (SCS) has experienced a complete Wilson cycle, which had inevitably exerted a profound impact on the sedimentary environment and ocean circulation. Based on the results of four ODP/IODP expeditions to the SCS since 1999, together with other research data in this region, this study aims to explore the sedimentary and paleoceanographic responses to the tectonic events and basin evolution in the SCS. The early history of the SCS from land to deep sea was revealed by foraminiferal fauna: (1) The SCS evolved from continental shelf to an upper bathyal environment around the Oligocene/Eocene boundary, and significantly deepened at the turn of Oligocene/Miocene; (2) The early Oligocene SCS was deep but its shelf was narrow, evidenced by the Para-Tethys type deep-sea agglutinated benthic foraminifers and abundant transported shallow-water species at ODP Site 1148. Along with the SCS basin formation and the development of this semi-closed basin, the deep-sea benthic foraminiferal δ13C decreased when the Antarctic ice sheet began to reestablish at 14 Ma, the Indonesian Seaway and the southern SCS deep-water channel were closed at 10 Ma, the Luzon arc collided with Taiwan at 6.5 Ma, and the Bashi Strait was restricted at 1.2 Ma. Nd isotopes of shark teeth at ODP Site 1148 also support these inferences. An early to middle Miocene succession of red clay was found at all sites deeper than 3500 m water depth, which may be correlated to a basin-wide event related to deep circulation of oxygenated water from the western Pacific. After the earliest late Miocene carbonate crash, the red clay disappeared while the large carbonate platforms were drowned and remarkably shrank in the SCS. Late Miocene sediments display a succession of hemi-pelagic and turbidite deposits, indicating that the deep basin entered its modern state below the CCD. Frequent turbidites ended when Pliocene growth of deep-sea manganese

  6. CO 2 storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): Insights from coupled reservoir-geomechanical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinovskaya, E.; Rutqvist, J.; Malo, M.

    2014-01-21

    In this paper, coupled reservoir-geomechanical (TOUGH-FLAC) modeling is applied for the first time to the St. Lawrence Lowlands region to evaluate the potential for shear failure along pre-existing high-angle normal faults, as well as the potential for tensile failure in the caprock units (Utica Shale and Lorraine Group). This activity is part of a general assessment of the potential for safe CO 2 injection into a sandstone reservoir (the Covey Hill Formation) within an Early Paleozoic sedimentary basin. Field and subsurface data are used to estimate the sealing properties of two reservoir-bounding faults (Yamaska and Champlain faults). The spatial variationsmore » in fluid pressure, effective minimum horizontal stress, and shear strain are calculated for different injection rates, using a simplified 2D geological model of the Becancour area, located ~110 km southwest of Quebec City. The simulation results show that initial fault permeability affects the timing, localization, rate, and length of fault shear slip. Contrary to the conventional view, our results suggest that shear failure may start earlier for a permeable fault than for a sealing fault, depending on the site-specific geologic setting. In simulations of a permeable fault, shear slip is nucleated along a 60 m long fault segment in a thin and brittle caprock unit (Utica Shale) trapped below a thicker and more ductile caprock unit (Lorraine Group) – and then subsequently progresses up to the surface. In the case of a sealing fault, shear failure occurs later in time and is localized along a fault segment (300 m) below the caprock units. The presence of the inclined low-permeable Yamaska Fault close to the injection well causes asymmetric fluid-pressure buildup and lateral migration of the CO 2 plume away from the fault, reducing the overall risk of CO 2 leakage along faults. Finally, fluid-pressure-induced tensile fracturing occurs only under extremely high injection rates and is localized below the

  7. Evidence for persistent flow and aqueous sedimentation on early Mars.

    PubMed

    Malin, Michael C; Edgett, Kenneth S

    2003-12-12

    Landforms representative of sedimentary processes and environments that occurred early in martian history have been recognized in Mars Global Surveyor Mars Orbiter Camera and Mars Odyssey Thermal Emission Imaging System images. Evidence of distributary, channelized flow (in particular, flow that lasted long enough to foster meandering) and the resulting deposition of a fan-shaped apron of debris indicate persistent flow conditions and formation of at least some large intracrater layered sedimentary sequences within fluvial, and potentially lacustrine, environments.

  8. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis.

    PubMed

    Lamsdell, James C; Selden, Paul A

    2017-01-01

    Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China

    USGS Publications Warehouse

    Mao, J.; Qiu, Yumin; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.

    2002-01-01

    Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river

  10. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater

    DOE PAGES

    Le Deit, L.; Mangold, N.; Forni, O.; ...

    2016-05-13

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less

  11. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Deit, L.; Mangold, N.; Forni, O.

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less

  12. The Zambezi sedimentary system (coastal plain - deep sea fan): a record of the vertical movements of the Mozambican margin since Cretaceous times.

    NASA Astrophysics Data System (ADS)

    Ponte, Jean Pierre; Robin, Cecile; Guillocheau, Francois; Baby, Guillaume; Dall'Asta, Massimo; Popescu, Speranta; Suc, Jean Pierre; Droz, Laurence; Rabineau, Marina; Moulin, Maryline

    2016-04-01

    The Mozambique margin is an oblique to transform margin which feeds one of the largest African turbiditic system, the Zambezi deep-sea fan (1800 km length and 400 km wide; Droz and Mougenot., AAPG Bull., 1987). The Zambezi sedimentary system is characterized by (1) a changing catchment area through time with evidences of river captures (Thomas and Shaw, J. Afr. Earth. Sci, 1988) and (2) a delta, storing more than 12 km of sediment, with no gravitary tectonics. The aim of this study is to carry out a source to sink study along the Zambezi sedimentary system and to analyse the margin evolution (vertical movements, climate change) since Early Cretaceous times. The used data are seismic lines (industrial and academic) and petroleum wells (with access to the cuttings). Our first objective was to perform a new biochronostratigraphic framework based on nannofossils, foraminifers, pollen and spores on the cuttings of three industrial wells. The second target was to recognize the different steps of the growth of the Zambezi sedimentary systems. Four main phases were identified: • Late Jurassic (?) - early Late Cretaceous: from Neocomian to Aptian times, the high of the clinoforms is getting higher, with the first occurrence of contouritic ridges during Aptian times. • Late Cretaceous - Early Paleocene: a major drop of relative sea-level occurred as a consequence of the South African Plateau uplift. The occurrence of two depocenters suggests siliciclastic supplies from the Bushveld and from the North Mozambique domain. • Early Paleocene - Eocene: growth of carbonate platforms and large contouritic ridges. • Oligocene - Present-day: birth of the modern Zambezi Delta, with quite low siliciclastic supply during Oligocene times, increasing during Miocene times. As previously expected (Droz and Mougenot) some sediments of the so-called Zambezi fans are coming from a feeder located east of the Davie Ridge. This study was founded by TOTAL and IFREMER in the frame of the

  13. Sedimentary Signs of a Martian Lakebed

    NASA Image and Video Library

    2014-12-08

    This evenly layered rock photographed by the Mast Camera Mastcam on NASA Curiosity Mars Rover on Aug. 7, 2014, shows a pattern typical of a lake-floor sedimentary deposit not far from where flowing water entered a lake.

  14. Geologic Map of the Eastern Three-Quarters of the Cuyama 30' x 60' Quadrangle, California

    USGS Publications Warehouse

    Kellogg, Karl S.; Minor, Scott A.; Cossette, Pamela M.

    2008-01-01

    The map area encompasses a large part of the western Transverse Ranges and southern Coast Ranges of southern California. The San Andreas fault (SAF) cuts the northern part of the map. The area south of the SAF, about 80 percent of the map area, encompasses several distinct tectonic blocks bounded by major thrust or reverse faults, including the Santa Ynez fault, Big Pine fault (and structurally continuous Pine Mountain fault), Tule Creek fault, Nacimiento fault, Ozena fault, Munson Creek fault, Morales fault, and Frazier Mountain Thrust System. Movement on these faults is as old as Miocene and some faults may still be active. In addition, the Paleocene Sawmill Mountain Thrust south of the SAF and the Pastoria Thrust north of the SAF place Cretaceous and older crystalline rocks above Pelona Schist (south of the SAF) and Rand Schist (north of the SAF). South of the SAF, each tectonic block contains a unique stratigraphy, reflecting either large-scale movement on bounding faults or different depositional environments within each block. On Mount Pinos and Frazier Mountain, intrusive and metamorphic rocks as old as Mesoproterozoic, but including voluminous Cretaceous granitoid rocks, underlie or are thrust above non-marine sedimentary rocks as old as Miocene. Elsewhere, marine and non-marine sedimentary rocks are as old as Cretaceous, dominated by thick sequences of both Eocene and Cretaceous marine shales and sandstones. Middle Miocene to early Oligocene volcanic rocks crop out in the Caliente Hills (part of Caliente Formation) and south of Mount Pinos (part of the Plush Ranch Formation). Fault-bounded windows of Jurassic Franciscan Complex ophiolitic rocks are evident in the southwest corner of the area. North of the SAF, marine and non-marine sedimentary rocks as old as Eocene and Miocene volcanic rocks overlie a crystalline basement complex. Basement rocks include Cretaceous intrusive rocks that range from monzogranite to diorite, and Jurassic to late Paleozoic

  15. Graphite in the Bishop Tuff and its effect on postcaldera oxygen fugacity

    USGS Publications Warehouse

    Hildreth, Edward; Ryan-Davis, Juliet; Harlow, Benjamin

    2017-01-01

    Several cubic kilometers of Paleozoic graphite-bearing argillitic country rocks are present as lithic fragments in Bishop Tuff ignimbrite and fallout. The lithics were entrained by the 650 km3 of rhyolite magma that vented during the 5- to 6-day-long, caldera-forming eruption at Long Valley, California. The caldera is floored by a 350 km2 roof plate that collapsed during the eruption and consists in large part of the Paleozoic strata that provided the abundant hornfelsed metapelitic lithic clasts in the tuff. Graphite has been identified by Raman spectroscopy, electron-dispersive spectroscopy, and X-ray diffraction as an irregularly dispersed component in the small fraction of Bishop Tuff pumice that is dark-colored. Carbon concentration has been determined in pumice, lithics, and wall rocks. Values of δ13C range from –21‰ to –29‰ Vienna Peedee Belemnite (VPDB) for pumice, lithics, and argillitic wall rocks, reflecting the biogenic origin of the reduced carbon in oxygen-limited black Paleozoic marine mudrocks. Carbonate contents, measured separately, are negligible in fresh pumice and lithics. Microprobe analyses of titanomagnetite-ilmenite pairs show that oxygen-fugacity values of numerous batches of postcaldera Early Rhyolite (750–640 ka; ~100 km3) are up to one log unit more reduced than those of the temperature–oxygen fugacity (T-fO2) array of the Bishop Tuff (767 ka), despite similar major-element compositions and Fe-Ti–oxide temperature ranges. All of the many batches of Early Rhyolite, which erupted episodically over an interval of ~125,000 years, yield the reduced fO2 values, indicating that reaction with graphite lowered magmatic fO2 after the caldera-forming eruption but before the first eruption of Early Rhyolite. It is inferred that reaction of postcaldera rhyolite magma with the reduced carbon in a great mass of subsided roof rocks lowered its fO2. It is suggested that comparable effects could have attended caldera collapse of other

  16. Sedimentary Record of the Back-Arc Basins of South-Central Mexico: an Evolution from Extensional Basin to Carbonate Platform.

    NASA Astrophysics Data System (ADS)

    Sierra-Rojas, M. I.; Molina-Garza, R. S.; Lawton, T. F.

    2015-12-01

    The Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were controlled by tectonic processes related to the instauration of a continental arc and the accretion of the Guerrero arc to mainland Mexico. The Atzompa Formation refers to a succession of conglomerate, sandstone, siltstone, and limestone that crop out in southwestern Mexico with Early Cretaceous fauna and detrital zircon maximum depositional ages. The sedimentary record shows a transition from early fluvial/alluvial to shallow marine depositional environments. The first stage corresponds to juvenile fluvial/alluvial setting followed by a deep lacustrine depositional environment, suggesting the early stages of an extensional basin. The second stage is characterized by anabranched deposits of axial fluvial systems flowing to the NE-SE, showing deposition during a period of rapid subsidence. The third and final stage is made of tidal deposits followed, in turn, by abrupt marine flooding of the basin and development of a Barremian-Aptian carbonate ramp. We interpret the Tentzo basin as a response to crustal extension in a back-arc setting, with high rates of sedimentation in the early stages of the basin (3-4 mm/m.y), slower rates during the development of starved fluvial to tidal systems and carbonate ramps, and at the top of the Atzompa Formation an abrupt deepening of the basin due to flexural subsidence related to terrane docking and attendant thrusting to the west. These events were recorded in the back-arc region of a continental convergent margin (Zicapa arc) where syn-sedimentary magmatism is indicated by Early Cretaceous detrital and volcanic clasts from alluvial fan facies west of the basin. Finally, and as a response to the accretion of the Guerrero superterrane to Oaxaquia during the Aptian, a carbonate platform facing toward the Gulf of Mexico was established in central to eastern Oaxaquia.

  17. Volcanic Debris Flows of the Latest Paleozoic Arbasay Formation: Geomorphological Characters and Paleoenvironment Reconstruction of Northern Tian Shan, NW China

    NASA Astrophysics Data System (ADS)

    Yang, W.; Liu, D.; Guo, Z.

    2015-12-01

    Texturally well-preserved volcanic debris flows (also called lahars) are exposed in the Latest Paleozoic Arbasay Formation, Northern Tian Shan. LA-ICP-MS zircon dating of the intercalated fallout tuff sample provided an age of 314.4±3.4 Ma (MSWD=1.6), suggesting they were deposited at Latest Carboniferous. The lahars consist primarily of two lithofacies: massive, poorly lithified diamictites and stratified, moderately lithified gravelly sandstones. The diamictites can be generally divided into two subfacies, i.e., the matrix-supported and the clast-supported diamictites. Most diamictites are structureless and nongraded. They are thick in beds and contain large clasts up to 3 m in dimension. The gravelly sandstones display much finer particle size and have wedge or lenticular geometries. Large clasts are absent within them and the sorting characters are much better than the diamictites. Despite the different size grading, the matrix and the clasts of the two lithofacies appear to be homogeneous. The matrix is generally sandy mudstone. The clasts comprise rhyolites, dacites, andesites, andesitic basalts and basalts, same to the co-existing volcanic rocks, suggesting they originate from the cognate volcanics. The disorganized diamictites are supposed to deposit from a turbulent flood or pyroclastic surge. The gravelly sandstone lithofacies are interpreted as sand-rich flood flows or hyperconcentrated flood flows during the waning stage of a mass-flow event. The overall characteristics of the deposits suggest a mass-flow dominated alluvial fan environment. It's noteable that several syn- sedimentary normal faults occurred within these lahar deposits, indicating that the Southern Junggar Basin was in an extensional regime during the lahars' deposition. Structure is dominated by normal faulting, allowing the existence of relatively small, highly compartmentalized depocenters. This is also supported by geochemistry and detrital zircon studies.

  18. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  19. Late-paleozoic granitoid complexes of the southwest Primorye: geochemistry, age and typification

    NASA Astrophysics Data System (ADS)

    Veldemar, A. A.; Vovna, G. M.

    2017-12-01

    The article presents the first data of geochemical studies of the Late Permian granitoids of the Gamov Complex located in the southwestern part of the Voznesenskiy terrane. The purpose of the study was to identify the main geochemical features of the Late Paleozoic granitoids of the southwestern Primorye, which in the future will allow us to draw conclusions about the petrogenesis of these granitoids. Elemental analysis of 20 samples was carried out, conducted statistical and mathematical processing of the data, have been constructed representative diagrams and graphs for this group of rocks. Elemental analysis was performed by atomic emission (ICP-AES) and inductively-coupled-plasma (ICP-MS) mass spectrometry, at the Analytical Center FEGI FEB RAS.

  20. Tectonics of the North American Cordillera near the Fortieth Parallel

    USGS Publications Warehouse

    King, P.B.

    1978-01-01

    The North American Cordillera near the Fortieth Parallel consists of the following tectonic units: 1. (A) To the east is a reactivated cratonic area, in the Southern Rocky Mountains and Colorado Plateau, in which the supracrustal rocks (Cambrian to Cretaceous) were broadly deformed during the late Cretaceous-Paleocene Laramide orogeny, and the Precambrian basement was raised in folds of wide amplitude. 2. (B) West of it is a miogeosynclinal belt, in the eastern Great Basin, in which a thick sequence of Paleozoic carbonates and related deposits was thrust eastward along low-angle faults during the middle to late Cretaceous Sevier orogeny. The miogeosyncline is the downwarped western margin of the original North American continent, and its rocks accumulated on Precambrian basement. 3. (C) Beyond is a eugeosynclinal belt, in the western Great Basin, in which Paleozoic graywackes, cherts, and volcanics were thrust easteastward along low-angle faults during several Paleozoic orogenies - the mid-Paleozoic Antler orogeny which produced the Roberts thrust on the east, and the end-Paleozoic Sonoma orogeny which produced the Golconda thrust farther west. The Paleozoic eugeosynclinal rocks accumulated on oceanic basement. They are overlapped from the west by Triassic and Jurassic shelf deposits, which pass westward into eugeosynclinal deposits. 4. (D) A volcanic island-arc belt existed on the sites of the Sierra Nevada in Paleozoic and early Mesozoic time, which produced thick bodies of sediments and volcanics. During the mid-Mesozoic Nevadan orogeny these were steeply deformed and thrust westward over subduction zones, and were intruded by granitic rocks that rose from the upper mantle to form great batholiths. 5. (E) West of the Sierra Nevada, in the Great Valley, is a great sedimentary embankment of later Mesozoic flysch or turbidite, largely younger than the supracrustal rocks of the Sierra Nevada and the Nevadan orogeny. It was formed of the erosional products of the

  1. The Colorado Plateau Coring Project: A Continuous Cored Non-Marine Record of Early Mesozoic Environmental and Biotic Change

    NASA Astrophysics Data System (ADS)

    Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham

    2017-04-01

    The early Mesozoic is a critical time in earth history that saw the origin of modern ecosystems set against the back-drop of mass extinction and sudden climate events in a greenhouse world. Non-marine sedimentary strata in western North America preserve a rich archive of low latitude terrestrial ecosystem and environmental change during this time. Unfortunately, frequent lateral facies changes, discontinuous outcrops, and a lack of robust geochronologic constraints make lithostratigraphic and chronostratigraphic correlation difficult, and thus prevent full integration of these paleoenvironmental and paleontologic data into a regional and global context. The Colorado Plateau Coring Project (CPCP) seeks to remedy this situation by recovering a continuous cored record of early Mesozoic sedimentary rocks from the Colorado Plateau of the western United States. CPCP Phase 1 was initiated in 2013, with NSF- and ICDP-funded drilling of Triassic units in Petrified Forest National Park, northern Arizona, U.S.A. This phase recovered a 520 m core (1A) from the northern part of the park, and a 240 m core (2B) from the southern end of the park, comprising the entire Lower-Middle Triassic Moenkopi Formation, and most of the Upper Triassic Chinle Formation. Since the conclusion of drilling, the cores have been CT scanned at the University of Texas - Austin, and split, imaged, and scanned (e.g., XRF, gamma, and magnetic susceptibility) at the University of Minnesota LacCore facility. Subsequently, at the Rutgers University Core Repository, core 1A was comprehensively sampled for paleomagnetism, zircon geochronology, petrography, palynology, and soil carbonate stable isotopes. LA-ICPMS U-Pb zircon analyses are largely complete, and CA-TIMS U-Pb zircon, paleomagnetic, petrographic, and stable isotope analyses are on-going. Initial results reveal numerous horizons with a high proportion of Late Triassic-aged primary volcanic zircons, the age of which appears to be a close

  2. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-04-01

    At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.

  3. Reported middle Paleozoic fossils and new geochronological data from the southern and central Appalachians: Disposable outrageous hypothesis or justification for major revision of tectonic history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, R.D. Jr.

    Recently published interpretations of fossil fragments from the Walden Creek Group (Ocoee Supergroup) suggesting that these rocks are middle Paleozoic (Devonian to Early Carboniferous), and new geochronological data that yield late Paleozoic age dates on rocks and major faults in the Blue Ridge and piedmont, if taken alone, would permit speculation that most of the deformation and metamorphism affecting this part of the orogen is Alleghanian. The two Ordovician clastic wedges (Sevier, Llanvirn, and Martinsburg, Caradoc-Ashgill) and the Carboniferous-Permian wedge(s), along with many radiometric ages on plutons, indicate uplift and sediment dispersal from the interior of the southern and centralmore » Appalachians (SCA) that may have resulted from Taconian and Alleghanian deformation. Combining the reproducible fossil evidence, including that from Alabama and a recently discovered crinoid fragment from the upper part of the Murphy belt sequence, with the most current geochronological data requires that peak metamorphism and penetrative deformation be at least Devonian or younger at the southwestern end of the orogen, and Late Ordovician or younger in the Carolinas and northern Georgia. Zircon ages reported from large thrust and dextral strike-slip faults bounding the Pine Mountain window indicate all of the faults there may be Alleghanian, except the younger sinistral Mesozoic faults, and requires that both metamorphism and penetrative deformation there also be Alleghanian. As in New England, the southern Appalachian Alleghanian metamorphic core is now known to be much more extensive. The older data require that the Taconian and perhaps the Acadian orogenies were significant events in the SCA, but these new data reconfirm the dominance of Alleghanian continent-continent collision processes here.« less

  4. Neoproterozoic-Paleozoic Evolution of the Arctida Paleocontinent and Plate Reconstructions

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Y.; Lobkovsky, L. I.; Shipilov, E. V.; Scientific Team of Arctida

    2011-12-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the

  5. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    PubMed

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  6. Distribution and tectonic implications of Cretaceous-Quaternary sedimentary facies in Solomon Islands

    NASA Astrophysics Data System (ADS)

    Turner, C. C.; Hughes, G. W.

    1982-08-01

    Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments. A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism. An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows. A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite. The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels. Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are

  7. Sedimentary textures formed by aqueous processes, Erebus crater Meridiani Planum, Mars

    USGS Publications Warehouse

    Grotzinger, J.; Bell, J.; Herkenhoff, K.; Johnson, J.; Knoll, A.; McCartney, E.; McLennan, S.; Metz, J.; Moore, J.; Squyres, S.; Sullivan, R.; Ahronson, O.; Arvidson, R.; Joliff, B.; Golombek, M.; Lewis, K.; Parker, T.; Soderblom, J.

    2006-01-01

    New observations at Erebus crater (Olympia outcrop) by the Mars Exploration Rover Opportunity between sols 671 and 735 (a sol is a martian day) indicate that a diverse suite of primary and penecontemporaneous sedimentary structures is preserved in sulfate-rich bedrock. Centimeter-scale trough (festoon) cross-lamination is abundant, and is better expressed and thicker than previously described examples. Postdepositional shrinkage cracks in the same outcrop are interpreted to have formed in response to desiccation. Considered collectively, this suite of sedimentary structures provides strong support for the involvement of liquid water during accumulation of sedimentary rocks at Meridiani Planum. ?? 2006 Geological Society of America.

  8. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  9. Petrography and geochemistry of Cenozoic sedimentary sequences of the southern Samar Island, Philippines: Clues to the unroofing history of an ancient subduction zone

    NASA Astrophysics Data System (ADS)

    Pacle, Nichole Anthony D.; Dimalanta, Carla B.; Ramos, Noelynna T.; Payot, Betchaida D.; Faustino-Eslava, Decibel V.; Queaño, Karlo L.; Yumul, Graciano P.

    2017-07-01

    The Cenozoic sedimentary sequences of southern Samar Island in eastern Philippines were examined to understand the unroofing history of an ancient arc terrane. Petrographic and geochemical data revealed varying degrees of inputs from the ophiolite basement and differences in modal compositions. The sedimentary units are mostly made up of lithic fragments. The Late Oligocene to Early Miocene Daram Formation contains more chert and volcanic fragments whereas the late Middle Miocene to Early Pliocene Catbalogan Formation is dominantly composed of ultramafic components. These variances are correspondingly reflected in the geochemical signatures of these two sedimentary formations. The Catbalogan Formation clastic rocks have higher volatile-free MgO and Fe2O3 values (average: 8.4% for both oxides) compared to the Daram Formation samples (average: 5.1 and 6.3%, respectively). Geochemical variations are also reflected in the Co, Cr and Ni values: the Catbalogan Formation samples reflect higher concentrations (Co: 15-57 ppm; Cr: 231-1094 ppm; Ni: 84-484 ppm) compared to the Daram Formation samples (Co: 24-32 ppm; Cr: 234-418 ppm; Ni: 212-323 ppm). These observations suggest that the Daram Formation eroded and transported more of the crustal portions of the ophiolite, while the younger Catbalogan Formation represents a later exhumation and subsequent erosion of the ultramafic section. An oceanic island arc (OIA) setting is proposed for the two formations based on several tectonic discrimination diagrams (e.g., Th-La-Sc, La vs. Th). The OIA signature is further supported by their smooth chondrite-normalized rare earth element (REE) patterns with no obvious Eu anomaly as well as LREE enrichment which are typical of sediments deposited in OIA setting. Based on the dominantly ophiolitic provenance of the Daram and Catbalogan formations, the post-emplacement history of the nearby Samar Ophiolite is constrained during the Late Oligocene to Early Pliocene period.

  10. Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa

    NASA Astrophysics Data System (ADS)

    Wright, C. I.; Mason, T. R.

    The St. Lucia Estuary is situated on the subtropical, predominantly microtidal Zululand coast. Modern sedimentary environments within the estuary fall into three categories: (1) barrier environments; (2) abandoned channel environments; and (3) estuarine/lagoonal environments. The barrier-associated environment includes tidal inlet channel, inlet beach face, flood-tidal delta, ebb-tidal delta, spit, backspit and aeolian dune facies. The abandoned channel environment comprises washover fan, tidal creek tidal creek delta and back-barrier lagoon facies. The estuarine/lagoonal environment includes subtidal estuarine channel, side-attached bar, channel margin, mangrove fringe and channel island facies. Each sedimentary facies is characterised by sedimentary and biogenic structures, grain-size and sedimentary processes. Vertical facies sequences produced by inlet channel migration and lagoonal infilling are sufficiently distinct to be recognized in the geological record and are typical of a prograding shoreline.

  11. The problem of genesis and systematic of sedimentary units of hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Zhilina, E. N.; Chernova, O. S.

    2017-12-01

    The problem of identifying and ranking sedimentation, facies associations and their constituent parts - lithogenetic types of sedimentary rocks was considered. As a basis for paleo-sedimentary modelling, the author has developed a classification for terrigenous natural reservoirs,that for the first time links separate sedimentological units into a single hierarchical system. Hierarchy ranking levels are based on a compilation of global knowledge and experience in sediment geology, sedimentological study and systematization, and data from deep-well coresrepresentingJurassichydrocarbon-bearing formationsof the southeastern margin of the Western Siberian sedimentary basin.

  12. Formation of Ocean Sedimentary Rocks as Active Planets and Life-Like Systems

    NASA Astrophysics Data System (ADS)

    Miura, Y.

    2017-10-01

    Wet shocked rocks are discarded globally and enriched elements in ocean-sedimentary rocks, which is strong indicator of ocean water of other planets. Ocean-sedimentary rocks are strong indicator of water planets and possible exo-life on planet Mars.

  13. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methodsmore » for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.« less

  14. The first paleomagnetic data on dolerites from Jeannette Island (New Siberian Islands, Arctic)

    NASA Astrophysics Data System (ADS)

    Zhdanova, A. I.; Metelkin, D. V.; Vernikovsky, V. A.; Matushkin, N. Yu.

    2016-06-01

    The first paleomagnetic data on dolerite dikes from the volcanogenic-sedimentary section of Jeannette Island (De Long Archipelago, New Siberian Islands) are discussed. The petromagnetic data and results of the baked contact and fold tests are used to substantiate the nature of the characteristic magnetization component, which in combination with the 40Ar/39Ar dates implies its likely Late Precambrian-Early Paleozoic age. The calculated paleomagnetic pole makes it possible to extend the trajectory of the apparent polar movement for the New Siberian Islands block and confirms the assumption that this structural element of the Arctic shelf evolved as a terrane. Two variants of paleotectonic interpretation of the obtained data and their consistency with the available data on the geology and tectonics of the New Siberian Islands are considered.

  15. Late Leonardian plants from West Texas: The youngest Paleozoic plant megafossils in North America

    USGS Publications Warehouse

    Mamay, S.H.; Miller, J.M.; Rohr, D.M.

    1984-01-01

    Abundant Permian plant megafossils were discovered in the Del Norte Mountains of Brewster County, Trans-Pecos Texas. The flora is dominated by a new and distinctive type of gigantopteroid leaves. Marine invertebrates are closely associated, and this admixture of continental and marine fossils indicates a deltaic depositional setting, probably on the southern margin of the Permian Basin. Conodonts indicate correlation with the uppermost Leonardian Road Canyon Formation in the Glass Mountains. These are the youngest Paleozoic plant megafossils known in North America; they add an important paleontological element to the classic Permian area of this Continent.

  16. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    (inferred from the analysis of local surface seawater). A notable exception is the case of organic matter (OM) fractions leached from cold seep sediment samples, which sometimes exhibit εNd values markedly different from both terrigenous and surface seawater signatures. This suggests that a significant fraction of organic compounds in these sediments may be derived from chemosynthetic processes, recycling pore water REE characterized by a distinct isotopic composition. Overall, our results confirm that organic matter probably plays an important role in the oceanic REE budget, through direct scavenging and remineralization within the water column. Both the high REE abundances and the shape of shale-normalized patterns for leached SOM also suggest that OM degradation in sub-surface marine sediments during early diagenesis could control, to a large extent, the distribution of REE in pore waters. Benthic fluxes of organic-bound REE could hence substantially contribute to the exchange processes between particulates and seawater that take place at ocean margins. Neodymium isotopes could provide useful information for tracing the origin (terrestrial versus marine) and geographical provenance of organic matter, with potential applications in paleoceanography. In particular, future studies should further investigate the potential of Nd isotopes in organic compounds preserved in sedimentary records for reconstructing past variations of surface ocean circulation.

  17. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; McKinney, F. K.; Lidgard, S.; Sepkoski JJ, J. r. (Principal Investigator)

    2000-01-01

    Encrusting bryozoans provide one of the few systems in the fossil record in which ecological competition can be observed directly at local scales. The macroevolutionary history of diversity of cyclostome and cheilostome bryozoans is consistent with a coupled-logistic model of clade displacement predicated on species within clades interacting competitively. The model matches observed diversity history if the model is perturbed by a mass extinction with a position and magnitude analogous to the Cretaceous/Tertiary boundary event, Although it is difficult to measure all parameters in the model from fossil data, critical factors are intrinsic rates of extinction, which can be measured. Cyclostomes maintained a rather low rate of extinction, and the model solutions predict that they would lose diversity only slowly as competitively superior species of cheilostomes diversified into their environment. Thus, the microecological record of preserved competitive interactions between cyclostome and cheilostome bryozoans and the macroevolutionary record of global diversity are consistent in regard to competition as a significant influence on diversity histories of post-Paleozoic bryozoans.

  18. Age and position of the sedimentary basin of the Ocoee Supergroup western Blue Ridge tectonic province, southern Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unrug, R.; Unrug, S.; Ausich, W.I.

    The stratigraphic continuity of the Ocoee Supergroup established recently allows one to extrapolate the Paleozoic age of the Walden Creek Group determined on paleontological evidence to the entire Ocoee succession. The Walden Creek Group rocks contain a fossil assemblage of fenestrate bryozoan, algal, trilobite, ostracod, brachiopod and echinozoan fragments and agglutinated foraminifer tests that indicate Silurian or younger Paleozoic age. The fossils occur in carbonate clasts in polymict conglomerates, and debris-flow breccia beds, and in olistoliths of bedded carbonate and shale, and calcarenite turbidite beds. These carbonate lithologies form a minor, but characteristic constituent of the Walden Creek Group. Fossilmore » have been found also in shale and mudstone siliciclastic lithologies of the Walden Creek Group. The fossils are fragmented and poorly preserved because of several cycles of cementation and solution in the carbonate rocks and a pervasive cleavage in the fine-grained siliciclastic rocks. Recently reported Mississippian plant fossils from the Talladega belt indicate widespread occurrence of Middle Paleozoic basins in the Western Blue Ridge. These pull-apart basins formed in the stress field generated by northward movement of Laurentia past the western margin of Gondwana after the Taconian-Famatinian collision in the Ordovician.« less

  19. A New Unusual Ice-induced Sedimentary Structure: the Silt Mushroom

    PubMed Central

    Jianhua, Zhong; Liangtian, Ni; Ningliang, Sun; Chuang, Liu; Bing, Hao; Mengchun, Cao; xin, Chen; Ke, Luo; Shengxin, Liu; Leitong, Huang; Guanqun, Yang; Shaojie, Wang; Feifei, Su; Xuejing, He; Yanqiu, Xue

    2016-01-01

    Upon channel bars or point bars within the lows of the Yellow River, a new sedimentary structure, named ‘silt mushroom’, has been observed. The process of their formation is interpreted to be via the ice process. The name, the silt mushroom comes from their figurative form. This is because they look somewhat similar to mushroom’s in size and shape; being in the range of 1 to 10 cm in diameter, with the medium 3–5 cm, and on average 10 cm in height, occuring generally in groups, and occasionally in isolation in relatively soft silt. They develop in the transition from winter to spring, and are convincingly related to ice processes. Ice-induced silt mushrooms are best examined in association with the many other newly discovered ice-induced sedimentary structures (over 20 kinds). Clearly, up to now, ice processes have been significantly underestimated. With the substantial discovery of the ice-induced silt mushroom, it opens up new questions. This is because its structure mirrors the same sedimentary structures found in rocks, questioning their genesis, and sedimentary environment analysis. This achievement is significant not only in sedimentology, but also in palaeogeography, palaeoclimate, geological engineering, hydraulics and fluviology. PMID:27833155

  20. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Missallati, A.A.

    1988-08-01

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural reliefmore » and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.« less

  1. Sedimentary record of a fluctuating ice margin from the Pennsylvanian of western Gondwana: Paraná Basin, southern Brazil

    NASA Astrophysics Data System (ADS)

    Vesely, Fernando F.; Trzaskos, Barbara; Kipper, Felipe; Assine, Mario Luis; Souza, Paulo A.

    2015-08-01

    The Paraná Basin is a key locality in the context of the Late Paleozoic Ice Age (LPIA) because of its location east of the Andean proto-margin of Gondwana and west of contiguous interior basins today found in western Africa. In this paper we document the sedimentary record associated with an ice margin that reached the eastern border of the Paraná Basin during the Pennsylvanian, with the aim of interpreting the depositional environments and discussing paleogeographic implications. The examined stratigraphic succession is divided in four stacked facies associations that record an upward transition from subglacial to glaciomarine environments. Deposition took place during deglaciation but was punctuated by minor readvances of the ice margin that deformed the sediment pile. Tillites, well-preserved landforms of subglacial erosion and glaciotectonic deformational structures indicate that the ice flowed to the north and northwest and that the ice margin did not advance far throughout the basin during the glacial maximum. Consequently, time-equivalent glacial deposits that crop out in other localities of eastern Paraná Basin are better explained by assuming multiple smaller ice lobes instead of one single large glacier. These ice lobes flowed from an ice cap covering uplifted lands now located in western Namibia, where glacial deposits are younger and occur confined within paleovalleys cut onto the Precambrian basement. This conclusion corroborates the idea of a topographically-controlled ice-spreading center in southwestern Africa and does not support the view of a large polar ice sheet controlling deposition in the Paraná Basin during the LPIA.

  2. Structural and sedimentary evolution of the Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, M.T.; Rudolph, K.W.; Abdullah, S.A.

    1994-07-01

    The Malay Basin is a back-arc basin that formed via Eocene ( ) through Oligocene extension. This early extensional episode is characterized by large east-west and northwest-southeast-trending normal fault systems with associated block rotation. Extensional subbasins are filled with a thick succession of alluvial and fluvial sediments that show increasing lacustrine influence toward the central basin dep. In the early Miocene, the basin entered a passive sag phase in which depositional relief decreased, and there is the first evidence of widespread marine influence. Lower Miocene sediments consist of cyclic offshore marine, tidal-estuarine, and coastal plain fluvial sediments with very widemore » facies tracts. The middle Miocene is dominated by increasing compressional inversion, in which preexisting extensional lows were folded into east-west anticlines. This compression continues well into the Pliocene-Pleistocene, especially in the northwest portion of the basin and is accompanied by an increase in basin-wide subsidence. There is significant thinning over the crest of the growing anticlines and an angular unconformity near the top of the middle Miocene in the southeast portion of the basin. Middle Miocene sedimentary facies are similar to those seen in the lower Miocene, but are influenced by the contemporaneous compressional folding and normal faulting. Based on this study, there is no evidence of through-going wrench-fault deformation in the Malay Basin. Instead, localized strike-slip faulting is a subsidiary phenomenon associated with the extensional and compressional tectonic episodes.« less

  3. In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.

    2008-12-01

    Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.

  4. Testing the survival of microfossils in an artificial martian sedimentary meteorite: the STONE 6 Experiment

    NASA Astrophysics Data System (ADS)

    Foucher, Frédéric; Westall, Frances; Brandstaetter, Franz; Demets, Rene; Parnell, John; Cockell, Charles; Edwards, Howell; Jean-Michel, B.; Brack, André; Kurat, Gero

    Conditions on early Mars during the Noachian (-4.5 to -3.5 Ga) were possibly suitable for the emergence of life [1,3] even though water bodies were probably not permanent and could have been destroyed by frequent impacts. Since Mars does not appear to have had plate tectonics, the remains of this hypothetic life could be found within Noachian sediments. In addition to proving the existence of extraterrestrial life, such a discovery would be very helpful for studies related to the origin and early evolution of life on Earth. Indeed, although life most likely appeared on Earth before 4 Ga ago, no suitable (i.e. well-preserved) rocks containing traces of life older than 3.5 billion years exist; older rocks are either too metamorphosed or have been destroyed by plate tectonics. Because of the harsh conditions on Noachian Mars compared to those of the early Earth, the martian organisms are likely to have remained in a very primitive state of evolution and will thus be very difficult to observe in situ. One way to investigate potential traces of life in martian rocks would be to study sedimentary meteorites from Mars. However, all the 54 martian meteorites found so far are volcanic rocks [4]. Is this because sedimentary rocks do not survive the original impact to escape Mars, or the stresses of entry into the Earth's atmosphere? In order to test the latter effects, a series of experiments were devised to test the survivability of different types of sediments during Earth atmosphere entry, the STONE experiments. In particular, the present experiment STONE 6 tested a Noachian sedimentary analogue that consisted of a 3.45 Ga-old silicified volcanic sand containing ancient traces of life [5]. The volcanic sand (chert) from the Pilbara, Australia, containing organic microfossils [6] was embedded in the heat shield of a FOTON space capsule that underwent atmospheric entry on the 26th September, 2007. After landing, the first observation was the white colour of the fusion crust

  5. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily)

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Nigro, F.

    1999-12-01

    The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher

  6. Sedimentary evolution of the Pliocene and Pleistocene Ebro margin, northeastern Spain

    USGS Publications Warehouse

    Alonso, B.; Field, M.E.; Gardner, J.V.; Maldonado, A.

    1990-01-01

    The Pliocene and Pleistocene deposits of the Spanish Ebro margin overlie a regional unconformity and contain a major disconformity. These unconformities, named Reflector M and Reflector G, mark the bases of two seismic sequences. Except for close to the upper boundary where a few small channel deposits are recognized, the lower sequence lacks channels. The upper sequence contains nine channel-levee complexes as well as base-of-slope aprons that represent the proximal part of the Valencia turbidite system. Diverse geometries and variations in seismic units distinguish shelf, slope, base-of-slope and basin-floor facies. Four events characterize the late Miocene to Pleistocene evolution of the Ebro margin: (a) formation of a paleodrainage system and an extensive erosion-to-depositional surface during the latest Miocene (Messinian), (b) deposition of hemipelagic units during the early Pliocene, (c) development of canyons during the late Pliocene to early Pleistocene, and (d) deposition of slope wedges, channel-levee complexes, and base-of-slope aprons alternating with hemipelagic deposition during the Pleistocene. Sea-level fluctuations influenced the evolution of the sedimentary sequences of the Ebro margin, but the major control was the sediment supply from the Ebro River. ?? 1990.

  7. Barents Sea Paleozoic basement and basin configurations: Crustal structure from deep seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Huismans, Ritske; Faleide, Jan Inge

    2016-04-01

    The Barents Sea is underlain by at least two different basement domains; the Caledonian in the west and the Timanian in the east. The transition between these two domains is not well constrained and contrasting interpretations have been published recently. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea has challenged the Late Paleozoic basin configurations in the western and central Barents Sea as outlined in previous studies. Two regional ocean bottom seismic (OBS) profiles were acquired in 2014. This new dataset crosses the two major directions of Caledonian deformation proposed by different authors: N-S direction and SW-NE direction. Of particular importance are the high velocity anomalies related to Caledonian eclogites, revealing the location of Caledonian suture zones in the northern Barents Sea. One of the main objectives with this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be tightly linked to the deposition of large thicknesses of Devonian erosional products, and later rifting is expected to be influenced by inheritance of Caledonian trends. The P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity- and magnetic modelling will be used to augment the seismic model. The preliminary results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transects reveal areas of complex geology and velocity inversions. A low seismic impedance contrast between the sedimentary section and top crystalline basement makes identification of this interface uncertain. Depth to Moho mostly lies around 30 km, except in an area of rapid change in

  8. Structure and Evolution of the Central Andes of Peru

    NASA Astrophysics Data System (ADS)

    Gonzalez, L.; Pfiffner, O. A.

    2009-04-01

    Three major units make up the Andes in Peru: (1) The Western Cordillera consists of the Cretaceous Coastal Batholith intruding Jurassic to Cretaceous volcaniclastics (Casma group) in the west, and a fold-and-thrust belt of Mesozoic sediments in the east. Eocene and Miocene volcanics (Calipuy group and equivalents) overly all of these rock types. (2) The Central Highland contains a folded Paleozoic-Mesozoic sedimentary sequence overlain by thick Quaternary deposits. A major fault puts Neoproterozoic basement rocks of the Eastern Cordillera next to these units. (3) In the Eastern Cordillera, Late Paleozoic clastic successions unconformably overly folded Early Paleozoic sediments and a Neoproterozoic basement in the east. Permian (locally Triassic) granitoids intruded these units and were affected by folding and thrusting. In the core of the Eastern Cordillera, Early Cretaceous overly Early or Late Paleozoic strata. To the west, a thrust belt of Paleozoic to Cenozoic strata forms the transition to the foreland of the Brasilian shield. The most external part of this thrust belt involves Pliocene sediments and is referred to as Subandine zone. The Coastal Batholith is internally undeformed. The adjacent fold-and-thrust belt to the east is characterized by tight, nearly isoclinal upright folds with amplitudes of up to 1000 m. At the surface only Cretaceous rocks are observed. Using balancing techniques, a detachment horizon at the base of the Lowermost Cretaceous (Goyallarisquizga group - Oyon Formation) can be proposed. Further east, folds are more open, asymmetric and east verging, Jurassic sediments appear in the cores of the anticlines. The abrupt change in style from upright tight folding in the west to more open folding in the east is explained by a primary difference in the depositional sequence, most probably associated with synsedimentary faulting. The overlying volcanics of the Calipuy group and equivalents are, in turn, only slightly folded. In the Northern

  9. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; hide

    2014-01-01

    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  10. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru

    PubMed Central

    Biddle, Jennifer F.; Lipp, Julius S.; Lever, Mark A.; Lloyd, Karen G.; Sørensen, Ketil B.; Anderson, Rika; Fredricks, Helen F.; Elvert, Marcus; Kelly, Timothy J.; Schrag, Daniel P.; Sogin, Mitchell L.; Brenchley, Jean E.; Teske, Andreas; House, Christopher H.; Hinrichs, Kai-Uwe

    2006-01-01

    Studies of deeply buried, sedimentary microbial communities and associated biogeochemical processes during Ocean Drilling Program Leg 201 showed elevated prokaryotic cell numbers in sediment layers where methane is consumed anaerobically at the expense of sulfate. Here, we show that extractable archaeal rRNA, selecting only for active community members in these ecosystems, is dominated by sequences of uncultivated Archaea affiliated with the Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group, whereas known methanotrophic Archaea are not detectable. Carbon flow reconstructions based on stable isotopic compositions of whole archaeal cells, intact archaeal membrane lipids, and other sedimentary carbon pools indicate that these Archaea assimilate sedimentary organic compounds other than methane even though methanotrophy accounts for a major fraction of carbon cycled in these ecosystems. Oxidation of methane by members of Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group without assimilation of methane–carbon provides a plausible explanation. Maintenance energies of these subsurface communities appear to be orders of magnitude lower than minimum values known from laboratory observations, and ecosystem-level carbon budgets suggest that community turnover times are on the order of 100–2,000 years. Our study provides clues about the metabolic functionality of two cosmopolitan groups of uncultured Archaea. PMID:16505362

  11. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  12. Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2013-01-01

    Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.

  13. Radiographic analysis of sedimentary structures and depositional histories in Apollo 15 cores

    NASA Technical Reports Server (NTRS)

    Coch, N. K.

    1977-01-01

    Radiographs of the Apollo 15 deepdrill drive tubes were analyzed on an SDS electronic enhancer to determine sedimentary structures in the core samples. The data obtained were compared with all other Apollo mission radiographs and used to make inferences on the character of sedimentary depositional processes on the lunar surface.

  14. Florida: A Jurassic transform plate boundary

    USGS Publications Warehouse

    Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans

    1984-01-01

    Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our

  15. Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Doty, G.C.; Thordarson, William

    1983-01-01

    The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)

  16. Variety of Sedimentary Process and Distribution of Tsunami Deposits in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Yamaguchi, N.; Sekiguchi, T.

    2017-12-01

    As an indicator of the history and magnitude of paleotsunami events, tsunami deposits have received considerable attention. To improve the identification and interpretation of paleotsunami deposits, an understanding of sedimentary process and distribution of tsunami deposits is crucial. Recent detailed surveys of onshore tsunami deposits including the 2004 Indian Ocean tsunami and the 2011 Tohoku-oki tsunami have revealed that terrestrial topography causes a variety of their features and distributions. Therefore, a better understanding of possible sedimentary process and distribution on such influential topographies is required. Flume experiments, in which sedimentary conditions can be easily controlled, can provide insights into the effects of terrestrial topography as well as tsunami magnitude on the feature of tsunami deposits. In this presentation, we report laboratory experiments that focused on terrestrial topography including a water body (e.g. coastal lake) on a coastal lowland and a cliff. In both cases, the results suggested relationship between the distribution of tsunami deposits and the hydraulic condition of the tsunami flow associated with the terrestrial topography. These experiments suggest that influential topography would enhance the variability in thickness of tsunami deposits, and thus, in reconstructions of paleotsunami events using sedimentary records, we should take into account such anomalous distribution of tsunami deposits. Further examination of the temporal sequence of sedimentary process in laboratory tsunamis may improve interpretation and estimation of paleotsunami events.

  17. STEPPE: Supporting collaborative research and education on Earth's deep-time sedimentary crust.

    NASA Astrophysics Data System (ADS)

    Smith, D. M.

    2014-12-01

    STEPPE—Sedimentary geology, Time, Environment, Paleontology, Paleoclimate, and Energy—is a National Science Foundation supported consortium whose mission is to promote multidisciplinary research and education on Earth's deep-time sedimentary crust. Deep-time sedimentary crust research includes many specialty areas—biology, geography, ecology, paleontology, sedimentary geology, stratigraphy, geochronology, paleoclimatology, sedimentary geochemistry, and more. In fact, the diversity of disciplines and size of the community (roughly one-third of Earth-science faculty in US universities) itself has been a barrier to the formation of collaborative, multidisciplinary teams in the past. STEPPE has been working to support new research synergies and the development of infrastructure that will encourage the community to think about the big problems that need to be solved and facilitate the formation of collaborative research teams to tackle these problems. Toward this end, STEPPE is providing opportunities for workshops, working groups and professional development training sessions, web-hosting and database services and an online collaboration platform that facilitates interaction among participants, the sharing of documentation and workflows and an ability to push news and reports to group participants and beyond using social media tools. As such, STEPPE is working to provide an interactive space that will serve as both a gathering place and clearinghouse for information, allowing for broader integration of research and education across all STEPPE-related sub disciplines.

  18. Trace fossils and sedimentary facies from a Late Cambrian‐Early Ordovician tide‐dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions

    USGS Publications Warehouse

    Mángano, M. Gabriela; Buatois, Luis A.; Aceñolaza, Guillermo F.

    1996-01-01

    The Santa Rosita Formation is one the most widely distributed lower Paleozoic units of northwest Argentina. At the Quebrada del Salto Alto section, east of Purmamarca, Jujuy Province, it is represented by four sedimentary facies: thick‐bedded planar cross‐stratified quartzose sandstones (A), thin‐bedded planar cross‐stratified quartzose sandstones and mudstones (B), wave‐rippled sandstones and bioturbated mudstones (C), and black and greenish gray shales (D). Paleocurrent data, sandstone architecture, and sedimentary structures from faciès A and B indicate bipolar/bimodal paleoflows, suggesting the action of tidal currents. The succession is interpreted as that of a tide‐dominated shelf, with only secondary influence of wave processes. Trace fossils are restricted to facies B and C.The Cruziana ichnocoenosis is preserved on the soles of thin‐bedded planar cross‐stratified quartzose sandstones (faciès B). This ichnocoenosis consists of Conostichus isp., Cruziana omanica, C. semiplicata, C. cf. tortworthi, Cruziana isp. Helminthopsis abeli, Monomorphichnus bilinearis, M. multilineatus, Palaeophycus tubularis, Rusophycus carbonarias, R. latus, and R. isp. The occurrence of Cruziana semiplicata, C. omanica, C. cf. tortworthi, and Rusophycus latus supports a Late Cambrian‐Tremadoc age. Slabbing of Cruziana shows complex interactions between biologic and sedimentologic processes, and suggests a predominance of exhumed traces, washed out and recast by tractive sand deposition. Sandstone soles are densely packed with biogenic structures and exhibit distinctive clusters of Rusophycus isp. that most likely represent trilobite nesting burrows. The Cruziana ichnocoenosis records the resident fauna of a protected, lower intertidal to subtidal interbar setting.The Skolithos ichnocoenosis is represented by high to low density vertical burrows of Skolithos linearis, which extend downwards to the quartzose sandstone soles of faciès B and

  19. Timing of the Late Paleozoic Ice Age: A Review of the Status Quo and New U-Pb Zircon Ages From Southern Gondwana

    NASA Astrophysics Data System (ADS)

    Mundil, R.; Griffis, N. P.; Keller, C. B.; Fedorchuk, N.; Montanez, I. P.; Isbell, J.; Vesely, F.; Iannuzzi, R.

    2017-12-01

    Throughout the Carboniferous and Permian Late Paleozoic Ice Age (LPIA), glaciations in southern Gondwana exerted a profound influence on global climate and environment, ocean chemistry, and the nature of sedimentary processes. The LPIA is widely regarded as an analogue for Pleistocene glaciations. Our understanding of the latter, as well as the validity of predictions for the future global climate and environment, depends therefore on our ability to reconstruct the LPIA. A robust chronostratigraphic framework built on high precision/high accuracy geochronology is crucial for the reconstruction of events and processes that occurred during the LPIA, particularly in the absence of high-resolution terrestrial biostratigraphic constraints that apply to both near- and far-field proxy records. The occurrence of volcaniclastic layers containing primary volcanic zircon at many levels throughout southern Gondwana makes such a reconstruction feasible, but complications inevitably arise due to the mixing of older age components with primary volcanic crystals, as well as the potential of unrecognized open system behavior to produce spurious younger ages. These pitfalls cause age dispersion that may be difficult to interpret, or is unrecognized if low precision geochronological techniques are used, resulting in inaccurate radioisotopic ages. Our current efforts in the Parana Basin (Southern Brazil) and the Karoo Basin (South Africa/Namibia) concentrate on building a robust and exportable chronostratigraphic framework based on U-Pb zircon CA-TIMS ages with sub-permil level precision combined with Bayesian approaches for resolving the eruption age of dispersed age spectra to facilitate the reconstruction of glaciogenic processes through the Carboniferous-Permian transition, as well as their implications for global sea level, atmospheric pCO2 and ocean chemistry. We will also review currently available geochronological data from contemporaneous Australian successions and their

  20. Environmental Assessment for the Upgrade and Construction of the Eielson Air Force Base Rail Line, Eielson Air Force Base, Alaska

    DTIC Science & Technology

    2012-03-01

    Soils Affected Environment The geology of the area is classified as Precambrian and Paleozoic-age metamorphic rocks of the Yukon-Tanana crystalline...Eielson plutons. The igneous and metamorphic rocks have been overlain by younger sedimentary Pleistocene and Holocene loess deposits. These deposits...Alternative. Environmental resources evaluated in detail for potential environmental consequences were land use and visual resources, noise, cultural

  1. Remnant colloform pyrite at the haile gold deposit, South Carolina: A textural key to genesis

    USGS Publications Warehouse

    Foley, N.; Ayuso, R.A.; Seal, R.R.

    2001-01-01

    Auriferous iron sulfide-bearing deposits of the Carolina slate belt have distinctive mineralogical and textural features-traits that provide a basis to construct models of ore deposition. Our identification of paragenetically early types of pyrite, especially remnant colloform, crustiform, and layered growth textures of pyrite containing electrum and pyrrhotite, establishes unequivocally that gold mineralization was coeval with deposition of host rocks and not solely related to Paleozoic tectonic events. Ore horizons at the Haile deposit, South Carolina, contain many remnants of early pyrite: (1) fine-grained cubic pyrite disseminated along bedding; (2) fine- grained spongy, rounded masses of pyrite that may envelop or drape over pyrite cubes; (3) fragments of botryoidally and crustiform layered pyrite, and (4) pyritic infilling of vesicles and pumice. Detailed mineral chemistry by petrography, microprobe, SEM, and EDS analysis of replaced pumice and colloform structures containing both arsenic compositional banding and electrum points to coeval deposition of gold and the volcanic host rocks and, thus, confirms a syngenetic origin for the gold deposits. Early pyrite textures are present in other major deposits of the Carolina slate belt, such as Ridgeway and Barite Hill, and these provide strong evidence for models whereby the sulfide ores formed prior to tectonism. The role of Paleozoic metamorphism was to remobilize and concentrate gold and other minerals in structurally prepared sites. Recognizing the significance of paragenetically early pyrite and gold textures can play an important role in distinguishing sulfide ores that form in volcanic and sedimentary environments from those formed solely by metamorphic processes. Exploration strategies applied to the Carolina slate belt and correlative rocks in the eastern United States in the Avalonian basement will benefit from using syngenetic models for gold mineralization.

  2. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  3. A 2.7 Myr record of sedimentary processes on a high-latitude continental slope: 3D seismic evidence from the mid-Norwegian margin

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2017-12-01

    An extensive three-dimensional seismic dataset is used to investigate the sedimentary processes and morphological evolution of the mid-Norwegian continental slope through the Quaternary. These data reveal hundreds of buried landforms, including channels and debris flows of variable morphology, as well as gullies, iceberg ploughmarks, slide scars and sediment waves. Slide scars, turbidity currents and debris flows comprise slope systems controlled by local slope morphology, showing the spatial variability of high-latitude sedimentation. Channels dominate the Early Pleistocene ( 2.7-0.8 Ma) morphological record of the mid-Norwegian slope. During Early Plesitocene, glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Glacigenic debris-flows appear within the Middle-Late Pleistocene ( 0.8-0 Ma) succession. Their abundance increases on Late Pleistocene palaeo-surfaces, marking a paleo-environmental change characterised by decreasing role for channelized turbidity currents and dense water flows. This transition coincides with the gradual shift to full-glacial ice-sheet conditions marked by the appearance of the first erosive fast-flowing ice streams and an associated increase in sediment flux to the shelf edge, emphasizing first-order climate control on the temporal variability of high-latitude sedimentary slope records.

  4. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  5. Geophysical modeling of the northern Appalachian Brompton-Cameron, Central Maine, and Avalon terranes under the New Jersey Coastal Plain

    USGS Publications Warehouse

    Maguire, T.J.; Sheridan, R.E.; Volkert, R.A.

    2004-01-01

    A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129-218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as "Avalonia", which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne

  6. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras.

    PubMed

    LoDuca, S T; Bykova, N; Wu, M; Xiao, S; Zhao, Y

    2017-07-01

    Non-calcified marine macroalgae ("seaweeds") play a variety of key roles in the modern Earth system, and it is likely that they were also important players in the geological past, particularly during critical transitions such as the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE). To investigate the morphology and ecology of seaweeds spanning the time frame from the CE through the GOBE, a carefully vetted database was constructed that includes taxonomic and morphometric information for non-calcified macroalgae from 69 fossil deposits. Analysis of the database shows a pattern of seaweed history that can be explained in terms of two floras: the Cambrian Flora and the Ordovician Flora. The Cambrian Flora was dominated by rather simple morphogroups, whereas the Ordovician Flora, which replaced the Cambrian Flora in the Ordovician and extended through the Silurian, mainly comprised comparatively complex morphogroups. In addition to morphogroup representation, the two floras show marked differences in taxonomic composition, morphospace occupation, functional-form group representation, and life habit, thereby pointing to significant morphological and ecological changes for seaweeds roughly concomitant with the GOBE and the transition from the Cambrian to Paleozoic Evolutionary Faunas. Macroalgal changes of a similar nature and magnitude, however, are not evident in concert with the CE, as the Cambrian Flora consists largely of forms established during the Ediacaran. The cause of such a lag in macroalgal morphological diversification remains unclear, but an intriguing possibility is that it signals a previously unknown difference between the CE and GOBE with regard to the introduction of novel grazing pressures. The consequences of the establishment of the Ordovician Flora for shallow marine ecosystems and Earth system dynamics remain to be explored in detail but could have been multifaceted and potentially include impacts on the global

  7. Atmospheric methane from organic carbon mobilization in sedimentary basins — The sleeping giant?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; di Primio, R.; Horsfield, B.

    2011-08-01

    The mass of organic carbon in sedimentary basins amounts to a staggering 10 16 t, dwarfing the mass contained in coal, oil, gas and all living systems by ten thousand-fold. The evolution of this giant mass during subsidence and uplift, via chemical, physical and biological processes, not only controls fossil energy resource occurrence worldwide, but also has the capacity for driving global climate: only a tiny change in the degree of leakage, particularly if focused through the hydrate cycle, can result in globally significant greenhouse gas emissions. To date, neither climate models nor atmospheric CO 2 budget estimates have quantitatively included methane from thermal or microbial cracking of sedimentary organic matter deep in sedimentary basins. Recent estimates of average low latitude Eocene surface temperatures beyond 30 °C require extreme levels of atmospheric CO 2. Methane degassing from sedimentary basins may be a mechanism to explain increases of atmospheric CO 2 to values as much as 20 times higher than pre-industrial values. Increased natural gas emission could have been set in motion either by global tectonic processes such as pulses of activity in the global alpine fold belt, leading to increased basin subsidence and maturation rates in the prolific Jurassic and Cretaceous organic-rich sediments, or by increased magmatic activity such as observed in the northern Atlantic around the Paleocene-Eocene boundary. Increased natural gas emission would have led to global warming that was accentuated by long lasting positive feedback effects through temperature transfer from the surface into sedimentary basins. Massive gas hydrate dissociation may have been an additional positive feedback factor during hyperthermals superimposed on long term warming, such as the Paleocene-Eocene Thermal Maximum (PETM). As geologic sources may have contributed over one third of global atmospheric methane in pre-industrial time, variability in methane flux from sedimentary

  8. Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Nunn, Jeffrey A.; Aires, Jose R.

    1988-01-01

    The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.

  9. Application of MSS/LANDSAT images to the structural study of recent sedimentary areas: Campos Sedimentary Basin, Rio de Janeiro, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Barbosa, M. P.

    1983-01-01

    Visual and computer aided interpretation of MSS/LANDSAT data identified linear and circular features which represent the ""reflexes'' of the crystalline basement structures in the Cenozoic sediments of the emergent part of the Campos Sedimentary Basin.

  10. Velocity Models of the Sedimentary Cover and Acoustic Basement, Central Arctic

    NASA Astrophysics Data System (ADS)

    Bezumov, D. V.; Butsenko, V.

    2017-12-01

    As the part of the Russian Federation Application on the Extension of the outer limit of the continental shelf in the Arctic Ocean to the Commission for the limits of the continental shelf the regional 2D seismic reflection and sonobuoy data was obtained in 2011, 2012 and 2014 years. Structure and thickness of the sedimentary cover and acoustic basement of the Central Arctic ocean can be refined due to this data. "VNIIOkeangeologia" created a methodology for matching 2D velocity model of the sedimentary cover based on vertical velocity spectrum calculated from wide-angle reflection sonobuoy data and the results of ray tracing of reflected and refracted waves. Matched 2D velocity models of the sedimentary cover in the Russian part of the Arctic Ocean were computed along several seismic profiles (see Figure). Figure comments: a) vertical velocity spectrum calculated from wide-angle reflection sonobuoy data. RMS velocity curve was picked in accordance with interpreted MCS section. Interval velocities within sedimentary units are shown. Interval velocities from Seiswide model are shown in brackets.b) interpreted sonobuoy record with overlapping of time-distance curves calculated by ray-tracing modelling.c) final depth velocity model specified by means of Seiswide software.

  11. Experimental evidence for an effect of early-diagenetic interaction between labile and refractory marine sedimentary organic matter on nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Domeyer, Bettina; Graf, Gerhard

    2007-05-01

    In most natural sedimentary systems labile and refractory organic material (OM) occur concomitantly. Little, however, is known on how different kinds of OM interact and how such interactions affect early diagenesis in sediments. In a simple sediment experiment, we investigated how interactions of OM substrates of different degradability affect benthic nitrogen (N) dynamics. Temporal evolution of a set of selected biogeochemical parameters was monitored in sandy sediment over 116 days in three experimental set-ups spiked with labile OM (tissue of Mytilus edulis), refractory OM (mostly aged Zostera marina and macroalgae), and a 1:1 mixture of labile and refractory OM. The initial amounts of particulate organic carbon (POC) were identical in the three set-ups. To check for non-linear interactions between labile and refractory OM, the evolution of the mixture system was compared with the evolution of the simple sum of the labile and refractory systems, divided by two. The sum system is the experimental control where labile and refractory OM are virtually combined but not allowed to interact. During the first 30 days there was evidence for net dissolved-inorganic-nitrogen (DIN) production followed by net DIN consumption. (Here 'DIN' is the sum of ammonium, nitrite and nitrate.) After ˜ 30 days a quasi steady state was reached. Non-linear interactions between the two types of OM were reflected by three main differences between the early-diagenetic evolutions of nitrogen dynamics of the mixture and sum (control) systems: (1) In the mixture system the phases of net DIN production and consumption commenced more rapidly and were more intense. (2) The mixture system was shifted towards a more oxidised state of DIN products [as indicated by increased (nitrite + nitrate)/(ammonium) ratios]. (3) There was some evidence that more OM, POC and particulate nitrogen were preserved in the mixture system. That is, in the mixture system more particulate OM was preserved while a higher

  12. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    NASA Astrophysics Data System (ADS)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  13. Coastal sedimentary research examines critical issues of national and global priority

    USGS Publications Warehouse

    Fletcher, Chip; Anderson, John; Crook, Keith A.W.; Kaminsky, George; Larcombe, Piers; Murray-Wallace, Colin V.; Sansone, Frank; Scott, David B.; Riggs, Stan; Sallenger, Asbury; Shennan, Ian; Thieler, E. Robert; Wehmiller, John F.

    2000-01-01

    An international conference was held recently in Honolulu, Hawaii, to examine and plan for coastal sedimentary research in the United States and globally. Participants agreed that sedimentary coastal environments constitute a critical national and global resource that suffers widespread degradation due to human impacts. Moreover, human population growth and inappropriate development in the coastal zone are escalating public asset losses due to coastal hazards and placing large numbers of communities at growing risk (Figure 1).

  14. Compaction and sedimentary basin analysis on Mars

    NASA Astrophysics Data System (ADS)

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  15. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    USGS Publications Warehouse

    Edgar, Lauren; Gupta, Sanjeev; Rubin, David M.; Lewis, Kevin W.; Kocurek, Gary A.; Anderson, Ryan; Bell, James F.; Dromart, Gilles; Edgett, Kenneth S.; Grotzinger, John P.; Hardgrove, Craig; Kah, Linda C.; LeVeille, Richard A.; Malin, Michael C.; Mangold, Nicholas; Milliken, Ralph E.; Minitti, Michelle; Palucis, Marisa C.; Rice, Melissa; Rowland, Scott K.; Schieber, Juergen; Stack, Kathryn M.; Sumner, Dawn Y.; Wiens, Roger C.; Williams, Rebecca M.E.; Williams, Amy J.

    2018-01-01

    This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture, and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop likely records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the northeast, across the surface of a bar that migrated southeast. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.

  16. Bedded Barite Deposits from Sonora (nw Mexico): a Paleozoic Analog for Modern Cold Seeps

    NASA Astrophysics Data System (ADS)

    Canet, C.; Anadón, P.; González-Partida, E.; Alfonso, P.; Rajabi, A.; Pérez-Segura, E.; Alba-Aldave, L. A.

    2013-05-01

    The Mazatán barite deposits represent an outstanding example of Paleozoic bedded barite, a poorly understood type of mineral deposit of major economic interest. The largest barite bodies of Mazatán are hosted within an Upper Carboniferous flysch succession, which formed part of an accretionary wedge related to the subduction of the Rheic Ocean beneath Gondwana. As well, a few barite occurrences are hosted in Upper Devonian, pre-orogenic turbidites. A variety of mineralized structures is displayed by barite, including: septaria nodules, enterolitic structures, rosettes and debris-flow conglomerates. Barite is accompanied by chalcedony, pyrite (framboids) and berthierine. Gas-rich fluid inclusions in barite were analyzed by Raman spectroscopy and methane was identified, suggesting the occurrence of light hydrocarbons in the environment within which barite precipitated. 13C-depleted carbonates (δ13C: -24.3 to -18.8‰) were found in the barite deposits; they formed through anaerobic oxidation of methane coupled to sulfate reduction, and yield negative δ18O values (-11.9 to -5.2‰) reflecting the isotopic composition of Devonian-Carboniferous seawater. Methane-derived carbonates occur in modern hydrocarbon seeps and have been reported from Mesozoic and Cenozoic seep sediments, but they have never before been described in Paleozoic bedded barite deposits. δ34S of barite varies from +17.6 to +64.1‰, with the lowest values overlapping the range for coeval seawater sulfate; this distribution indicates a process of sulfate reduction. Barite precipitation can be explained by mixing of methane- and barium-rich fluids with pore-water (seawater) containing sulfate residual from microbial reduction. Two analyses from barite gave an 87Sr/86Sr within and slightly above the range for seawater at the time of deposition, with 0.708130 and 0.708588, which would preclude the involvement of hydrothermal fluids in the mineralization process.

  17. The Pipe Creek Sinkhole biota, a diverse late tertiary continental fossil assemblage from Grant County, Indiana

    USGS Publications Warehouse

    Farlow, J.O.; Sunderman, J.A.; Havens, J.J.; Swinehart, A.L.; Holman, J.A.; Richards, R.L.; Miller, N.G.; Martin, R.A.; Hunt, R.M.; Storrs, G.W.; Curry, B. Brandon; Fluegeman, R.H.; Dawson, M.; Flint, M.E.T.

    2001-01-01

    Quarrying in east-central Indiana has uncovered richly fossiliferous unconsolidated sediment buried beneath Pleistocene glacial till. The fossiliferous layer is part of a sedimentary deposit that accumulated in a sinkhole developed in the limestone flank beds of a Paleozoic reef. Plant and animal (mostly vertebrate) remains are abundant in the fossil assemblage. Plants are represented by a diversity of terrestrial and wetland forms, all of extant species. The vertebrate assemblage (here designated the Pipe Creek Sinkhole local fauna) is dominated by frogs and pond turtles, but fishes, birds; snakes and small and large mammals are also present; both extinct and extant taxa are represented. The mammalian assemblage indicates an early Pliocene age (latest Hemphillian or earliest Blancan North American Land Mammal Age). This is the first Tertiary continental biota discovered in the interior of the eastern half of North America.

  18. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; Cousin, A.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Wiens, R. C.

    2017-03-01

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e

  19. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE PAGES

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.; ...

    2016-11-05

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary

  20. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary

  1. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Taylor, Kevin G.; Polya, David

    2014-01-01

    Diagenesis significantly impacts mudstone lithofacies. Processes operating to control diagenetic pathways in mudstones are poorly known compared to analogous processes occurring in other sedimentary rocks. Selected organic-carbon-rich mudstones, from the Kimmeridge Clay and Monterey Formations, have been investigated to determine how varying starting compositions influence diagenesis.The sampled Kimmeridge Clay Formation mudstones are organized into thin homogenous beds, composed mainly of siliciclastic detritus, with some constituents derived from water-column production (e.g., coccoliths, S-depleted type-II kerogen, as much as 52.6% total organic carbon [TOC]) and others from diagenesis (e.g., pyrite, carbonate, and kaolinite). The sampled Monterey Formation mudstones are organized into thin beds that exhibit pelleted wavy lamination, and are predominantly composed of production-derived components including diatoms, coccoliths, and foraminifera, in addition to type-IIS kerogen (as much as 16.5% TOC), and apatite and silica cements.During early burial of the studied Kimmeridge Clay Formation mudstones, the availability of detrital Fe(III) and reactive clay minerals caused carbonate- and silicate-buffering reactions to operate effectively and the pore waters to be Fe(II) rich. These conditions led to pyrite, iron-poor carbonates, and kaolinite cements precipitating, preserved organic carbon being S-depleted, and sweet hydrocarbons being generated. In contrast, during the diagenesis of the sampled Monterey Formation mudstones, sulfide oxidation, coupled with opal dissolution and the reduced availability of both Fe(III) and reactive siliciclastic detritus, meant that the pore waters were poorly buffered and locally acidic. These conditions resulted in local carbonate dissolution, apatite and silica cements precipitation, natural kerogen sulfurization, and sour hydrocarbons generation.Differences in mud composition at deposition significantly influence subsequent

  2. Pre-lithification tectonic foliation development in a clastic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John

    2016-04-01

    The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.

  3. Sedimentary records of metal contamination and eutrophication in Jinhae-Masan Bay, Korea.

    PubMed

    Lim, Dhong-il; Jung, Hoi Soo; Kim, Kyung Tae; Shin, Hyeon Ho; Jung, Seung Won

    2012-11-01

    Historical environmental pollution in a semi-enclosed coastal bay was investigated using high-resolution sedimentary records for C(org), N(tot), CaCO(3,) δ(13)C, and δ(15)N signatures, and trace metals. A temporal increase in organic matter might have been attributable to enhanced primary marine productivity, presumably caused by increased anthropogenic nutrient inputs in the semi-enclosed, eutrophic system. Metal accumulation occurred in three stages: a preindustrial stage before the 1930s with natural concentrations of metals, an industrialization stage (1940s-1970s) with the highest concentrations, and a postindustrial stage (post 1970s) with stable or decreasing concentrations. However, Hg exhibited a different accumulation history, with concentrations increasing in the early 1900s and accelerating after the 1920s, probably in response to coal burning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Geology and geophysics of the West Nubian Paleolake and the Northern Darfur Megalake (WNPL-NDML): Implication for groundwater resources in Darfur, northwestern Sudan

    NASA Astrophysics Data System (ADS)

    Elsheikh, Ahmed; Abdelsalam, Mohamed G.; Mickus, Kevin

    2011-08-01

    The recent delineation of a vastly expanded Holocene paleo-lake (the Northern Darfur Megalake which was originally mapped as the West Nubian Paleolake and here will be referred to as WNPL-NDML) in Darfur in northwestern Sudan has renewed hopes for the presence of an appreciable groundwater resource in this hyper-arid region of Eastern Sahara. This paleolake which existed within a closed basin paleo-drainage system might have allowed for the collection of surface water which was subsequently infiltrated to recharge the Paleozoic-Mesozoic Nubian Aquifer. However, the presence of surface exposures of Precambrian crystalline rocks in the vicinity of the paleolake has been taken as indicating the absence of a thick Paleozoic-Mesozoic sedimentary section capable of holding any meaningful quantity of groundwater. This work integrates surface geology and gravity data to show that WNPL-NDML is underlain by NE-trending grabens forming potential local Paleozoic-Mesozoic aquifers that can hold as much as 1120 km 3 of groundwater if the sedimentary rocks are completely saturated. Nevertheless, it is advised here that recharge of the Nubian aquifer under WNPL-NDML is insignificant and that much of the groundwater is fossil water which was accumulated during different geological times much wetter than today's hyper-arid climate in Eastern Sahara. Excessive extraction will lead to quick depletion of this groundwater resource. This will result in lowering of the water table which in turn might lead to the drying out of the oases in the region which provide important habitats for humans, animals and plants in northern Darfur.

  5. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  6. Modern sedimentary environments in Boston Harbor, Massachusetts

    USGS Publications Warehouse

    Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.

    1991-01-01

    Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.

  7. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display

  8. Widespread effects of middle Mississippian deformation in the Great Basin of western North America

    USGS Publications Warehouse

    Trexler, J.H.; Cashman, P.H.; Cole, J.C.; Snyder, W.S.; Tosdal, R.M.; Davydov, V.I.

    2003-01-01

    Stratigraphic analyses in central and eastern Nevada reveal the importance of a deformation event in middle Mississippian time that caused widespread deformation, uplift, and erosion. It occurred between middle Osagean and late Meramecian time and resulted in deposition of both synorogenic and postorogenic sediments. The deformation resulted in east-west shortening, expressed as east-vergent folding and east-directed thrusting; it involved sedimentary rocks of the Antler foredeep as well as strata associated with the Roberts Mountains allochthon. A latest Meramecian to early Chesterian unconformity, with correlative conformable lithofacies changes, postdates this deformation and occurs throughout Nevada. A tectonic highland-created in the middle Mississippian and lasting into the Pennsylvanian and centered in the area west and southwest of Carlin, Nevada- shed sediments eastward across the Antler foreland, burying the unconformity. Postorogenic strata are late Meramecian to early Chesterian at the base and are widespread throughout the Great Basin. The tectonism therefore occurred 20 to 30 m.y. after inception of the Late Devonian Antler orogeny, significantly extending the time span of this orogeny or representing a generally unrecognized orogenic event in the Paleozoic evolution of western North America. We propose a revised stratigraphic nomenclature for Mississippian strata in Nevada, based on detailed age control and the recognition of unconformities. This approach resolves the ambiguity of some stratigraphic names and emphasizes genetic relationships within the upper Paleozoic section. We take advantage of better stratigraphic understanding to propose two new stratigraphic units for southern and eastern Nevada: the middle Mississippian Gap Wash and Late Mississippian Captain Jack Formations.

  9. Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province

    USGS Publications Warehouse

    Finch, Warren I.

    1991-01-01

    The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986).  The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.  

  10. 14th-16th century Danube floods and long-term water-level changes reflected in archaeological-sedimentary evidence - in comparison with documentary evidence

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea; Laszlovszky, József

    2014-05-01

    In the present paper an overview of published and unpublished results of archaeological and sedimentary investigations, predominantly reflect on 14th-16th-century changes, are provided and compared to documentary information on flood events and long-term changes. Long-term changes in flood behaviour and average water-level conditions had long-term detectable impacts on sedimentation and fluvio-morphological processes. Moreover, the available archaeological evidence might also provide information on the reaction of the society, in the form of changes in settlement organisation, building structures and processes. At present, information is mainly available concerning the 16th, and partly to the 14th-15th centuries. Medium and short term evidence mainly corresponds to the main flood peaks or even to single catastrophic flood events. Such processes may be identified in archaeological evidence concerning the second half of the 14th, early 15th centuries; while most of the cases listed above were connected to the flood peak (and/or generally increasing water-level conditions) of the late 15th and early 16th centuries. In other cases connections between sedimentary/archaeological evidence and the mid- and late 16th-century high flood-frequency period were presumed. Documentary evidence referring to the same period suggests that higher flood frequency and intensity periods occurred in the early and mid 16th century; a probably more prolonged flood rich period took place in the second half of the 16th century, with a peak in the late 1560s-early 1570s and maybe with another at the end of the 16th century. Earlier flood peaks in documentary evidence were detected on the Danube at the turn of the 14th-15th centuries and in the last decades of the 15th century, continuing in the early 16th century.

  11. Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites.

    PubMed

    Noffke, Nora

    2015-02-01

    Sandstone beds of the <3.7 Ga Gillespie Lake Member on Mars have been interpreted as evidence of an ancient playa lake environment. On Earth, such environments have been sites of colonization by microbial mats from the early Archean to the present time. Terrestrial microbial mats in playa lake environments form microbialites known as microbially induced sedimentary structures (MISS). On Mars, three lithofacies of the Gillespie Lake Member sandstone display centimeter- to meter-scale structures similar in macroscopic morphology to terrestrial MISS that include "erosional remnants and pockets," "mat chips," "roll-ups," "desiccation cracks," and "gas domes." The microbially induced sedimentary-like structures identified in Curiosity rover mission images do not have a random distribution. Rather, they were found to be arranged in spatial associations and temporal successions that indicate they changed over time. On Earth, if such MISS occurred with this type of spatial association and temporal succession, they would be interpreted as having recorded the growth of a microbially dominated ecosystem that thrived in pools that later dried completely: erosional pockets, mat chips, and roll-ups resulted from water eroding an ancient microbial mat-covered sedimentary surface; during the course of subsequent water recess, channels would have cut deep into the microbial mats, leaving erosional remnants behind; desiccation cracks and gas domes would have occurred during a final period of subaerial exposure of the microbial mats. In this paper, the similarities of the macroscopic morphologies, spatial associations, and temporal succession of sedimentary structures on Mars to MISS preserved on Earth has led to the following hypothesis: The sedimentary structures in the <3.7 Ga Gillespie Lake Member on Mars are ancient MISS produced by interactions between microbial mats and their environment. Proposed here is a strategy for detecting, identifying, confirming, and differentiating

  12. Arctic Ocean Sedimentary Cover Structure, Based on 2D MCS Seismic Data.

    NASA Astrophysics Data System (ADS)

    Kireev, A.; Kaminsky, V.; Poselov, V.; Poselova, L.; Kaminsky, D.

    2016-12-01

    In 2016 the Russian Federation has submitted its partial revised Submission for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean. In order to prepare the Submission, in 2005 - 2014 the Russian organizations carried out a wide range of geological and geophysical studies, so that today over 23000 km of MCS lines and 4000 km of deep seismic sounding are accomplished. For correct time/depth conversion of seismic sections obtained with a short streamer in difficult ice conditions wide-angle reflection/refraction seismic sonobuoy soundings were used. All of these seismic data were used to refine the stratigraphy model, to identify sedimentary complexes and to estimate the total thickness of the sedimentary cover. Seismic stratigraphy model was successively determined for the Cenozoic and pre-Cenozoic parts of the sedimentary section and was based on correlation of the Russian MCS data and seismic data documented by boreholes. Cenozoic part of the sedimentary cover is based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin. Pre-Cenozoic part of the sedimentary cover is based on tracing major unconformities from boreholes on the Chukchi shelf (Crackerjack, Klondike, Popcorn) to the North-Chuckchi Trough and further to the Mendeleev Rise as well as to the Vilkitsky Trough and the adjacent Podvodnikov Basin. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to generalize all seismic surveys (top of acoustic basement correlation data) and bathymetry data in the sedimentary cover thickness map

  13. Accumulation of sedimentary photosynthetic pigments characterized by pyropheophorbide a and steryl chlorin esters (SCEs) in a shallow eutrophic coastal lake (Lake Hamana, Japan)

    NASA Astrophysics Data System (ADS)

    Itoh, Nobuyasu; Tani, Yukinori; Soma, Yuko; Soma, Mitsuyuki

    2007-01-01

    We investigated the factors controlling the composition of sedimentary photosynthetic pigments in Lake Hamana (Japan), a shallow (12 m), brackish, holomictic lake, by analyzing photosynthetic pigments and the sterol composition of steryl esters of pyropheophorbide a (steryl chlorin esters, SCEs) in the water column and surface sediments. The mean annual composition of carotenoids in the water was quite different from that in the surface sediments. We evaluated the relative accumulation efficiency of individual pigments in the sediments by comparing ratios of individual pigment concentrations relative to total chlorophyll a (TChl- a) in sediment to those in the water column. The relative accumulation efficiencies decreased in the following order: lutein > diatoxanthin > β,β-carotene > zeaxanthin > β,ɛ-carotene > alloxanthin ≫ fucoxanthin. The ratio of total pyro-derivatives of chlorophyll a, formed through the grazing of algae by zooplankton, to TChl- a in the surface sediments was much higher (0.24-0.33) than that in the water column, which was less than 0.03 even in the deepest water (10 m). The summed concentration of pyropheophytin a and SCEs (TPyphe- a) showed positive and significant relationships ( r2 > 0.56, n = 7) with residual carotenoids in sediments. These results suggest that incorporation of algal pigments in fecal pellets through grazing by zooplankton enhances pigment preservation during early diagenesis at the sediment surface. Moreover, sedimentary carotenoid compositions were consistent with the sterol compositions of sedimentary SCE fractions. Selective grazing by zooplankton was thus a primary factor determining the composition of sedimentary carotenoids in this lake.

  14. Sedimentary particulate iron: the missing micronutrients ?

    NASA Astrophysics Data System (ADS)

    Beghoura, Houda; Gorgues, Thomas; Aumont, Olivier; Planquette, Hélène

    2017-04-01

    Iron is known to regulate the marine primary production and to impact the structure of ecosystems. Indeed, iron is the limiting nutrient for the phytoplankton growth over about 30% of the global ocean. However, the nature of the external sources of iron to the ocean and their quantification remain uncertain. Among these external sources, the sediment sources have been recently shown to be underestimated. Besides, since the operationally defined dissolved iron (which is the sum of truly dissolved and colloidal iron) was traditionally assumed to be the only form available to phytoplankton and bacteria, most studies have focused on the supply of dissolved iron to the ocean, the role of the particulate fraction of iron being largely ignored. This traditional view has been recently challenged, noticeably, by observational evidences. Indeed, in situ observations have shown that large amounts of particulate iron are being resuspended from continental margins to the open ocean thanks to fine grained particles' transport over long distances. A fraction of this particulate iron may dissolve and thereby fuel the phytoplankton growth. The magnitude of the sedimentary sources of particulate iron and the releasing processes affecting this iron phase are not yet well constrained or quantified. As a consequence, the role of sedimentary particulate iron in the biogeochemical cycles is still unclear despite its potentially major widespread importance. Here, we propose a modeling exercise to assess the first order impacts of this newly considered particulate sedimentary iron on global ocean biogeochemistry. We designed global experiments with a coupled dynamical-biogeochemical model (NEMO-PISCES). First, a control simulation that includes only a sediment source of iron in the dissolved phase has been run. Then, this control simulation is being compared with simulations, in which we include a sediment source of iron in both phases (dissolved as well as particulate). Those latter

  15. Sedimentary Mounds on Mars: Tracing Present-day Formation Processes into the Past

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.; Edwards, C. S.

    2014-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one and revealed spectacular views of finely layered sedimentary materials throughout the globe [1]. Some of these sedimentary deposits are 'mound' shaped and lie inside of craters (Fig 1). Crater mound deposits are found throughout the equatorial region, as well as ice-rich deposits found in craters in the north and south polar region [2-4]. Despite their wide geographical extent and varying volatile content, the 'mound' deposits have a large number of geomorphic and structural similarities that suggest they formed via equivalent processes. Thus, modern depositional processes of ice and dust can serve as an invaluable analog for interpreting the genesis of ancient sedimentary mound deposits.

  16. Geologic Map of Baranof Island, southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Haeussler, Peter J.; Himmelberg, Glen R.; Zumsteg, Cathy L.; Layer, Paul W.; Friedman, Richard M.; Roeske, Sarah M.; Snee, Lawrence W.

    2015-01-01

    This map updates the geology of Baranof Island based on fieldwork, petrographic analyses, paleontologic ages, and isotopic ages. These new data provide constraints on depositional and metamorphic ages of lithostratigraphic rock units and the timing of structures that separate them. Kinematic analyses and thermobarometric calculations provide insights on the regional tectonic processes that affected the rocks on Baranof Island. The rocks on Baranof Island are components of a Paleozoic to Early Tertiary oceanic volcanic arc complex, including sedimentary and volcanic rocks that were deposited on and adjacent to the arc complex, deformed, and accreted. The arc complex consists of greenschist to amphibolite facies Paleozoic metavolcanic and metasedimentary rocks overlain by lower-grade Triassic metasedimentary and metavolcanic rocks and intruded by Jurassic calc-alkaline plutons. The Paleozoic rocks correlate well in age and lithology with rocks of the Sicker and Buttle Lake Groups of the Wrangellia terrane on Vancouver Island and differ from rocks of the Skolai Group that constitute basement to type-Wrangellia in the Wrangell Mountains. The Jurassic intrusive rocks are correlative with plutons that intrude the Wrangellia terrane on Vancouver Island but are lacking in the Wrangell Mountains. The rocks accreted beneath the arc complex are referred to as the Baranof Accretionary Complex in this report and are correlated with the Chugach Accretionary Complex of southern and southeastern Alaska and with the Pacific Rim Complex on Vancouver Island. Stratigraphic correlations between upper- and lower-plate rocks on Baranof Island and western Chichagof Island with rocks on Haida Gwaii and Vancouver Island, in addition to correlative ages of intrusive rocks and restorations of the Fairweather-Queen Charlotte, Chatham Strait, and Peril Strait Faults that define the Baranof-Chichagof block, suggest Baranof Island was near Vancouver Island at the time of initiation of arc

  17. Textural and Rb-Sr isotopic evidence for late Paleozoic mylonitization within the Honey Hill fault zone southeastern Connecticut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, K.D.; Gromet, L.P.

    A petrographic and Rb-Sr isotopic study of rocks within and near the Honey Hill fault zone places important constraints on its history of movement. Rb-Sr apparent ages for micas and plagioclase from these rocks have been reset and range from Permian to Triassic, considerably younger than the minimum stratigraphic age (Ordovician) of the rocks studied or of Acadian (Devonian) regional metamorphism. Permian Rb-Sr ages of dynamically recrystallized muscovite date the development of mylonite fabric. An older age is precluded by the excellent preservation of unrecovered quartz, which indicates that these rocks did not experience temperatures high enough to anneal quartzmore » or thermally reset Rb-Sr isotopic systems in muscovite since the time of mylonitization. Metamorphic mineral assemblages and mineral apparent ages in rocks north of the fault zone indicate recrystallization under similar upper greenschist-lower amphibolite grade conditions during Permian to Triassic time. Collectively these results indicate that the Honey Hill fault zone was active during the Late Paleozoic and that ductile deformation and metamorphism associated with the Alleghanian orogeny extend well into southern Connecticut. An Alleghanian age for mylonitization within the Honey Hill fault zone suggests it should be considered as a possible site for the major Late Paleozoic strike-slip displacements inferred from paleomagnetic studies for parts of coastal New England and maritime Canada.« less

  18. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2016-04-01

    The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late

  19. Sedimentary Rocks and Methane - Southwest Arabia Terra

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.

    2006-01-01

    We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.

  20. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia

    PubMed Central

    Christian, Daniel; Wacey, David; Hazen, Robert M.

    2013-01-01

    Abstract Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago. Key Words: Archean—Biofilms—Microbial mats—Early Earth—Evolution. Astrobiology 13, 1103–1124. PMID:24205812

  1. Sequential development of structural heterogeneity in the Granny Creek oil field of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.H.; Zheng, L.; Shumaker, R.C.

    1993-08-01

    Analysis of Vibroseis and weight-drop seismic data over the Granny Creek oil field in the Appalachian foreland of West Virginia indicates that the field's development has been effected by episodic Paleozoic reactivation of fault blocks rooted in the Precambrian crystalline basement. The imprint of structures associated with the Rome trough penetrates the overlying Paleozoic sedimentary cover. Reactivation histories of individual fault blocks vary considerably throughout the Paleozoic. In general, the relative displacement of these basement fault blocks decrease exponentially during the Paleozoic; however, this pattern is interrupted by periods of increased tectonic activity and relative inversion of offsets along somemore » faults. The distribution of late-stage detached structures during the Alleghenian orogeny also appears, in part, to be controlled by mechanical anisotrophy within the detached section related to the reactivation of deeper structures in the crystalline basement. The net effect is a complex time-variable pattern of structures that partly controls the location of the reservoir and heterogeneity within the geometric framework of the reservoir. Structural heterogeneity in the Granny Creek area is subdivided on the basis of scale into structures associated with variations of oil production within the reservoir. Variations of production within the field are related, in part, to small detached structures and reactivated basement faults.« less

  2. The pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB)

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan

    2014-05-01

    According to the viewpoint that the paleo-Asian ocean closed by the end of early Paleozoic and extended during the late Paleozoic, a pre-Mesozoic tectonic unit division has been suggested. Five blocks and four sutures have been recognized in the pre-Devonia stage, the five blocks are called Erguna (EB), Xing'an (XB), Airgin Sum-Xilinhot (AXB), Songliao-Hunshandak (SHB) and Jiamusi (JB) blocks and four sutures, Xinlin-Xiguitu (XXS), Airgin Sum-Xilinhot-Heihe (AXHS), Ondor Sum-Jizhong-Yanji (OJYS) and Mudanjiang (MS) sutures. The EB contains the Precambrian base with the ages of 720-850Ma and ɛHf(T)=+2.5to +8.1. The XB is characterized by the Paleoproterozoic granitic gneiss with ɛHf(T)=-3.9 to -8.9. Several ages from 1150 to 1500 Ma bave been acquired in the AXB, proving presence of old block that links with Hutag Uul block in Mongolia to the west. The Paleoproterozoic (1.8-1.9Ga) and Neoproterozoic (750-850Ma) ages have been reported from southern and eastern parts of the SHB, respectively. As a small block in east margin of the XMOB, the JB outcrops magmatite and granitic gneiss bases with ages of 800-1000Ma. The XXS is marked by blueschists with zircon ages of 490-500Ma in Toudaoqiao village, ophiolites in Xiguitu County and granite with ages of about 500Ma along the northern segment of XXS. The AXHS is characterized by the early Paleozoic arc magmatic rocks with ages from 430Ma to 490Ma, mélange and the late Devonia molass basins, which indicates a northward subduction of the SHB beneath the AXB during the early-middle Paleozoic. The OJYS is composed of the early Paleozoic volcanic rocks, diorites and granites with ages of 425-475Ma, blueschists, ophiolitic mélange, the late Silurian flysch and Early-Middle Devonian molasses in western segment, granites (420-450Ma) in middle segment, and plagiogranites (443Ma) and the late Silurian molasses in eastern segment. This suture was caused by a southward subduction of the SHB beneath the North China block. The MS

  3. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model

    NASA Astrophysics Data System (ADS)

    Yakubchuk, Alexander

    2004-09-01

    The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust

  4. Nature and tectonic implications of uneven sedimentary filling of the South China Sea oceanic basin

    NASA Astrophysics Data System (ADS)

    Yin, Shaoru; Li, Jiabiao; Ding, Weiwei; Fang, Yinxia

    2017-04-01

    The IODP Expedition 349 in 2014, for the first time, illustrated significant differences of sediment rate and lithology in the central South China Sea (SCS) oceanic basin. Based on seismic reflection profiles tied to IODP349 drilling data, we investigated characteristics of sedimentary filling of the whole SCS oceanic basin, and examined their implications for tectonics. Results show that sediments fill the SCS oceanic basin mainly in three depositional patterns. Firstly, during the Oligocene to middle Miocene, sediments amassed almost solely and then connected like a band parallel to the continent in a low average sediment rate (<10 m/Myr) in the northern oceanic basin. These sediments were deposited mainly in the form of submarine fans and mass transport deposits. Sediments were predominately supplied by the Red and Pearl Rivers and the Dongsha Islands. The sedimentary characteristics likely reflect the latest early Miocene end of seafloor spreading of the SCS and the first-phase rapid uplift of the Tibetan Plateau. Secondly, during the late Miocene, deposition mainly occurred in the Northwest Sub-basin and extended southeastward with a middle average sediment rate ( 30 m/Myr). Sediments were mostly transported by the Red River and Xisha Trough and deposited in the form of submarine fans. The abnormal increase of sediment rate in the Northwest Sub-basin reflects late Miocene slip reversal of the Red River Fault. Finally, since the Pliocene, sediments gradually propagated northeastward in the Southwestern Sub-basin, and accumulated rapidly in the southeastern and northeastern basin, especially in the northern Manila Trench during the Quaternary, in an average sediment rate about 60-80 m/Myr. These sediments were transported mainly by submarine canyons and settled in the form of submarine fans and canyon-overbank deposition. Sediments came from four major sources, including Taiwan, Dongsha Islands, Mekong River, and northern Palawan. The Pliocene to Quaternary

  5. Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    1997-01-01

    Geologic mapping and crater counting in Chryse and Acidalia Planitiae (GAP) reveal five major sedimentary deposits of Hesperian to Early Amazonian age, including (1) a mass flow deposited during the Early Hesperian near Deuteronilus Mensae (northeast of the map region) that may have resulted from the carving of Kasei Valles, >3000 km southwest of the exposed part of the deposit; (2) knobby plains material consisting of channel (likely; from Simud and Tiu Valles and possibly Ares and Shalbatana Valles) and mass-wasting deposits in central and eastern CAP; (3) material largely from Maja and Ares Valles emplaced in at least western and southern CAP (outcrops in southern Chryse Planitia developed thermokarst); (4) a thin mass flow covering much of southern Chryse Planitia that emanated from Simud and Tiu Valles; and (5) a thick, extensive (perhaps >3500 km across) mass flow deposit in central and northern CAP derived from accumulation and backflow of the preceding thin mass flow or perhaps melting of polar deposits. Other possible deposits may not be recognizable owing to burial by younger materials or a lack of morphologic signature. Various associated landforms appear to be consistent with the mass flow interpretations, including lobate and linear scarps along deposit edges, fractures related to desiccation of thick sediments, troughs, and ridges near the edges of the deposit indicative of secondary mass movement and deformation, pitted domes and fissure-fed flows possibly formed by sedimentary (mud) eruptions, and longitudinal channel grooves perhaps formed by roller vortices. No convincing evidence for paleoshorelines or stagnant ice sheets is found in CAP. These findings suggest that mass flow and hyperconcentrated flooding may have been the predominant processes of outflow-channel dissection in CAP. Elsewhere in the northern plains, similar landforms are prevalent. The mass flow interpretation does not require either multiple episodes of extraordinarily high

  6. Field evidences for a Mesozoic palaeo-relief through the northern Tianshan

    NASA Astrophysics Data System (ADS)

    Gumiaux, Charles; Chen, Ke; Augier, Romain; Chen, Yan; Wang, Qingchen

    2010-05-01

    The modern Tianshan mountain belt, located in Central Asia, offers a natural laboratory to study orogenic processes linked with convergent geodynamical settings. Most of the previous studies either focused on the Paleozoic evolution of the range - subductions, arc accretions and continental collision - or on its Cenozoic intra-continental evolution linked with the India-Asia collision. At first order, the finite structure of this range obviously displays a remarkable uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. The present-day topography of the Tianshan is traditionally related to the latest intra-continental reactivation of the range. In contrast, the present field study of the northern Tianshan brings new and clear evidences for the existence of a significant relief, in this area, during Mesozoic times. The investigation zone is about 250 km long, from Wusu to Urumqi, along the northern flank of the Tianshan where the rivers deeply incised the topography. In such valleys, lithologies and structural relationships between Paleozoic basement rocks, Mesozoic and Cenozoic sedimentary series are particularly well exposed along several sections. Jurassic series are mostly characterized by coal-bearing, coarse-grained continental deposits. Within intra-mountain basins, sedimentary breccias, with clasts of Carboniferous basement rocks, have been locally found at the base of the series. This argues for the presence of a rather proximal palaeo-relief of basement rocks along the range front and the occurrence of proximal intra-mountain basins, during the Jurassic. Moreover, while a major thrust is mostly evoked between Jurassic deposits and the Paleozoic units, some of the studied sections show that the Triassic to Jurassic sedimentary series can be followed from the basin to the range. In these cases, the unconformity of the Mesozoic series on top of the Carboniferous basement has been locally clearly

  7. Specific Heat Capacities of Martian Sedimentary Analogs at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Vu, T. H.; Piqueux, S.; Choukroun, M.; Christensen, P. R.; Glotch, T. D.; Edwards, C. S.

    2017-12-01

    Data returned from Martian missions have revealed a wide diversity of surface mineralogies, especially in geological structures interpreted to be sedimentary or altered by liquid water. These terrains are of great interest because of their potential to document the environment at a time when life may have appeared. Intriguingly, Martian sedimentary rocks show distinctly low thermal inertia values (300-700 J.m-2.K-1.s-1/2, indicative of a combination of low thermal conductivity, specific heat, and density) that are difficult to reconcile with their bedrock morphologies (where hundreds of magmatic bedrock occurrences have been mapped with thermal inertia values >> 1200 J.m-2.K-1.s-1/2). While low thermal conductivity and density values are sometimes invoked to lower the thermal inertia of massive bedrock, both are not sufficient to lower values below 1200 J.m-2.K-1.s-1/2, far above the numbers reported in the literature for Martian sedimentary/altered rocks. In addition, our limited knowledge of the specific heat of geological materials and their temperature dependency, especially below room temperature, have prevented accurate thermal modeling and impeded interpretation of the thermal inertia data. In this work, we have addressed that knowledge gap by conducting experimental measurements of the specific heat capacities of geological materials relevant to Martian sedimentary rocks at temperatures between 100 and 350 K. The results show that variation of the specific heat with temperature, while appreciable to some extent, is rather small and is unlikely to contribute significantly in the lowering of thermal inertia values. Therefore, thermal conductivity is the parameter that has the most potential in explaining this phenomenon. Such scenario could be possible if the sedimentary rocks are finely layered with poor thermal contact between each internal bed. As the density of most geological materials is well-known, the obtained specific heat data can be used to

  8. Neogene marine sedimentary record of the Gulf of Alaska: from the glaciers to the distal submarine fan systems

    NASA Astrophysics Data System (ADS)

    Ridgway, K. D.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Moy, C. M.; Müller, J.; Ribeiro, F.; Gupta, S.; Gulick, S. P.; Jaeger, J. M.

    2013-12-01

    facies as representing deposition of coarse-grained detritus originating from sedimentary gravity flows followed by longer periods of hemipelagic deposition. The first clear record of glacial sediment input in the distal submarine fan environment is late Pliocene - early Pleistocene muddy diamict beds that probably are the products of ice-rafting. This unit is about 30 m in thickness. The overlying 260 m of the core are mainly dark gray mud with thin beds of volcanic ash and sand/silt beds. Lonestones are common and are mainly argillite and metasiltstone clasts suggesting at least a component of sediment derivation from onshore metamorphosed parts of the Mesozoic accretionary prism. In general, the overall Neogene sedimentary record in both the proximal and distal marine settings appears to be similar but requires a sediment link between the proximal strata deposited on the Yakutat microplate and the Surveyor fan system deposited on the Pacific Plate.

  9. Geology and physiography of the continental margin north of Alaska and implications for the origin of the Canada Basin

    USGS Publications Warehouse

    Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.

    1979-01-01

    The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends

  10. Excess europium content in Precambrian sedimentary rocks and continental evolution

    NASA Technical Reports Server (NTRS)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  11. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and

  12. Sedimentary sequence evolution in a Foredeep basin: Eastern Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejarano, C.; Funes, D.; Sarzalho, S.

    1996-08-01

    Well log-seismic sequence stratigraphy analysis in the Eastern Venezuela Foreland Basin leads to study of the evolution of sedimentary sequences onto the Cretaceous-Paleocene passive margin. This basin comprises two different foredeep sub-basins: The Guarico subbasin to the west, older, and the Maturin sub-basin to the east, younger. A foredeep switching between these two sub-basins is observed at 12.5 m.y. Seismic interpretation and well log sections across the study area show sedimentary sequences with transgressive sands and coastal onlaps to the east-southeast for the Guarico sub-basin, as well as truncations below the switching sequence (12.5 m.y.), and the Maturin sub-basin showsmore » apparent coastal onlaps to the west-northwest, as well as a marine onlap (deeper water) in the west, where it starts to establish. Sequence stratigraphy analysis of these sequences with well logs allowed the study of the evolution of stratigraphic section from Paleocene to middle Miocene (68.0-12.0 m.y.). On the basis of well log patterns, the sequences were divided in regressive-transgressive-regressive sedimentary cycles caused by changes in relative sea level. Facies distributions were analyzed and the sequences were divided into simple sequences or sub- sequences of a greater frequencies than third order depositional sequences.« less

  13. Sulfurized carbohydrates: an important sedimentary sink for organic carbon?

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Kok, Marika D.; Köster, Jürgen; Schouten, Stefan

    1998-12-01

    In contrast to the general belief that carbohydrate carbon (C CHO) is preferentially degraded and is not extensively preserved in the sedimentary record, it is shown here that C CHO forms a large fraction of the organic matter (OM) of the total organic carbon (TOC)-rich upper Jurassic Kimmeridge Clay Formation as a result of early diagenetic sulfurization, a previously unrecognized pathway of OM preservation. This is evident from both changes in the molecular composition of the insoluble OM and from δ 13C TOC shifts of 6‰ with varying C CHO contents. Furthermore, experiments simulating the natural sulfurization of the C CHO-rich alga Phaeocystis spp. demonstrated that sulfurization can indeed lead to a substantial preservation of C CHO with a molecular fingerprint identical to that of the Kimmeridge Clay and many other Recent and ancient marine OM-rich sediments. These results imply that preservation of C CHO can exert a fundamental control on δ 13C TOC in OM-rich sediments, complicating the interpretation of δ 13C TOC records with regard to estimating terrestrial versus aquatic OM fractions, reconstruction of past atmospheric CO 2 levels and global carbon budget models.

  14. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    NASA Astrophysics Data System (ADS)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness

  15. Lower Paleozoic Through Archean Detrital Zircon Ages From Metasedimentary Rocks of the Nome Group, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Amato, J. M.; Miller, E. L.; Gehrels, G.

    2003-12-01

    near Eldorado Creek and one further south along the Feather River. Each sample yielded 90-105 analyses and all uncertainties are 1 sigma. Chlorite schist MC-74 has a range of ages from the two youngest grains at 484 +/- 18 Ma and 510 +/- 7 Ma to 2984 +/- 2 Ma. Chlorite schist LMC-30 has a youngest grain at 521 +/- 2 Ma and an oldest grain of 2027 +/- 12. Quartz-mica schist LMC-58 also has a youngest grain at 521 +/- 2 Ma and an oldest grain of 2655 +/- 7 Ma. All three therefore have lower Paleozoic zircons, suggesting Lower Cambrian or younger depositional ages. Combining the data from all three rocks results in peaks on a cumulative probability plot at (in descending order of importance): 600 Ma, 683 Ma, 1593 Ma, 522 Ma, and 2985 Ma, with several smaller peaks between 774-1540 Ma and 1685-1960 Ma. Published ages from Nome Group orthogneisses are 680 Ma, suggesting the samples so far analyzed are likely in part sourced from local basement rocks that were eroded to provide ~680 Ma detrital zircons to sedimentary protoliths of part of the Nome Group.

  16. Characteristics of sedimentary structures in coarse-grained alluvial rivers

    NASA Astrophysics Data System (ADS)

    Ackerley, David; Powell, Mark

    2013-04-01

    The characteristics of coarse-grained alluvial surfaces have important implications for the estimation of flow resistance, entrainment thresholds and sediment transport rates in gravel-bed rivers. This area of research has, thus, demanded attention from geomorphologists, sedimentologists, and river engineers. The majority of research has focused towards understanding the characteristics and adjustments in surface grain size. Bed stability, however, is not ultimately defined by particle size but how grains are arranged within the bed surface. For example, by the organisation of particles into a variety of grain and form scale sedimentary structures and bedforms (e.g. imbrication; pebble clusters, stone nets, transverse ribs). While it is widely acknowledged sedimentary structuring must be considered within estimates of flow resistance and sediment transport, relatively little is known about the structural properties of water-worked river gravels. As a consequence, we remain woefully ignorant of this important aspect of gravel-bed river sedimentology. The aim of this poster is to present some preliminary results of a study designed to characterise the morphodynamics of sedimentary structures in coarse-grained alluvial rivers and their implications upon entrainment thresholds and sediment transport rates. The poster focuses on investigating the variability in grain and form scale sedimentary structuring across a number of field sites. Representative patches of three gravel bars on the Rivers Wharfe, Manifold and Afon Elan, UK, have been surveyed using a Leica HDS 3000 Terrestrial Laser Scanner. The resultant raw point-cloud data, recorded at a 4mm resolution, has been registered, filtered, and interpolated to produce highly detailed 2½D digital elevation models of gravel-bed surface topography. These surfaces have been analysed using a number of structural parameters including bed elevation probability distribution function statistics (standard deviation, skewness

  17. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  18. Chemical composition of sedimentary rocks in California and Hawaii

    USGS Publications Warehouse

    Hill, Thelma P.

    1981-01-01

    A compilation of published chemical analyses of sedimentary rocks of the United States was undertaken by the U.S. Geological Survey in 1952 to make available scattered data that are needed for a wide range of economic and scientific uses. About 20,000-25,000 chemical analyses of sedimentary rocks in the United States have been published. This report brings together 2,312 of these analyses from California and Hawaii. The samples are arranged by general lithologic characteristics and locality. Indexes of stratigraphy, rock name, commercial uses, and minor elements are provided. The sedimentary rocks are classified into groups and into categories according to the chemical analyses. The groups (A through F2) are defined by a system similar to that proposed by Brian Mason in 1952, in which the main parameters are the three major components of sedimentary rocks: (1) uncombined silica, (2) clay (R203 ? 3Si02 ? nH20), and (3) calcium-magnesium carbonate. The categories are based on the degree of admixture of these three major components with other components, such as sulfate, phos- phate, and iron oxide. Common-rock, mixed-rock, and special-rock categories apply to rocks consisting of 85 percent or more, 50-84 percent, and less than 49 percent, respectively, of the three major components combined. Maps show distribution of sample localities by States; triangular diagrams show the lithologic characteristics and classification groups. Cumulative-frequency curves of each constituent in each classification group of the common-rock and mixed-rock categories are also included. The numerous analyses may not adequately represent the geochemical nature of the rock types and formations of the region because of sampling bias. Maps showing distribution of sample localities indicate that many of the localities are in areas where, for economic or other reasons, special problems attracted interest. Most of the analyzed rocks tended to be fairly simple in composition - mainly mixtures of

  19. Geologic map of the Valdez D-1 and D-2 quadrangles (Mount Wrangell Volcano), Alaska

    USGS Publications Warehouse

    Richter, D.H.; McGimsey, R.G.; Labay, Keith A.; Lanphere, M.A.; Moore, R.B.; Nye, C.J.; Rosenkrans, D.S.; Winkler, G.R.

    2016-04-29

    This study was directed toward Mount Wrangell volcano and the older Wrangell volcanic field rocks that underlie the volcano. These older lavas include the Chetaslina lavas (867 ka–1,650 ka) and a basaltic andesite–dacite center (1,590 ka–1,640 ka) whose source areas are not well defined. Older Paleozoic and Mesozoic sedimentary, igneous, and metamorphic rocks of the Wrangellia terrane underlie the entire Wrangell volcanic field.

  20. Spatial heterogeneity in sulfur isotopes: implications for modern environments and paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Fike, D. A.; Jones, D. S.; Fischer, W. W.

    2011-12-01

    Sulfur isotope ratio data have been used to provide significant insights into global biogeochemical cycling over Earth history. In addition to providing a framework for the construction of global redox budgets, these observations also provide the primary constraints on the advent and environmental importance of particular microbial metabolisms. As the chemostratigraphic record has become better resolved in space and time, however, reports of coeval discordant data are increasingly common - both within and between individual sedimentary basins. If accurate, this variability challenges our understanding of the first order behavior of the 'global' sulfur biogeochemical cycle. Some of this discordance may be due to spatial gradients in important oceanographic parameters; however, we think that a more likely culprit is ongoing microbial metabolic activity (that impacts the isotopic composition recorded by geological samples) during both syndepositional sediment reworking and early diagenetic lithification. Modern studies have recently highlighted the efficacy with which microbial activity during sediment remobilization can dramatically alter isotopic profiles. Further, the magnitude of local, microbially driven variations in S isotopes in modern sediments is sufficiently large that uneven incorporation of these signatures during deposition and lithification can explain much of the observed discordance in chemostratigraphic reconstructions of sulfur cycling. Here we attempt to link spatial variability in the sedimentary rock record with understanding of modern microbial systems operating in marine sediments. To that end we examine chemostratigraphic records of sulfur isotope (δ34S) data spanning the terminal Neoproterozoic to early Paleozoic eras and assess their scales of spatial reproducibility. We can gain insight into interpreting the observed patterns in these records by examining modern (bio)sedimentary environments. This understanding also allows us to reflect on

  1. Timing and Nature of Events Leading to the Formation of the Albion-Raft River-Grouse Creek (ARG) Metamorphic Core complex, Northern Great Basin, W. U.S.

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Konstantinou, A.; Sheu, D.; Strickland, A.; Grove, M.

    2016-12-01

    Interpretations of the geodynamic significance of metamorphic core complexes in the northern Basin and Range are intimately tied to a combination of P-T data, geochronology and mica thermochronology used to infer episodes of deformation and uplift related to syn-shortening gravitational collapse of the crust in the latest Cretaceous-early Cenozoic. The ARG is no exception and we bring new geologic mapping, microstructural analysis, geochronology and 40Ar/39Ar thermochronology to bear on these questions. The petrogenesis of Eocene-Miocene magmas, the structural fabrics and metamorphism developed in wall rocks of plutons and the history of flanking basins outline a three-part Cenozoic story of this complex: Part 1: Mantle-derived heat input into the crust in the Eocene (42-36 Ma), related to Farallon slab removal, produced volcanism, plutonism, but little regional extension. Part 2: Heat input led to increased crustal melting as surface volcanism ceased. Diapiric rise of granite-cored gneiss domes sheathed by high grade, high strain metamorphic fabrics and mylonites took place over a protracted time, 32-25 Ma, stalling at depths > 10 km. Transitions upward from penetrative stretching fabrics to brittle crust were complex damage zones of multiply deformed and faulted Paleozoic strata overlain by a more intact 7-8 km thick section of Late Paleozoic and Triassic. Extension was localized and no sedimentary basins formed during this time. Part 3: Metamorphic and igneous rocks were brought to near surface conditions during Miocene extension, between 14-8 Ma ago. Structures accommodating E-W extension are high-angle, rotational normal faults that currently bound both sides of the ARG complex with linked sedimentary basins in their hanging wall. New 40Ar/39Ar data show that country rocks near the Oligocene Almo pluton share the pluton's cooling history. Further from the pluton, where pre-Oligocene fabrics are variably preserved, white mica total gas and plateau ages increase

  2. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  3. Geology of the Payette National Forest and vicinity, west-central Idaho

    USGS Publications Warehouse

    Lund, Karen

    2005-01-01

    Before the Late Cretaceous, the eastern and western parts of the geologically complex Payette National Forest, as divided by the Salmon River suture, had fundamentally different geologic histories. The eastern part is underlain by Mesoproterozoic to Cambrian(?) rocks of the Laurentian (Precambrian North American) continent. Thick Mesopro-terozoic units, which are at least in part equivalent in age to the Belt Supergroup of northern Idaho and western Montana, underwent Mesoproterozoic metamorphic and deformational events, including intrusion of Mesoproterozoic plutons. Dur-ing the Neoproterozoic to early Paleozoic, the western edge of Laurentia was rifted. This event included magmatism and resulted in deposition of rift-related Neoproterozoic to Lower Cambrian(?) volcanic and sedimentary rocks above Mesopro-terozoic rocks. The western part of the forest is underlain by upper Paleozoic to lower Mesozoic island-arc volcanic and sedimentary rocks. These rocks comprise four recognized island-arc terranes that were amalgamated and intruded by intermediate-composition plutons, probably in the Late Juras-sic and Early Cretaceous, and then sutured to Laurentia along the Salmon River suture in the Late Cretaceous. The Salmon River suture formed as a right-lateral, transpressive fault. The metamorphic grade and structural complexity of the rocks increase toward the suture from both sides, and geochemical signatures in crosscutting plutonic rocks abruptly differ across the crustal boundary. Having been reactivated by younger structures, the Salmon River suture forms a north-trending topographic depression along Long Valley, through McCall, to the Goose Creek and French Creek drainages. During the last stages of metamorphism and deformation related to the suture event, voluminous plutons of the Idaho batholith were intruded east of the suture. An older plutonic series is intermediate in composition and preserved as elon-gated and deformed bodies near the suture and as parts of

  4. Meso-Cenozoic morphological evolution of NW Africa, the case of the Tuareg swell.

    NASA Astrophysics Data System (ADS)

    Rougier, S.; Gautheron, C.; Barbarand, J.; Missenard, Y.; Zeyen, H.; Pinna, R.; Bonin, B.; Liégeois, J.-P.; Ouabadi, A.; Frizon de Lamotte, D.

    2012-04-01

    The continental crust of Africa, largely built during the Pan-African orogeny (late Neoproterozoic) has acquired in its northern part, during Paleozoic times, an arch and basin morphology. Meso-Cenozoic large scale topographic anomalies, associated to Cenozoic intraplate volcanism, such as Hoggar, Tibesti or Darfur domes, are superimposed to these structures. Precise ages of swells, as well as their relations with Paleozoic arch and basin morphology of the area, remain controversial. The aim of this study, focussed on the Hoggar dome, in southern Algeria, is to produce new constraints on the Post-Paleozoic evolution of this region. The Tuareg shield, from which Hoggar is the main central part and Aïr a SE extension, forms a topographic high reaching an altitude >2900m (Mt Tahat, Atakor district), exposing Precambrian rocks over 500000km2. While presumed Cretaceous sedimentary remnants suggest a possible stage of slightly positive topography during the Mesozoic, current high topography is emphasized by Cenozoic volcanic formations, mostly basaltic in composition. We present new low-temperature thermochronology data, with apatite fission track and (U-Th)/He ages on Hoggar and Aïr substratum. We combine these results with thermal, gravimetric and isostatic two-dimensional lithosphere-scale geophysical models, following the method of Zeyen & Fernandez (1994). Preliminary thermochronological results present ages from 99+-6 to 166+-10 Myr for AFT, and AHe from 10 to 300 Myr. Thermal simulations of these data suggest that currently outcropping Precambrian Hoggar basement could have experienced temperatures of approximately 80°C between Upper Cretaceous and Eocene. We propose that these elevated temperatures are related to burial beneath a 1 to 3 km thick sedimentary cover, depending on thermal gradient. The base of this sedimentary cover could correspond to the poorly described Upper Cretaceous remnants, currently uplifted up to 1450 m. These results are in agreement

  5. The Sedimentary Architecture of the Hatton Basin from New 2D Seismic Reflection and Gravity Data

    NASA Astrophysics Data System (ADS)

    Bérdi, L.; Prada, M.; O'Reilly, B.; Haughton, P.; Shannon, P.; Martínez-Loriente, S.

    2017-12-01

    The Hatton Basin is located at the western European Atlantic Margin, approximately 600 km west of Scotland and Ireland. It is bounded by the Rockall Bank to the east and by the Hatton High to the west. Little is known about its structure and evolution within the context of the North Atlantic opening. Here we present a preliminary interpretation of the large-scale sedimentary structure of the Hatton basin from new 2D regional long-streamer seismic reflection data and DSDP information. Gravity data and previous knowledge on the crustal structure of the basin are used to investigate its formation processes.First interpretations of the seismic data suggest the presence of three megasequences referred to as Ha (Early Pliocene to Holocene), Hb (Late Eocene to Late Miocene) and Hc (Paleocene to middle Eocene), which are bounded by regional unconformities C10 (intra-Early Pliocene), C30 (intra-Late Eocene) and C40 (base Cenozoic) respectively. The C20 (intra-Early Miocene) surface is absent in the basin but is locally identified to the south of the study area. The mapped regional reflectors are recognized throughout the European North Atlantic.Below the Cenozoic succession, the presence of Mesozoic and/or older rocks in the basin is proposed based on the seismic character of the reflectors and the apparent rotated fault blocks. In the lowest Cenozoic megasequence (Hc), a prograding sedimentary wedge system was identified at the basin margins that implies a relative sea level fall during this period. In Late Paleocene‒Early Eocene times, the basin was affected by extensive magmatism that resulted in the emplacement of volcanic intrusives and extrusives of basaltic origin. The deposition of megasequence Hb was controlled by strong bottom current activity as a consequence of rapid subsidence and deep marine conditions. The transition from sequence Hb to Ha is marked by the C10 unconformity, which records the late Cenozoic uplift and erosion of Ireland and Britain

  6. Palynostratigraphy of the Erkovtsy field of brown coal (the Zeya-Bureya sedimentary basin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kezina, T.V.; Litvinenko, N.D.

    2007-08-15

    The Erkovtsy brown coal field in the northwestern Zeya-Bureya sedimentary basin (129-130{sup o}E, 46-47{sup o}N) is structurally confined to southern flank of the Mesozoic-Cenozoic Belogor'e depression. The verified stratigraphic scheme of the coalfield sedimentary sequence is substantiated by palynological data on core samples from 18 boreholes sampled in the course of detailed prospecting and by paleobotanical analysis of sections in the Yuzhnyi sector of the coalfield (data of 1998 by M.A. Akhmetiev and S.P. Manchester). Sections of the Erkovtsy, Arkhara-Boguchan, and Raichikha brown-coal mines are correlated. Stratigraphic subdivisions distinguished in the studied sedimentary succession are the middle and upper Tsagayanmore » subformations (the latter incorporating the Kivda Beds), Raichikha, Mukhino, Buzuli, and Sazanka formations.« less

  7. Sedimentary architecture of the Shaler outcrop, Gale Crater, Mars: paleoenvironmental and sediment transport implications

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Edgar, L. A.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Muller, J.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.

    2013-12-01

    Sedimentary rocks are archives of ancient depositional processes and environments on planetary surfaces. Reconstructing such processes and environments requires observations of sedimentary structures and architecture (the large-scale geometry and organisation of sedimentary bedsets). We report the analysis of the distinct Shaler outcrop, a prominent stratified unit located between the Bathurst Inlet outcrop and the floor of Yellowknife bay. The Shaler outcrop is an ~1 m thick stratal unit that spans approximately 30 m outcrop in length, and was examined by Curiosity on sols 120-121 and more recently on sols 309-324. Detailed stereo observations of the outcrop across most of its entire lateral extent were made using Navigation and Mast Cameras. These data permit detailed analysis of stratal geometries, distribution of sedimentary structures, and broad grain size trends. Overall the Shaler outcrop comprises a heterogeneous assemblage of interstratified platy sandstones separated by recessive, likely finer-grained beds. Coarser-grained beds are characterised by decimeter-scale trough cross-bedding. The north-eastern section of the outcrop shows greater abundance of interstratified sandstones and finer-grained beds. The southwestern section is characterised by darker bedsets that are likely coarser grained interstratified with finer-grained sandstones. The darker bedsets appear to comprise stacked trough-cross stratified bedsets. Finer-grained recessive intervals are not apparent in this section. The presence and scale of trough cross-stratification indicates that sediment was transported by the migration of sinuous crested dunes. Bedding geometries indicate sub-critical angles of climb. We examine the large-scale bedset architecture to evaluate the original depositional geometry of the Shaler sedimentary system, and consider its plausible depositional processes and paleoenvironmental setting. Finally, we consider its relationship to the sedimentary succession exposed

  8. Geology, Geochemistry and Geophysics of Sedimentary Rock-Hosted Au Deposits in P.R. China

    USGS Publications Warehouse

    Peters, Stephen G.

    2002-01-01

    This is the second report concerning results of a joint project between the U.S. Geological Survey and the Tianjin Geological Academy to study sedimentary rock-hosted Au deposits in P.R. China. Since the 1980s, Chinese geologists have devoted a large-scale exploration and research effort to the deposits. As a result, there are more than 20 million oz of proven Au reserves in sedimentary rock-hosted Au deposits in P.R. China. Additional estimated and inferred resources are present in over 160 deposits and occurrences, which are undergoing exploration. This makes China second to Nevada in contained ounces of Au in Carlin-type deposits. It is likely that many of the Carlin-type Au ore districts in China, when fully developed, could have resource potential comparable to the multi-1,000-tonne Au resource in northern Nevada. The six chapters of this report describe sedimentary rock-hosted Au deposits that were visited during the project. Chapters 1 and 2 provide an overview of sedimentary rock-hosted Au deposits and Carlin-type Au deposits and also provide a working classification for the sedimentary rock-hosted Au deposits. Chapters 3, 4, and 5 provide descriptions that were compiled from the literature in China in three main areas: the Dian-Qian-Gui, the Qinling fold belt, and Middle-Lower Yangtze River areas. Chapter 6 contains a weights-of-evidence (WofE), GIS-based mineral assessment of sedimentary rock-hosted Au deposits in the Qinling fold belt and Dian-Qian-Gui areas. Appendices contain scanned aeromagnetic (Appendix I) and gravity (Appendix II) geophysical maps of south and central China. Data tables of the deposits (Appendix III) also are available in the first report as an interactive database at http://geopubs.wr.usgs.gov/open-file/of98-466/. Geochemical analysis of ore samples from the deposits visited are contained in Appendix IV.

  9. Sedimentary structures and stratal geometries at the foothills of Mount Sharp: their role in paleoenvironmental interpretation

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Rubin, D. M.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Stack, K.; Kah, L. C.; Banham, S.; Edgett, K. S.

    2015-12-01

    The Mars Science Laboratory Curiosity rover has been exploring sedimentary rocks at the foothills of Mount Sharp since August 2014. Robust interpretation of the paleoenvironmental contexts requires detailed facies analysis of these rocks including analysis and interpretation of sedimentary structures and sediment body geometries. Here, we describe some of the detailed sedimentary structures and sedimentary geometries observed by Curiosity between the Pahrump_Hills field site and its current location at Marias Pass. The Pahrump Hills sedimentary section comprises a succession dominated by finely laminated mudstones of the Murray formation that are interpreted to have been deposited in an ancient lake within Gale crater. Toward the top of the Pahump Hills succession, we observe the appearance of coarser-grained sandstones that are interstratified within the lacustrine mudstones. These sandstones that include Whale Rock and Newspaper Rock show lenticular geometries, and are pervasively cross-stratified. These features indicate that currents eroded shallow scours in the lake beds that were then infilled by deposition from migrating subaqueous dunes. The paleoenvironmental setting may represent either a gullied delta front setting or one in which lake level fall caused fluvial erosion and infilling of the shallow scours. Since leaving Pahrump_Hills, Curiosity has imaged extensive exposures of strata that are partly correlative with and stratigraphically overlie the uppermost part of the Pahrump section. Isolated cross-bedded sandstones and possible interstratified conglomerates beds occur within Murray formation mudstones. Capping sandstones with a likely variety of environmental contexts overlie mudstones. Where imaged in detail, sedimentary structures, such as trough-cross bedding and possible eolian pinstriping, provide constraints on plausible sedimentary processes and bounds on depositional setting.

  10. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  11. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad

    2010-09-01

    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  12. Seismic Stratigraphy of the Mariana Forearc Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Chapp, E.; Taylor, B.; Oakley, A.; Moore, G.

    2005-12-01

    A grid of seismic reflection profiles across the Mariana forearc between 14N-18N reveals a sedimentary basin between the Oligocene-Miocene frontal arc and the Eocene outer forearc highs. We identify and correlate several seismic stratigraphic units and use them to constrain the local and regional tectonics, which vary significantly from north to south. Four major sediment packages are distinguished in the southern forearc basin. The oldest unit, U-4, is conformable to arcward-tilted, rotated fault blocks formed during early extension, possibly associated with early Oligocene rifting prior to Parece Vela Basin spreading. Onlap relationships between the oldest sedimentary units indicate that deposition occurred before, during and after block rotation. On one profile, the U-4 sequence is deformed above a blind thrust fault in an otherwise extensional environment. Sediments that comprise the third unit, U-3, thin trenchward and onlap onto U-4. U-2 sediments onlap both sides of the basin and are characterized by nearly uniform thicknesses across the southern section. They currently dip trenchward, but are bypassed and onlapped arcward by thin recent deposits, U-1, on the three southern lines, suggesting recent relative subsidence of the outer forearc. The onset of this subsidence (during deposition of the upper strata of U-2) may have generated slope instability that triggered a large submarine slump off the frontal arc high into the forearc basin ENE of Saipan. The seismic stratigraphic units reveal both pre- and post-slump depositional boundaries including a possible post-slump debris apron around the perimeter of the toe thrust. The central region (near 16N), absent of the large rotated basement fault blocks found in the south, is characterized by high-angle normal faults that offset the seafloor by as much as 200 m. The upper section of U-4 is visible in isolated sections, but the coherency of the oldest layers is lost. Because a clear basement reflection is not

  13. Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.

    The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less

  14. A Hydrothermal-Sedimentary Context for the Origin of Life

    PubMed Central

    Hickman-Lewis, K.; Hinman, N.; Gautret, P.; Campbell, K.A.; Bréhéret, J.G.; Foucher, F.; Hubert, A.; Sorieul, S.; Dass, A.V.; Kee, T.P.; Georgelin, T.; Brack, A.

    2018-01-01

    Abstract Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5–4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5–3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life—Hadean environment—Mineral surface reactions—Hydrothermal fluids—Archean volcanic sediments. Astrobiology 18, 259–293. PMID:29489386

  15. Water resources of the Minnesota River-Hawk Creek watershed, southwestern Minnesota

    USGS Publications Warehouse

    Van Voast, Wayne A.; Broussard, W.L.; Wheat, D.E.

    1972-01-01

    The Minnesota River – Hawk Creek watershed is located in southwestern Minnesota. The watershed has an area of 1,479 square miles and is drained along its southwestern edge by the Minnesota River (Minnesota Division of Waters, 1959). The major watercourse within the watershed is Hawk Creek, having a drainage area of 510 square miles. Other, shorter streams drain into the Minnesota River but are mostly ephemeral. The watershed has a gently undulating land surface formed on glacial deposits. Directly underlying the glacial deposits in most of the area are Cretaceous sedimentary rocks. Paleozoic and Precambrian rocks are also locally in contact with overlying glacial deposits. Beds of sand and gravel buried at various depths within the glacial deposits are generally thin and discomtinuous but are the most accessible and widely used aquifers in the watershed. Beds of poorly consolidated sandstone in the Cretaceous rocks are locally good aquifers, generally yielding softer water, but in lesser quantities, than aquifers in the overlying glacial deposits. In the eastern part of the watershed, aquifers in Paleozoic and Precambrian sedimentary rocks are capable of high yields to wells and contain water of similar quality to water in the overlying Cretaceous and glacial deposits.

  16. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay

    NASA Astrophysics Data System (ADS)

    Yuan, Hong-Wei; Chen, Jian-Fang; Ye, Ying; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Jiang, Zong-Pei; Lin, Yu-Shih; Chen, Chen-Tung Arthur; Loh, Pei Sun

    2017-10-01

    Lignin oxidation products, δ13C values, C/N ratios and particle size were used to investigate the sources, distribution and chemical stability of sedimentary organic matter (OM) along the Andong salt marsh located in the southwestern end of Hangzhou Bay, China. Terrestrial OM was highest at the upper marshes and decreased closer to the sea, and the distribution of sedimentary total organic carbon (TOC) was influenced mostly by particle size. Terrestrial OM with a C3 signature was the predominant source of sedimentary OM in the Spartina alterniflora-dominated salt marsh system. This means that aside from contributions from the local marsh plants, the Andong salt marsh received input mostly from the Qiantang River and the Changjiang Estuary. Transect C, which was situated nearer to the Qiantang River mouth, was most likely influenced by input from the Qiantang River. Likewise, a nearby creek could be transporting materials from Hangzhou Bay into Transect A (farther east than Transect C), as Transect A showed a signal resembling that of the Changjiang Estuary. The predominance of terrestrial OM in the Andong salt marsh despite overall reductions in sedimentary and terrestrial OM input from the rivers is most likely due to increased contributions of sedimentary and terrestrial OM from erosion. This study shows that lower salt marsh accretion due to the presence of reservoirs upstream may be counterbalanced by increased erosion from the surrounding coastal areas.

  17. Summary mineral resource appraisal of the Richfield 1 degree x 2 degrees Quadrangle, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas August; Morris, Hal T.

    1987-01-01

    The mineral resource potential of the Richfield 1? x 2? quadrangle, Utah, has been appraised using geological, geophysical, geochemical, and remote-sensing techniques. These studies have led to many publications giving basic data and interpretations; of these, a series of 18 maps at 1:250,000 and 1:500,000 scales summarizing aspects of the geology, geophysics, geochemistry, and remote sensing is designated the CUSMAP (Conterminous United States Mineral Appraisal Program) folio. This circular uses the data shown on these maps to appraise the mineral resource potential of the quadrangle. The oldest rocks exposed in the Richfield quadrangle are small patches of Early Proterozoic (1.7 billion years old) gneiss and schist on the west side of the Mineral Mountains. These rocks presumably formed the basement on which many thousands of meters of Late Proterozoic, Paleozoic, and lower Mesozoic sedimentary strata were deposited. These rocks were deformed during the Late Cretaceous Sevier orogeny when Precambrian and Paleozoic strata in the western part of the quadrangle were thrust relatively eastward across Paleozoic and Mesozoic strata in the eastern part of the quadrangle. Late Cretaceous and early Tertiary highlands above the overthrust belt were eroded and much of the debris was deposited in broad basins east of the belt. Volcanism in Oligocene and earliest Miocene time formed an east-northeast-trending belt of calcalkalic volcanoes across the southern half of the quadrangle. In early Miocene time, the composition of the volcanic rocks changed to a bimodal assemblage of mafic rocks and high-silica alkali rhyolite that has been erupted episodically ever since. Syngenetic mineral resources developed during formation of both sedimentary and volcanic rocks. These include limestone and dolomite, silica-rich sandstone, metalliferous black shale, evaporite deposits, zeolite deposits, pumice, cinders and scoria, and evaporitic or diagenetic deposits in playa environments. Most

  18. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    USGS Publications Warehouse

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the

  19. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  20. Recent advances in the hydrostratigraphy of paleozoic bedrock in the midwestern united states

    USGS Publications Warehouse

    Bradbury, K.R.; Runkel, Anthony C.

    2011-01-01

    Recent hydrostratigraphic researches have made it possible to acquire knowledge about the relatively undeformed Paleozoic bedrock that forms the most widely used aquifers in Minnesota and Wisconsin. Ongoing evaluation of the Cambrian Eau Claire Formation in southern Wisconsin has caused the formation to be considered a major regional aquitard. Subsurface logs indicate that its thickness ranges from absent to <75 m, and parts of the formation yield significant amounts of water to wells. A key part of modern aquitard hydrogeology is the integration of multi-level hydraulic head measurements into hydrostratigraphic analysis. In south-central Wisconsin, regional groundwater withdrawals from the confined Mount Simon aquifer have created a regional cone of depression. Regional groundwater modeling has demonstrated that this relatively thin unit exerts a major control on regional groundwater flow in the ??300-m-thick bedrock aquifer system and that it is critical in protecting deep wells from contamination.

  1. Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA)

    NASA Astrophysics Data System (ADS)

    Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud

    2018-01-01

    The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.

  2. Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov

    2016-04-01

    The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to

  3. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  4. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced

  5. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  6. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE PAGES

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.; ...

    2017-03-09

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  7. Extensional Late Paleozoic deformation on the western margin of Pangea, Patlanoaya area, Acatlán Complex, southern Mexico

    NASA Astrophysics Data System (ADS)

    Ramos-Arias, M. A.; Keppie, J. D.; Ortega-Rivera, A.; Lee, J. W. K.

    2008-02-01

    New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle-Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle-Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/ 39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian-Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE-SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/ 39Ar analyses of muscovite from the

  8. Demonstration of Incremental Sampling Methodology for Soil Containing Metallic Residues

    DTIC Science & Technology

    2013-09-01

    and includes metamorphic , sedimentary, and volcanic rocks of Paleozoic age (Péwé et al. 1966). Upland areas adjacent to the Tanana River usually are...as 5 m of silt, Late Pleistocene to Holocene in age. Gravel con- sists mostly of quartz and metamorphic rock with clasts ranging from 0.3 to 7.5 cm in...and Shawna Tazik September 2013 Approved for public release; distribution is unlimited. The US Army Engineer Research and

  9. Mineral remains of early life on Earth? On Mars?

    USGS Publications Warehouse

    Iberall, Robbins E.; Iberall, A.S.

    1991-01-01

    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  10. Sedimentary Flux to Passive Margins From Inversion of Drainage Patterns: Examples from Africa

    NASA Astrophysics Data System (ADS)

    Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair

    2017-04-01

    We show that inversion of more than 14000 rivers from the African continent provides information about Cenozoic uplift and sedimentary flux to its passive margins. We test predicted sedimentary flux using a dense two-dimensional seismic dataset offshore northwest Africa. First, six biostratigraphically dated horizons were mapped (seabed, 5.6 Ma, 23.8 Ma, 58.40 Ma, 89.4 Ma and basement) across the Mauritanian margin and used to construct isopachs. Check-shot data were used to convert time to depth and to determine best-fitting compaction parameters. Observed solid sedimentary fluxes are ˜2x103 km3 /Ma between 58.4 and 23.8 Ma, ˜4x103 km3 /Ma between 23.8 and 5.6 Ma, and ˜28x103 km3 /Ma between 5.6 and 0 Ma. Compaction errors were propagated into our history of sedimentary flux. Secondly, we inverted our drainage inventory to explore the relationship between uplift and erosion onshore and our measured flux. The stream power erosional model was calibrated using independent observations of marine terrace elevations and ages. We integrate incision rates along best-fitting theoretical river profiles to predict sedimentary flux at mouths of the rivers draining northwest Africa (e.g. Senegal). Calculated Neogene uplift and erosion is staged. Our predicted history of sedimentary flux increases in three stages towards the present-day, which agrees with the offshore measurements. Finally, using our inverse approach we systematically tested different erosional scenarios. We find that sedimentary flux to Africa's passive margins is controlled up the history of uplift and erosional processes play a moderating role. Predicted fluxes are indistinguishable if precipitation rate varies with a period less than ˜ 1 Ma or drainage area varies by less than 50%. To investigate the geodynamic setting of the Mauritanian margin we backstripped eight commercial wells that penetrate Neogene stratigraphy. Wells in the central part of the Mauritania basin include 500-800 m of Neogene water

  11. 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning

    NASA Astrophysics Data System (ADS)

    Cawood, Adam J.; Bond, Clare E.

    2018-01-01

    Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.

  12. Sea-floor morphology and sedimentary environments in western Block Island Sound, offshore of Fishers Island, New York

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Danforth, William W.; Blackwood, Dann S.; Winner, William G.; Parker, Castle E.

    2015-01-01

    Multibeam-bathymetric and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 114-square-kilometer area of Block Island Sound, southeast of Fishers Island, New York, are combined with sediment samples and bottom photography collected by the U.S. Geological Survey from 36 stations in this area in order to interpret sea-floor features and sedimentary environments. These interpretations and datasets provide base maps for studies on benthic ecology and resource management. The geologic features and sedimentary environments on the sea floor are products of the area’s glacial history and modern processes. These features include bedrock, drumlins, boulders, cobbles, large current-scoured bathymetric depressions, obstacle marks, and glaciolacustrine sediments found in high-energy sedimentary environments of erosion or nondeposition; and sand waves and megaripples in sedimentary environments characterized by coarse-grained bedload transport. Trawl marks are preserved in lower energy environments of sorting and reworking. This report releases the multibeam-bathymetric, sidescan-sonar, sediment, and photographic data and interpretations of the features and sedimentary environments in Block Island Sound, offshore Fishers Island.

  13. Sedimentary Environment Changes between Tsunami Events in the Central Fukushima Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Kusumoto, S.; Goto, T.; Satake, K.; Sugai, T.; Yoneda, M.; Omori, T.; Ozaki, H.

    2016-12-01

    Many tsunami deposits were found in the Tohoku region, Japan from recent and past tsunamis. Study of tsunami deposits is particularly important in the central to southern Fukushima Prefecture, which is the southern limit of the distributions of tsunami deposits of the 869 Jogan, 1454 Kyotoku and 1611 Keicho-Sanriku earthquakes. Previous studies reported that there were at least five tsunami deposits (EV1-EV5) consisted of fine-middle sand and the sedimentary environment was inner-bay or lagoon for the past 2,600 years (Goto and Aoyama, 2005; JpGU, Oikawa et al., 2011; JpGU, Oota and Hoyanagi, 2014; GSJ, Kusumoto et al., 2016; JpGU). However, the sedimentary environment changes between or across historical tsunamis have not been examined. In this study, we try to estimate the sedimentary environment changes using Total Organic Carbon (TOC), Total Nitrogen (TN) concentrations and organic Carbon-to-Nitrogen (C/N) ratio. We took 13 geological core samples of length 2.0-2.5 m at 11 locations 0.6-2.7 km from the coast. The deposits consisted of silt and massive sand with graded beddings, laminas and rip-up clasts. For samples, we performed grain-size analysis, radiocarbon age measurement and CN elemental analysis. We found three interesting characteristics. First, grain size of ordinary deposits between EV4 and EV5 tend to fine upward slightly. It suggests that tidal current became gradually weak. Second, C/N ratio is about 5-10 at every depth, meaning that organic material source was phytoplankton or zooplankton (Müller, 1977; GCA). Finally, TOC and TN concentrations slowly increase between EV4 and EV5, and they rapidly decrease across EV3 and EV4. Their slow increases correspond to sedimentary environment change from anaerobic to aerobic, whereas rapid decreases correspond to sedimentary environment change from aerobic to anaerobic. These characteristics might indicate development of sand bar between tsunami events and sudden collapse of sand bar by historical

  14. In-situ Micro-structural Studies of Gas Hydrate Formation in Sedimentary Matrices

    NASA Astrophysics Data System (ADS)

    Kuhs, Werner F.; Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Schwarz, Jens-Oliver; Wolf, Martin; Enzmann, Frieder; Kersten, Michael; Haberthür, David

    2015-04-01

    The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in-situ with sub-micron resolution. Here, we report on synchrotron-based micro-tomographic studies by which the nucleation and growth processes of gas hydrate were observed in different sedimentary matrices (natural quartz, glass beds with different surface properties, with and without admixtures of kaolinite and montmorillonite) at varying water saturation. The nucleation sites can be easily identified and the growth pattern is clearly established. In under-saturated sediments the nucleation starts at the water-gas interface and proceeds from there to form predominantly isometric single crystals of 10-20μm size. Using a newly developed synchrotron-based method we have determined the crystallite size distributions (CSD) of the gas hydrate in the sedimentary matrix confirming in a quantitative and statistically relevant manner the impressions from the tomographic reconstructions. It is noteworthy that the CSDs from synthetic hydrates are distinctly smaller than those of natural gas hydrates [1], which suggest that coarsening processes take place in the sedimentary matrix after the initial hydrate formation. Understanding the processes of formation and coarsening may eventually permit the determination of the age of gas hydrates in sedimentary matrices [2], which are largely unknown at present. Furthermore, the full micro-structural picture and its evolution will enable quantitative digital rock physics modeling to reveal poroelastic properties and in this way to support the exploration and exploitation of gas hydrate resources in the future. [1] Klapp S.A., Hemes S., Klein H., Bohrmann G., McDonald I., Kuhs W.F. Grain size measurements of natural gas hydrates. Marine Geology 2010; 274(1-4):85-94. [2] Klapp S.A., Klein H, Kuhs W.F. First determination of gas hydrate

  15. Precious metals associated with Late Cretaceous-early Tertiary igneous rocks of southwestern Alaska

    USGS Publications Warehouse

    Bundtzen, Thomas K.; Miller, Marti L.; Goldfarb, Richard J.; Miller, Lance D.

    1997-01-01

    Placer gold and precious metal-bearing lode deposits of southwestern Alaska lie within a region 550 by 350 km, herein referred to as the Kuskokwim mineral belt. This mineral belt has yielded 100,240 kg (3.22 Moz) of gold, 12, 813 kg (412,000 oz) of silver, 1,377,412 kg (39,960 flasks) of mercury, and modest amounts of antimony and tungsten derived primarily from the late Cretaceous-early Tertiary igneous complexes of four major types: (1) alkali-calcic, comagmatic volcanic-plutonic complexes and isolated plutons, (2) calc-alkaline, meta-aluminous reduced plutons, (3) peraluminous alaskite or granite-porphyry sills and dike swarms, and (4) andesite-rhyolite subaerial volcanic rocks.About 80 percent of the 77 to 52 Ma intrusive and volcanic rocks intrude or overlie the middle to Upper Cretaceous Kuskokwim Group sedimentary and volcanic rocks, as well as the Paleozoic-Mesozoic rocks of the Nixon Fork, Innoko, Goodnews, and Ruby preaccretionary terranes.The major precious metal-bearing deposit types related to Late Cretaceous-early Tertiary igneous complexes of the Kuskokwim mineral belt are subdivided as follows: (1) plutonic-hosted copper-gold polymetallic stockwork, skarn, and vein deposits, (2) peraluminous granite-porphory-hosted gold polymetallic deposits, (3) plutonic-related, boron-enriched silver-tin polymetallic breccia pipes and replacement deposits, (4) gold and silver mineralization in epithermal systems, and (5) gold polymetallic heavy mineral placer deposits. Ten deposits genetically related to Late Cretaceous-early Tertiary intrusions contain minimum, inferred reserves amounting to 162,572 kg (5.23 Moz) of gold, 201,015 kg (6.46 Moz) silver, 12,160 metric tons (t) of tin, and 28,088 t of copper.The lodes occur in veins, stockworks, breccia pipes, and replacement deposits that formed in epithermal to mesothermal temperature-pressure conditions. Fluid inclusion, isotopic age, mineral assemblage, alteration assemblage, and structural data indicate that

  16. New Insights into the Provenance of the Southern Junggar Basin in the Jurassic from Heavy Mineral Analysis and Sedimentary Characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, T. Q.; Wu, C.; Zhu, W.

    2017-12-01

    Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed

  17. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  18. A process-sedimentary framework for characterizing recent and ancient sabkhas

    USGS Publications Warehouse

    Handford, C.R.

    1981-01-01

    The discovery of sabkha environments during the 1960's, marked the beginning of Recent evaporite sedimentological studies and their perception as models for facies analysis. However, variation among Recent sabkhas, though recognized by the geologic community, has not been duly addressed, which has resulted in overuse of the Trucial Coast model in comparative sedimentological studies. Knowledge of the dominant physical processes which determine sabkha morphology, and of the sedimentary response to those processes, can lead to a fundamental understanding of a sabkha's origin and of how it differs from other sabkhas. Physical processes thought to be most important (besides evaporation) include those operative under: (1) marine-; (2) fluvial-lacustrine-; and (3) eolian-dominated conditions. Dominance of one or more of these in the proper settings give rise to marine coastal sabkhas, continental playas, and interdune sabkhas. Sedimentary responses to dominant physical processes lead to the development of sabkhas consisting of a combination of either: (1) terrigenous clastics; (2) carbonate-sulfate (anhydrite-gypsum) minerals; or (3) soluble salts (halite, sylvite, polyhalite, etc.). Sediment characterization can also allow discrimination of the range or compositional variety in, for example, coastal sabkhas. Where applied to the stratigraphic record, this classification system may help unravel the sedimentary history of an ancient sabkha system, and a determination of the dominant physical processes that ruled its development. ?? 1981.

  19. Assessment of Appalachian basin oil and gas resources: Utica-Lower Paleozoic Total Petroleum System: Chapter G.10 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Both conventional oil and gas resources and continuous (unconventional) gas resources are present in the UticaLower Paleozoic TPS. Conventional oil and gas resources in the Utica-Lower Paleozoic TPS were assessed by the U.S. Geological Survey (USGS) in 2002 in the following assessment units (AU): (1) the Lower Paleozoic Carbonates in Thrust Belt AU, (2) the Knox Unconformity AU, (3) the Black River-Trenton Hydrothermal Dolomite AU, and (4) the Lockport Dolomite AU. The total estimated undiscovered oil and gas resources for these four AUs, at a mean value, was about 46 million barrels of oil (MMBO) and about 3 trillion cubic feet of gas (TCFG), respectively. In contrast, continuous (unconventional) gas resources in the TPS were assessed by the USGS in 2002 in four AUs associated with the “Clinton” sandstone, Medina sandstone, Medina Group sandstones, Tuscarora Sandstone, and sandstones in the Queenston Shale. The total estimated undiscovered gas for these four AUs, at a mean value, was about 26.8 TCFG. A hypothetical Utica Shale AU for oil(?) and continuous gas is identified in this report. In 2012, the Utica Shale was recognized by the USGS as a continuous AU and was assessed by Kirschbaum and others (2012).

  20. The immature thrust belt of the northern front of the Tianshan

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Gumiaux, Charles; Augier, Romain; Chen, Yan; Wang, Qingchen

    2010-05-01

    The modern Tianshan (central Asia), which extends east-west on about 2500 km long with an average of more than 2000 m in altitude, is considered as a direct consequence of the reactivation of a Paleozoic belt due to the India - Asia collision. At first order, the finite structure of this range obviously displays a significant uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. In order to characterize the coupling history of this Cenozoic orogeny with its northern foreland basin (Junggar basin), a detailed structural field work has been carried out on the northern piedmont of Tianshan. From Wusu to Urumqi, on about 250 km long, the thrusting of the Paleozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is remarkably exposed along several river valleys. In contrast, in other sections, the Triassic to Jurassic sedimentary series can be followed from the basin to the range where they unconformably overlie on the Carboniferous basement. These series are only gently folded along the "range front". These features imply that, at regional-scale, the Cenozoic reactivation of the Tianshan has not produced important deformation along its contact with the juxtaposed Junggar basin. The shortening ascribed to the Cenozoic intra-continental collision would either be localized in the range, mostly accommodated by reactivated Paleozoic structures or faults in the basement units, or in the distal parts of the Junggar basin, by folds and faults within the Cenozoic sedimentary series. Alternative hypothesis would be that the Tianshan uplift and the movements associated with along its northern front structures, which are traditionally assigned to its Cenozoic reactivation, might be reduced. Such characteristic significantly differs from other well-known orogenic ranges, such as the Canadian Rocky Mountains, the Appalachians, the Pyrenees which display highly folded foreland basins and thrust belts

  1. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  2. Detailed lithologic log of the Dow Chemical #1 B.L. Garrigan Drill Hole, Mississippi County, Arkansas

    USGS Publications Warehouse

    Collins, Donley S.; Skipp, Gary L.

    1995-01-01

    The geology and tectonic setting of the New Madrid region in southeastern Missouri has received considerable attention because of the area's high seismic activity. The largest recorded earthquakes in this area occurred in the winter of 1811-1812. These earthquakes has estimated magnitudes as large as 8.0 on the Richter scale (Johnsonton and Kanter, 1990) and affected an area of about 1 million square miles (Fuller, 1912). Today, an area of continuously high seismic activity defines the New Madrid seismic zone, which extends from northeastern Arkansas into southeastern Missouri and northwestern Tennessee. Seismicity is locally concentrated along two subsurface archers--the Blytheville and Pascola (Hildenbrand and others, 1977; Crone and others, 1985; Hildenbrand, 1985; McKeown, 1988). The Padcola arch is not pertinent to this study and, therefore will not be discusses further. The Blytheville arch is located in and is subparallel to the axis of the northeast-southwest-trending Reelfoot structural basin, which formed during early Paleozoic rifting (Ervin and McGinnis, 1975; fig. 1). The Reelfoot basin is filled with Cambrian and Ordovician sedimentary rocks (Grohskopf, 1955; Howe, 1984; Houseknevht, 1989; Collins and others, 1992) that are uncomfortably overlain by Cretacaous and Tertiary sedimentary rocks and underlain by crystalline rocks of the eastern granite-rhyolite province (see Bickford and others, 1986). The presence of some Late Proterozoic sedimentary rocks in the Reelfoot basin currently cannot be ruled out. The Dow Chemical #1 B.L. Garrigan drill hole (hereafter, Garrigan) penetrated Paleozoic rocks on the Blytheville arch. The Garrigan is locted in the Reelfoot basin in the NW1/4, NW1/4 sec. 28, T. 15 N., R. 10 E., Mississippi County, Arkansas (fig. 1) and was completed to a total depth of 12,038 ft from a ground elevation of 239 ft on April 11, 1982 (Swolfs, 1991). The Garrigan is the only reported drill hole that penetrates the subsurface Blytheville

  3. [Distribution Characteristics of Sedimentary Pigments in the Changjiang Estuary and Zhe-Min Coast and its Implications].

    PubMed

    Li, Dong; Yao, Peng; Zhao, Bin; Wang, Jin-peng; Pan, Hui-hui

    2015-08-01

    Compositions and contents of sedimentary pigments were examined using high performance liquid chromatography in order to discuss the spatial distributions of phytoplankton primary production, phytoplankton functional type and the preservation efficiency of phytoplankton pigments and their influencing factors. The results showed that: chloropigments [Chlorins, including chlorophyll-a (Chl-a) and pheopigments (Pheo-a), such as pheophytin-a (PHtin-a), pheophorbide-a (PHide-a), pPheophytin-a (pPHtin-a), sterol chlorin esters (SCEs) and carotenol chlorin esters (CCEs)] were the major type of sedimentary pigments. The nutrients inputs from Changjiang Diluted Water and upwelling in the Zhe-Min coastal mud area were the major cause for the patchy distribution with high sedimentary chloropigment contents. Carotenoid contents showed no trending changes and exhibited high values in the Changjiang Estuary and Zhe-Min Coasts. Based on the relative proportions of each diagnostic carotenoid to the total diagnostic carotenoids in the sediments, the relative contributions of diatoms, dinoflagellates, prymnesiophytes, prasinophytes, cryptophytes and cyanobacterias in the phytoplankton fuctional types were 48.8% +/- 17.4%, 10.7% +/- 11.5%, 8.1% +/- 7.2%, 18.6% +/- 8.2%, 9.4% +/- 6.4% and 4.3% +/- 3.2%, respectively. The preference for external environmental conditions (e.g., nutrient level and water salinity) was the main cause for the decreasing trends of diatoms and dinoflagellates proportions and the increasing trends of prasinophytes, cryptophytes and cyanobacterias seawards. Based on the spatial distribution of Chl-a/Pheo-a ratios, the higher preservation efficiencies of sedimentary pigments in the coastal regions (e.g., outer edge of maximum turbidity zone in the Changjiang Estuary, mouth of the Hangzhou Bay and upwelling region in the Zhe-Min Coast) were mainly due to the higher sedimentation rate and seasonal occurrences of hypoxia in bottom water, and these regions with

  4. Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.

    2018-05-01

    Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed

  5. Organic sulphur in macromolecular sedimentary organic matter: I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Eglinton, Timothy I.; De Leeuw, Jan W.; Schenck, P. A.

    1989-04-01

    The distributions of sulphur-containing compounds generated by flash pyrolysis of macromolecular sedimentary organic matter (kerogen, coal, asphaltenes) were studied by gas chromatography in combination with Sselective flame photometric detection or mass spectrometry. The abundance of S-containing pyrolysis products in the pyrolysates relative to other products was highly variable depending on the sample but the types of products were generally similar, being mainly composed of "gaseous" compounds ( e.g., hydrogen sulphide) and low molecular weight alkylthiophenes and alkylbenzothiophenes. The distribution patterns of the alkylated thiophenes were dominated by a limited number of all theoretically possible isomers. The alkyl substitution patterns of the dominant isomers bear a strong similarity to those of the organic S compounds present in the GC-amenable fractions of bitumens and immature oils. Therefore, it is suggested that these S-containing pyrolysis products are formed by pyrolysis of related thiophenic and benzothiophenic moieties present in the macromolecular sedimentary substances. Specific examples include those with linear alkyl, iso and anteiso alkyl, isoprenoid alkyl and steroidal carbon skeletons. The presence of higher molecular weight alkylthiophenes and alkylbenzothiophenes with these same carbon skeletons in pyrolysates of S-rich kerogens provided further evidence for the presence of these S-containing moieties. It is likely that these moieties have been formed by abiogenic S incorporation into sedimentary organic matter during early diagenesis.

  6. Early Paleozoic high-Mg granodiorite from the Erlangping unit, North Qinling orogen, central China: Partial melting of metasomatic mantle during the initial back-arc opening

    NASA Astrophysics Data System (ADS)

    Abdallsamed, Mohammed I. M.; Wu, Yuan-Bao; Zhang, Wenxiang; Zhou, Guangyan; Wang, Hao; Yang, Saihong

    2017-09-01

    This study discussed the petrological classification, petrogenesis, and tectonic significance of early Paleozoic high-Mg granodiorite from the Erlangping unit, in the North Qinling orogen. To achieve this target, we conducted integrated investigation of in situ zircon U-Pb dating, whole-rock geochemical, as well as Sr-Nd-Hf-O isotopic compositions for the Kanfenggou pluton from the Erlangping unit. LA-ICP-MS zircon dating for the Kanfenggou samples yields U-Pb ages of 442.9 ± 6.2 and 438.0 ± 6.7 Ma, suggesting that the pluton was emplaced at ca. 440 Ma. Whole-rock geochemical compositions of the samples display intermediate SiO2 (60.48-64.67 wt%) and K2O (1.21 to 2.10 wt%), but high Al2O3 (15.44 to 16.51 wt%) and Na2O (4.01 to 4.81 wt%) contents. The granodiorite samples are characterized by elevated MgO ranging from 2.30 to 3.44 wt% and Mg# values of 53.35to 56.66, implying they are high-Mg granodiorites. They are characterized by very high Ba (524-1132 ppm) and Sr (684-980 ppm) contents, but depleted in HREE, and high (La/Yb)N ratios of 6.34 to 16.5 and slightly negative to weak positive Eu anomalies (Eu/Eu* = 0.68-1.09). These evidence that the Kanfenggou pluton belongs to the sanukitoid series. The high-Mg granodiorite samples exhibit a mantle signature with high Mg# values (53.35-56.66), Cr (45.8 to 93.3 ppm) and Ni (28.2 to 48.2 ppm) contents, but enriched in LILE, pointing to an enriched mantle source. The samples show relatively depleted radiogenic isotopic compositions with initial 87Sr/86Sr ratios varying from 0.7044 to 0.7047, εNd(t) values from 0.31 to 4.21, and zircon εHf (t) values from 7.3 to 8.3. The zircons have a mean δ18O value of 5.20 ± 0.17 ‰. Based on the trace element geochemical features, the metasomatic agent was suggested to be the fluids generated from dehydration of subducted slab. Therefore, we suggest two-stage processes for the formation of the Erlangping high-Mg granodiorites: (1) interaction between slab fluids and mantle

  7. Sedimentary record of erg migration

    NASA Astrophysics Data System (ADS)

    Porter, M. L.

    1986-06-01

    The sedimentary record of erg (eolian sand sea) migration consists of an idealized threefold division of sand-sea facies sequences. The basal division, here termed the fore-erg, is composed of a hierarchy of eolian sand bodies contained within sediments of the flanking depositional environment. These sand bodies consist of eolian strata deposited by small dune complexes, zibars, and sand sheets. The fore-erg represents the downwind, leading edge of the erg and records the onset of eolian sedimentation. Basin subsidence coupled with erg migration places the medial division, termed the central erg, over the fore-erg strata. The central erg, represented by a thick accumulation of large-scale, cross-stratified sandstone, is the product of large draa complexes. Eolian influence on regional sedimentation patterns is greatest in the central erg, and most of the sand transported and deposited in the erg is contained within this region. Reduction in sand supply and continued erg migration will cover the central-erg deposits with a veneer of back-erg deposits. This upper division of the erg facies sequence resembles closely the fore-erg region. Similar types of eolian strata are present and organized in sand bodies encased in sediments of the upwind flanking depositional environment(s). Back-erg deposits may be thin due to limited eolian influence on sedimentation or incomplete erg migration, or they may be completely absent because of great susceptibility to postdepositional erosion. Tectonic, climatic, and eustatic influences on sand-sea deposition will produce distinctive variations or modifications of the idealized erg facies sequence. The resulting variants in the sedimentary record of erg migration are illustrated with ancient examples from western North America, Europe, southern Africa, and South America.

  8. Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB)

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.

    2016-04-01

    The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is

  9. Microbially mediated carbon cycling as a control on the δ 13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record

    NASA Astrophysics Data System (ADS)

    Hollander, David J.; Smith, Michael A.

    2001-12-01

    An isotopic study of various carbon phases in eutrophic Lake Mendota (Wisconsin, USA) indicates that the δ13C composition of sedimentary organic and inorganic carbon has become more negative in response to increasing microbially mediated carbon cycling and processes associated with the intensification of seasonal and long-term eutrophication. Progressive increases in the contributions of isotopically depleted chemoautotrophic and methanotrophic biomass (reflected in the -40 to -90‰ values of hopanols and FAMES), attributed to seasonal and long-term increases in production and expansion of the anaerobic water mass, accounts for carbon isotopic trends towards depleted δ13C values observed in both seasonal varves and over the past 100 years. Changes in the intensities of certain microbial processes are also evident in the sedimentary geochemical record. During the period of most intense cultural eutrophication, when the oxic-anoxic interface was located close to the surface, methanogenesis/methanotrophy and the oxidation of biogenic methane increased to the extent that significant quantities of 13C-depleted CO2 were added into the epilimnion. This depleted CO2 was subsequently utilized by phytoplankton and incorporated into CaCO3 during biogenically induced calcite precipitation. A comparative study between eutrophic Lakes Mendota and Greifen, further indicate that the extent of nutrient loading in the epilimnion determines whether the δ13C record of sedimentary organic carbon reflects intensification of microbial processes in the hypolimnion and sediments, or changes in the primary productivity in the photic zone. From this comparison, a series of eutrophication models are developed to describe progressive transitions through thresholds of microbial and eukaryotic productivity and their influence on the δ13C record of sedimentary carbon. With increasing eutrophication, the models initially predict a negative and then a subsequent positive carbon isotopic

  10. Ocean acidification and the δ15N record of Paleozoic epeiric seas

    NASA Astrophysics Data System (ADS)

    Tuite, M. L., Jr.; Williford, K. H.

    2017-12-01

    In addition to its role as a primary driver of global climate, atmospheric CO2 influences the pH of seawater which is an important factor in mediating biogeochemical cycles. Variations in the pH of seawater on geological timescales have been correlated with broad impacts on marine ecosystems and biogeochemical processes including evolutionary turnover and mass extinction. Atmospheric CO2 declined dramatically during the mid-Paleozoic, coincident with the emergence of terrestrial forests and concomitant development of a substantial soil carbon reservoir and increased silicate weathering. Global greenhouse conditions that prevailed at the Late Devonian Frasnian/Famennian boundary gave way to temperate latitude glaciation at the end of the Famennian. In a recent review of icehouse-greenhouse variations in marine nitrogen biogeochemistry through the Phanerozoic (Algeo et al. 2014), the authors observed a strong correlation between sediment δ15N and first order climate cycles with a trend toward lower values during greenhouse periods and higher values during icehouse periods. Based upon modeling results, the shift in sediment δ15N was ascribed to a change in the locus of denitrification from sediments in warm climates to the water column during cooler periods driven primarily by eustatic sea level change as glacial ice mass waxed and waned. Sediment δ15N is a useful proxy for interpreting N biogeochemistry in marine systems because it provides an integrated record of the microbially-mediated redox reactions that led to that δ15N value. We propose that the elevated CO2 that drove the greenhouse climate in the early Famennian also resulted in the acidification of seawater that precluded nitrification, yielding an ammonium-dominated surface ocean and low sediment δ15N. As O2 climbed and seawater pH responded to diminished CO2, we propose that nitrification rates increased resulting in a nitrate-dominated system and sediment δ15N values that approach modern values. In

  11. Mantle contribution and tectonic transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from geochronology and geochemistry of Early Carboniferous to Early Permian felsic intrusions

    NASA Astrophysics Data System (ADS)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Wang, Xinyu; Yang, Yueheng

    2018-04-01

    Late Paleozoic is a key period for the accretion and collision of the southern Central Asian Orogenic Belt (CAOB). Here, we present new zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotopic compositions for four Late Paleozoic felsic plutons in Eastern Tianshan (or Tienshan in some literatures) in order to constrain the tectonic evolution of the southern CAOB. The granodioritic pluton and its dioritic enclaves were synchronously formed in the Early Carboniferous (336 ± 3 Ma and 335 ± 2 Ma, respectively). These rocks are depleted in Nb, Ta and Ti, and enriched in Rb, Ba, Th and U related to the primitive mantle, which show typical features of arc rocks. They both have similar Sr-Nd isotopic ratios to those granitic rocks from the eastern Central Tianshan Block and have the latest Mesoproterozoic two stage Nd model ages (TDM2) (1111-1195 Ma for the granodioritic pluton and 1104-1108 Ma for the enclaves, respectively), indicating that their source magmas may have been derived from the Mesoproterozoic crust. The albitophyric pluton was also emplaced in the Early Carboniferous (333 ± 3 Ma). Rocks of this pluton have similar εNd(t) values (-0.69 to -0.37) and TDM2 ages (1135-1161 Ma) to those of the granodioritic rocks, suggest similar crustal source for both types of rocks. In contrast, the K-feldspar granitic and monzonitic plutons were emplaced in the Early Permian (292 ± 3 Ma and 281 ± 2 Ma, respectively). Samples of the K-feldspar granitic pluton have high K2O + Na2O, FeO/MgO, Ga/Al, HFSE (e.g., Zr and Hf) and low CaO, Sr and Ba, exhibiting characteristics of A2-type granites, which probably emplaced in a post-collisional extension environment. They have higher εNd(t) values (+2.77 to +3.27) and more juvenile TDM2 ages (799-841 Ma) than the Early Carboniferous plutons, suggesting that they were derived from relatively younger crustal sources. The monzonitic granites are metaluminous to weakly peraluminous with A/CNK ranging from 0.93 to 1.05, and have

  12. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins aremore » unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.« less

  13. Aeromagnetic map and interpretation of geophysical data from the Condrey Mountain Roadless Area, Siskiyou County, California

    USGS Publications Warehouse

    Jachens, R.C.; Elder, W.P.

    1983-01-01

    The western Paleozoic and Triassic belt that nearly surrounds the Condrey Mountain Schist is a melange of sedimentary, volcanic, and ultramafic rocks metamorphosed to amphibolite facies (Coleman and others, 1983). Only two samples of the metamorphic melange were collected near the Condrcy Mountain Road less Area, but extensive sampling of this unit southwest of the roadless area yielded an average sample density of 2.86±0.15 g/cm3 (112 samples) (Jachens and others, 1983).

  14. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing.

    PubMed

    Li, Mingsong; Hinnov, Linda A; Huang, Chunju; Ogg, James G

    2018-03-08

    In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ 1 ). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global sea-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass exchange between land and ocean reservoirs is a missing link for reconciling geological records and models for sea-level change during non-glacial periods.

  15. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  16. Paleogeographic setting of Pennsylvanian Tyler formation and relation to underlying Mississippian rocks in Montana and North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maughan, E.K.

    Pennsylvanian sedimentary rocks in the northern Rocky Mountains and in the northern Great Plains of the United States were deposited primarily on a broad marine shelf between the North American craton and the late Paleozoic continental margin in Idaho and adjacent states. The Lower Pennsylvanian (Morrowan) Tyler Formation comprises detrital sediments and some limestone beds in Montana and North Dakota that were deposited along an eastward-transgressing marine shoreline after regional uplift, warping, and faulting had resulted in an erosional unconformity on top of Mississippian strata. The Lower Pennsylvanian shoreline finally extended onto the cratonic interior in eastern North Dakota. Initialmore » Tyler sediments were deposited as a deltaic and fluviolacustrine complex succeeded by littoral deposits as the Early Pennsylvanian shoreline transgressed eastward across the shelf. The Tyler Formation is subdivided into the Stonehouse Canyon Member at the base, the Bear Gulch Member, and the Cameron Creek Member at the top.« less

  17. Origin and time-space distribution of hydrothermal systems in east-central Australian sedimentary basins: Constraints from illite geochronology and isotope geochemistry.

    NASA Astrophysics Data System (ADS)

    Uysal, I. Tonguç

    2016-04-01

    Some well-known precious mineral deposits and hydrocarbon resources occur extensively in east-central Australian sedimentary Basins. The metal occurrences are abundant in northwestern and eastern part of Queensland, whereas no significant deposits are known in large areas further south, which may, however, be hidden beneath the Jurassic-Cretaceous sedimentary basins. Important hydrocarbon resources exist within the Jurassic-Cretaceous sedimentary rocks at relatively shallow depths, of which the distribution represent zones of high paleo-geothermal gradients. This study examines the time-space distribution in relation to the regional tectonic history of concealed metal deposits and areas of high paleo-geothermal gradient leading to hydrocarbon maturation. To this end, authigenic illitic clay minerals representing various locations and stratigraphic depths in east-central Australia were investigated, of which the Rb-Sr and Ar-Ar geochronology and stable isotope geochemistry assist in delineating zones of hydrothermal systems responsible for hydro-carbon maturation/migration and potentially ore deposition. The Late Carboniferous - Early Permian crustal extension that affected large areas of eastern Australia and led to the epithermal mineralisations (e.g., the Drummond Basin) is also recorded in northern South Australia and southwest Queensland. A Late Triassic - Early Jurassic tectonic event being responsible for coal maturation and gas generation in the Bowen Basin and the epithermal mineralisation in the North Arm goldfield in SE Queensland likewise affected the areas much further west in Queensland. Some illites from the basement in outback Queensland and fault gouges from the Demon Fault in NE New South Wales yield younger Rb-Sr and Ar-Ar ages indicating the effect of hydrothermal processes as a result of a Middle-Upper Jurassic tectonic event. The majority of illite samples from the crystalline basement rocks, Permian Cooper Basin, and Jurassic

  18. Sedimentary Carbon Stocks: A National Assessment of Scotland's Fjords.

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William; Davies, Althea; Howe, John

    2017-04-01

    Coastal sediments have been shown to be globally significant repositories for carbon (C) with an estimated 126.2 Tg of C being buried annually (Duarte et al. 2005). Though it is clear these areas are important for the long-term storage of C the actual quantity of C held within coastal sediment remains largely unaccounted for. The first step to understanding the role the coastal ocean plays in the global C cycle is to quantify the C held within these coastal sediments. Of the different coastal environment fjords have been shown to be hotspots for C burial with approximately 11 % of the annual global marine carbon sequestration occurring within fjordic environments (Smith et al. 2015). Through the development of a joint geophysical and geochemical methodology we estimated that the sediment in a mid-latitude fjord holds 26.9 ± 0.5 Mt of C (Smeaton et al., 2016), with these results suggesting that Scottish mid-latitude fjords could be a significant unaccounted store of C equivalent to their terrestrial counterparts (i.e. peatlands). Through the application of the joint geophysical and geochemical methodology developed by Smeaton et al (2016) to a number of other mid-latitude fjords, we will create detailed estimations of the sedimentary C stored at these individual sites. Using these detailed C stock estimations in conjunction with upscaling techniques we will establish the first national estimation of fjordic sedimentary C stocks. The data produced will allow for the sedimentary C stocks to be compared to other national C stocks, such as the Scottish peatlands (Chapman et al. 2009) and forestry (Forestry Commission, 2016). Alongside quantifying this large unaccounted for store of C in the coastal ocean this work also lays foundations for future work to understand the role of the coastal ocean in the global C cycle. Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8, doi:10.5194/bg-2

  19. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-06-28

    ISS015-E-15323 (27 June 2007) --- Part of Bechar Basin, Algeria is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. The Bechar Basin of northwestern Algeria reaches depths of 8,000 meters, and is a producing hydrocarbon region. According to scientists, the basin was formed as Paleozoic (approximately 250-540 million years old) sedimentary layers were folded and faulted during much later collision of the continents of Africa and Europe during the Tertiary Period (approximately 2-65 million years ago). Hydrocarbon reservoirs are located within clastic (formed of variably-sized pieces of pre-existing rock) sedimentary rocks and fossilized coral reefs. Dark brown to tan folded ridges of these Paleozoic sedimentary layers extend across this view from top to bottom. Sand dunes are visible to the north, south, and west of the city of Bechar (gray-blue region to the left of the fold ridges) at center. Wadis (river channels) are dry most of the year in the arid climate of the region. Unconsolidated (loose) sands left in the channels by intermittent streams are transported by surface winds after the water is gone. This leads to the formation of individual dunes and larger dune fields (both bright tan in color) along the wadi courses, which also concentrate sands from other sources; dune fields are visible to the south of Bechar and at lower right. The oblique -- looking at an angle from the International Space Station, versus looking straight down - view of this photo accentuates cliff and dune shadows, providing a sense of the topography of the region.

  20. Using Aluminum Foil to Record Structures in Sedimentary Rock.

    ERIC Educational Resources Information Center

    Metz, Robert

    1982-01-01

    Aluminum foil can be used to make impressions of structures preserved in sedimentary rock. The impressions can be projected onto a screen, photographed, or a Plaster of Paris model can be made from them. Impressions of ripple marks, mudcracks, and raindrop impressions are provided in photographs illustrating the technique. (Author/JN)