Sample records for early paleozoic time

  1. Facies patterns and conodont biogeography in Arctic Alaska and the Canadian Arctic Islands: Evidence against juxtaposition of these areas during early Paleozoic time

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, A.G.; Bradley, D.C.; De Freitas, T. A.

    2000-01-01

    Differences in lithofacies and biofacies suggest that lower Paleozoic rocks now exposed in Arctic Alaska and the Canadian Arctic Islands did not form as part of a single depositional system. Lithologic contrasts are noted in shallow- and deep-water strata and are especially marked in Ordovician and Silurian rocks. A widespread intraplatform basin of Early and Middle Ordovician age in northern Alaska has no counterpart in the Canadian Arctic, and the regional drowning and backstepping of the Silurian shelf margin in Canada has no known parallel in northern Alaska. Lower Paleozoic basinal facies in northern Alaska are chiefly siliciclastic, whereas resedimented carbonates are volumetrically important in Canada. Micro- and macrofossil assemblages from northern Alaska contain elements typical of both Siberian and Laurentian biotic provinces; coeval Canadian Arctic assemblages contain Laurentian forms but lack Siberian species. Siberian affinities in northern Alaskan biotas persist from at least Middle Cambrian through Mississippian time and appear to decrease in intensity from present-day west to east. Our lithologic and biogeographic data are most compatible with the hypothesis that northern Alaska-Chukotka formed a discrete tectonic block situated between Siberia and Laurentia in early Paleozoic time. If Arctic Alaska was juxtaposed with the Canadian Arctic prior to opening of the Canada basin, biotic constraints suggest that such juxtaposition took place no earlier than late Paleozoic time.

  2. Precambrian Continent Arctida: A New Kinematic Reconstruction of Late Precambrian - Early Paleozoic Arctida U Europe (baltia) Collision

    NASA Astrophysics Data System (ADS)

    Borisova, T. P.; Guertseva, M. V.; Egorov, A. Ju.; Kononov, M. V.; Kouznetsov, N. B.

    In according to L.P.Zonenshain and L.M.Natapov (1988, 1990), different size conti- nental blocks locating at the margins and inside of present-day Arctic ocean composed the hypothetical early Paleozoic paleocontinent Arctida. The blocks are Kara block (north part of Taymir peninsula, Severnaja Zemlja archipelago and Franz Joseph Land archipelago), north part of Alaska (northward Bruks ridge), Chukchi block, Novosi- birsky block (Novosibirskiye islands together their shelves), several fragments north- ward to the Innuitian orogen (north parts of Peary Land and Ellesmere Island), and Lomonosov ridgeSs block. In the previous kinematic reconstruction it was believed that Arctida as a whole collided with north flanks of Laurentia (Innuitian margin) and Europe (Baltia, Barentsia margin) in middle Paleozoic time. Later, the Arctida (been a fragment of supercontinent Pangea) was fragmented due to a spreading in the Arctic ocean and north part of Atlantic ocean in late Mesozoic and Cenozoic times. Then ArctidaSs fragments were accreted to the Eurasia and North America conti- nents. During the last decade "AEROGEOLOGIA" company has been gathered new data (geologic, stratigraphical, paleomagnetic, and others) of Russian Arctic sector and Svalbard. The data were summarized into "Paleogeographical Atlas for the Rus- sian Arctic sector and Svalbard from Vendian to Jurassic times" (see Abstact SE1.04, ID-NR: EGS02-A-02453). An analyzing of the maps for Vend and Cambrian times allows us to reconsider a few stages of kinematic scenario of late Precambrian - early Paleozoic Arctida U Europe collision. 1) Old interpretation: Arctida was considered as an isolated paleocontinent during early Paleozoic time. New interpretation: during the early Paleozoic Arctida together Europe (Baltia) were assembled into a paleo- continent named us Arcteurope. This conclusion is based on excellent coincidence of Paleozoic paleomagnetic poles of the Kara block (which is a part of Arctida) and Europe

  3. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  4. Early Paleozoic magmatic events in the eastern Klamath Mountains, northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, E.T.; Mattinson, J.M.; Potter, A.W.

    1988-02-01

    New U-Pb zircon ages for nine samples of tonalite and pegmatitic trondhjemite from the Trinity ophiolite and associated melange reveal a complex history of magmatic activity extending back into the earliest Cambrian, much older than previously believed. Earlier investigations, based on limited data, recognized lower Paleozoic crustal elements in the eastern Klamath terrane (EKT) ranging in age from Middle Ordovician to Early to Middle Devonian. The new work in the Yreka-Callahan area of the EKT confirms the Ordovician (440-475 Ma) and younger ages, but reveals for the first time the presence of tonalitic rocks that crystallized during a narrow timemore » interval at about 565-570 Ma. The authors also recognize younger, Late Silurian magmatism at 412 Ma. In the context of available mapping, these ages indicate that the Trinity ophiolite is broadly polygenetic because parts of it yield crystallization ages that span approximately 150 m.y. Superjacent dismembered units of probable early Paleozoic age may be tectonostratigraphically equivalent to the Sierra City melange in the northern Sierra Nevada.« less

  5. Early Paleozoic paleogeography of the northern Gondwana margin: new evidence for Ordovician-Silurian glaciation

    NASA Astrophysics Data System (ADS)

    Semtner, A.-K.; Klitzsch, E.

    1994-12-01

    During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana margin were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent. The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana margin to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the ice-cap. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria. The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian ice advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.

  6. Early Paleozoic tectonics for the New Siberian Islands terrane (Eastern Arctic)

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Vernikovsky, V. A.; Matushkin, N. Yu.

    2017-11-01

    The New Siberian Islands archipelago is one of the few research objects accessible for direct study on the eastern Arctic shelf. There are several models that have different interpretations of the Paleozoic tectonic history and the structural affinity of the New Siberian Islands terrane. Some infer a direct relationship with the passive continental margin of the Siberian paleocontinent. Others connect it with the marginal basins of Baltica and Laurentia, or the Chukotka-Alaska microplate. Our paleomagnetic investigation led us to create an apparent polar wander path for the early Paleozoic interval of geological history. Based on it we can conclude that the New Siberian Islands terrane could not have been a part of these continental plates. This study considers the possible tectonic scenarios of the Paleozoic history of the Earth, presents and discusses the corresponding global reconstructions describing the paleogeography and probable mutual kinematics of the terranes of the Eastern Arctic.

  7. Early Paleozoic subduction initiation volcanism of the Iwatsubodani Formation, Hida Gaien belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsukada, Kazuhiro; Yamamoto, Koshi; Gantumur, Onon; Nuramkhaan, Manchuk

    2017-06-01

    In placing Japanese tectonics in an Asian context, variation in the Paleozoic geological environment is a significant issue. This paper investigates the geochemistry of the lower Paleozoic basalt formation (Iwatsubodani Formation) in the Hida Gaien belt, Japan, to consider its tectonic setting. This formation includes the following two types of rock in ascending order: basalt A with sub-ophitic texture and basalt B with porphyritic texture. Basalt A has a high and uniform FeO*/MgO ratio, moderate TiO2, high V, and low Ti/V. The HFSE and REE are nearly the same as those in MORB, and all the data points to basalt A being the "MORB-like fore-arc tholeiitic basalt (FAB)" reported, for example, from the Izu-Bonin-Mariana arc. By contrast, basalt B has a low FeO*/MgO ratio, low TiO2, and low V and Ti/V. It has an LREE-enriched trend and a distinct negative Nb anomaly in the MORB-normalized multi-element pattern and a moderately high LREE/HREE. All these factors suggest that basalt B is calc-alkaline basalt. It is known that FAB is erupted at the earliest stage of arc formation—namely, subduction initiation—and that boninitic/tholeiitic/calc-alkaline volcanism follows at the supra-subduction zone (SSZ). Thus, the occurrence of basalts A (FAB) and B (calc-alkaline rock) is strong evidence of early Paleozoic arc-formation initiation at an SSZ. Evidence for an early Paleozoic SSZ arc is also recognized from the Oeyama, Hayachine-Miyamori, and Sergeevka ophiolites. Hence, both these ophiolites and the Iwatsubodani Formation probably coexisted in a primitive SSZ system in the early Paleozoic.

  8. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Griffin, William L.; Stern, Robert J.; Thomsen, Tonny B.; Meinhold, Guido; Aharipour, Reza; O'Reilly, Suzanne Y.

    2017-01-01

    In this study we use detrital zircons to probe the Early Paleozoic history of NE Iran and evaluate the link between sediment sources and Gondwanan pre-Cadomian, Cadomian and younger events. U-Pb zircon ages and Hf isotopic compositions are reported for detrital zircons from Ordovician and Early Devonian sedimentary rocks from NE Iran. These clastic rocks are dominated by zircons with major age populations at 2.5 Ga, 0.8-0.6 Ga, 0.5 Ga and 0.5-0.4 Ga as well as a minor broad peak at 1.0 Ga. The source of 2.5 Ga detrital zircons is enigmatic; they may have been supplied from the Saharan Metacraton (or West African Craton) to the southwest or Afghanistan-Tarim to the east. The detrital zircons with age populations at 0.8-0.6 Ga probably originated from Cryogenian-Ediacaran juvenile igneous rocks of the Arabian-Nubian Shield; this inference is supported by their juvenile Hf isotopes, although some negative εHf (t) values suggest that other sources (such as the West African Craton) were also involved. The age peak at ca 0.5 Ga correlates with Cadomian magmatism reported from Iranian basement and elsewhere in north Gondwana. The variable εHf (t) values of Cadomian detrital zircons, resembling the εHf (t) values of zircons in magmatic Cadomian rocks from Iran and Taurides (Turkey), suggest an Andean-type margin and the involvement of reworked older crust in the generation of the magmatic rocks. The youngest age population at 0.5-0.4 Ga is interpreted to represent Gondwana rifting and the opening of Paleotethys, which probably started in Late Cambrian-Ordovician time. A combination of U-Pb dating and Hf-isotope data from Iran, Turkey and North Gondwana confirms that Iran and Turkey were parts of Gondwana at least until late Paleozoic time.

  9. Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.

    2007-12-01

    The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.

  10. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of

  11. Early Paleozoic development of the Maine-Quebec boundary Mountains region

    USGS Publications Warehouse

    Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.

    2006-01-01

    Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.

  12. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, J.; Wagner, M.E.; Srogi, L.A.

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in themore » PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.« less

  13. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  14. Paleoclimatic and paleomagnetic constraints on the Paleozoic reconstructions of south China, north China and Tarim

    NASA Astrophysics Data System (ADS)

    Shangyou, Nie

    1991-10-01

    Paleomagnetic and paleoclimatic data provide the most useful latitudinal constraints for plate reconstructions. Distributions through the Paleozoic of five types of climatically sensitive sediments (coals, evaporites, reefs, dolomites and limestones) for south China, north China and Tarim are shown on 15 maps that include 1578 reliable data points. These paleoclimatic data agree reasonably well with available paleomagnetic directions, although significant divergence between the two exists for the Early Paleozoic. These data indicate the following: (1) South China was in low latitudes during the entire Paleozoic, with a subtropical position in the Cambrian. (2) North China also remained near the equator in the Early and Late Paleozoic, except for the Ordovian and the Late Permian when extensive evaporites suggest slightly higher latitudinal positions, while its Middle Paleozoic position is uncertain due to the missing stratigraphie record. (3) In south China, local tectonics appears to have played a dominant role in determining paleogeography and therefore marine sedimentation, especially after the Late Ordovician-Early Silurian, because the areal coverage of marine sediments through time is distinctly different from what would be expected from published global sea-level curves. (4) Paleoclimatic and paleomagnetic data are compatible with biogeographic data which suggest that south China was part of eastern Gondwana in the Early Paleozoic, but was widely separated from Gondwana in the Late Paleozoic, and the split between the two probably happened in the Devonian, giving rise to a major break-up unconformity in central south China.

  15. Late Paleozoic orogeny in Alaska's Farewell terrane

    USGS Publications Warehouse

    Bradley, D.C.; Dumoulin, Julie A.; Layer, P.; Sunderlin, D.; Roeske, S.; McClelland, B.; Harris, A.G.; Abbott, G.; Bundtzen, T.; Kusky, T.

    2003-01-01

    Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100-200 km apart. In the northern belt, metamorphic rocks dated at 284-285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada. Published by Elsevier B.V.

  16. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Rudolph, Maxwell L.

    2015-05-01

    The seismic structure of the Earth's lower mantle is characterized by a dominantly degree-2 pattern with the African and Pacific large low shear velocity provinces (i.e., LLSVP) that are separated by circum-Pacific seismically fast anomalies. It is important to understand the origin of such a degree-2 mantle structure and its temporal evolution. In this study, we investigated the effects of plate motion history and mantle viscosity on the temporal evolution of the lower mantle structure since the early Paleozoic by formulating 3-D spherical shell models of thermochemical convection. For convection models with realistic mantle viscosity and no initial structure, it takes about ˜50 Myr to develop dominantly degree-2 lower mantle structure using the published plate motion models for the last either 120 Ma or 250 Ma. However, it takes longer time to develop the mantle structure for more viscous mantle. While the circum-Pangea subduction in plate motion history models promotes the formation of degree-2 mantle structure, the published pre-Pangea plate motions before 330 Ma produce relatively cold lower mantle in the African hemisphere and significant degree-1 structure in the early Pangea (˜300 Ma) or later times, even if the lower mantle has an initially degree-2 structure and a viscosity as high as 1023 Pas. This suggests that the African LLSVP may not be stationary since the early Paleozoic. With the published plate motion models and lower mantle viscosity of 1022 Pas, our mantle convection models suggest that the present-day degree-2 mantle structure may have largely been formed by ˜200 Ma.

  17. Early paleozoic gabbro-amphibolites in the structure of the Bureya Terrane (eastern part of the Central Asian Fold Belt): First geochronological data and tectonic position

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. V.; Sorokin, A. A.; Kudryashov, N. M.

    2012-07-01

    Resulting from U-Pb geochronological study, it has been found that the gabbro-amphibolites composing the Bureya (Turan) Terrane in the eastern part of the Central Asian Fold Belt are Early Paleozoic (Early Ordovician; 455 ± 1.5 Ma) in age rather than Late Proterozoic as was believed earlier. The gabbro-amphibolites and associated metabasalts are close to tholeiites of the intraoceanic island arcs in terms of the geochemical properties. It is suggested that the tectonic block composed of these rocks was initially a seafloor fragment that divided the Bureya and Argun terranes in the Early Paleozoic and was later tectonically incorporated into the modern structure of the Bureya Terrane as a result of Late Paleozoic and Mesozoic events.

  18. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  19. Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Liu, Yongjiang; Li, Weimin; Feng, Zhiqiang; Neubauer, Franz

    2017-04-01

    The Central Asian Orogenic Belt (CAOB) is the largest accretionary orogen in the world, which is responsible for considerable Phanerozoic juvenile crustal growth. The NE China and its adjacent areas compose the eastern segment of the CAOB, which is a key area for providing important evidence of the CAOB evolution and understanding the NE Asian tectonics. The eastern segment of the CAOB is composed tectonically of four micro-blocks and four sutures, i.e. Erguna block (EB), Xing'an block (XB), Songliao-Xilinhot block (SXB), Jiamusi block (JB), Xinlin-Xiguitu suture (XXS), Heihe-Hegenshan suture (HHS), Mudanjiang-Yilan suture (MYS) and Solonker-Xar Moron-Changchun-Yanji suture (SXCYS). The EB and XB were amalgamated by westward subduction, oceanic island accretions and final collision in ca. 500 Ma. The XB and SXB were amalgamated by subduction-related Early Paleozoic marginal arc, Late Paleozoic marginal arc and final collision in the late Early Carboniferous to early Late Carboniferous. The JB probably had been attached to the SXB in the Early Paleozoic, but broken apart from the SXB in the Triassic and collided back in the Jurassic. The closure of Paleo-Asian Ocean had experienced a long continue/episodic subduction-accretion processes on margins of the NCC to the south and the SXB to the north from the Early to Late Paleozoic. The final closure happened along the SXCYS, from west Solonker, Sonid Youqi, Kedanshan (Keshenketengqi), Xar Moron River through Songliao Basin via Kailu, Tongliao, Horqin Zuoyizhongqi, Changchun, to the east Panshi, Huadian, Dunhua, Yanji, with a scissors style closure in time from the Late Permian-Early Triassic in the west to the Late Permian-Middle Triassic in the east. The amalgamated blocks should compose a united micro-continent, named as Jiamusi-Mongolia Block (JMB) after Early Carboniferous, which bounded by Mongo-Okhotsk suture to the northwest, Solonker-Xar Moron-Changchun suture to the south and the eastern margin of JB to the

  20. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China

    NASA Astrophysics Data System (ADS)

    Sun, Hanshen; Li, Jianhua; Zhang, Yueqiao; Dong, Shuwen; Xin, Yujia; Yu, Yingqi

    2018-05-01

    The Shaoxing-Jiangshan fault zone (SJFZ), as a fundamental Neoproterozoic block boundary that separates the Yangtze Block from the Cathaysia Block, is the key to understanding the evolution of South China from Neoproterozoic block amalgamation to early Paleozoic crustal reworking. New structural observations coupled with geochronological ages from the Chencai domain indicate that intense ductile deformation and metamorphism along the SJFZ occurred at ∼460-420 Ma, in response to the early Paleozoic orogeny in South China. To the east of the SJFZ, the deformation involves widespread generations of NE-striking foliation, intrafolial folds, and local development of sinistral-oblique shear zones. The shearing deformation occurred under amphibolite facies conditions at temperatures of >550 °C (locally even >650 °C). To the west of the SJFZ, the deformation corresponds to sinistral-oblique shearing along NE-striking, steep-dipping zones under greenschist facies conditions at temperatures of 400-500 °C. These deformation styles, as typical mid-crustal expressions of continental reworking, reflect tectonic reactivation of the pre-existing, deeply rooted Neoproterozoic block boundary in the early Paleozoic. We infer that the tectonic reactivation, possibly induced by oblique underthrusting of north Cathaysia, facilitated ductile shearing and burial metamorphic reactions, giving rise to the high-strain zones and high-grade metamorphic rocks. With respect to pre-existing mechanical weakness, our work highlights the role of tectonic reactivation of early structures in localizing later deformation before it propagates into yet undeformed domains.

  1. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  2. Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.

    1983-01-01

    Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.

  3. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny?

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Yu, J.; Zhao, G.

    2013-12-01

    The significant late Paleozoic magmatism has been widely recognized in the East Asian Blocks, which sheds a light on the assembly and break-up of the Pangea supercontinent. As one of major components in East Asia, however, the South China Block (SCB) does not have much late Paleozoic magmatism recognized. Here we report a gneissic granite intrusion in northeastern Fujian Province, eastern SCB. It is a S-type granite characterized by high K2O and Al2O3, and low SiO2 and Na2O with a high A/CNK ratio of 1.22. Zircons with stubby morphology from this gneissic granite yield 206Pb/238U ages ranging from 326 Ma to 301 Ma with a weighted average age of 313×4 Ma, and negative epsilonHf(t) values from -8.35 to -1.74 with two-stage Hf model ages of 1.43 to 1.84 Ga. This S-type granite was probably originated from late Paleoproterozoic crust during an intracontinental orogeny, not under oceanic subduction. Integrated with previous results on the paleogeographic reconstruction of the SCB, the nature of Paleozoic basins, Early Permian volcanism and U-Pb-Hf isotope of detrital zircons from the late Paleozoic to early Mesozoic sedimentary rocks, our data support a late Paleozoic orogeny in the SCB, which may have included Late Carboniferous (340-310 Ma) compressive episode and Early Permian (287-270 Ma) post-orogenic or intraplate extensive episode. Our interpretation is consistent with the late Paleozoic orogenic events recognized in other Pangea microcontinents, and thus provides a window for the reconstruction of Pangea. Acknowledgements: NSFC (41190070, 41190075)

  4. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.

    PubMed

    Crampton, James S; Meyers, Stephen R; Cooper, Roger A; Sadler, Peter M; Foote, Michael; Harte, David

    2018-05-29

    Periodic fluctuations in past biodiversity, speciation, and extinction have been proposed, with extremely long periods ranging from 26 to 62 million years, although forcing mechanisms remain speculative. In contrast, well-understood periodic Milankovitch climate forcing represents a viable driver for macroevolutionary fluctuations, although little evidence for such fluctuation exists except during the Late Cenozoic. The reality, magnitude, and drivers of periodic fluctuations in macroevolutionary rates are of interest given long-standing debate surrounding the relative roles of intrinsic biotic interactions vs. extrinsic environmental factors as drivers of biodiversity change. Here, we show that, over a time span of 60 million years, between 9 and 16% of the variance in biological turnover (i.e., speciation probability plus species extinction probability) in a major Early Paleozoic zooplankton group, the graptoloids, can be explained by long-period astronomical cycles (Milankovitch "grand cycles") associated with Earth's orbital eccentricity (2.6 million years) and obliquity (1.3 million years). These grand cycles modulate climate variability, alternating times of relative stability in the environment with times of maximum volatility. We infer that these cycles influenced graptolite speciation and extinction through climate-driven changes to oceanic circulation and structure. Our results confirm the existence of Milankovitch grand cycles in the Early Paleozoic Era and show that known processes related to the mechanics of the Solar System were shaping marine macroevolutionary rates comparatively early in the history of complex life. We present an application of hidden Markov models to macroevolutionary time series and protocols for the evaluation of statistical significance in spectral analysis.

  5. Geochemistry and chronology of the early Paleozoic diorites and granites in the Huangtupo volcanogenic massive sulfide (VMS) deposit, Eastern Tianshan, NW China: Implications for petrogenesis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Zheng, Jiahao; Chai, Fengmei; Feng, Wanyi; Yang, Fuquan; Shen, Ping

    2018-03-01

    The Eastern Tianshan orogen contains many late Paleozoic porphyry Cu and magmatic Cu-Ni deposits. Recent studies demonstrate that several early Paleozoic volcanogenic massive sulfide (VMS) Cu-polymetallic and porphyry Cu deposits were discovered in the northern part of Eastern Tianshan. This study presents zircon U-Pb, whole-rock geochemical, and Sr-Nd isotopic data for granites and diorites from the Huangtupo VMS Cu-Zn deposit, northern part of the Eastern Tianshan. Our results can provide constraints on the genesis of intermediate and felsic intrusions as well as early Paleozoic geodynamic setting of the northern part of Eastern Tianshan. LA-ICP-MS zircon U-Pb analyses suggest that the granites and diorites were formed at 435 ± 2 Ma and 440 ± 2 Ma, respectively. Geochemical characteristics suggest that the Huangtupo granites and diorites are metaluminous rocks, exhibiting typical subduction-related features such as enrichment in LILE and LREE and depletion in HFSE. The diorites have moderate Mg#, positive εNd(t) values (+6.4 to +7.3), and young Nd model ages, indicative of a depleted mantle origin. The granites exhibit mineral assemblages and geochemical characteristics of I-type granites, and they have positive εNd(t) values (+6.7 to +10.2) and young Nd model ages, suggesting a juvenile crust origin. The early Paleozoic VMS Cu-polymetallic and porphyry Cu deposits in the northern part of Eastern Tianshan were genetically related. The formation of the early Paleozoic magmatic rocks as well as VMS and porphyry Cu deposits in the northern part of Eastern Tianshan was due to a southward subduction of the Junggar oceanic plate.

  6. Biostratigraphy and petrography of upper Paleozoic rocks of Sierra Las Pintas, northern Baja California

    NASA Astrophysics Data System (ADS)

    Navas-Parejo, Pilar; Lara-Peña, R. Aaron; Torres-Martínez, Miguel Angel; Martini, Michelangelo

    2018-07-01

    A transported crinoid fauna is herein described for the first time in the Paleozoic succession cropping out in the Sierra Las Pintas, northern Baja California, northwestern Mexico. The fossil association includes Heterostelechus texanus Moore and Jeffords, Preptopremnum laeve? Moore and Jeffords, and Mooreanteris perforatus Moore and Jeffords, which indicates a Middle Pennsylvanian-early Permian time-averaged age. The studied area corresponds with the northernmost outcrop of definitely late Paleozoic deep-water facies in northwestern Mexico and the southern United States. Petrographic analyses indicate that the studied metasandstones were primarily derived from high-grade metamorphic rocks and from a shallow-water platform environment dominated by crinoid meadows. These results allow the correlation of the studied metasedimentary rocks with the Carboniferous Rancho Nuevo Formation of the Sonora allochthon, which crops out in central Sonora. The Sonora allochthon includes an Early Ordovician-Late Pennsylvanian sedimentary succession that was deposited in the oceanic basin located south of the Laurentian craton. Therefore, upper Paleozoic metasedimentary rocks of the Sierra Las Pintas were deposited along the same continental margin of Laurentia as those rocks in the Sonora allochthon, and were mostly derived from metamorphic rocks of the continental craton and by the typical Carboniferous encrinites, which characterize the shallow-water rocks of central and northern Sonora.

  7. Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales island: an early Paleozoic Alaskan-type ultramafic body

    USGS Publications Warehouse

    Loney, R.A.; Himmelberg, G.R.

    1992-01-01

    The early Paleozoic Salt Chuck intrusion has petrographic and chemical characteristics that are similar to those of Cretaceous Alaskan-type ultramafic-mafic bodies. The intrusion is markedly discordant to the structure of the early Paleozoic Descon Formation, in which it has produced a rather indistinct contact aureole a few meters wide. Mineral assemblages, sequence of crystallization, and mineral chemistry suggest that the intrusion crystallized under low pressures (~2 kbar) with oxidation conditions near those of the NNO buffer, from a hydrous, silica-saturated, orthopyroxene-normative parental magma. The Salt Chuck deposit was probably formed by a two-stage process: 1) a stage of magmatic crystallization in which the sulfides and PGE accumulated in a disseminated manner in cumulus deposits, possibly largely in the gabbro, and 2) a later magmatic-hydrothermal stage during which the sulfides and PGE were remobilized and concentrated in veins and fracture-fillings. In this model, the source of the sulfides and PGE was the magma that produced the Salt Chuck intrusion. -from Authors

  8. Geochronology and geochemistry of early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Xu, Wen-Liang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.

    2018-02-01

    This paper presents new geochronological and geochemical data for early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East, with the aim of elucidating the Paleozoic evolution and tectonic attributes of the Khanka Massif. New U-Pb zircon data indicate that early Paleozoic magmatism within the Khanka Massif can be subdivided into at least four stages: 502, 492, 462-445, and 430 Ma. The 502 Ma pyroxene diorites contain 58.28-59.64 wt% SiO2, 2.84-3.69 wt% MgO, and relatively high Cr and Ni contents. Negative εHf(t) values (- 1.8 to - 0.4), along with other geochemical data, indicate that the primary magma was derived from partial melting of mafic lower crust with the addition of mantle material. The 492 Ma syenogranites have high SiO2 and K2O contents, and show positive Eu anomalies, indicating the primary magma was generated by partial melting of lower crust at relatively low pressure. The 445 Ma Na-rich trondhjemites display high Sr/Y ratios and positive εHf(t) values (+ 1.8 to + 3.9), indicating the primary magma was generated by partial melting of thickened hydrous mafic crust. The 430 Ma granitoids have high SiO2 and K2O contents, zircon εHf(t) values of - 5.4 to + 5.8, and two-stage model ages of 1757-1045 Ma, suggesting the primary magma was produced by partial melting of heterogeneous Proterozoic lower crustal material. The geochemistry of these early Paleozoic intrusive assemblages indicates their formation in an active continental margin setting associated with the subduction of a paleo-oceanic plate beneath the Khanka Massif. The εHf(t) values show an increasingly negative trend with increasing latitude, revealing a lateral heterogeneity of the lower crust beneath the Khanka Massif. Regional comparisons of the magmatic events indicate that the Khanka Massif in the Russian Far East has a tectonic affinity to the Songnen-Zhangguangcai Range Massif rather than the adjacent Jiamusi Massif.

  9. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-wei; Xu, Wen-liang; Pei, Fu-ping; Wang, Feng; Guo, Peng

    2016-09-01

    This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China, in order to constrain the early Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt (CAOB). Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern Songnen-Zhangguangcai Range Massif (SZM) can be subdivided into four stages: Middle Cambrian ( 505 Ma), Late Cambrian ( 490 Ma), Early-Middle Ordovician ( 470 Ma), and Late Ordovician (460-450 Ma). The Middle Cambrian monzogranites are K-rich, weakly to strongly peraluminous, and characterized by pronounced heavy rare earth element (HREE) depletions, high Sr/Y ratios, low Y concentrations, low primary zircon εHf(t) values (- 6.79 to - 1.09), and ancient two-stage model (TDM2) ages (1901-1534 Ma). These results indicate derivation from partial melting of thickened ancient crustal materials that formed during the amalgamation of the northern SZM and the northern Jiamusi Massif (JM). The Late Cambrian monzonite, quartz monzonite, and monzogranite units are chemically similar to A-type granites, and contain zircons with εHf(t) values of - 2.59 to + 1.78 and TDM2 ages of 1625-1348 Ma. We infer that these rocks formed from primary magmas generated by partial melting of Mesoproterozoic accreted lower crustal materials in a post-collisional extensional environment. The Early-Middle Ordovician quartz monzodiorite, quartz monzonite, monzogranite, and rhyolite units are calc-alkaline, relatively enriched in light REEs (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), depleted in HREEs and high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and contain zircons with εHf(t) values of - 7.33 to + 4.98, indicative of formation in an active continental margin setting. The Late Ordovician alkali-feldspar granite and rhyolite units have A-type granite affinities that suggest they formed in an

  10. Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth

    NASA Astrophysics Data System (ADS)

    Insel, N.; Grove, M.; Haschke, M.; Barnes, J. B.; Schmitt, A. K.; Strecker, M. R.

    2012-12-01

    Constraining the pre-Neogene history of the Puna plateau is crucial for establishing the initial conditions that attended the early stage evolution of the southern extent of the Andean plateau. We apply high- to low-temperature thermochronology data from plutonic rocks in northwestern Argentina to quantify the Paleozoic, Mesozoic and early Tertiary cooling history of the Andean crust. U-Pb crystallization ages of zircons indicate that pluton intrusion occurred during the early mid-Ordovician (490-470 Ma) and the late Jurassic (160-150 Ma). Lower-temperature cooling histories from 40Ar/39Ar analyses of K-feldspar vary substantially. Basement rocks underlying the western Puna resided at temperatures below 200°C (<6 km depth) since the Devonian (˜400 Ma). In contrast, basement rocks underlying the southeastern Puna were hotter (˜200-300°C) throughout the Paleozoic and Jurassic and cooled to temperatures of <200°C by ˜120 Ma. The southeastern Puna basement records a rapid cooling phase coeval with active extension of the Cretaceous Salta rift at ˜160-100 Ma that we associate with tectonic faulting and lithospheric thinning. The northeastern Puna experienced protracted cooling until the late Cretaceous with temperatures <200°C during the Paleocene. Higher cooling rates between 78 and 55 Ma are associated with thermal subsidence during the postrift stage of the Salta rift and/or shortening-related flexural subsidence. Accelerated cooling and deformation during the Eocene was focused within a narrow zone along the eastern Puna/Eastern Cordillera transition that coincides with Paleozoic/Mesozoic structural and thermal boundaries. Our results constrain regional erosion-induced cooling throughout the Cenozoic to have been less than ˜150°C, which implies total Cenozoic denudation of <6-4 km.

  11. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids

    NASA Astrophysics Data System (ADS)

    Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna

    2018-06-01

    Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from

  12. Paleozoic Hydrocarbon-Seep Limestones

    NASA Astrophysics Data System (ADS)

    Peckmann, J.

    2007-12-01

    To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods

  13. Two possibilities for New Siberian Islands terrane tectonic history during the Early Paleozoic based on paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Metelkin, Dmitry V.; Chernova, Anna I.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    The New Siberian Islands (NSI), located in the East Siberian Sea in the junction region of various structural elements, are a key target for deciphering the tectonic evolution of the Eastern Arctic. In recent years, we went on several expeditions and gathered an extensive geological material for this territory. Among other things, we could prove that the basement of the De Long and Anjou archipelagos structures is Precambrian and the overlying Paleozoic sections formed within the same terrane. The form of the boundaries of the NSI terrane are actively debated and are probably continued from the Lyakhovsky islands in the south-west to the southern parts of the submerged Mendeleev Ridge, for which there is increasing evidence of continental crust. Today there are several models that interpret the Paleozoic-Mesozoic tectonic history and structural affiliation of the NSI terrane. Some propose that the Paleozoic sedimentary section formed in a passive margin setting of the Siberian paleocontinent. Others compare its history with marginal basins of the Baltica and Laurentia continents or consider the NSI terrane as an element of the Chukotka-Alaska microplate. These models are mainly based on results of paleobiogeographical and lithological-facies analyses, including explanations of probable sources for detrital zircons. Our paleomagnetic research on sedimentary, volcanogenic-sedimentary and igneous rocks of the Anjou (Kotelny and Bel'kovsky islands) and De Long (Bennett, Jeannette and Henrietta islands) archipelagos let us calculate an apparent polar wander path for the early Paleozoic interval of geological history, which allows us to conclude that the NSI terrane could not have been a part of the continental plates listed above, but rather had active tectonic boundaries with them. Our paleomagnetic data indicate that the NSI terrane drifted slowly and steadily in the tropical and subtropical regions no higher than 40 degrees. However, the main uncertainty for the

  14. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  15. Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Ayuso, Robert A.; Aleinikoff, John N.; Amato, Jeffrey M.; Slack, John F.; Shanks, W.C. Pat

    2014-01-01

    The Nome Complex is a large metamorphic unit that sits along the southern boundary of the Arctic Alaska–Chukotka terrane, the largest of several micro continental fragments of uncertain origin located between the Siberian and Laurentian cratons. The Arctic Alaska–Chukotka terrane moved into its present position during the Mesozoic; its Mesozoic and older movements are central to reconstruction of Arctic tectonic history. Accurate representation of the Arctic Alaska–Chukotka terrane in reconstructions of Late Proterozoic and early Paleozoic paleogeography is hampered by the paucity of information available. Most of the Late Proterozoic to Paleozoic rocks in the Alaska–Chukotka terrane were penetratively deformed and recrystallized during the Mesozoic deformational events; primary features and relationships have been obliterated, and age control is sparse. We use a variety of geochemical, geochronologic, paleontologic, and geologic tools to read through penetrative deformation and reconstruct the protolith sequence of part of the Arctic Alaska–Chukotka terrane, the Nome Complex. We confirm that the protoliths of the Nome Complex were part of the same Late Proterozoic to Devonian continental margin as weakly deformed rocks in the southern and central part of the terrane, the Brooks Range. We show that the protoliths of the Nome Complex represent a carbonate platform (and related rocks) that underwent incipient rifting, probably during the Ordovician, and that the carbonate platform was overrun by an influx of siliciclastic detritus during the Devonian. During early phases of the transition to siliciclastic deposition, restricted basins formed that were the site of sedimentary exhalative base-metal sulfide deposition. Finally, we propose that most of the basement on which the largely Paleozoic sedimentary protolith was deposited was subducted during the Mesozoic.

  16. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (13Ccarb) biochemostratigraphy across the Llandovery–Wenlock (Silurian) boundary: Is a unified Phanerozoic time scale achievable?

    USGS Publications Warehouse

    Cramer, Bradley D.; Loydell, David K.; Samtleben, Christian; Munnecke, Axel; Kaljo, Dimitri; Mannik, Peep; Martma, Tonu; Jeppsson, Lennart; Kleffner, Mark A.; Barrick, James E.; Johnson, Craig A.; Emsbo, Poul; Joachimski, Michael M.; Bickert, Torsten; Saltzman, Matthew R.

    2010-01-01

    The resolution and fidelity of global chronostratigraphic correlation are direct functions of the time period under consideration. By virtue of deep-ocean cores and astrochronology, the Cenozoic and Mesozoic time scales carry error bars of a few thousand years (k.y.) to a few hundred k.y. In contrast, most of the Paleozoic time scale carries error bars of plus or minus a few million years (m.y.), and chronostratigraphic control better than ??1 m.y. is considered "high resolution." The general lack of Paleozoic abyssal sediments and paucity of orbitally tuned Paleozoic data series combined with the relative incompleteness of the Paleozoic stratigraphic record have proven historically to be such an obstacle to intercontinental chronostratigraphic correlation that resolving the Paleozoic time scale to the level achieved during the Mesozoic and Cenozoic was viewed as impractical, impossible, or both. Here, we utilize integrated graptolite, conodont, and carbonate carbon isotope (??13Ccarb) data from three paleocontinents (Baltica, Avalonia, and Laurentia) to demonstrate chronostratigraphic control for upper Llando very through middle Wenlock (Telychian-Sheinwoodian, ~436-426 Ma) strata with a resolution of a few hundred k.y. The interval surrounding the base of the Wenlock Series can now be correlated globally with precision approaching 100 k.y., but some intervals (e.g., uppermost Telychian and upper Shein-woodian) are either yet to be studied in sufficient detail or do not show sufficient biologic speciation and/or extinction or carbon isotopic features to delineate such small time slices. Although producing such resolution during the Paleozoic presents an array of challenges unique to the era, we have begun to demonstrate that erecting a Paleozoic time scale comparable to that of younger eras is achievable. ?? 2010 Geological Society of America.

  17. Late Paleozoic transpression in Buenos Aires and northeast Patagonia ranges, Argentina

    NASA Astrophysics Data System (ADS)

    Rossello, E. A.; Massabie, A. C.; López-Gamundí, O. R.; Cobbold, P. R.; Gapais, D.

    1997-12-01

    Paleozoic sediments are present in three regions in eastern central Argentina: (1) the Sierras Australes of Buenos Aires, (2) Sierras Septentrionales of Buenos Aires and (3) Northeast Patagonia. All of these deposits share a common deformational imprint imparted by late Paleozoic Gondwanan deformation. Exposures of these rocks are scattered, variably deformed, and isolated by younger sediments deposited in basins related to the Mesozoic through Tertiary opening of the South Atlantic such as the offshore Colorado Basin. The Sierras Australes of Buenos Aires outcrops are the best preserved. They are mostly located along the Sierras Australes foldbelt, with minor outliers distributed in the adjacent Claromec-basin. The Tunas Formation (early-early late? Permian) is the uppermost unit of the Pillahuincó Group (late Carboniferous-Permian) and is crucial to the understanding of the tectono-sedimentary evolution of the region during the late Paleozoic. The underlying units of the Pillahuincó Group (Sauce Grande, Piedra Azul and Bonete Formations) exhibit a depositional and compositional history characterized by glaciomarine sedimentation and postglacial transgression. They are also characterized by rather uniform quartz-rich compositions indicative of a cratonic provenance from the La Plata craton to the NE. In contrast, the sandstone-rich Tunas Formation has low quartz contents, and abundant volcanic and metasedimentary fragments; paleocurrents are consistently from the SW. Glassrich tuffs are interbedded with sandstone in the upper half of the Tunas Formation. The age of the deformation in the Sierras Australes is Permian and early-middle Triassic. This is based on metamorphic events indicated by formation of illite at 282 ± 3 Ma, 273 ± 8 Ma, 265 ± 3 Ma, and 260 ± 3 Ma ( {K}/{Ar} illite) in the Silurian Curamalal Group. Evidence of syntectonic magmatism is provided by a radiometric date of 245 ± 12 Ma ( {K}/{Ar} hornblende) for the López Lecube Granite

  18. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  19. A- and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Badr, Afsaneh; Davoudian, Ali Reza; Shabanian, Nahid; Azizi, Hossein; Asahara, Yoshihiro; Neubauer, Franz; Dong, Yunpeng; Yamamoto, Koshi

    2018-02-01

    The North Shahrekord Metamorphic Complex (NSMC) of the central Sanandaj-Sirjan Zone (SaSZ) consists of metagranitoid bodies, which were metamorphosed within high pressure-low temperature conditions. Whole rock chemistry shows relatively high amounts of SiO2 (65-77 wt%) and Al2O3 (12-15 wt%), low amounts of Nb, P, Sr, Ti, a high ratio of Ga/Al (4-9) and a negative Eu anomaly. The chemical compositions of metagranites are reasonably similar to A- and I-type granites. U-Pb zircon ages of three samples of metagranites indicate that crystallization of the granites occurred at 521.6 ± 9.1 to 513.5 ± 8.5 Ma, Middle Cambrian. The initial 87Sr/86Sr and 143Nd/144Nd ratios of samples vary from 0.7057-0.7239 and 0.511801-0.511890, respectively. High initial 87Sr/86Sr ratios and low εNd(t) values (- 3.39 to - 1.07) associated with high ratios of 206Pb/204Pb(t) = 17.8557-18.8045, 207Pb/204Pb(t) = 15.6721-15.7220, and 208Pb/204Pb(t) = 37.7490-38.4468 infer a significant contribution of continental crust in generating the source magma of the metagranite bodies. The results reveal that the metagranites were mainly produced through mixing of basaltic melts with components similar to metasedimentary sources. The new results show that crystallization of the metagranites occurred in Early Paleozoic times and much earlier than break-up and drifting of the SaSZ from the Arabian plate, suggesting that the metagranites were mainly produced in the western Iran after the closure of the Proto-Tethys Ocean. This model is consistent with the previously suggested models for formation of an Early Paleozoic granitoid belt along the northern rim of Gondwana.

  20. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  1. The Boundary of Tectonic Units of the South China Continent in the Meso-Neoproterozoic - Early Paleozoic: Insights from Integrated Geophysical Study

    NASA Astrophysics Data System (ADS)

    Guo, L.; Gao, R.; Meng, X.; Zhang, J.; Wang, H.; Liu, Y.

    2013-12-01

    The South China continent (SCC), located in the transition zone of the Eurasia, India and Pacific plates, formed in the Meso-Neoproterozoic by collision of the Yangtze block and the Cathaysia block. However, the boundaries of the two blocks before the late Paleozoic (from Meso-Neoproterozoic to early Paleozoic) remain debated in the literature due to strong and complex tectonic and magmatic activities since then. The south of Jiangnan archicontinent is covered mostly by the thick strata since the late Paleozoic, the surface of which is widely covered by the vegetation. And the regional tectonic deformation is extremely complicated with few basal outcrops. For decades, a variety of geophysical detections have been performed in the SCC for understanding the deep structure and tectonic evolution, including deep seismic sounding (DSS) profiles, magnetotelluric sounding (MT) profiles, gravity and magnetic surveys and a small amount of deep seismic reflection profiles. However, due to the limitations of resolution and accuracy of the observed geophysical data in the past, especially short of the deep seismic reflection profiles to reveal fine lithosphere structure, different scientists presented various views on the division of tectonic units in the SCC. In quite recent years, the SinoProbe-02 project launched a long profile of geophysical detections across the two blocks in the SCC, including deep seismic reflection, DSS, MT, and broadband seismic observation, the resolution and accuracy of which had been improved greatly. These newly data will benefit better understanding the deep structure and tectonic evolution of the SCC. Here, we assembled high-resolution Bouguer gravity anomalies and aeromagnetic anomalies data in the SCC. The magnetic data were reduced to the pole by used a varying magnetic inclinations algorithm. We then performed anomaly separation and multi-scales lineation structure analysis on the gravity and RTP magnetic data, and then did 3D fusion

  2. Shifting locus of carbonate sedimentation and the trajectory of Paleozoic pCO2

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.

    2016-12-01

    The burial of calcium carbonate is a determinant of planetary habitability, dictated by CO2 input to the surface environment and rates of chemical weathering. An important source of CO2 is the metamorphism of carbon-bearing sediments, which is responsive to the locus of sedimentation. For example, deep sea sediments are prone to recycling as sea floor is consumed at convergent margins; by contrast, sediments deposited on continental crust can be stable for billions of years.The predominant feature in the empirical sedimentary rock record, as measured by Macrostrat (https://macrostrat.org) and global geological syntheses, is a step-wise increase in continental sedimentation at the Neoproterozoic-Paleozoic transition. Although early Paleozoic carbonate volumes are sufficient to account for a CO2 flux 5x greater than present, Proterozoic continental burial fluxes were likely below the modern estimate. This observation implies that most carbonate sedimentation in the Proterozoic took place on the deep sea floor. The establishment of persistent, widespread continental flooding during the Paleozoic shifted the locus of carbonate sedimentation to continental interiors. A major implication of this shift is that CO2 flux declined during the Paleozoic as carbonate-laden Precambrian seafloor was metamorphosed and recycled. This prediction is consistent with independent proxy records and our model for Phanerozoic carbonate burial. An important corollary is that as carbonate-rich Precambrian seafloor was progressively destroyed, the carbonate content of deep sea sediments decreased concordantly because Paleozoic continents effectively captured global alkalinity fluxes. This process culminated near the Permian/Triassic, with metamorphic CO2 flux at a Phanerozoic minimum and the global ocean uniquely unbuffered against acidification. Such a condition could enhance the environmental effects of transient CO2 injections. Because the mid-Mesozoic appearance of pelagic calcifiers and

  3. A New Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and Cladistic Analysis of Early Chondrichthyans

    PubMed Central

    Pradel, Alan; Tafforeau, Paul; Maisey, John G.; Janvier, Philippe

    2011-01-01

    Background The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters. Methodology/Principal Findings On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters. Conclusions/Significance Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters. PMID:21980367

  4. A new paleozoic Symmoriiformes (Chondrichthyes) from the late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans.

    PubMed

    Pradel, Alan; Tafforeau, Paul; Maisey, John G; Janvier, Philippe

    2011-01-01

    The relationships of cartilaginous fishes are discussed in the light of well preserved three-dimensional Paleozoic specimens. There is no consensus to date on the interrelationship of Paleozoic chondrichthyans, although three main phylogenetic hypotheses exist in the current literature: 1. the Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are grouped along with the modern sharks (neoselachians) into a clade which is sister group of holocephalans; 2. the Symmoriiformes are related to holocephalans, whereas the other Paleozoic shark-like chondrichthyans are related to neoselachians; 3. many Paleozoic shark-like chondrichthyans, such as the Symmoriiformes, are stem chondrichthyans, whereas stem and crown holocephalans are sister group to the stem and crown neoselachians in a crown-chondrichthyan clade. This third hypothesis was proposed recently, based mainly on dental characters. On the basis of two well preserved chondrichthyan neurocrania from the Late Carboniferous of Kansas, USA, we describe here a new species of Symmoriiformes, Kawichthys moodiei gen. et sp. nov., which was investigated by means of computerized X-ray synchrotron microtomography. We present a new phylogenetic analysis based on neurocranial characters, which supports the third hypothesis and corroborates the hypothesis that crown-group chondrichthyans (Holocephali+Neoselachii) form a tightly-knit group within the chondrichthyan total group, by providing additional, non dental characters. Our results highlight the importance of new well preserved Paleozoic fossils and new techniques of observation, and suggest that a new look at the synapomorphies of the crown-group chondrichthyans would be worthwhile in terms of understanding the adaptive significance of phylogenetically important characters.

  5. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early

  6. Late Paleozoic paleolatitude and paleogeography of the Midland basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.A.; Golonka, J.; Reid, A.M.

    1992-04-01

    During the Late Pennsylvanian through Early Permian, the Midland basin was located in the low latitudes. In the Desmoinesian (Strawn), the basin was astride the equator; during the Missourian (Canyon), the center of the basin had migrated northward so it was located at 1-2N latitude. In the Virgilian (Cisco), the basin center was located around 2-4N latitude, and by the Wolfcampian, it was positioned at around 4-6N latitude. From the Desmoinesian (312 Ma) through the Missourian (306 Ma), the relative motion of the basin was 63NE. Later during the Virgilian (298 Ma) to Wolfcampian (280 Ma), the direction of motionmore » was 24NE. This change in motion reflects a major tectonic event, occurring between the Missourian and Virgilian, that greatly modifed the movement of the Laurentian (North American) plate. At that time, Laurentia had collided with Gondwana and become part of the supercontinent Pangea. Throughout the late Paleozoic, Laurentia was rotated so the Midland basin was oriented 43{degree} northeast from its current setting. Late Paleozoic paleogeography and paleolatitude controlled the direction of prevailing winds and ocean currents, thereby influencing the distribution of carbonate facies in the Midland basin. Present prevailing winds and ocean currents have been shown to have a major impact on modern carbonate sedimentation and facies distribution in Belize, the Bahamas and Turks, and Caicos. A clearer understanding of how late Paleozoic latitude and geography affected sedimentation helps explain and predict the distribution of carbonates throughout the Midland basin.« less

  7. Assessment of Paleozoic terrane accretion along the southern central Andes using detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.

    2015-12-01

    Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the

  8. Tectono-thermal Evolution of the Lower Paleozoic Petroleum Source Rocks in the Southern Lublin Trough: Implications for Shale Gas Exploration from Maturity Modelling

    NASA Astrophysics Data System (ADS)

    Botor, Dariusz

    2018-03-01

    The Lower Paleozoic basins of eastern Poland have recently been the focus of intensive exploration for shale gas. In the Lublin Basin potential unconventional play is related to Lower Silurian source rocks. In order to assess petroleum charge history of these shale gas reservoirs, 1-D maturity modeling has been performed. In the Łopiennik IG-1 well, which is the only well that penetrated Lower Paleozoic strata in the study area, the uniform vitrinite reflectance values within the Paleozoic section are interpreted as being mainly the result of higher heat flow in the Late Carboniferous to Early Permian times and 3500 m thick overburden eroded due to the Variscan inversion. Moreover, our model has been supported by zircon helium and apatite fission track dating. The Lower Paleozoic strata in the study area reached maximum temperature in the Late Carboniferous time. Accomplished tectono-thermal model allowed establishing that petroleum generation in the Lower Silurian source rocks developed mainly in the Devonian - Carboniferous period. Whereas, during Mesozoic burial, hydrocarbon generation processes did not develop again. This has negative influence on potential durability of shale gas reservoirs.

  9. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  10. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch

  11. Tectonic transition associated with Kazakhstan Orocline in the Late Paleozoic: magmatic archives of western Chinese Tianshan

    NASA Astrophysics Data System (ADS)

    Cai, Keda

    2016-04-01

    Kazakhstan accretionary system was a principle component of the Central Asian Orogenic Belt (CAOB) that is one of the largest accretionary orogens on earth. The Kazakhstan composite continent could have been established in the Early Paleozoic by the Kazakhstan accretionary system in the form of progressively amalgamations of diverse tectonic units, such as continental ribbon, accretionary prim, oceanic remnant and arc material. Subsequently, the composite continent was bended to form a spectacular U-shaped architecture that probably occurred in the Late Paleozoic. The western Chinese Tianshan is situated on the south wing of the Kazakhstan Orocline, featured by extensive magmatim, intense deformation and voluminous mineralization. Our new geochronological and geochemical data suggest a noticeable magmatic gap between Late Devonian and Early carboniferous and contrasting magma sources of these magmatic rocks. The significant shifts correspond to the tectonic transition from terrane amalgamation to mountain bending in the Early Paleozoic. This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (2014CB448000), Xinjiang outstanding youth scientific grant (2013711003) and the Talent Awards to KDC from the China Government under the 1000 Talent Plan.

  12. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of

  13. Paleozoic tectonics of the Ouachita Orogen through Nd isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, J.D.; Patchett, P.J.; Dickinson, W.R.

    1992-01-01

    A combined isotopic and trace-element study of the Late Paleozoic Ouachita Orogenic belt has the following goals: (1) define changing provenance of Ouachita sedimentary systems throughout the Paleozoic; (2) constrain sources feeding into the Ouachita flysch trough during the Late Paleozoic; (3) isolate the geochemical signature of proposed colliding terranes to the south; (4) build a data base to compare with possible Ouachita System equivalents in Mexico. The ultimate aim is to constrain the tectonic setting of the southern margin of North America during the Paleozoic, with particular emphasis on collisional events leading to the final suturing of Pangea. Ndmore » isotopic data identify 3 distinct groups: (1) Ordovician passive margin sequence; (2) Carboniferous proto-flysch (Stanley Fm.), main flysch (Jackfork and Atoka Fms.) and molasse (foreland Atoka Fm.); (3) Mississippian ash-flow tuffs. The authors interpret the Ordovician signature to be essentially all craton-derived, whereas the Carboniferous signature reflects mixed sources from the craton plus orogenic sources to the east and possibly the south, including the evolving Appalachian Orogen. The proposed southern source is revealed by the tuffs to be too old and evolved to be a juvenile island arc terrane. They interpret the tuffs to have been erupted in a continental margin arc-type setting. Surprisingly, the foreland molasse sequence is indistinguishable from the main trough flysch sequence, suggesting the Ouachita trough and the craton were both inundated with sediment of a single homogenized isotopic signature during the Late Carboniferous. The possibility that Carboniferous-type sedimentary dispersal patterns began as early as the Silurian has important implications for the tectonics and paleogeography of the evolving Appalachian-Ouachita Orogenic System.« less

  14. Paleozoic carbonate buildup (reef) inventory, central and southeastern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacson, P.E.

    1987-08-01

    Knowledge of central and southeastern Idaho's Paleozoic rocks to date suggest that three styles of buildup (reef) complexes occur in Late Devonian, Mississippian, and Pennsylvanian-Permian time. The Late Devonian Jefferson Formation has stromatoporoid and coral (both rugosan and tabulate) organisms effecting a buildup in the Grandview Canyon vicinity; Early Mississippian Waulsortian-type mud mounds occur in the Lodgepole formation of southeastern Idaho; there are Late Mississippian Waulsortian-type mounds in the Surrett Canyon Formation of the Lost River Range; and cyclic Pennsylvanian-Permian algal and hydrozoan buildups occur in the Juniper gulch Member of the Snaky Canyon Formation in the Arco Hills andmore » Lemhi Range. Late Devonian (Frasnian) carbonates of the Jefferson formation show buildup development on deep ramp sediments.« less

  15. North American Paleozoic land snails with a summary of other Paleozoic nonmarine snails

    USGS Publications Warehouse

    Solem, Alan; Yochelson, Ellis Leon

    1979-01-01

    family placement of Anthracopupa, growth forms of modern pupillid and tornatellinid snails have been distinguished. The apertural barriers in Anthracopupa are identical in placement and growth pattern with those of living Tornatellinidae and independently confirm the family placement derived from study of the general form. One new species, A. sturgeoni, has been named. Anthracopupa is found most commonly in thin limestones interpreted as having been deposited in pools into which the small shells floated. Dendropupa is most commonly found in erect tree stumps that were covered by rapid sedimentation. Both environments are similar to those in which the shells of allied living species may be found today, and the fossils support environmental interpretations made entirely from lithology. A survey of the few European occurrences of Paleozoic land snails indicates that both Anthracopupa and Dendropupa occur in Lower Permian strata; Anthracopupa is known from beds as old as Westphalian B. These genera cannot be used for determining the Carboniferous-Permian boundary. Both the long local stratigraphic range of A. brittanica and D. vetusta reported in the literature and the moderately long range and great variability of A. ohioensis suggest that the land snails have little stratigraphic utility. On the other hand, the occurrence of these land snails in the late Paleozoic of the Northern Hemisphere provides further fossil evidence suggestive of a closed Atlantic Ocean at that time. A comparison of the Paleozoic and the present distributions of land -snail families on both sides of the Atlantic provides some interesting data on geographic shifts of organisms. Finally, the assignment of the earliest land snails to extant taxa at the family level indicates that the subclass Pulmonata has been very conservative in its evolution after initial radiation. A few notes on Paleozoic freshwater snails complete this survey.

  16. Devonian paleomagnetism of the North Tien Shan: Implications for the middle-Late Paleozoic paleogeography of Eurasia

    NASA Astrophysics Data System (ADS)

    Levashova, Natalia M.; Mikolaichuk, Alexander V.; McCausland, Philip J. A.; Bazhenov, Mikhail L.; Van der Voo, Rob

    2007-05-01

    The Ural-Mongol belt (UMB), between Siberia, Baltica and Tarim, is widely recognized as the locus of Asia's main growth during the Paleozoic, but its evolution remains highly controversial, as illustrated by the disparate paleogeographic models published in the last decade. One of the largest tectonic units of the UMB is the Kokchetav-North Tien Shan Domain (KNTD) that stretches from Tarim in the south nearly to the West Siberian Basin. The KNTD comprises several Precambrian microcontinents and numerous remnants of Early Paleozoic island arcs, marginal basins and accretionary complexes. In Late Ordovician time, all these structures had amalgamated into a single contiguous domain. Its paleogeographic position is of crucial importance for elucidating the Paleozoic evolution of the UMB in general and of the Urals in particular. The Aral Formation, located in Kyrgyzstan in the southern part of the KNTD, consists of a thick Upper Devonian (Frasnian) basalt-andesite sequence. Paleomagnetic data show a dual-polarity characteristic component (Dec/Inc = 286° / + 56°, α95 = 9°, k = 21, N = 15 sites). The primary origin of this magnetization is confirmed by a positive test on intraformational conglomerates. We combine this result with other Paleozoic data from the KNTD and show its latitudinal motion from the Late Ordovician to the end of the Paleozoic. The observed paleolatitudes are found to agree well with the values extrapolated from Baltica to a common reference point (42.5°N, 73°E) in our sampling area for the entire interval; hence coherent motion of the KNTD and Baltica is strongly indicated for most of the Paleozoic. This finding contradicts most published models of the UMB evolution, where the KNTD is separated from Baltica by a rather wide Ural Ocean containing one or more major plate boundaries. An exception is the model of Şengör and Natal'in [A.M.C. Şengör, B.A. Natal'in, Paleotectonics of Asia: fragments of a synthesis, in: A. Yin and M. Harrison (eds

  17. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  18. Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu

    2017-08-01

    The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu

  19. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are

  20. A New Model of the Early Paleozoic Tectonics and Evolutionary History in the Northern Qinling, China

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng; Zhang, Guowei; Yang, Zhao; Qu, Hongjun; Liu, Xiaoming

    2010-05-01

    The Qinling Orogenic Belt extends from the Qinling Mountains in the west to the Dabie Mountains in the east. It lies between the North China and South China Blocks, and is bounded on the north by the Lushan fault and on the south by the Mianlue-Bashan-Xiangguang fault (Zhang et al., 2000). The Qinling Orogenic Belt itself is divided into the North and South Qinling Terranes by the Shangdan suture zone. Although the Shangdan zone is thought to represent the major suture separating the two blocks, there still exists debate about the timing and mechanism of convergence between these two blocks. For instance, some authors suggested an Early Paleozoic collision between the North China Block and South China Block (Ren et al., 1991; Kroner et al., 1993; Zhai et al., 1998). Others postulated left-lateral strike-slip faulting along the Shangdan suture at ca. 315 Ma and inferred a pre-Devonian collision between the two blocks (Mattauer et al., 1985; Xu et al., 1988). Geochemistry of fine-grained sediments in the Qinling Mountains was used to argue for a Silurian-Devonian collision (Gao et al., 1995). A Late Triassic collision has also been proposed (Sengor, 1985; Hsu et al., 1987; Wang et al., 1989), based on the formation of ultrahigh-pressure metamorphic rocks in the easternmost part of the Qinling Orogenic Belt at ~230 Ma (e.g., Li et al., 1993; Ames et al., 1996). Paleomagnetic data favor a Late Triassic-Middle Jurassic amalgamation of the North China and South China Blocks (Zhao and Coe, 1987; Enkin et al., 1992). It is clear that most authors thought that the Qinling Mountains are a collisional orogen, even they have different methods about the timing of the orogeny. Based on new detailed investigations, we propose a new model of the Early Paleozoic Tectonics and Evolutionary History between the North China and South China Blocks along the Shangdan Suture. The Shangdan suture is marked by a great number of ophiolites, island-arc volcanic rocks and other related rock

  1. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  2. The Paleozoic ichthyofauna of the Amazonas and Parnaíba basins, Brazil

    NASA Astrophysics Data System (ADS)

    Figueroa, Rodrigo Tinoco; Machado, Deusana Maria da Costa

    2018-03-01

    The Brazilian Paleozoic ichthyofauna from the Parnaíba and Amazonas basins regard a sparsely known diversity, including chondrichthyans and acanthodians, besides some osteichthyan remains. This work proposes a revision of the fossil material from these two sedimentary basins and synthesizes the morphological aspect of such material trying to understand the influences of those fossils to the paleontology of the region, comparing the Brazilian fossils with other gondwanan faunas. The Brazilian Paleozoic fish fauna shows great resemblance to those of Bolivia, especially during the Devonian. Many of the Acanthodian spines from the Manacapuru Formation (Amazonas Basin), and the Pimenteira Formation (Parnaíba Basin), are comparable to the taxa found in Bolivia. The lack of more Placoderm remains in the Brazilian outcrops is similar to the low diversity of this group in Bolivia, when compared to other South American and Euramerican localities. The most diverse Brazilian ichthyofauna is encountered in the Permian Pedra de Fogo Formation where numerous chondrichthyans and 'paleopterygians' remains are found, together with dipnoans and actinistians. Despite the apparent lack of more representative Paleozoic ichthyofaunas in Brazil, the available material that ranges from Lower Devonian to early Permian from Brazil bears important taxa that could address valuable taxonomic and biogeographic informations.

  3. Paleozoic and Lower Mesozoic magmas from the eastern Klamath Mountains (North California) and the geodynamic evolution of northwestern America

    NASA Astrophysics Data System (ADS)

    Lapierre, H.; Brouxel, M.; Albarede, F.; Coulin, C.; Lecuyer, C.; Martin, P.; Mascle, G.; Rouer, O.

    1987-09-01

    The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430-480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin. A consistent plate-tectonic model is proposed for the area, consisting of six main stages: (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin; (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc; (3) opening and development of the Trinity back-arc basin around 430-480 Ma ago; (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock; (5) break in volcanic activity from the Early Devonian to the Early Permian; and (6) development of

  4. Geochemistry of Early Paleozoic boninites from the Central Qilian block, Northwest China: Constraints on petrogenesis and back-arc basin development

    NASA Astrophysics Data System (ADS)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Pan, Fa-Bin

    2018-06-01

    Early Paleozoic boninites occur in the Central Qilian orogenic belt, Northwest China. Their petrogenesis provides insights into lithosphere process and tectonic evolution of the Qilian block. In this paper, we carry out a study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic boninites in the Lajishan area of the Central Qilian block. The Lajishan boninites (∼483 Ma) have high Al2O3/TiO2 (36.7-64.7) and CaO/TiO2 (31.1-49.6) ratios, and high MgO (7.86-10.47 wt%), Cr (439-599 ppm) and Ni (104-130 ppm) contents, indicating that the boninites result from a refractory mantle source. They are depleted in high field-strength elements (HFSE) and enriched in large ion lithophile elements (LILE), coupled with slightly high initial 87Sr/86Sr values of 0.7059-0.7074 and low εNd(t) values of -1.05 to +2.66, indicating that the mantle source was metasomatized by subducted slab-derived components. We found that an assemblage of low-Ca group and high-Ca group boninites occurred in the Lajishan belt. The high-Ca group boninites were derived from relatively fertile mantle with slightly higher melting degree, whereas the low-Ca group boninites were generated by partial melting of more refractory mantle wedge peridotites with slightly lower melting degree. The assemblage of low-Ca group and high-Ca group boninites reveals that the low-Ca group boninites were generated by the further melting of the more refractory mantle source after the segregation of the high-Ca group boninitic magmas in response to the back-arc basin opening. In the light of reported boninites worldwide, a diagram of Zr/Y vs. CaO/Al2O3 is used to identify boninites in fore-arc and back-arc regions. We suggest that the Lajishan boninites represent the products of back-arc basin development in response to the northward subduction of the Qaidam-West Qinling ocean slab.

  5. The Neoproterozoic-Paleozoic Arctic Margins: early stages of geodynamic evolution and plate reconstructions

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Yu.; Lobkovsky, L. I.; Shipilov, E. V.

    2012-04-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the

  6. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  7. The potential of paleozoic nonmarine trace fossils for paleoecological interpretations

    USGS Publications Warehouse

    Maples, C.G.; Archer, A.W.

    1989-01-01

    Many Late Paleozoic environments have been interpreted as marine because of the co-occurrence of supposedly exclusively marine trace fossils. Beginning in the Late Ordovician, however, nonmarine trace-fossil diversity increased throughout the Paleozoic. This diversification of nonmarine organisms and nonmarine trace fossils was especially prevalent in Devonian and later times. Diversification of freshwater organisms is indicated by the large number of freshwater fish, arthropods, annelids and molluscs that had developed by the Carboniferous. In addition to diverse freshwater assemblages, entirely terrestrial vertebrate and invertebrate ecosystems had developed by the Devonian. This rapid diversification of freshwater and terrestrial organisms is inherently linked to development and diversification of land plants and subsequent shedding of large quantities of organic detritus in nonmarine and marginal-marine areas. Nearshore marine organisms and their larvae that are able to tolerate relatively short periods of lowered salinities will follow salt-water wedges inland during times of reduced freshwater discharge. Similarly, amphidromous marine organisms will migrate periodically inland into nonmarine environments. Undoubtedly, both of these processes were active in the Paleozoic. However, both processes are restricted to stream/distributary channels, interdistributary bays, or estuaries. Therefore, the presence of diverse trace-fossil assemblages in association with floodplain deposits is interpreted to reflect true nonmarine adaptation and diversity. Conversely, diverse trace-fossil assemblages in association with stream/distributary channel deposits, interdistributary-bay deposits, or estuarine deposits may reflect migration of salt-water wedges inland, or migration of marine organisms into freshwater environments (amphidromy), or both. ?? 1989.

  8. Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States

    USGS Publications Warehouse

    Nelson, Philip H.; Gianoutsos, Nicholas J.; Drake, Ronald

    2015-01-01

    Potentiometric surfaces for Paleozoic strata, based on water well levels and selected drill-stem tests, reveal the control on hydraulic head exerted by outcrops in eastern Kansas and Oklahoma. From outcrop in the east, the westward climb of hydraulic head is much less than that of the land surface, with heads falling so far below land surface that the pressure:depth ratio in eastern Colorado is less than 5.7 kPa/m (0.25 psi/ft). Permian evaporites separate the Paleozoic hydrogeologic units from a Lower Cretaceous (Dakota Group) aquifer, and a highly saline brine plume pervading Paleozoic units in central Kansas and Oklahoma is attributed to dissolution of Permian halite. Underpressure also exists in the Lower Cretaceous hydrogeologic unit in the Denver Basin, which is hydrologically separate from the Paleozoic units. The data used to construct the seven potentiometric surfaces were also used to construct seven maps of pressure:depth ratio. These latter maps are a function of the differences among hydraulic head, land-surface elevation, and formation elevation. As a consequence, maps of pressure:depth ratio reflect the interplay of three topologies that evolved independently with time. As underpressure developed, gas migrated in response to the changing pressure regime, most notably filling the Hugoton gas field in southwestern Kansas. The timing of underpressure development was determined by the timing of outcrop exposure and tilting of the Great Plains. Explorationists in western Kansas and eastern Colorado should not be surprised if a reservoir is underpressured; rather, they should be surprised if it is not.

  9. Chondrites isp. Indicating Late Paleozoic Atmospheric Anoxia in Eastern Peninsular India

    PubMed Central

    Bhattacharya, Biplab; Banerjee, Sudipto

    2014-01-01

    Rhythmic sandstone-mudstone-coal succession of the Barakar Formation (early Permian) manifests a transition from lower braided-fluvial to upper tide-wave influenced, estuarine setting. Monospecific assemblage of marine trace fossil Chondrites isp. in contemporaneous claystone beds in the upper Barakar succession from two Gondwana basins (namely, the Raniganj Basin and the Talchir Basin) in eastern peninsular India signifies predominant marine incursion during end early Permian. Monospecific Chondrites ichnoassemblage in different sedimentary horizons in geographically wide apart (~400 km) areas demarcates multiple short-spanned phases of anoxia in eastern India. Such anoxia is interpreted as intermittent falls in oxygen level in an overall decreasing atmospheric oxygenation within the late Paleozoic global oxygen-carbon dioxide fluctuations. PMID:24616628

  10. The impact of fire on the Late Paleozoic Earth system

    PubMed Central

    Glasspool, Ian J.; Scott, Andrew C.; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world. PMID:26442069

  11. The impact of fire on the Late Paleozoic Earth system.

    PubMed

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  12. The global record of local iron geochemical data from Proterozoic through Paleozoic basins

    NASA Astrophysics Data System (ADS)

    Sperling, E. A.; Wolock, C.; Johnston, D. T.; Knoll, A. H.

    2013-12-01

    Iron-based redox proxies represent one of the most mature tools available to sedimentary geochemists. These techniques, which benefit from decades of refinement, are based on the fact that rocks deposited under anoxic conditions tend to be enriched in highly-reactive iron. However, there are myriad local controls on the development of anoxia, and no local section is an exemplar for the global ocean. The global signal must thus be determined using techniques like those developed to solve an analogous problem in paleobiology: the inference of global diversity patterns through time from faunas seen in local stratigraphic sections. Here we analyze a dataset of over 4000 iron speciation measurements (including over 600 de novo analyses) to better understand redox changes from the Proterozoic through the Paleozoic Era. Preliminary database analyses yield interesting observations. We find that although anoxic water columns in the middle Proterozoic were dominantly ferruginous, there was a statistical tendency towards euxinia not seen in early Neoproterozoic or Ediacaran data. Also, we find that in the Neoproterozoic oceans, oxic depositional environments-the likely home for early animals-have exceptionally low pyrite contents, and by inference low levels of porewater sulfide. This runs contrary to notions of sulfide stress on early metazoans. Finally, the current database of iron speciation data does not support an Ediacaran or Cambrian oxygenation event. This conclusion is of course only as sharp as the ability of the Fe-proxy database to track dissolved oxygen and does not rule out the possibility of a small-magnitude change in oxygen. It does suggest, however, that if changing pO2 facilitated animal diversification it did so by a limited rise past critical ecological thresholds, such as seen in the modern Oxygen Minimum Zones benthos. Oxygen increase to modern levels thus becomes a Paleozoic problem, and one in need of better sampling if a database approach is to be

  13. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  14. Lower paleozoic of Baltic Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselton, T.M.; Surlyk, F.

    The Baltic Sea offers a new and exciting petroleum play in northwestern Europe. The Kaliningrad province in the Soviet Union, which borders the Baltic Sea to the east, contains an estimated 3.5 billion bbl of recoverable oil from lower Paleozoic sandstones. To the south, in Poland, oil and gas fields are present along a trend that projects offshore into the Baltic. Two recent Petrobaltic wells in the southern Baltic have tested hydrocarbons from lower Paleozoic sandstone. Minor production comes from Ordovician reefs on the Swedish island of Gotland in the western Baltic. The Baltic synclise, which began subsiding in themore » late Precambrian, is a depression in the East European platform. Strate dip gently to the south where the Baltic Synclise terminates against a structurally complex border zone. Depth to the metamorphosed Precambrian basement is up to 4,000 m. Overlying basement is 200-300 m of upper Precambrian arkosic sandstone. The Lower Cambrian consists of shallow marine quartzites. During Middle and Late Camnbrian, restricted circulation resulted in anoxic conditions and the deposition of Alum shale. The Lower Ordovician consists of quartzites and shale. The Upper Ordovician includes sandstones and algal reefs. The Silurian contains marginal carbonates and shales. For the last 25 years, exploration in northwest Europe has concentrated on well-known Permian sandstone, Jurassic sandstone, and Cretaceous chalk plays. Extrapolation of trends known and exploited in eastern Europe could open an entirely new oil province in the lower Paleozoic in the Baltic.« less

  15. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse

  16. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han

    2017-08-01

    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  17. Global plate boundary evolution and kinematics since the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  18. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen

    NASA Astrophysics Data System (ADS)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong

    2018-05-01

    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  19. A paleozoic pangaea.

    PubMed

    Boucot, A J; Gray, J

    1983-11-11

    Paleozoic paleogeographies should be consistent with all available, reliable data. However, comparison of three different Devonian paleogeographies that are based largely or wholly on the data of remanent magnetism show them to be inconsistent in many regards. When these three paleogeographies are provided with possible ocean surface current circulation patterns, and have added to them lithofacies and biogeographic data, they also are shown to be inconsistent with such data. A pangaeic reconstruction positioned in the Southern Hemisphere permits the lithofacies and biogeographical data to be reconciled in a plausible manner.

  20. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    NASA Astrophysics Data System (ADS)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions

  1. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    NASA Astrophysics Data System (ADS)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative

  2. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  3. Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview

    NASA Astrophysics Data System (ADS)

    Soua, Mohamed

    2014-12-01

    During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete

  4. Paleozoic strata of the Dyckman Mountain area, northeastern Medfra quadrangle, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.

    2000-01-01

    Paleozoic rocks in the Dyckman Mountain area (northeastern Medfra quadrangle; Farewell terrane) include both shallowand deep-water lithologies deposited on and adjacent to a carbonate platform. Shallow-water strata, which were recognized by earlier workers but not previously studied in detail, consist of algal-laminated micrite and skeletal-peloidal wackestone, packstone, and lesser grainstone. These rocks are, at least in part, of Early and (or) Middle Devonian age but locally could be as old as Silurian; they accumulated in shallow subtidal to intertidal settings with periodically restricted water circulation. Deepwater facies, reported here for the first time, are thin, locally graded beds of micrite and calcisiltite and subordinate thick to massive beds of lime grainstone and conglomerate. Conodonts indicate an age of Silurian to Middle Devonian; the most tightly dated intervals are early Late Silurian (early to middle Ludlow). These strata formed as hemipelagic deposits, turbidites, and debris flows derived from shallow-water lithologies of the Nixon Fork subterrane. Rocks in the Dyckman Mountain area are part of a broader facies belt that is transitional between the Nixon Fork carbonate platform to the west and deeper water, basinal lithologies (Minchumina “terrane”) to the east. Transitional facies patterns are complex because of Paleozoic shifts in the position of the platform margin, Mesozoic shortening, and Late Cretaceous-Tertiary disruption by strike-slip faulting.

  5. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration

    PubMed Central

    Scott, Andrew C.; Glasspool, Ian J.

    2006-01-01

    By comparing Silurian through end Permian [≈250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (≈420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the “fire window”). Herein, we observe that, as predicted, atmospheric oxygen levels rise from ≈13% in the Late Devonian to ≈30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence. PMID:16832054

  6. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  7. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the

  8. Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Gagiev, Mussa; Bradley, Dwight C.; Repetski, John E.

    2002-01-01

    Lower Paleozoic platform carbonate strata in northern Alaska (parts of the Arctic Alaska, York, and Seward terranes; herein called the North Alaska carbonate platform) and central Alaska (Farewell terrane) share distinctive lithologic and faunal features, and may have formed on a single continental fragment situated between Siberia and Laurentia. Sedimentary successions in northern and central Alaska overlie Late Proterozoic metamorphosed basement; contain Late Proterozoic ooid-rich dolostones, Middle Cambrian outer shelf deposits, and Ordovician, Silurian, and Devonian shallow-water platform facies, and include fossils of both Siberian and Laurentian biotic provinces. The presence in the Alaskan terranes of Siberian forms not seen in wellstudied cratonal margin sequences of western Laurentia implies that the Alaskan rocks were not attached to Laurentia during the early Paleozoic.The Siberian cratonal succession includes Archean basement, Ordovician shallow-water siliciclastic rocks, and Upper Silurian–Devonian evaporites, none of which have counterparts in the Alaskan successions, and contains only a few of the Laurentian conodonts that occur in Alaska. Thus we conclude that the lower Paleozoic platform successions of northern and central Alaska were not part of the Siberian craton during their deposition, but may have formed on a crustal fragment rifted away from Siberia during the Late Proterozoic. The Alaskan strata have more similarities to coeval rocks in some peri-Siberian terranes of northeastern Russia (Kotelny, Chukotka, and Omulevka). Lithologic ties between northern Alaska, the Farewell terrane, and the peri-Siberian terranes diminish after the Middle Devonian, but Siberian afµnities in northern and central Alaskan biotas persist into the late Paleozoic.

  9. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    USGS Publications Warehouse

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  10. Inventory of Neoproterozoic and Paleozoic strata in Sonora, Mexico

    USGS Publications Warehouse

    Stewart, John H.; Poole, Forrest G.

    2002-01-01

    This compilation is an inventory of all known outcrops of Neoproterozoic and Paleozoic strata in Sonora, Mexico. We have not attempted an interpretation of the regional stratigraphic or structural setting of the strata. Brief summaries of the stratigraphic setting of the Sonora rocks are given in Poole and Hayes (1971), Rangin (1978), Stewart and others (1984, 1990), and Poole and Madrid (1986; 1988b). More specific information on the setting of strata of specific ages are given by Stewart and others (2002) for the Neoproterozoic and Cambrian; by Poole and others (1995a) for Ordovician shelf strata; by Poole and others (1995b) for Ordovician deep-water openbasin strata; by Poole and others (1997, 1998, 2000a) for Silurian strata; and by Poole and others (2000a) for Mississippian strata. Other reports that discuss regional aspects of Paleozoic stratigraphy include López-Ramos (1982), Peiffer-Rangin, (1979, 1988), Pérez-Ramos (1992), and Stewart and others (1997, 1999a). Structurally, the major Paleozoic feature of Sonora is the Sonora allochthon, consisting of deep-water (eugeoclinal) strata emplaced in the Permian over shelf (miogeoclinal) deposits (Poole and others, 1995a,b; Poole and Perry, 1997; 1998). The emplacement structure is generally considered to be a major Permian continental margin thrust fault that emplaced the deep-water rocks northward over shelf (miogeoclinal) deposits. An alternate interpretation has been presented by Stewart and others (2002). He proposed that the emplacement of the Sonora allochthon was along a major Permian transpressional structure that was primarily a strike-slip fault with only a minor thrust component . The Mojave-Sonora megashear has been proposed to disrupt Neoproterozoic and Paleozoic trends in Sonora. This feature is a hypothetical, left-lateral, northwest-striking fault extending across northern Sonora and the southwestern United States (Silver and Anderson, 1974; Anderson and Schmidt, 1983). It is proposed to have

  11. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  12. Burning experiments and late Paleozoic high O2 levels

    NASA Astrophysics Data System (ADS)

    Wildman, R.; Essenhigh, R.; Berner, R.; Hickey, L.; Wildman, C.

    2003-04-01

    The Paleozoic rise of land plants brought about increased burial of organic matter and a resulting increase in atmospheric oxygen concentrations. Levels as high as 30-35% O2 may have been reached during the Permo-Carboniferous (Berner and Canfield, 1989; Berner, 2001). However, burning experiments based solely on paper (Watson, 1978) have challenged these results, the claim being that if the oxygen made up more than 25% of the atmosphere, the frequency and intensity of forest fires would increase sufficiently to prevent the continued existence of plant life. Thus, since plants have persisted, it is possible that fires served as a negative feedback against excessive oxygen levels. An initial study of Paleozoic wildfire behavior via thermogravimetric analysis (TGA) was conducted under ambient and enriched oxygen conditions to simulate present and ancient atmospheres. The tests focused on natural fuels, specifically tree leaves and wood, tree fern fibers, and sphagnum peat-moss, simulating Permo-Carboniferous upland and swampland ecosystems, respectively. Three conclusions are: (1) enriched oxygen increases the rate of mass loss during burning; (2) fuel chemistry (cellulose vs. lignin) influences burning patterns; and (3) in geometrically heterogeneous fuels, geometry affects burning rate significantly. Both geometrically and chemically, paper resists fire poorly; thus, we found that it loses its mass at lower temperatures than forest materials and is therefore a poor proxy for Paleozoic ecosystems. Further study of Paleozoic wildfire spread behavior is currently being conducted. Fires are lit using pine dowels, which allow for reproducible fuel density. Steady-state, one-dimensional flame-spread is measured with thermocouples anchored two inches above the fuel bed. Both oxygen concentration of the air supply to the fire and moisture content of the fuels are varied, as we suspect that these are two main controls of wildfire spread. Burning fuels of varying moisture

  13. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  14. Sequential filling of a late paleozoic foreland basin

    USGS Publications Warehouse

    Mars', J. C.; Thomas, W.A.

    1999-01-01

    Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession

  15. Correlation of Late Precambrian and Paleozoic events in the East European platform and the adjacent paleooceanic domains

    NASA Astrophysics Data System (ADS)

    Kheraskova, T. N.; Volozh, Yu. A.; Antipov, M. P.; Bykadorov, V. A.; Sapozhnikov, R. B.

    2015-01-01

    The correlation of geological events and structure-forming processes occurring contemporaneously in the inner parts of cratons and the adjacent paleooceanic basins is discussed in order to understand the effects of these processes on sedimentation and structural rearrangements. For this purpose, a series of paleodynamic reconstructions of the Riphean, Vendian, and Paleozoic epicontinental basins of the East European Platform and zones of their transition to marginal basins of the same age once situated in the Ural, Timan, Caucasus, Scandinavian fold regions and in the Scythian-Turan Plate have been performed on the basis of the available original and published data combined with interpretation of seismic profiles. As a result, a set of structural-facies maps of this territory have been compiled for several time intervals from the Late Riphean to Early Permian.

  16. Pennsylvanian and Early Permian paleogeography of east-central California: Implications for the shape of the continental margin and the timing of continental truncation

    NASA Astrophysics Data System (ADS)

    Stone, Paul; Stevens, Calvin H.

    1988-04-01

    Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.

  17. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  18. Rotational and accretionary evolution of the Klamath Mountains, California and Oregon, from Devonian to present time

    USGS Publications Warehouse

    Irwin, William P.; Mankinen, Edward A.

    1998-01-01

    The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.

  19. Towards a High-resolution Time Scale for the Early Devonian

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; da Silva, A. C.

    2017-12-01

    High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US

  20. Unroofing history of Late Paleozoic magmatic arcs within the ``Turan Plate'' (Tuarkyr, Turkmenistan)

    NASA Astrophysics Data System (ADS)

    Garzanti, E.; Gaetani, M.

    2002-07-01

    Stratigraphic, sedimentologic and petrographic data collected on the Kizilkaya sedimentary succession (Western Turkmenistan) demonstrate that the "Turan Plate" consists in fact of an amalgamation of Late Paleozoic to Triassic continental microblocks separated by ocean sutures. In the Kizilkaya area, an ophiolitic sequence including pyroxenite, gabbro, pillow basalt and chert, interpreted as the oceanic crust of a back-arc or intra-arc basin, is tectonically juxtaposed against volcaniclastic redbeds documenting penecontemporaneous felsic arc magmatism (Amanbulak Group). A collisional event took place around ?mid-Carboniferous times, when oceanic rocks underwent greenschist-facies metamorphism and a thick volcaniclastic wedge, with pyroclastic rocks interbedded in the lower part, accumulated (Kizilkaya Formation). The climax of orogenic activity is testified by arid fanglomerates shed from the rapid unroofing of a continental arc sequence, including Middle-Upper Devonian back-reef carbonates and cherts, and the underlying metamorphic and granitoid basement rocks (Yashmu Formation). After a short period of relative quiescence, renewed tectonic activity is indicated by a conglomeratic sequence documenting erosion of a sedimentary and metasedimentary succession including chert, sandstone, slate and a few carbonates. A final stage of rhyolitic magmatism took place during rapid unroofing of granitoid basement rocks (Kizildag Formation). Such a complex sequence of events recorded by the Kizilkaya episutural basin succession documents the stepwise assemblage of magmatic arcs and continental fragments to form the Turan microblock collage during the Late Paleozoic. Evolution of detrital modes is compatible with that predicted for juvenile to accreted and unroofed crustal blocks. The deposition of braidplain lithic arkoses in earliest Triassic time indicates that strong subsidence continued after the end of the volcanic activity, possibly in retroarc foreland basin settings

  1. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  2. Closure Time of the Junggar-Balkhash Ocean: Constraints From Late Paleozoic Volcano-Sedimentary Sequences in the Barleik Mountains, West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Han, Bao-Fu; Chen, Jia-Fu; Ren, Rong; Zheng, Bo; Wang, Zeng-Zhen; Feng, Li-Xia

    2017-12-01

    The Junggar-Balkhash Ocean was a major branch of the southern Paleo-Asian Ocean. The timing of its closure is important for understanding the history of the Central Asian Orogenic Belt. New sedimentological and geochronological data from the Late Paleozoic volcano-sedimentary sequences in the Barleik Mountains of West Junggar, NW China, help to constrain the closure time of the Junggar-Balkhash Ocean. Tielieketi Formation (Fm) is dominated by littoral sediments, but its upper glauconite-bearing sandstone is interpreted to deposit rapidly in a shallow-water shelf setting. By contrast, Heishantou Fm consists chiefly of volcanic rocks, conformably overlying or in fault contact with Tielieketi Fm. Molaoba Fm is composed of parallel-stratified fine sandstone and sandy conglomerate with graded bedding, typical of nonmarine, fluvial deposition. This formation unconformably overlies the Tielieketi and Heishantou formations and is conformably covered by Kalagang Fm characterized by a continental bimodal volcanic association. The youngest U-Pb ages of detrital zircons from sandstones and zircon U-Pb ages from volcanic rocks suggest that the Tielieketi, Heishantou, Molaoba, and Kalagang formations were deposited during the Famennian-Tournaisian, Tournaisian-early Bashkirian, Gzhelian, and Asselian-Sakmarian, respectively. The absence of upper Bashkirian to Kasimovian was likely caused by tectonic uplifting of the West Junggar terrane. This is compatible with the occurrence of coeval stitching plutons in the West Junggar and adjacent areas. The Junggar-Balkhash Ocean should be finally closed before the Gzhelian, slightly later or concurrent with that of other ocean domains of the southern Paleo-Asian Ocean.

  3. The development of floristic provinciality during the Middle and Late Paleozoic

    USGS Publications Warehouse

    Wnuk, C.

    1996-01-01

    Phytogeographic reconstructions have been published for most Paleozoic series since the Pr??i??doli??, but there have been few attempts to synthesize this data into a comprehensive review of the characteristics and causes of the changing phytogeographic patterns for the whole Paleozoic history of the vascular flora. Existing floristic analyses have been compiled in this manuscript and the resulting data are used to reconstruct the evolution of floristic provinces since the Silurian. The earliest plant fossil records indicate that provinciality was characteristic of terrestrial vascular plant distributions right from the beginning of terrestrial colonization by vascular plants. This interpretation differs markedly from the views of many workers who still maintain that pre-Upper Carboniferous floras were uniform and cosmopolitan in distribution. Three of the four major phytogeographic units, i.e. Angara, Euramerica, and Gondwana, can be recognized in the earliest fossil floras. The fourth unit, Cathaysia, differentiated from Euramerica during the late Upper Carboniferous. Phytogeographic differentiation occurs in direct response to climatic gradients and physiographic barriers. As these gradients and barriers change, provincial boundaries expand and contract, fragment, reassemble and reassort. Phytogeographic units are dynamic through time. ?? 1996 Elsevier Science B.V. All rights reserved.

  4. Late Paleozoic tectonic evolution and concentrated mineralization in Balkhash and West Junggar, western part of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Chen, Xuanhua; Chen, Zhengle

    2016-04-01

    course thermo-history of the minearl deposits from their formation in the deep to the exhumation in the surface. It reveals the arc-related granitic magmatism and the metallogeneses of skarn Cu, porphyry Cu-Mo, quartz-vein/greisen W-Mo, and orogenic Au in Late Paleozoic, the medium-temperature regional cooling in Late Paleozoic and Early Mesozoic, and the low-temperature exhumation of the deposits in Mesozoic. The timing, combined with geochemistry of granitoids, suggests a transition of tectonic environment from syn-collision and volcanic arc in Late Carboniferous to post-collision extension in Early Permian, and the concentrated mineralization of Cu, Mo, rare metals, and Au during this tectonic transition. The complete metallogenic series for the concentrated mineralization are from skarn and porphyry Cu-Mo deposits to rare metal and gold deposits. Key words: Late Paleozoic; Tectonic evolution; Concentrated mineralization; Balkhash-Junggar tectono-metallogenic belt; Central Asian Orogenic Belt

  5. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution

    PubMed Central

    Hopkins, Melanie J.; Smith, Andrew B.

    2015-01-01

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with “early bursts” of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today’s oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis. PMID:25713369

  6. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.

    PubMed

    Hopkins, Melanie J; Smith, Andrew B

    2015-03-24

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.

  7. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Jiyuan; Guo, Lin; Li, Jianxing; Li, Yanguang; Smithies, Robert H.; Wingate, Michael T. D.; Meng, Yong; Chen, Shefa

    2016-07-01

    Ordovician to Devonian sodic granites dominate the newly recognized Luotuojuan composite granite in the Lebaquan-Luotuojuan-Niujuanzi region of Beishan, along the southern margin of the Central Asian Orogenic Belt in NW China. The granites include sodic (K2O/Na2O > 0.5) tonalites with low Y (< 7 ppm), Yb (< 0.7 ppm), high Sr/Y (> 68) that formed during at least two events at c. 435 and c. 370-360 Ma. Their compositions are consistent with high-pressure melting of basaltic crust, although relatively non-radiogenic Nd isotope compositions (εNd(t) + 0.9) require some crustal assimilation. The interpretation that these granites reflect melts of a subducted slab (i.e. adakite) is supported by independent local and regional geological evidence for an oceanic subduction-accretion setting, including a long history of calc-alkaline magmatism and the identification of a series of early Paleozoic ophiolite belts. Other sodic granites forming the Luotuojuan composite granite are mainly quartz-diorite and granodiorite formed between c. 391 and c. 360 Ma. These rocks are not adakites, having Sr concentrations and Sr/Y ratios too low and Y and Yb concentrations too high. They are low- to medium-K calc-alkaline rocks more typical of magmas derived through melting in a subduction modified mantle wedge. Compositional changes from sodic to potassic granites, over time frames consistent with subduction processes, suggest at least two separate cycles, or pulses, of hot subduction in the Lebaquan-Luotuojuan-Niujuanzi region. Although early Paleozoic adakites have been inferred to exist elsewhere in the Beishan region, many of the reported adakitic rocks have compositions inconsistent with melting of subducted oceanic lithosphere and so tectonic interpretation of hot subduction might not be valid in these cases. A study of regional granite data also shows not only that adakite magmatism does not extend into the Permian but that if subduction-accretion processes extended into the late

  8. Paleomagnetism of Early Paleozoic Rocks from the de Long Archipelago and Tectonics of the New Siberian Islands Terrane

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Matushkin, N. Y.; Vernikovskiy, V. A.

    2017-12-01

    The De Long archipelago is located to the north of the Anjou archipelago as a part of a large group between the Laptev Sea and the East Siberian Sea - the New Siberian Islands and consists of Jeannette Island, Bennett Island and Henrietta Island. These islands have been shown to be part of a single continental terrane, whose tectonic history was independent of other continental masses at least since the Ordovician. Paleomagnetic and precise geological data for the De Long archipelago were absent until recently. Only in 2013 special international field trips to the De Long Islands could be organized and geological, isotope-geochronological and paleomagnetic studies were carried out.On Jeannette Island a volcanic-sedimentary sequence intruded by mafic dikes was described. The age of these dikes is more likely Early Ordovician, close to 480 Ma, as evidenced by the results of our 40Ar/39Ar and paleomagnetic investigations of the dolerites as well as the result from detrital zircons in the host rocks published before. On Bennett Island, there are widespread Cambrian-Ordovician mainly terrigenous rocks. Paleomagnetic results from these rocks characterize the paleogeographic position of the De Long archipelago at 465 Ma and perhaps at 530 Ma, although there is no evidence for the primary origin of magnetization for the latter. On Henrietta Island the Early Cambrian volcanic-sedimentary section was investigated. A paleomagnetic pole for 520 Ma was obtained and confirmed by new 40Ar/39Ar results. Adding to our previous paleomagnetic data for the Anjou archipelago the extended variant of the apparent polar wander path for the New Siberian Island terrane was created. The established paleolatitudes define its location in the equatorial and subtropical zone no higher than 40 degrees during the Early Paleozoic. Because there are no good confirmations for true polarity and related geographic hemisphere we present two possibilities for tectonic reconstruction. But both these

  9. Paleozoic Orogens of Mexico and the Laurentia-Gondwana Connections: an Update

    NASA Astrophysics Data System (ADS)

    Ortega-Gutierrez, F.

    2009-05-01

    The present position of Mexico in North America and the fixist tectonic models that prevailed prior to the seventies of the past century, have considered the main Paleozoic tectonic systems of Mexico as natural extensions of the orogens that fringed the eastern and southern sides of the Laurentian craton. Well known examples of pre-Mesozoic orogens in Mexico are the Oaxacan, Acatlan, and Chiapas polymetamorphic terranes, which have been correlated respectively with the Grenville and Appalachian-Ouachitan orogens of eastern North America. Nonetheless, several studies conducted during the last decade in these Mexican orogenic belts, have questioned their Laurentian connections, regarding northwestern Gondwana instead as the most plausible place for their birth and further tectonic evolution. This work pretends to approach the problem by briefly integrating the massive amount of new geological information, commonly generated through powerful dating methods such as LA-ICPM-MS on detrital zircon of sedimentary and metasedimentary units in the Paleozoic crustal blocks, which are widely exposed in southern and southeastern Mexico. The Acatlan Complex bears the closest relationships to the Appalachian orogenic system because it shows thermotectonic evidence for opening and closure of the two main oceans involved in building the Appalachian mountains in eastern Laurentia, whereas two other Paleozoic terranes in NW and SE Mexico, until recently rather geologically unknown, may constitute fundamental links between the Americas for the last-stage suturing and consolidation of western Pangea. The buried basement of the Yucatan platform (400,000 squared km) on the other hand, remains as one of the most relevant problems of tectonostratigraphic correlations across the Americas, because basement clasts from the Chicxulub impact ejecta reveal absolute and Nd-model ages that suggest close Gondwanan affinities. Major changes in the comprehension of the Paleozoic orogens in Mexico

  10. Paleozoic Assemblage of the Northern Sierra Terrane: New Geochronology And Geochemical Data From the Stitching Late Devonian - Early Carboniferous Bowman Lake Batholith, and Associated Rocks

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Hanson, R. E.; Girty, G.; Tretiakov, A.

    2016-12-01

    Previous study (Grove et al., 2008) of detrital zircon ages and the timing of magmatism within the Northern Sierra terrane (NST) suggest that it is exotic relative to western Laurentia, and link it to the Paleozoic Arctic Realm, Baltica and Caledonides. NST is a composite terrane in the North America Cordillera, consisting of four distinct allochthons, thrusted upon each other. As a first step towards the understanding of the origin and tectonic development of the NST we have undertaken the SHRIMP-RG U-Pb zircon dating of the rocks from granites, granodiorites, trondhjemites, tonalites and hypabyssal intrusions, composing the Bowman Lake batholith. The batholith stitches the allochthons of the NST and its crystallization age signifies the timing of juxtaposition SHRIMP-RG analyses from 14 samples yielded an age range of ca. 352-369 Ma, which overlaps the Devonian-Mississipian boundary and constrains the minimum age for amalgamation. Additionally, we have acquired multiple XRF data, favoring the island arc provenance of the Bowman Lake batholith Batholith. Previously proposed ties between NST and Robert Mountains allochthon seem unlikely because the latter was accreted onto the western miogeocline of Laurentia during the Late Dev.-Early Miss. while the NST was most probably still situated within the Arctic Realm. This work has been supported by the grant #14.Z50.31.0017 of the Government of the Russian Federation and by the Russian Foundation for Basic Research grant #15-55-10055. We are grateful to Stanford-USGS SHRIMP-RG center, and personally to Marty Grove and Elizabeth Miller.

  11. Timing of tectonic evolution of the East Kunlun Orogen, Northern Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng

    2017-04-01

    and Ti, and enrichment of LILEs, LREEs, K, Pb, Sr and Nd, accounting for a subduction relation setting. The gabbro yields a LA-ICP-MS zircon U-Pb age of 243 Ma, representing the formation age of the ophiolite. Taking into account of evidence from the Early Paleozoic ophiolites in the Buqinshan ( Bian Qiantao et al., 2001, 2007; Li Zuochen et al., 2013; Li Ruibao et al., 2014; Liu Zhanqing et al., 2011) and the Derni areas (Chen Liang et al., 2001, 2003), the Central Kunlun ocean might be existed from Early Paleozoic to Middle Triassic time. The Northern Qimantagh tectonic belt, to the north of the Qimantagh suture, exposes a large volume of Early Paleozoic granitic plutons and volcanic rocks. Geochemistry of the granites suggests an arc setting. LA-ICP-MS zircon U-Pb ages ranging from ca. 440 to 402 Ma constrain the time of the subduction and arc setting. The Central Kunlun tectonic belt is characterized by occurring of Paleo-Proterozoic basement which was intruded by large amounts of Triassic granitoids. The basement represented by the Jinshuikou Group including gneisses, amphibolites and marbles, yields a protolith formation age of 2.2 Ga which was overprinted by Neoproterozoic tectono-thermal event. The plutonic intrusions display LA-ICP-MS zircon ages mainly of 260-200 Ma with minor ages of 470-400 Ma, revealing a long-lived subduction from Early Paleozoic to Late Triassic. Taken into together all above evidence, trench-arc-back arc basin tectonics were suggested here accounting for the tectonic evolution of the East Kunlun Orogeny during Early Paleozoic to Triassic time.

  12. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left

  13. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    U-Pb SHRIMP zircon crystallization ages and Ar-Ar and K-Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U-Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar-Ar muscovite age of 182 ± 3 Ma and a K-Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U-Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K-Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K-Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K-Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian-Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198-182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern

  14. Redescription of Bellerophon asiaticus Wirth (Early Triassic: Gastropoda) from China, and a survey of Triassic Bellerophontacea.

    USGS Publications Warehouse

    Yochelson, E.Y.; Yin, Hongfu

    1985-01-01

    The bilaterally symmetrical gastropod Bellerophon asiaticus Wirth is redescribed from specimens collected in Guizhou Province, PRC. The species is reassigned to Retispira, a common late Paleozoic taxon. Retispira is another example of a Paleozoic gastropod genus that crossed the era boundary. Associated pelecypods that date these Guizhou occurrences as Early Triassic are well known species in PRC and are illustrated. Both Bellerophon and Euphemites probably occur in the Early Triassic, though the quality of illustrations leaves some uncertainty; the existence of Stachella in the Triassic is more problematic. There was no dramatic reduction of the Bellerophontacea from their abundance and diversity in the Permian. It may be a general phenomenon that most late Paleozoic family-level and many generic-level taxa of gastropods were unaffected by the late Permian 'crisis'. from Authors

  15. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.

    2014-12-01

    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  16. Land plants, weathering, and Paleozoic climatic evolution

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien

    2017-04-01

    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  17. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    NASA Astrophysics Data System (ADS)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  18. New age constraints on the palaeoenvironmental evolution of the late Paleozoic back-arc basin along the western Gondwana margin of southern Peru

    NASA Astrophysics Data System (ADS)

    Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.

    2018-03-01

    The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in

  19. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-04-01

    At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.

  20. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  1. Assessment of Appalachian Basin Oil and Gas Resources: Utica-Lower Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Ryder, Robert T.

    2008-01-01

    The Utica-Lower Paleozoic Total Petroleum System (TPS) is an important TPS identified in the 2002 U.S. Geological Survey (USGS) assessment of undiscovered, technically recoverable oil and gas resources in the Appalachian basin province (Milici and others, 2003). The TPS is named for the Upper Ordovician Utica Shale, which is the primary source rock, and for multiple lower Paleozoic sandstone and carbonate units that are the important reservoirs. Upper Cambrian through Upper Silurian petroleum-bearing strata that constitute the Utica-Lower Paleozoic TPS thicken eastward from about 2,700 ft at the western margin of the Appalachian basin to about 12,000 ft at the thrust-faulted eastern margin of the Appalachian basin. The Utica-Lower Paleozoic TPS covers approximately 170,000 mi2 of the Appalachian basin from northeastern Tennessee to southeastern New York and from central Ohio to eastern West Virginia. The boundary of the TPS is defined by the following geologic features: (1) the northern boundary (from central Ontario to northeastern New York) extends along the outcrop limit of the Utica Shale-Trenton Limestone; (2) the northeastern boundary (from southeastern New York, through southeastern Pennsylvania-western Maryland-easternmost West Virginia, to northern Virginia) extends along the eastern limit of the Utica Shale-Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (3) the southeastern boundary (from west-central and southwestern Virginia to eastern Tennessee) extends along the eastern limit of the Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (4) the southwestern boundary (from eastern Tennessee, through eastern Kentucky, to southwestern Ohio) extends along the approximate facies change from the Trenton Limestone with thin black shale interbeds (on the east) to the equivalent Lexington Limestone without black shale interbeds (on the west); (5) the northern part of the boundary in southwestern Ohio

  2. The main features of the Uralian Paleozoic magmatism and the epioceanic nature of the orogen

    NASA Astrophysics Data System (ADS)

    Fershtater, G. B.

    2013-02-01

    The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460-390 Ma) to mantle-crust gabbro-granitic complexes (370-315 Ma) followed by pure crustal granite magmatism (290-250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.

  3. Late paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: Characteristics and geodynamic setting

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Wang, Y.; Hart, C.J.; Wang, Z.; Yang, J.

    2005-01-01

    The East Tianshan is a remote Gobi area located in eastern Xinjiang, northwestern China. In the past several years, a number of gold, porphyry copper, and Fe(-Cu) and Cu-Ag-Pb-Zn skarn deposits have been discovered there and are attracting exploration interest. The East Tianshan is located between the Junggar block to the north and early Paleozoic terranes of the Middle Tianshan to the south. It is part of a Hercynian orogen with three distinct E-W-trending tectonic belts: the Devonian-Early Carboniferous Tousuquan-Dananhu island arc on the north and the Carboniferous Aqishan - Yamansu rift basin to the south, which are separated by rocks of the Kanggurtag shear zone. The porphyry deposits, dated at 322 Ma, are related to the late evolutionary stages of a subduction-related oceanic or continental margin arc. In contrast, the skarn, gold, and magmatic Ni-Cu deposits are associated with post-collisional tectonics at ca. 290-270 Ma. These Late Carboniferous - Early Permian deposits are associated with large-scale emplacement and eruption of magmas possibly caused by lithosphere delamination and rifting within the East Tianshan.

  4. Petrogenesis and tectonic implications of the Early Paleozoic granites in the western segment of the North Qilian orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Wu, Cai-Lai; Lei, Min; Chen, Hong-Jie

    2018-07-01

    Early Paleozoic granitic magmatism in the North Qilian orogenic belt records a complete Wilson cycle and provides critical geological clues for unraveling the regional tectonic history. In this study, we report the results of zircon U-Pb ages, Hf isotopic analysis and systematic whole-rock geochemical data for the Late Ordovician Hongliuhe granite and Early Silurian Qingshan monzogranite in the western segment of the North Qilian orogenic belt to constrain their emplacement ages, petrogenesis, and regional evolution history. U-Pb dating reveals that the Hongliuhe granite was emplaced around 453-452 Ma, and the Qingshan monzogranite was emplaced about 440-438 Ma. A geochemical study shows that the two granites belong to the calc-alkaline to high-K calc-alkaline series. The Hongliuhe granite shows adakitic and peraluminous features, while the Qingshan monzogranite belongs to metaluminous to weak peraluminous granites. Zircons in the Hongliuhe granite show εHf(t) values ranging from -15.1 to +11.7 with two-stage Hf model ages (tDM2) of 687-2398 Ma, whereas zircons in the Qingshan monzogranite show εHf(t) values ranging from +5.7 to +11.0 with two-stage Hf model ages from 814 to 1057 Ma. The geochemical characteristics indicate that the Hongliuhe granite was a transitional I/S-type granite and was generated from a thickened lower crust with the addition of minor Paleo- to Mesoproterozoic crustal materials, which left a rutile + garnet + pyroxene ± plagioclase residue. The Qingshan monzogranite formed from the partial melting of mafic crust with minor mantle-derived materials, and the fractionation of Ti-bearing phases, apatite and pyroxene occurred during the magma's evolution, which left an amphibole and plagioclase residue. We infer that the Hongliuhe granite formed during the northward subduction of the North Qilian Ocean, while the Qingshan monzogranite was generated during the post-collision stage between the Qilian and Alxa blocks. This observation indicates

  5. Environmental trends in extinction during the Paleozoic

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. John, Jr.

    1987-01-01

    Extinction intensities calculated from 505 Paleozoic marine assemblages divided among six environmental zones and 40 stratigraphic intervals indicate that whole communities exhibit increasing extinction offshore but that genera within individual taxonomic classes tend to have their highest extinction onshore. The offshore trend at the community level results from a concentration of genera in classes with low characteristic extinction rates in nearshore environments. This finding is consistent with the ecologic expectation that organisms inhabiting unpredictably fluctuating environments should suffer more extinction than counterparts living under more predictably equitable conditions.

  6. Age and provenance constraints on seismically-determined crustal layers beneath the Paleozoic southern Central Asian Orogen, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Jian, Ping; Kröner, Alfred; Shi, Yuruo; Zhang, Wei; Liu, Yaran; Windley, Brian F.; Jahn, Bor-ming; Zhang, Liqao; Liu, Dunyi

    2016-06-01

    We present 110 ages and 51 in-situ δ18O values for zircon xenocrysts from a post-99 Ma intraplate basaltic rock suite hosted in a subduction-accretion complex of the southern Central Asian Orogenic Belt in order to constrain a seismic profile across the Paleozoic Southern Orogen of Inner Mongolia and the northern margin of the North China Craton. Two zircon populations are recognized, namely a Phanerozoic group of 70 zircons comprising granitoid-derived (ca. 431-99 Ma; n = 31; peak at 256 Ma), meta-granitoid-derived (ca. 449-113 Ma; n = 24; peak at 251 Ma) and gabbro-derived (436-242 Ma; n = 15; peaks at 264 and 244 Ma) grains. Each textural type is characterized by a distinct zircon oxygen isotope composition and is thus endowed with a genetic connotation. The Precambrian population (2605-741 Ma; n = 40) exhibits a prominent age peak at 2520 Ma (granulite-facies metamorphism) and four small peaks at ca. 1900, 1600, and 800 Ma. Our new data, together with literature zircon ages, significantly constrain models of three seismically-determined deep crustal layers beneath the fossil subduction zone-forearc along the active northern margin of the North China Craton, namely: (1) an upper arc crust of early to mid-Paleozoic age, intruded by a major Permian-Triassic composite granitoid-gabbroic pluton (8-20 km depth); (2) a middle crust, predominantly consisting of mid-Meso- to Neoproterozoic felsic and mafic gneisses; and (3) a lower crust composed predominantly of late Archean granulite-facies rocks. We conclude that the Paleozoic orogenic crust is limited to the upper crustal level, and the middle to lower crust has a North China Craton affinity. Furthermore, integrating our data with surface geological, petrological and geochronological constraints, we present a new conceptual model of orogenic uplift, lithospheric delamination and crustal underthrusting for this key ocean-continent convergent margin.

  7. The Implementation of 2-D Resistivity Method in Verifying Paleozoic Aquifer Properties at Bukit Chondong, Perlis (Malaysia)

    NASA Astrophysics Data System (ADS)

    Maslinda, Umi; Nordiana, M. M.; Bery, A. A.; Afiq Saharudin, Muhamad; Hisham, Hazrul; Taqiuddin, Z. M.; Sulaiman, Nabila; Nur Amalina, M. K. A.; Nordiana, A. N.

    2017-04-01

    The research was conducted using 2-D resistivity in verifying Paleozoic aquifer. Since most geologic materials behave as electrical insulators, surface measurements of earth resistivity are controlled by the electrolytic ability of interstitial water. The subsurface distribution of water is controlled by the porosity of the formations. The study area is at Bukit Chondong, Beseri, Perlis. Bukit Chondong is made of sedimentary rock which mostly is sandstone. Bukit Chondong is from uppermost of the Kubang Pasu Formation that represented by a thick unit of grey mudstone interbedded with sandstone. The Kubang Pasu Formation was influenced by shallow marine during the early age. Paleocurrent and fossils traces were found on the mudstone at the study area. The area is suspected to be a Paleozoic aquifer because the sandstone can be a productive aquifer with diffuse flow. The water movement in sandstone is through the fractures and joints. Most of the water stores and transmits in sandstone. The interbedded sandstone and mudstone is one of the aquifer characteristic. Sandstone and mudstone are water-bearing rocks and low-permeable rocks respectively. The data was processed according to the geological information of the study area since there was an outcrop. The study area have low resistivity value which both sandstone and mudstone give less than 800 Ohm-m due to the water content (Sulphide and clay).

  8. Late Paleozoic to Cenozoic reconstruction of the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.G.

    1985-04-01

    The plate tectonic evolution of the Arctic is reassessed in the context of the known histories of the North Atlantic and North Pacific Oceans, and of the tectono-stratigraphic development of the lands around the Arctic Ocean. Computer map-drawing facilities were used to provide geometrical constraints on the reconstructions, which are presented to in the form of eight palinispatic maps. Stratigraphic similarities among presently dispersed continental areas identify fragments of a former Barents plate. Collision of this plate with the Euramerican plate was the cause of the Late Devonian Ellesmerian orogeny. In later Paleozoic time, the Siberian continent also joined Pangeamore » by collision with the combined Barents and Euramerican plates along the Ural-Taymyr suture. The Mesozoic-Cenozoic history of the Arctic is concerned with the fragmentation and dispersal of the former Barents plate, as well as the accretion of new continental fragments from the Pacific.« less

  9. Zircon U-Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin

    NASA Astrophysics Data System (ADS)

    Ortiz, Agustín; Hauser, Natalia; Becchio, Raúl; Suzaño, Néstor; Nieves, Alexis; Sola, Alfonso; Pimentel, Marcio; Reimold, Wolf

    2017-12-01

    The evolution of the rocks of the Lower Paleozoic Orogen in Puna, at the Southwestern Gondwana margin, has been widely debated. In particular, the scarce amount of geological and geochemical data available for the Diablillos Intrusive Complex, Eastern Magmatic Belt, Southern Puna, require a further study for new evidence towards the understanding of sources, magmatic processes and emplacement of magmas, in order to better comprehend the crustal evolution in this setting. We present new combined U-Pb and Hf isotope analyses on zircon by LA-MC-ICP-MS from monzogranite, granodiorite and diorite rocks of the Diablillos Intrusive Complex. We obtained 206Pb/238U concordant weighted average ages of 517 ± 3 Ma and 515 ± 6 Ma for the monzogranite and diorite, respectively, and a concordant age of 521 ± 4 Ma for the granodiorite. These ages permit to constrain the climax of magmatic activity in the Diablillos Complex around ∼515-520 Ma, while the emplacement of the complex took place between ∼540 Ma and 490 Ma (representing a ca. 50 Ma magmatic event). Major and trace element data, initial 87Sr/86Sr values varying from 0.70446 to 0.71278, positive and negative ɛNd(t) values between +2.5 and -4, as well as ɛHf(t) for zircon data between + 3 and -3 indicate that the analyzed samples represent contaminated magmas. The ɛHf(t) and the ɛNd(t) values for this complex specify that these rocks are derived from interaction of a dominant Mesoproterozoic crystalline and/or a metasedimentary source and juvenile mantle-derived magmas, with a TDM model age range of ∼1.2-1.5 Ga, with later reworking during lower Paleozoic times. The combined data obtained in this contribution together with previous data, allow us to suggest that the formation of the Eastern Magmatic Belt of the Puna was part of a long-lived magmatic event during Early Paleozoic times. Whereby the granitoids of the Eastern Magmatic Belt formed through intra-crustal recycling at an active continental margin, with

  10. Late paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia.

    PubMed

    Payne, Jonathan L; Groves, John R; Jost, Adam B; Nguyen, Thienan; Moffitt, Sarah E; Hill, Tessa M; Skotheim, Jan M

    2012-09-01

    Atmospheric hyperoxia, with pO(2) in excess of 30%, has long been hypothesized to account for late Paleozoic (360-250 million years ago) gigantism in numerous higher taxa. However, this hypothesis has not been evaluated statistically because comprehensive size data have not been compiled previously at sufficient temporal resolution to permit quantitative analysis. In this study, we test the hyperoxia-gigantism hypothesis by examining the fossil record of fusulinoidean foraminifers, a dramatic example of protistan gigantism with some individuals exceeding 10 cm in length and exceeding their relatives by six orders of magnitude in biovolume. We assembled and examined comprehensive regional and global, species-level datasets containing 270 and 1823 species, respectively. A statistical model of size evolution forced by atmospheric pO(2) is conclusively favored over alternative models based on random walks or a constant tendency toward size increase. Moreover, the ratios of volume to surface area in the largest fusulinoideans are consistent in magnitude and trend with a mathematical model based on oxygen transport limitation. We further validate the hyperoxia-gigantism model through an examination of modern foraminiferal species living along a measured gradient in oxygen concentration. These findings provide the first quantitative confirmation of a direct connection between Paleozoic gigantism and atmospheric hyperoxia. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  11. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  12. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared

  13. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  14. Late Paleozoic tectonic evolution of the Central Asian Orogenic Belt: Constraints from multiple arc-basin systems in Altai-Junggar area, NW China

    NASA Astrophysics Data System (ADS)

    Li, D.

    2015-12-01

    In this study, we report results from integrated geological, geophysical and geochemical investigations on the Wulungu Depression of the Junggar Basin to understand the Late Paleozoic continental growth of the Junggar area and its amalgamation history with the Altai terrane, within the broad tectonic evolution of the Altai-Junggar area. Based on seismic and borehole data, the Wulungu Depression can be divided into two NW-trending tectonic units by southward thrust faults. The Suosuoquan Sag is composed of gray basaltic andesite, andesite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava gushes and marine sediments from a proximal juvenile provenance, compared to the andesite in the Hongyan High. The SIMS Zircon U-Pb ages for andesites from Late Paleozoic strata indicate that these volcanics in Suosuoquan Sag and Hongyan High erupted at 376.3Ma and 313.4Ma, respectively. Most of the intermediate-mafic volcanic rocks exhibit calc-alkaline affinity, low initial 87Sr/86Sr and positive ɛNd(t) and ɛHf(t) values. Furthermore, these rocks have high Th/Yb and low Ce/Pb and La/Yb ratios as well as variable Ba/Th and Ba/La ratios. These features imply that the rocks were derived from partial melting of a mantle wedge metasomatized by subduction-related components in an island arc setting. The basin filling pattern and the distribution of island arc-type volcanics and their zircon Hf model ages with the eruptive time suggest that the Wulungu Depression represents an island arc-basin system with the development of a Carboniferous retro-arc basin. The gravity and magnetic anomaly data suggest that Altai-Junggar area incorporates three arc-basin belts from north to south: the Karamaili-Luliang-Darbut, Yemaquan-Wulungu, and Dulate-Fuhai-Saur. The recognition of the Wulungu arc-basin system demonstrates that the northern Junggar area is built by amalgamation of multiple Paleozoic linear arcs and accretionary

  15. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    PubMed

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  16. Assessment of Paleozoic shale gas resources in the Sichuan Basin of China, 2015

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Charpentier, Ronald R.; Gaswirth, Stephanie B.; Klett, Timothy R.; Leathers, Heidi M.; Brownfield, Michael E.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.

    2015-10-14

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 23.9 trillion cubic feet of technically recoverable shale gas resources in Paleozoic formations in the Sichuan Basin of China.

  17. Exotic island arc Paleozoic terranes on the eastern margin of Gondwana: Geochemical whole rock and zircon U-Pb-Hf isotope evidence from Barry Station, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Manton, Ryan J.; Buckman, Solomon; Nutman, Allen P.; Bennett, Vickie C.

    2017-08-01

    Early Paleozoic intra-oceanic terranes crop out along the Peel-Manning Fault System, in the southern New England Orogen, NSW Australia. These are the Cambrian ophiolitic Weraerai terrane and the Siluro-Devonian island arc Gamilaroi terrane. There has been debate whether these terranes formed at the Gondwana margin or if they are intra-oceanic, and were accreted to Gondwana later in the Paleozoic. Major-trace-REE elemental data indicate Weraerai terrane formed in a supra-subduction environment. Rare zircons extracted from Weraerai terrane gabbro-plagiogranite suites at Barry Station yield a U-Pb zircon date of 504.9 ± 3.5 Ma with initial εHf values of + 11.1 indicating a juvenile source. Amphibole-bearing felsic dykes and net-vein complexes are also found within the gabbro with a U-Pb zircon date of 503.2 ± 5.7 Ma and initial εHf values of + 11.6. These are coeval in age with their host rocks and we propose they represent partial melts of the mafic crust during the circulation of seawater. The Gamilaroi trondhjemites of prehnite-pumpellyite-greenschist metamorphic grade terrane yielded very few zircons with an age of 413 ± 8.7 Ma. Zircon initial εHf values range from + 5.0 to + 2.9, indicating an input from an evolved crustal source, unlike the purely oceanic Weraerai terrane. Gamilaroi terrane trondhjemites are enriched in LREE have low K2O and K2O/Na2O ratios and strong negative Nb anomalies consistent with supra-subduction zone environments. Multiple subduction zones may well have existed within the Panthalassa Ocean during the early-mid Paleozoic with the Weraerai-Gamilaroi being accreted onto the Gondwanan margin during the latest Devonian.

  18. The rise and fall of late Paleozoic trilobites of the United States

    USGS Publications Warehouse

    Brezinski, D.K.

    1999-01-01

    Based on range data and generic composition, four stages of evolution are recognized for late Paleozoic trilobites of the contiguous United States. Stage 1 occurs in the Lower Mississippian (Kinderhookian-Osagean) and is characterized by a generically diverse association of short-ranging, stenotopic species that are strongly provincial. Stage 2 species are present in the Upper Mississippian and consist of a single, eurytopic, pandemic genus, Paladin. Species of Stage 2 are much longer-ranging than those of Stage 1, and some species may have persisted for as long as 12 m.y. Stage 3 is present within Pennsylvanian and Lower Permian strata and consists initially of the eurytopic, endemic genera Sevillia and Ameura as well as the pandemic genus Ditomopyge. During the middle Pennsylvanian the very long-ranging species Ameura missouriensis and Ditomopyge scitula survived for more than 20 m.y. During the late Pennsylvanian and early Permian, a number of pandemic genera appear to have immigrated into what is now North America. Stage 4 is restricted to the Upper Permian (late Leonardian-Guadalupian) strata and is characterized by short-ranging, stenotopic, provincial genera. The main causal factor controlling the four-stage evolution of late Paleozoic trilobites of the United States is interpreted to be eustacy. Whereas Stage 1 represents an adaptive radiation developed during the Lower Mississippian inundation of North America by the Kaskaskia Sequence, Stage 2 is present in strata deposited during the regression of the Kaskaskia sea. Stage 3 was formed during the transgression and stillstand of the Absaroka Sequence and, although initially endemic, Stage 3 faunas are strongly pandemic in the end when oceanic circulation patterns were at a maximum. A mid-Leonardian sea-level drop caused the extinction of Stage 3 fauna. Sea-level rise near the end of the Leonardian and into the Guadalupian created an adaptive radiation of stentopic species of Stage 4 that quickly became

  19. A problematic early tetrapod from the Mississippian of Nevada

    USGS Publications Warehouse

    Thomson, K.S.; Shubin, N.S.; Poole, F.G.

    1998-01-01

    We report here the discovery of a new taxon of Paleozoic tetrapod from the Late Mississippian of Nevada (330-340 Ma). It has a unique vertebral column with principal centra having vertical anterior and posterior faces, ventrally incomplete accessory centra located antero-dorsally in each centrum, and enlarged presacral/sacral vertebrae. The head and pectoral girdle were not preserved but the large femur, robust pelvic girdle and enlarged sacral vertebrae possibly indicate a terrestrial mode of life. This new form significantly extends the western geographic range of known Mississippian tetrapods. It presents a mosaic of primitive and derived features, indicating that continued revision of traditional accounts of vertebral homology and the early diversifications of Paleozoic tetrapods will be necessary.

  20. A Cambrian mixed carbonate-siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin

    NASA Astrophysics Data System (ADS)

    Ramacciotti, Carlos D.; Casquet, César; Baldo, Edgardo G.; Galindo, Carmen; Pankhurst, Robert J.; Verdecchia, Sebastián O.; Rapela, Carlos W.; Fanning, Mark

    2018-05-01

    The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to the early Paleozoic tectonic evolution of SW Gondwana. Two well-known orogenies took place at the proto-Andean margin of Gondwana in the Cambrian and the Ordovician, i.e., the Pampean (545-520 Ma) and Famatinian (490-440 Ma) orogenies, respectively. Between them, an extensive continental platform was developed, where mixed carbonate-siliciclastic sedimentation occurred. This platform was later involved in the Famatinian orogeny when it underwent penetrative deformation and metamorphism. The platform apparently extended from Patagonia to northwestern Argentina and the Eastern Sierras Pampeanas, and has probable equivalents in SW Africa, Peru, and Bolivia. The WSP record the outer (deepest) part of the platform, where carbonates were deposited in addition to siliciclastic sediments. Detrital zircon U-Pb SHRIMP ages from clastic metasedimentary successions and Sr-isotope compositions of marbles from the WSP suggest depositional ages between ca. 525 and 490 Ma. The detrital zircon age patterns further suggest that clastic sedimentation took place in two stages. The first was sourced mainly from re-working of the underlying Neoproterozoic metasedimentary rocks and the uplifted core of the early Cambrian Pampean orogen, without input from the Paleoproterozoic Río de la Plata craton. Sediments of the second stage resulted from the erosion of the still emerged Pampean belt and the Neoproterozoic Brasiliano orogen in the NE with some contribution from the Río de la Plata craton. An important conclusion is that the WSP basement was already part of SW Gondwana in the early Cambrian, and not part of the exotic Precordillera/Cuyania terrane, as was previously thought.

  1. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  2. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis.

    PubMed

    Lamsdell, James C; Selden, Paul A

    2017-01-01

    Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  3. Integrated interpretation of geophysical data of the Paleozoic structure in the northwestern part of the Siljan Ring impact crater, central Sweden

    NASA Astrophysics Data System (ADS)

    Muhamad, Harbe; Juhlin, Christopher; Malehmir, Alireza; Sopher, Daniel

    2018-01-01

    The Siljan Ring impact structure is the largest known impact structure in Europe and is Late Devonian in age. It contains a central uplift that is about 20-30 km in diameter and is surrounded by a ring-shaped depression. The Siljan area is one of the few areas in Sweden where the Paleozoic sequence has not been completely eroded, making it an important location for investigation of the geological and tectonic history of Baltica during the Paleozoic. The Paleozoic strata in this area also provide insight into the complex deformation processes associated with the impact. In this study we focus on the northwestern part of the Siljan Ring, close to the town of Orsa, with the main objective of characterizing the subsurface Paleozoic succession and uppermost Precambrian crystalline rocks along a series of seismic reflection profiles, some of which have not previously been published. We combine these seismic data with gravity and magnetic data and seismic traveltime tomography results to produce an integrated interpretation of the subsurface in the area. Our interpretation shows that the Paleozoic sequence in this area is of a relatively constant thickness, with a total thickness typically between 300 and 500 m. Faulting appears to be predominantly extensional, which we interpret to have occurred during the modification stage of the impact. Furthermore, based on the geophysical data in this area, we interpret that the impact related deformation to differ in magnitude and style from other parts of the Siljan Ring.

  4. The Juchatengo complex: an upper-level ophiolite assemblage of late Paleozoic age in Oaxaca, southern Mexico

    NASA Astrophysics Data System (ADS)

    Grajales-Nishimura, José Manuel; Ramos-Arias, Mario Alfredo; Solari, Luigi; Murillo-Muñetón, Gustavo; Centeno-García, Elena; Schaaf, Peter; Torres-Vargas, Ricardo

    2018-04-01

    The Juchatengo complex (JC) suite is located between the Proterozoic Oaxacan complex to the north and the Xolapa complex to the south, and was amalgamated by late Paleozoic magmatism. It consists of mafic and sedimentary rocks that have oceanic affinities, with internal pseudostratigraphic, structural and metamorphic characteristics, which resemble a typical upper-level ophiolite assemblage. New U-Pb zircon and previous hornblende K-Ar analyses yield ages of ca. 291-313 Ma (U-Pb) for plagiogranites and ca. 282-277 Ma for tonalites intruding the entire sequence, including pelagic sediments at the top, with a maximum deposition age of ca. 278 Ma and noteworthy local provenance. These data constrain the age of the JC to the Late Pennsylvanian-Early Permian period. Hf isotopic analyses obtained from zircons in the JC plagiogranite and tonalite show that they come from a similar primitive mantle source (176Hf/177Hf: 0.282539-0.283091; ƐHf(t): + 3.2 to + 15.0). ƐHf(t) values from near 0 to - 2.8 in the tonalites indicate a contribution from the continental crust. Trace elements and REE patterns in whole rock and zircons point to a primitive mantle source for differentiated mafic, plagiogranite dykes and tonalitic plutons. Geochronological and geochemical data address the generation of new oceanic crust above the subduction zone, probably in a backarc setting. In this tectonic scenario, the JC ophiolite originated due to the convergence of the paleo-Pacific plate below the already integrated Oaxacan and Acatlán complexes in western Pangea. The dextral displacement places the deformation in a transtensional regime during the late Paleozoic age.

  5. A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Kazemi, Tahmineh; Asahara, Yoshihiro

    2017-07-01

    The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5-1280 ppm), Zn (43.7-358 ppm), Y(17.9-177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (< + 3) and high variation of 87Sr/86Sr(initial) ratios are evidence of the role of the continental component for the evolution of A-type granitoids in the Hasansalaran area. Because of the high contents of Ta, Yb, Nb and Y, all samples are plotted in the within-plate tectonic regime without interfering oceanic released fluids in the subduction zone. These high Nb content rocks (37.2-342 ppm without one sample) are classified as A1-type granitoids. Based on the distribution of A1- and A2-type granitoids in the Late Paleozoic in northwest Iran, the existence of some gabbroic rocks with tholeiitic to alkali composition and a long gap for magmatic activities in the area from 550 to 360 Ma (approximately 180 my.a.) between the Zagros and Tabriz faults, we suggest a new thematic model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.

  6. A bibliography of Paleozoic Crustacea from 1698 to 1889, including a list of North American species and a systematic arrangement of genera

    USGS Publications Warehouse

    Vogdes, Anthony Wayne

    1890-01-01

    The sole object of this bulletin is to give a general view of the literature on the Paleozoic Crustacea and to aid students and paleontologists in their researches. It is the result of more or less constant work during the past ten years.In its compilation I have examined almost every reference before recording it; those not so examined are indicated by a star (*) following the title.For convenience, the subject-matter has been arranged as follows:Part I. List of authors, including a brief index of the genera described in each work. Part II. A catalogue of the North American Paleozoic trilobites. Part III. The non-trilobitic Paleozoic Crustacea, with a list of the species.

  7. Paleobiogeography, high-resolution stratigraphy, and the future of Paleozoic biostratigraphy: Fine-scale diachroneity of the Wenlock (Silurian) conodont Kockelella walliseri

    USGS Publications Warehouse

    Cramer, Bradley D.; Kleffner, Mark A.; Brett, Carlton E.; McLaughlin, P.I.; Jeppsson, Lennart; Munnecke, Axel; Samtleben, Christian

    2010-01-01

    The Wenlock Epoch of the Silurian Period has become one of the chronostratigraphically best-constrained intervals of the Paleozoic. The integration of multiple chronostratigraphic tools, such as conodont and graptolite biostratigraphy, sequence stratigraphy, and ??13Ccarb chemostratigraphy, has greatly improved global chronostratigraphic correlation and portions of the Wenlock can now be correlated with precision better than ??100kyr. Additionally, such detailed and integrated chronostratigraphy provides an opportunity to evaluate the fidelity of individual chronostratigraphic tools. Here, we use conodont biostratigraphy, sequence stratigraphy and carbon isotope (??13Ccarb) chemostratigraphy to demonstrate that the conodont Kockelella walliseri, an important guide fossil for middle and upper Sheinwoodian strata (lower stage of the Wenlock Series), first appears at least one full stratigraphic sequence lower in Laurentia than in Baltica. Rather than serving as a demonstration of the unreliability of conodont biostratigraphy, this example serves to demonstrate the promise of high-resolution Paleozoic stratigraphy. The temporal difference between the two first occurrences was likely less than 1million years, and although it is conceptually understood that speciation and colonization must have been non-instantaneous events, Paleozoic paleobiogeographic variability on such short timescales (tens to hundreds of kyr) traditionally has been ignored or considered to be of little practical importance. The expansion of high-resolution Paleozoic stratigraphy in the future will require robust biostratigraphic zonations that embrace the integration of multiple chronostratigraphic tools as well as the paleobiogeographic variability in ranges that they will inevitably demonstrate. In addition, a better understanding of the paleobiogeographic migration histories of marine organisms will provide a unique tool for future Paleozoic paleoceanography and paleobiology research. ?? 2010

  8. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification

    PubMed Central

    Wolkenstein, Klaus

    2015-01-01

    Secondary metabolites often play an important role in the adaptation of organisms to their environment. However, little is known about the secondary metabolites of ancient organisms and their evolutionary history. Chemical analysis of exceptionally well-preserved colored fossil crinoids and modern crinoids from the deep sea suggests that bioactive polycyclic quinones related to hypericin were, and still are, globally widespread in post-Paleozoic crinoids. The discovery of hypericinoid pigments both in fossil and in present-day representatives of the order Isocrinida indicates that the pigments remained almost unchanged since the Mesozoic, also suggesting that the original color of hypericinoid-containing ancient crinoids may have been analogous to that of their modern relatives. The persistent and widespread occurrence, spatially as well as taxonomically, of hypericinoid pigments in various orders during the adaptive radiation of post-Paleozoic crinoids suggests a general functional importance of the pigments, contributing to the evolutionary success of the Crinoidea. PMID:25730856

  9. Textural and Rb-Sr isotopic evidence for late Paleozoic mylonitization within the Honey Hill fault zone southeastern Connecticut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, K.D.; Gromet, L.P.

    A petrographic and Rb-Sr isotopic study of rocks within and near the Honey Hill fault zone places important constraints on its history of movement. Rb-Sr apparent ages for micas and plagioclase from these rocks have been reset and range from Permian to Triassic, considerably younger than the minimum stratigraphic age (Ordovician) of the rocks studied or of Acadian (Devonian) regional metamorphism. Permian Rb-Sr ages of dynamically recrystallized muscovite date the development of mylonite fabric. An older age is precluded by the excellent preservation of unrecovered quartz, which indicates that these rocks did not experience temperatures high enough to anneal quartzmore » or thermally reset Rb-Sr isotopic systems in muscovite since the time of mylonitization. Metamorphic mineral assemblages and mineral apparent ages in rocks north of the fault zone indicate recrystallization under similar upper greenschist-lower amphibolite grade conditions during Permian to Triassic time. Collectively these results indicate that the Honey Hill fault zone was active during the Late Paleozoic and that ductile deformation and metamorphism associated with the Alleghanian orogeny extend well into southern Connecticut. An Alleghanian age for mylonitization within the Honey Hill fault zone suggests it should be considered as a possible site for the major Late Paleozoic strike-slip displacements inferred from paleomagnetic studies for parts of coastal New England and maritime Canada.« less

  10. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  11. Geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary sequence, Easton quadrangle, PA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.M.; Malinconico, L.L. Jr.

    1993-03-01

    This project involves the geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary cover rocks near Easton, Pennsylvania. The Precambrian rocks have generally been assumed to have been emplaced on the Paleozoic sequence along a shallow thrust fault. However, at present time the attitude of the faults bordering the Precambrian terranes are all very steeply dipping. This was explained by the subsequent folding of the whole sequence during later orogenic activity. The objective of this work is to determine the attitude and depth of the fault contact between the Precambrian crystalline rocks andmore » the Paleozoic sedimentary rocks. A series of traverses (each separated by approximately one mile) were established perpendicular to the strike of the Precambrian rocks. Along each traverse both gravity and magnetic readings were taken at 0.2 kilometer intervals. The data were reduced and presented as profiles and contour maps. Both the magnetic and gravity data show positive anomalies that correlate spatially with the location of the Precambrian rocks. The gravity data have a long wavelength regional trend increasing to the north with a shorter wavelength anomaly of 2 milligals which coincides with the Precambrian rocks. The magnetic data have a single positive anomaly of almost 1,000 gammas which also coincides with the Precambrian terrane. These data will now be used to develop two dimensional density and susceptibility models of the area. From these models, the thickness of each formation and the structural relationships between them, as well as the attitude and depth of the fault contact will be determined.« less

  12. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and

  13. The Pennsylvanian-early permian bird spring carbonate shelf, Southeastern California: Fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2007-01-01

    The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and

  14. Neoproterozoic-Paleozoic Evolution of the Arctida Paleocontinent and Plate Reconstructions

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Y.; Lobkovsky, L. I.; Shipilov, E. V.; Scientific Team of Arctida

    2011-12-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the

  15. Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization

    USGS Publications Warehouse

    Hearn, P.P.; Sutter, J.F.; Belkin, H.E.

    1987-01-01

    Many Lower Paleozoic limestones and dolostones in the Valley and Ridge province of the central and southern Appalachians contain 10 to 25 weight percent authigenic potassium feldspar. This was considered to be a product of early diagenesis, however, 40Ar 39Ar analyses of overgrowths on detrital K-feldspar in Cambrian carbonate rocks from Pennsylvania, Maryland, Virginia, and Tennessee yield Late Carboniferous-Early Permian ages (278-322 Ma). Simple mass balance calculations suggest that the feldspar could not have formed isochemically, but required the flux of multiple pore volumes of fluid through the rocks, reflecting regional fluid migration events during the Late-Paleozoic Alleghanian orogeny. Microthermometric measurements of fluid inclusions in overgrowths on detrital K-feldspar and quartz grains from unmineralized rocks throughout the study area indicate homogenization temperatures from 100?? to 200??C and freezing point depressions of -14?? to -18.5??C (18-21 wt.% NaCl equiv). The apparent similarity of these fluids to fluid inclusions in ore and gangue minerals of nearby Mississippi Valley-type (MVT) deposits suggests that the regional occurrences of authigenic K-feldspar and MVT mineralization may be genetically related. This hypothesis is supported by the discovery of authigenic K-feldspar intergrown with sphalerite in several mines of the Mascot-Jefferson City District, E. Tennessee. Regional potassic alteration in unmineralized carbonate rocks and localized occurrences of MVT mineralization are both explainable by a gravity-driven flow model, in which deep brines migrate towards the basin margin under a hydraulic gradient established during the Alleghanian orogeny. The authigenic K-feldspar may reflect the loss of K during disequilibrium cooling of the ascending brines. MVT deposits are probably localized manifestations of the same migrating fluids, occurring where the necessary physical and chemical traps are present. ?? 1987.

  16. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition

    NASA Astrophysics Data System (ADS)

    Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.

    2018-03-01

    The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.

  17. Revisions to the original extent of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Enomoto, Catherine B.; Rouse, William A.; Trippi, Michael H.; Higley, Debra K.

    2016-04-11

    Technically recoverable undiscovered hydrocarbon resources in continuous accumulations are present in Upper Devonian and Lower Mississippian strata in the Appalachian Basin Petroleum Province. The province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia, and Alabama. The Upper Devonian and Lower Mississippian strata are part of the previously defined Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) that extends from New York to Tennessee. This publication presents a revision to the extent of the Devonian Shale-Middle and Upper Paleozoic TPS. The most significant modification to the maximum extent of the Devonian Shale-Middle and Upper Paleozoic TPS is to the south and southwest, adding areas in Tennessee, Georgia, Alabama, and Mississippi where Devonian strata, including potential petroleum source rocks, are present in the subsurface up to the outcrop. The Middle to Upper Devonian Chattanooga Shale extends from southeastern Kentucky to Alabama and eastern Mississippi. Production from Devonian shale has been established in the Appalachian fold and thrust belt of northeastern Alabama. Exploratory drilling has encountered Middle to Upper Devonian strata containing organic-rich shale in west-central Alabama. The areas added to the TPS are located in the Valley and Ridge, Interior Low Plateaus, and Appalachian Plateaus physiographic provinces, including the portion of the Appalachian fold and thrust belt buried beneath Cretaceous and younger sediments that were deposited on the U.S. Gulf Coastal Plain.

  18. The distribution and tectonic framework of Late Paleozoic volcanoes in the Junggar basin and its adjacent area, NW China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, J. H.

    2012-04-01

    We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.

  19. Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleozoic microfossils

    PubMed Central

    Graham, Linda E.; Wilcox, Lee W.; Cook, Martha E.; Gensel, Patricia G.

    2004-01-01

    Absence of a substantial pretracheophyte fossil record for bryophytes (otherwise predicted by molecular systematics) poses a major problem in our understanding of earliest land-plant structure. In contrast, there exist enigmatic Cambrian–Devonian microfossils (aggregations of tubes or sheets of cells or possibly a combination of both) controversially interpreted as an extinct group of early land plants known as nematophytes. We used an innovative approach to explore these issues: comparison of tube and cell-sheet microfossils with experimentally degraded modern liverworts as analogues of ancient early land plants. Lower epidermal surface tissues, including rhizoids, of Marchantia polymorpha and Conocephalum conicum were resistant to breakdown after rotting for extended periods or high-temperature acid treatment (acetolysis), suggesting fossilization potential. Cell-sheet and rhizoid remains occurred separately or together depending on the degree of body degradation. Rhizoid break-off at the lower epidermal surface left rimmed pores at the centers of cell rosettes; these were similar in structure, diameter, and distribution to pores characterizing nematophyte cell-sheet microfossils known as Cosmochlaina. The range of Marchantia rhizoid diameters overlapped that of Cosmochlaina pores. Approximately 14% of dry biomass of Marchantia vegetative thalli and 40% of gametangiophores was resistant to acetolysis. Pre- and posttreatment cell-wall autofluorescence suggested the presence of phenolic compounds that likely protect lower epidermal tissues from soil microbe attack and provide dimensional stability to gametangiophores. Our results suggest that at least some microfossils identified as nematophytes may be the remains of early marchantioid liverworts similar in some ways to modern Marchantia and Conocephalum. PMID:15263095

  20. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras.

    PubMed

    LoDuca, S T; Bykova, N; Wu, M; Xiao, S; Zhao, Y

    2017-07-01

    Non-calcified marine macroalgae ("seaweeds") play a variety of key roles in the modern Earth system, and it is likely that they were also important players in the geological past, particularly during critical transitions such as the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE). To investigate the morphology and ecology of seaweeds spanning the time frame from the CE through the GOBE, a carefully vetted database was constructed that includes taxonomic and morphometric information for non-calcified macroalgae from 69 fossil deposits. Analysis of the database shows a pattern of seaweed history that can be explained in terms of two floras: the Cambrian Flora and the Ordovician Flora. The Cambrian Flora was dominated by rather simple morphogroups, whereas the Ordovician Flora, which replaced the Cambrian Flora in the Ordovician and extended through the Silurian, mainly comprised comparatively complex morphogroups. In addition to morphogroup representation, the two floras show marked differences in taxonomic composition, morphospace occupation, functional-form group representation, and life habit, thereby pointing to significant morphological and ecological changes for seaweeds roughly concomitant with the GOBE and the transition from the Cambrian to Paleozoic Evolutionary Faunas. Macroalgal changes of a similar nature and magnitude, however, are not evident in concert with the CE, as the Cambrian Flora consists largely of forms established during the Ediacaran. The cause of such a lag in macroalgal morphological diversification remains unclear, but an intriguing possibility is that it signals a previously unknown difference between the CE and GOBE with regard to the introduction of novel grazing pressures. The consequences of the establishment of the Ordovician Flora for shallow marine ecosystems and Earth system dynamics remain to be explored in detail but could have been multifaceted and potentially include impacts on the global

  1. Depositional systems and stratigraphy of Paleozoic and Lower Mesozoic rocks in outcrop, Tassili region, southwest Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertig, S.P.; Tye, R.S.; Coffield, D.Q.

    1991-08-01

    Paleozoic to Lower Mesozoic strata of the southeastern Algerian Tassili are traditionally subdivided by regionally extensive unconformities such as the Pan African, Taconic, Caledonian, and Hercynian. Using outcrop data from southeastern Algeria, this classic approach is modified by reinterpreting the genesis of these unconformities and rock sequences. Five prominent sequences, defined within the Paleozoic and lower Mesozoic section, usually consist of a succession of lowstand, transgressive, and highstand system tracts separated by sequence boundaries or transgressive surfaces. The Pan-African, Taconic, Caledonian, and Hercynian unconformities are sequence boundaries. Important sequence boundaries also occur within the Ordovician and Silurian sections. These sequencesmore » correlate with subsurface data in the Illizi basin and provide a framework for renewed exploration in the subsurface of the Algerian Sahara, where more than 30 billion bbl of recoverable oil and oil equivalent have been generated and trapped.« less

  2. Time in Early Childhood: Creative Possibilities with Different Conceptions of Time

    ERIC Educational Resources Information Center

    Farquhar, Sandy

    2016-01-01

    Time is an important driver of pedagogy which is often overlooked in the busy atmosphere of an early childhood centre. Engaging philosophically with three different concepts of time, and drawing examples from literature and art to focus attention on how time is constituted in early childhood centres, this article argues that we inhabit the…

  3. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora

    PubMed Central

    Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang

    2015-01-01

    We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion. PMID:26124122

  4. The Chara-Sina dyke swarm in the structure of the Middle Paleozoic Vilyui rift system (Siberian Craton)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. I.; Konstantinov, K. M.; Yarmolyuk, V. V.; Ivanov, A. V.

    2016-11-01

    The formation of the Vilyui rift system in the eastern Siberian Craton was finished with breakdown of the continent and formation of its eastern margin. A characteristic feature of this rift system is the radial distribution of dyke swarms of basic rocks. This peculiarity allows us to relate it to the breaking processes above the mantle plume, the center of which was located in the region overlain in the modern structure by the foreland of the Verkhoyan folded-thrust belt. The Chara-Sina dyke swarm is the southern part of a large area of Middle Paleozoic basaltic magmatism in the eastern Siberian Craton. The OIB-like geochemical characteristics of dolerite allow us to suggest that the melting substrate for Middle Paleozoic basaltic magmatism was represented by a relatively homogeneous, mid-depleted mantle of the plume with geochemical parameters similar to those of OIB.

  5. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction

  6. Bedded Barite Deposits from Sonora (nw Mexico): a Paleozoic Analog for Modern Cold Seeps

    NASA Astrophysics Data System (ADS)

    Canet, C.; Anadón, P.; González-Partida, E.; Alfonso, P.; Rajabi, A.; Pérez-Segura, E.; Alba-Aldave, L. A.

    2013-05-01

    The Mazatán barite deposits represent an outstanding example of Paleozoic bedded barite, a poorly understood type of mineral deposit of major economic interest. The largest barite bodies of Mazatán are hosted within an Upper Carboniferous flysch succession, which formed part of an accretionary wedge related to the subduction of the Rheic Ocean beneath Gondwana. As well, a few barite occurrences are hosted in Upper Devonian, pre-orogenic turbidites. A variety of mineralized structures is displayed by barite, including: septaria nodules, enterolitic structures, rosettes and debris-flow conglomerates. Barite is accompanied by chalcedony, pyrite (framboids) and berthierine. Gas-rich fluid inclusions in barite were analyzed by Raman spectroscopy and methane was identified, suggesting the occurrence of light hydrocarbons in the environment within which barite precipitated. 13C-depleted carbonates (δ13C: -24.3 to -18.8‰) were found in the barite deposits; they formed through anaerobic oxidation of methane coupled to sulfate reduction, and yield negative δ18O values (-11.9 to -5.2‰) reflecting the isotopic composition of Devonian-Carboniferous seawater. Methane-derived carbonates occur in modern hydrocarbon seeps and have been reported from Mesozoic and Cenozoic seep sediments, but they have never before been described in Paleozoic bedded barite deposits. δ34S of barite varies from +17.6 to +64.1‰, with the lowest values overlapping the range for coeval seawater sulfate; this distribution indicates a process of sulfate reduction. Barite precipitation can be explained by mixing of methane- and barium-rich fluids with pore-water (seawater) containing sulfate residual from microbial reduction. Two analyses from barite gave an 87Sr/86Sr within and slightly above the range for seawater at the time of deposition, with 0.708130 and 0.708588, which would preclude the involvement of hydrothermal fluids in the mineralization process.

  7. Sapphirine-bearing granulites from the Tongbai orogen, China: Petrology, phase equilibria, zircon U-Pb geochronology and implications for Paleozoic ultrahigh temperature metamorphism

    NASA Astrophysics Data System (ADS)

    Xiang, Hua; Zhong, Zeng-Qiu; Li, Ye; Qi, Min; Zhou, Han-Wen; Zhang, Li; Zhang, Ze-Ming; Santosh, M.

    2014-11-01

    We report here for the first time the occurrence of sapphirine-bearing granulites within the Qinling Group of the Qinling-Tongbai orogen and provide robust evidence for extreme crustal metamorphism at ultrahigh-temperature (UHT) conditions. We document the UHT indicator of sapphirine and spinel in a mafic granulite consisting of orthopyroxene, biotite, plagioclase, amphibole and rutile/ilmenite. The ferromagnesian minerals in the sapphirine-bearing granulite have high XMg [Mg/(Mg + Fe)] (orthopyroxene XMg = 0.84-0.95; biotite XMg = 0.81; amphibole XMg = 0.87-0.96). The phase equilibria modeling demonstrates that the early spinel-bearing assemblage is stable at 923-950 °C and 6.7-8.9 kbar, and the peak assemblage of Opx + Pl + Spr/Spl + Amp + Bt + Ilm (+ melt) defines a field at 922-947 °C and 8.4-10.2 kbar. Rutiles have variable Zr concentrations but mostly cluster at ca. 1,500 and 3400 ppm. Zr-in-rutile geothermometry yielded high temperatures of up to 890-940 °C. Zircon U-Pb dating of the granulite constrains the timing of the immediate post-peak and retrograde metamorphic stages as 429 ± 7 Ma and 412 ± 4 Ma, respectively. The UHT metamorphism, together with extensive occurrence of coeval magmatic suites suggests that the Tongbai orogen experienced a Paleozoic Andean-type orogeny probably derived from mid-oceanic ridge subduction of the Qinling Ocean.

  8. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  9. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  10. Stratigraphy and paleogeographic significance of a Late Pennsylvanian to Early Permian channeled slope sequence in the Darwin Basin, southern Darwin Hills, east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul; Magginetti, Robert T.; Ritter, Scott M.

    2015-01-01

    The complex stratigraphy of late Paleozoic rocks in the southern Darwin Hills consists of regionally extensive Mississippian and Early to Middle Pennsylvanian rocks overlain by latest Pennsylvanian to Early Permian rocks, herein called the Darwin Hills sequence. Deposition of this latter sequence marked the beginning of the Darwin Basin. In Mississippian time, a carbonate platform prograded westward over slightly older slope deposits. In the Late Mississippian this platform was exposed to erosion and siliciclastic sediments were deposited. In Early to Middle Pennsylvanian time the area subsided, forming a west-facing ramp that was subjected to deformation and erosion in Middle or early Late Pennsylvanian time. Later this area was tilted westward and deep-water sediments were deposited on this slope. In latest Pennsylvanian to earliest Permian time, a major channel was cut through the older Pennsylvanian rocks and into the Upper Mississippian strata. This channel was gradually filled with increasingly finer grained, deep-water sediment as the area evolved into a basin floor by Early Permian (Sakmarian) time. Expansion of the Darwin Basin in Artinskian time led to a second phase of deposition represented by strata of the regionally extensive Darwin Canyon Formation. The geology in this small area thus documents tectonic events occurring during the early development of the Darwin Basin.

  11. Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.

    1994-08-01

    Built upon the roots of a compressive orogenic belt of late Proterozoic-early Paleozoic age and once adjacent to North America, the present-day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present-day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ˜250 to ˜350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro-Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ˜115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (˜50 Ma). The amount of uplift ˜70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ˜7 km, with the likelihood of an additional ˜3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2-3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the

  12. Global deglaciation and the re-appearance of microbial matground-dominated ecosystems in the late Paleozoic of Gondwana.

    PubMed

    Buatois, L A; Netto, R G; Gabriela Mángano, M; Carmona, N B

    2013-07-01

    The extensive matgrounds in Carboniferous-Permian open-marine deposits of western Argentina constitute an anachronistic facies, because with the onset of penetrative bioturbation during the early Paleozoic microbial mats essentially disappeared from these settings. Abundant microbially induced sedimentary structures in the Argentinean deposits are coincident with the disappearance of trace and body fossils in the succession and with a landward facies shift indicative of transgressive conditions. Deposits of the Late Carboniferous-Early Permian glacial event are well developed in adjacent basins in eastern Argentina, Brazil, South Africa and Antarctica, but do not occur in the western Andean basins of Argentina. However, the deglaciation phase is indirectly recorded in the studied region by a rapid rise in sea level referred to as the Stephanian-Asselian transgression. We suggest that an unusual release of meltwater during the final deglaciation episode of the Gondwana Ice Age may have dramatically freshened peri-Gondwanan seas, impacting negatively on coastal and shallow-marine benthic faunas. Suppression of bioturbation was therefore conducive to a brief re-appearance of matground-dominated ecosystems, reminiscent of those in the precambrian. Bioturbation is essential for ecosystem performance and plays a major role in ocean and sediment geochemistry. Accordingly, the decimation of the mixed layer during deglaciation in the Gondwana basins may have altered ecosystem functioning and geochemical cycling. © 2013 John Wiley & Sons Ltd.

  13. Heating, cooling, and uplift during Tertiary time, northern Sangre de Cristo Range, Colorado ( USA).

    USGS Publications Warehouse

    Lindsay, D.A.; Andriessen, P.A.M.; Wardlaw, B.R.

    1986-01-01

    Paleozoic sedimentary rocks in a wide area of the northern Sangre de Cristo Range show effects of heating during Tertiary time. Heating is tentatively interpreted as a response to burial during Laramide folding and thrusting and also to high heat flow during Rio Grande rifting. Fission-track ages of apatite across a section of the range show that rocks cooled abruptly below 120oC, the blocking temperature for apatite, approx 19 Ma ago. Cooling was probably in response to rapid uplift and erosion of the northern Sangre de Cristo Range during early Rio Grande rifting.-from Authors

  14. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  15. Late Paleozoic onset of subduction and exhumation at the western margin of Gondwana (Chilenia Terrane): Counterclockwise P-T paths and timing of metamorphism of deep-seated garnet-mica schist and amphibolite of Punta Sirena, Coastal Accretionary Complex, central Chile (34° S)

    NASA Astrophysics Data System (ADS)

    Hyppolito, T.; García-Casco, A.; Juliani, C.; Meira, V. T.; Hall, C.

    2014-10-01

    In this study, the Paleozoic albite-epidote-amphibolite occurring as meter-sized intercalations within garnet-mica schist at Punta Sirena beach (Pichilemu region, central Chile) is characterized for the first time. These rocks constitute an unusual exposure of subduction-related rocks within the Paleozoic Coastal Accretionary Complex of central Chile. Whereas high pressure (HP) greenschist and cofacial metasediments are the predominant rocks forming the regional metamorphic basement, the garnet-mica schist and amphibolite yield higher P-T conditions (albite-epidote amphibolite facies) and an older metamorphic age. Combining detailed mineral chemistry and textural information, P-T calculations and Ar-Ar ages, including previously published material from the Paleozoic Accretionary Complex of central Chile, we show that the garnet-mica schist and associated amphibolite (locally retrograded to greenschist) are vestiges of the earliest subducted material now forming exotic bodies within the younger HP units of the paleo-accretionary wedge. These rocks are interpreted as having been formed during the onset of subduction at the southwestern margin of Gondwana. However, we show that the garnet-mica schist formed at a slightly greater depth (ca. 40 km) than the amphibolite (ca. 30 km) along the same hot-subduction gradient developed during the onset of subduction. Both lithotypes reached their peak-P conditions at ca. 335-330 Ma and underwent near-isobaric cooling followed by cooling and decompression (i.e., counterclockwise P-T paths). The forced return flow of the garnet-mica schist from the subduction channel started at ca. 320 Ma and triggered the exhumation of fragments of shallower accreted oceanic crust (amphibolite). Cores of phengite (garnet-mica schist) and amphibole (amphibolite) grains have similar chemical compositions in both the S1 and S2 domains, indicating rotation of these grains during the transposition of the burial-related (prograde peak-T) foliation S1

  16. Sources of variation in extinction rates, turnover, and diversity of marine invertebrate families during the Paleozoic

    USGS Publications Warehouse

    Nichols, J.D.; Morris, R.W.; Brownie, C.; Pollock, K.H.

    1986-01-01

    The authors present a new method that can be used to estimate taxonomic turnover in conjunction with stratigraphic range data for families in five phyla of Paleozoic marine invertebrates. Encounter probabilities varied among taxa and showed evidence of a decrease over time for the geologic series examined. The number of families varied substantially among the five phyla and showed some evidence of an increase over the series examined. There was no evidence of variation in extinction probabilities among the phyla. Although there was evidence of temporal variation in extinction probabilities within phyla, there was no evidence of a linear decrease in extinction probabilities over time, as has been reported by others. The authors did find evidence of high extinction probabilities for the two intervals that had been identified by others as periods of mass extinction. They found no evidence of variation in turnover among the five phyla. There was evidence of temporal variation in turnover, with greater turnover occurring in the older series.

  17. Structural styles of Paleozoic intracratonic fault reactivation: A case study of the Grays Point fault zone in southeastern Missouri, USA

    USGS Publications Warehouse

    Clendenin, C.W.; Diehl, S.F.

    1999-01-01

    A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.

  18. Delayed fungal evolution did not cause the Paleozoic peak in coal production.

    PubMed

    Nelsen, Matthew P; DiMichele, William A; Peters, Shanan E; Boyce, C Kevin

    2016-03-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.

  19. Delayed fungal evolution did not cause the Paleozoic peak in coal production

    PubMed Central

    Nelsen, Matthew P.; DiMichele, William A.; Peters, Shanan E.; Boyce, C. Kevin

    2016-01-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea. PMID:26787881

  20. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    USGS Publications Warehouse

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  1. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  2. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    NASA Astrophysics Data System (ADS)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  3. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2016-04-01

    The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late

  4. Early Forest Soils and Their Role in Devonian Global Change

    PubMed

    Retallack

    1997-04-25

    A paleosol in the Middle Devonian Aztec Siltstone of Victoria Land, Antarctica, is the most ancient known soil of well-drained forest ecosystems. Clay enrichment and chemical weathering of subsurface horizons in this and other Devonian forested paleosols culminate a long-term increase initiated during the Silurian. From Silurian into Devonian time, red clayey calcareous paleosols show a greater volume of roots and a concomitant decline in the density of animal burrows. These trends parallel the decline in atmospheric carbon dioxide determined from isotopic records of pedogenic carbonate in these same paleosols. The drawdown of carbon dioxide began well before the Devonian appearance of coals, large logs, and diverse terrestrial plants and animals, and it did not correlate with temporal variation in volcanic or metamorphic activity. The early Paleozoic greenhouse may have been curbed by the evolution of rhizospheres with an increased ratio of primary to secondary production and by more effective silicate weathering during Silurian time.

  5. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    USGS Publications Warehouse

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan

  6. Paleozoic-involving thrust array in the central Sierras Interiores (South Pyrenean Zone, Central Pyrenees): regional implications

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    This work deals with the structural evolution of the Sierras Interiores between the Tena and Aragon valleys. The Sierras Interiores is a WNW-trending mountain range that bounds the South Pyrenean Zone to the north and that is characterized by a thrust-fold system with a strong lithological control that places preferably decollements in Triassic evaporites. In the studied area of the Sierras Interiores Cenomanian limestones cover discordantly the Paleozoic rocks of the Axial Zone because there is a stratigraphic lacuna developed from Triassic to Late Cretaceous times. A simple lithostratigraphy of the study area is made up of Late Cenomanian to Early Campanian limestones with grey colour and massive aspect in landscape (170 m, Lower calcareous section), Campanian to Maastrichtian brown coloured sandstones (400-600 m, Marboré sandstones) and, finally, Paleocene light-coloured massive limestones (130-230 m), that often generate the higher topographic levels of the Sierras Interiores due to their greater resistance to erosion. Above the sedimentary sequence of the Sierras Interiores, the Jaca Basin flysch succession crops out discordantly. Based on a detailed mapping of the studied area of the Sierras Interiores, together with well and structural data of the Jaca Basin (Lanaja, 1987; Rodríguez and Cuevas, 2008) we have constructed a 12 km long NS cross section, approximately parallel to the movement direction deduced for this region (Rodríguez et al., 2011). The main structure is a thrust array made up of at least four Paleozoic-involving thrusts (the deeper thrust system) of similar thickness in a probably piggyback sequence, some of which are blind thrusts that generate fold-propagation-folds in upper levels. The higher thrust of the thrust array crops out duplicating the lower calcareous section all over the Sierras Interiores. The emplacement of the deeper thrust system generated the tightness of previous structures: south directed piggyback duplexes (the upper

  7. New Fossil Evidence on the Sister-Group of Mammals and Early Mesozoic Faunal Distributions

    NASA Astrophysics Data System (ADS)

    Shubin, Neil H.; Crompton, A. W.; Sues, Hans-Dieter; Olsen, Paul E.

    1991-03-01

    Newly discovered remains of highly advanced mammal-like reptiles (Cynodontia: Tritheledontidae) from the Early Jurassic of Nova Scotia, Canada, have revealed that aspects of the characteristic mammalian occlusal pattern are primitive. Mammals and tritheledontids share an homologous pattern of occlusion that is not seen in other cynodonts. The new tritheledontids represent the first definite record of this family from North America. The extreme similarity of North American and African tritheledontids supports the hypothesis that the global distribution of terrestrial tetrapods was homogeneous in the Early Jurassic. This Early Jurassic cosmopolitanism represents the continuation of a trend toward increased global homogeneity among terrestrial tetrapod communities that began in the late Paleozoic.

  8. An Extended Paleozoic Apparent Polar Wander Path for Baltica: new Permo-Carboniferous Paleopoles From the Donbas Region (Ukraine)

    NASA Astrophysics Data System (ADS)

    Hamers, M. F.; Meijers, M. J.; van Hinsbergen, D. J.; van der Meer, D. G.; Langereis, C. G.; Stephenson, R. A.

    2007-12-01

    An improved Paleozoic apparent polar wander (APW) path for Baltica is presented here on the basis of six new paleopoles that have been determined from samples collected in the Donbas region in the Dniepr-Donets basin in south-eastern Ukraine. Constructing APW paths allows improving paleogeographic reconstructions that reach further back in time than 200 Ma, where the use of oceanic isochrons and hotspot track has limited applicability. The absence of penetrative regional deformation and the subparallel trending bedding attitudes across the basin suggest that our sites did not suffer from local rotations and their results are interpreted as representative for Baltica. The data presented here improve the paleogeographic reconstruction of Baltica within the collage of the supercontinent Pangea. The six new paleopoles cover a time span from earliest Carboniferous (~356 Ma) to early Permian (~295 Ma). In our reconstruction, Baltica was located at a constant latitude of ~5°N during a major part of the Carboniferous, while at ~310 Ma it started to move gradually northward, reaching a paleolatitude of ~13°N at 295 Ma. From ~355 Ma to 295 Ma Baltica experienced a net ~20° clockwise rotation. Our new data differ with the APW path from Torsvik et al. (submitted) in the time span from ~320-300 Ma, wherein they propose a northward movement from more southerly latitudes. From 300 Ma onwards, our path fits the reference path from Torsvik et al. A possible Permian remagnetization of our sites is not likely, considering the rotational differences in the various time spans, and rockmagnetic analyses that have been performed. We also discuss the usage of the TK03 model (Tauxe and Kent (2004), Geoph. Mon. 145, pp 101-116) that allows for the correction of inclination error caused by compaction during burial, which is insignificant for most sites. This suggest that the NRM has been acquired after compaction.

  9. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas

    USGS Publications Warehouse

    Pollastro, R.M.; Jarvie, D.M.; Hill, R.J.; Adams, C.W.

    2007-01-01

    This article describes the primary geologic characteristics and criteria of the Barnett Shale and Barnett-Paleozoic total petroleum system (TPS) of the Fort Worth Basin used to define two geographic areas of the Barnett Shale for petroleum resource assessment. From these two areas, referred to as "assessment units," the U.S. Geological Survey estimated a mean volume of about 26 tcf of undiscovered, technically recoverable hydrocarbon gas in the Barnett Shale. The Mississippian Barnett Shale is the primary source rock for oil and gas produced from Paleozoic reservoir rocks in the Bend arch-Fort Worth Basin area and is also one of the most significant gas-producing formations in Texas. Subsurface mapping from well logs and commercial databases and petroleum geochemistry demonstrate that the Barnett Shale is organic rich and thermally mature for hydrocarbon generation over most of the Bend arch-Fort Worth Basin area. In the northeastern and structurally deepest part of the Fort Worth Basin adjacent to the Muenster arch, the formation is more than 1000 ft (305 m) thick and interbedded with thick limestone units; westward, it thins rapidly over the Mississippian Chappel shelf to only a few tens of feet. The Barnett-Paleozoic TPS is identified where thermally mature Barnett Shale has generated large volumes of hydrocarbons and is (1) contained within the Barnett Shale unconventional continuous accumulation and (2) expelled and distributed among numerous conventional clastic- and carbonate-rock reservoirs of Paleozoic age. Vitrinite reflectance (Ro) measurements show little correlation with present-day burial depth. Contours of equal Ro values measured from Barnett Shale and typing of produced hydrocarbons indicate significant uplift and erosion. Furthermore, the thermal history of the formation was enhanced by hydrothermal events along the Ouachita thrust front and Mineral Wells-Newark East fault system. Stratigraphy and thermal maturity define two gas

  10. Precambrian Time - The Story of the Early Earth

    USGS Publications Warehouse

    Lindsey, D.A.

    2007-01-01

    The Precambrian is the least-understood part of Earth history, yet it is arguably the most important. Precambrian time spans almost nine-tenths of Earth history, from the formation of the Earth to the dawn of the Cambrian Period. It represents time so vast and long ago that it challenges all comprehension. The Precambrian is the time of big questions. How old is the Earth? How old are the oldest rocks and continents? What was the early Earth like? What was the early atmosphere like? When did life appear, and what did it look like? And, how do we know this? In recent years, remarkable progress has been made in understanding the early evolution of the Earth and life itself. Yet, the scientific story of the early Earth is still a work in progress, humankind's latest attempt to understand the planet. Like previous attempts, it too will change as we learn more about the Earth. Read on to discover what we know now, in the early 21st century.

  11. Criteria for the recognition and correlation of sandstone units in the Precambrian and Paleozoic-Mesozoic clastic sequence in the near east

    NASA Astrophysics Data System (ADS)

    Weissbrod, T.; Perath, I.

    A systematic study of the Precambrian and Paleozoic-Mesozoic clastic sequences (Nubian Sandstone) in Israel and Sinai, and a comparative analysis of its stratigraphy in neighbouring countries, has shown that besides the conventional criteria of subdivision (lithology, field appearance, photogeological features, fossil content), additional criteria can be applied, which singly or in mutual conjuction enable the recognition of widespread units and boundaries. These criteria show lateral constancy, and recurrence of a similar vertical sequence over great distances, and are therefore acceptable for the identification of synchronous, region-wide sedimentary units (and consequently, major unconformities). They also enable, once the units are established, to identify detached (not in situ) samples, samples from isolated or discontinous outcrops, borehole material or archive material. The following rock properties were tested and found to be usefuls in stratigraphic interpretation, throughout large distribution areas of the clastic sequence: Landscape, which is basically the response of a particular textural-chemic al aggregate to atmospheric weathering. Characteristic outcrop feature — styles of roundness or massivity, fissuring or fliatin, slope profile, bedding — express a basic uniformity of these platform-type clastics. Colors are often stratigraphically constant over hundreds of kilometers, through various climates and topographies, and express some intrinsic unity of the rock bodies. Grain size and sorting, when cross-plotted, enable to differentiate existing unit. The method requires the analysis of representative numbers of samples. Vertical trends of median grain size and sorting show reversals, typically across unconformities. Feldstar content diminishes from 15-50% in Precambrian-Paleozoic rocks to a mere 5% or less in Mesozoic sandstones — a distinctive regionwide time trend. Dominance of certain feldstar types characterizes Precambrian and Paleozoic

  12. Timing of Orphanhood, Early Sexual Debut, and Early Marriage in Four Sub-Saharan African Countries

    PubMed Central

    Chae, Sophia

    2014-01-01

    According to a growing body of literature, some orphans are at heightened risk of early sexual debut and early marriage. This study examines a rarely explored aspect of orphanhood: the timing and type of parental death and their relationship to these outcomes. The study also explores whether education mediates orphans’ risk of early sexual initiation and early marriage. The data are drawn from the 2004 National Survey of Adolescents, which includes interviews with 12–19-year-old adolescents in Burkina Faso, Ghana, Malawi, and Uganda. Results from discrete-time event history analysis indicate that female double orphans, regardless of timing of orphanhood, have greater odds of early sexual debut than do nonorphans. Education explains little of their increased risk. In contrast, male orphans of any type reveal no increased vulnerability to early sexual debut. Uganda is the only country where female orphans, specifically double orphans and those who are paternal orphans before age 10, have greater odds of early marriage, with education accounting for a small portion of the risk. PMID:23719999

  13. The Cannery Formation--Devonian to Early Permian arc-marginal deposits within the Alexander Terrane, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.

    2011-01-01

    cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,

  14. Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction

    NASA Astrophysics Data System (ADS)

    Edwards, Cole T.; Fike, David A.; Saltzman, Matthew R.; Lu, Wanyi; Lu, Zunli

    2018-01-01

    Profound changes in environmental conditions, particularly atmospheric oxygen levels, are thought to be important drivers of several major biotic events (e.g. mass extinctions and diversifications). The early Paleozoic represents a key interval in the oxygenation of the ocean-atmosphere system and evolution of the biosphere. Global proxies (e.g. carbon (δ13C) and sulfur (δ34S) isotopes) are used to diagnose potential changes in oxygenation and infer causes of environmental change and biotic turnover. The Cambrian-Ordovician contains several trilobite extinctions (some are apparently local, but others are globally correlative) that are attributed to anoxia based on coeval positive δ13C and δ34S excursions. These extinction and excursion events have yet to be coupled with more recently developed proxies thought to be more reflective of local redox conditions in the water column (e.g. I/Ca) to confirm whether these extinctions were associated with oxygen crises over a regional or global scale. Here we examine an Early Ordovician (Tremadocian Stage) extinction event previously interpreted to reflect a continuation of recurrent early Paleozoic anoxic events that expanded into nearshore environments. δ13C, δ34S, and I/Ca trends were measured from three sections in the Great Basin region to test whether I/Ca trends support the notion that anoxia was locally present in the water column along the Laurentian margin. Evidence for anoxia is based on coincident, but not always synchronous, positive δ13C and δ34S excursions (mainly from carbonate-associated sulfate and less so from pyrite data), a 30% extinction of standing generic diversity, and near-zero I/Ca values. Although evidence for local water column anoxia from the I/Ca proxy broadly agrees with intervals of global anoxia inferred from δ13C and δ34S trends, a more complex picture is evident where spatially and temporally variable local trends are superimposed on time-averaged global trends. Stratigraphic

  15. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Shi, Xingjun; Wang, Tao; Zhang, Lei; Castro, Antonio; Xiao, XuChang; Tong, Ying; Zhang, Jianjun; Guo, Lei; Yang, Qidi

    2014-11-01

    The Late Paleozoic tectonic setting and location of the southernmost boundary of the Central Asian Orogenic Belt (CAOB) with respect to the Alxa Block or Alxa-North China Craton (ANCC) are debated. This paper presents new geochronological, petrological, geochemical and zircon Hf isotopic data of the Late Paleozoic intrusions from the Shalazhashan in northern Alxa and discusses the tectonic setting and boundary between the CAOB and ANCC. Using zircon U-Pb dating, intrusions can be broadly grouped as Late Carboniferous granodiorites (~ 301 Ma), Middle Permian gabbros (~ 264 Ma) and granites (~ 266 Ma) and Late Permian granodiorites, monzogranites and quartz monzodiorites (254-250 Ma). The Late Carboniferous granodiorites are slightly peraluminous and calcic. The remarkably high zircon Hf isotopes (εHf(t) = + 6-+ 10) and characteristics of high silica adakites suggest that these granodiorites were mainly derived from "hot" basaltic slab-melts of the subducted oceanic crust. The Middle Permian gabbros exhibited typical cumulate textures and were derived from the partial melting of depleted mantle. The Middle Permian granites are slightly peraluminous with high-K calc-alkaline and low εHf(t) values from - 0.9 to + 2.9. These granites were most likely derived from juvenile materials mixed with old crustal materials. The Late Permian granodiorites, monzogranites and quartz monzodiorites are characterized as metaluminous to slightly peraluminous, with variable Peacock alkali-lime index values from calc-alkalic to alkali-calcic. These rocks were mainly derived from juvenile crustal materials, as evidenced by their high εHf(t) values (+ 3.3 to + 8.9). The juvenile sources of the above intrusions in the Shalazhashan are similar to those of the granitoids from the CAOB but distinct from the granitoids within the Alxa Block. These findings suggest that the Shalazhashan Zone belongs to the CAOB rather than the Alxa Block and that its boundary with the Alxa block can be

  16. Timely Healthcare Checkup Catches Melanoma Early

    MedlinePlus

    ... please turn Javascript on. Feature: Skin Cancer Timely Healthcare Checkup Catches Melanoma Early Past Issues / Summer 2013 ... left the Congress and starting working as a healthcare consultant, when I finally decided to have a ...

  17. Late-paleozoic granitoid complexes of the southwest Primorye: geochemistry, age and typification

    NASA Astrophysics Data System (ADS)

    Veldemar, A. A.; Vovna, G. M.

    2017-12-01

    The article presents the first data of geochemical studies of the Late Permian granitoids of the Gamov Complex located in the southwestern part of the Voznesenskiy terrane. The purpose of the study was to identify the main geochemical features of the Late Paleozoic granitoids of the southwestern Primorye, which in the future will allow us to draw conclusions about the petrogenesis of these granitoids. Elemental analysis of 20 samples was carried out, conducted statistical and mathematical processing of the data, have been constructed representative diagrams and graphs for this group of rocks. Elemental analysis was performed by atomic emission (ICP-AES) and inductively-coupled-plasma (ICP-MS) mass spectrometry, at the Analytical Center FEGI FEB RAS.

  18. Reported middle Paleozoic fossils and new geochronological data from the southern and central Appalachians: Disposable outrageous hypothesis or justification for major revision of tectonic history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, R.D. Jr.

    Recently published interpretations of fossil fragments from the Walden Creek Group (Ocoee Supergroup) suggesting that these rocks are middle Paleozoic (Devonian to Early Carboniferous), and new geochronological data that yield late Paleozoic age dates on rocks and major faults in the Blue Ridge and piedmont, if taken alone, would permit speculation that most of the deformation and metamorphism affecting this part of the orogen is Alleghanian. The two Ordovician clastic wedges (Sevier, Llanvirn, and Martinsburg, Caradoc-Ashgill) and the Carboniferous-Permian wedge(s), along with many radiometric ages on plutons, indicate uplift and sediment dispersal from the interior of the southern and centralmore » Appalachians (SCA) that may have resulted from Taconian and Alleghanian deformation. Combining the reproducible fossil evidence, including that from Alabama and a recently discovered crinoid fragment from the upper part of the Murphy belt sequence, with the most current geochronological data requires that peak metamorphism and penetrative deformation be at least Devonian or younger at the southwestern end of the orogen, and Late Ordovician or younger in the Carolinas and northern Georgia. Zircon ages reported from large thrust and dextral strike-slip faults bounding the Pine Mountain window indicate all of the faults there may be Alleghanian, except the younger sinistral Mesozoic faults, and requires that both metamorphism and penetrative deformation there also be Alleghanian. As in New England, the southern Appalachian Alleghanian metamorphic core is now known to be much more extensive. The older data require that the Taconian and perhaps the Acadian orogenies were significant events in the SCA, but these new data reconfirm the dominance of Alleghanian continent-continent collision processes here.« less

  19. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Breitkreuz, C.

    The geodynamic evolution of the Paleozoic continental margin of Gondwana in the region of the southern Central Andes is characterized by the westward progression of orogenic basin formation through time. The Ordovician basin in the northwest Argentinian Cordillera Oriental and Puna originated as an Early Ordovician back-arc basin. The contemporaneous magmatic arc of an east-dipping subduction zone was presumably located in northern Chile. In the back-arc basin, a ca. 3500 meter, fining-up volcaniclastic apron connected to the arc formed during the Arenigian. Increased subsidence in the late Arenigian allowed for the accomodation of large volumes of volcaniclastic turbidites during the Middle Ordovician. Subsidence and sedimentation were caused by the onset of collision between the para-autochthonous Arequipa Massif Terrane (AMT) and the South American margin at the Arenigian-Llanvirnian transition. This led to eastward thrusting of the arc complex over its back-arc basin and, consequently, to its transformation into a marine foreland basin. As a result of thrusting in the west, a flexural bulge formed in the east, leading to uplift and emergence of the Cordillera Oriental shelf during the Guandacol Event at the Arenigian-Llanvirnian transition. The basin fill was folded during the terminal collision of the AMT during the Oclóyic Orogeny (Ashgillian). The folded strata were intruded post-tectonically by the presumably Silurian granitoids of the "Faja Eruptiva de la Puna Oriental." The orogeny led to the formation of the positive area of the Arco Puneño. West of the Arco Puneño, a further marine basin developed during the Early Devonian, the eastern shelf of which occupied the area of the Cordillera Occidental, Depresión Preandina, and Precordillera. The corresponding deep marine turbidite basin was located in the region of the Cordillera de la Costa. Deposition continued until the basin fill was folded in the early Late Carboniferous Toco Orogeny. The basin

  20. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  1. Atmospheric oxygen levels affect mudskipper terrestrial performance: implications for early tetrapods.

    PubMed

    Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B

    2013-08-01

    The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.

  2. Tethys- and Atlas-related deformations in the Triassic Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.S.; Moore, S.R.; Quarles, A.I.

    1995-08-01

    Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less

  3. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gang; Hu, Xiumian; Garzanti, Eduardo; Ji, Wei-Qiang; Liu, Zhi-Chao; Liu, Xiao-Chi; Wu, Fu-Yuan

    2017-07-01

    Constraining the timing of early topographic growth on the Tibetan plateau is critical for any models of India-Asia collision, Himalayan orogeny and subsequent plateau development in the Cenozoic. Stratigraphic, sedimentological and provenance analysis of the Lower Cretaceous red-beds of the Damxung Conglomerate provide new key information to reconstruct the paleogeography and the tectonic evolution of the Lhasa terrane at the time. The over 700-m-thick Damxung Conglomerate documents distal alluvial fan to braidplain sedimentation passing upward to proximal alluvial fan sedimentation. Deposition began near sea level, as documented by limestone beds occurring at the base of the unit. Zircon U-Pb dating of interbedded tuff layers constrain deposition age at ca. 111 Ma. Abundance of volcanic clasts, Cretaceous U-Pb ages and Hf isotopes of detrital zircons yielding mainly negative ɛHf(t) values together with paleocurrent data indicate an active volcanic source located in the North Lhasa subterrane. Pre-Mesozoic-aged zircon, recycled quartz and (meta) sedimentary rock fragments increase up-section, indicating progressive erosional exhumation of the Paleozoic sedimentary/metasedimentary basement. The Damxung Conglomerate thus records a significant uplift and unroofing stage in the source region, implying initial topographic growth on the Lhasa terrane at early Albian time. Early Cretaceous topographic growth on the Lhasa terrane is supported by the stratigraphic record in the Linzhou basin, the Xigaze forearc basin and the southern Nima basin. In contrast, marine strata in the central-western Lhasa terrane lasted until the early Cenomanian (ca. 96 Ma), indicating diachronous marine regression on the Lhasa terrane from east to west.

  4. Late Leonardian plants from West Texas: The youngest Paleozoic plant megafossils in North America

    USGS Publications Warehouse

    Mamay, S.H.; Miller, J.M.; Rohr, D.M.

    1984-01-01

    Abundant Permian plant megafossils were discovered in the Del Norte Mountains of Brewster County, Trans-Pecos Texas. The flora is dominated by a new and distinctive type of gigantopteroid leaves. Marine invertebrates are closely associated, and this admixture of continental and marine fossils indicates a deltaic depositional setting, probably on the southern margin of the Permian Basin. Conodonts indicate correlation with the uppermost Leonardian Road Canyon Formation in the Glass Mountains. These are the youngest Paleozoic plant megafossils known in North America; they add an important paleontological element to the classic Permian area of this Continent.

  5. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; McKinney, F. K.; Lidgard, S.; Sepkoski JJ, J. r. (Principal Investigator)

    2000-01-01

    Encrusting bryozoans provide one of the few systems in the fossil record in which ecological competition can be observed directly at local scales. The macroevolutionary history of diversity of cyclostome and cheilostome bryozoans is consistent with a coupled-logistic model of clade displacement predicated on species within clades interacting competitively. The model matches observed diversity history if the model is perturbed by a mass extinction with a position and magnitude analogous to the Cretaceous/Tertiary boundary event, Although it is difficult to measure all parameters in the model from fossil data, critical factors are intrinsic rates of extinction, which can be measured. Cyclostomes maintained a rather low rate of extinction, and the model solutions predict that they would lose diversity only slowly as competitively superior species of cheilostomes diversified into their environment. Thus, the microecological record of preserved competitive interactions between cyclostome and cheilostome bryozoans and the macroevolutionary record of global diversity are consistent in regard to competition as a significant influence on diversity histories of post-Paleozoic bryozoans.

  6. High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: The role of special conditions of cratonic interiors in development of stratal architecture

    USGS Publications Warehouse

    Runkel, Anthony C.; Miller, J.F.; McKay, R.M.; Palmer, A.R.; Taylor, John F.

    2007-01-01

    Well-known difficulties in applying sequence stratigraphic concepts to deposits that accumulated across slowly subsiding cratonic interior regions have limited our ability to interpret the history of continental-scale tectonism, oceanographic dynamics of epeiric seas, and eustasy. We used a multi-disciplinary approach to construct a high-resolution stratigraphic framework for lower Paleozoic strata in the cratonic interior of North America. Within this framework, these strata proved readily amenable to modern sequence stratigraphic techniques that were formulated based on successions along passive margins and in foreland basins, settings markedly different from the cratonic interior. Parasequences, parasequence stacking patterns, systems tracts, maximum flooding intervals, and sequence-bounding unconformities can be confidently recognized in the cratonic interior using mostly standard criteria for identification. The similarity of cratonic interior and foreland basin successions in size, geometry, constituent facies, and local stacking patterns of nearshore parasequences is especially striking. This similarity indicates that the fundamental processes that establish shoreface morphology and determine the stratal expression of retreat and progradation were likewise generally the same, despite marked differences in tectonism, physiography, and bathymetry between the two settings. Our results do not support the widespread perception that Paleozoic cratonic interior successions are so anomalous in stratal geometries, and constitute such a poor record of time, that they are poorly suited for modern sequence stratigraphic analyses. The particular arrangement of stratal elements in the cratonic interior succession we studied is no more anomalous or enigmatic than the variability in architecture that sets all sedimentary successions apart from one another. Thus, Paleozoic strata of the cratonic interior are most appropriately considered as a package that belongs in a

  7. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  8. Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2013-01-01

    Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.

  9. Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Doty, G.C.; Thordarson, William

    1983-01-01

    The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)

  10. Paleozoic sedimentary rocks in the Red Dog Zn-Pb-Ag district and vicinity, western Brooks Range, Alaska: provenance, deposition, and metallogenic significance

    USGS Publications Warehouse

    Slack, John F.; Dumoulin, Julie A.; Schmidt, J.M.; Young, L.E.; Rombach, Cameron

    2004-01-01

    The distribution and composition of Paleozoic strata in the western Brooks Range may have played a fundamental role in Zn-Pb mineralization of the Red Dog district. In our model, deposition and early lithification of biogenic chert and bedded siliceous rocks in the upper part of the Kuna Formation served as a regional hydrologic seal, acting as a cap rock to heat and hydrothermal fluids during Late Mississippian base-metal mineralization. Equally important was the iron-poor composition of black shales of the Kuna Formation (i.e., low Fe/Ti ratios), which limited synsedimentary pyrite formation in precursor sediments, resulting in significant H2S production in pore waters through the interaction of aqueous sulfate with abundant organic matter. This H2S may have been critical to the subsurface deposition of the huge quantities of Zn and Pb in the district. On the basis of this model, we propose that low Fe/Ti and S/C ratios in black shale sequences are potential basin-scale exploration guides for giant sediment-hosted, stratiform Zn-Pb-Ag deposits.

  11. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  12. Late Mesozoic and possible early Tertiary accretion in western Washington State: the Helena-Haystack melange and the Darrington- Devils Mountain fault zone

    USGS Publications Warehouse

    Tabor, R.W.

    1994-01-01

    The Helena-Haystack melange (HH melange) and coincident Darrington-Devils Mountain fault zone (DDMFZ) in northwestern Washington separate two terranes, the northwest Cascade System (NWCS) and the western and eastern melange belts (WEMB). The two terranes of Paleozoic and Mesozoic rocks superficially resemble each other but record considerable differences in structural and metamorphic history. The HH melange is a serpentinite-matrix melange containing blocks of adjacent terranes but also exotic blocks. The HH melange must have formed between early Cretaceous and late middle Eocene time, because it contains tectonic clasts of early Cretaceous Shuksan Greenschist and is overlain by late middle Eocene sedimentary and volcanic rocks. The possible continuation of the DDMFZ to the northwest as the San Juan and the West Coast faults on Vancouver Island suggests that the structure has had a major role in the emplacement of all the westernmost terranes in the Pacific Northwest. -from Author

  13. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  14. Oceanic crust within the paleozoic Granjeno Schist, northeastern Mexico. Remnants of the Rheic and paleo-Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Torres Sanchez, Dario; Aleman Gallardo, Eduardo; Abratis, Michael

    2015-04-01

    Late Paleozoic metamorphic rocks in Mexico are related to the Laurentia-Gondwana collision in Carboniferous time, during Pangaea amalgamation. Vestiges of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental. Field work and petrographic analysis reveal that the Granjeno Schist comprises metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and igneous (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as 40Ar/39Ar ages on metavolcanic and metaultramafic rocks indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C with 2.5 kbar during Carboniferous time (330±30 Ma). The presence of metabasalt, metacumulate, serpentinite and talc bodies suggests an oceanic tectonic setting for the evolution of the Granjeno Schist. Serpetinite rocks have mesh, granular and ribbon textures which indicate recrystallization and metasomatic events. The serpentinite rocks are enriched in the very large incompatible elements Cs, U, and Zr and depleted in Ba, Sr, Pb, Zr and Ce. Normalized REE patterns (LaN/YbN = 0.51 - 19.95 and LaN/SmN = 0.72 - 9.08) of the serpentinite and talc/soapstone are characteristic of peridotite from both suprasubduction and mid-ocean ridge zones. Serpentinite from the Granjeno Schist have spinel content which can reveal different stages of evolution in host serpentinite. The composition of chromite indicates that they belong to podiform chromite that may have crystallized from mid-ocean ridge magma. Al-chromite in the serpentinite is characterized by #Cr 0.48 to 0.55, which indicates a depleted mantle source affected by 17 to 18% of partial melting. The ferritchromite has #Cr values of 0.93 to 1.00 which indicates a metamorphic origin. Our study

  15. How Do Early Career Agriculture Teachers Talk about Their Time?

    ERIC Educational Resources Information Center

    Lambert, Misty D.; Henry, Anna L.; Tummons, John D.

    2011-01-01

    This phenomenological study of early career agriculture teachers sought to determine the meaning early career agriculture teachers ascribe to their time. Seven teachers with a range of experience from mid-first year to beginning of sixth year were chosen. Interviews were used to make meaning of their time. Five themes were found in the…

  16. Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.

    PubMed

    Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song

    2018-01-23

    The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.

  17. Paleomagnetism and alteration of lower Paleozoic rocks and Precambrian basement in the SHADS No. 4 drill core, Oklahoma

    NASA Astrophysics Data System (ADS)

    Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.

    2017-12-01

    The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement

  18. Influence of first-time mothers' early employment on severe early childhood caries in their child.

    PubMed

    Plutzer, Kamila; Keirse, Marc J N C

    2012-01-01

    Aim. To examine whether mothers' early employment status is related to the development of severe early childhood caries in their child. Methods. Questionnaire survey of 429 first-time mothers in metropolitan Adelaide, South Australia, and dental examinations of their child at 20 months of age. Results. At 20 ± 2.5 months of age, 5.6% of children exhibited caries defined as one or more demineralized or cavitated lesions on the upper incisors. Of the mothers, 52.2% had no paid employment, 39.6% were part-time and 8.2% full-time employed. Overall, mothers' participation in the workforce had no influence on the frequency of severe early childhood caries in their child, but there was a significant interaction with family structure. For mothers without employment there was no difference between single, and two-parent families, but children with an employed single mother more frequently had caries than those with a working mother in a two-parent family (P < 0.04). However, there were no significant differences in children's reported general health. Conclusions. The data indicate a need to explore strategies that may assist single mothers and especially those in the workforce to prevent severe early childhood caries in their child.

  19. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China

    NASA Astrophysics Data System (ADS)

    Ge, Mao-hui; Zhang, Jin-jiang; Liu, Kai; Ling, Yi-yun; Wang, Meng; Wang, Jia-min

    2016-09-01

    The Paleozoic to early Mesozoic tectonic framework and evolution of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this paper, geochemical, geochronological and isotopic analyses were carried out on the blueschist in the Heilongjiang Complex to address these issues. The Heilongjiang Complex defines the suture belt between the Jiamusi block and the Songliao block in NE China, and the blueschist is a major composition for this complex, coexisting with mafic-ultramafic rocks, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the major and trace element compositions present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive εNd (t) values of + 3.7 to + 9.0, and relative enrichment in Nb (vs. Th) and Ta (vs. U) show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle with insignificant crustal contamination. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 ± 3 Ma, interpreted as its protolithic age. The youngest ages of 200 Ma of the detrital zircons in the associated mica schist from Mudanjiang area place constraints on the timing of metamorphism for the blueschist. These indicate that a big ocean existed between the Jiamusi and Songliao blocks at least since the early Permian, and the blueschist formed since the late Triassic to late Jurassic by the subduction of this ocean. Such an ocean during the Permian - Jurassic is difficult to be interpreted by the tectonic evolution of the Paleo-Asian Ocean.

  20. The armoured dissorophid Cacops from the Early Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians.

    PubMed

    Reisz, Robert R; Schoch, Rainer R; Anderson, Jason S

    2009-07-01

    Cacops, one of the most distinctive Paleozoic amphibians, is part of a clade of dissorophoid temnospondyls that diversified in the equatorial region of Pangea during the Late Carboniferous and Early Permian, persisting into the Late Permian in Central Russia and China. Dissorophids were a successful group of fully terrestrial, often spectacularly armoured predators, the only amphibians apparently able to coexist with amniotes when the latter started to dominate terrestrial ecosystems. In this paper, we describe excellent new skulls from the Early Permian of Oklahoma attributed to Cacops, Cacops morrisi sp. nov. and provide for the first time detailed information about this iconic dissorophid. These specimens show anatomical and ontogenetic features that will impact on future studies on the evolution of terrestriality in tetrapods. For example, the large, posteriorly closed tympanic embayment has fine striations on an otherwise smooth surface, documenting the oldest known clear evidence for the presence of a tympanic membrane in the fossil record, a structure that is used for hearing airborne sound in extant tetrapods. The skull of C. morrisi also has several features associated with predatory behaviour, indicating that this dissorophid may have been one of the top terrestrial predators of its time.

  1. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  2. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger

  3. Hierarchy of sedimentary discontinuity surfaces and condensed beds from the middle Paleozoic of eastern North America: Implications for cratonic sequence stratigraphy

    USGS Publications Warehouse

    McLaughlin, P.I.; Brett, Carlton E.; Wilson, M.A.

    2008-01-01

    Sedimentological analyses of middle Paleozoic epeiric sea successions in North America suggest a hierarchy of discontinuity surfaces and condensed beds of increasing complexity. Simple firmgrounds and hardgrounds, which are comparatively ephemeral features, form the base of the hierarchy. Composite hardgrounds, reworked concretions, authigenic mineral crusts and monomictic intraformational conglomerates indicate more complex histories. Polymictic intraformational conglomerates, ironstones and phosphorites form the most complex discontinuity surfaces and condensed beds. Complexity of discontinuities is closely linked to depositional environments duration of sediment starvation and degree of reworking which in turn show a relationship to stratigraphic cyclicity. A model of cratonic sequence stratigraphy is generated by combining data on the complexity and lateral distribution of discontinuities in the context of facies successions. Lowstand, early transgressive and late transgressive systems tracts are representative of sea-level rise. Early and late transgressive systems tracts are separated by the maximum starvation surface (typically a polymictic intraformational conglomerate or condensed phosphorite), deposited during the peak rate of sea-level rise. Conversely the maximum flooding surface, representing the highest stand of sea level, is marked by little to no break in sedimentation. The highstand and falling stage systems tracts are deposited during relative sea-level fall. They are separated by the forced-regression surface, a thin discontinuity surface or condensed bed developed during the most rapid rate of sea-level fall. The lowest stand of sea level is marked by the sequence boundary. In subaerially exposed areas it is occasionally modified as a rockground or composite hardground.

  4. [Relevant factors of early puberty timing in urban primary schools in Chongqing].

    PubMed

    Luo, Yan; Liu, Qin; Wen, Yi; Liu, Shudan; Lei, Xun; Wang, Hong

    2016-05-01

    To investigate the status of puberty timing and relevant factors of early puberty timing in children from grade one to four in urban primary schools of Chongqing. According to the purposive sample method, four urban primary schools in Chongqing were selected and of which 1471 children from grade one to four who have obtained informed consent were recruited. Questionnaire survey on social-demographic characteristics and family environment (e.g., age, parents' relationship, diet and lifestyle, etc), and Pubertal Development Scale (PDS) survey and physical examination (measurements of height, weight, pubertal development status, etc) were conducted. P25, P50, P75 ages of each important pubertal event were calculated by probit regression. Univariate and multivariate analysis were used to analyze relevant factors. The detection rate of early puberty timing was 17.7%, and the median ages of the onset of breast and testicular development were 10.77 and 11.48 years old, respectively. Multivariate logistic regression showed that early puberty timing occurred more likely in girls than in boys (OR = 0.561, 95% CI 0.406-0.774), and bad relationship between parents (OR = 1.320, 95% CI 1.007-1.729) and hair-products-use (OR = 1.685, 95%, CI 1.028-2.762) were risk factors of early puberty timing. Early onset of puberty in urban Chongqing is still exist. Gender, parents' relationship, and hair-products-use have an essential impact on early puberty timing.

  5. Floral responses to the Late Paleozoic deglaciation

    NASA Astrophysics Data System (ADS)

    Looy, C. V.; DiMichele, W. A.

    2011-12-01

    The current human-induced thawing of ice house Earth prompts the careful examination of similar earlier events and their biotic consequences. The most recent full transition from a cool earth to a warm world took place in the Early to Middle Permian. Against a background of global warming, plant communities were affected globally resulting in migrations, extinctions and changed evolutionary patterns as a response to the environmental changes. The collapse of the southern hemisphere ice-sheets resulted in significant changes, not just at higher latitudes, but also in the tropics where the rainfall regime changed from seasonally dry to seasonally wet. In the Early Permian tropics - in areas where net sedimentation facilitates fossilization, to be more specific - vegetation rich in walchian conifers began to replace the spore plants and seed ferns that previously dominated the Late Pennsylvanian wetlands. The replacing drier floras probably lived in the basinal lowlands as well, but episodically at the drier times of climate cycles. New finds within the tropics of latest Early to Middle Permian-age, in particular from north-central Texas, indicate the existence of floras which were adapted to even more extended periods of drought. These were populated by the more derived voltzian conifers and other seed plants, such as cycads. Surprisingly, the clades in these floras were until recently only known from the tens-of-millions-of-years younger Late Permian and Early Mesozoic, where they were the dominant forms. These occurrences demonstrate that even more derived groups were already in existence and well differentiated by the Early Permian, outside the window of preservation. This pattern of change in conifers and their communities from north-central Texas is unique in that it represents the best documented record in the Phanerozoic of terrestrial ecosystem response to a change from a global cool-mode to warm-mode Earth. Conifers serve as "marker plants" for the

  6. Electrical structures in the northwest margin of the Junggar basin: Implications for its late Paleozoic geodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Xu, Yixian; Jiang, Li; Yang, Bo; Liu, Ying; Griffin, W. L.; Luo, Yong; Huang, Rong; Zhou, Yong; Zhang, Liangliang

    2017-10-01

    Recent geological, geochemical and geophysical data have inclined to support the presence of a remnant Paleozoic oceanic lithosphere beneath the Western Junggar, southwestern Chinese Altaids. However, regional high-resolution geophysical data have been rarely deployed to image its geometry, making it difficult to trace its evolution and final geodynamic setting. Presently, two magnetotelluric (MT) profiles are deployed across the northwest margin of the Junggar basin and the southern Darbut belt to image the electrical structure of the crust and lithospheric mantle. High-quality data at 102 sites and the quasi-2D indications of phase tensor skew angles and impedance phase ellipses for relatively short periods (up to 500 s) allow us to invert the two profile data by a 2-D scheme. The resistivity cross-section of a NW-SE striking LINE2 sheds light on a fossil intraoceanic subduction system, and reveals the Miaoergou intrusions as a bowl-like pluton, indicating that the multi-phase intrusions primarily formed in a post-collisional setting. The resistivity cross-section of striking NE-SW LINE1 reveals a possible oceanic slab with relatively lower resistivity underlying the low-resistivity sedimentary strata and high-resistivity mélange. Given that the profile of LINE1 cuts the out-rise zone of a subducted slab developed during the late Paleozoic, the 2-D resistivity model may thus represent the zone that have experienced heterogeneous deformation, reflecting subduction with barrier variation parallel to the ancient trench. Moreover, as shown in previous results, the new MT data also illustrate that the Darbut Fault is a thin-skinned structure, which has been erased at depths during the subsequent magmatism.

  7. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    USGS Publications Warehouse

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  8. Intraplate mountain building in response to continent continent collision—the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Dickerson, Patricia Wood

    2003-04-01

    The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent-continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults. Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe-Carrizalillo, Ojinaga-Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America. Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late

  9. First-Time Mothers' Knowledge and Beliefs Regarding Early Communication Development

    ERIC Educational Resources Information Center

    Williams, Vicki; Pearce, Wendy M.; Devine, Sue

    2014-01-01

    Limited literature exists in the Australian context about first-time mothers' knowledge of early communication milestones, their strategies to facilitate speech and language development and understanding of the relationship between early communication skills and future development. A cross-sectional online survey was administered to 53 first-time…

  10. Group Time in Early Childhood Centers: An Exploratory Study.

    ERIC Educational Resources Information Center

    McAfee, Oralie

    To investigate the current status of group time in early childhood centers, a small-scale exploratory study was designed and executed. Results of interviews with 35 teachers and observations in five classrooms serving children ages 2 1/2 through kindergarten revealed that all classrooms had at least one group time or circle time, usually in the…

  11. Global bioevents and the question of periodicity

    NASA Astrophysics Data System (ADS)

    Sepkoski, J. John

    The hypothesis of periodicity in extinction is an empirical claim that extinction events, while variable in magnitude, are regular in timing and therefore are serially dependent upon some single, ultimate cause with clocklike behavior. This hypothesis is controversal, in part because of questions regarding the identity and timing of certain extinction events and because of speculations concerning possible catastrophic extraterrestrial forcing mechanisms. New data on extinctions of marine animal genera are presented that display a high degree of periodicity in the Mesozoic and Cenozoic as well as a suggestion of nonstationary periodicity in the late Paleozoic. However, no periodicity is evident among the as yet poorly documented extinction events of the early and middle Paleozoic.

  12. Background experiences, time allocation, time on teaching and perceived support of early-career college science faculty

    NASA Astrophysics Data System (ADS)

    Sagendorf, Kenneth S.

    The purposes of this research were to create an inventory of the research, teaching and service background experiences of and to document the time allocation and time spent on teaching by early-career college science faculty members. This project is presented as three distinct papers. Thirty early-career faculty in the science disciplines from sixteen different institutions in their first year of employment participated in this study. For the first two papers, a new survey was developed asking participants to choose which experiences they had acquired prior to taking their current faculty position and asking them to document their time allocation and time spent on teaching activities in an average work week. In addition, a third component documents the support early-career college faculty in the sciences are receiving from the perspective of faculty members and their respective department chairpersons and identifies areas of disagreement between these two different groups. Twenty early-career college science faculty and their respective department chairpersons completed a newly-designed survey regarding the support offered to new faculty. The survey addressed the areas of feedback on performance, clarity of tenure requirements, mentoring, support for teaching and scholarship and balancing faculty life. This dissertation presents the results from these surveys, accounting for different demographic variables such as science discipline, gender and institutional category.

  13. Structural evolution of the Irtysh Shear Zone: implication for the Late Paleozoic amalgamation of multiple arc systems in Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2015-04-01

    The NW-SE Irtysh Shear Zone represents a major tectonic boundary in the Central Asian Orogenic Belt, recording the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan orogenic system. The structural evolution and geodynamics of this shear zone is still poorly documented. Here we present new structural data complemented by chronological data in an attempt to unravel the geodynamic significance of the Irtysh Shear Zone in the context of accretion history of the Central Asian Orogenic Belt. Our results show three episodes of deformation for the shear zone. D1 foliation is locally recognized in low strain area and recorded by garnet inclusions, whereas D2 is represented by a sub-horizontal fabric and related NW-SE lineation. D3 is characterized by a transpersonal deformation event, to form a series of NW-SE mylonitic belts with sinistral kinematics, and to overprint D2 fabric forming regional-scale NW-SE upright folds. A paragneiss sample from the shear zone yielded the youngest detrital zircon peaks in the late Carboniferous, placing a maximum age constraint on the deformation, which overlaps in time with the late Paleozoic collision between the Chinese Altai and the intraoceanic arc system of the East Junggar and West Junggar. We interpret three episodes of deformation to represent orogenic thickening (D1), collapse (D2) and thickening (D3) in response to this collisional event. Sinistral shearing (D3) together with the coeval dextral shearing in the Tianshan accommodate eastward extrusion of the Kazakhstan orogenic system during the late Paleozoic amalgamation of the Central Asian Orogenic Belt. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048, 41273012) and a HKU CRCG grant. The work is a contribution of the Joint

  14. Impact cratering calculations. Part 1: Early time results

    NASA Technical Reports Server (NTRS)

    Thomsen, J. M.; Sauer, F. N.; Austin, M. G.; Ruhl, S. F.; Shultz, P. H.; Orphal, D. L.

    1979-01-01

    Early time two dimensional finite difference calculations of laboratory scale hypervelocity impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed. Analysis of resulting material motions showed that energy and momentum were coupled quickly from the aluminum projectile to the target material. In the process of coupling, some of the plasticene clay target was vaporized while the projectile become severely deformed. The velocity flow field developed within the target was shown to have features similar to those found in calculations of near surface explosion cratering. Specific application of Maxwell's analytic Z-Model showed that this model can be used to describe the early time flow fields resulting from the impact cratering calculations as well, provided the flow field centers are located beneath the target surface and most of the projectile momentum is dissipated before the model is applied.

  15. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings

    PubMed Central

    Zhang, Li-Jun; Qi, Yong-An; Buatois, Luis A.; Mángano, M. Gabriela; Meng, Yao; Li, Da

    2017-01-01

    Bioturbation plays a substantial role in sediment oxygen concentration, chemical cycling, regeneration of nutrients, microbial activity, and the rate of organic matter decomposition in modern oceans. In addition, bioturbators are ecosystem engineers which promote the presence of some organisms, while precluding others. However, the impact of bioturbation in deep time remains controversial and limited sediment mixing has been indicated for early Paleozoic seas. Our understanding of the actual impact of bioturbation early in the Phanerozoic has been hampered by the lack of detailed analysis of the functional significance of specific burrow architectures. Integration of ichnologic and sedimentologic evidence from North China shows that deep-tier Thalassinoides mazes occur in lower Cambrian nearshore carbonate sediments, leading to intense disruption of the primary fabric. Comparison with modern studies suggest that some of the effects of this style of Cambrian bioturbation may have included promotion of nitrogen and ammonium fluxes across the sediment-water interface, average deepening of the redox discontinuity surface, expansion of aerobic bacteria, and increase in the rate of organic matter decomposition and the regeneration of nutrients. Our study suggests that early Cambrian sediment mixing in carbonate settings may have been more significant than assumed in previous models. PMID:28374857

  16. Recent advances in the hydrostratigraphy of paleozoic bedrock in the midwestern united states

    USGS Publications Warehouse

    Bradbury, K.R.; Runkel, Anthony C.

    2011-01-01

    Recent hydrostratigraphic researches have made it possible to acquire knowledge about the relatively undeformed Paleozoic bedrock that forms the most widely used aquifers in Minnesota and Wisconsin. Ongoing evaluation of the Cambrian Eau Claire Formation in southern Wisconsin has caused the formation to be considered a major regional aquitard. Subsurface logs indicate that its thickness ranges from absent to <75 m, and parts of the formation yield significant amounts of water to wells. A key part of modern aquitard hydrogeology is the integration of multi-level hydraulic head measurements into hydrostratigraphic analysis. In south-central Wisconsin, regional groundwater withdrawals from the confined Mount Simon aquifer have created a regional cone of depression. Regional groundwater modeling has demonstrated that this relatively thin unit exerts a major control on regional groundwater flow in the ??300-m-thick bedrock aquifer system and that it is critical in protecting deep wells from contamination.

  17. Foreland crustal structure of the New York recess, northeastern United States

    USGS Publications Warehouse

    Herman, G.C.; Monteverde, D.H.; Schlische, R.W.; Pitcher, D.M.

    1997-01-01

    A new structural model for the northeast part of the Central Appalachian foreland and fold-and-thrust belt is based on detailed field mapping, geophysical data, and balanced cross-section analysis. The model demonstrates that the region contains a multiply deformed, parautochthonous fold-and-thrust system of Paleozoic age. Our interpretations differ from previous ones in which the entire region north of the Newark basin was considered to be allochthonous. The new interpretation requires a substantial decrease in Paleozoic tectonic shortening northeastward from adjacent parts of the Central Appalachian foreland and illustrates the common occurrence of back-thrusting within the region. During early Paleozoic time northern New Jersey consisted of a Taconic orogenic foreland in which cover folds (F1) involved lower Paleozoic carbonate and flysch overlying Middle Proterozoic basement. F1 folds are open and upright in the foreland and more gently inclined to recumbent southeastward toward the trace of the Taconic allochthons. F1 structures were cut and transported by a fold-and-thrust system of the Allegheny orogeny. This thrust system mostly involves synthetic faults originating from a master decollement rooted in Proterozoic basement. Antithetic faults locally modify early synthetic overthrusts and S1 cleavage in lower Paleozoic cover and show out-of-sequence structural development. The synthetic parts of the regional thrust system are bounded in the northwestern foreland by blind antithetic faults interpreted from seismic-reflection data. This antithetic faulting probably represents Paleozoic reactivation of Late Proterozoic basement faults. Tectonic contraction in overlying cover occurred by wedge faulting where synthetic and antithetic components of the foreland fault system overlap. S2 cleavage in the Paleozoic cover stems from Alleghanian shortening and flattening and commonly occurs in the footwall of large overthrust sheets. Paleozoic structures in Proterozoic

  18. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, Maurice E.

    1986-01-01

    pressure from the time of completion to 1978. The decrease of pressure is partly the result of water moving from the Flathead Sandstone into the Madison-Bighorn aquifer, which has a lower potentiometric surface than does the Flathead Sandstone, even during the time the wells are not in operation. Pressure in some small-capacity wells completed in the Goose Egg Formation also has decreased near Ten Sleep. Most of the wells, particularly the irrigation wells, show a progressive decrease in pressure during the irrigation season but recover during periods of nonuse. Measurements of the pressure were made principally in 1953, 1962, 1970, and 1975-78. Well water from the Paleozoic aquifers generally contains minimal concentrations of dissolved solids and individual constituents but excessive hardness. Dissolved-solids concentrations of water are less than 300 milligrams per liter in the Tensleep Sandstone and the Madison-Bighorn aquifer, less than 200 milligrams per liter in the Flathead Sandstone, and as much as 450 milligrams per liter in the Goose Egg Formation. Bicarbonate is the major constituent, followed by calcium and magnesium. Relatively large concentrations of sulfate, as much as 490 milligrams per liter, were found, mainly in water from the Goose Egg Formation. The water has low sodium (alkali) and medium salinity; therefore, the water is satisfactory for irrigation and most other uses, if excessive hardness is not a detrimental factor. Wellhead temperatures range from 11 ? to 27.5 ? Celsius (51 ? to 81.5 ? Fahrenheit) within a range in depth of approximately 250 to 4,000 feet. This gives a geothermal gradient of about 0.44 ? Celsius per 100 feet (0.79 ? Fahrenheit per 100 feet).

  19. Effectiveness of early part-time sick leave in musculoskeletal disorders.

    PubMed

    Martimo, Kari-Pekka; Kaila-Kangas, Leena; Kausto, Johanna; Takala, Esa-Pekka; Ketola, Ritva; Riihimäki, Hilkka; Luukkonen, Ritva; Karppinen, Jaro; Miranda, Helena; Viikari-Juntura, Eira

    2008-02-25

    The importance of staying active instead of bed rest has been acknowledged in the management of musculoskeletal disorders (MSDs). This emphasizes the potential benefits of adjusting work to fit the employee's remaining work ability. Despite part-time sick leave being an official option in many countries, its effectiveness has not been studied yet. We have designed a randomized controlled study to assess the health effects of early part-time sick leave compared to conventional full-day sick leave. Our hypothesis is that if work time is temporarily reduced and work load adjusted at the early stages of disability, employees with MSDs will have less disability days and faster return to regular work duties than employees on a conventional sick leave. The study population will consist of 600 employees, who seek medical advice from an occupational physician due to musculoskeletal pain. The inclusion requires that they have not been on a sick leave for longer than 14 days prior to the visit. Based on the physician's judgement, the severity of the symptoms must indicate a need for conventional sick leave, but the employee is considered to be able to work part-time without any additional risk. Half of the employees are randomly allocated to part-time sick leave group and their work time is reduced by 40-60%, whereas in the control group work load is totally eliminated with conventional sick leave. The main outcomes are the number of days from the initial visit to return to regular work activities, and the total number of sick leave days during 12 and 24 months of follow-up. The costs and benefits as well as the feasibility of early part-time sick leave will also be evaluated. This is the first randomised trial to our knowledge on the effectiveness of early part-time sick leave compared to conventional full-time sick leave in the management of MSDs. The data collection continues until 2011, but preliminary results on the feasibility of part-time sick leave will be available

  20. Optimal timing for early surgery in infective endocarditis: a meta-analysis†

    PubMed Central

    Liang, Fuxiang; Song, Bing; Liu, Ruisheng; Yang, Liu; Tang, Hanbo; Li, Yuanming

    2016-01-01

    To systematically review early surgery and the optimal timing of surgery in patients with infective endocarditis (IE), a search for foreign and domestic articles on cohort studies about the association between early surgery and infective endocarditis published from inception to January 2015 was conducted in the PubMed, EMBASE, Chinese Biomedical Literature (CBM), Wanfang and Chinese National Knowledge Infrastructure (CNKI) databases. The studies were screened according to the inclusion and exclusion criteria, the data were extracted and the quality of the method of the included studies was assessed. Then, the meta-analysis was performed using the Stata 12.0 software. Sixteen cohort studies, including 8141 participants were finally included. The results of the meta-analysis revealed that, compared with non-early surgery, early surgery in IE lowers the incidence of in-hospital mortality [odds ratio (OR) = 0.57, 95% confidence interval (CI) (0.42, 0.77); P = 0.000, I2 = 73.1%] and long-term mortality [OR = 0.57, 95% CI (0.43, 0.77); P = 0.001, I2 = 67.4%]. Further, performing operation within 2 weeks had a more favourable effect on long-term mortality [OR = 0.63, 95% CI (0.41, 0.97); P = 0.192, I2 = 39.4%] than non-early surgery. In different kinds of IE, we found that early surgery for native valve endocarditis (NVE) had a lower in-hospital [OR = 0.46, 95% CI (0.31, 0.69); P = 0.001, I2 = 73.0%] and long-term [OR = 0.57, 95% CI (0.40, 0.81); P = 0.001, I2 = 68.9%] mortality than the non-early surgery group. However, for prosthetic valve endocarditis (PVE), in-hospital mortality did not differ significantly [OR = 0.83, 95% CI (0.65, 1.06); P = 0.413, I2 = 0.0%] between early and non-early surgery. We concluded that early surgery was associated with lower in-hospital and long-term mortality compared with non-early surgical treatment for IE, especially in NVE. However, the optimal timing of surgery remains unclear. Additional larger prospective clinical trials will be

  1. An alternative hypothesis for the mid-Paleozoic Antler orogeny in Nevada

    USGS Publications Warehouse

    Ketner, Keith B.

    2012-01-01

    A great volume of Mississippian orogenic deposits supports the concept of a mid-Paleozoic orogeny in Nevada, and the existence and timing of that event are not questioned here. The nature of the orogeny is problematic, however, and new ideas are called for. The cause of the Antler orogeny, long ascribed to plate convergence, is here attributed to left-lateral north-south strike-slip faulting in northwestern Nevada. The stratigraphic evidence originally provided in support of an associated regional thrust fault, the Roberts Mountains thrust, is now known to be invalid, and abundant, detailed map evidence testifies to post-Antler ages of virtually all large folds and thrust faults in the region. The Antler orogeny was not characterized by obduction of the Roberts Mountains allochthon; rocks composing the "allochthon" essentially were deposited in situ. Instead, the orogeny was characterized by appearance of an elongate north-northeast-trending uplift through central Nevada and by two parallel flanking depressions. The eastern depression was the Antler foreland trough, into which sediments flowed from both east and west in the Mississippian. The western depression was the Antler hinterland trough into which sediments also flowed from both east and west during the Mississippian. West of the hinterland trough, across a left-lateral strike-slip fault, an exotic landmass originally attached to the northwestern part of the North American continent was moved southward 1700 km along a strike-slip fault. An array of isolated blocks of shelf carbonate rocks, long thought to be autochthonous exposures in windows of the Roberts Mountains allochthon, is proposed here as an array of gravity-driven slide blocks dislodged from the shelf, probably initiated by the Late Devonian Alamo impact event.

  2. Time and Temporality in Early Childhood Educators' Work

    ERIC Educational Resources Information Center

    Nuttall, Joce; Thomas, Louise

    2015-01-01

    This article reports on the persistence and significance of notions of time and temporality in interviews with early childhood educators in Victoria and Queensland, Australia, in two studies designed to explore the concept of "pedagogical leadership". Interpretive analysis of the interview transcripts of the 19 participants identified…

  3. Time scale controversy: Accurate orbital calibration of the early Paleogene

    NASA Astrophysics Data System (ADS)

    Roehl, U.; Westerhold, T.; Laskar, J.

    2012-12-01

    Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to 54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.

  4. Time scale controversy: Accurate orbital calibration of the early Paleogene

    NASA Astrophysics Data System (ADS)

    Westerhold, Thomas; RöHl, Ursula; Laskar, Jacques

    2012-06-01

    Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to ˜54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.

  5. Pubertal timing and early sexual intercourse in the offspring of teenage mothers.

    PubMed

    De Genna, Natacha M; Larkby, Cynthia; Cornelius, Marie D

    2011-10-01

    Early puberty is associated with stressful family environments, early sexual intercourse, and teenage pregnancy. We examined pubertal timing and sexual debut among the 14-year-old offspring of teenage mothers. Mothers (71% Black, 29% White) were recruited as pregnant teenagers (12-18 years old). Data were collected during pregnancy and when offspring were 6, 10 and 14 years old (n = 318). Adolescents (50% male) compared the timing of their pubertal maturation to same-sex peers. There was a significant 3-way interaction effect of race, sex, and pubertal timing on sexual debut (n = 305). This effect remained significant in a model controlling for maternal age at first intercourse, substance use, exposure to trauma, authoritative parenting, and peer sexual activity (n = 255). Early maturation was associated with early sex in daughters, and may be one pathway for the inter-generational transfer of risk for teenage pregnancy among daughters of teenage mothers.

  6. Assessment of Appalachian basin oil and gas resources: Utica-Lower Paleozoic Total Petroleum System: Chapter G.10 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Both conventional oil and gas resources and continuous (unconventional) gas resources are present in the UticaLower Paleozoic TPS. Conventional oil and gas resources in the Utica-Lower Paleozoic TPS were assessed by the U.S. Geological Survey (USGS) in 2002 in the following assessment units (AU): (1) the Lower Paleozoic Carbonates in Thrust Belt AU, (2) the Knox Unconformity AU, (3) the Black River-Trenton Hydrothermal Dolomite AU, and (4) the Lockport Dolomite AU. The total estimated undiscovered oil and gas resources for these four AUs, at a mean value, was about 46 million barrels of oil (MMBO) and about 3 trillion cubic feet of gas (TCFG), respectively. In contrast, continuous (unconventional) gas resources in the TPS were assessed by the USGS in 2002 in four AUs associated with the “Clinton” sandstone, Medina sandstone, Medina Group sandstones, Tuscarora Sandstone, and sandstones in the Queenston Shale. The total estimated undiscovered gas for these four AUs, at a mean value, was about 26.8 TCFG. A hypothetical Utica Shale AU for oil(?) and continuous gas is identified in this report. In 2012, the Utica Shale was recognized by the USGS as a continuous AU and was assessed by Kirschbaum and others (2012).

  7. Pubertal Timing and Early Sexual Intercourse in the Offspring of Teenage Mothers

    PubMed Central

    De Genna, Natacha M.; Larkby, Cynthia; Cornelius, Marie D.

    2011-01-01

    Early puberty is associated with stressful family environments, early sexual intercourse, and teenage pregnancy. We examined pubertal timing and sexual debut among the 14-year-old offspring of teenage mothers. Mothers (71% Black, 29% White) were recruited as pregnant teenagers (12–18 years old). Data were collected during pregnancy and when offspring were 6, 10 and 14 years old (n = 318). Adolescents (50% male) compared the timing of their pubertal maturation to same-sex peers. There was a significant 3-way interaction effect of race, sex, and pubertal timing on sexual debut (n = 305). This effect remained significant in a model controlling for maternal age at first intercourse, substance use, exposure to trauma, authoritative parenting, and peer sexual activity (n = 255). Early maturation was associated with early sex in daughters, and may be one pathway for the inter-generational transfer of risk for teenage pregnancy among daughters of teenage mothers. PMID:21279428

  8. Optimal timing for early surgery in infective endocarditis: a meta-analysis.

    PubMed

    Liang, Fuxiang; Song, Bing; Liu, Ruisheng; Yang, Liu; Tang, Hanbo; Li, Yuanming

    2016-03-01

    To systematically review early surgery and the optimal timing of surgery in patients with infective endocarditis (IE), a search for foreign and domestic articles on cohort studies about the association between early surgery and infective endocarditis published from inception to January 2015 was conducted in the PubMed, EMBASE, Chinese Biomedical Literature (CBM), Wanfang and Chinese National Knowledge Infrastructure (CNKI) databases. The studies were screened according to the inclusion and exclusion criteria, the data were extracted and the quality of the method of the included studies was assessed. Then, the meta-analysis was performed using the Stata 12.0 software. Sixteen cohort studies, including 8141 participants were finally included. The results of the meta-analysis revealed that, compared with non-early surgery, early surgery in IE lowers the incidence of in-hospital mortality [odds ratio (OR) = 0.57, 95% confidence interval (CI) (0.42, 0.77); P = 0.000, I(2) = 73.1%] and long-term mortality [OR = 0.57, 95% CI (0.43, 0.77); P = 0.001, I(2) = 67.4%]. Further, performing operation within 2 weeks had a more favourable effect on long-term mortality [OR = 0.63, 95% CI (0.41, 0.97); P = 0.192, I(2) = 39.4%] than non-early surgery. In different kinds of IE, we found that early surgery for native valve endocarditis (NVE) had a lower in-hospital [OR = 0.46, 95% CI (0.31, 0.69); P = 0.001, I(2) = 73.0%] and long-term [OR = 0.57, 95% CI (0.40, 0.81); P = 0.001, I(2) = 68.9%] mortality than the non-early surgery group. However, for prosthetic valve endocarditis (PVE), in-hospital mortality did not differ significantly [OR = 0.83, 95% CI (0.65, 1.06); P = 0.413, I(2) = 0.0%] between early and non-early surgery. We concluded that early surgery was associated with lower in-hospital and long-term mortality compared with non-early surgical treatment for IE, especially in NVE. However, the optimal timing of surgery remains unclear. Additional larger prospective clinical

  9. Early Paleozoic high-Mg granodiorite from the Erlangping unit, North Qinling orogen, central China: Partial melting of metasomatic mantle during the initial back-arc opening

    NASA Astrophysics Data System (ADS)

    Abdallsamed, Mohammed I. M.; Wu, Yuan-Bao; Zhang, Wenxiang; Zhou, Guangyan; Wang, Hao; Yang, Saihong

    2017-09-01

    This study discussed the petrological classification, petrogenesis, and tectonic significance of early Paleozoic high-Mg granodiorite from the Erlangping unit, in the North Qinling orogen. To achieve this target, we conducted integrated investigation of in situ zircon U-Pb dating, whole-rock geochemical, as well as Sr-Nd-Hf-O isotopic compositions for the Kanfenggou pluton from the Erlangping unit. LA-ICP-MS zircon dating for the Kanfenggou samples yields U-Pb ages of 442.9 ± 6.2 and 438.0 ± 6.7 Ma, suggesting that the pluton was emplaced at ca. 440 Ma. Whole-rock geochemical compositions of the samples display intermediate SiO2 (60.48-64.67 wt%) and K2O (1.21 to 2.10 wt%), but high Al2O3 (15.44 to 16.51 wt%) and Na2O (4.01 to 4.81 wt%) contents. The granodiorite samples are characterized by elevated MgO ranging from 2.30 to 3.44 wt% and Mg# values of 53.35to 56.66, implying they are high-Mg granodiorites. They are characterized by very high Ba (524-1132 ppm) and Sr (684-980 ppm) contents, but depleted in HREE, and high (La/Yb)N ratios of 6.34 to 16.5 and slightly negative to weak positive Eu anomalies (Eu/Eu* = 0.68-1.09). These evidence that the Kanfenggou pluton belongs to the sanukitoid series. The high-Mg granodiorite samples exhibit a mantle signature with high Mg# values (53.35-56.66), Cr (45.8 to 93.3 ppm) and Ni (28.2 to 48.2 ppm) contents, but enriched in LILE, pointing to an enriched mantle source. The samples show relatively depleted radiogenic isotopic compositions with initial 87Sr/86Sr ratios varying from 0.7044 to 0.7047, εNd(t) values from 0.31 to 4.21, and zircon εHf (t) values from 7.3 to 8.3. The zircons have a mean δ18O value of 5.20 ± 0.17 ‰. Based on the trace element geochemical features, the metasomatic agent was suggested to be the fluids generated from dehydration of subducted slab. Therefore, we suggest two-stage processes for the formation of the Erlangping high-Mg granodiorites: (1) interaction between slab fluids and mantle

  10. Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe

    NASA Astrophysics Data System (ADS)

    Casas, Josep M.; Brendan Murphy, J.

    2018-06-01

    We present a pre-orogenic, early Paleozoic, palinspastic reconstruction of the northern Gondwana margin that was subsequently involved in the Late Paleozoic Variscan orogeny in central and Western Europe. Our reconstruction is based on two pre-orogenic data sets, the age and distribution of Cambrian-Ordovician magmatism and the detrital zircon age signature of late Neoproterozoic-early Paleozoic clastic rocks. We obtain this reconstruction by unfolding the Ibero-Armorican arc and by restoring the movement of the large-scale dextral strike-slip faults that transect the different tectono-stratigraphic units. Our results favour an irregular shape for this part of the northern Gondwana margin with a N-S central segment linking two E-W oriented segments. The proposed reconstruction and the structural restoration of the main features of Variscan deformation is in accordance with some aspects of previously proposed structural models, such as the curved geometry of the Gondwanan margin required by the indentor model for continental collision, the role played by the large strike-slip faults in dispersing formerly juxtaposed units, and the regional-scale oroclinal folding of part of this margin during late Carboniferous-Early Permian times. The combined use of the pre-orogenic geological constraints and palinspastic restoration is a useful approach that may provide a foundation for continual refinement of reconstructions as more data become available.

  11. Synthesis of late Paleozoic and Mesozoic eolian deposits of the Western Interior of the United States

    USGS Publications Warehouse

    Blakey, R.C.; Peterson, F.; Kocurek, G.

    1988-01-01

    Late Paleozoic and Mesozoic eolian deposits include rock units that were deposited in ergs (eolian sand seas), erg margins and dune fields. They form an important part of Middle Pennsylvanian through Upper Jurassic sedimentary rocks across the Western Interior of the United States. These sedimentary rock units comprise approximately three dozen major eolian-bearing sequences and several smaller ones. Isopach and facies maps and accompanying cross sections indicate that most eolian units display varied geometry and complex facies relations to adjacent non-eolian rocks. Paleozoic erg deposits are widespread from Montana to Arizona and include Pennsylvanian formations (Weber, Tensleep, Casper and Quadrant Sandstones) chiefly in the Northern and Central Rocky Mountains with some deposits (Hermosa and Supai Groups) on the Colorado Plateau. Lower Permian (Wolfcampian) erg deposits (Weber, Tensleep, Casper, Minnelusa, Ingleside, Cedar Mesa, Elephant Canyon, Queantoweap and Esplanade Formations) are more widespread and thicken into the central Colorado Plateau. Middle Permian (Leonardian I) erg deposits (De Chelly and Schnebly Hill Formations) are distributed across the southern Colorado Plateau on the north edge of the Holbrook basin. Leonardian II erg deposits (Coconino and Glorieta Sandstones) are slightly more widespread on the southern Colorado Plateau. Leonardian III erg deposits formed adjacent to the Toroweap-Kaibab sea in Utah and Arizona (Coconino and White Rim Sandstones) and in north-central Colorado (Lyons Sandstone). Recognized Triassic eolian deposits include major erg deposits in the Jelm Formation of central Colorado-Wyoming and smaller eolian deposits in the Rock Point Member of the Wingate Sandstone and upper Dolores Formation, both of the Four Corners region. None of these have as yet received a modern or thorough study. Jurassic deposits of eolian origin extend from the Black Hills to the southern Cordilleran arc terrain. Lower Jurassic intervals

  12. Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Song, Guangzeng; Wang, Hua; Huang, Chuanyan; Zhang, Lidong; Tang, Jianrong

    2016-09-01

    The geology in the Wuliji area (including the Enger Us and Quagan Qulu areas) is important for understanding the Late Paleozoic tectonics of the Solonker Zone. Ultramafic/mafic rocks in the Enger Us area, previously interpreted as an ophiolitic suture, are actually lava flows and sills in a Permian turbiditic sequence and a small body of fault breccia containing serpentinite. Subduction zone features, such as accretionary complexes, magmatic arc volcanics or LP/HP metamorphism are absent. Early Permian N-MORB mafic rocks and Late Permian radiolarian cherts accompanied by turbidites and tuffeous rocks indicate a deep water setting. In the Quagan Qulu area, outcrops of the Late Carboniferous to Permian Amushan Formation are composed of volcano-sedimenary rocks and guyot-like reef limestone along with a Late Permian volcano-sedimentary unit. A dacite lava in the Late Permian volcano-sedimentary unit yields a zircon U-Pb age of 254 Ma. The gabbros in the Quagan Qulu area are intruded into the Amushan Formation and caused contact metamorphism of country rocks. Sandstones in the Upper Member of the Amushan Formation contain detrital clasts of volcanic fragments and mineral clasts of crystalline basement rocks (i.e. biotite, muscovite and garnet). Geochemical analysis of volcaniclastic sandstones shows a magmatic affinity to both continental island arc (CIA) and active continental margin (ACM) tectonic settings. A Late Permian incipient rift setting is suggested by analyzing the lithostratigraphic sequence and related magmatism in the Wuliji area. The volcano-sedimentary rocks in the Wuliji area experienced a nearly N-S shortening that was probably related to the Early Mesozoic nearly N-S compression well developed in other areas close to the Wuliji area.

  13. Ocean acidification and the δ15N record of Paleozoic epeiric seas

    NASA Astrophysics Data System (ADS)

    Tuite, M. L., Jr.; Williford, K. H.

    2017-12-01

    In addition to its role as a primary driver of global climate, atmospheric CO2 influences the pH of seawater which is an important factor in mediating biogeochemical cycles. Variations in the pH of seawater on geological timescales have been correlated with broad impacts on marine ecosystems and biogeochemical processes including evolutionary turnover and mass extinction. Atmospheric CO2 declined dramatically during the mid-Paleozoic, coincident with the emergence of terrestrial forests and concomitant development of a substantial soil carbon reservoir and increased silicate weathering. Global greenhouse conditions that prevailed at the Late Devonian Frasnian/Famennian boundary gave way to temperate latitude glaciation at the end of the Famennian. In a recent review of icehouse-greenhouse variations in marine nitrogen biogeochemistry through the Phanerozoic (Algeo et al. 2014), the authors observed a strong correlation between sediment δ15N and first order climate cycles with a trend toward lower values during greenhouse periods and higher values during icehouse periods. Based upon modeling results, the shift in sediment δ15N was ascribed to a change in the locus of denitrification from sediments in warm climates to the water column during cooler periods driven primarily by eustatic sea level change as glacial ice mass waxed and waned. Sediment δ15N is a useful proxy for interpreting N biogeochemistry in marine systems because it provides an integrated record of the microbially-mediated redox reactions that led to that δ15N value. We propose that the elevated CO2 that drove the greenhouse climate in the early Famennian also resulted in the acidification of seawater that precluded nitrification, yielding an ammonium-dominated surface ocean and low sediment δ15N. As O2 climbed and seawater pH responded to diminished CO2, we propose that nitrification rates increased resulting in a nitrate-dominated system and sediment δ15N values that approach modern values. In

  14. Closure of the Mongol-Okhotsk Ocean as Constrained by Late Permian to Early Cretaceous Paleomagnetic Data from the Suture Zone

    NASA Astrophysics Data System (ADS)

    Cogne, J.; Kravchinsky, V.; Gilder, S.; Hankard, F.

    2005-12-01

    The Paleozoic Mongol-Okhotsk Ocean separated the Siberian craton to the north from a landmass composed of Amuria, Tarim, Qaidam, Tibet and the North and South China blocks to the south. Based on a comparison of paleomagnetic data from the NCB with the Eurasian apparent polar wander path, this ocean closed by the beginning of the Cretaceous. We present here a review of recent paleomagnetic studies of Late Permian to Early Cretaceous formations from the Transbaikal area of south Siberia, coming from localities situated on both sides of the Mongol-Okhotsk suture zone. The main conclusions that we draw from these studies are as follows. (1) A Late Permian ~4500 km latitude difference indeed existed between Amuria and the Siberia blocks at 110°E longitude. (2) In Middle-Late Jurassic times, a 1700 to 2700 km paleolatitudinal gap still existed between the two blocks. This contradicts geological interpretations of a Middle Jurassic closure of the ocean at this longitude. (3) Consistency of Early Cretaceous paleolatitudes from both sides of the suture demonstrates the closure of the ocean at that time. Altogether, these suggest a quite fast closure between the Middle Jurassic and the Early Cretaceous, at about 15±11 cm/yr. Finally, all pre-Late Cretaceous paleomagnetic poles appear to be distributed along small-circles centered on site localities. We think this is due to continued deformation acting in the Mongol-Okhotsk suture region related to suturing. Conversely, the post-Early Cretaceous rotations may be related to Tertiary deformation under the effect of the India-Asia collision.

  15. Tectonics of Antarctica

    USGS Publications Warehouse

    Hamilton, W.

    1967-01-01

    Antarctica consists of large and wholly continental east Antarctica and smaller west Antarctica which would form large and small islands, even after isostatic rebound, if its ice cap were melted. Most of east Antarctica is a Precambrian Shield, in much of which charnockites are characteristic. The high Transantarctic Mountains, along the Ross and Weddell Seas, largely follow a geosyncline of Upper Precambrian sedimentary rocks that were deformed, metamorphosed and intruded by granitic rocks during Late Cambrian or Early Ordovician time. The rocks of the orogen were peneplained, then covered by thin and mostly continental Devonian-Jurassic sediments, which were intruded by Jurassic diabase sheets and overlain by plateau-forming tholeiites. Late Cenozoic doming and block-faulting have raised the present high mountains. Northeastern Victoria Land, the end of the Transantarctic Mountains south of New Zealand, preserves part of a Middle Paleozoic orogen. Clastic strata laid unconformably upon the Lower Paleozoic plutonic complex were metamorphosed at low grade, highly deformed and intruded by Late Devonian or Early Carboniferous granodiorites. The overlying Triassic continental sedimentary rocks have been broadly folded and normal-faulted. Interior west Antarctica is composed of miogeosynclinal clastic and subordinate carbonate rocks which span the Paleozoic Era and which were deformed, metamorphosed at generally low grade, and intruded by granitic rocks during Early Mesozoic time and possibly during other times also. Patterns of orogenic belts, if systematic, cannot yet be defined; but fragmentation and rotation of crustal blocks by oroclinal folding and strike-slip faulting can be suggested. The Ellsworth Mountains, for example, consist of Cambrian-Permian metasedimentary rocks that strike northward toward the noncorrelative and latitudinally striking Mesozoic terrane of the Antarctic Peninsula in one direction and southward toward that of the Lower Paleozoic: terrane

  16. Mantle contribution and tectonic transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from geochronology and geochemistry of Early Carboniferous to Early Permian felsic intrusions

    NASA Astrophysics Data System (ADS)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Wang, Xinyu; Yang, Yueheng

    2018-04-01

    Late Paleozoic is a key period for the accretion and collision of the southern Central Asian Orogenic Belt (CAOB). Here, we present new zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotopic compositions for four Late Paleozoic felsic plutons in Eastern Tianshan (or Tienshan in some literatures) in order to constrain the tectonic evolution of the southern CAOB. The granodioritic pluton and its dioritic enclaves were synchronously formed in the Early Carboniferous (336 ± 3 Ma and 335 ± 2 Ma, respectively). These rocks are depleted in Nb, Ta and Ti, and enriched in Rb, Ba, Th and U related to the primitive mantle, which show typical features of arc rocks. They both have similar Sr-Nd isotopic ratios to those granitic rocks from the eastern Central Tianshan Block and have the latest Mesoproterozoic two stage Nd model ages (TDM2) (1111-1195 Ma for the granodioritic pluton and 1104-1108 Ma for the enclaves, respectively), indicating that their source magmas may have been derived from the Mesoproterozoic crust. The albitophyric pluton was also emplaced in the Early Carboniferous (333 ± 3 Ma). Rocks of this pluton have similar εNd(t) values (-0.69 to -0.37) and TDM2 ages (1135-1161 Ma) to those of the granodioritic rocks, suggest similar crustal source for both types of rocks. In contrast, the K-feldspar granitic and monzonitic plutons were emplaced in the Early Permian (292 ± 3 Ma and 281 ± 2 Ma, respectively). Samples of the K-feldspar granitic pluton have high K2O + Na2O, FeO/MgO, Ga/Al, HFSE (e.g., Zr and Hf) and low CaO, Sr and Ba, exhibiting characteristics of A2-type granites, which probably emplaced in a post-collisional extension environment. They have higher εNd(t) values (+2.77 to +3.27) and more juvenile TDM2 ages (799-841 Ma) than the Early Carboniferous plutons, suggesting that they were derived from relatively younger crustal sources. The monzonitic granites are metaluminous to weakly peraluminous with A/CNK ranging from 0.93 to 1.05, and have

  17. Compositional changes in the UCC through time revealed by tungsten isotopes

    NASA Astrophysics Data System (ADS)

    Mundl, A.; Walker, R. J.; Reimink, J. R.; Rudnick, R. L.; Gaschnig, R. M.

    2017-12-01

    During periods of glaciation, ice scrapes off large areas of Earth's surface. The resulting sediments, termed glacial diamictites, are typically little affected by chemical alteration during their accumulation and lithification. The fine-grained matrix of a diamictite can therefore provide important information about the average composition of a portion of the upper continental crust (UCC) preceding the time of its deposition. Major and trace element studies of diamictites have reported compositional changes in the UCC through Earth's history, documenting changes in its average lithology. Short-lived radiogenic isotope systems are useful tools to further study crustal evolution via diamictites, as small-scale 182W (182Hf → 182W, t½ = 8.9 Ma) and 142Nd (146Nd → 142Nd, t½= 103 Ma) anomalies may reflect mantle or crustal processes that occurred very early in Earth history. We have investigated 182W/184W ratios in thirteen glacial diamictite composites from four different continents. These rocks were deposited during the Archean (3.0 Ga), Proterozoic (2.4, 2.3, 2.2, 0.6 Ga) and Paleozoic (0.3 Ga) in South Africa, as well as during the Proterozoic (2.4, 0.7, 0.6 Ga) in North America, and the Paleozoic (0.3 Ga) in South America. Individual glacial diamictites sample multiple crustal sources, so the isotopic compositions of the diamictites are more representative of the UCC at the time of deposition, than the komatiites and early Archean supracrustal rocks, which have been the focus of most prior studies. Tungsten isotope compositions reveal well-resolved deficits in 182W/184W of as much as 14 ppm in three of the four Archean samples from South Africa. By contrast, there are no clearly resolved deficits in Paleoproterozoic diamictites from the same area, although results for multiple analyses of the same samples suggest that a small deficit of 6 ppm may be present. No anomalies are present in younger diamictites. The Archean diamictites provide additional evidence

  18. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  19. Novel Algorithms Enabling Rapid, Real-Time Earthquake Monitoring and Tsunami Early Warning Worldwide

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Michelini, A.

    2012-12-01

    We have introduced recently new methods to determine rapidly the tsunami potential and magnitude of large earthquakes (e.g., Lomax and Michelini, 2009ab, 2011, 2012). To validate these methods we have implemented them along with other new algorithms within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it, http://early-est.alomax.net). Early-est is a lightweight software package for real-time earthquake monitoring (including phase picking, phase association and event detection, location, magnitude determination, first-motion mechanism determination, ...), and for tsunami early warning based on discriminants for earthquake tsunami potential. In a simulation using archived broadband seismograms for the devastating M9, 2011 Tohoku earthquake and tsunami, Early-est determines: the epicenter within 3 min after the event origin time, discriminants showing very high tsunami potential within 5-7 min, and magnitude Mwpd(RT) 9.0-9.2 and a correct shallow-thrusting mechanism within 8 min. Real-time monitoring with Early-est givess similar results for most large earthquakes using currently available, real-time seismogram data. Here we summarize some of the key algorithms within Early-est that enable rapid, real-time earthquake monitoring and tsunami early warning worldwide: >>> FilterPicker - a general purpose, broad-band, phase detector and picker (http://alomax.net/FilterPicker); >>> Robust, simultaneous association and location using a probabilistic, global-search; >>> Period-duration discriminants TdT0 and TdT50Ex for tsunami potential available within 5 min; >>> Mwpd(RT) magnitude for very large earthquakes available within 10 min; >>> Waveform P polarities determined on broad-band displacement traces, focal mechanisms obtained with the HASH program (Hardebeck and Shearer, 2002); >>> SeisGramWeb - a portable-device ready seismogram viewer using web-services in a browser (http://alomax.net/webtools/sgweb/info.html). References (see also: http

  20. Lower Cambrian polychaete from China sheds light on early annelid evolution

    NASA Astrophysics Data System (ADS)

    Liu, Jianni; Ou, Qiang; Han, Jian; Li, Jinshu; Wu, Yichen; Jiao, Guoxiang; He, Tongjiang

    2015-06-01

    We herein report a fossilized polychaete annelid, Guanshanchaeta felicia gen. et sp. nov., from the Lower Cambrian Guanshan Biota (Cambrian Series 2, stage 4). The new taxon has a generalized polychaete morphology, with biramous parapodia (most of which preserve the evidence of chaetae), an inferred prostomium bearing a pair of appendages, and a bifid pygidium. G. felicia is the first unequivocal annelid reported from the Lower Cambrian of China. It represents one of the oldest annelids among those from other early Paleozoic Lagerstätten including Sirius Passet from Greenland (Vinther et al., Nature 451: 185-188, 2008) and Emu Bay from Kangaroo island (Parry et al., Palaeontology 57: 1091-1103, 2014), and adds to our increasing roll of present-day animal phyla recognized in the early Cambrian Guanshan Biota. This finding expands the panorama of the Cambrian `explosion' exemplified by the Guanshan Biota, suggesting the presence of many more fossil annelids in the Chengjiang Lagerstätte and the Kaili Biota. In addition, this new taxon increases our knowledge of early polychaete morphology, which suggests that polychaete annelids considerably diversified in the Cambrian.

  1. Growth habit of the late Paleozoic rhizomorphic tree-lycopsid family Diaphorodendraceae: phylogenetic, evolutionary, and paleoecological significance.

    PubMed

    Dimichele, William A; Elrick, Scott D; Bateman, Richard M

    2013-08-01

    Rhizomorphic lycopsids evolved the tree habit independently of all other land plants. Newly discovered specimens allow radical revision of our understanding of the growth architectures of the extinct Paleozoic sister-genera Synchysidendron and Diaphorodendron. Detailed descriptions of six remarkable adpression specimens from the Pennsylvanian of the USA and three casts from the late Mississippian of Scotland are used to revise and reanalyze a previously published morphological cladistic matrix and to reinterpret their remarkable growth forms. Contrary to previous assertions, Synchysidendron resembled Diaphorodendron in having a distinct and relatively complex growth habit that emphasized serially homologous, closely spaced, deciduous lateral branches at the expense of reduced monocarpic crown branches. Lateral branches originated through several strongly anisotomous dichotomies before producing during extended periods large numbers of Achlamydocarpon strobili. The comparatively large diameter of abscission scars remaining on the main trunk and the emergence of branches above the horizontal plane suggest that the lateral branch systems were robust. Lateral branches were borne in two opposite rows on the main trunk and continued upward into an isotomously branched, determinate crown; their striking distichous arrangement caused preferred orientation of fallen trunks on bedding planes. This discovery identifies the plagiotropic growth habit, dominated by serial lateral branches, as ubiquitous in the Diaphorodendraceae and also as unequivocally primitive within Isoetales s.l., a conclusion supported by both the revised morphological cladistic analysis and relative first appearances of taxa in the fossil record. Previously assumed complete homology between crown branching in Lepidodendraceae and that of all earlier-divergent genera requires reassessment. Saltational phenotypic transitions via modification of key developmental switches remains the most credible

  2. Cognitive Vulnerabilities Amplify the Effect of Early Pubertal Timing on Interpersonal Stress Generation During Adolescence

    PubMed Central

    Stange, Jonathan P.; Kleiman, Evan M.; Hamlat, Elissa J.; Abramson, Lyn Y.; Alloy, Lauren B.

    2013-01-01

    Early pubertal timing has been found to confer risk for the occurrence of interpersonal stressful events during adolescence. However, pre-existing vulnerabilities may exacerbate the effects of early pubertal timing on the occurrence of stressors. Thus, the current study prospectively examined whether cognitive vulnerabilities amplified the effects of early pubertal timing on interpersonal stress generation. In a diverse sample of 310 adolescents (M age = 12.83 years, 55 % female; 53 % African American), early pubertal timing predicted higher levels of interpersonal dependent events among adolescents with more negative cognitive style and rumination, but not among adolescents with lower levels of these cognitive vulnerabilities. These findings suggest that cognitive vulnerabilities may heighten the risk of generating interpersonal stress for adolescents who undergo early pubertal maturation, which may subsequently place adolescents at greater risk for the development of psychopathology. PMID:24061858

  3. Origin and development of plains-type folds in the mid-continent (United States) during the late Paleozoic

    USGS Publications Warehouse

    Merriam, D.F.

    2005-01-01

    Plains-type folds are local, subtle anticlines formed in the thin sedimentary package overlying a shallow, crystalline basement on the craton. They are small in areal extent (usually less than 1-3 km 2 [0.4-1.2 mi2]), and their amplitude increases with depth (usually tens of meters), which is mainly the result of differential compaction of sediments (usually clastic units) over tilted, rigid, basement fault blocks. The development of these structural features by continuous but intermittent movement of the basement fault blocks in the late Paleozoic in the United States mid-continent is substantiated by a record of stratigraphic and sedimentological evidence. The recurrent structural movement, which reflects adjustment to external stresses, is expressed by the change in thickness of stratigraphic units over the crest of the fold compared to the flanks. By plotting the change in thickness for different stratigraphic units of anticlines on different fault blocks, it is possible to determine the timing of movement of the blocks that reflect structural adjustment. These readjustments are confirmed by sedimentological evidence, such as convolute, soft-sediment deformation features and small intraformational faults. The stratigraphic interval change in thickness for numerous structures in the Cherokee, Forest City, and Salina basins and on the Nemaha anticline of the mid-continent United States was determined and compared for location and timing of the adjustments. Most of the adjustment occurred during and after time of deposition of the Permian-Pennsylvanian clastic units, which, in turn, reflect tectonic disturbance in adjacent areas, and the largest amount of movement on the plains-type structures occurred on those nearest and semiparallel to major positive features, such as the Nemaha anticline. Depending on the time of origin and development of plains-type folds, they may control the entrapment and occurrence of oil and gas. Copyright ??2005. The American

  4. Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa

    NASA Astrophysics Data System (ADS)

    Vos, Richard G.; Tankard, Anthony J.

    1981-07-01

    Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.

  5. Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders.

    PubMed

    Balasubramanian, P; Yamashita, S

    2016-01-01

    This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology.

  6. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes

    NASA Astrophysics Data System (ADS)

    Han, Seokyoung; de Jong, Koen; Yi, Keewook

    2017-08-01

    Sensitive High-Resolution Ion Microprobe (SHRIMP) U-Th-Pb isotopic data of detrital zircons from mature, quartz-rich meta-sandstones are used to constrain possible tectonic affinities and source regions of the rhythmically layered and graded-bedded series in the Yeoncheon Complex (Imjingang Belt) and the correlative Taean Formation. These metamorphic marine turbidite sequences presently occur along the Paleoproterozoic (1.93-1.83 Ga) Gyeonggi Massif, central Korea's main high-grade metamorphic gneiss terrane. Yet, detrital zircons yielded highly similar multimodal age spectra with peaks that do not match the age repartition in these basement rocks, as late (1.9-1.8 Ga) and earliest (∼ 2.5 Ga) Paleoproterozoic detrital modes are subordinate but, in contrast, Paleozoic (440-425 Ma) and Neoproterozoic (980-920 Ma) spikes are prominent, yet the basement essentially lacks lithologies with such ages. The youngest concordant zircon ages in each sample are: 378, 394 and 423 Ma. The maturity of the meta-sandstones and the general roundness of zircons of magmatic signature, irrespective of their age, suggest that sediments underwent considerable transport from source to sink, and possibly important weathering and recycling, which may have filtered out irradiation-weakened metamorphic zircon grains. In combination with these isotopic data, presence of a low-angle ductile fault contact between the Yeoncheon Complex and the Taean Formation and the underlying mylonitized Precambrian basement implies that they are in tectonic contact and do not have a stratigraphic relationship, as often assumed. Consequently, in all likelihood, both meta-sedimentary formations: (1) are at least of early Late Devonian age, (2) received much of their detritus from distant (reworked) Silurian-Devonian and Early Neoproterozoic magmatic sources, not present in the Gyeonggi Massif, (3) and not from Paleoproterozoic crystalline rocks of this massif, or other Korean Precambrian basement terranes, and

  7. New Postcranial Material of the Early Caseid Casea broilii Williston, 1910 (Synapsida: Caseidae) with a Review of the Evolution of the Sacrum in Paleozoic Non-Mammalian Synapsids

    PubMed Central

    LeBlanc, Aaron R. H.; Reisz, Robert R.

    2014-01-01

    Here we use the description of a new specimen of the small caseid synapsid Casea broilii that preserves the sacral, pelvic and hind limb regions in great detail and in three dimensions, as a unique opportunity to reevaluate the early stages in the evolution of the sacrum in the lineage that led to mammals. We place this new material in the context of sacral evolution in early caseid synapsids and conclude that the transition from two to three sacral vertebrae occurred in small-bodied species, suggesting that it was not an adaptation to heavy weight bearing. Furthermore, we compare descriptions of sacral anatomy among known early synapsids, including caseids, ophiacodontids, edaphosaurids, varanopids, and sphenacodontians and review sacral evolution in early synapsids. Based on the descriptions of new species of caseids, edaphosaurids, and varanopids over the past several decades, it is clear that a sacrum consisting of three vertebrae evolved independently at least four times in synapsids during the Late Carboniferous and Early Permian. Furthermore, similarities in the morphologies of the sacral vertebrae and ribs of these early synapsids lead us to conclude that an anterior caudal vertebra had been incorporated into the sacral series convergently in these groups. Given the repeated acquisition of a three-vertebra sacrum in early synapsids and no apparent link to body size, we argue that this sacral anatomy was related to more efficient terrestrial locomotion than to increased weight bearing. PMID:25545624

  8. Early tracheostomy in trauma patients saves time and money.

    PubMed

    Hyde, Glendon A; Savage, Stephanie A; Zarzaur, Ben L; Hart-Hyde, Jensen E; Schaefer, Candace B; Croce, Martin A; Fabian, Timothy C

    2015-01-01

    Patients suffering traumatic brain and chest wall injuries are often difficult to liberate from the ventilator yet best timing of tracheostomy remains ill-defined. While prior studies have addressed early versus late tracheostomy, they generally suffer from the use of historical controls, which cannot account for variations in management over time. Propensity scoring can be utilized to identify controls from the same patient population, minimizing impact of confounding variables. The purpose of this study was to determine outcomes associated with early versus late tracheostomy by application of propensity scoring. Patients requiring intubation within 48h and receiving tracheostomy from January 2010 to June 2012 were identified. Early tracheostomy (ET) was a tracheostomy performed by the fifth hospital day. ET patients were matched to late tracheostomy patients (LT, tracheostomy after day 5) using propensity scoring and compared for multiple outcomes. Cost for services was calculated using average daily billing rates at our institution. One hundred and six patients were included, 53 each in the ET (mean day tracheostomy=4) and the LT (mean day tracheostomy=10) cohorts. The average age was 47 years and 94% suffered blunt injury, with an average NISS of 23.7. Patients in the ET group had significantly shorter TICU LOS (21.4 days vs. 28.6 days, p<0.0001) and significantly fewer ventilator days (16.7 days vs. 21.9, p<0.0001) compared to the LT group. ET patients also had significantly less VAP (34% vs. 64.2%, p=0.0019). In the current era of increased health-care costs, early tracheostomy significantly decreased both pulmonary morbidity and critical care resource utilization. This translates to an appreciable cost savings, at minimum $52,173 per patient and a potential total savings of $2.8million/year for the entire LT cohort. For trauma patients requiring prolonged ventilator support, early tracheostomy should be performed. Copyright © 2014 Elsevier Ltd. All rights

  9. Early Childhood Maltreatment and Girls' Sexual Behavior: The Mediating Role of Pubertal Timing.

    PubMed

    Ryan, Rebecca M; Mendle, Jane; Markowitz, Anna J

    2015-09-01

    Although links between early childhood maltreatment and girls' sexual behavior in adolescence have been well established, it is unclear whether different forms of maltreatment are differentially associated with sexual outcomes and whether distinct mechanisms explain associations across maltreatment types. Using data from National Longitudinal Study of Adolescent Health (Add Health), the present study examines whether physical abuse, sexual abuse, and physical neglect in early childhood differentially predict girls' age at first intercourse and number of sexual partners in early adulthood. The study also tests whether early pubertal timing mediates the link between early maltreatment and sexual behavior (N = 6,364). Findings indicate that early sexual and physical abuse were equally predictive of earlier age at first intercourse and a greater number of sexual partners, but that only the sexual abuse-age at first intercourse link was mediated by early puberty. These results suggest that sexual abuse and physical abuse are associated with earlier and riskier sexual behavior in girls relative to no maltreatment and to similar degrees. However, only the link between sexual abuse and sexual behavior involves a biological mechanism manifested in early pubertal timing. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  10. Early Sexual Intercourse: Prospective Associations with Adolescents Physical Activity and Screen Time

    PubMed Central

    Wijtzes, Anne; van de Bongardt, Daphne; van de Looij-Jansen, Petra; Bannink, Rienke; Raat, Hein

    2016-01-01

    Objectives To assess the prospective associations of physical activity behaviors and screen time with early sexual intercourse initiation (i.e., before 15 years) in a large sample of adolescents. Methods We used two waves of data from the Rotterdam Youth Monitor, a longitudinal study conducted in the Netherlands. The analysis sample consisted of 2,141 adolescents aged 12 to 14 years (mean age at baseline = 12.2 years, SD = 0.43). Physical activity (e.g., sports outside school), screen time (e.g., computer use), and early sexual intercourse initiation were assessed by means of self-report questionnaires. Logistic regression models were tested to assess the associations of physical activity behaviors and screen time (separately and simultaneously) with early sexual intercourse initiation, controlling for confounders (i.e., socio-demographics and substance use). Interaction effects with gender were tested to assess whether these associations differed significantly between boys and girls. Results The only physical activity behavior that was a significant predictor of early sexual intercourse initiation was sports club membership. Adolescent boys and girls who were members of a sports club) were more likely to have had early sex (OR = 2.17; 95% CI = 1.33, 3.56. Significant gender interaction effects indicated that boys who watched TV ≥2 hours/day (OR = 2.00; 95% CI = 1.08, 3.68) and girls who used the computer ≥2 hours/day (OR = 3.92; 95% CI = 1.76, 8.69) were also significantly more likely to have engaged in early sex. Conclusion These findings have implications for professionals in general pediatric healthcare, sexual health educators, policy makers, and parents, who should be aware of these possible prospective links between sports club membership, TV watching (for boys), and computer use (for girls), and early sexual intercourse initiation. However, continued research on determinants of adolescents’ early sexual initiation is needed to further contribute to

  11. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex

  12. Provenance analysis of the Late Paleozoic sedimentary rocks in the Xilinhot Terrane, NE China, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhou, Jian-Bo; Wilde, Simon A.; Song, Min-Chun

    2017-08-01

    The Xilinhot Terrane is located in the eastern segment of the Central Asian Orogenic Belt in NE China, and is a key to a hotly debated issue on the Paleozoic tectonic evolution of this giant progenic belt. To constrain the tectonic evolution of the Xilinhot Terrane in the Late Paleozoic, we undertook zircon U-Pb dating and geochemical analyses of the Zhesi and Benbatu formations in the Suolun and Xi Ujimqin areas in the Xilinhot Terrane. Samples of the Benbatu Formation yield detrital zircon U-Pb ages ranging from 2659 Ma to 316 Ma, with four age populations at: 2659-1826 Ma, 1719-963 Ma, 590-402 Ma, and 396-316 Ma, whereas samples from the Zhesi Formation yield detrital zircon U-Pb ages ranging from 1967 Ma to 250 Ma, with four age populations at: 1967-1278 Ma, 971-693 Ma, 561-403 Ma, and 399-250 Ma. The age groups of both the Benbatu and Zhesi formations in the Xilinhot Terrane are similar to those in other parts of the Central Asian Orogenic Belt (CAOB). This evidence indicates that the Xilinhot Terrane is a microcontinent, and not an accretionary complex as previously thought. Furthermore, the youngest zircon grains in the Benbatu and Zhesi formations yield weighted mean 206Pb/238U ages of 322 ± 12 Ma (MSDW = 0.12, n = 4) and 257 ± 2.8 Ma (MSDW = 1.6, n = 8), respectively. Combined with fossil data, our new data suggest that the Benbatu and Zhesi formations in the Xilinhot Terrane were possibly deposited at ∼322 Ma and ∼257 Ma, respectively. Based on the provenance of the Carboniferous-Permian sandstones came from the blocks of NE China, we speculate that the Xilinhot Terrane is the western part of the Songliao block.

  13. Nutrient recycling and the stoichiometric relationship among C, N, and P in Paleozoic anoxic sediments

    NASA Astrophysics Data System (ADS)

    Tuite, M. L., Jr.

    2016-12-01

    Remineralized organic N and P diffused into the water column from underlying anoxic sediments were important sources of macronutrients for primary production in shallow Paleozoic epicontinental seas. Ratios of total organic C to total N or P in ancient sediments that are greater than Redfield-like values are often cited as evidence for macronutrient recycling. We propose that the stoichiometric relationship among C, N, and P in anoxic Paleozoic sediments was mediated primarily by heterotrophic bacterial alkaline phosphatases. Bacterial heterotrophy in organic-rich anaerobic sediments is frequently limited by the availability of labile (low C/N) organic matter. In response, bacterial heterotrophs invest scarce C and N to produce alkaline phosphatases in order to alleviate labile organic matter limitation by hydrolysis of organophosphates. This suggests that sediment organic C/N may represent a threshold beyond which the investment of intracellular C and N in the production of alkaline phosphatase no longer results in a stoichiometrically favorable return on the investment. If this is the case, then C/P likely represents the point in the diagenesis of organic matter at which the effectiveness of alkaline phosphatase in procuring labile organic matter by remineralization of P is constrained by the lability of the organic matter itself. Because alkaline phosphatase activity is expressed in inverse proportion to the porewater concentration of phosphate, at a given distance from the terrestrial source of weathered P, an equilibrium determined by total phosphate influx results in consistent total P burial rates and consistent organic C/N values independent of the total organic content of the sediment. To account for consistent C/N in spite of variable total organic carbon at a given location, we propose that variations in the absolute abundance of organic C in organic-rich Devonian sediments were largely a function of the lipid content of algal primary producers. The

  14. Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines): additional evidence for a Paleozoic age of a metamorphic complex in the Philippine island arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, U.; Daniels, U.

    1987-02-01

    The Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines) is compatible with either a Tertiary or a Paleozoic age. The former is considered as unlikely because nonmetamorphic sediments of that age overlie the metamorphic complex. This implies that the metamorphic complex does not represent the basement of the Philippine arc but is an accreted terrane.

  15. Pubertal Timing and Early Sexual Intercourse in the Offspring of Teenage Mothers

    ERIC Educational Resources Information Center

    De Genna, Natacha M.; Larkby, Cynthia; Cornelius, Marie D.

    2011-01-01

    Early puberty is associated with stressful family environments, early sexual intercourse, and teenage pregnancy. We examined pubertal timing and sexual debut among the 14-year-old offspring of teenage mothers. Mothers (71% Black, 29% White) were recruited as pregnant teenagers (12-18 years old). Data were collected during pregnancy and when…

  16. Structure and Evolution of the Central Andes of Peru

    NASA Astrophysics Data System (ADS)

    Gonzalez, L.; Pfiffner, O. A.

    2009-04-01

    part of the Western Cordillera, near Huaraz, a vertical fault puts a Late Miocene to Early Pliocene batholith (Cordillera Blanca) in direct contact to Miocene volcanics (Calipuy group, Cordillera Negra). The structure of the Central Highlands is characterized by relatively open folds in the Paleozoic to Mesozoic strata. Overlying Quaternary deposits are tilted and locally even folded. Eocene to Miocene undeformed granitoids intrude these structures. A swarm of NNW-SSE striking and steeply dipping faults separate the Eastern Cordillera from the Highlands. Some of these faults suggest block faulting. However, near Huancayo a clear indication of strike-slip motion could be found. The Neoproterozoic basement rocks and the Early Paleozoic sediments are unconformably overlain by Late Paleozoic sediments which in turn are folded. Within the Subandine zone, the structural style is characterized by east directed imbricate thrusting. The thrust faults cut down into the crystalline basement going west, suggesting a detachment within upper crustal crystalline basement rocks. In the Central Peruvian Andes, compressional deformation events progressed from west to east. Early Cretaceous plutons of the coast batholith intruded folded Jurassic to Early Cretaceous volcaniclastic rocks of the Casma group and suggest an Early Cretaceous phase of shortening in the Pacific coastal area of the Western Cordillera (referred to as Mochica phase in the literature). Within the Western Cordillera, a major phase of pre-Eocene erosion removed a substantial amount of the tight upright folds. The youngest strata folded are of Late Cretaceous to Early Paleocene age (Red Beds). The overlying volcanics are slightly younger (middle Eocene) and bracket the tight folding, referred to as Inca phase, to Late Paleocene to Early Eocene times. This is corroborated by Eocene to Miocene granitic intrusions in the adjacent fold-and-thrust belt. Still younger deformations, referred to as Quechua Phase, produced

  17. Geochemistry and Geochronology of the Heilongjiang Complex and Its Implications in the Late Paleozoic Tectonics of Eastern NE China

    NASA Astrophysics Data System (ADS)

    GE, M.; Zhang, J.; Liu, K.; Ling, Y.; Wang, M.; Wang, J.

    2016-12-01

    The Paleozoic to early Mesozoic tectonic framework of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this contribution, geochemical, geochronological and isotopic analyses were carried out on the basalts in the Heilongjiang complex to address these issues. The Heilongjiang complex defines the suture belt between the Jiamusi block and the Songliao block in Northeast China, and the blueschist is a major composition for this complex, coexisting with ultramafic rocks, amphibolite, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the geochemical results present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive ɛNd (t) values of + 3.7 to +9.0, and relative enrichment in Nb and Ta show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 - 288 Ma, interpreted as its protolithic age. The amphibolite from Xiachengzi area has a zircon U-Pb age of 248 ± 4 Ma, interpreted as its protolith age and has N-MORB affinities, supported by (La/Yb)N ratios of 0.60-0.89 and (La/Sm)N of 0.62-0.84, and high ɛNd (t) values ranging from + 7.8 to + 9.5, deriving from a depleted mantle source. A new 40Ar/39Ar amphibole plateau age of 195 ± 3 Ma and a youngest age of 200 Ma of the detrital zircons from Heilongjiang complex are reported to constrain the metamorphic age of the Heilongjiang complex. In addition, a huge north-south trending granitic belt generated from 174 Ma - 200 Ma has been

  18. New porcellioidean gastropods from early Devonian of Royal Creek area, Yukon Territory, Canada, with notes on their early phylogeny

    USGS Publications Warehouse

    Fryda, J.; Blodgett, R.B.; Lenz, A.C.; Manda, S.

    2008-01-01

    This paper presents a description of new gastropods belonging to the superfamily Porcellioidea (Vetigastropoda) from the richly diverse Lower Devonian gastropod fauna of the Road River Formation in the Royal Creek area, Yukon Territory. This fauna belongs to Western Canada Province of the Old World Realm. The Pragian species Porcellia (Porcellia) yukonensis n. sp. and Porcellia (Paraporcellia) sp. represent the oldest presently known members of subgenera Porcellia (Porcellia) and Porcellia (Paraporcellia). Their simple shell ornamentation fits well with an earlier described evolutionary trend in shell morphology of the Porcellinae. Late Pragian to early Emsian Perryconcha pulchra n. gen. and n. sp. is the first member of the Porcellioidea bearing a row of tremata on adult teleoconch whorls. The occurrence of this shell feature in the Porcellioidea is additional evidence that the evolution of the apertural slit was much more complicated than has been proposed in classical models of Paleozoic gastropod evolution. Copyright ?? 2008, The Paleontological Society.

  19. On the Early-Time Excess Emission in Hydrogen-Poor Superluminous Supernovae

    NASA Technical Reports Server (NTRS)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Perley, Daniel A.; Quimby, Robert M.; Waldman, Roni; Sullivan, Mark; Yan, Lin; Ofek, Eran O.; hide

    2017-01-01

    We present the light curves of the hydrogen-poor super-luminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (approximately 10 days) and brightness relative to the main peak (23 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (greater than 30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of 56Ni and 56Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

  20. On The Early-Time Excess Emission In Hydrogen-Poor Superluminous Supernovae

    DOE PAGES

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; ...

    2017-01-18

    Here, we present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (~10 days) and brightness relative to the main peak (2-3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration ( > 30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of amore » different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of 56Ni and 56Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.« less

  1. ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay

    2017-01-20

    We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (∼10 days) and brightness relative to the main peak (2–3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. Wemore » construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of {sup 56}Ni and {sup 56}Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.« less

  2. The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence.

    PubMed

    Ezcurra, Martín D; Scheyer, Torsten M; Butler, Richard J

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth

  3. The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence

    PubMed Central

    Ezcurra, Martín D.; Scheyer, Torsten M.; Butler, Richard J.

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth

  4. The beginning of the Buntsandstein cycle (Early-Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Galán-Abellán, Belén; López-Gómez, José; Barrenechea, José F.; Marzo, Mariano; De la Horra, Raúl; Arche, Alfredo

    2013-10-01

    The Early-Middle Triassic siliciclastic deposits of the Catalan Ranges, NE Spain, are dominated by aeolian sediments indicating a predominance of arid climate during this time span, in sharp contrast with the coeval fluvial sediments found in the Castilian Branch of the Iberian Ranges, 300 km to the SW. The NE-SW-oriented Catalan Basin evolved during the Middle-Late Permian as the result of widespread extension in the Iberian plate. This rift basin was bounded by the Pyrenees, Ebro and Montalbán-Oropesa highs. The Permian-Early Triassic-age sediments of the Catalan Basin were deposited in three isolated subbasins (Montseny, Garraf, Prades), separated by intrabasinal highs, but linked by transversal NW-SE oriented faults. The three subbasins show evidence of diachronic evolution with different subsidence rates and differences in their sedimentary records. The Buntsandstein sedimentary cycle started in the late Early Triassic (Smithian-Spathian) in the central and southern domains (Garraf and Prades), with conglomerates of alluvial fan origin followed by fluvial and aeolian sandstones. Source area of the fluvial sediments was nearby Paleozoic highs to the north and west, in contrast with the far-away source areas of the fluvial sediments in the Iberian Ranges, to the SW. These fluvial systems were interacting with migrating aeolian dune fields located towards the S, which developed in the shadow areas behind the barriers formed by the Paleozoic highs. These highs were separating the subbasins under arid and semi-arid climate conditions. The dominating winds came from the east where the westernmost coast of the Tethys Sea was located, and periods of water run-off and fields of aeolian dunes development alternated. Some of the fluvial systems were probably evaporating as they were mixed into the interdune areas, never reaching the sea. From the end of the Smithian to the Spathian, the Catalan Basin and neighbour peri-Tethys basins of the present-day southern France

  5. Sedimentary record of late Paleozoic to Recent tectonism in central Asia — analysis of subsurface data from the Turan and south Kazak domains

    NASA Astrophysics Data System (ADS)

    Thomas, J. C.; Cobbold, P. R.; Shein, V. S.; Le Douaran, S.

    1999-11-01

    The Turan and south Kazak domains (TSK) are in central Asia, between the Caspian Sea and the Tien Shan. The area is covered by sediments, deposited since the Late Permian during a series of tectonic events closely related to the history of two oceanic domains, Paleotethys and Neotethys. Sedimentary basins on the TSK therefore provide constraints on the tectonic development of the southern margin of Eurasia since the Late Permian. Our study is based on structure-contour maps and isopach maps of five key stratigraphic markers, of Late Permian to Tertiary age. Isopach maps help locate major faults and delimit sedimentary basins, providing information on vertical motions and, in some instances, horizontal motions. Subsidence associated with extension appears to have dominated the TSK, from the Late Permian to the Eocene. The extension may have been of back-arc type in southern Eurasia, next to the active margin, where the Paleotethys and Neotethys successively subducted toward the north. Here, sedimentary basins are both wide and deep (up to 15 km). During the Mesozoic, two compressional events of regional significance occurred in association with accretion of continental blocks at the southern margin of Eurasia. The first one, at the end of the Triassic, led to strong selective inversion of basins over the Turan domain. The second one, during the Late Jurassic-Early Cretaceous, had weaker effects. Since the Oligocene, following collision of both India and Arabia with Eurasia, inversion has become more generalized and compressional basins have formed on the TSK. Throughout the entire history of development of the TSK, from the Late Permian to the Tertiary, structures of Paleozoic and early Mesozoic age have exerted a strong control on sedimentation and especially on the location of depocenters. The south Kazak domain has registered little subsidence, in comparison with the Turan domain, where some basins have become very deep.

  6. Geology of the Harpers Ferry Quadrangle, Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.

    1996-01-01

    The Harpers Ferry quadrangle covers a portion of the northeast-plunging Blue Ridge-South Mountain anticlinorium, a west-verging allochthonous fold complex of the late Paleozoic Alleghanian orogeny. The core of the anticlinorium consists of high-grade paragneisses and granitic gneisses that are related to the Grenville orogeny. These rocks are intruded by Late Proterozoic metadiabase and metarhyolite dikes and are unconformably overlain by Late Proterozoic metasedimentary rocks of the Swift Run Formation and metavolcanic rocks of the Catoctin Formation, which accumulated during continental rifting of Laurentia (native North America) that resulted in the opening of the Iapetus Ocean. Lower Cambrian metasedimentary rocks of the Loudoun, Weverton, Harpers, and Antietam Formations and carbonate rocks of the Tomstown Formation were deposited in the rift-to-drift transition as the early Paleozoic passive continental margin evolved. The Short Hill fault is an early Paleozoic normal fault that was contractionally reactivated as a thrust fault and folded in the late Paleozoic. The Keedysville detachment is a folded thrust fault at the contact of the Antietam and Tomstown Formations. Late Paleozoic shear zones and thrust faults are common. These rocks were deformed and metamorphosed to greenschist-facies during the formation of the anticlinorium. The Alleghanian deformation was accompanied by a main fold phase and a regional penetrative axial plane cleavage, which was followed by a minor fold phase with crenulation cleavage. Early Jurassic diabase dikes transected the anticlinorium during Mesozoic continental rifting that resulted in the opening of the Atlantic Ocean. Cenozoic deposits that overlie the bedrock include bedrock landslides, terraces, colluvium, and alluvium.

  7. The Inskip Formation, the Harmony Formation, and the Havallah Sequence of Northwestern Nevada - An Interrelated Paleozoic Assemblage in the Home of the Sonoma Orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2008-01-01

    An area between the towns of Winnemucca and Battle Mountain in northwestern Nevada, termed the arkosic triangle, includes the type areas of the middle to upper Paleozoic Inskip Formation and Havallah sequence, the Upper Devonian to Mississippian Harmony Formation, the Sonoma orogeny, and the Golconda thrust. According to an extensive body of scientific literature, the Havallah sequence, a diverse assemblage of oceanic rocks, was obducted onto the continent during the latest Permian or earliest Triassic Sonoma orogeny by way of the Golconda thrust. This has been the most commonly accepted theory for half a century, often cited but rarely challenged. The tectonic roles of the Inskip and Harmony Formations have remained uncertain, and they have never been fully integrated into the accepted theory. New, and newly interpreted, data are incompatible with the accepted theory and force comprehensive stratigraphic and tectonic concepts that include the Inskip and Harmony Formations as follows: middle to upper Paleozoic strata, including the Inskip, Harmony, and Havallah, form an interrelated assemblage that was deposited in a single basin on an autochthonous sequence of Cambrian, Ordovician, and lowest Silurian strata of the outer miogeocline. Sediments composing the Upper Devonian to Permian sequence entered the basin from both sides, arkosic sands, gravel, limestone olistoliths, and other detrital components entered from the west, and quartz, quartzite, chert, and other clasts from the east. Tectonic activity was expressed as: (1) Devonian uplift and erosion of part of the outer miogeocline; (2) Late Devonian depression of the same area, forming a trough, probably fault-bounded, in which the Inskip, Harmony, and Havallah were deposited; (3) production of intraformational and extrabasinal conglomerates derived from the basinal rocks; and (4) folding or tilting of the east side of the depositional basin in the Pennsylvanian. These middle to upper Paleozoic deposits were

  8. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  9. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2018-06-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  10. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  11. Timing of the Late Paleozoic Ice Age: A Review of the Status Quo and New U-Pb Zircon Ages From Southern Gondwana

    NASA Astrophysics Data System (ADS)

    Mundil, R.; Griffis, N. P.; Keller, C. B.; Fedorchuk, N.; Montanez, I. P.; Isbell, J.; Vesely, F.; Iannuzzi, R.

    2017-12-01

    Throughout the Carboniferous and Permian Late Paleozoic Ice Age (LPIA), glaciations in southern Gondwana exerted a profound influence on global climate and environment, ocean chemistry, and the nature of sedimentary processes. The LPIA is widely regarded as an analogue for Pleistocene glaciations. Our understanding of the latter, as well as the validity of predictions for the future global climate and environment, depends therefore on our ability to reconstruct the LPIA. A robust chronostratigraphic framework built on high precision/high accuracy geochronology is crucial for the reconstruction of events and processes that occurred during the LPIA, particularly in the absence of high-resolution terrestrial biostratigraphic constraints that apply to both near- and far-field proxy records. The occurrence of volcaniclastic layers containing primary volcanic zircon at many levels throughout southern Gondwana makes such a reconstruction feasible, but complications inevitably arise due to the mixing of older age components with primary volcanic crystals, as well as the potential of unrecognized open system behavior to produce spurious younger ages. These pitfalls cause age dispersion that may be difficult to interpret, or is unrecognized if low precision geochronological techniques are used, resulting in inaccurate radioisotopic ages. Our current efforts in the Parana Basin (Southern Brazil) and the Karoo Basin (South Africa/Namibia) concentrate on building a robust and exportable chronostratigraphic framework based on U-Pb zircon CA-TIMS ages with sub-permil level precision combined with Bayesian approaches for resolving the eruption age of dispersed age spectra to facilitate the reconstruction of glaciogenic processes through the Carboniferous-Permian transition, as well as their implications for global sea level, atmospheric pCO2 and ocean chemistry. We will also review currently available geochronological data from contemporaneous Australian successions and their

  12. Constraints on Late Paleozoic Ocean Response to Climate Change Based on Brachiopod δ11B and 87Sr/86Sr

    NASA Astrophysics Data System (ADS)

    Legett, S. A.; Rasbury, T.; Grossman, E. L.; Hemming, G.

    2017-12-01

    In order to understand the possible effects of climate change on present day oceans, it is important to determine how marine systems responded to climate change in the past. This study uses δ11B values from well-preserved Carboniferous and Permian brachiopods as well as models to examine chemical trends in seawater and how these relate to long- and short-term climate changes. Our results show that δ11B rises rapidly going into the Carboniferous from a low of 10‰ to a high of 17‰ and remains relatively stable through the Carboniferous, despite the initiation of glaciation in the Mid Carboniferous. At the Carboniferous-Permian boundary, δ11B declines into the Early Permian before reaching a low at the Sakmarian. This decline in δ11B is coincident with the decrease in 87Sr/86Sr through this interval, which corresponds to evidence for aridity going into the Permian. We hypothesize that a reduction in silicate weathering drives an increase in atmospheric pCO2 and a subsequent lowering of ocean pH going into the Permian. This is consistent with our interpretation of the Carboniferous-Permian boundary, as a major mechanism for controlling seawater boron isotope composition is the adsorption of borate on clays, removing isotopically light boron and thus leaving seawater boron isotopically heavy. Therefore, at lower pH seawater should become isotopically lighter as this mechanism for removal is reduced. These hypotheses are supported by our initial modeling results of the B and Sr isotopic budgets of the ocean during the Late Paleozoic.

  13. Geochemistry and metamorphism of the Paleozoic metasedimentary basement of the Sierra Madre Oriental, NE Mexico. Possible paths from their depositional environment?

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Alonso Ramirez Fernandez, Juan; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Abratis, Michael

    2013-04-01

    We present depositional conditions and possible protholits for Late Paleozoic metasediment in Mexico that were related to the Laurentia-Gondwana collision in Carboniferous time, during Pangea amalgamation. The study aims to reconstruct the depositional and metamorphic evolution of the Granjeno Schist in northeastern Mexico to get a better control on the timing of subduction and collision processes involving the two supercontinents. Remnants of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental in northeastern Mexico. We apply field mapping, petrographic investigations, whole-rock and mineral chemical analysis, as well as U-Pb zircon dating of both metasedimentary and metavolcanic rocks. Field work and petrographic analysis reveal that the Granjeno Schist comprises intercalations of metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and volcanic (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as U-Pb zircon ages on metapsammite indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C during the Carboniferous time (330±30 Ma). The geochemical composition of the metasedimentary rocks is in accordance with iron shale, wacke and quartz arenite protoliths. Some of the variations can be explained by the grain sizes (e. g., 69-74% and 78-96% SiO2 and 10-15% and 3-9% Al2O3 in metapelite and metapsammite, respectively). Our data suggest that the Granjeno Schist metasedimentary units represent a wide variety of clastic sediments derived from mixed felsic basic sources compositions (e. g., Ti/Nb 200-400). Furthermore, the trace element characteristics point to a continental island arc or active continental margin setting due to e. g., Th/Sc and Zr

  14. Paleozoic tectonic evolution of the Dananhu-Tousuquan island arc belt, Eastern Tianshan: Constraints from the magmatism of the Yuhai porphyry Cu deposit, Xinjiang, NW China

    NASA Astrophysics Data System (ADS)

    Wang, Yunfeng; Chen, Huayong; Han, Jinsheng; Chen, Shoubo; Huang, Baoqiang; Li, Chen; Tian, Qinglei; Wang, Chao; Wu, Jianxin; Chen, Mingxia

    2018-03-01

    The Yuhai intrusions (quartz diorite, granite and pyroxene diorite) are located in the eastern part of the Dananhu-Tousuquan island arc belt of the Eastern Tianshan, and associated with the early Paleozoic porphyry Cu mineralization. LA-ICP-MS zircon U-Pb dating yielded emplacement ages of 443.5 ± 4.1 Ma for the quartz diorite, 325.4 ± 2.5 Ma for the granite, and 291 ± 3.0 Ma for the pyroxene diorite. These rocks are tholeiitic to calc-alkaline and metaluminous, with A/CNK values ranging from 0.66 to 1.10. The Silurian ore-bearing Yuhai quartz diorite is rich in LREEs and LILEs (e.g., K, Ba, Pb and Sr), and depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti). These rocks are MgO-rich (1.90-3.80 wt.%; Mg# = 37-72), with high Sr/Y, La/Yb and Ba/Th ratios, positive εNd(t) (6.31-6.84) and εHf(t) (13.26-16.40), low (87Sr/86Sr)i (0.7037-0.7039), and low Nb/U and Ta/U ratios. The data suggest that the quartz diorite was generated by the partial melting of subducted juvenile oceanic slab. The oxygen fugacity (ƒO2) of the quartz diorite, calculated by zircon Ce4+/Ce3+ ratios, is higher than that of the granite and pyroxene diorite, implying that the quartz diorite was more favorable to porphyry Cu mineralization. The Carboniferous Yuhai granite reveals similar geochemical features with the quartz diorite, except for the lower Mg# (27-33), and the more elevated Th/U and Th/La ratios. Furthermore, these rocks also show high εNd(t) (5.2-5.8) and εHf(t) (11.03-14.85) values, and low (87Sr/86Sr)i (0.7036-0.7037). These features indicate that the parental magma of the granite was probably derived from a juvenile lower crust with no significant mantle component involvement. Different from the Yuhai quartz diorite and granite, the early Permian Yuhai pyroxene diorite contains low SiO2 (50.76-55.74 wt.%) and high MgO (3.96-4.33 wt.%; Mg# = 40-44). The εNd(t), εHf(t) and (87Sr/86Sr)i values of the pyroxene diorite are 5.77-6.42, 7.99-12.10 and 0.7035-0.7040, respectively. The

  15. [The application of the prospective space-time statistic in early warning of infectious disease].

    PubMed

    Yin, Fei; Li, Xiao-Song; Feng, Zi-Jian; Ma, Jia-Qi

    2007-06-01

    To investigate the application of prospective space-time scan statistic in the early stage of detecting infectious disease outbreaks. The prospective space-time scan statistic was tested by mimicking daily prospective analyses of bacillary dysentery data of Chengdu city in 2005 (3212 cases in 102 towns and villages). And the results were compared with that of purely temporal scan statistic. The prospective space-time scan statistic could give specific messages both in spatial and temporal. The results of June indicated that the prospective space-time scan statistic could timely detect the outbreaks that started from the local site, and the early warning message was powerful (P = 0.007). When the merely temporal scan statistic for detecting the outbreak was sent two days later, and the signal was less powerful (P = 0.039). The prospective space-time scan statistic could make full use of the spatial and temporal information in infectious disease data and could timely and effectively detect the outbreaks that start from the local sites. The prospective space-time scan statistic could be an important tool for local and national CDC to set up early detection surveillance systems.

  16. Deformational history of part of the Acatlán Complex: Late Ordovician Early Silurian and Early Permian orogenesis in southern Mexico

    NASA Astrophysics Data System (ADS)

    Malone, J. R.; Nance, R. D.; Keppie, J. D.; Dostal, J.

    2002-10-01

    The Paleozoic Acatlán Complex of southern Mexico comprises polydeformed metasedimentary, granitoid, and mafic-ultramafic rocks variously interpreted as recording the closure of the Iapetus, Rheic, and Ouachitan Oceans. The complex is tectonically juxtaposed on its eastern margin against Grenville-age gneisses (Oaxacan Complex) that are unconformably overlain by Lower Paleozoic strata containing fossils of Gondwanan affinity. A thick siliciclastic unit (Chazumba and Cosoltepec Formations) at the base of the complex is considered part of a Lower Paleozoic accretionary prism with a provenance that isotopically resembles the Oaxacan Complex. This unit is tectonically overridden by a locally eclogitic mafic-ultramafic unit interpreted as a westward-obducted ophiolite, the emplacement of which was synchronous with mylonitic granitoid intrusion at ca. 440 Ma. Both units are unconformably overlain by a deformed volcano-sedimentary sequence (Tecomate Formation) attributed to a volcanic arc of presumed Devonian age. Deformed granitoids in contact with this sequence have been dated at ca. 371 (La Noria granite) and 287 Ma (Totoltepec pluton). Three phases of penetrative deformation (D 1-3) affect the Cosoltepec Formation; the last two correlate with two penetrative deformational phases that affect the Tecomate Formation. D 1 is of unknown kinematics but predates deposition of the Tecomate Formation and likely records obduction at ca. 440 Ma (Acatecan orogeny). A folded foliation in the Totoltepec pluton appears to record both deformational phases in the Tecomate Formation, bracketing D 2 and D 3 between 287 Ma and the deposition of the nonconformably overlying Leonardian Matzitzi Formation. D 2 records north-south dextral transpression and south-vergent thrusting and is attributed to the collision of Gondwana and southern Laurentia (Ouachitan orogeny) at ca. 290 Ma, the kinematics being consistent with the northward motion of Mexico that is required by most continental

  17. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  18. Petrophysics and hydrocarbon potential of Paleozoic rocks in Kuwait

    NASA Astrophysics Data System (ADS)

    Abdullah, Fowzia; Shaaban, Fouad; Khalaf, Fikry; Bahaman, Fatma; Akbar, Bibi; Al-Khamiss, Awatif

    2017-10-01

    Well logs from nine deep exploratory and development wells in Kuwaiti oil fields have been used to study petrophysical characteristics and their effect on the reservoir quality of the subsurface Paleozoic Khuff and Unayzah formations. Petrophysical log data have been calibrated with core analysis available at some intervals. The study indicates a complex lithological facies of the Khuff Formation that is composed mainly of dolomite and anhydrite interbeds with dispersed argillaceous materials and few limestone intercalations. This facies greatly lowered the formation matrix porosity and permeability index. The porosity is fully saturated with water, which is reflected by the low resistivity logs responses, except at some intervals where few hydrocarbon shows are recorded. The impermeable anhydrites, massive (low-permeability) carbonate rock and shale at the lower part of the formation combine to form intraformational seals for the clastic reservoirs of the underlying Unayzah Formation. By contrast, the log interpretation revealed clastic lithological nature of the Unayzah Formation with cycles of conglomerate, sandstone, siltstone, mudstone and shales. The recorded argillaceous materials are mainly of disseminated habit, which control, for some extent, the matrix porosity, that ranges from 2% to 15% with water saturation ranges from 65% to 100%. Cementation, dissolution, compaction and clay mineral authigenesis are the most significant diagenetic processes affecting the reservoir quality. Calibration with the available core analysis at some intervals of the formation indicates that the siliciclastic sequence is a fluvial with more than one climatic cycle changes from humid, semi-arid to arid condition and displays the impact of both physical and chemical diagenesis. In general, the study revealed that the Unyazah Formation has a better reservoir quality than the Khuff Formation and possible gas bearing zones.

  19. Tethyan evolution of central Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengor, A.M.C.

    1990-05-01

    The study area extends from the eastern shores of the Caspian Sea in the west to the Helan Shan and Longmen Shan in the east and from about 40{degree}N parallel in the north to the neo-Tethyan sutures in the south, thus including what is called Middle Asia in the Soviet literature. In the region thus delineated lies the boundary between the largely late Paleozoic core of Asia (Altaids) and the Tethyside superorogenic complex. This boundary passes through continental objects that collided with nuclear Asia in the late Paleozoic to terminate its Altaid evolution. Subduction to the south of some ofmore » these had commenced before they collided (e.g., Tarim in the Kuen-Lun), in others later (e.g., South Ghissar area west of Pamirs). This subduction 1ed, in the late Paleozoic, to the opening of marginal basins, at least one of which may be partly extant (Tarim). Giant subduction accretion complexes of Paleozoic to earliest Triassic age dominate farther south in the basement of Turan (mainly in Turkmenian SSR) and in the Kuen-Lun/Nan Shan ranges. No discrete continental collisions or any continental basement in these regions could be unequivocally recognized contrary to most current interpretations. Magmatic arcs that developed along the southern margin of Asia in the late Paleozoic to early Mesozoic grew atop these subduction-accretion complexes and record a gradual southerly migration of magmatism through time. Subduction also dominated the northern margin of Gondwanaland between Iran and China in late Paleozoic time, although the record in Afghanistan and northwest Tibet is scrappy. It led to back-arc basin formation, which in Iran and Oman became neo-Tethys and, in at least parts of central Asia, the Waser-Mushan-Pshart/Banggong Co-Nu Jiang ocean. This ocean was probably connected with the Omani part of the neo-Tethys via the Sistan region.« less

  20. Elucidating the mechanisms linking early pubertal timing, sexual activity, and substance use for maltreated versus nonmaltreated adolescents.

    PubMed

    Negriff, Sonya; Brensilver, Matthew; Trickett, Penelope K

    2015-06-01

    To test models linking pubertal timing, peer substance use, sexual behavior, and substance use for maltreated versus comparison adolescents. Three theoretical mechanisms were tested: (1) peer influence links early pubertal timing to later sexual behavior and substance use; (2) early maturers engage in substance use on their own and then select substance-using friends; or (3) early maturers initiate sexual behaviors which lead them to substance-using peers. The data came from a longitudinal study of the effects of child maltreatment on adolescent development (303 maltreated and 151 comparison adolescents; age, 9-13 years at initial wave). Multiple-group structural equation models tested the hypotheses across three time points including variables of pubertal timing, perception of peer substance use, sexual behavior, and self-reported substance use. Early pubertal timing was associated with substance-using peers only for maltreated adolescents, indicating the mediation path from early pubertal timing through substance-using peers to subsequent adolescent substance use and sexual behavior only holds for maltreated adolescents. Mediation via sexual behavior was significant for both maltreated and comparison adolescents. This indicates that sexual behavior may be a more universal mechanism linking early maturation with risky friends regardless of adverse life experiences. The findings are a step toward elucidating the developmental pathways from early puberty to risk behavior and identifying early experiences that may alter mediation effects. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  1. Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation.

    PubMed

    Da Silva, C; Astals, S; Peces, M; Campos, J L; Guerrero, L

    2018-01-01

    Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to >100days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B 0 ) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k≤0.1d -1 ) have a minimum testing times of ≥15days, (ii) moderately biodegradable substrates (0.1times between 8 and 15 days, and (iii) rapidly biodegradable substrates (k≥0.2d -1 ) have testing times lower than 7days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  3. Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Xiangsong; Cai, Keda; Sun, Min; Xiao, Wenjiao; Xia, Xiaoping; Wan, Bo; Bao, Zihe; Wang, Yannan

    2018-03-01

    Late Carboniferous to Early Permian is a critical period for the final amalgamation of the Central Asian Orogenic Belt (CAOB). However, as most of the accreted terranes of the CAOB are unclear in tectonic nature and origin, the timing and processes of their mutual amalgamation have been poorly constrained. To understand assembly of the West Junggar Terrane with the Yili Block, a suite of the late Paleozoic magmatic rocks, including ignimbrite, rhyolite and granite, in northwestern Chinese Tianshan Belt were studied for their petrogenesis and tectonic implications. Our new results of secondary ion mass spectrometry (SIMS) zircon U-Pb dating reveal two separate magmatic episodes, ca. 300 Ma volcanism (ignimbrite and rhyolite) and ca. 288 Ma plutonsim (biotite granite). Geochemically, for the ca. 300 Ma volcanism, the ignimbrites have low SiO2 (65.8-71.5 wt.%) and Mg# (6-13) values, and exhibit arc affinity with significantly enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE) such as Nb, Ta and Ti. The whole-rock εNd(t) and zircon εHf(t) values range from +6.9 to +7.0 and +9.9 to +14.1 respectively, indicating a juvenile basaltic lower crustal origin. Rhyolites have slightly high SiO2 (72.7-74.0 wt.%) and K2O (3.86-4.53 wt.%) contents, high zircon δ18O (11.67-13.23‰) values, and low whole-rock εNd(t) (+2.9 to +3.8) and zircon εHf(t) (+2.8 to +10.0) values, which may suggest sediment involvements during magma generation. In contrast, for the ca. 288 Ma plutonism, the biotite granites have obviously higher SiO2 (74.7-75.5 wt.%) contents and whole-rock εNd(t) (+7.7 to +8.8), zircon εHf(t) (+9.8 to +12.7), and lower zircon δ18O (5.99-6.84‰) values, than those of the ca. 300 Ma volcanic rocks, which are consistent with signatures of juvenile magma source. According to our estimates of zircon saturation temperatures, together with their contrasting genesis, we attribute the formation of ca. 300 Ma high

  4. The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany

    USGS Publications Warehouse

    Wedepohl, K.H.; Delevaux, M.H.; Doe, B.R.

    1978-01-01

    New lead isotopic compositions have been measured for Paleozoic bedded and vein ore deposits of Europe by the high precision thermal emission (triple filament) technique. Eleven samples have been analyzed from the Upper Permian Kupferschiefer bed with representatives from Poland to England, three samples from the Middle Devonian Rammelsberg deposit and one from the Middle Devonian Meggen deposit, both of which are conformable ore lenses and are in the Federal Republic of Germany (FRG); and also two vein deposits from the FRG were analyzed, from Ramsbeck in Devonian host rocks and from Grund in Carboniferous host rocks. For Kupferschiefer bed samples from Germany, the mineralization is of variable lead isotopic composition and appears to have been derived about 250 m.y. ago from 1700 m.y. old sources, or detritus of this age, in Paleozoic sedimentary rocks. Samples from England, Holland, and Poland have different isotopic characteristics from the German samples, indicative of significantly different source material (perhaps older). The isotopic variability of the samples from the Kupferschiefer bed in Germany probably favors the lead containing waters coming from shoreward (where poor mixing is to be expected) rather than basinward (where better mixing is likely) directions. The data thus support the interpretation of the metal source already given by Wedepohl in 1964. Data on samples from Rammelsberg and Meggen tend to be slightly less radiogenic than for the Kupferschiefer, about the amount expected if the leads were all derived from the same source material but 100 to 150 m.y. apart in time. The vein galena from Ramsbeck is similar to that from Rammelsberg conformable ore lenses, both in rocks of Devonian age; vein galena from Grund in Upper Carboniferous country rocks is similar to some bedded Kupferschiefer mineralization in Permian rocks, as if the lead composition was formed at about the same time and from similar source material as the bedded deposits

  5. Elucidating the mechanisms linking early pubertal timing, sexual activity, and substance use for maltreated versus nonmaltreated adolescents

    PubMed Central

    Negriff, Sonya; Brensilver, Matthew; Trickett, Penelope K.

    2015-01-01

    Purpose To test models linking pubertal timing, peer substance use, sexual behavior, and substance use for maltreated versus comparison adolescents. Three theoretical mechanisms were tested: 1) peer influence links early pubertal timing to later sexual behavior and substance use, 2) early maturers engage in substance use on their own and then select substance-using friends, or 3) early maturers initiate sexual behaviors which leads them to substance-using peers. Methods The data came from a longitudinal study of the effects of child maltreatment on adolescent development (303 maltreated and 151 comparison adolescents; age: 9–13 years at initial wave). Multiple-group structural equation models tested the hypotheses across three timepoints including variables of pubertal timing, perception of peer substance use, sexual behavior, and self-reported substance use. Results Early pubertal timing was associated with substance-using peers only for maltreated adolescents, indicating the mediation path from early pubertal timing through substance-using peers to subsequent adolescent substance use and sexual behavior only holds for maltreated adolescents. Mediation via sexual behavior was significant for both maltreated and comparison adolescents. This indicates that sexual behavior may be a more universal mechanism linking early maturation with risky friends regardless of adverse life experiences. Conclusions The findings are a step toward elucidating the developmental pathways from early puberty to risk behavior and identifying early experiences that may alter mediation effects. PMID:26003577

  6. A Remaining Open Paleogeography of Paleo-Asian Ocean by Early Permian, Paleomagnetic Constraints from Eastern CAOB

    NASA Astrophysics Data System (ADS)

    Zhang, Donghai; Huang, Baochun; Zhao, Jie; Meert, Joseph; Zhang, Ye; Liang, Yalun; Bai, Qianhui; Zhao, Qian; Zhou, Tinghong

    2017-04-01

    We carry out a combined paleomagnetic and U-Pb geochronologic study on Paleozoic strata ranging from Lower Devonian to Upper Permian in mid-eastern Inner Mongolia, NE China with the purpose of puzzling out the timing and location of the final closure of Paleo-Asian Ocean (PAO), and thus provides further implications for the evolution of eastern Central Asian Orogenic Belt (CAOB). Inside North Margin of North China Block (NMNCB), 20 sites from Middle Permian Elitu formation and 9 sites from Lower Permian Sanmianjing formation yields a high temperature Characteristic Remanent Magnetism (ChRM) of Dg=330.9, Ig=54.3, Kg=4.9, a95g=14.9 N= 24 before and Ds=347.4, Is=38.1, Ks=28.6, a95s=5.6, N=24 after tilt correction. 13 sites from Songliao-Xilinhot Block (SXB) isolate a ChRM of Dg=196.6, Ig=36.4, Kg=18.0, a95g=11.1, N=13; Ds=222.9, Is=20.5, Ks=15.7 a95s=11.9, N=13 with a positive fold test, which suggests a likely primary magnetization. Inside of Khingan-Airgin Sum Block (KAB), 2 different component is extracted from Lower Devonian Niqiuhe formation, Upper Carboniferous Baoligaomiao formation and Lower Permian Dashizhai formation. A high temperature Component A (Dg=28.3, Ig=29.7, Kg=24.4, a95g=6.6, N= 21; Ds=49.8, Is=62.1, Ks=57.4, a95s=4.2, N=21) with a synfolding origin is derived from 21 sites of Baoligaomiao formation in west KAB, which is traditionally named as Uliastai passive continental margin, whilst 11 sites from Lower Devonian Niqiuhe formation in east KAB generate a post-folding Component B (Dg=196.6, Ig=36.4, Kg=18.0, a95g=11.1, N=11; Ds=222.9, Is=20.5, Ks=15.7, a95s=11.9, N=11) with a possible remagnetization in early Permian suggested by widely exposed granitic intrusion of 299 Ma in adjacent areas. Accordingly, 4 paleomagnetic poles are calculated as early-middle Permian of NMNCB (Plat=67.9°N, Plong=326.7°E, A95=4.2°), early Permian of SXB (Plat=45.3°N, Plong=250.3°E, A95=5.8°), late Carboniferous of west KAB (Plat=55.1°N, Plong=187.8°E, A95=6.2

  7. Latest Neoproterozoic basin inversion of the Beardmore Group, central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    1997-08-01

    Structural and age relationships in Beardmore Group rocks in the central Transantarctic Mountains of Antarctica indicate that they experienced a single deformation in latest Neoproterozoic to early Paleozoic time. New structural data contrast with earlier suggestions that Beardmore rocks record two orogenic deformations, one of the early Paleozoic Ross orogeny and a distinct earlier tectonic event of presumed Neoproterozoic age referred to as the Beardmore orogeny. In the Nimrod Glacier area, Beardmore metasedimentary rocks contain only a single set of geometrically related regional structures associated with the development of upright, large- and small-scale flexural-slip folds. Deformation of Beardmore strata involved west directed contraction of modest regional strain at relatively high crustal levels. Existing ages of detrital zircons from the Cobham and Goldie formations constrain Beardmore Group deposition to be younger than ˜600 Ma. This is significantly younger than previous age estimates and suggests that Beardmore deposition may be closely linked to a latest Neoproterozoic East Antarctic rift margin. The lack of structural evidence for polyphase deformation and the relatively young depositional age for the Beardmore Group thus raises the question of a temporally and/or technically unique Beardmore orogeny. Here I suggest that Beardmore shortening may be related to tectonic inversion of East Antarctic marginal-basin strata because of localized compression during proto-Pacific seafloor spreading. Basin inversion is but one stage in a protracted Ross tectonic cycle of rifting, tectonic inversion, subduction initiation, and development of a mature convergent continental margin during latest Neoproterozoic and early Paleozoic time. The term "Beardmore orogeny" has little meaning as an event of orogenic status, and it should be abandoned. Recognition of this latest Neoproterozoic history reinforces the view that the broader Ross orogeny was not a single event

  8. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  9. Paleozoic fluid history of the Michigan Basin: Evidence from dolomite geochemistry in the Middle Ordovician St. Peter Sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, B.L.; Johnson, C.M.; Simo, J.A.

    1995-04-03

    The isotope (Sr and O) and elemental (Mg, Ca, Mn, Fe, and Sr) compositions of the various dolomites in the Middle Ordovician St. Peter Sandstone in the Michigan Basin are determined and the variations are modeled in terms of fluid-rock interaction or as mixing relations. These geochemical models, combined with the paragenetic sequence of the dolomites and late anhydrite cement, suggest the existence of at least four distinct diagenetic fluids in the St. Peter Sandstone during the paleozoic. Fluid 1 has a composition consistent with a modified older (pre-Middle Ordovician) seawater origin, which indicates that the flow path for thismore » fluid had a major upward component. This fluid resulted in the first and volumetrically most important burial dolomitization event, producing dolomite in both carbonate and quartz sandstone lithofacies in the St. Peter Sandstone. Fluid 2 has a composition consistent with a modified Middle to early Late Ordovician seawater origin, suggesting a major downward component for fluid flow. Fluid 2 produced dolomite cement in the carbonate lithofacies that postdates Fluid 1 dolomite. The composition of Fluid 3 is best interpreted to reflect a heated, deep basinal brine that had previously interacted with the K-feldspar-rich rocks near the Cambrian-Precambrian unconformity in the Michigan Basin, indicating a major upward component for fluid flow. Fluid 3 produced dolomite cement in quartz sandstone lithofacies that postdates Fluid 1 dolomite. Fluid 4 resulted in precipitation of late anhydrite in fractures. The {sup 87}Sr/{sup 86}Sr ratio of the anhydrite is consistent with Fluid 4 originating as a dilute fluid that interacted extensively with Silurian gypsum in the Michigan Basin; this indicates that the flow path of Fluid 4 had a major downward component.« less

  10. Coping with cyclic oxygen availability: evolutionary aspects.

    PubMed

    Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke

    2007-10-01

    Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.

  11. Early Cambrian oxygen minimum zone-like conditions at Chengjiang

    NASA Astrophysics Data System (ADS)

    Hammarlund, Emma U.; Gaines, Robert R.; Prokopenko, Maria G.; Qi, Changshi; Hou, Xian-Guang; Canfield, Donald E.

    2017-10-01

    The early Cambrian succession at Chengjiang contains the most diverse Cambrian fossil assemblage yet described, and contributes significantly to our understanding of the diversification of metazoans in the Cambrian ;explosion;. The Cambrian Period occupies a transitional episode of global ocean chemistry, following the oxygenation of the surface ocean and of shallow marine environments during the Ediacaran Period, but prior to the establishment of a predominantly oxygenated deep ocean in the mid-Paleozoic. Despite recent attention, a detailed understanding of the chemical conditions that prevailed in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu'anshan Formation of Yunnan, China. Results reveal dynamic water-column chemistry within the succession, which progressively shifted from euxinic to oxic conditions during deposition of the Yu'anshan Formation. The Chengjiang biota occurs in strata that appear to have been deposited under an oxygen-depleted water column that may have supported denitrification, as in modern oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically in response to nutrient availability and possibly at lower thresholds of productivity due to lower atmospheric oxygen concentrations in Cambrian. These findings suggest that the frequent development of oxygen-limiting conditions in continental margin settings provided an environmental barrier that may have affected biogeographic, ecological and evolutionary development of early metazoan communities.

  12. First-time mothers' experiences of early labour in Italian maternity care services.

    PubMed

    Cappelletti, Giulia; Nespoli, Antonella; Fumagalli, Simona; Borrelli, Sara E

    2016-03-01

    The aim of this study is to explore first-time mothers' experiences of early labour in Italian maternity care services when admitted to hospital or advised to return home after maternity triage assessment. The study was conducted in a second-level maternity hospital in northern Italy with an obstetric unit for both low- and high-risk women. The participants included 15 first-time mothers in good general health with spontaneous labour at term of a low-risk pregnancy who accessed maternity triage during early labour, and were either admitted to hospital or advised to return home. A qualitative interpretive phenomenological study was conducted. A face-to-face recorded semi-structured interview was conducted with each participant 48-72h after birth. Four key themes emerged from the interviews: (a) recognising signs of early labour; (b) coping with pain at home; (c) seeking reassurance from healthcare professionals; and (d) being admitted to hospital versus returning home. Uncertainty about the progression of labour and the need for reassurance were cited by women as the main reasons for hospital visit in early labour. An ambivalent feeling was reported by the participants when admitted to hospital in early labour. In fact, while the women felt reassured in the first instance, some women subsequently felt dissatisfied due to the absence of one-to-one dedicated care during early labour. When advised to return home, a number of women reported feelings of disappointment, anger, fear, discouragement and anxiety about not being admitted to hospital; however, some of these women reported a subsequent feeling of comfort due to being at home and putting in place the suggestions made by the midwives during the maternity triage assessment. The guidance provided by midwives during triage assessment seemed to be the key factor influencing women׳s satisfaction when advised either to return home or to stay at the hospital during early labour. During antenatal classes and clinics

  13. Paleozoic and Paleoproterozoic Zircon in Igneous Xenoliths Assimilated at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Vazquez, J. A.; Wooden, J. L.

    2010-12-01

    Historically active Redoubt Volcano is a basalt-to-dacite cone constructed upon the Jurassic-early Tertiary Alaska-Aleutian Range batholith. New SHRIMP-RG U-Pb age and trace-element concentration results for zircons from gabbroic xenoliths and crystal-rich andesitic mush from a late Pleistocene pyroclastic deposit indicate that ~310 Ma and ~1865 Ma igneous rocks underlie Redoubt at depth. Two gabbros have sharply terminated prismatic zircons that yield ages of ~310 Ma. Zircons from a crystal mush sample are overwhelmingly ~1865 Ma and appear rounded due to incomplete dissolution. Binary plots of element concentrations or ratios show clustering of data for ~310-Ma grains and markedly coherent trends for ~1865-Ma grains; e.g., ~310-Ma grains have higher Eu/Eu* than most of the ~1865-Ma grains, the majority of which form a narrow band of decreasing Eu/Eu* with increasing Hf content which suggests that ~1865-Ma zircons come from igneous source rocks. It is very unlikely that detrital zircons from a metasedimentary rock would have this level of homogeneity in age and composition. One gabbro contains abundant ~1865 Ma igneous zircons, ~300-310 Ma fluid-precipitated zircons characterized by very low U and Th concentrations and Th/U ratios, and uncommon ~100 Ma zircons. We propose that (1) ~310 Ma gabbro xenoliths from Redoubt Volcano belong to the same family of plutons dated by Aleinikoff et al. (USGS Circular 1016, 1988) and Gardner et al. (Geology, 1988) located ≥500 km to the northeast in basement rocks of the Wrangellia and Alexander terranes and (2) ~1865 Ma zircons are inherited from igneous rock, potentially from a continental fragment that possibly correlates with the Fort Simpson terrane or Great Bear magmatic zone of the Wopmay Orogen of northwestern Laurentia. Possibly, elements of these Paleoproterozoic terranes intersected the Paleozoic North American continental margin where they may have formed a component of the basement to the Wrangellia

  14. Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Brew, D.A.; Douglass, S.L.

    1996-01-01

    Nearly all of the bedrock in Southeastern Alaska has been metamorphosed, much of it under medium-grade conditions during metamorphic episodes that were associated with widespread plutonism. The oldest metamorphisms affected probable arc rocks near southern Prince of Wales Island and occurred during early and middle Paleozoic orogenies. The predominant period of metamorphism and associated plutonism occurred during Early Cretaceous to early Tertiary time and resulted in the development of the Coast plutonic-metamorphic complex that extends along the inboard half of Southeastern Alaska. Middle Tertiary regional thermal metamorphism affected a large part of Baranof Island.

  15. Mothers' Time with Infant and Time in Employment as Predictors of Mother-Child Relationships and Children's Early Development

    ERIC Educational Resources Information Center

    Huston, Aletha C.; Rosenkrantz Aronson, Stacey

    2005-01-01

    This study tested predictions from economic and developmental theories that maternal time with an infant is important for mother-child relationships and children's development, using time-use diaries for mothers of 7- to 8-month-old infants from the National Institute of Child Health and Human Development Study of Early Child Care (N=1,053).…

  16. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins

    NASA Astrophysics Data System (ADS)

    Sato, Ana María; Llambías, Eduardo J.; Basei, Miguel A. S.; Castro, Carlos E.

    2015-11-01

    The intermediate to acid Choiyoi Magmatic Province is the most conspicuous feature along the Late Paleozic continental margin of southwestern Gondwana, and is generally regarded as the possible source for the widespread ash fall deposits interlayered with sedimentary sequences in the adjacent Gondwana basins. The Choiyoi magmatism is geologically constrained between the early Permian San Rafael orogenic phase and the Triassic extensional Huarpica phase in the region of Argentine Frontal Cordillera, Precordillera and San Rafael Block. In order to better assess the Choiyoi magmatism in Argentine Frontal Cordillera, we obtained 6 new LA-ICPMS U-Pb ages between 278.8 ± 3.4 Ma and 252.5 ± 1.9 Ma from plutonic rocks of the Colangüil Batholith and an associated volcanic rock. The global analysis of age data compiled from Chilean and Argentine Late Paleozoic to Triassic outcrops allows us to identify three stages of magmatism: (1) pre-Choiyoi orogenic magmatism, (2) Choiyoi magmatism (286-247 Ma), and (3) post-Choiyoi magmatism related to extensional tectonics. In the Choiyoi stage is there an eastward shift and expansion of the magmatism to the southeast, covering an extensive region that defines the Choiyoi magmatic province. On the basis of comparison with the ages from volcanogenic levels identified in the coeval Gondwana basins, we propose: (a) The pre-Choiyoi volcanism from the Paganzo basin (320-296 Ma) probably has a local source in addition to the Frontal Cordillera region. (b) The pre-Choiyoi and Choiyoi events identified in the Paraná basin (304-275 Ma) are likely to have their source in the Chilean Precordillera. (c) The early stage of the Choiyoi magmatism found in the Sauce Grande basin (284-281 Ma) may have come from the adjacent Las Matras to Chadileuvú blocks. (d) The pre-Choiyoi and Choiyoi events in the Karoo basins (302-253 Ma) include the longest Choiyoi interval, and as a whole bear the best resemblance to the age records along the Chilean and

  17. Reconciling Paleomagnetism and Pangea

    NASA Astrophysics Data System (ADS)

    Domeier, M. M.; Van Der Voo, R.; Torsvik, T. H.

    2011-12-01

    Outside of the realm of paleomagnetic studies, it has been a long held tenet that Pangea amalgamated into and disseminated from essentially the same paleogeography, the conventional Pangea reconstruction of Alfred Wegener. There is widespread geologic and geophysical support for this re-assembly during the Late Triassic-Early Jurassic, but global paleomagnetic data have been repeatedly shown to be incompatible with this reconstruction for pre-Late Triassic time. This discrepancy, which has endured from the late 1950's to the present day, has developed into a fundamental enigma of late Paleozoic-early Mesozoic paleomagnetism. The problem stems from a large disparity in the apparent polar wander paths (APWPs) of Laurussia and Gondwana when the landmasses are restored to the conventional paleogeography. If the APWPs are made to coincide while the conventional fit is maintained, a substantial crustal misfit results; a continental overlap of approximately 10° latitude (1000+ km) occurs between Laurussia and Gondwana. To resolve this problem, alternative Pangea reconstructions have been built to accommodate the late Paleozoic-early Mesozoic paleomagnetic data, but these invariably require large-scale shearing between Laurussia and Gondwana to reach the conventional Pangea re-assembly, from which it is unanimously agreed that the Atlantic Ocean opened in the Jurassic. Evidence for a megashear between these landmasses is critically lacking. Another proposed solution invokes time-dependent non-dipole fields, but challenges the working assumption that the geomagnetic field has effectively been a geocentric axial dipole through the Phanerozoic. The final alternative is that the problem is a manifestation of artifacts/contamination in the paleomagnetic data. Previous investigations of this last hypothesis have demonstrated its theoretical plausibility, but lacked the exhaustive analysis of global paleomagnetic data necessary to assuredly dispel the problem as an enduring data

  18. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  19. An early bird from Gondwana: Paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys

    NASA Astrophysics Data System (ADS)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yue, Yahui

    2017-10-01

    The origin of the northern Qiangtang block and its Late Paleozoic-Early Mesozoic drift history remain controversial, largely because paleomagnetic constraints from pre-Mesozoic units are sparse and of poor quality. In this paper, we provide a robust and well-dated paleomagnetic pole from the Lower Permian Kaixinling Group lavas on the northern Qiangtang block. This pole suggests that the northern Qiangtang block had a paleolatitude of 21.9 ± 4.7 °S at ca. 296.9 ± 1.9 Ma. These are the first volcanic-based paleomagnetic results from pre-Mesozoic rocks of the Qiangtang block that appear to average secular variation accurately enough to yield a well-determined paleolatitude estimate. This new pole corroborates the hypothesis, first noted on the basis of less rigorous paleomagnetic data, the presence of diamictites, detrital zircon provenance records, and faunal assemblages, that the northern Qiangtang block rifted away from Gondwana prior to the Permian. Previous studies have documented that the northern Qiangtang block accreted to the Tarim-North China continent by Norian time. We calculate a total northward drift of ca. 7000 km over ca. 100 myr, which corresponds to an average south-north plate velocities of ∼7.0 cm/yr. Our results do not support the conclusion that northern Qiangtang has a Laurasian affinity, nor that the central Qiangtang metamorphic belt is an in situ Paleo-Tethys suture. Our analysis, however, does not preclude paleogeographies that interpret the central Qiangtang metamorphic belt as an intra-Qiangtang suture that developed at southernly latitudes outboard of the Gondwanan margin. We emphasize that rigorous paleomagnetic data from Carboniferous units of northern Qiangtang and especially upper Paleozoic units from southern Qiangtang can test and further refine these paleogeographic interpretations.

  20. Exploring the utility of real-time hydrologic data for landslide early warning

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Smith, J. B.; Becker, R.; Baum, R. L.; Koss, E.

    2017-12-01

    Early warning systems can provide critical information for operations managers, emergency planners, and the public to help reduce fatalities, injuries, and economic losses due to landsliding. For shallow, rainfall-triggered landslides early warning systems typically use empirical rainfall thresholds, whereas the actual triggering mechanism involves the non-linear hydrological processes of infiltration, evapotranspiration, and hillslope drainage that are more difficult to quantify. Because hydrologic monitoring has demonstrated that shallow landslides are often preceded by a rise in soil moisture and pore-water pressures, some researchers have developed early warning criteria that attempt to account for these antecedent wetness conditions through relatively simplistic storage metrics or soil-water balance modeling. Here we explore the potential for directly incorporating antecedent wetness into landslide early warning criteria using recent landslide inventories and in-situ hydrologic monitoring near Seattle, WA, and Portland, OR. We use continuous, near-real-time telemetered soil moisture and pore-water pressure data measured within a few landslide-prone hillslopes in combination with measured and forecasted rainfall totals to inform easy-to-interpret landslide initiation thresholds. Objective evaluation using somewhat limited landslide inventories suggests that our new thresholds based on subsurface hydrologic monitoring and rainfall data compare favorably to the capabilities of existing rainfall-only thresholds for the Seattle area, whereas there are no established rainfall thresholds for the Portland area. This preliminary investigation provides a proof-of-concept for the utility of developing landslide early warning criteria in two different geologic settings using real-time subsurface hydrologic measurements from in-situ instrumentation.

  1. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zheng, J.; Wang, B.

    2017-12-01

    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  2. Natural fault and fracture network versus anisotropy in the Lower Paleozoic rocks of Pomerania (Poland)

    NASA Astrophysics Data System (ADS)

    Haluch, Anna; Rybak-Ostrowska, Barbara; Konon, Andrzej

    2017-04-01

    Knowledge of the anisotropy of rock fabric, geometry and distribution of the natural fault and fracture network play a crucial role in the exploration for unconventional hydrocarbon recourses. Lower Paleozoic rocks from Pomerania within the Polish part of Peri-Baltic Basin, as prospective sequences, can be considered a laboratory for analysis of fault and fracture arrangement in relation to the mineral composition of the host rocks. A microstructural study of core samples from five boreholes in Pomerania indicate that the Silurian succession in the study area is predominantly composed of claystones and mudstones interbedded with thin layers of tuffites. Intervals with a high content of detrital quartz or diagenetic silica also occur. Most of the Silurian deposits are abundant in pyrite framboids forming layers or isolated small concretions. Early diagenetic carbonate concretions are also present. The direction and distribution of natural faults and fractures have resulted not only from paleostress. Preliminary study reveals that the fault and fracture arrangement is related to the mechanical properties of the host rocks that depend on their fabric and mineralogical composition: subvertical fractures in mudstones and limestones show steeper dips than those within the more clayey intervals; bedding-parallel fractures occur within organic-rich claystones and along the boundaries between different lithologies; tuffites and radiolaria-bearing siliceous mudstones are more brittle and show denser nets of fractures or wider mineral apertures; and, fracture refraction is observed at competence contrast or around spherical concretions. The fault and fracture mineralization itself is prone to the heterogenity of the rock profile. Thus, fractures infilled with calcite occur in all types of the studied rocks, but mineral growth is syntaxial within marly mudstones because of chemical uniformity, and antitaxial within sillicous mudstones. Fractures infilled with quartz are

  3. Early Permian Pangea `B' to Late Permian Pangea `A'

    NASA Astrophysics Data System (ADS)

    Muttoni, Giovanni; Kent, Dennis V.; Garzanti, Eduardo; Brack, Peter; Abrahamsen, Niels; Gaetani, Maurizio

    2003-10-01

    The pre-drift Wegenerian model of Pangea is almost universally accepted, but debate exists on its pre-Jurassic configuration since Ted Irving introduced Pangea 'B' by placing Gondwana farther to the east by ˜3000 km with respect to Laurasia on the basis of paleomagnetic data. New paleomagnetic data from radiometrically dated Early Permian volcanic rocks from parts of Adria that are tectonically coherent with Africa (Gondwana), integrated with published coeval data from Gondwana and Laurasia, again only from igneous rocks, fully support a Pangea 'B' configuration in the Early Permian. The use of paleomagnetic data strictly from igneous rocks excludes artifacts from sedimentary inclination error as a contributing explanation for Pangea 'B'. The ultimate option to reject Pangea 'B' is to abandon the geocentric axial dipole hypothesis by introducing a significant non-dipole (zonal octupole) component in the Late Paleozoic time-averaged geomagnetic field. We demonstrate, however, by using a dataset consisting entirely of paleomagnetic directions with low inclinations from sampling sites confined to one hemisphere from Gondwana as well as Laurasia that the effects of a zonal octupole field contribution would not explain away the paleomagnetic evidence for Pangea 'B' in the Early Permian. We therefore regard the paleomagnetic evidence for an Early Permian Pangea 'B' as robust. The transformation from Pangea 'B' to Pangea 'A' took place during the Permian because Late Permian paleomagnetic data allow a Pangea 'A' configuration. We therefore review geological evidence from the literature in support of an intra-Pangea dextral megashear system. The transformation occurred after the cooling of the Variscan mega-suture and lasted ˜20 Myr. In this interval, the Neotethys Ocean opened between India/Arabia and the Cimmerian microcontinents in the east, while widespread lithospheric wrenching and magmatism took place in the west around the Adriatic promontory. The general

  4. Early adolescence behavior problems and timing of poverty during childhood: A comparison of lifecourse models.

    PubMed

    Mazza, Julia Rachel S E; Lambert, Jean; Zunzunegui, Maria Victoria; Tremblay, Richard E; Boivin, Michel; Côté, Sylvana M

    2017-03-01

    Poverty is a well-established risk factor for the development of behavior problems, yet little is known about how timing of exposure to childhood poverty relates to behavior problems in early adolescence. To examine the differential effects of the timing of poverty between birth and late childhood on behavior problems in early adolescence by modeling lifecourse models, corresponding to sensitive periods, accumulation of risk and social mobility models. We used the Quebec Longitudinal Study of Child Development (N = 2120). Poverty was defined as living below the low-income thresholds defined by Statistics Canada and grouped into three time periods: between ages 0-3 years, 5-7 years, and 8-12 years. Main outcomes were teacher's report of hyperactivity, opposition and physical aggression at age 13 years. Structured linear regression analyses were conducted to estimate the contribution of poverty during the three selected time periods to behavior problems. Partial F-tests were used to compare nested lifecourse models to a full saturated model (all poverty main effects and possible interactions). Families who experienced poverty at all time periods were 9.3% of the original sample. Those who were poor at least one time period were 39.2%. The accumulation of risk model was the best fitting model for hyperactivity and opposition. The risk for physical aggression problems was associated only to poverty between 0 and 3 years supporting the sensitive period. Early and prolonged exposure to childhood poverty predicted higher levels of behavior problems in early adolescence. Antipoverty policies targeting the first years of life and long term support to pregnant women living in poverty are likely to reduce behavior problems in early adolescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Vázquez-Vílchez, Mercedes; Jabaloy-Sánchez, Antonio; Azor, Antonio; Stuart, Finlay; Persano, Cristina; Alonso-Chaves, Francisco M.; Martín-Parra, Luis Miguel; Matas, Jerónimo; García-Navarro, Encarnación

    2015-11-01

    The post-Paleozoic tectonothermal evolution of the SW Iberian Variscides is poorly known mainly due to the scarce low-temperature geochronological data available. We have obtained new apatite fission-tracks and apatite (U-Th)/He ages to constrain the Mesozoic and Cenozoic tectonic evolution of this portion of the Iberian Massif located just north of the Betic-Rif Alpine orogen. We have obtained nine apatite fission-track ages on samples from Variscan and pre-Variscan granitoids. These ages range from 174.4 (± 10.8) to 54.1 (± 4.9) Ma, with mean track lengths between 10.3 and 13.9 μm. We have also performed 5 (U-Th)/He datings on some of the same samples, obtaining ages between 74.6 (± 1.6) and 18.5 (± 1.4) Ma. Time-temperature path modeling of these low-temperature geochronological data leads us to envisage four post-Paleozoic tectonically controlled exhumation episodes in the SW Iberian Variscides. Three of these episodes occurred in Mesozoic times (Middle Triassic to Early Jurassic, Early Cretaceous, and Late Cretaceous) at rates of ≈ 1.1 to 2.5 °C Ma- 1, separated by periods with almost no cooling. We relate these Mesozoic cooling events to the formation of important marginal reliefs during the rifting and opening of the central and northern Atlantic realm. The fourth exhumation episode occurred in Cenozoic times at rates of ≈ 3.2 to 3.6 °C Ma- 1, being only recorded in samples next to faults with topographic escarpments. These samples cooled below 80 °C at ≈ 20 Ma at rates of 3-13 °C Ma- 1 due to roughly N-S oriented compressional stresses affecting the whole Iberian plate, which, in the particular case of SW Iberia, reactivated some of the previous Late Paleozoic thrusts.

  6. Geology and neotectonism in the epicentral area of the 2011 M5.8 Mineral, Virginia, earthquake

    USGS Publications Warehouse

    Burton, William C.; Spears, David B.; Harrison, Richard W.; Evans, Nicholas H.; Schindler, J. Stephen; Counts, Ronald C.

    2015-01-01

    arc (Ordovician Chopawamsic Formation) to Laurentia, intrusion of a granodiorite pluton (Ordovician Ellisville pluton), and formation of a post-Chopawamsic successor basin (Ordovician Quantico Formation), all accompanied by early Paleozoic regional deformation and metamorphism. Local transpressional faulting and retrograde metamorphism occurred in the late Paleozoic, followed by diabase dike intrusion and possible local normal faulting in the early Mesozoic. The overall goal of the bedrock mapping is to determine what existing geologic structures might have been reactivated during the 2011 seismic event, and surfi cial deposits along the South Anna River are being mapped in order to determine possible neotectonic uplift. In addition to bedrock and surfi cial studies, we have excavated trenches in an area that contains two late Paleozoic faults and represents the updip projection of the causative fault for the 2011 quake. The trenches reveal faulting that has offset surfi cial deposits dated as Quaternary in age, as well as numerous other brittle structures that suggest a geologically recent history of neotectonic activity.

  7. Early years neurosurgical training in the era of the European Working Time Directive.

    PubMed

    Kirkman, Matthew A; Watkins, Laurence D; Kitchen, Neil D; Sethi, Huma

    2013-10-01

    The past decade has seen significant changes to the face of neurosurgical training in the United Kingdom, driven in part by an increasing focus on patient safety and the introduction of Modernising Medical Careers and the European Working Time Directive (EWTD). Recent reforms to neurosurgical training over the past few years have resulted in creation of an 8-year 'run-through' training programme. In this programme, early years (ST1 and ST2) trainees often lack dedicated time for elective theatre lists and outpatient clinics. Further, any time spent in theatre and clinics is often with different teams. Here we describe a training model for early years trainees at the National Hospital for Neurology and Neurosurgery, who are given the responsibilities traditionally associated with a more senior trainee including dedicated weekly theatre and clinic time under the supervision of a single consultant, in addition to out of hours experience. The advantages and considerations for implementing this model are discussed, including the benefit of guidance under a single consultant in the early stages of training, along with key educational concepts necessary for understanding its utility. We feel that this is an effective model for junior neurosurgical training in the EWTD era, expediting the trainee's development of key technical and non-technical skills, with potentially significant rewards for patient, trainee and trainer. National implementation of this model should be considered.

  8. Early diagnosis and multidisciplinary care reduce the hospitalization time and duration of tube feeding and prevent early obesity in PWS infants.

    PubMed

    Bacheré, N; Diene, G; Delagnes, V; Molinas, C; Moulin, P; Tauber, M

    2008-01-01

    To describe and evaluate the impact of very early diagnosis and multidisciplinary care on the evolution and care of infants presenting with Prader-Willi syndrome (PWS). 19 infants diagnosed with PWS before the second month of life were followed by a multidisciplinary team. Median age at the time of analysis was 3.1 years [range 0.4-6.5]. The data were compared with data collected in 1997 from 113 questionnaires filled out by members of the French PWS Association. The patients from this latter data set were 12.0 years [range 4 months to 41 years] at the time of analysis, with a median age of 36 months at diagnosis. The duration of their hospitalization time was significantly reduced from 30.0 [range 0-670] to 21 [range 0-90] days (p = 0.043). The duration of gastric tube feeding was significantly reduced from 30.5 [range 0-427] to 15 [range 0-60] days (p = 0.017). Growth hormone treatment was started at a mean age of 1.9 +/- 0.5 years in 10 infants and L-thyroxine in 6 infants. Only 1 infant became obese at 2.5 years. Early diagnosis combined with multidisciplinary care decreases the hospitalization time, duration of gastric tube feeding and prevents early obesity in PWS infants. (c) 2007 S. Karger AG, Basel.

  9. Standardized Symptom Measurement of Individuals with Early Lyme Disease Over Time.

    PubMed

    Bechtold, Kathleen T; Rebman, Alison W; Crowder, Lauren A; Johnson-Greene, Doug; Aucott, John N

    2017-03-01

    Understanding the Lyme disease (LD) literature is challenging given the lack of consistent methodology and standardized measurement of symptoms and the impact on functioning. This prospective study incorporates well-validated measures to capture the symptom picture of individuals with early LD from time of diagnosis through 6-months post-treatment. One hundred seven patients with confirmed early LD and 26 healthy controls were evaluated using standardized instruments for pain, fatigue, depressive symptoms, functional impact, and cognitive functioning. Prior to antibiotic treatment, patients experience notable symptoms of fatigue and pain statistically higher than controls. After treatment, there are no group differences, suggesting that symptoms resolve and that there are no residual cognitive impairments at the level of group analysis. However, using subgroup analyses, some individuals experience persistent symptoms that lead to functional decline and these individuals can be identified immediately post-completion of standard antibiotic treatment using well-validated symptom measures. Overall, the findings suggest that ideally-treated early LD patients recover well and experience symptom resolution over time, though a small subgroup continue to suffer with symptoms that lead to functional decline. The authors discuss use of standardized instruments for identification of individuals who warrant further clinical follow-up. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Investigation of Times of Minima of Selected Early-Type Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Wolf, Marek; Niarchos, P. G.; Gazeas, K. D.; Manimanis, V. N.; Chochol, Drahomír

    2006-08-01

    New precise times of minimum light for several early-type eclipsing binaries were obtained at three observatories. The changes of period of the following measured binaries are discussed: V1182 Aql, LY Aur, SZ Cam, FZ CMa, QZ Car, LZ Cen, V606 Cen, AH Cep and TU~Mus.

  11. Early Life Factors and Adult Leisure Time Physical Inactivity Stability and Change.

    PubMed

    Pinto Pereira, Snehal M; Li, Leah; Power, Chris

    2015-09-01

    Physical inactivity has a high prevalence and associated disease burden. A better understanding of influences on sustaining and changing inactive lifestyles is needed. We aimed to establish whether leisure time inactivity was stable in midadulthood and whether early life factors were associated with inactivity patterns. In the 1958 British birth cohort (n = 12,271), leisure time inactivity (frequency, less than once a week) assessed at 33 and 50 yr was categorized as "never inactive," "persistently inactive," "deteriorating," or "improving." Early life factors (birth to 16 yr) were categorized into three (physical, social, and behavioral) domains. Using multinomial logistic regression, we assessed associations with inactivity persistence and change of factors within each early life domain and the three domains combined with and without adjustment for adult factors. Inactivity prevalence was similar at 33 and 50 yr (approximately 31%), but 17% deteriorated and 18% improved with age. In models adjusted for all domains simultaneously, factors associated with inactivity persistence versus never inactive were prepubertal stature (8% lower risk/height SD), poor hand control/coordination (17% higher risk/increase on four-point scale), cognition (16% lower/SD in ability) (physical); parental divorce (25% higher), class at birth (7% higher/reduction on four-point scale), minimal parental education (16% higher), household amenities (2% higher/increase in 19-point score (high = poor)) (social); and inactivity (22% higher/reduction in activity on four-point scale), low sports aptitude (47% higher), smoking (30% higher) (behavioral). All except stature, parental education, sports aptitude, and smoking were associated also with inactivity deterioration. Poor hand control/coordination was the only factor associated with improved status (13% lower/increase on four-point scale) versus persistently inactive. Adult leisure time inactivity is moderately stable. Early life factors are

  12. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  13. Tectonics of the North American Cordillera near the Fortieth Parallel

    USGS Publications Warehouse

    King, P.B.

    1978-01-01

    The North American Cordillera near the Fortieth Parallel consists of the following tectonic units: 1. (A) To the east is a reactivated cratonic area, in the Southern Rocky Mountains and Colorado Plateau, in which the supracrustal rocks (Cambrian to Cretaceous) were broadly deformed during the late Cretaceous-Paleocene Laramide orogeny, and the Precambrian basement was raised in folds of wide amplitude. 2. (B) West of it is a miogeosynclinal belt, in the eastern Great Basin, in which a thick sequence of Paleozoic carbonates and related deposits was thrust eastward along low-angle faults during the middle to late Cretaceous Sevier orogeny. The miogeosyncline is the downwarped western margin of the original North American continent, and its rocks accumulated on Precambrian basement. 3. (C) Beyond is a eugeosynclinal belt, in the western Great Basin, in which Paleozoic graywackes, cherts, and volcanics were thrust easteastward along low-angle faults during several Paleozoic orogenies - the mid-Paleozoic Antler orogeny which produced the Roberts thrust on the east, and the end-Paleozoic Sonoma orogeny which produced the Golconda thrust farther west. The Paleozoic eugeosynclinal rocks accumulated on oceanic basement. They are overlapped from the west by Triassic and Jurassic shelf deposits, which pass westward into eugeosynclinal deposits. 4. (D) A volcanic island-arc belt existed on the sites of the Sierra Nevada in Paleozoic and early Mesozoic time, which produced thick bodies of sediments and volcanics. During the mid-Mesozoic Nevadan orogeny these were steeply deformed and thrust westward over subduction zones, and were intruded by granitic rocks that rose from the upper mantle to form great batholiths. 5. (E) West of the Sierra Nevada, in the Great Valley, is a great sedimentary embankment of later Mesozoic flysch or turbidite, largely younger than the supracrustal rocks of the Sierra Nevada and the Nevadan orogeny. It was formed of the erosional products of the

  14. Timing of First Antenatal Care (ANC) and Inequalities in Early Initiation of ANC in Nepal.

    PubMed

    Paudel, Yuba Raj; Jha, Trishna; Mehata, Suresh

    2017-01-01

    The provision and uptake of quality and timely antenatal care (ANC) is an essential element of efforts to improve health outcomes for women and newborn babies. Antenatal consultations assist in early identification and treatment of complications during pregnancy. This study aimed to provide an information on distribution and inequalities in early initiation of ANC in Nepal. The distribution and inequalities in the early initiation of ANC were examined using Nepal Demographic and Health Surveys 2011. Bivariate and multivariate logistic regression was used to assess inequalities. Overall, 70% of the women had started their first ANC at 4 month or earlier. Among participants who had never attended school, just more than half (52%) received first ANC at 4 months or earlier, while majority of participants (97%) who had received higher education received first ANC at recommended time. Similarly, 89% of those from richest quintile and 48% of those from poorest quintile received first ANC at recommended time. In adjusted analysis, women from richest wealth quintile were significantly more likely to initiate ANC early (AOR: 3.74, 95% CI: 2.31-6.05) compared to the poorest. Similarly, women with higher level education were significantly more likely (AOR: 11.40, 95% CI: 5.05-25.73) to initiate ANC early compared to women who had never attended school. A significantly lower odds of early ANC take up was observed among madhesi other caste (AOR: 0.56, 95% CI: 0.35-0.90) compared to brahmin/chhetri women. Women whose pregnancy was unwanted were significantly less likely to attend first ANC at 4 months or early (AOR: 0.73, 95% CI: 0.58-0.93) in comparison to women whose pregnancy was wanted. The differences in the recommended timing of initiation of ANC were evident among women with different educational, economic levels, and caste/ethnic groups. Rural women were less likely to have checkups as per guidelines. The findings suggest to a need of interventions to raise female

  15. Timing and Nature of Events Leading to the Formation of the Albion-Raft River-Grouse Creek (ARG) Metamorphic Core complex, Northern Great Basin, W. U.S.

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Konstantinou, A.; Sheu, D.; Strickland, A.; Grove, M.

    2016-12-01

    Interpretations of the geodynamic significance of metamorphic core complexes in the northern Basin and Range are intimately tied to a combination of P-T data, geochronology and mica thermochronology used to infer episodes of deformation and uplift related to syn-shortening gravitational collapse of the crust in the latest Cretaceous-early Cenozoic. The ARG is no exception and we bring new geologic mapping, microstructural analysis, geochronology and 40Ar/39Ar thermochronology to bear on these questions. The petrogenesis of Eocene-Miocene magmas, the structural fabrics and metamorphism developed in wall rocks of plutons and the history of flanking basins outline a three-part Cenozoic story of this complex: Part 1: Mantle-derived heat input into the crust in the Eocene (42-36 Ma), related to Farallon slab removal, produced volcanism, plutonism, but little regional extension. Part 2: Heat input led to increased crustal melting as surface volcanism ceased. Diapiric rise of granite-cored gneiss domes sheathed by high grade, high strain metamorphic fabrics and mylonites took place over a protracted time, 32-25 Ma, stalling at depths > 10 km. Transitions upward from penetrative stretching fabrics to brittle crust were complex damage zones of multiply deformed and faulted Paleozoic strata overlain by a more intact 7-8 km thick section of Late Paleozoic and Triassic. Extension was localized and no sedimentary basins formed during this time. Part 3: Metamorphic and igneous rocks were brought to near surface conditions during Miocene extension, between 14-8 Ma ago. Structures accommodating E-W extension are high-angle, rotational normal faults that currently bound both sides of the ARG complex with linked sedimentary basins in their hanging wall. New 40Ar/39Ar data show that country rocks near the Oligocene Almo pluton share the pluton's cooling history. Further from the pluton, where pre-Oligocene fabrics are variably preserved, white mica total gas and plateau ages increase

  16. Listening to Students: Studying for a Part-Time Degree in Early Childhood Studies.

    ERIC Educational Resources Information Center

    Burn, Elizabeth

    For this study, 12 part-time students in an early childhood studies program were interviewed and videotaped concerning their personal stories as students. Initial analysis of their responses revealed main themes: (1) economic barriers to full-time degree study; (2) domestic responsibilities/gender issues (for example, the stress of juggling…

  17. Conodont color alteration index and upper Paleozoic thermal history of the Amazonas Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Cardoso, Cassiane Negreiros; Sanz-López, Javier; Blanco-Ferrera, Silvia; Lemos, Valesca Brasil; Scomazzon, Ana Karina

    2015-12-01

    The conodont color alteration index (CAI) was determined in elements from core samples of the Frasnian Barreirinha Formation (one well) and of the Pennsylvanian-Permian Tapajós Group (twenty three wells and one limestone quarry) in the Amazonas Basin. The thermal history of the basin is analyzed using the CAI value distribution represented in maps and stratigraphic sections through correlation schemes, and in conjunction with previously published data. The pattern of palaeotemperatures for CAI values of 1.5-3 is coincident with organic matter maturation under a sedimentary overburden providing diagenetic conditions in the oil/gas window. Locally, conodonts show metamorphism (CAI value of 6-7) in relation to the intrusion of diabase bodies in beds including high geothermal gradient evaporites. Microtextural alteration on the surface conodonts commonly shows several types of overgrowth microtextures developed in diagenetic conditions. Locally, recrystallization in conodonts with a high CAI value is congruent with contact metamorphism in relation to Mesozoic intrusions. The CAI values of 1.5 or 2 observed close to the surface in several areas of the basin may be interpreted in relation to a high thermal palaeogradient derived from the magmatic episode or/and to the local denudation of the upper part of the Paleozoic succession prior to this thermal event.

  18. Early, on-time, and late behavioural autonomy in adolescence: psychosocial correlates in young and middle adulthood.

    PubMed

    Pavlova, Maria K; Haase, Claudia M; Silbereisen, Rainer K

    2011-04-01

    Drawing on two nationally representative German studies (N(1) = 1744, N(2) = 759), we examined correlates of early, on-time, and late curfew autonomy, a retrospective indicator of behavioural autonomy, in young and middle adulthood (19-37 years of age). Adjustment in four domains was considered: educational attainment, externalizing problem behaviour, subjective well-being, and interpersonal relationships. The early group showed lower adjustment in multiple domains across young and middle adulthood. The late group reported a mixed pattern of adjustment at younger ages (lower externalizing problems, but lower positive affect, lower importance of peers, and lower likelihood to have a partner) and positive adjustment in all domains at older ages. Timing effects were controlled for sociodemographic characteristics and retrospective measures of early adversities, pubertal timing, disclosure to parents, and peer group affiliation in adolescence. Findings show that late behavioural autonomy in its correlates is not simply the opposite of early behavioural autonomy. Copyright © 2010 The Association for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  19. Comparing physical activity and sedentary time among overweight and nonoverweight preschoolers enrolled in early learning programs: a cross-sectional study.

    PubMed

    Tucker, Patricia; Maltby, Alana M; Burke, Shauna M; Vanderloo, Leigh M; Irwin, Jennifer D

    2016-09-01

    Establishing appropriate physical activity and sedentary behaviours during early childhood is important to ensure children accrue the many associated health benefits. While physical activity levels have been reported as low within early learning programs, little research has explored the physical activity and sedentary time of Canadian preschoolers classified as overweight within these facilities. The purpose of this study was to compare objectively measured physical activity and sedentary time among preschoolers classified as overweight and nonoverweight in early learning programs. Direct assessment of physical activity and sedentary time of 216 preschool-aged children was collected via Actical accelerometers during early learning hours, while body mass index percentile was calculated based on preschoolers' objectively measured height and weight. Results of three 3-way ANOVAs suggest that rates of moderate to vigorous physical activity, total physical activity, and sedentary time (p > 0.05) did not significantly differ based on weight status, sex, and type of early learning facility. This study is one of few that has examined differences in overweight and nonoverweight preschoolers' sedentary time, and adds to the limited research exploring physical activity levels among overweight and nonoverweight preschoolers during early learning hours. Given the high rates of sedentary time reported, programming within early learning facilities is necessary to support preschoolers, regardless of weight status, to achieve increased physical activity levels and decreased sedentary time.

  20. Dronning Maud Lands (East Antarctica) significance for Late Mesoproterozoic/Early Neoproterozoic supercontinent reconstructions

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Elburg, Marlina; Laeufer, Andreas; Kleinhanns, Ilka C.; Henjes-Kunst, Friedhelm; Estrada, Solveig; Ruppel, Antonia; Damaske, Detlef; Montero, Pilar; Bea, Fernando

    2015-04-01

    The recent study of a so far white spot on the geological map of Dronning Maud Land (DML) during the international GEA expeditions sheds new light on the significance of major tectono-metamorphic provinces of Dronning Maud Land, East Antarctica. The western part of eastern DML allows the characterization and ground-truthing of a large and mostly ice-covered area, that is geophysically distinct and which was previously interpreted as a potentially older cratonic block south of a Late Neoproterozoic/EarlyPaleozoic mobile belt, which is exposed in the Sør Rondane Mts. (SRM). SHRIMP/SIMS zircon analyses of 20 samples together with new geochemistry indicate that the exposed basement consists of a ca. 1000-900 Ma juvenile terrane that is very similar to the juvenile rocks of the SW-Terrane of the SRM, a characteristic gabbro-trondhjemite-tonalite-granite suite. However, in contrast to the southern part of the SW-Terrane, our study area shows intense crustal reworking at medium to high-grade conditions between ca. 630-520 Ma, associated with significant felsic melt production, including A-type granitoid magmatism. Therefore, the study area, and thereby the aeromagnetically distinct SE DML province does neither represent the foreland of a Late Neoproterozoic/EarlyPaleozoic mobile belt, nor a craton, as has previously been speculated. It more likely represents the westward continuation of Rayner-age crust (1000-900 Ma) that has undergone additional protracted LN/EP overprinting. We interpret the southern part of the only weakly overprinted SW-Terrane as a mega-boudin within a broad, rheologically weaker, NW-SE trending LN/EP mobile belt. Rayner-type crust likely continues further west, where it abuts along the SW-trending Forster Magnetic Anomaly. The latter is interpreted as a suture, which separates typical Grenville-age crust of the Maud Belt to the W from Rayner-age crust to the E. The study area has therefore clearly Indian affinities. Its juvenile character with a

  1. The Developmental Pathway From Pubertal Timing to Delinquency and Sexual Activity From Early to Late Adolescence

    PubMed Central

    Negriff, Sonya; Elizabeth, J. Susman; Trickett, Penelope K.

    2013-01-01

    There is strong evidence that early pubertal timing is associated with adolescent problem behaviors. However, there has been limited investigation of the mechanisms or developmental relationships. The present study examined longitudinal models incorporating pubertal timing, delinquency, and sexual activity in a sample of 454 adolescents (9–13 years old at enrollment; 47% females). Participants were seen for three assessments approximately 1 year apart. Characteristics of friendship networks (older friends, male friends, older male friends) were examined as mediators. Structural equation modeling was used to test these associations as well as temporal relationships between sexual activity and delinquency. Results showed that early pubertal timing at Time 1 was related to more sexual activity at Time 2, which was related to higher delinquency at Time 3, a trend mediation effect. None of the friendship variables mediated these associations. Gender or maltreatment status did not moderate the meditational pathways. The results also supported the temporal sequence of sexual activity preceding increases in delinquency. These findings reveal that early maturing adolescents may actively seek out opportunities to engage in sexual activity which appears to be risk for subsequent delinquency. PMID:21191640

  2. The developmental pathway from pubertal timing to delinquency and sexual activity from early to late adolescence.

    PubMed

    Negriff, Sonya; Susman, Elizabeth J; Trickett, Penelope K

    2011-10-01

    There is strong evidence that early pubertal timing is associated with adolescent problem behaviors. However, there has been limited investigation of the mechanisms or developmental relationships. The present study examined longitudinal models incorporating pubertal timing, delinquency, and sexual activity in a sample of 454 adolescents (9-13 years old at enrollment; 47% females). Participants were seen for three assessments approximately 1 year apart. Characteristics of friendship networks (older friends, male friends, older male friends) were examined as mediators. Structural equation modeling was used to test these associations as well as temporal relationships between sexual activity and delinquency. Results showed that early pubertal timing at Time 1 was related to more sexual activity at Time 2, which was related to higher delinquency at Time 3, a trend mediation effect. None of the friendship variables mediated these associations. Gender or maltreatment status did not moderate the meditational pathways. The results also supported the temporal sequence of sexual activity preceding increases in delinquency. These findings reveal that early maturing adolescents may actively seek out opportunities to engage in sexual activity which appears to be risk for subsequent delinquency.

  3. Between Charity and Education: Orphans and Orphanages in Early Modern Times

    ERIC Educational Resources Information Center

    Jacobi, Juliane

    2009-01-01

    In early modern times orphans have been children who could not expect sufficient support from their family because of lack of at least one parent, in most cases the father. This article will clarify of whom we are talking if we talk about orphans and what have been the conditions of living in a society which was organised by a high variety of…

  4. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh vS.; Shuster, Alice; Greig, Alan; Planavsky, Noah J.; Reed, Christopher P.

    2017-05-01

    There has been extensive debate about the history of Earth's oxygenation and the role that land plant evolution played in shaping Earth's ocean-atmosphere system. Here we use the rare earth element patterns in marine carbonates to monitor the structure of the marine redox landscape through the rise and diversification of animals and early land plants. In particular, we use the relative abundance of cerium (Ceanom), the only redox-sensitive rare earth element, in well-preserved marine cements and other marine precipitates to track seawater oxygen levels. Our results indicate that there was only a moderate increase in oceanic oxygenation during the Ediacaran (average Cryogenian Ceanom = 1.1, average Ediacaran Ceanom = 0.62), followed by a decrease in oxygen levels during the early Cambrian (average Cryogenian Ceanom = 0.90), with significant ocean anoxia persisting through the early and mid Paleozoic (average Early Cambrian-Early Devonian Ceanom = 0.84). It was not until the Late Devonian that oxygenation levels are comparable to the modern (average of all post-middle Devonian Ceanom = 0.55). Therefore, this work confirms growing evidence that the oxygenation of the Earth was neither unidirectional nor a simple two-stage process. Further, we provide evidence that it was not until the Late Devonian, when large land plants and forests first evolved, that oxygen levels reached those comparable to the modern world. This is recorded with the first modern-like negative Ceanom (values <0.6) occurring at around 380 Ma (Frasnian). This suggests that land plants, rather than animals, are the 'engineers' responsible for the modern fully oxygenated Earth system.

  5. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity

  6. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which

  7. The Role of Present Time Perspective in Predicting Early Adolescent Violence.

    PubMed

    Kruger, Daniel J; Carrothers, Jessica; Franzen, Susan P; Miller, Alison L; Reischl, Thomas M; Stoddard, Sarah A; Zimmerman, Marc A

    2018-06-01

    This study investigated the role of present and future time perspectives, and their relationships with subjective norms and beliefs regarding violence, in predicting violent behaviors among urban middle school students in the Midwestern United States. Although present time perspective covaried with subjective norms and beliefs, each made a unique prediction of self-reported violent behaviors. Future time perspective was not a significant predictor when accounting for these relationships. In addition, present orientation moderated the relationship between subjective norms and beliefs and rates of violent behaviors; those with higher present orientations exhibited stronger associations. We replicated this pattern of results in data from new participants in a subsequent wave of the study. Interventions that explicitly address issues related to time perspective may be effective in reducing early adolescent violence.

  8. Design and characterization of a dead-time regime enhanced early photon projection imaging system

    NASA Astrophysics Data System (ADS)

    Sinha, L.; Fogarty, M.; Zhou, W.; Giudice, A.; Brankov, J. G.; Tichauer, K. M.

    2018-04-01

    Scattering of visible and near-infrared light in biological tissue reduces spatial resolution for imaging of tissues thicker than 100 μm. In this study, an optical projection imaging system is presented and characterized that exploits the dead-time characteristics typical of photon counting modules based on single photon avalanche diodes (SPADs). With this system, it is possible to attenuate the detection of more scattered late-arriving photons, such that detection of less scattered early-arriving photons can be enhanced with increased light intensity, without being impeded by the maximum count rate of the SPADs. The system has the potential to provide transmittance-based anatomical information or fluorescence-based functional information (with slight modification in the instrumentation) of biological samples with improved resolution in the mesoscopic domain (0.1-2 cm). The system design, calibration, stability, and performance were evaluated using simulation and experimental phantom studies. The proposed system allows for the detection of very-rare early-photons at a higher frequency and with a better signal-to-noise ratio. The experimental results demonstrated over a 3.4-fold improvement in the spatial resolution using early photon detection vs. conventional detection, and a 1000-fold improvement in imaging time using enhanced early detection vs. conventional early photon detection in a 4-mm thick phantom with a tissue-equivalent absorption coefficient of μa = 0.05 mm-1 and a reduced scattering coefficient of μs' = 5 mm-1.

  9. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene.

    PubMed

    Vďačný, Peter

    2015-08-01

    The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Oral Region Homologies in Paleozoic Crinoids and Other Plesiomorphic Pentaradial Echinoderms

    PubMed Central

    Kammer, Thomas W.; Sumrall, Colin D.; Zamora, Samuel; Ausich, William I.; Deline, Bradley

    2013-01-01

    The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome) plate organization (Peristomial Border Systems) are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony-based phylogenetics for

  11. Detrimental Psychological Outcomes Associated with Early Pubertal Timing in Adolescent Girls

    PubMed Central

    Mendle, Jane; Turkheimer, Eric; Emery, Robert E.

    2010-01-01

    Though often discussed as though it were a discrete event, puberty comprises one segment of a larger developmental continuum and is notable for rapid transformation across a multitude of domains. Research suggests that an earlier rate of pubertal maturation in girls correlates with a number of detrimental outcomes compared with on-time or later maturation. The present review synthesizes the research on negative psychological sequelae of early pubertal timing in adolescent girls. Emphasis is on three theoretical perspectives by which precocious development is believed to affect the emergence of adverse outcomes: biological, psychosocial, and selection effects. PMID:20740062

  12. Mass extinction of ocean organisms at the Paleozoic-Mesozoic boundary: Effects and causes

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2012-04-01

    At the end of the Permian, at the boundary between the Paleozoic and Mesozoic (251.0 ± 0.4 Ma), the largest mass extinction of organisms on the Earth occurred. Up to 96% of the species of marine invertebrates and ˜70% of the terrestrial vertebrates died off. A lot of factors were suggested and substantiated to explain this mass mortality, such as the disappearance of environmental niches in the course of the amalgamation of the continental plates into Pangea, sea level fluctuations, anoxia, an elevated CO2 content, H2S intoxication, volcanism, methane discharge from gas-hydrates, climate changes, impact events (collisions with large asteroids), or combinations of many of these reasons. Some of these factors are in subordination to others, while others are independent. Almost all of these factors developed relatively slowly and could not cause the sudden mass mortality of organisms globally. It could have happened when large asteroids, whose craters have been discovered lately, fell to the Earth. It is suggested that the impact events "finished off" the already suppressed biota. A simultaneous change in many of the factors responsible for the biodiversity, including those not connected in a cause-and-effect relationship, proves the existence of a common extrater-restrial cause that affected both the changes in the internal and external geospheres and the activation of asteroid attacks (the Sun's transit of spiral arms of our galaxy, the Sun's oscillations perpendicularly to the galactic plane, etc).

  13. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China

    NASA Astrophysics Data System (ADS)

    Bao, Zihe; Cai, Keda; Sun, Min; Xiao, Wenjiao; Wan, Bo; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2018-03-01

    The Tianshan belt of the southwestern Central Asian Orogenic Belt was generated by Paleozoic multi-stage subduction and final closure of several extinct oceans, including the South Tianshan Ocean between the Kazakhstan-Yili and Tarim blocks. However, the subduction initiation and polarity of the South Tianshan Ocean remain issues of highly debated. This study presents new zircon U-Pb ages, geochemical compositions and Sr-Nd isotopes, as well as zircon Hf isotopic data of the Latest Devonian to Early Carboniferous granitic rocks in the Wusun Mountain of the Yili Paleozoic convergent margin, which, together with the spatial-temporal distributions of regional magmatic rocks, are applied to elucidate their petrogenesis and tectonic linkage to the northward subduction initiation of the South Tianshan Ocean. Our zircon U-Pb dating results reveal that these granites were emplaced at the time interval of 362.0 ± 1.2-360.3 ± 1.9 Ma, suggesting a marked partial melting event of the continental crust in the Latest Devonian to Early Carboniferous. These granites, based on their mineral compositions and textures, can be categorized as monzogranites and K-feldspar granites. Geochemically, both monzogranites and K-feldspar granites have characters of I-type granites with high K2O contents (4.64-4.83 wt.%), and the K-feldspar granites are highly fractionated I-type granites, while the monzogranites have features of unfractionated I-type granites. Whole-rock Sr-Nd isotopic modeling results suggest that ca. 20-40% mantle-derived magmas may be involved in magma mixing with continental crust partial melts to generate the parental magmas of the granites. The mantle-derived basaltic magmas was inferred not only to be a major component of magma mixture but also as an important heat source to fuse the continental crust in an extensional setting, which is evidenced by the high zircon saturation temperatures (713-727 °C and 760-782 °C) of the studied granites. The Latest Devonian to

  14. Early Pubertal Timing as a Vulnerability to Depression Symptoms: Differential Effects of Race and Sex

    PubMed Central

    Hamlat, Elissa J.; Stange, Jonathan P.; Alloy, Lauren B.; Abramson, Lyn Y.

    2013-01-01

    Robust evidence supports that girls and boys who experience early pubertal timing, maturing earlier than one’s peers, are vulnerable to developing symptoms of depression. However, it has yet to be clarified whether early pubertal timing confers vulnerability to African American as well as to Caucasian adolescents and whether this vulnerability is specific to depressive symptoms or can be generalized to symptoms of social anxiety. In previous studies, one race or one sex was examined in isolation or sample sizes were too small to examine racial differences. Our longitudinal study consisted of a sample of 223 adolescents (Mean age = 12.42, 54.3% female, 50.2% African American, and 49.8% Caucasian). At baseline, depressive symptoms, social anxiety symptoms, and pubertal timing were assessed by self-report. Nine months later, we assessed depressive symptoms, social anxiety symptoms, body esteem, and stressful life events that occurred between baseline and follow-up. Analyses indicated that early pubertal timing interacted with stressful life events to predict increased symptoms of depression, but only for Caucasian girls and African American boys. Results were found to be specific to depressive symptoms and did not generalize to symptoms of social anxiety. Additionally, there was a significant positive indirect effect of pubertal timing on symptoms of depression through body esteem for Caucasian females. PMID:24014162

  15. Deformation of the Roberts Mountains Allochthon in north-central Nevada

    USGS Publications Warehouse

    Evans, James George; Theodore, Ted G.

    1978-01-01

    During the Antler orogeny in Late Devonian and Early Mississippian time, early and middle Paleozoic siliceous rocks, largely chert and sha1e, were thrust eastward for 90 to 160 km over coexisting carbonate rocks. Minor and major structures of two small areas of the allochthon at Battle Mountain and in the southern Tuscarora Mountains were studied in order to characterize the deformation and test the consistency of the movement plan with respect to the large eastward displacement. In the Battle Mountain area, the lower Paleozoic Scott Canyon and Valmy Formations were deformed in the Antler orogeny but were unaffected by later tectonism during late Paleozoic or early Mesozoic. In the southern Tuscarora Mountains area, the Ordovician and Silurian siliceous rocks deformed in the Antler Orogeny were deformed by later, possibly Mesozoic, folding and thrusting. Most of the minor folding visible in the allochthon is in the cheret, but proportionally more of the strain was taken up in the shale and argillite, both poorly exposed but predominant rock types. Most minor folds, concentric in form, plunge at small angles to the north-northeast and south-southwest with steeply dipping or vertical axial planes. The b-fabric axis, parallel to these folds, is identical apparently to the B-kinematic axis. The horizontal component of tectonic shortening of the allochthon, N. 70?-75? W. both in the Battle Mountain area and in the southern Tuscarora Mountains area, is therefore consistent with an eastward direction of movement of the allochthon. Folds with west- northwest trends locally present in the allochthon, may have formed in the direction of tectonic transport. In the southern Tuscarora Mountains, local strain in and below the allochthon was different from the prevailing strain in the allochthon, and tectonic shortening was locally at large angles to the accepted direction of movement of the allochthon.

  16. Stratigraphy and Mesozoic–Cenozoic tectonic history of northern Sierra Los Ajos and adjacent areas, Sonora, Mexico

    USGS Publications Warehouse

    Page, William R.; Gray, Floyd; Iriondo, Alexander; Miggins, Daniel P.; Blodgett, Robert B.; Maldonado, Florian; Miller, Robert J.

    2010-01-01

    Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US

  17. Time to hospitalization for suicide attempt by the timing of parental suicide during offspring early development

    PubMed Central

    Kuramoto, S. Janet; Runeson, Bo; Stuart, Elizabeth A.; Lichtenstein, Paul; Wilcox, Holly C.

    2013-01-01

    Context Previous studies have suggested that children who experience parental suicide at earlier ages are at higher risk of future hospitalization for suicide attempt. However, how the trajectories of risk differ by offspring age at the time of parental suicide is currently unknown. Objective To study time at risk to hospitalization for suicide attempt among offspring after experiencing parental suicide or accidental death by offspring developmental period at the time of parental death. Design Population-based retrospective cohort study Setting Sweden Participants 26,096 offspring who experienced parental suicide and 32,395 offspring of accident decedents prior to age 25 from 1973-2003. Main Outcome Measures Hospitalization for suicide attempt. Parametric survival analysis was used to model the time to hospitalization for suicide attempt across offspring who lost a parent during early childhood (0-5 years old), later childhood (6-12), adolescence (13-17) and young adulthood (18-24). Results The risk in offspring who lost a parent during early or late childhood surpassed the other two age groups’ hazards approximately 5 years after the origin and, for the youngest group, continued to rise over the course of decades. Offspring who lost a parent during adolescence or young adulthood were at greatest risk within 1 to 2 years after parental suicide, and risk declined over time. The shape of hospitalization risk was similar among those who experienced parental fatal accident. When the shape of hospitalization for suicide attempt at each developmental period was fixed to be the same between the two groups, offspring who lost a parent to suicide had earlier risk to hospitalization for suicide attempt hospitalization than offspring who lost a parent to an accident. Conclusion The hospitalization risk for suicide attempt in offspring who lost a parent during their childhood is different from those who lost a parent during adolescence or young adulthood. The results suggest

  18. Detection of early postseismic deformation from high-rate GNSS time series

    NASA Astrophysics Data System (ADS)

    Twardzik, C.; Vergnolle, M.; Avallone, A.; Sladen, A.

    2017-12-01

    Postseismic processes after an earthquake contribute to the redistribution of stresses in addition to that induced by the coseismic rupture. With the exception of very few studies (e.g., Miyazaki and Larson, 2008), most postseismic analyses only start one or two days following the mainshock. This leaves a critical part of postseismic phase unexplored, from a few minutes up to a few hours after the earthquake. In this study, we use kinematic precise point positioning (K-PPP) to analyze continuous GNSS data in order to obtain 30s position time series. These time series provide information on the surface displacements a soon as the dynamic response of the earthquake is over. Our first analysis focuses on the 2016 Pedernales, Ecuador, earthquake (Mw7.8). Using spectral analysis, we show that the typical logarithmic postseismic displacement trend can be detected as early as one to six hours after the earthquake depending on the station location and the level of noise. This analysis also allows to estimate the bias on the coseismic offsets usually based on daily pre- and post- earthquake positions. We use the early postseismic time series to test whether rate-and-state friction laws, traditionally used to explain postseismic processes days after the earthquake, still hold right after the mainshock. This study is being extended to two other subduction earthquakes: the 2010 Maule, Chile, earthquake (Mw8.8) and the 2015 Illapel, Chile, earthquake (Mw8.2).

  19. Geological constraints on continental arc activity since 720 Ma: implications for the link between long-term climate variability and episodicity of continental arcs

    NASA Astrophysics Data System (ADS)

    Cao, W.; Lee, C. T.

    2016-12-01

    Continental arc volcanoes have been suggested to release more CO2 than island arc volcanoes due to decarbonation of wallrock carbonates in the continental upper plate through which the magmas traverse (Lee et al., 2013). Continental arcs may thus play an important role in long-term climate. To test this hypothesis, we compiled geological maps to reconstruct the surface distribution of granitoid plutons and the lengths of ancient continental arcs. These results were then compiled into a GIS framework and incorporated into GPlates plate reconstructions. Our results show an episodic nature of global continental arc activity since 720 Ma. The lengths of continental arcs were at minimums during most of the Cryogenian ( 720-670 Ma), the middle Paleozoic ( 460-300 Ma) and the Cenozoic ( 50-0 Ma). Arc lengths were highest during the Ediacaran ( 640-570 Ma), the early Paleozoic ( 550-430 Ma) and the entire Mesozoic with peaks in the Early Triassic ( 250-240 Ma), Late Jurassic-Early Cretaceous ( 160-130 Ma), and Late Cretaceous ( 90-65 Ma). The extensive continental arcs in the Ediacaran and early Paleozoic reflect the Pan-African events and circum-Gondwana subduction during the assembly of the Gondwana supercontinent. The Early Triassic peak is coincident with the final closure of the paleo-Asian oceans and the onset of circum-Pacific subduction associated with the assembly of the Pangea supercontinent. The Jurassic-Cretaceous peaks reflect the extensive continental arcs established in the western Pacific, North and South American Cordillera, coincident with the initial dispersal of the Pangea. Continental arcs are favored during the final assembly and the early-stage dispersal of a supercontinent. Our compilation shows a temporal match between continental arc activity and long-term climate at least since 720 Ma. For example, continental arc activity was reduced during the Cryogenian icehouse event, and enhanced during the Early Paleozoic and Jurassic-Cretaceous greenhouse

  20. Early mechanical stimulation only permits timely bone healing in sheep.

    PubMed

    Tufekci, Pelin; Tavakoli, Aramesh; Dlaska, Constantin; Neumann, Mirjam; Shanker, Mihir; Saifzadeh, Siamak; Steck, Roland; Schuetz, Michael; Epari, Devakar

    2018-06-01

    Bone fracture healing is sensitive to the fixation stability. However, it is unclear which phases of healing are mechano-sensitive and if mechanical stimulation is required throughout repair. In this study, a novel bone defect model, which isolates an experimental fracture from functional loading, was applied in sheep to investigate if stimulation limited to the early proliferative phase is sufficient for bone healing. An active fixator controlled motion in the fracture. Animals of the control group were unstimulated. In the physiological-like group, 1 mm axial compressive movements were applied between day 5 and 21, thereafter the movements were decreased in weekly increments and stopped after 6 weeks. In the early stimulatory group, the movements were stopped after 3 weeks. The experimental fractures were evaluated with mechanical and micro-computed tomography methods after 9 weeks healing. The callus strength of the stimulated fractures (physiological-like and early stimulatory) was greater than the unstimulated control group. The control group was characterized by minimal external callus formation and a lack of bone bridging at 9 weeks. In contrast, the stimulated groups exhibited advanced healing with solid bone formation across the defect. This was confirmed quantitatively by a lower bone volume in the control group compared to the stimulated groups.The novel experimental model permits the application of a well-defined load history to an experimental bone fracture. The poor healing observed in the control group is consistent with under-stimulation. This study has shown early mechanical stimulation only is sufficient for a timely healing outcome. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1790-1796, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Paleogeothermal gradients and timing of oil generation in the Belden Formation, Eagle Basin, northwestern Colorado

    USGS Publications Warehouse

    Nuccio, V.F.; Johnson, S.Y.; Schenk, C.J.

    1989-01-01

    Paleogeothermal gradients and timing of oil generation for the Lower and Middle Pennsylvanian Belden Formation have been estimated for four locations in the Eagle Basin of northwestern Colorado, by comparing measured vitrinite reflectance with maturity modeling. Two thermal models were made for each location: one assumes a constant paleogeothermal gradient through time while the other is a two-stage model with changing paleogeothermal gradients. The two-stage paleogeothermal gradient scenario is considered more geologically realistic and is used to estimate the timing of oil generation throughout the Eagle basin. From the data and interpretations, one would expect Belden oil to be found in either upper Paleozoic or Mesozoic reservoir rocks. -Authors

  2. Permian U-Pb (CA-TIMS) zircon ages from Australia and China: Constraining the time scale of environmental and biotic change

    NASA Astrophysics Data System (ADS)

    Denyszyn, S. W.; Mundil, R.; Metcalfe, I.; He, B.

    2010-12-01

    In eastern Australia, the interconnected Bowen and Sydney Basins are filled with terrestrial sediments of late Paleozoic to early Mesozoic age. These sedimentary units record significant evolutionary events of eastern Gondwana during the time interval between two major mass extinctions (end Middle Permian and Permian-Triassic), and also provide lithological evidence for the Carboniferous-Permian Late Paleozoic Ice Age of southern Pangea, considered to be divisible into up to seven discrete glaciation events in Australia [e.g., 1]. These glaciations are currently assigned ages that indicate that the last of the glaciations predate the end Middle Permian mass extinction at ca. 260 Ma. However, the estimates for the time and durations are largely based on biostratigraphy and lithostratigraphy that, in the absence of robust and precise radioisotopic ages, are unacceptably fragile for providing an accurate high-resolution framework. Interbedded with the sediments are numerous tuff layers that contain zircon, many of which are associated with extensive coal measures in the Sydney and Bowen Basins. Published SHRIMP U-Pb zircon ages [2, 3] have been shown to be less precise and inaccurate when compared to ages applying the CA-TIMS method to the same horizons. Also within the late Middle Permian, the eruption of the Emeishan flood basalts in SW China has been proposed to have caused the end Middle Permian mass extinction [e.g., 4], though a causal link between these events demands a rigorous test that can only be provided by high-resolution geochronology. We present new U-Pb (CA-TIMS) zircon ages on tuff layers from the Sydney and Bowen Basins, with the purpose of generating a timescale for the Upper Permian of Australia to allow correlation with different parts of the world. Initial results, with permil precision, date a tuff layer within the uppermost Bandanna Fm. to ca. 252 Ma, a tuff within the Moranbah Coal Measures to ca. 256 Ma, and a tuff within the Ingelara Fm. to

  3. Early time evolution of a chemically produced electron depletion

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1995-01-01

    The early time evolution of an ionospheric electron depletion produced by a radially expanding electron attachment chemical release is studied with a two-dimensional simulation model. The model includes electron attachment chemistry, incorporates fluid electrons, particle ions and neutrals, and considers the evolution in a plane perpendicular to the geomagnetic field for a low beta plasma. Timescales considered are of the order of or less than the cyclotron period of the negative ions that result as a by-product of the electron attacment reaction. This corresponds to time periods of tenths of seconds during recent experiemts. Simulation results show that a highly sheared azimuthal electron flow velocity develops in the radially expanding depletion boundary. This sheared electron flow velocity and the steep density gradients in the boundary give rise to small-scale irregulatities in the form of electron density cavities and spikes. The nonlinear evolution of these irregularities results in trapping and ultimately turbulent heating of the negative ions.

  4. Group-Based Modeling of Time Spent in Structured Activity Trajectories from Middle Childhood into Early Adolescence

    ERIC Educational Resources Information Center

    Mata, Andrea D.; van Dulmen, Manfred H. M.

    2012-01-01

    This study investigated trajectories of time spent in structured activities from middle childhood to early adolescence by using data from the National Institute of Child Health & Human Development (NICHD) Study of Early Child Care. We used latent class growth analyses and identified five trajectories (stable low, increasing high, decreasing low,…

  5. A geochemical record of polycyclic aromatic hydrocarbons (PAHs) during the late Paleozoic Ice Age: The relationship between atmospheric pCO2, climate and fire.

    NASA Astrophysics Data System (ADS)

    Hren, M. T.; Harris, G.; Montanez, I. P.; DiMichele, W.; Eley, Y.; White, J. D.; Wilson, J. P.; McElwain, J.; Poulsen, C. J.

    2017-12-01

    The late Paleozoic Ice Age (LPIA) represents a dynamic period of widespread glacial/interglacial cycling as the earth underwent a major transition from an icehouse to greenhouse climate. During this transition period, pCO2 is shown to have varied by several hundred ppm and within the predicted range for anthropogenic change. Glacial/interglacial changes in atmospheric pCO2 during this time are associated with restructuring of tropical forests and carbon cycle dynamics. At present however, there is considerable debate over the potential hydrologic and fire-frequency feedbacks associated with this climatic variability. Polycyclic aromatic hydrocarbons (PAHs) are produced from the incomplete combustion of organic matter and are shown to be preserved over hundreds of millions of years. Thus, these organic compounds provide a potential record of the feedbacks between global biogeochemical systems and fire. We analyzed sedimentary organic matter from the Illinois Basin spanning the late Carboniferous glacial-interglacial cycles to assess the evolution of fire during this period. Our data show a decrease in the overall abundance of high molecular weight PAHs (HMW) from 312 to 304 Myr with significant variability that is coincident with the general timing of pCO2 cycling. Decreasing PAH abundance is also coincident with a proposed long-term change in pO2 and may reflect the influence of atmospheric oxygen in regulating fire occurrence and hydrologic cycling in tropical ecosystems in the late Carboniferous.

  6. Ultrasonic RF time series for early assessment of the tumor response to chemotherapy.

    PubMed

    Lin, Qingguang; Wang, Jianwei; Li, Qing; Lin, Chunyi; Guo, Zhixing; Zheng, Wei; Yan, Cuiju; Li, Anhua; Zhou, Jianhua

    2018-01-05

    Ultrasound radio-frequency (RF) time series have been shown to carry tissue typing information. To evaluate the potential of RF time series for early prediction of tumor response to chemotherapy, 50MCF-7 breast cancer-bearing nude mice were randomized to receive cisplatin and paclitaxel (treatment group; n = 26) or sterile saline (control group; n = 24). Sequential ultrasound imaging was performed on days 0, 3, 6, and 8 of treatment to simultaneously collect B-mode images and RF data. Six RF time series features, slope, intercept, S1, S2, S3 , and S4 , were extracted during RF data analysis and contrasted with microstructural tumor changes on histopathology. Chemotherapy administration reduced tumor growth relative to control on days 6 and 8. Compared with day 0, intercept, S1 , and S2 were increased while slope was decreased on days 3, 6, and 8 in the treatment group. Compared with the control group, intercept, S1, S2, S3 , and S4 were increased, and slope was decreased, on days 3, 6, and 8 in the treatment group. Tumor cell density decreased significantly in the latter on day 3. We conclude that ultrasonic RF time series analysis provides a simple way to noninvasively assess the early tumor response to chemotherapy.

  7. Executive summary--2002 assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado: Chapter 1 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province (5022), New Mexico and Colorado (fig. 1). Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995 (Gautier and others, 1996). There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  8. Exhumed subglacial landscape in Uruguay: Erosional landforms, depositional environments, and paleo-ice flow in the context of the late Paleozoic Gondwanan glaciation

    NASA Astrophysics Data System (ADS)

    Assine, Mario Luis; de Santa Ana, Héctor; Veroslavsky, Gerardo; Vesely, Fernando F.

    2018-07-01

    A well-exposed glacial surface sculpted on Precambrian crystalline basement rocks occurs below the glacial succession of the San Gregorio Formation on the eastern border of the Chaco-Parana Basin in Uruguay and was formed in the context of the late Paleozoic Gondwana Ice Age. On the glacial surface are asymmetric parallel streamlined bedrock landforms interpreted as whalebacks. The downglacier (lee-side) faces of the whalebacks have gentle slopes dipping NNW with striated and sometimes polished surfaces on crystalline rocks. These landforms are covered by 10-100-cm-thick layers of tillites and shear-laminated siltstones, suggesting glacial abrasion produced mainly by subglacial till sliding. The subglacial facies are ice-molded, and exhibit meso-scale glacial lineations such as ridges and grooves up to 30 m long and 30 cm deep. The subglacial association is directly overlain by proglacial fine-grained facies (rhythmites) with dropstones indicating a subaqueous depositional environment following ice-margin retreat. The fine-grained facies are erosively cut by a succession of sandstones with wave-generated stratification resting on a basal conglomerate. Intraformational striated surfaces, NNE-oriented, were found on four distinct bedding planes within the sandstone package and interpreted as ice keel scour marks produced by floating ice. The San Gregorio deposits are partially confined in a wide and shallow subglacial trough and the stratigraphic succession is interpreted as the record of a glacial advance-retreat cycle comparable to deglacial sequences from other late Paleozoic localities. The paleo-ice flow to the NNW indicated by subglacial lineations is parallel to that verified in the southernmost Paraná Basin located north of the study area, suggesting a paleogeographic scenario in which glaciers advanced northward into a glaciomarine environment. The proposed palaeogeography does not confirm the previous hypothesis of an ice center on the Sul

  9. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. Amore » second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.« less

  10. A balancing act in an unknown territory: a metasynthesis of first-time mothers' experiences in early labour.

    PubMed

    Eri, Tine S; Bondas, Terese; Gross, Mechthild M; Janssen, Patricia; Green, Josephine M

    2015-03-01

    to integrate findings of individual studies in order to broaden the understanding of first-time mothers' experiences of early labour. the methodology was metasynthesis which is based on the interpretive meta-ethnography described by Noblit and Hare (1988). Metasynthesis is research on research which synthesises the findings of previous qualitative studies, and the focus is on interpretation and the creation of new knowledge. all included studies originated from high resource countries (USA 2, UK 4, and Scandinavia 5) and all were carried out in a context of hospital based maternity care. a total of 231 women participated in the studies. 11 articles were included. The main results are presented with the metaphor a balancing act in an unknown territory. The 'unknown territory' has a double meaning: as the personal experience of going into labour for the first time and as encountering the maternity care system. On both levels women have to make significant decisions: whether labour really has started and subsequently when to go to the hospital. A key challenge is to balance the arrival on the labour ward at the 'right' time, not too early and not too late. Arriving at the 'right' time leads to a positive path, while arriving 'too soon' might lead to a cascade of negative experiences. The results are further presented with five central themes: 'Finding out if labour has started is absorbing'; 'Dealing with labour at home'; 'Trying to arrive at the labour ward at the right time'; 'There is always a risk of being sent home'; 'Encountering health professionals arouses strong emotions'. the metasynthesis broadens the understanding of first-time mothers' experiences of early labour, and suggests that women's needs when planning a hospital birth are not being adequately met at this stage in the labour process. Three areas of future research are suggested: how to support and strengthen women during pregnancy in order to cope with early labour; women's experiences of early

  11. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

  12. Late Paleozoic to Jurassic chronostratigraphy of coastal southern Peru: Temporal evolution of sedimentation along an active margin

    NASA Astrophysics Data System (ADS)

    Boekhout, F.; Sempere, T.; Spikings, R.; Schaltegger, U.

    2013-11-01

    We present an integrated geochronological and sedimentological study that significantly revises the basin and magmatic history associated with lithospheric thinning in southern coastal Peru (15-18°S) since the onset of subduction at ˜530 Ma. Until now, estimating the age of the sedimentary and volcanic rocks has heavily relied on paleontologic determinations. Our new geochronological data, combined with numerous field observations, provide the first robust constraints on their chronostratigraphy, which is discussed in the light of biostratigraphical attributions. A detailed review of the existing local units simplifies the current stratigraphic nomenclature and clarifies its absolute chronology using zircon U-Pb ages. We observe that the Late Paleozoic to Jurassic stratigraphy of coastal southern Peru consists of two first-order units, namely (1) the Yamayo Group, a sedimentary succession of variable (0-2 km) thickness, with apparently no nearby volcanic lateral equivalent, and (2) the overlying Yura Group, consisting of a lower, 1-6 km-thick volcanic and volcaniclastic unit, the Chocolate Formation, and an upper, 1-2 km-thick sedimentary succession that are in markedly diachronous contact across the coeval arc and back-arc. We date the local base of the Chocolate Formation, and thus of the Yura Group, to 216 Ma, and show that the underlying Yamayo Group spans a >110 Myr-long time interval, from at least the Late Visean to the Late Triassic, and is apparently devoid of significant internal discontinuities. The age of the top of the Chocolate Formation, i.e. of the volcanic arc pile, varies from ˜194 Ma to less than ˜135 Ma across the study area. We suggest that this simplified and updated stratigraphic framework can be reliably used as a reference for future studies.

  13. Early Silurian to Early Carboniferous ridge subduction in NW Junggar: Evidence from geochronological, geochemical, and Sr-Nd-Hf isotopic data on alkali granites and adakites

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Santosh, M.; Liu, Luofu; Luo, Qun; Zhang, Xin; Liu, Dongdong

    2018-02-01

    The Central Asian Orogenic Belt (CAOB) evolved through a long-lived orogeny involving multiple episodes of subduction and accretion marking a major phase of continental growth during the Paleozoic. The northern part of the Western Junggar region (NW Junggar) offers a window into these processes, particularly to constrain the timing of closure of the Paleo-Asian Ocean. Here we report geochemical, geochronological, and isotopic data from K-feldspar granites and adakitic rocks from the NW Junggar region. Zircon U-Pb ages suggest that the granites were emplaced during Early Silurian to the Early Carboniferous (434-328 Ma). The granites show geochemical characteristics similar to those of A-type granites, with high SiO2 (71.13-76.72 wt%), Na2O + K2O (8.00-9.59 wt%), and Al2O3 (12.28-14.08 wt%), but depleted Sr, Nb, Ta and Eu. They display moderate to high positive εNd(t) and εHf(t) values (4.26-8.21 and 7.69-14.60, respectively) and young Nd and Hf model ages (T2DM-Nd = 489-740 Ma and T2DM-Hf = 471-845 Ma), suggesting magma derivation through partial melting of lower crust in the Boshchekul-Chingiz and Zharma-Saur arcs. The adakites are characterized by high Sr content (406.5-751.6 ppm), and low Y (13.8-16.4 ppm) and Yb (1.5-1.8 ppm) content, yielding relatively high Sr/Y ratios (25.38-49.41) similar to those of modern adakites. They have high positive εNd(t) and εHf(t) values (7.85-8.25 and 13.23-15.97, respectively) and young Nd and Hf model ages (T2DM-Nd = 429-535 Ma and T2DM-Hf = 355-550 Ma), indicating that their source magmas were likely derived from partial melting of the oceanic crust beneath the Boshchekul-Chingiz arc. The petrogenesis and distribution of the A-type granites and adakites, as well as the tectonic architecture of the region, suggest that a ridge subduction event might have occurred during the Early Silurian to Early Carboniferous. In combination with previous studies in the Chinese Altai, we suggest a two-sided ridge subduction model for the

  14. Reaction Time Is Negatively Associated with Corpus Callosum Area in the Early Stages of CADASIL.

    PubMed

    Delorme, S; De Guio, F; Reyes, S; Jabouley, A; Chabriat, H; Jouvent, E

    2017-11-01

    Reaction time was recently recognized as a marker of subtle cognitive and behavioral alterations in the early clinical stages of CADASIL, a monogenic cerebral small-vessel disease. In unselected patients with CADASIL, brain atrophy and lacunes are the main imaging correlates of disease severity, but MR imaging correlates of reaction time in mildly affected patients are unknown. We hypothesized that reaction time is independently associated with the corpus callosum area in the early clinical stages of CADASIL. Twenty-six patients with CADASIL without dementia (Mini-Mental State Examination score > 24 and no cognitive symptoms) and without disability (modified Rankin Scale score ≤ 1) were compared with 29 age- and sex-matched controls. Corpus callosum area was determined on 3D-T1 MR imaging sequences with validated methodology. Between-group comparisons were performed with t tests or χ 2 tests when appropriate. Relationships between reaction time and corpus callosum area were tested using linear regression modeling. Reaction time was significantly related to corpus callosum area in patients (estimate = -7.4 × 10 3 , standard error = 3.3 × 10 3 , P = .03) even after adjustment for age, sex, level of education, and scores of depression and apathy (estimate = -12.2 × 10 3 , standard error = 3.8 × 10 3 , P = .005). No significant relationship was observed in controls. Corpus callosum area, a simple and robust imaging parameter, appears to be an independent correlate of reaction time at the early clinical stages of CADASIL. Further studies will determine whether corpus callosum area can be used as an outcome in future clinical trials in CADASIL or in more prevalent small-vessel diseases. © 2017 by American Journal of Neuroradiology.

  15. A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion

    PubMed Central

    Marsicano, Claudia A.; Wilson, Jeffrey A.; Smith, Roger M. H.

    2014-01-01

    Background Temnospondyls are one of the earliest radiations of limbed vertebrates. Skeletal remains of more than 190 genera have been identified from late Paleozoic and early Mesozoic rocks. Paleozoic temnospondyls comprise mainly small to medium sized forms of diverse habits ranging from fully aquatic to fully terrestrial. Accordingly, their ichnological record includes tracks described from many Laurasian localities. Mesozoic temnospondyls, in contrast, include mostly medium to large aquatic or semi-aquatic forms. Exceedingly few fossil tracks or trackways have been attributed to Mesozoic temnospondyls, and as a consequence very little is known of their locomotor capabilities on land. Methodology/Principal Findings We report a ca. 200 Ma trackway, Episcopopus ventrosus, from Lesotho, southern Africa that was made by a 3.5 m-long animal. This relatively long trackway records the trackmaker dragging its body along a wet substrate using only the tips of its digits, which in the manus left characteristic drag marks. Based on detailed mapping, casting, and laser scanning of the best-preserved part of the trackway, we identified synapomorphies (e.g., tetradactyl manus, pentadactyl pes) and symplesiomorphies (e.g., absence of claws) in the Episcopopus trackway that indicate a temnospondyl trackmaker. Conclusions/Significance Our analysis shows that the Episcopopus trackmaker progressed with a sprawling posture, using a lateral-sequence walk. Its forelimbs were the major propulsive elements and there was little lateral bending of the trunk. We suggest this locomotor style, which differs dramatically from the hindlimb-driven locomotion of salamanders and other extant terrestrial tetrapods can be explained by the forwardly shifted center of mass resulting from the relatively large heads and heavily pectoral girdles of temnospondyls. PMID:25099971

  16. Time Outdoors at Specific Ages During Early Childhood and the Risk of Incident Myopia.

    PubMed

    Shah, Rupal L; Huang, Yu; Guggenheim, Jeremy A; Williams, Cathy

    2017-02-01

    Time outdoors during childhood is negatively associated with incident myopia. Consequently, additional time outdoors has been suggested as a public health intervention to reduce the prevalence of myopia. We investigated whether there were specific ages during early childhood when the time outdoors versus incident myopia association was strongest. Children participating in the Avon Longitudinal Study of Parents and Children (ALSPAC) were studied from age 2 to 15 years. Parentally reported time outdoors and time spent reading were assessed longitudinally in early childhood (ages 2, 3, 4, 5, 7, and 9 years). Noncycloplegic autorefraction was carried out longitudinally in later childhood (ages 10, 11, 12, and 15 years). Information was available for 2833 participants. Cox proportional hazards regression was used to test for association between time outdoors and incident myopia. From 3 years of age onward, greater time outdoors was associated with a reduced risk of incident myopia. The hazard ratio for myopia changed progressively from 0.90 (95% CI 0.83-0.98, P = 0.012) at age 3 years, to 0.86 (95% CI 0.78-0.93, P = 0.001) at age 9 years, for each additional SD of time spent outdoors per day. These associations were independent of two major risk factors for myopia: time reading and number of myopic parents. Additional time spent outdoors across the 3 to 9 years age range was associated with a reduced incidence of myopia between ages 10 and 15 years. There was a trend for the association to increase toward the older end of the 3 to 9 years range.

  17. A global cyclostratigraphic framework constrains the timing and pacing of environmental changes over the Late Devonian (Frasnian - Famennian) mass extinction

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Da Silva, Anne-Christine; Day, James E.; Whalen, Michael; Claeys, Philippe

    2016-04-01

    Milankovitch cycles (obliquity, eccentricity and precession) result in changes in the distribution of solar energy over seasons, as well as over latitudes, on time scales of ten thousands of years to millions of years. These changing patterns in insolation have induced significant variations in Earth's past climate over the last 4.5 billion years. Cyclostratigraphy and astrochronology utilize the geologic imprint of such quasi-cyclic climatic variations to measure geologic time. In recent years, major improvements of the Geologic Time Scale have been proposed through the application of cyclostratigraphy, mostly for the Mesozoic and Cenozoic (Gradstein et al., 2012). However, the field of Paleozoic cyclostratigraphy and astrochronology is still in its infancy and the application of cyclostratigraphic techniques in the Paleozoic allows for a whole new range of research questions. For example, unraveling the timing and pacing of environmental changes over the Late Devonian mass extinction on a 105-year time-scale concerns such a novel research question. Here, we present a global cyclostratigraphic framework for late Frasnian to early Famennian climatic and environmental change, through the integration of globally distributed sections. The backbone of this relative time scale consists of previously published cyclostratigraphies for western Canada and Poland (De Vleeschouwer et al., 2012; De Vleeschouwer et al., 2013). We elaborate this Euramerican base by integrating new proxy data -interpreted in terms of astronomical climate forcing- from the Iowa basin (USA, magnetic susceptibility and carbon isotope data) and Belgium (XRF and carbon isotope data). Next, we expand this well-established cyclostratigraphic framework towards the Paleo-Tethys Ocean, using magnetic susceptibility and carbon isotope records from the Fuhe section in South China (Whalen et al., 2015). The resulting global cyclostratigraphic framework implies an important refinement of the late Frasnian to

  18. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.

    1989-01-01

    Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.

  19. Irregular oscillatory patterns in the early-time region of coherent phonon generation in silicon

    NASA Astrophysics Data System (ADS)

    Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya

    2017-09-01

    Coherent phonon (CP) generation in an undoped Si crystal is theoretically investigated to shed light on unexplored quantum-mechanical effects in the early-time region immediately after the irradiation of ultrashort laser pulses. We examine time signals attributed to an induced charge density of an ionic core, placing the focus on the effects of the Rabi frequency Ω0 c v on the signals; this frequency corresponds to the peak electric-field of the pulse. It is found that at specific Ω0 c v's, where the energy of plasmon caused by photoexcited carriers coincides with the longitudinal-optical phonon energy, the energetically resonant interaction between these two modes leads to striking anticrossings, revealing irregular oscillations with anomalously enhanced amplitudes in the observed time signals. Also, the oscillatory pattern is subject to the Rabi flopping of the excited carrier density that is controlled by Ω0 c v. These findings show that the early-time region is enriched with quantum-mechanical effects inherent in the CP generation, though experimental signals are more or less masked by the so-called coherent artifact due to nonlinear optical effects.

  20. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  1. Productivity Contribution of Paleozoic Woodlands to the Formation of Shale-Hosted Massive Sulfide Deposits in the Iberian Pyrite Belt (Tharsis, Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Harir, Mourad; Carrizo, Daniel; Schmitt-Kopplin, Philippe; Amils, Ricardo

    2018-03-01

    The geological materials produced during catastrophic and destructive events are an essential source of paleobiological knowledge. The paleobiological information recorded by such events can be rich in information on the size, diversity, and structure of paleocommunities. In this regard, the geobiological study of late Devonian organic matter sampled in Tharsis (Iberian Pyrite Belt) provided some new insights into a Paleozoic woodland community, which was recorded as massive sulfides and black shale deposits affected by a catastrophic event. Sample analysis using TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer), and complemented by GC/MS (Gas Chromatrograph/Mass Spectrometer) identified organic compounds showing a very distinct distribution in the rock. While phytochemical compounds occur homogeneously in the sample matrix that is composed of black shale, the microbial-derived organics are more abundant in the sulfide nodules. The cooccurrence of sulfur bacteria compounds and the overwhelming presence of phytochemicals provide support for the hypothesis that the formation of the massive sulfides resulted from a high rate of vegetal debris production and its oxidation through sulfate reduction under suboxic to anoxic conditions. A continuous supply of iron from hydrothermal activity coupled with microbial activity was strictly necessary to produce this massive orebody. A rough estimate of the woodland biomass was made possible by accounting for the microbial sulfur production activity recorded in the metallic sulfide. As a result, the biomass size of the late Devonian woodland community was comparable to modern woodlands like the Amazon or Congo rainforests.

  2. Early and Real-Time Detection of Seasonal Influenza Onset

    PubMed Central

    Marques-Pita, Manuel

    2017-01-01

    Every year, influenza epidemics affect millions of people and place a strong burden on health care services. A timely knowledge of the onset of the epidemic could allow these services to prepare for the peak. We present a method that can reliably identify and signal the influenza outbreak. By combining official Influenza-Like Illness (ILI) incidence rates, searches for ILI-related terms on Google, and an on-call triage phone service, Saúde 24, we were able to identify the beginning of the flu season in 8 European countries, anticipating current official alerts by several weeks. This work shows that it is possible to detect and consistently anticipate the onset of the flu season, in real-time, regardless of the amplitude of the epidemic, with obvious advantages for health care authorities. We also show that the method is not limited to one country, specific region or language, and that it provides a simple and reliable signal that can be used in early detection of other seasonal diseases. PMID:28158192

  3. Variscan orogeny in the Black Sea region

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Topuz, Gültekin

    2017-03-01

    Two Gondwana-derived Paleozoic belts rim the Archean/Paleoproterozoic nucleus of the East European Platform in the Black Sea region. In the north is a belt of Paleozoic passive-margin-type sedimentary rocks, which extends from Moesia to the Istanbul Zone and to parts of the Scythian Platform (the MOIS Block). This belt constituted the south-facing continental margin of the Laurussia during the Late Paleozoic. This margin was deformed during the Carboniferous by folding and thrusting and forms the Variscan foreland. In the south is a belt of metamorphic and granitic rocks, which extends from the Balkanides through Strandja, Sakarya to the Caucasus (BASSAC Block). The protoliths of the metamorphic rocks are predominantly late Neoproterozoic granites and Paleozoic sedimentary and igneous rocks, which were deformed and metamorphosed during the Early Carboniferous. There are also minor eclogites and serpentinites, mostly confined to the northern margin of the BASSAC Block. Typical metamorphism is of low pressure-high temperature type and occurred during the Early Carboniferous (Visean, 340-330 Ma) coevally with that observed in the Central Europe. Volumetrically, more than half of the crystalline belt is made up of Carboniferous-earliest Permian (335-294 Ma) granites. The type of metamorphism, its concurrent nature over 1800 km length of the BASSAC Block and voluminous acidic magmatism suggest that the thermal event probably occurred in the deep levels of a continental magmatic arc. The BASSAC arc collided with Laurussia in the mid-Carboniferous leading to the foreland deformation. The ensuing uplift in the Permian resulted in the deposition of continental red beds, which are associated with acidic magmatic rocks observed over the foreland as well as over the BASSAC Block. In the Black Sea region, there was no terminal collision of Laurussia with Gondwana during the Late Paleozoic and the Laurussia margin continued to face the Paleo-Tethyan ocean in the south.

  4. Calculational investigation of impact cratering dynamics - Early time material motions

    NASA Technical Reports Server (NTRS)

    Thomsen, J. M.; Austin, M. G.; Ruhl, S. F.; Schultz, P. H.; Orphal, D. L.

    1979-01-01

    Early time two-dimensional finite difference calculations of laboratory-scale hypervelocity (6 km/sec) impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed and the resulting material motions analyzed. Results show that the initial jetting of vaporized target material is qualitatively similar to experimental observation. The velocity flow field developed within the target is shown to have features quite similar to those found in calculations of near-surface explosion cratering. Specific application of Maxwell's analytic Z-Model (developed to interpret the flow fields of near-surface explosion cratering calculations), shows that this model can be used to describe the flow fields resulting from the impact cratering calculations, provided that the flow field center is located beneath the target surface, and that application of the model is made late enough in time that most of the projectile momentum has been dissipated.

  5. Turnaround Time for Early Infant HIV Diagnosis in Rural Zambia: A Chart Review

    PubMed Central

    Sutcliffe, Catherine G.; van Dijk, Janneke H.; Hamangaba, Francis; Mayani, Felix; Moss, William J.

    2014-01-01

    Background Early infant HIV diagnosis is challenging in sub-Saharan Africa, particularly in rural areas where laboratory capacity is limited. Specimens must be transported to central laboratories for testing, leading to delays in diagnosis and initiation of antiretroviral therapy. This study was undertaken in rural Zambia to measure the turnaround time for confirmation of HIV infection and identify delays in diagnosis. Methods Chart reviews were conducted from 2010–2012 for children undergoing early infant HIV diagnosis at Macha Hospital in Zambia. Relevant dates, receipt of drugs by mother and child for the prevention of mother-to-child transmission (PMTCT), and test results were abstracted. Results 403 infants provided 476 samples for early infant diagnosis. The median age at the “6-week” and “6-month” assessments was 8.1 weeks and 7.0 months, respectively. The majority of mothers (80%) and infants (67%) received PMTCT. The median time between sample collection and arrival at the central laboratory in Lusaka was 17 days (IQR: 10, 28); arrival at the central laboratory to testing was 6 days (IQR: 5, 11); testing to return of results to the clinic was 29 days (IQR: 17, 36); arrival of results at the clinic to return of results to the caregiver was 45 days (IQR: 24, 79). The total median time from sample collection to return of results to the caregiver was 92 days (IQR: 84, 145). The proportion of HIV PCR positive samples was 12%. The total median turnaround time was shorter for HIV PCR positive as compared to negative or invalid samples (85 vs. 92 days; p = 0.08). Conclusions Delays in processing and communicating test results were identified, particularly in returning results from the central laboratory to the clinic and from the clinic to the caregiver. A more efficient process is needed so that caregivers can be provided test results more rapidly, potentially resulting in earlier treatment initiation and better outcomes for HIV-infected infants

  6. The Role of Peer Stress and Pubertal Timing on Symptoms of Psychopathology during Early Adolescence

    ERIC Educational Resources Information Center

    Sontag, Lisa M.; Graber, Julia A.; Clemans, Katherine H.

    2011-01-01

    Stress is known to amplify the link between pubertal timing and psychopathology. However, few studies have examined the role of peer stress as a context for this link. The present study examined the interaction between perceived pubertal timing and peer stress on symptoms of psychopathology in early adolescence. The sample consisted of 264…

  7. Community heterogeneity of Early Pennsylvanian peat mires

    USGS Publications Warehouse

    Gastaldo, Robert A.; Stevanovic-Walls, I. M.; Ware, W.N.; Greb, S.F.

    2004-01-01

    Reconstructions of Pennsylvanian coal swamps are some of the most common images of late Paleozoic terrestrial ecosystems. All reconstructions to date are based on data from either time-averaged permineralized peats or single-site collections. An erect, in situ Early Pennsylvanian forest preserved above the Blue Creek Coal, Black Warrior Basin, Alabama, was sampled in 17 localities over an area of >0.5 km2, resulting in the first temporally and spatially constrained Pennsylvanian mire data set. This three-tiered forest was heterogeneous. Lycopsid and calamitean trees composed the canopy, and lepidodendrids, Lepidophloios, and sigillarians grew together at most sites. More juvenile than mature lycopsid biomass occurs in the forest-floor litter, indicating a mixed-age, multicohort canopy. Pteridophytes (tree fern) and pteridosperms (seed fern) dominated as understory shrubs, whereas sphenophyllaleans, pteridophytes, and pteridosperms composed the ground-cover and liana tier. The proportion of canopy, understory, and ground-cover biomass varied across the forest. Low proportions of ground-cover and liana taxa existed where canopy fossils accounted for >60% of the litter. There is a distinct spatial clustering of sites with more or less understory (or ground cover) where canopy contribution was <60%. Where canopy biomass was low (<50%), understory shrubs contributed more biomass, indicative of light interception and/or competition strategies. Sphenopteris pottsvillea, a ubiquitous ground-cover plant, is abundant in all sites except one, where pteridosperm creepers and lianas dominate the litter, interpreted to indicate total suppression of other ground-cover growth. Ecological wet-dry gradients identified in other Pennsylvanian swamps do not exist in the Blue Creek mire, with the interpreted wettest (Lepidophloios), driest (Sigillaria), and intermediate (Lepidodendron sensu latu) taxa coexisting in most assemblages. ?? 2004 Geological Society of America.

  8. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits.

    PubMed

    Righi, Stefania; Galli, Luca; Paganini, Marco; Bertini, Elisabetta; Viggiano, Maria Pia; Piacentini, Silvia

    2016-01-01

    Huntington's disease (HD) primarily affects striatum and prefrontal dopaminergic circuits which are fundamental neural correlates of the timekeeping mechanism. The few studies on HD mainly investigated motor timing performance in second durations. The present work explored time perception in early-to-moderate symptomatic HD patients for seconds and milliseconds with the aim to clarify which component of the scalar expectancy theory (SET) is mainly responsible for HD timing defect. Eleven HD patients were compared to 11 controls employing two separate temporal bisection tasks in second and millisecond ranges. Our results revealed the same time perception deficits for seconds and milliseconds in HD patients. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Furthermore, both the non-systematical defect of temporal sensitivity and the main impairment of timing performance in the extreme value of the psychophysical curves suggested an HD deficit in the memory component of the SET. This result was further confirmed by the significant correlations between time perception performance and long-term memory test scores. Our findings added important preliminary data for both a deeper comprehension of HD time-keeping deficits and possible implications on neuro-rehabilitation practices.

  9. Time Outdoors at Specific Ages During Early Childhood and the Risk of Incident Myopia

    PubMed Central

    Shah, Rupal L.; Huang, Yu; Guggenheim, Jeremy A.; Williams, Cathy

    2017-01-01

    Purpose Time outdoors during childhood is negatively associated with incident myopia. Consequently, additional time outdoors has been suggested as a public health intervention to reduce the prevalence of myopia. We investigated whether there were specific ages during early childhood when the time outdoors versus incident myopia association was strongest. Methods Children participating in the Avon Longitudinal Study of Parents and Children (ALSPAC) were studied from age 2 to 15 years. Parentally reported time outdoors and time spent reading were assessed longitudinally in early childhood (ages 2, 3, 4, 5, 7, and 9 years). Noncycloplegic autorefraction was carried out longitudinally in later childhood (ages 10, 11, 12, and 15 years). Information was available for 2833 participants. Cox proportional hazards regression was used to test for association between time outdoors and incident myopia. Results From 3 years of age onward, greater time outdoors was associated with a reduced risk of incident myopia. The hazard ratio for myopia changed progressively from 0.90 (95% CI 0.83–0.98, P = 0.012) at age 3 years, to 0.86 (95% CI 0.78–0.93, P = 0.001) at age 9 years, for each additional SD of time spent outdoors per day. These associations were independent of two major risk factors for myopia: time reading and number of myopic parents. Conclusions Additional time spent outdoors across the 3 to 9 years age range was associated with a reduced incidence of myopia between ages 10 and 15 years. There was a trend for the association to increase toward the older end of the 3 to 9 years range. PMID:28245296

  10. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America

    NASA Astrophysics Data System (ADS)

    Bahlburg, Heinrich; Vervoort, Jeffrey D.; Du Frane, S. Andrew; Bock, Barbara; Augustsson, Carita; Reimann, Cornelia

    2009-12-01

    Accretionary orogens are considered major sites of formation of juvenile continental crust. In the central and southern Andes this is contradicted by two observations: siliciclastic fills of Paleozoic basins in the central Andean segment of the accretionary Terra Australis Orogen consist almost exclusively of shales and mature sandstones; and magmatic rocks connected to the Famatinian (Ordovician) and Late Paleozoic magmatic arcs are predominantly felsic and characterized by significant crustal contamination and strongly unradiogenic Nd isotope compositions. Evidence of juvenile crustal additions is scarce. We present laser ablation (LA)-ICPMS U-Pb ages and LA-MC-ICPMS Hf isotope data of detrital zircons from seven Devonian to Permian turbidite sandstones incorporated into a Late Paleozoic accretionary wedge at the western margin of Gondwana in northern Chile. The combination with Nd whole-rock isotope data permits us to trace the evolution of the South American continental crust through several Proterozoic and Paleozoic orogenic cycles. The analyzed detrital zircon spectra reflect all Proterozoic orogenic cycles representing the step-wise evolution of the accretionary SW Amazonia Orogenic System between 2.0 and 0.9 Ga, followed by the Terra Australis Orogen between 0.9 and 0.25 Ga. The zircon populations are characterized by two prominent maxima reflecting input from Sunsas (Grenville) age magmatic rocks (1.2-0.9 Ga) and from the Ordovician to Silurian Famatinian magmatic arc (0.52-0.42 Ga). Grains of Devonian age are scarce or absent from the analyzed zircon populations. The Hf isotopic compositions of selected dated zircons at the time of their crystallization ( ɛHf ( T) ; T = 3.3-0.25 Ga) vary between - 18 and + 11. All sandstones have a significant juvenile component; between 20 and 50% of the zircons from each sedimentary rock have positive ɛHf ( T) and can be considered juvenile. The majority of the juvenile grains have Hf-depleted mantle model ages (Hf

  11. Supra-subduction zone extensional magmatism in Vermont and adjacent Quebec: Implications for early Paleozoic Appalachian tectonics

    USGS Publications Warehouse

    Kim, J.; Coish, R.; Evans, M.; Dick, G.

    2003-01-01

    Metadiabasic intrusions of the Mount Norris Intrusive Suite occur in fault-bounded lithotectonic packages containing Stowe, Moretown, and Cram Hill Formation lithologies in the northern Vermont Rowe-Hawley belt, a proposed Ordovician arc-trench gap above an east-dipping subduction zone. Rocks of the Mount Norris Intrusive Suite are characteristically massive and weakly foliated, have chilled margins, contain xenoliths, and have sharp contacts that both crosscut and are parallel to early structural fabrics in the host metasedimentary rocks. Although the mineral assemblage of the Mount Norris Intrusive Suite is albite + actinolite + epidote + chlorite + calcite + quartz, intergrowths of albite + actinolite are probably pseudomorphs after plagioclase + clinopyroxene. The metadiabases are subalkaline, tholeiitic, hypabyssal basalts with preserved ophitic texture. A backarc-basin tectonic setting for the intrusive suite is suggested by its LREE (light rare earth element) enrichment, negative Nb-Ta anomalies, and Ta/Yb vs. Th/Yb trends. Although no direct isotopic age data are available, the intrusions are broadly Ordovician because their contacts are clearly folded by the earliest Acadian (Silurian-Devonian) folds. Field evidence and geochemical data suggest compelling along-strike correlations with the Coburn Hill Volcanics of northern Vermont and the Bolton Igneous Group of southern Quebec. Isotopic and stratigraphic age constraints for the Bolton Igneous Group bracket these backarc magmas to the 477-458 Ma interval. A tectonic model that begins with east-dipping subduction and progresses to outboard west-dipping subduction after a syncollisional polarity reversal best explains the intrusion of deformed metamorphosed metasedimentary rocks by backarc magmas.

  12. Depositional Architecture of Late Cambrian-Early Ordovician Siliciclastic Barik Formation; Al Huqf Area, Oman

    NASA Astrophysics Data System (ADS)

    Abbasi, Iftikhar Ahmed

    2017-04-01

    Early Paleozoic siliciclastics sediments of the Haima Supergroup are subdivided into a number of formations and members based on lithological characteristics of various rock sequences. One of the distinct sandstone sequence, the Barik Formation (Late Cambrian-Early Ordovician) of the Andam Group is a major deep gas reservoir in central Oman. The sandstone bodies are prospective reservoir rocks while thick shale and clay interbeds act as effective seal. Part of the Barik Formation (lower and middle part) is exposed in isolated outcrops in Al Huqf area as interbedded multistoried sandstone, and green and red shale. The sandstone bodies are up to 2 meters thick and can be traced laterally for 300 m to over 1 km. Most of sandstone bodies show both lateral and vertical stacking. Two types of sandstone lithofacies are identified on the basis of field characteristics; a plane-bedded sandstone lithofacies capping thick red and green color shale beds, and a cross-bedded sandstone lithofacies overlying the plane-bedded sandstone defining coarsening upward sequences. The plane-bedded sandstone at places contains Cruziana ichnofacies and bivalve fragments indicating deposition by shoreface processes. Thick cross-bedded sandstone is interpreted to be deposited by the fluvial dominated deltaic processes. Load-casts, climbing ripples and flaser-bedding in siltstone and red shale indicate influence of tidal processes at times during the deposition of the formation. This paper summarizes results of a study carried out in Al Huqf area outcrops to analyze the characteristics of the sandstone-body geometry, internal architecture, provenance and diagenetic changes in the lower and middle part of the formation. The study shows build-up of a delta complex and its progradation over a broad, low-angle shelf where fluvial processes operate beside shoreface processes in a vegetation free setting. Keywords: Andam Group, Barik Formation, Ordovician sandstone, Al Huqf, Central Oman,

  13. Seismic Azimuthal Anisotropy of the Lower Paleozoic Shales in Northern Poland: can we reliably detect it?

    NASA Astrophysics Data System (ADS)

    Cyz, Marta; Malinowski, Michał

    2017-04-01

    Analysis of the azimuthal anisotropy is an important aspect of characterization the Lower Paleozoic shale play in northern Poland, since it can be used to map pre-existing fracture networks or help in optimal placement of the horizontal wells. Previous studies employed Velocity versus Azimuth (VVAz) method and found that this anisotropy is weak - on the order of 1-2%, only locally - close to major fault zones - being higher (ca. 7%). This is consistent with the recent re-interpretation of the cross-dipole sonic data, which indicates average shear wave anisotropy of 1%. The problem with the VVAz method is that it requires good definition of the interval, for which the analysis is made and it should be minimum 100 ms thick. In our case, the target intervals are thin - upper reservoir (Lower Silurian Jantar formation) is 15 m thick, lower reservoir (Upper Ordovician Sasino formation) is 25 m thick. Therefore, we prefer to use the Amplitude vs Azimuth (AVAz) method, which can be applied on a single horizon (e.g. the base of the reservoir). However, the AVAz method depends critically on the quality of the seismic data and preservation of amplitudes during processing. On top of the above mentioned issues, physical properties of the Lower Paleozoic shales from Poland seem to be unfavourable for detecting azimuthal anisotropy. For example, for both target formations, parameter g=(Vs/Vp)2 is close to 0.32, which implies that the anisotropy expressed by the anisotropic gradient in the dry (i.e. gas-filled fractures) case is close to zero. In case of e.g. the Bakken Shale, g is much higher (0.38-0.4), leading to a detectable anisotropic signature even in the dry case. Modelling of the synthetic AVAz response performed using available well data suggested that anisotropic gradient in the wet (fluid-filled) case should be detectable even in case of the weak anisotropy (1-2%). This scenario is consistent with the observation, that the studied area is located in the liquid

  14. Early mortality in multiple myeloma: the time-dependent impact of comorbidity: A population-based study in 621 real-life patients.

    PubMed

    Ríos-Tamayo, Rafael; Sáinz, Juan; Martínez-López, Joaquín; Puerta, José Manuel; Chang, Daysi-Yoe-Ling; Rodríguez, Teresa; Garrido, Pilar; de Veas, José Luís García; Romero, Antonio; Moratalla, Lucía; López-Fernández, Elisa; González, Pedro Antonio; Sánchez, María José; Jiménez-Moleón, José Juan; Jurado, Manuel; Lahuerta, Juan José

    2016-07-01

    Multiple myeloma is a heterogeneous disease with variable survival; this variability cannot be fully explained by the current systems of risk stratification. Early mortality remains a serious obstacle to further improve the trend toward increased survival demonstrated in recent years. However, the definition of early mortality is not standardized yet. Importantly, no study has focused on the impact of comorbidity on early mortality in multiple myeloma to date. Therefore, we analyzed the role of baseline comorbidity in a large population-based cohort of 621 real-life myeloma patients over a 31-year period. To evaluate early mortality, a sequential multivariate regression model at 2, 6, and 12 months from diagnosis was performed. It was demonstrated that comorbidity had an independent impact on early mortality, which is differential and time-dependent. Besides renal failure, respiratory disease at 2 months, liver disease at 6 months, and hepatitis virus C infection at 12 months, were, respectively, associated with early mortality, adjusting for other well-established prognostic factors. On the other hand, the long-term monitoring in our study points out a modest downward trend in early mortality over time. This is the first single institution population-based study aiming to assess the impact of comorbidity on early mortality in multiple myeloma. It is suggested that early mortality should be analyzed at three key time points (2, 6, and 12 months), in order to allow comparisons between studies. Comorbidity plays a critical role in the outcome of myeloma patients in terms of early mortality. Am. J. Hematol. 91:700-704, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Viscous cosmology for early- and late-time universe

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Grøn, Øyvind; de Haro, Jaume; Odintsov, Sergei D.; Saridakis, Emmanuel N.

    From a hydrodynamicist’s point of view the inclusion of viscosity concepts in the macroscopic theory of the cosmic fluid would appear most natural, as an ideal fluid is after all an abstraction (exluding special cases such as superconductivity). Making use of modern observational results for the Hubble parameter plus standard Friedmann formalism, we may extrapolate the description of the universe back in time up to the inflationary era, or we may go to the opposite extreme and analyze the probable ultimate fate of the universe. In this review, we discuss a variety of topics in cosmology when it is enlarged in order to contain a bulk viscosity. Various forms of this viscosity, when expressed in terms of the fluid density or the Hubble parameter, are discussed. Furthermore, we consider homogeneous as well as inhomogeneous equations of state. We investigate viscous cosmology in the early universe, examining the viscosity effects on the various inflationary observables. Additionally, we study viscous cosmology in the late universe, containing current acceleration and the possible future singularities, and we investigate how one may even unify inflationary and late-time acceleration. Finally, we analyze the viscosity-induced crossing through the quintessence-phantom divide, we examine the realization of viscosity-driven cosmological bounces, and we briefly discuss how the Cardy-Verlinde formula is affected by viscosity.

  16. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the

  17. It's About Time: How Accurate Can Geochronology Become?

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Baldwin, S.; Caffee, M. W.; Gehrels, G. E.; Schoene, B.; Shuster, D. L.; Singer, B. S.

    2015-12-01

    As isotope ratio precisions have improved to as low as ±1 ppm, geochronologic precision has remained essentially unchanged. This largely reflects the nature of radioactivity whereby the parent decays into a different chemical species thus putting as much emphasis on the determining inter-element ratios as isotopic. Even the best current accuracy grows into errors of >0.6 m.y. during the Paleozoic - a span of time equal to ¼ of the Pleistocene. If we are to understand the nature of Paleozoic species variation and climate change at anything like the Cenozoic, we need a 10x improvement in accuracy. The good news is that there is no physical impediment to realizing this. There are enough Pb* atoms in the outer few μm's of a Paleozoic zircon grown moments before eruption to permit ±0.01% accuracy in the U-Pb system. What we need are the resources to synthesize the spikes, enhance ionization yields, exploit microscale sampling, and improve knowledge of λ correspondingly. Despite advances in geochronology over the past 40 years (multicollection, multi-isotope spikes, in situ dating), our ability to translate a daughter atom into a detected ion has remained at the level of 1% or so. This means that a ~102 increase in signal can be achieved before we approach a physical limit. Perhaps the most promising approach is use of broad spectrum lasers that can ionize all neutrals. Radical new approaches to providing mass separation of such signals are emerging, including trapped ion cyclotron resonance and multi-turn, sputtered neutral TOF spectrometers capable of mass resolutions in excess of 105. These innovations hold great promise in geochronology but are largely being developed for cosmochemistry. This may make sense at first glance as cosmochemists are classically atom-limited (IDPs, stardust) but can be a misperception as the outer few μm's of a zircon may represent no more mass than a stardust mote. To reach the fundamental limits of geochronologic signals we need to

  18. Return to work after early part-time sick leave due to musculoskeletal disorders: a randomized controlled trial.

    PubMed

    Viikari-Juntura, Eira; Kausto, Johanna; Shiri, Rahman; Kaila-Kangas, Leena; Takala, Esa-Pekka; Karppinen, Jaro; Miranda, Helena; Luukkonen, Ritva; Martimo, Kari-Pekka

    2012-03-01

    The purpose of this study was to assess the effects of early part-time sick leave on return to work (RTW) and sickness absence among patients with musculoskeletal disorders. A randomized controlled trial was conducted in six occupational health units of medium- and large-size enterprises. Patients aged 18-60 years with musculoskeletal disorders (N=63) unable to perform their regular work were randomly allocated to part- or full-time sick leave. In the former group, workload was reduced by restricting work time by about a half. Remaining work tasks were modified when necessary, as specified in a "fit note" from the physician. The main outcomes were time to return to regular work activities and sickness absence during 12-month follow-up. Time to RTW sustained for ≥4 weeks was shorter in the intervention group (median 12 versus 20 days, P=0.10). Hazard ratio of RTW adjusted for age was 1.60 [95% confidence interval (95% CI) 0.98-2.63] and 1.76 (95% CI 1.21-2.56) after further adjustment for pain interference with sleep and previous sickness absence at baseline. Total sickness absence during the 12-month follow-up was about 20% lower in the intervention than the control group. Compliance with the intervention was high with no discontinuations of part-time sick leave due to musculoskeletal reasons. Early part-time sick leave may provide a faster and more sustainable return to regular duties than full-time sick leave among patients with musculoskeletal disorders. This is the first study to show that work participation can be safely increased with early part-time sick leave.

  19. Synchronization of the astronomical time scales in the Early Toarcian: A link between anoxia, carbon-cycle perturbation, mass extinction and volcanism

    NASA Astrophysics Data System (ADS)

    Ait-Itto, Fatima-Zahra; Martinez, Mathieu; Price, Gregory D.; Ait Addi, Abdellah

    2018-07-01

    The Late Pliensbachian-Early Toarcian is a pivotal time in the Mesozoic era, marked by pronounced carbon-isotope excursions, biotic crises and major climatic and oceanographic changes. Here we present new high-resolution carbon-isotope and magnetic-susceptibility measurements from an expanded hemipelagic Late Pliensbachian-Early Toarcian section from the Middle Atlas Basin (Morocco). Our new astronomical calibration allows the construction of an orbital time scale based on the 100-kyr eccentricity cycle. The Early Toarcian Polymorphum Zone contains 10 to 10.5 repetitions of the 100-kyr eccentricity both in the carbon-isotope and the magnetic-susceptibility data, leading to an average duration of 1.00 ± 0.08 myr. We also show that the Late Pliensbachian-Early Toarcian global carbon-cycle perturbation has an average duration of 0.24 ± 0.02 myr. These durations are comparable to previous astrochronological time scales provided for this time interval in the most complete sections of the Tethyan area, and longer than what has been provided in condensed sections. Anchoring this framework on published radiometric ages and astrochronological time scales, we estimate that the carbon-cycle perturbation of the Late Pliensbachian-Early Toarcian corresponds with the early phase of the Karoo and Chonke Aike large igneous provinces. Likewise, our new age constraints confirm that the Toarcian oceanic anoxic event is synchronous to the main phase of the Ferrar volcanic activity. Thus, these successive and short phases of the volcanic activity may have been at the origin of the successive phases of the mass extinctions observed in marine biotas in the Pliensbachian and Toarcian times.

  20. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  1. Reaction Time is a Marker of Early Cognitive and Behavioral Alterations in Pure Cerebral Small Vessel Disease.

    PubMed

    Jouvent, Eric; Reyes, Sonia; De Guio, François; Chabriat, Hugues

    2015-01-01

    The assessment of early and subtle cognitive and behavioral effects of cerebral small vessel disease (SVD) requires specific and long-lasting evaluations performed by experienced neuropsychologists. Simpler tools would be helpful for daily clinical practice. To determine whether a simple reaction time task that lasts 5 minutes and can be performed without external supervision on any tablet or laptop can be used as a proxy of early cognitive and behavioral alterations in CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic form of pure SVD related to NOTCH3 mutations. Twenty-two genetically confirmed patients with CADASIL having preserved global cognitive abilities and without disability (MMSE >24 and modified Rankin's scale ≤1) were compared to 29 age-and-gender matched controls to determine group differences according to: 1) conventional neuropsychological and behavioral testing; 2) a computerized battery evaluating reaction time, processing speed, and executive functions. In a second step, correlations between reaction time and cognitive and behavioral alterations detected using both conventional and computerized testing were tested in patients. Reaction time was significantly higher in patients than in controls (mean in patients: 283 ms - in controls: 254 ms, p = 0.03). In patients, reaction time was significantly associated with conventional and chronometric tests of executive functions, working memory, and apathy. Reaction time obtained using a very simple task may serve as a proxy of early cognitive and behavioral alterations in SVD and could be easily used in daily clinical practice.

  2. Geologic Map of Baranof Island, southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Haeussler, Peter J.; Himmelberg, Glen R.; Zumsteg, Cathy L.; Layer, Paul W.; Friedman, Richard M.; Roeske, Sarah M.; Snee, Lawrence W.

    2015-01-01

    This map updates the geology of Baranof Island based on fieldwork, petrographic analyses, paleontologic ages, and isotopic ages. These new data provide constraints on depositional and metamorphic ages of lithostratigraphic rock units and the timing of structures that separate them. Kinematic analyses and thermobarometric calculations provide insights on the regional tectonic processes that affected the rocks on Baranof Island. The rocks on Baranof Island are components of a Paleozoic to Early Tertiary oceanic volcanic arc complex, including sedimentary and volcanic rocks that were deposited on and adjacent to the arc complex, deformed, and accreted. The arc complex consists of greenschist to amphibolite facies Paleozoic metavolcanic and metasedimentary rocks overlain by lower-grade Triassic metasedimentary and metavolcanic rocks and intruded by Jurassic calc-alkaline plutons. The Paleozoic rocks correlate well in age and lithology with rocks of the Sicker and Buttle Lake Groups of the Wrangellia terrane on Vancouver Island and differ from rocks of the Skolai Group that constitute basement to type-Wrangellia in the Wrangell Mountains. The Jurassic intrusive rocks are correlative with plutons that intrude the Wrangellia terrane on Vancouver Island but are lacking in the Wrangell Mountains. The rocks accreted beneath the arc complex are referred to as the Baranof Accretionary Complex in this report and are correlated with the Chugach Accretionary Complex of southern and southeastern Alaska and with the Pacific Rim Complex on Vancouver Island. Stratigraphic correlations between upper- and lower-plate rocks on Baranof Island and western Chichagof Island with rocks on Haida Gwaii and Vancouver Island, in addition to correlative ages of intrusive rocks and restorations of the Fairweather-Queen Charlotte, Chatham Strait, and Peril Strait Faults that define the Baranof-Chichagof block, suggest Baranof Island was near Vancouver Island at the time of initiation of arc

  3. Geochemical Characteristics of Granitoids in southwest Tianshan: Four Stages for Geodynamic Evolution of the Southwest Tianshan Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhu, Y.

    2016-12-01

    Paleozoic intrusive rocks widely exposed in the west Tianshan orogenic belt provides key to understand the geodynamic evolution of the central Asian orogenic belt. A synthesis involving the data for Chinese Yili-central Tianshan and southwest Tianshan and comparison of Kyrgyz Tianshan with a broader dataset including zircon U-Pb ages, zircon Hf isotopic composition, major and trace elements for Paleozoic intrusions are presented to classify the Paleozoic intrusive rocks in four categories which corresponding to subduction of the Terskey Ocean, initial subduction stage of South Tianshan Ocean (STO), major subduction stage of the STO, and collisional to post-collisional stages. The subduction of the Terskey Oceanic crust finally caused the closure of the Terskey Ocean and the opening of the South Tianshan back-arc basin. The development of the Southwest Tianshan back-arc basin formed the STO, which subducted under the Yili-central Tianshan during early Silurian to early Carboniferous, and consequently formed huge arc magmatic rocks. Both the Silurian and early Carboniferous intrusions showing arc geochemical characteristics were derived from partial melting of juvenile arc-derived rocks with involvement of old continental crust. The STO finally closed by the end of early Carboniferous. Afterwards, geodynamic setting changed from convergence to extensional during late Carboniferous to early Permian periods. There is a significant geodynamic change from convergence to extension during late Carboniferous to early Permian, which may be resulted from breakoff of the subducted slab (Fig. 1). Such processes caused upwelling of asthenosphere and triggered partial melting of continental crust, as evidenced by emplacement of voluminous granitic rocks. References: An F, et al, 2013. Journal of Asian Earth Sciences, 78: 100-113; Zhu YF, 2011. Ore Geology Reviews, 40: 108-121; Zhu YF, et al, 2009. Geological Society, London, 166: 1085-1099; Zhu YF et al, 2016. Journal of Earth

  4. Tectonics and hydrocarbon potential of the Barents Megatrough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, D.; Vinogradov, A.; Yunov, A.

    1991-08-01

    Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less

  5. Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data

    PubMed Central

    Dakos, Vasilis; Carpenter, Stephen R.; Brock, William A.; Ellison, Aaron M.; Guttal, Vishwesha; Ives, Anthony R.; Kéfi, Sonia; Livina, Valerie; Seekell, David A.; van Nes, Egbert H.; Scheffer, Marten

    2012-01-01

    Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data. PMID:22815897

  6. Bullying Behavior, Parents' Work Hours and Early Adolescents' Perceptions of Time Spent with Parents

    ERIC Educational Resources Information Center

    Christie-Mizell, C. Andre; Keil, Jacqueline M.; Laske, Mary Therese; Stewart, Jennifer

    2011-01-01

    This research investigates the relationships among bullying behavior, mother's and father's work hours, and early adolescents' perceptions of whether they spend sufficient time with their parents. In cross-sectional models, we find maternal work hours are modestly associated with increases in bullying behavior. However, in more rigorous change…

  7. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan

    2016-05-01

    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  8. Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province, New Mexico and Colorado. Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995. There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  9. Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Xiao, Wenjiao

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition

  10. Linking craton stability and deep earth processes using thermochronology; a case study in the Superior Province of the Canadian Shield.

    NASA Astrophysics Data System (ADS)

    Sturrock, C. P.; Flowers, R. M.; Zhong, S.; Metcalf, J. R.; Kohn, B. P.

    2017-12-01

    Ancient, cratonic continental interiors are often presumed to be stable in the long term, neither accumulating nor shedding significant amounts of overlying sediment. However, recent low-temperature thermochronologic work suggests that such long term stability is an overly simplistic view and that forces besides plate tectonics, such as dynamic topography, may play a significant role. New apatite (U-Th)/He (AHe) and apatite fission track (AFT) data from Archean-Proterozoic basement rocks along a 1400km NW-SE transect in the Superior Province of the Canadian Shield record a spatially variable thermal history for the craton in Paleozoic through the end of Mesozoic time. Dates range from 600­­­­­­±60 Ma (AHe) and 529­±48 Ma (AFT) in the west to 184±14 Ma (AHe) and 174±9 Ma (AFT) in the east. Tectonic activity within the Superior Province ceased by 1.8 Ga, with the latest activity at the margins ending at 1 Ga. Widespread resetting of both AHe and AFT systems post 1 Ga is most likely due to regional scale burial at one or more times since the Cambrian. The temperature sensitivity of the AHe and AFT systems (30-90°C and 60-120°C, respectively) require at least a few km of burial across the craton that has since been stripped away. Preliminary inverse thermal history models, utilizing geologic constraints and radiation damage effects on He diffusion in apatite, indicate significant reheating in the Paleozoic-early Mesozoic (37 to >120°C) and a possible lesser reheating event since the mid Mesozoic (<100°C). Making the simplified assumption of a 25°C/km geothermal gradient and 0°C surface temperature, burial in some areas must have been at least 2-5km in the Paleozoic and was <4km in the Mesozoic. These burial and denudation patterns do not correlate with global sea level changes, making dynamic topography a good candidate for a driving mechanism. New AHe data from kimberlites emplaced in the early to mid-Jurassic will provide an important new constraint

  11. Inside stories: maternal representations of first time mothers from pre-pregnancy to early pregnancy.

    PubMed

    Hopkins, Julia; Clarke, David; Cross, Wendy

    2014-03-01

    According to the psychoanalytical literature, it is during pregnancy that maternal representations of the mother-infant relationship become activated. Midwives who are engaged with the mother and the baby have not drawn upon this concept in their practice. In order for this to happen, it is important to understand better the nature of maternal representations and when they are activated from empirical studies. The research question is: what are the maternal representations of a group of first time mothers from pre-pregnancy, early pregnancy and to the first ultrasound. A narrative approach was used to gain insight into the maternal representations of first time pregnant womens' account of their representations. The analysis method was based on thematic approach. Fifteen women aged between 23 and 38 years. A midwives clinic attached to a tertiary hospital in Melbourne, Australia. First-time pregnant women's maternal representations were activated when a woman begins to plan her pregnancy ('the time is right'), again at the onset of physical changes to her body as a result of conception ('my body is changing'), and at the first early ultrasound at around twelve weeks ('it' is a real baby). Maternal representations are important for the midwife and pregnant women because this concept provides another understanding in relation to the psychological dimension of pregnancy. Copyright © 2013 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  12. Parental Monitoring during Early Adolescence Deters Adolescent Sexual Initiation: Discrete-Time Survival Mixture Analysis

    ERIC Educational Resources Information Center

    Huang, David Y. C.; Murphy, Debra A.; Hser, Yih-Ing

    2011-01-01

    We used discrete-time survival mixture modeling to examine 5,305 adolescents from the 1997 National Longitudinal Survey of Youth regarding the impact of parental monitoring during early adolescence (ages 14-16) on initiation of sexual intercourse and problem behavior engagement (ages 14-23). Four distinctive parental-monitoring groups were…

  13. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    NASA Astrophysics Data System (ADS)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area

  14. Widespread effects of middle Mississippian deformation in the Great Basin of western North America

    USGS Publications Warehouse

    Trexler, J.H.; Cashman, P.H.; Cole, J.C.; Snyder, W.S.; Tosdal, R.M.; Davydov, V.I.

    2003-01-01

    Stratigraphic analyses in central and eastern Nevada reveal the importance of a deformation event in middle Mississippian time that caused widespread deformation, uplift, and erosion. It occurred between middle Osagean and late Meramecian time and resulted in deposition of both synorogenic and postorogenic sediments. The deformation resulted in east-west shortening, expressed as east-vergent folding and east-directed thrusting; it involved sedimentary rocks of the Antler foredeep as well as strata associated with the Roberts Mountains allochthon. A latest Meramecian to early Chesterian unconformity, with correlative conformable lithofacies changes, postdates this deformation and occurs throughout Nevada. A tectonic highland-created in the middle Mississippian and lasting into the Pennsylvanian and centered in the area west and southwest of Carlin, Nevada- shed sediments eastward across the Antler foreland, burying the unconformity. Postorogenic strata are late Meramecian to early Chesterian at the base and are widespread throughout the Great Basin. The tectonism therefore occurred 20 to 30 m.y. after inception of the Late Devonian Antler orogeny, significantly extending the time span of this orogeny or representing a generally unrecognized orogenic event in the Paleozoic evolution of western North America. We propose a revised stratigraphic nomenclature for Mississippian strata in Nevada, based on detailed age control and the recognition of unconformities. This approach resolves the ambiguity of some stratigraphic names and emphasizes genetic relationships within the upper Paleozoic section. We take advantage of better stratigraphic understanding to propose two new stratigraphic units for southern and eastern Nevada: the middle Mississippian Gap Wash and Late Mississippian Captain Jack Formations.

  15. How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs

    PubMed Central

    Ciamarra, Massimo Pica; Cheong, Siew Ann

    2018-01-01

    There is growing interest in the use of critical slowing down and critical fluctuations as early warning signals for critical transitions in different complex systems. However, while some studies found them effective, others found the opposite. In this paper, we investigated why this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance, and low-frequency power spectrum at anticipating critical transitions in the very-high-frequency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confidence using the Kendall-tau test, we also required statistically significant early warning signals to be concurrent in the three indicators, which must rise to appreciable values. We then found for our data set the optimum parameters for discovering critical transitions, and showed that the set of critical transitions found is generally insensitive to variations in the parameters. Suspecting that negative results in the literature are the results of low data frequencies, we created time series with time intervals over three orders of magnitude from the raw data, and tested them for early warning signals. Early warning signals can be reliably found only if the time interval of the data is shorter than the time scale of critical transitions in our complex system of interest. Finally, we compared the set of time windows with statistically significant early warning signals with the set of time windows followed by large movements, to conclude that the early warning signals indeed provide reliable information on impending critical transitions. This reliability becomes more compelling statistically the more events we test. PMID:29538373

  16. How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs.

    PubMed

    Wen, Haoyu; Ciamarra, Massimo Pica; Cheong, Siew Ann

    2018-01-01

    There is growing interest in the use of critical slowing down and critical fluctuations as early warning signals for critical transitions in different complex systems. However, while some studies found them effective, others found the opposite. In this paper, we investigated why this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance, and low-frequency power spectrum at anticipating critical transitions in the very-high-frequency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confidence using the Kendall-tau test, we also required statistically significant early warning signals to be concurrent in the three indicators, which must rise to appreciable values. We then found for our data set the optimum parameters for discovering critical transitions, and showed that the set of critical transitions found is generally insensitive to variations in the parameters. Suspecting that negative results in the literature are the results of low data frequencies, we created time series with time intervals over three orders of magnitude from the raw data, and tested them for early warning signals. Early warning signals can be reliably found only if the time interval of the data is shorter than the time scale of critical transitions in our complex system of interest. Finally, we compared the set of time windows with statistically significant early warning signals with the set of time windows followed by large movements, to conclude that the early warning signals indeed provide reliable information on impending critical transitions. This reliability becomes more compelling statistically the more events we test.

  17. An Upper Paleozoic bio-chronostratigraphic scheme for the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Césari, Silvia N.; Limarino, Carlos O.; Gulbranson, Erik L.

    2011-05-01

    The Carboniferous and Permian fossiliferous sequences of the central-western Argentina contain abundant plant remains, palynomorphs and invertebrates. They include a continuous record of large distribution in the Paganzo, Rio Blanco, Calingasta-Uspallata and San Rafael Basins. The most recent biostratigraphic schemes recognize a floristic succession represented by the biozones: Archaeosigillaria-Frenguellia (AF Biozone), Frenguellia eximia-Nothorhacopteris kellaybelenensis-Cordaicarpus cesarii (FNC Biozone), Nothorhacopteris-Botrychiopsis- Ginkgophyllum (NBG Biozone), Interval Biozone and Gangamopteris Biozone. The associated palynological record is represented by the biozones: Reticulatisporites magnidictyus-Verrucosisporites quasigobbetti (MQ Biozone), Raistrickia densa-Convolutispora muriornata (DM Biozone), Pakhapites fusus-Vittatina subsaccata (FS Biozone), and Lueckisporites-Weylandites (LW Biozone). The precise age of the Upper Paleozoic western Gondwanan biozones has been under discussion and remains controversial to date in some regions. The main issue hampering an integrated comparison of the Gondwanan biozones was its imprecise chronostratigraphic framework. However, new studies in some Argentinian stratigraphic sections bearing floras and faunas have yielded several radiometric ages. From these 206Pb/ 238U zircon datings it is possible to determine the chronostratigraphic range of many fossiliferous assemblages in this sector of Gondwana. In this way, the AF and MQ Biozones are restricted to the Late Mississippian and they would be not younger than 335 Ma according to radiometric ages. 206Pb/ 238U ages suggest that the NBG, DMa and DMb Biozones characterize the Late Serpukhovian glacial deposits and persisted up to the Late Bashkirian. Beds containing the Interval and DMc Biozones have yielded 206Pb/ 238U ages of 312.82 ± 0.11 Ma and 310.71 ± 0.1 Ma which would indicate that both zones characterize the Moscovian. The remains of Gangamopteris Biozone

  18. Modes of Brachiopod Body Size Evolution throughout the Phanerozoic Eon

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Payne, J.

    2012-12-01

    Body size correlates with numerous physiological and behavioral traits and is therefore one of the most important influences on the survival prospects of individuals and species. Patterns of body size evolution across taxa can therefore complement taxonomic diversity and geochemical proxy data in quantifying controls on long-term trends in the history of life. In contrast to widely available and synoptic taxonomic diversity data for fossil animal families and genera, however, no comprehensive size dataset exists, even for a single fossil animal phylum. For this study, we compiled a comprehensive, genus-level dataset of body sizes spanning the entire Phanerozoic for the phylum Brachiopoda. We use this dataset to examine statistical support for several possible modes of size evolution, in addition to environmental covariates: CO2, O2, and sea level. Brachiopod body size in the Phanerozoic followed two evolutionary modes: directional trend in the Early Paleozoic (Cambrian - Mississippian), and unbiased random walk from the Mississippian to the modern. We find no convincing correlation between trends in any single environmental parameter and brachiopod body size over time. The Paleozoic size increase follows Cope's Rule, and has been documented in many other marine invertebrates, while the Mesozoic size plateau has not been. This interval of size stability correlates with increased competition for resources from bivalves beginning during the Mesozoic Marine Revolution, and may be causally linked. The Late Mesozoic decline in size is an artifact of the improved sampling of smaller genera, many of which are less abundant than their Paleozoic ancestors. The Cenozoic brachiopod dataset is similarly incomplete. Biodiversity is decoupled from size dynamics even within the Paleozoic when brachiopods are on average becoming larger and more abundant, suggesting the presence of different controls. Our findings reveal that the dynamics of body size evolution changed over time in

  19. Childhood adversities and socioeconomic position as predictors of leisure-time physical inactivity in early adulthood.

    PubMed

    Kestilä, Laura; Mäki-Opas, Tomi; Kunst, Anton E; Borodulin, Katja; Rahkonen, Ossi; Prättälä, Ritva

    2015-02-01

    Limited knowledge exists on how childhood social, health-related and economic circumstances predict adult physical inactivity. Our aim was a) to examine how various childhood adversities and living conditions predict leisure-time physical inactivity in early adulthood and b) to find out whether these associations are mediated through the respondent's own education. Young adults aged 18-29 were used from the Health 2000 Study of the Finnish. The cross-sectional data were based on interviews and questionnaires including retrospective information on childhood circumstances. The analyses were carried out on 68% of the original sample (N = 1894). The outcome measure was leisure-time physical inactivity. Only a few of the 11 childhood adversities were related with physical activity in early adulthood. Having been bullied at school was associated with physical inactivity independently of the other childhood circumstances and the respondent's own education. Low parental education predicted leisure-time physical inactivity in men and the association was mediated by the respondent's own education. Respondents with only primary or vocational education were more likely to be physically inactive during leisure-time compared with those with secondary or higher education. There is some evidence that few specific childhood adversities, especially bullying at school, have long-lasting effects on physical activity levels.

  20. Optimal timing of early versus delayed adjuvant radiotherapy following radical prostatectomy for locally advanced prostate cancer.

    PubMed

    Kowalczyk, Keith J; Gu, Xiangmei; Nguyen, Paul L; Lipsitz, Stuart R; Trinh, Quoc-Dien; Lynch, John H; Collins, Sean P; Hu, Jim C

    2014-04-01

    Although post-radical prostatectomy (RP) adjuvant radiation therapy (ART) benefits disease that is staged as pT3 or higher, the optimal ART timing remains unknown. Our objective is to characterize the outcomes and optimal timing of early vs. delayed ART. From the Surveillance, Epidemiology and End Results-Medicare data from 1995 to 2007, we identified 963 men with pT3N0 disease receiving early (<4 mo after RP, n = 419) vs. delayed (4-12 mo after RP, n = 544) ART after RP. Utilizing propensity score methods, we compared overall mortality, prostate cancer-specific mortality (PCSM), bone-related events (BRE), salvage hormonal therapy utilization, and intervention for urethral stricture. We then used the maximal statistic approach to determine at what time post-RP ART had the most significant effect on outcomes of interest in men with pT3N0 disease. When compared with delayed ART in men with pT3 disease, early ART was associated with improved PCSM (0.47 vs. 1.02 events per 100 person-years; P = 0.038) and less salvage hormonal therapy (2.88 vs. 4.59 events per 100 person-years; P = 0.001). Delaying ART beyond 5 months is associated with worse PCSM (hazard ratio [HR] 2.3; P = 0.020), beyond 3 months is associated with more BRE (HR 1.6; P = 0.025), and beyond 4 months is associated higher rates of salvage hormonal therapy (HR 1.6; P = 0.002). ART performed after 9 months was associated with fewer urethral strictures (HR 0.6; P = 0.042). Initiating ART less than 5 months after RP for pT3 is associated with improved PCSM. Early ART is also associated with fewer BRE and less use of salvage hormonal therapy if administered earlier than 3 and 4 months after RP, respectively. However, ART administered later than 9 months after RP is associated with fewer urethral strictures. Our population-based findings complement randomized trials designed with fixed ART timing. © 2013 Published by Elsevier Inc.

  1. Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina

    NASA Astrophysics Data System (ADS)

    Varela, Ricardo; Basei, Miguel A. S.; González, Pablo D.; Sato, Ana M.; Naipauer, Maximiliano; Campos Neto, Mario; Cingolani, Carlos A.; Meira, Vinicius T.

    2011-04-01

    A comprehensive review of the geological, geochronological, and isotopic features of the Mesoproterozoic Grenvillian terranes attached to the southwest of the Río de la Plata craton in Early Paleozoic times is presented in this paper. They are grouped into the northern (sierras de Umango, Maz and del Espinal and surroundings), central (Sierra de Pie de Palo, southern Precordillera and Frontal Cordillera), and southern (San Rafael and Las Matras Blocks) segments. The Mesoproterozoic basement consists mainly of arc related, intermediate to acidic and mafic-ultramafic rocks of 1,244-1,027 Ma, with juvenile, Laurentian affinity. Exception to it is the Maz Group, with a protracted history and reworked character. They are affected by 846-570 Ma, extensional magmatism in the northern and central segments, which represents the Neoproterozoic breakup of the Rodinia supercontinent. Successive passive margin sedimentation is registered in Late Neoproterozoic (~640-580 Ma) and Cambro-Ordovician (~550-470 Ma) times. The southern segment is noted for the younger sedimentation alone, and for showing the exclusive primary unconformable relationship between the Mesoproterozoic basement and Early Ordovician cover. The effects of Early Paleozoic Famatinian orogeny, associated with the collisions of Cuyania and Chilenia terranes, are recorded as main phase (480-450 Ma), late phase (440-420 Ma), and Chanic phase (400-360 Ma). Among them, the tectonothermal climax is the Ordovician main phase, to which klippe and nappe structures typical of collisional orogens are related in the northern and central segments. Preliminary data allow us to suggest a set of paired metamorphic belts, with an outboard high-P/T belt, and an inboard Barrowian P/T belt.

  2. Early relapse after autologous hematopoietic cell transplantation remains a poor prognostic factor in multiple myeloma but outcomes have improved over time.

    PubMed

    Kumar, S K; Dispenzieri, A; Fraser, R; Mingwei, F; Akpek, G; Cornell, R; Kharfan-Dabaja, M; Freytes, C; Hashmi, S; Hildebrandt, G; Holmberg, L; Kyle, R; Lazarus, H; Lee, C; Mikhael, J; Nishihori, T; Tay, J; Usmani, S; Vesole, D; Vij, R; Wirk, B; Krishnan, A; Gasparetto, C; Mark, T; Nieto, Y; Hari, P; D'Souza, A

    2018-04-01

    Duration of initial disease response remains a strong prognostic factor in multiple myeloma (MM) particularly for upfront autologous hematopoietic cell transplant (AHCT) recipients. We hypothesized that new drug classes and combinations employed prior to AHCT as well as after post-AHCT relapse may have changed the natural history of MM in this population. We analyzed the Center for International Blood and Marrow Transplant Research database to track overall survival (OS) of MM patients receiving single AHCT within 12 months after diagnosis (N=3256) and relapsing early post-AHCT (<24 months), and to identify factors predicting for early vs late relapses (24-48 months post-AHCT). Over three periods (2001-2004, 2005-2008, 2009-2013), patient characteristics were balanced except for lower proportion of Stage III, higher likelihood of one induction therapy with novel triplets and higher rates of planned post-AHCT maintenance over time. The proportion of patients relapsing early was stable over time at 35-38%. Factors reducing risk of early relapse included lower stage, chemosensitivity, transplant after 2008 and post-AHCT maintenance. Shorter post-relapse OS was associated with early relapse, IgA MM, Karnofsky <90, stage III, >1 line of induction and lack of maintenance. Post-AHCT early relapse remains a poor prognostic factor, even though outcomes have improved over time.

  3. The Early Warning System(EWS) as First Stage to Generate and Develop Shake Map for Bucharest to Deep Vrancea Earthquakes

    NASA Astrophysics Data System (ADS)

    Marmureanu, G.; Ionescu, C.; Marmureanu, A.; Grecu, B.; Cioflan, C.

    2007-12-01

    EWS made by NIEP is the first European system for real-time early detection and warning of the seismic waves in case of strong deep earthquakes. EWS uses the time interval (28-32 seconds) between the moment when earthquake is detected by the borehole and surface local accelerometers network installed in the epicenter area (Vrancea) and the arrival time of the seismic waves in the protected area, to deliver timely integrated information in order to enable actions to be taken before a main destructive shaking takes place. Early warning system is viewed as part of an real-time information system that provide rapid information, about an earthquake impeding hazard, to the public and disaster relief organizations before (early warning) and after a strong earthquake (shake map).This product is fitting in with other new product on way of National Institute for Earth Physics, that is, the shake map which is a representation of ground shaking produced by an event and it will be generated automatically following large Vrancea earthquakes. Bucharest City is located in the central part of the Moesian platform (age: Precambrian and Paleozoic) in the Romanian Plain, at about 140 km far from Vrancea area. Above a Cretaceous and a Miocene deposit (with the bottom at roundly 1,400 m of depth), a Pliocene shallow water deposit (~ 700m thick) was settled. The surface geology consists mainly of Quaternary alluvial deposits. Later loess covered these deposits and the two rivers crossing the city (Dambovita and Colentina) carved the present landscape. During the last century Bucharest suffered heavy damage and casualties due to 1940 (Mw = 7.7) and 1977 (Mw = 7.4) Vrancea earthquakes. For example, 32 high tall buildings collapsed and more then 1500 people died during the 1977 event. The innovation with comparable or related systems worldwide is that NIEP will use the EWS to generate a virtual shake map for Bucharest (140 km away of epicentre) immediately after the magnitude is estimated

  4. Peer substance use as a mediator between early pubertal timing and adolescent substance use: longitudinal associations and moderating effect of maltreatment.

    PubMed

    Negriff, Sonya; Trickett, Penelope K

    2012-11-01

    Early pubertal timing has received considerable empirical support as a risk for adolescent substance use. However, few studies have examined the mediators linking these variables. Therefore, the aims of this study were (1) to examine peer substance use as a mediator between pubertal timing and adolescent substance use longitudinally and (2) to test gender and maltreatment experience as moderators of the mediational model. Data were obtained from time 1, 2, and 3 of a longitudinal study of maltreatment and development. At time 1 the sample was comprised of 303 maltreated and 151 comparison children aged 9-13 years (213 females and 241 males). Longitudinal mediation was tested using structural equation modeling and moderating effects were tested using multiple group analysis. Peer substance use mediated the relationship between early pubertal timing and later adolescent substance use for the total sample. Moderation analyses indicated this significant indirect effect did not differ for males and females. However, it did differ for maltreated versus comparison adolescents with the mediational effect only remaining significant for the comparison group. This is one of the first studies to examine peer substance use as a mediator of pubertal timing and adolescent substance use using a longitudinal design. Early maturing males are at equal risk to early maturing females for interacting with peers that may draw them into substance use. Additionally, the findings indicate that while peers are mediators for comparison adolescents a different mechanism may link early puberty to substance use for maltreated adolescents. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Plutonism in the central part of the Sierra Nevada Batholith, California

    USGS Publications Warehouse

    Bateman, Paul C.

    1992-01-01

    The Sierra Nevada batholith comprises the plutonic rocks of Mesozoic age that underlie most of the Sierra Nevada, a magnificent mountain range that originated in the Cenozoic by the westward tilting of a huge block of the Earth's crust. Scattered intrusions west of the batholith in the western metamorphic belt of the Sierra Nevada and east of the Sierra Nevada in the Benton Range and the White and Inyo Mountains are satellitic to but not strictly parts of the Sierra Nevada batholith. Nevertheless, all the plutonic rocks are related in origin. The batholith lies along the west edge of the Paleozoic North American craton, and Paleozoic and early Mesozoic oceanic crust underlies its western margin. It was emplaced in strongly deformed but weakly metamorphosed strata ranging in age from Proterozoic to Cretaceous. Sedimentary rocks of Proterozoic and Paleozoic age crop out east of the batholith in the White and Inyo Mountains, and metamorphosed sedimentary and volcanic rocks of Paleozoic and Mesozoic age crop out west of the batholith in the western metamorphic belt. A few large and many small, generally elongate remnants of metamorphic rocks lie within the batholith. Sparse fossils from metasedimentary rocks and isotopic ages for metavolcanic rocks indicate that the metamorphic rocks in the remnants range in age from Early Cambrian to Early Cretaceous. Within the map area (the Mariposa 1 0 by 2 0 quadrangle), the bedding, cleavage, and axial surfaces of folds generally trend about N. 35 0 W., parallel to the long axis of the Sierra Nevada. The country rocks comprise strongly deformed but generally coherent sequences; however, some units in the western metamorphic belt may partly consist of melanges. Most sequences are in contact with other sequences, at least for short distances, but some sequences within the batholith are bounded on one or more sides by plutonic rocks. Proterozoic and Paleozoic sedimentary strata east of the Sierra Nevada and Paleozoic strata in

  6. Occipital MEG Activity in the Early Time Range (<300 ms) Predicts Graded Changes in Perceptual Consciousness.

    PubMed

    Andersen, Lau M; Pedersen, Michael N; Sandberg, Kristian; Overgaard, Morten

    2016-06-01

    Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual consciousness: An early, occipitally realized component occurring 130-320 ms after stimulus onset and a late, frontally realized component occurring 320-510 ms after stimulus onset. Recent studies have suggested that the late component may not be uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than frontal sources during both the early and late time ranges. These results are the first of its kind where the predictive values of the 2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources in realizing perceptual consciousness. The results have important consequences for current theories of perceptual consciousness, especially theories emphasizing the role of frontal sources. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Linking the southern West Junggar terrane to the Yili Block: Insights from the oldest accretionary complexes in West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Han, Bao-Fu; Guan, Shu-Wei; Liu, Bo; Wang, Zeng-Zhen

    2018-06-01

    West Junggar is known to tectonically correlate with East Kazakhstan; however, the tectonic link of the southern West Junggar terrane to adjacent regions still remains uncertain. Here, we examined the oldest accretionary complexes, thus constraining its tectonic evolution and link during the Early-Middle Paleozoic. They have contrasting lithologic, geochemical, and geochronological features and thus, provenances and tectonic settings. The Laba Unit was derived from the Late Ordovician-Early Devonian continental arc system (peaking at 450-420 Ma) with Precambrian substrate, which formed as early as the Early Devonian and metamorphosed during the Permian; however, the Kekeshayi Unit was accumulated in an intra-oceanic arc setting, and includes the pre-Late Silurian and Late Silurian subunits with or without Precambrian sources. Integrated with the regional data, the southern West Junggar terrane revealed a tectonic link to the northern Yili Block during the Late Silurian to Early Devonian, as suggested by the comparable Precambrian zircon age spectra between the southern West Junggar terrane and the micro-continents in the southern Kazakhstan Orocline, the proximal accumulation of the Laba Unit in the continental arc atop the Yili Block, and the sudden appearance of Precambrian zircons in the Kekeshayi Unit during the Late Silurian. This link rejects the proposals of the southern West Junggar terrane as an extension of the northern Kazakhstan Orocline and the Middle Paleozoic amalgamation of West Junggar. A new linking model is thus proposed, in which the southern West Junggar terrane first evolved individually, and then collided with the Yili Block to constitute the Kazakhstan continent during the Late Silurian. The independent and contrasting intra-oceanic and continental arcs also support the Paleozoic archipelago-type evolution of the Central Asian Orogenic Belt.

  8. Wormholes versus black holes: quasinormal ringing at early and late times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konoplya, R.A.; Zhidenko, A., E-mail: roman.konoplya@uni-tuebingen.de, E-mail: olexandr.zhydenko@ufabc.edu.br

    Recently it has been argued that the phantom thin-shell wormholes matched with the Schwarzschild space-time near the Schwarzschild radius ring like Schwarzschild black holes at early times, but differently at late times [1]. Here we consider perturbations of the wormhole which was constructed without thin-shells: the Bronnikov-Ellis wormhole supported by the phantom matter and electromagnetic field. This wormhole solution is known to be stable under specific equation of state of the phantom matter. We show that if one does not use the above thin-shell matching, the wormhole, depending on the values of its parameters, either rings as the black holemore » at all times or rings differently also at all times . The wormhole's spectrum, investigated here, posses a number of distinctive features. In the final part we have considered general properties of scattering around arbitrary rotating traversable wormholes. We have found that symmetric and non-symmetric (with respect to the throat) wormholes are qualitatively different in this respect: first, superradiance is allowed only if for those non-symmetric wormholes for which the asymptotic values of the rotation parameters are different on both sides from the throat. Second, the symmetric wormholes cannot mimic effectively the ringing of a black hole at a few various dominant multipoles at the same time, so that the future observations of various events should easily tell the symmetric wormhole from a black hole.« less

  9. Time-slice maps showing age, distribution, and style of deformation in Alaska north of 60° N.

    USGS Publications Warehouse

    Moore, Thomas E.; Box, Stephen E.

    2016-08-29

    The structural architecture of Alaska is the product of a complex history of tectonism that occurred along the Cordilleran and Arctic margins of North America through interactions with ancient and modern ocean plates and with continental elements derived from Laurentia, Siberia, and Baltica. To unravel the tectonic history of Alaska, we constructed maps showing the age, distribution, structural style, and kinematics of contractional and penetrative extensional deformation in Alaska north of latitude 60° N. at a scale of 1:5,000,000. These maps use the Geologic Map of the Arctic (Harrison and others, 2011) as a base map and follow the guidelines in the Tectonic Map of the Arctic project (Petrov and others, 2013) for construction, including use of the International Commission on Stratigraphy time scale (Cohen and others, 2013) divided into 20 time intervals. We find evidence for deformation in 14 of the 20 time intervals and present maps showing the known or probable extent of deformation for each time interval. Maps and descriptions of deformational style, age constraints, kinematics, and information sources for each deformational episode are discussed in the text and are reported in tabular form. This report also contains maps showing the lithologies and structural geology of Alaska, a terrane map, and the distribution of tectonically important units including post-tectonic sedimentary basins, accretionary complexes, ophiolites, metamorphic rocks.These new maps show that most deformational belts in Alaska are relatively young features, having developed during the late Mesozoic and Cenozoic. The oldest episode of deformation recognized anywhere in Alaska is found in the basement of the Farewell terrane (~1.75 Ga). Paleozoic and early Mesozoic deformational events, including Devonian deformation in the Arctic Alaska terrane, Pennsylvanian deformation in the Alexander terrane, Permian deformation in the Yukon Composite (Klondike orogeny) and Farewell terranes (Browns

  10. Selected chemical analyses of water from formations of Mesozoic and Paleozoic age in parts of Oklahoma, northern Texas, and Union County, New Mexico

    USGS Publications Warehouse

    Parkhurst, R.S.; Christenson, S.C.

    1987-01-01

    Hydrochemical data were compiled into a data base as part of the Central Midwest Regional Aquifer System Analysis project. The data consist of chemical analyses of water samples collected from wells that are completed in formations of Mesozoic and Paleozoic age. The data base includes data from the National Water Data Storage and Retrieval System, the Petroleum Data System, the National Uranium Resource Evaluation, and selected publications. Chemical analyses were selected for inclusion within the hydrochemical data base if the total concentration of the cations differed from the total 10 percent or less of the total concentration of all ions. Those analyses which lacked the necessary data for an ionic balance were included if the ratios of dissolved-solids concentration to specific conductance were between 0.55 and 0.75. The tabulated chemical analyses, grouped by county, and a statistical summary of the analyses, listed by geologic unit, are presented.

  11. Shear Wave Splitting analysis of borehole microseismic reveals weak azimuthal anisotropy hidden behind strong VTI fabric of Lower Paleozoic shales in northern Poland

    NASA Astrophysics Data System (ADS)

    Gajek, Wojciech; Verdon, James; Malinowski, Michał; Trojanowski, Jacek

    2017-04-01

    Azimuthal anisotropy plays a key-role in hydraulic fracturing experiments, since it provides information on stress orientation and pre-existing fracture system presence. The Lower Paleozoic shale plays in northern Poland are characterized by a strong (15-18%) Vertical Transverse Isotropy (VTI) fabric which dominates weak azimuthal anisotropy being of order of 1-2%. A shear wave travelling in the subsurface after entering an anisotropic medium splits into two orthogonally polarized waves travelling with different velocities. Splitting parameters which can be assessed using a microseismic array are polarization of the fast shear wave and time delay between two modes. Polarization of the fast wave characterizes the anisotropic system on the wave path while the time delay is proportional to the magnitude of anisotropy. We employ Shear Wave Splitting (SWS) technique using a borehole microseismic dataset collected during a hydraulic stimulation treatment located in northern Poland, to image fracture strike masked by a strong VTI signature. During the inversion part, the VTI background parameters were kept constant using information from 3D seismic (VTI model used for pre-stack depth migration). Obtained fracture azimuths averaged over fracturing stages are consistent with the available XRMI imager logs from the nearby vertical well, however they are different from the large-scale maximum stress direction (by 40-45 degrees). Inverted Hudson's crack density (ca. 2%) are compatible with the low shear-wave anisotropy observed in the cross-dipole sonic logs (1-2%). This work has been funded by the Polish National Centre for Research and Development within the Blue Gas project (No BG2/SHALEMECH/14). Data were provided by the PGNiG SA. Collaboration with University of Bristol was supported within TIDES COST Action ES1401.

  12. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning

    USGS Publications Warehouse

    Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.

    2018-01-01

    Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.

  13. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    in potassium. The Na+ enrichment is most likely linked with the peculiar geochemical setting of the Triassic environment where for instance halite moulds are very common in transgressive epicontinental deposits. The leaching of such salts, the role of salty marine aerosols, or a periodic/episodic contribution of seawater or evaporative solutions may be equally invoked. Mass balance Taking into account the surpergene origin of albitization and its widespread development on the Paleozoic basement rocks (from Morocco to Scandinavia) means that high amounts of Na+ have been stored in the deep paleoweathering profiles of the Triassic continents. This sodium storage in weathering profiles has to be taken in consideration in addition to the major sodium chloride accumulation in the basins during the Permo-Triassic times. Further investigations are needed to demonstrate the extent of these paleoweathering profiles and then to estimate the amount of this continental sodium storage. References Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: Quartz dissolution and related sub-solidus changes. Jour. Petrol., 27: 945-965. Hay, W.W.; Migdisov, A.; Balukhovsky, A.N.; Wold, C.N.; Flogel, S., Soding, E. (2006) Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeography, Palaeoclimatology, Palaeoecology, 240/1-2: 3-46. Parcerisa D., Thiry M., Schmitt J.-M. (2009) Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France), International Journal of Earth Sciences, DOI: 10.1007/s00531-008-0405-1. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos, 42: 123-146. Ricordel C, Parcerisa D, Thiry M, Moreau M-G, Gómez-Gras D (2007) Triassic magnetic overprints related to albitization in granites from the

  14. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China

    USGS Publications Warehouse

    Mao, J.; Qiu, Yumin; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.

    2002-01-01

    Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river

  15. Religion in the National Historical Narrative of the Early Modern Times in Contemporary Ukrainian Schooling

    ERIC Educational Resources Information Center

    Shevchenko, Tetiana

    2015-01-01

    This article deals with religious discourse in modern history school textbooks in Ukraine that cover early modern times in Ukrainian history. It analyzes the place of religious discourse within national discourse, the correlation between local Ukrainian religious and more general discourse, and the representation of the relationships between…

  16. Barents Sea Paleozoic basement and basin configurations: Crustal structure from deep seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Huismans, Ritske; Faleide, Jan Inge

    2016-04-01

    The Barents Sea is underlain by at least two different basement domains; the Caledonian in the west and the Timanian in the east. The transition between these two domains is not well constrained and contrasting interpretations have been published recently. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea has challenged the Late Paleozoic basin configurations in the western and central Barents Sea as outlined in previous studies. Two regional ocean bottom seismic (OBS) profiles were acquired in 2014. This new dataset crosses the two major directions of Caledonian deformation proposed by different authors: N-S direction and SW-NE direction. Of particular importance are the high velocity anomalies related to Caledonian eclogites, revealing the location of Caledonian suture zones in the northern Barents Sea. One of the main objectives with this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be tightly linked to the deposition of large thicknesses of Devonian erosional products, and later rifting is expected to be influenced by inheritance of Caledonian trends. The P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity- and magnetic modelling will be used to augment the seismic model. The preliminary results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transects reveal areas of complex geology and velocity inversions. A low seismic impedance contrast between the sedimentary section and top crystalline basement makes identification of this interface uncertain. Depth to Moho mostly lies around 30 km, except in an area of rapid change in

  17. Stress responsiveness and anxiety-like behavior: The early social environment differentially shapes stability over time in a small rodent.

    PubMed

    Sangenstedt, Susanne; Jaljuli, Iman; Sachser, Norbert; Kaiser, Sylvia

    2017-04-01

    The early social environment can profoundly affect behavioral and physiological phenotypes. We investigated how male wild cavy offspring, whose mothers had either lived in a stable (SE) or an unstable social environment (UE) during pregnancy and lactation, differed in their anxiety-like behavior and stress responsiveness. At two different time points in life, we tested the offspring's anxiety-like behavior in a dark-light test and their endocrine reaction to challenge in a cortisol reactivity test. Furthermore, we analyzed whether individual traits remained stable over time. There was no effect of the early social environment on anxiety-like behavior and stress responsiveness. However, at an individual level, anxiety-like behavior was stable over time in UE- but not in SE-sons. Stress responsiveness, in turn, was rather inconsistent in UE-sons and temporally stable in SE-sons. Conclusively, we showed for the first time that the early social environment differentially shapes the stability of behavioral and endocrine traits. At first glance, these results may be surprising, but they can be explained by the different functions anxiety-like behavior and stress responsiveness have. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.; Alissa, A.; Carr, T.R.

    2002-01-01

    high diversity of biogenic structures representing the activity of a benthic fauna developed under normal salinity conditions. Trace fossil and facies analyses allow environmental subdivision of the shoreface-offshore successions and suggest deposition in a weakly storm-affected nearshore area. An onshore-offshore replacement of the Skolithos ichnofacies by the Cruziana ichnofacies is clearly displayed. The lower Morrow fluvio-estuarine valley was incised during a drop of sea level coincident with the Mississippian-Pennsylvanian transition, but was mostly filled during a subsequent transgression. The transgressive nature of the estuarine infill is further indicated by the upward replacement of depauperate brackish-water trace fossil assemblages by the open-marine Cruziana ichnofacies. Additional stratal surfaces of allostratigraphic significance identified within the estuary include the bayline surface, the tidal ravinement surface, the wave ravinement surface, and a basinwide flooding surface recording inundation of the valley interfluves. A younger sequence boundary within the lower Morrow is also recorded in the Gentzler field at the base of a forced regression shoreface, demarcated by the firmground Glossifungites ichnofacies, indicating a rapid basinward facies migration during a sea-level drop. Trace fossil models derived from the analysis of Mesozoic and Cenozoic reservoirs are generally applicable to the study of these late Paleozoic reservoirs. Pennsylvanian brackish-water facies differ ichnologically from their post-Paleozoic counterparts, however, in that they have: (1) lower trace fossil diversity, (2) lower degree of bioturbation, (3) scarcity of crustacean burrows, (4) absence of firmground suites, and (5) absence of ichnotaxa displaying specific architectures designed to protect the tracemaker from salinity fluctuations. Morrow open-marine ichnofaunas closely resemble their post-Paleozoic equivalents. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Assessment of Appalachian basin oil and gas resources:Devonian shale - Middle and Upper Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Milici, Robert C.; Swezey, Christopher S.

    2006-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the technically recoverable undiscovered hydrocarbon resources of the Appalachian Basin Province. The assessment province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia and Alabama. The assessment was based on six major petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) extends generally from New York to Tennessee. This petroleum system has produced a large proportion of the oil and natural gas that has been discovered in the Appalachian basin since the drilling of the Drake well in Pennsylvania in 1859. For assessment purposes, the TPS was divided into 10 assessment units (plays), 4 of which were classified as conventional and 6 as continuous. The results were reported as fully risked fractiles (F95, F50, F5 and the Mean), with the fractiles indicating the probability of recovery of the assessment amount. Products reported were oil (millions of barrels of oil, MMBO), gas (billions of cubic feet of gas, BCFG), and natural gas liquids (millions of barrels of natural gas liquids, MMBNGL). The mean estimates for technically recoverable undiscovered hydrocarbons in the TPS are: 7.53 MMBO, 31,418.88 BCFG (31.42 trillion cubic feet) of gas, and 562.07 MMBNGL.

  20. Gold deposits of the northern margin of the North China craton: Multiple late Paleozoic-Mesozoic mineralizing events

    USGS Publications Warehouse

    Hart, C.J.R.; Goldfarb, R.J.; Qiu, Yumin; Snee, L.; Miller, L.D.; Miller, M.L.

    2002-01-01

    The northern margin of the North China craton is well-endowed with lode gold deposits hosting a resource of approximately 900 tonnes (t) of gold. The ???1,500-km-long region is characterized by east-trending blocks of metamorphosed Archean and Proterozoic strata that were episodically uplifted during Variscan, Indosinian, and Yanshanian deformational and magmatic events. At least 12 gold deposits from the Daqinshan, Yan-Liao (includes the Zhangjiakou, Yanshan, and Chifeng gold districts), and Changbaishan gold provinces contain resources of 20-100 t Au each. Most deposits are hosted in uplifted blocks of Precambrian metamorphic rocks, although felsic Paleozoic and Mesozoic plutons are typically proximal and host ???30% of the deposits. The lodes are characterized by sulfide-poor quartz veins in brittle structures with low base metal values and high Au:Ag ratios. Although phyllic alteration is most common, intensive alkali feldspar metasomatism characterizes the Wulashan, Dongping, and Zhongshangou deposits, but is apparently coeval with Variscan alkalic magmatism only at Wulashan. Stepwise 40Ar-39Ar geochronology on 16 samples from gangue and alteration phases, combined with unpublished SHRIMP U-Pb dates on associated granitoids, suggest that gold mineralizing events occured during Variscan, Indosinian, and Yanshanian orogenies at circa 350, 250, 200, 180, 150, and 129 Ma. However, widespread Permo-Triassic (???250 Ma) and Early Jurassic (???180 Ma) thermal events caused variable resetting of most of the white mica and K-feldspar argon spectra, as well as previously reported K-Ar determinations. Compiled and new stable isotope and fluid inclusion data show that most ??18O values for ore-stage veins range from 8 to 14???, indicating a fluid in equilibrium with the Precambrian metamorphic basement rocks; ??D values from fluid inclysions range widely from -64 to -154???, which is indicative of a local meteoric component in some veins; and highly variable ??34S data

  1. Too Early for Physics? Effect of Class Meeting Time on Student Evaluations of Teaching in Introductory Physics

    ERIC Educational Resources Information Center

    Tobin, R. G.

    2017-01-01

    This paper reports observations that show a significant effect of class meeting time on student evaluations of teaching for an introductory college physics class. Students in a lecture section with an early-morning meeting time gave the class and instructors consistently lower ratings than those in an otherwise nearly identical section that met an…

  2. The Timing of Middle-Childhood Peer Rejection and Friendship: Linking Early Behavior to Early-Adolescent Adjustment

    ERIC Educational Resources Information Center

    Pedersen, Sara; Vitaro, Frank; Barker, Edward D.; Borge, Anne I. H.

    2007-01-01

    This study used a sample of 551 children surveyed yearly from ages 6 to 13 to examine the longitudinal associations among early behavior, middle-childhood peer rejection and friendedness, and early-adolescent depressive symptoms, loneliness, and delinquency. The study tested a sequential mediation hypothesis in which (a) behavior problems in the…

  3. An enigmatic source of hematitic carbonate beds containing vast amounts of iron oxidizers in a paleozoic metamorphic complex, South Hungary, Geresd-Hills, Ófalu.

    NASA Astrophysics Data System (ADS)

    Jáger, Viktor; Dabi, Gergely; Menyhárt, Adrienn

    2013-04-01

    neptunian dykes, their age must be younger than the paleozoic metamorphic event. They must be older than the Early Cretaceous dyke emplacement in the region, based on cross-cutting relation with limonite stained calcite veins, related to the volcanic activity (Dabi et al., 2011) In this region (Tisza-megaunit) continental rift-related alkali basaltic submarine volcanism was widespread during the Early Cretaceous epoch, when hypabyssal basaltic bodies (intrusive pillow basalts) intruded into unconsolidated sediments. Along these magmatic bodies low temperature hydrothermal circulation of seawater hydrolyzed basaltic glass and mafic minerals, and huge amount of Fe(II) was released and got into the lime mud that was saturated with anaerobic water, where iron oxidizing microorganisms thrived (Jáger et al., 2012).We propose a very similar paleoenvironmental model for Ófalu occurence, where low temperature, reductive iron-rich hydrothermal fluids penetrated soft sediments and contributed to the flourishing of iron-oxidizers. Due to subsequent tectonic events, these iron-rich sediments got into the fissures of the Ófalu metamorphic complex. This model is strenghtened by some borehole and outcrops where the Lower Cretaceous interpillow sediments and hyaloclastites rich in iron oxydes and intrusive pillow basalt can be found close to our investigated section. (Hetényi et al., 1976) This study was supported by the Developing Competitiveness of Universities in the South Transdanubian Region (SROP-4.2.1.B-10/2/KONV-2010-0002). Dabi, G., Siklósy, Z., Schubert, F., Bajnóczi, B., M. Tóth, T., 2011. The relevance of vein texture in understanding the past hydraulic behaviour of a crystalline rock mass: reconstruction of the palaeohydrology of the Mecsekalja Zone, South Hungary. Geofluids, 11, 309-327. Hetényi, R., Földi, M., Hámor, G., Nagy, I., Bilik, I., Jantsky, B. 1976. Magyarázó a Mecsek hegység földtani térképéhez 10 000-es sorozat. MÁFI Budapest (in hungarian). J

  4. Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits

    USGS Publications Warehouse

    Grenne, Tor; Slack, J.F.

    2003-01-01

    Laterally extensive beds of highly siliceous, hematitic chert (jasper) are associated with many volcanogenic massive sulfide (VMS) deposits of Late Cambrian to Early Cretaceous age, yet are unknown in analogous younger (including modern) settings. Textural studies suggest that VMS-related jaspers in the Ordovician Løkken ophiolite of Norway were originally deposited as Si- and Fe-rich gels that precipitated from hydrothermal plumes as colloidal silica and iron-oxyhydroxide particles. Rare earth element patterns and Ge/Si ratios of the jaspers reflect precipitation from plumes having seawater dilution factors of 103 to 104, similar to modern examples. We propose that silica in the ancient jaspers is not derived from submarine hydrothermal fluids-as suggested by previous workers-but instead was deposited from silic-rich sea-water. Flocculation and precipitation of the silica were triggered inorganically by the bridging effect of positively charged iron oxyhydroxides in the hydrothermal plume. A model involving amorphous silica (opal-A) precursors to the jaspers suggests that silica contents of Cambrian-Early Cretaceous oceans were at least 110 mg/L SiO2, compared to values of 40-60 mg/L SiO2 estimated in other studies. The evolution of ancient silica-rich to modern Fe-rich precipitates in submarine-hydrothermal plumes reflects a changeover from silica-saturated to silica-depleted seawater through Phanerozoic time, due mainly to ocean-wide emergence of diatoms in the Cretaceous.

  5. Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow

    NASA Astrophysics Data System (ADS)

    Abeni, Fabio; Galli, Andrea

    2017-03-01

    The aim of this study was to explore the use of cow activity and rumination time by precision livestock farming tools as early alert for heat stress (HS) detection. A total of 58 Italian Friesian cows were involved in this study during summer 2015. Based on the temperature humidity index (THI), two different conditions were compared on 16 primiparous and 11 multiparous, to be representative of three lactation phases: early (15-84 DIM), around peak (85-154 DIM), and plateau (155-224 DIM). A separate dataset for the assessment of the variance partition included all the cows in the herd from June 7 to July 16. The rumination time (RT2h, min/2 h) and activity index (AI2h, bouts/2 h) were summarized every 2-h interval. The raw data were used to calculate the following variables: total daily RT (RTt), daytime RT (RTd), nighttime RT (RTn), total daily AI (AIt), daytime AI (AId), and nighttime AI (AIn). Either AIt and AId increased, whereas RTt, RTd, and RTn decreased with higher THI in all the three phases. The highest decrease was recorded for RTd and ranged from 49 % (early) to 45 % (plateau). The contribution of the cow within lactation phase was above 60 % of the total variance for AI traits and a share from 33.9 % (for RTt) to 54.8 % (RTn) for RT traits. These observations must be extended to different feeding managements and different animal genetics to assess if different thresholds could be identified to set an early alert system for the farmer.

  6. Moving beyond Screen Time: Redefining Developmentally Appropriate Technology Use in Early Childhood Education. Policy Brief

    ERIC Educational Resources Information Center

    Daugherty, Lindsay; Dossani, Rafiq; Johnson, Erin-Elizabeth; Wright, Cameron

    2014-01-01

    Conversations about what constitutes "developmentally appropriate" use of technology in early childhood education have, to date, focused largely on a single, blunt measure--screen time--that fails to capture important nuances, such as what type of media a child is accessing and whether technology use is taking place solo or with peers.…

  7. Environmental control on concretion-forming processes: Examples from Paleozoic terrigenous sediments of the North Gondwana margin, Armorican Massif (Middle Ordovician and Middle Devonian) and SW Sardinia (Late Ordovician)

    NASA Astrophysics Data System (ADS)

    Dabard, Marie-Pierre; Loi, Alfredo

    2012-08-01

    Concretions of various compositions are common in the Paleozoic terrigenous successions of the north Gondwana margin. This study focuses on phosphatic (P) and siliceous (Si) concretions present in some successions of the Armorican Massif (NW France) and SW Sardinia (W Italy). It shows that they consist of mudstones, fine- to very fine-grained sandstones or shellbeds with a more or less abundant P-cement and form a continuum between a phosphatic end-member and a siliceous biogenic end-member. The P2O5 contents are ranging from 0.26% to 21.5% and are related to apatite. The SiO2 contents vary from 25% to 82% and are linked both to a terrigenous phase and to a biogenic silica phase. Concretions showing the lower P-contents (P2O5 < 1.5%) are often enriched in biogenic silica (SiO2/Al2O3 > 5). Comparison with the surrounding sediments shows that all the concretions are enriched in chlorite and in Middle Rare Earth Elements (Las/Gds: 0.12-0.72) and some of them in Y (up to 974 ppm), Rare Earth Elements (more than 300 ppm) and Sr (260-880 ppm). The concretions with highest biogenic silica concentrations are contained in the outer shelf sediments whereas the other concretions are present from the proximal part of the inner shelf to the outer shelf. A genetic model in two stages is proposed. During early diagenesis, the dissolution of shells and degradation of organic matter progressively enrich the pore water in dissolved Si, Ca and P. When the suboxic zone is reached, P-precipitation begins, leading to the formation of protoconcretions. In shallow environments, the relative permeability of sediments and the winnowing or reworking of the upper few centimetres by bottom currents allow for suboxic conditions to be maintained, leading to P-rich concretion formation. In deeper environments, the anoxic zone is reached more rapidly, thereby preventing extensive phosphogenesis. Nevertheless in the protoconcretions the early P-cement preserves pore spaces from compaction. In the

  8. Influence of metabolic-linked early life factors on the eruption timing of the first primary tooth.

    PubMed

    Un Lam, Carolina; Hsu, Chin-Ying Stephen; Yee, Robert; Koh, David; Lee, Yung Seng; Chong, Mary Foong-Fong; Cai, Meijin; Kwek, Kenneth; Saw, Seang Mei; Godfrey, Keith; Gluckman, Peter; Chong, Yap Seng

    2016-11-01

    Early eruption of permanent teeth has been associated with childhood obesity and diabetes mellitus, suggesting links between tooth eruption and metabolic conditions. This longitudinal study aimed to identify pre-, peri- and postnatal factors with metabolic consequences during infancy that may affect the eruption timing of the first primary tooth (ETFT) in children from an ethnically heterogeneous population residing within the same community. Participants were recruited (n = 1033) through the GUSTO (Growing Up in Singapore Towards healthy Outcomes) birth cohort (n = 1237). Oral examinations were performed at 3-month intervals from 6 to 18 months of age. Crude and adjusted analyses, with generalized linear modelling, were conducted to link ETFT to potential determinants occurring during pregnancy, delivery/birth and early infancy. Overall mean eruption age of the first primary tooth was 8.5 (SD 2.6) months. Earlier tooth eruption was significantly associated with infant's rate of weight gain during the first 3 months of life and increased maternal childbearing age. Compared to their Chinese counterparts, Malay and Indian children experienced significantly delayed tooth eruption by 1.2 and 1.7 months, respectively. Infant weight gain from birth to 3 months, ethnicity and maternal childbearing age were significant determinants of first tooth eruption timing. Early life influences can affect primary tooth development, possibly via metabolic pathways. Timing of tooth eruption is linked to general growth and metabolic function. Therefore, it has potential in forecasting oral and systemic conditions such as caries and obesity.

  9. Early-time VLA Observations and Broadband Afterglow Analysis of the Fermi/LAT Detected GRB 130907A

    NASA Astrophysics Data System (ADS)

    Veres, Péter; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Perley, Daniel A.

    2015-09-01

    We present multi-wavelength observations of the hyper-energetic gamma-ray burst (GRB) 130907A, a Swift-discovered burst with early radio observations starting at ≈4 hr after the γ-ray trigger. GRB 130907A was also detected by the Fermi/LAT instrument and at late times showed a strong spectral evolution in X-rays. We focus on the early-time radio observations, especially at >10 GHz, to attempt to identify reverse shock signatures. While our radio follow-up of GRB 130907A ranks among the earliest observations of a GRB with the Karl G. Jansky Very Large Array, we did not see an unambiguous signature of a reverse shock. While a model with both reverse and forward shock can correctly describe the observations, the data is not constraining enough to decide upon the presence of the reverse-shock component. We model the broadband data using a simple forward-shock synchrotron scenario with a transition from a wind environment to a constant density interstellar medium (ISM) in order to account for the observed features. Within the confines of this model, we also derive the underlying physical parameters of the fireball, which are within typical ranges except for the wind density parameter (A*), which is higher than those for bursts with wind-ISM transition, but typical for the general population of bursts. We note the importance of early-time radio observations of the afterglow (and of well-sampled light curves) for unambiguously identifying the potential contribution of the reverse shock.

  10. Estimating formation properties from early-time oscillatory water levels in a pumped well

    USGS Publications Warehouse

    Shapiro, A.M.; Oki, D.S.

    2000-01-01

    Hydrologists often attempt to estimate formation properties from aquifer tests for which only the hydraulic responses in a pumped well are available. Borehole storage, turbulent head losses, and borehole skin, however, can mask the hydraulic behavior of the formation inferred from the water level in the pumped well. Also, in highly permeable formations or in formations at significant depth below land surface, where there is a long column of water in the well casing, oscillatory water levels may arise during the onset of pumping to further mask formation responses in the pumped well. Usually borehole phenomena are confined to the early stages of pumping or recovery, and late-time hydraulic data can be used to estimate formation properties. In many instances, however, early-time hydraulic data provide valuable information about the formation, especially if there are interferences in the late-time data. A mathematical model and its Laplace transform solution that account for inertial influences and turbulent head losses during pumping is developed for the coupled response between the pumped borehole and the formation. The formation is assumed to be homogeneous, isotropic, of infinite areal extent, and uniform thickness, with leakage from an overlying aquifer, and the screened or open interval of the pumped well is assumed to fully penetrate the pumped aquifer. Other mathematical models of aquifer flow can also be coupled with the equations describing turbulent head losses and the inertial effects on the water column in the pumped well. The mathematical model developed in this paper is sufficiently general to consider both underdamped conditions for which oscillations arise, and overdamped conditions for which there are no oscillations. Through numerical inversion of the Laplace transform solution, type curves from the mathematical model are developed to estimate formation properties through comparison with the measured hydraulic response in the pumped well. The

  11. Depositional environments and tectonic significance of the Wajid Sandstone of southern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Dabbagh, Mohamed E.; Rogers, John J. W.

    The Wajid Sandstone, of probable Early Paleozoic age, rests disconformably on crystalline rocks of the southern part of the Arabian shield. Scattered outcrops extend over an area about 450 km north-south and 300 km east-west. The southern part of the formation, near the Yemen border, consists of fluvial sandstones and very minor siltstones and silty shales. The fluvial origin is demonstrated by the presence of fining-upward cycles, channels, trough cross bedding, and absence of all organic traces. The northern part of the outcrop area consists of internally homogeneous, tabular cross-bedded, horizontally bedded sandstones apparently formed in a shallow marine environment. These marine rocks contain trace fossils broadly similar to Skolithos. Abundant cross bedding in both facies of the Wajid indicates a northward transport direction, toward what is now the center of the Arabian shield. The southern part of the Arabian shield, which was cratonized about 500 to 600 Ma ago (Pan-African age), was apparently still a depositional area receiving sediments from a southern source in Early Paleozoic time. Other, older, shields also show a tendency to be areas of deposition shortly after their apparent age of stabilization, becoming sources of clastic sediments only after several hundreds of millions of years. The conversion from basin to uplifted source may indicate a prolonged process of shield maturation after initial stabilization.

  12. Implementation of a landslide early warning system based on near-real-time monitoring, multisensor mapping and geophysical measurements

    NASA Astrophysics Data System (ADS)

    Teza, Giordano; Galgaro, Antonio; Francese, Roberto; Ninfo, Andrea; Mariani, Rocco

    2017-04-01

    An early warning system has been implemented to monitor the Perarolo di Cadore landslide (North-Eastern Italian Alps), which is a slump whose induced risk is fairly high because a slope collapse could form a temporary dam on the underlying torrent and, therefore, could directly threaten the close village. A robotic total station (RTS) measures, with 6h returning time, the positions of 23 retro-reflectors placed on the landslide upper and middle sectors. The landslide's kinematical behavior derived from these near-real-time (NRT) surface displacements is interpreted on the basis of available geomorphological and geological information, geometrical data provided by some laser scanning and photogrammetric surveys, and a landslide model obtained by means of 3D Electrical Resistivity Tomography (3D ERT) measurements. In this way, an analysis of the time series provided by RTS and a pluviometer, which cover several years, allows the definition of some pre-alert and alert kinematical and rainfall thresholds. These thresholds, as well as the corresponding operational recommendations, are currently used for early warning purposes by Authorities involved in risk management for the Perarolo landslide. It should be noted the fact that, as new RTS and pluviometric data are available, the thresholds can be updated and, therefore, a fine tuning of the early warning system can be carried out in order to improve its performance. Although the proposed approach has been implemented in a particular case, it can be used to develop an early warning system based on NRT data in each site where a landslide threatens infrastructures and/or villages that cannot be relocated.

  13. Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?

    NASA Astrophysics Data System (ADS)

    Knapp, J.

    2003-04-01

    Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary

  14. Time resolved optical system for an early detection of prostate tumor

    NASA Astrophysics Data System (ADS)

    Hervé, Lionel; Laidevant, Aurélie; Debourdeau, Mathieu; Boutet, Jérôme; Dinten, Jean-Marc

    2011-02-01

    We developed an endorectal time-resolved optical probe aiming at an early detection of prostate tumors targeted by fluorescent markers. Optical fibers are embedded inside a clinical available ultrasound endorectal probe. Excitation light is driven sequentially from a femtosecond laser (775 nm) into 6 source fibers. 4 detection fibers collect the medium responses at the excitation and fluorescence wavelength (850 nm) by the mean of 4 photomultipliers associated with a 4 channel time-correlated single photon counting card. We also developed the method to process the experimental data. This involves the numerical computation of the forward model, the creation of robust features which are automatically correctly from numerous experimental possible biases and the reconstruction of the inclusion by using the intensity and mean time of these features. To evaluate our system performance, we acquired measurements of a 40 μL ICG inclusion (10 μmol.L-1) at various lateral and depth locations in a phantom. Analysis of results showed we correctly reconstructed the fluorophore for the lateral positions (16 mm range) and for a distance to the probe going up to 1.5 cm. Precision of localization was found to be around 1 mm which complies well with precision specifications needed for the clinical application.

  15. Real-time PCR for the early detection and quantification of Coxiella burnetii as an alternative to the murine bioassay.

    PubMed

    Howe, Gerald B; Loveless, Bonnie M; Norwood, David; Craw, Philip; Waag, David; England, Marilyn; Lowe, John R; Courtney, Bernard C; Pitt, M Louise; Kulesh, David A

    2009-01-01

    Real-time PCR was used to analyze archived blood from non-human primates (NHP) and fluid samples originating from a well-controlled Q fever vaccine efficacy trial. The PCR targets were the IS1111 element and the com1 gene of Coxiella burnetii. Data from that previous study were used to evaluate real-time PCR as an alternative to the use of sero-conversion by mouse bioassay for both quantification and early detection of C. burnetii bacteria. Real-time PCR and the mouse bioassay exhibited no statistical difference in quantifying the number of microorganisms delivered in the aerosol challenge dose. The presence of C. burnetii in peripheral blood of non-human primates was detected by real-time PCR as early after exposure as the mouse bioassay with results available within hours instead of weeks. This study demonstrates that real-time PCR has the ability to replace the mouse bioassay to measure dosage and monitor infection of C. burnetii in a non-human primate model.

  16. Eolian Signal of the Onset of the Late Paleozoic Ice Age in North America Re-Deposited and Preserved As Paleo-Cave Sediments, Southwestern Colorado, U.S.a.

    NASA Astrophysics Data System (ADS)

    Evans, J. E.; Soreghan, M. J.

    2014-12-01

    The Molas Formation is a loessite consisting of reddish silt of Early Pennsylvanian (Bashkirian) age. U-Pb age spectra of accessory zircons indicate long-distance (>2000 km) transport from the Grenville province in northeastern North America plus sources from the peri-Gondwanan terranes in southeastern North America and local sources in the Ancestral Rocky Mountains uplift. These eolian sediments formed a blanket deposit <30 m thick above a paleokarst landscape in southwestern Colorado, infilling solution valleys and burying karst towers developed on the underlying Mississippian (Tournaisian-Visean) Leadville Limestone. The loessite is an eolian signal for the probable onset of glaciation at multiple locations in tectonically uplifted mountainous areas in North America. However, the loessite is easily eroded and has low preservation potential. Prior to lithification, significant amounts of the loess were remobilized and transported into the underlying karst system. As paleo-cave deposits, encased in limestone and dolostone, the silt-rich deposits have a higher preservation potential, and the eolian signal of the onset of the Late Paleozoic Ice Age in North America is still recognizable. However, the following signal modification processes need to be understood: (1) source area weathering and pedogenesis; (2) land-atmosphere transfer processes; (3) deposition effects of paleotopography, vegetation and moisture conditions, and infiltration into open fractures and/or the matrix of colluvium; (4) remobilization by surface runoff into open fractures and/or groundwater piping/sapping processes in loess soils; (5) transport into vadose and phreatic karst passageways by episodic ("streamflood") hydrologic events, forming event deposits (debrites, inundites, and jointites); (6) breakout dome collapse (forming interbedded cave sediments, karst breccias, and speleothems); (7) lithification and diagenesis; (8) post-lithification modification including pervasive hydrothermal

  17. Combining multiple earthquake models in real time for earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.

    2017-01-01

    The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.

  18. The problem of the age and structural position of the Blyb metamorphic complex (Fore Range zone, Great Caucasus) granitoids.

    NASA Astrophysics Data System (ADS)

    Kamzolkin, Vladimir; Latyshev, Anton; Ivanov, Stanislav

    2016-04-01

    The Blyb metamorphic complex (BMC) of the Fore Range zone is one of the most high-grade metamorphosed element of the Great Caucasus fold belt. Determination of the timing and the mechanism of formation of the Fore Range fold-thrust structures are not possible without investigation of the BMC located at the basement of its section. At the same time, the conceptions about its structure and age are outdated and need revision. Somin (2011) determined the age of the protolith and metamorphism of the Blyb complex as the Late Devonian - Early Carboniferous. We have recently shown that the BMC has not the dome, as previously thought, but nappe structure (Vidjapin, Kamzolkin, 2015), and is metamorphically coherent with the peak metamorphism pressures up to 22 kbar (Kamzolkin et al., 2015; Konilov et al., 2013). Considering the age and structure of the Blyb complex it is necessary to revise the age of granitoid intrusions and their relations with gneisses and schists, which constitute the main part of the section of the complex. Most authors (Gamkrelidze, Shengelia, 2007; Lavrischev, 2002; Baranov, 1967) adheres to Early Paleozoic age of intrusives, which is doubtful, considering the younger age of metamorphic rocks. We suppose, that the intrusive bodies broke through a BMC nappe structure during the exhumation of the complex (Perchuk, 1991) at the Devonian - Carboniferous boundary. Seemingly, the massive monzodiorites body (Lavrischev, 2002), intruding garnet-muscovite schists and amphibolite gneisses of the Blyb complex and cut by the Main Caucasian fault (MCF), are younger. Given the timing of termination of the MCF movement activity as the Middle Jurassic (Greater Caucasus..., 2005), their age should be in the Early Carboniferous - Middle Jurassic interval. At the same time, on the modern geological map (Lavrischev, 2002) monzodiorites body is assigned to the Middle Paleozoic. The study of the BMC granitoids and monzodiorites will help in determining of the mechanism and

  19. Palaeogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: palaeotopographic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Chaboureau, A. C.; Guillocheau, F.; Robin, C.; Rohais, S.; Moulin, M.; Aslanian, D.

    2012-04-01

    The tectonic and sedimentary evolution of the Early Cretaceous rift of the central segment of the South Atlantic Ocean is debated. Our objective is to better constraint the timing of its evolution by drawing palaeogeographic and deformation maps. Eight palaeogeographic and deformations maps were drawn from the Berriasian to the Middle-Late Aptian, based on a biostratigraphic (ostracodes and pollens) chart recalibrated on absolute ages (chemostratigraphy, interstratified volcanics, Re-Os dating of the organic matter). The central segment of the South Atlantic is composed of two domains that have a different history in terms of deformation and palaeogeography. The southern domain includes Namibe, Santos and Campos Basins. The northern domain extends from Espirito Santo and North Kwanza Basins, in the South, to Sergipe-Alagoas and North Gabon Basins to the North. Extension started in the northern domain during Late Berriasian (Congo-Camamu Basin to Sergipe-Alagoas-North Gabon Basins) and migrated southward. At that time, the southern domain was not a subsiding domain. This is time of emplacement of the Parana-Etendeka Trapp (Late Hauterivian-Early Barremian). Extension started in this southern domain during Early Barremian. The brittle extensional period is shorter in the South (5-6 Ma, Barremian to base Aptian) than in the North (19 to 20 Myr, Upper Berriasian to Base Aptian). From Late Berriasian to base Aptian, the northern domain evolves from a deep lake with lateral highs to a shallower one, organic-rich with no more highs. The lake migrates southward in two steps, until Valanginian at the border between the northern and southern domains, until Early Barremian, North of Walvis Ridge. The Sag phase is of Middle to Late Aptian age. In the southern domain, the transition between the brittle rift and the sag phase is continuous. In the northern domain, this transition corresponds to a hiatus of Early to Middle Aptian age, possible period of mantle exhumation. Marine

  20. Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow.

    PubMed

    Abeni, Fabio; Galli, Andrea

    2017-03-01

    The aim of this study was to explore the use of cow activity and rumination time by precision livestock farming tools as early alert for heat stress (HS) detection. A total of 58 Italian Friesian cows were involved in this study during summer 2015. Based on the temperature humidity index (THI), two different conditions were compared on 16 primiparous and 11 multiparous, to be representative of three lactation phases: early (15-84 DIM), around peak (85-154 DIM), and plateau (155-224 DIM). A separate dataset for the assessment of the variance partition included all the cows in the herd from June 7 to July 16. The rumination time (RT2h, min/2 h) and activity index (AI2h, bouts/2 h) were summarized every 2-h interval. The raw data were used to calculate the following variables: total daily RT (RTt), daytime RT (RTd), nighttime RT (RTn), total daily AI (AIt), daytime AI (AId), and nighttime AI (AIn). Either AIt and AId increased, whereas RTt, RTd, and RTn decreased with higher THI in all the three phases. The highest decrease was recorded for RTd and ranged from 49 % (early) to 45 % (plateau). The contribution of the cow within lactation phase was above 60 % of the total variance for AI traits and a share from 33.9 % (for RTt) to 54.8 % (RTn) for RT traits. These observations must be extended to different feeding managements and different animal genetics to assess if different thresholds could be identified to set an early alert system for the farmer.

  1. Global Diversity and Phylogeny of the Asteroidea (Echinodermata)

    PubMed Central

    Mah, Christopher L.; Blake, Daniel B.

    2012-01-01

    Members of the Asteroidea (phylum Echinodermata), popularly known as starfish or sea stars, are ecologically important and diverse members of marine ecosystems in all of the world's oceans. We present a comprehensive overview of diversity and phylogeny as they have figured into the evolution of the Asteroidea from Paleozoic to the living fauna. Living post-Paleozoic asteroids, the Neoasteroidea, are morphologically separate from those in the Paleozoic. Early Paleozoic asteroid faunas were diverse and displayed morphology that foreshadowed later living taxa. Preservation presents significant difficulties, but fossil occurrence and current accounts suggests a diverse Paleozoic fauna, which underwent extinction around the Permian-Triassic interval was followed by re-diversification of at least one surviving lineage. Ongoing phylogenetic classification debates include the status of the Paxillosida and the Concentricycloidea. Fossil and molecular evidence has been and continues to be part of the ongoing evolution of asteroid phylogenetic research. The modern lineages of asteroids include the Valvatacea, the Forcipulatacea, the Spinlosida, and the Velatida. We present an overview of diversity in these taxa, as well as brief notes on broader significance, ecology, and functional morphology of each. Although much asteroid taxonomy is stable, many new taxa remain to be discovered with many new species currently awaiting description. The Goniasteridae is currently one of the most diverse families within the Asteroidea. New data from molecular phylogenetics and the advent of global biodiversity databases, such as the World Asteroidea Database (http://www.marinespecies.org/Asteroidea/) present important new springboards for understanding the global biodiversity and evolution of asteroids. PMID:22563389

  2. Research on intelligent scenic security early warning platform based on high resolution image: real scene linkage and real-time LBS

    NASA Astrophysics Data System (ADS)

    Li, Baishou; Huang, Yu; Lan, Guangquan; Li, Tingting; Lu, Ting; Yao, Mingxing; Luo, Yuandan; Li, Boxiang; Qian, Yongyou; Gao, Yujiu

    2015-12-01

    This paper design and implement security monitor system within a scenic spot for tourists, the scenic spot staff can be automatic real time for visitors to perception and monitoring, and visitors can also know about themselves location in the scenic, real-time and obtain the 3D imaging conditions of scenic area. Through early warning can realize "parent-child relation", preventing the old man and child lost and wandering. Research results to the further development of virtual reality to provide effective security early warning platform of the theoretical basis and practical reference.

  3. The Early Mesozoic volcanic arc of western North America in northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora

    2008-02-01

    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  4. The practical application of adaptive study design in early phase clinical trials: a retrospective analysis of time savings.

    PubMed

    Lorch, U; Berelowitz, K; Ozen, C; Naseem, A; Akuffo, E; Taubel, J

    2012-05-01

    The interest in adaptive study design is evident from the growing amount of clinical research employing this model in the mid to later stages of medicines development. Little has been published on the practical application and merits of adaptive study design in early phase clinical research. This paper describes a retrospective analysis performed on a sample of 29 industry lead adaptive early phase studies commencing between 1 January 2006 and 31 December 2010 in a clinical trials unit in London, England. All studies containing at least one adaptive feature in the original protocol were included in the analysis. The scope of the analysis was to assess whether the use of adaptive study designs provided tangible benefits over the use of conventional study designs using time savings as the main measure. We conclude that the use of adaptive study design saves time in early phase research programs. This is achieved by abolishing the need for substantial amendments or by mitigating their impact on timelines and by using adaptive scheduling efficiencies.

  5. Paleomagnetism of Devonian dykes in the northern Kola Peninsula and its bearing on the apparent polar wander path of Baltica in the Precambrian

    NASA Astrophysics Data System (ADS)

    Veselovskiy, Roman V.; Bazhenov, Mikhail L.; Arzamastsev, Andrey A.

    2016-04-01

    Mafic dykes and large alkaline and carbonatite intrusions of Middle-Late Devonian age are widespread on the Kola Peninsula in NE Fennoscandia. These magmatic rocks are well characterized with petrographic, geochemical and geochronological data but no paleomagnetic results have been reported yet. We studied dolerite dykes from the northern part of the Peninsula and isolated three paleomagnetic components in these rocks. A low-temperature component is aligned along the present-day field, while a major constituent of natural remanent magnetization is an intermediate-temperature component (Decl. = 79.6°, Inc. = 78.5°, α95 = 5,9°, N = 17 sites) that is present in most Devonian dykes but is found in some baked metamorphic rocks and Proterozoic dykes too. Finally, a primary Devonian component could be reliably isolated from two dykes only. Rock-magnetic studies point to presumably primary low-Ti titanomagnetite and/or pure magnetite as the main remanence carriers but also reveal alteration of the primary minerals and the formation of new magnetic phases. The directions of a major component differ from the Middle Paleozoic reference data for Baltica but closely match those for the 190 ± 10 Ma interval recalculated from the apparent polar wander path of the craton. We assume that this Early Jurassic component is a low-temperature overprint of chemical origin. The main impact of the new results is not to mid-Paleozoic or Early Mesozoic times but to much older epochs. Analysis of paleomagnetic data shows that the directionally similar remanences are present in objects with the ages ranging from 500 Ma to 2 Ga over entire Fennoscandia. Hence we argue that an Early Jurassic remagnetization is of regional extent but cannot link it to a certain process and a certain tectonic event. If true, this hypothesis necessitates a major revision of the APWP for Baltica over a wide time interval.

  6. Simple Predictive Model of Early Failure among Patients Undergoing First-Time Arteriovenous Fistula Creation.

    PubMed

    Eslami, Mohammad H; Zhu, Clara K; Rybin, Denis; Doros, Gheorghe; Siracuse, Jeffrey J; Farber, Alik

    2016-08-01

    Native arteriovenous fistulas (AVFs) have a high 1 year failure rate leading to a need for secondary procedures. We set out to create a predictive model of early failure in patients undergoing first-time AVF creation, to identify failure-associated factors and stratify initial failure risk. The Vascular Study Group of New England (VSGNE) (2010-2014) was queried to identify patients undergoing first-time AVF creation. Patients with early (within 3 months postoperation) AVF failure (EF) or no failure (NF) were compared, failure being defined as any AVF that could not be used for dialysis. A multivariate logistic regression predictive model of EF based on perioperative clinical variables was created. Backward elimination with alpha level of 0.2 was used to create a parsimonious model. We identified 376 first-time AVF patients with follow-up data available in VSGNE. EF rate was 17.5%. Patients in the EF group had lower rates of hypertension (80.3% vs. 93.2%, P = 0.003) and diabetes (47.0% vs. 61.3%, P = 0.039). EF patients were also more likely to have radial artery inflow (57.6% vs. 38.4%, P = 0.011) and have forearm cephalic vein outflow (57.6% vs. 36.5%, P = 0.008). Additionally, the EF group was noted to have significantly smaller mean diameters of target artery (3.1 ± 0.9 vs. 3.6 ± 1.1, P = 0.002) and vein (3.1 ± 0.7 vs. 3.6 ± 0.9, P < 0.001). Multivariate analyses revealed that hypertension, diabetes, and vein larger than 3 mm were protective of EF (P < 0.05). The discriminating ability of this model was good (C-statistic = 0.731) and the model fits the data well (Hosmer-Lemeshow P = 0.149). β-estimates of significant factors were used to create a point system and assign probabilities of EF. We developed a simple model that robustly predicts first-time AVF EF and suggests that anatomical and clinical factors directly affect early AVF outcomes. The risk score has the potential to be used in clinical settings to stratify risk and make

  7. The Relationship Between Cardiac Conduction Times, Cardiovascular Risk Factors, and Inflammation in Patients with Early Arthritis.

    PubMed

    Turk, Samina A; Heslinga, Sjoerd C; Dekker, Jill; Britsemmer, Linda; van der Lugt, Véronique; Lems, Willem F; van Schaardenburg, Dirkjan; Nurmohamed, Michael T

    2017-05-01

    To investigate the prevalence of conduction disorders in patients with early arthritis and the relationship with inflammation and traditional cardiovascular (CV) risk factors. Patients with rheumatoid arthritis (RA) have a 2-fold higher risk of sudden cardiac death, possibly owing to conduction disorders. This increased risk might already be present at the clinical onset of arthritis. Therefore, we assessed electrocardiography, blood pressure, 28-joint Disease Activity Score (DAS28), lipid profile, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) level in 480 patients with early arthritis at baseline and after 1 year. The prevalence of conduction disorders was 12.5%. Conduction times at baseline were not associated with DAS28, ESR, or CRP levels and did not change during antirheumatic treatment. Baseline and the improvement in DAS28 (European League Against Rheumatism response), ESR, and CRP were significantly associated with heart rate, lipid profile, and blood pressure. Elevated total cholesterol and blood pressure were associated with an increased QRS time. The change in heart rate differed 7.3 bpm between patients with the least versus largest DAS improvement. The prevalence of conduction disorders in patients with early arthritis was 12.5%, which is similar to the general population and was not associated with changes in inflammation markers. However, a high cholesterol was associated with a prolonged QRS time. Therefore, the emphasis of CV risk management in arthritis should not be only on treatment of disease activity but also on traditional CV risk factors. The relationship between the improvement in disease activity and heart rate is remarkable because this could imply a 10-year CV mortality risk difference of 24%.

  8. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    USGS Publications Warehouse

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.

    2014-01-01

    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  9. Early literacy and early numeracy: the value of including early literacy skills in the prediction of numeracy development.

    PubMed

    Purpura, David J; Hume, Laura E; Sims, Darcey M; Lonigan, Christopher J

    2011-12-01

    The purpose of this study was to examine whether early literacy skills uniquely predict early numeracy skills development. During the first year of the study, 69 3- to 5-year-old preschoolers were assessed on the Preschool Early Numeracy Skills (PENS) test and the Test of Preschool Early Literacy Skills (TOPEL). Participants were assessed again a year later on the PENS test and on the Applied Problems and Calculation subtests of the Woodcock-Johnson III Tests of Achievement. Three mixed effect regressions were conducted using Time 2 PENS, Applied Problems, and Calculation as the dependent variables. Print Knowledge and Vocabulary accounted for unique variance in the prediction of Time 2 numeracy scores. Phonological Awareness did not uniquely predict any of the mathematics domains. The findings of this study identify an important link between early literacy and early numeracy development. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Mrc1 Marks Early-Firing Origins and Coordinates Timing and Efficiency of Initiation in Fission Yeast ▿ †

    PubMed Central

    Hayano, Motoshi; Kanoh, Yutaka; Matsumoto, Seiji; Masai, Hisao

    2011-01-01

    How early- and late-firing origins are selected on eukaryotic chromosomes is largely unknown. Here, we show that Mrc1, a conserved factor required for stabilization of stalled replication forks, selectively binds to the early-firing origins in a manner independent of Cdc45 and Hsk1 kinase in the fission yeast Schizosaccharomyces pombe. In mrc1Δ cells (and in swi1Δ cells to some extent), efficiency of firing is stimulated, and its timing is advanced selectively at those origins that are normally bound by Mrc1. In contrast, the late or inefficient origins which are not bound by Mrc1 are not activated in mrc1Δ cells. The enhanced firing and precocious Cdc45 loading at Mrc1-bound early-firing origins are not observed in a checkpoint mutant of mrc1, suggesting that non-checkpoint function is involved in maintaining the normal program of early-firing origins. We propose that prefiring binding of Mrc1 is an important marker of early-firing origins which are precociously activated by the absence of this protein. PMID:21518960

  11. Early, On-Time, and Late Behavioural Autonomy in Adolescence: Psychosocial Correlates in Young and Middle Adulthood

    ERIC Educational Resources Information Center

    Pavlova, Maria K.; Haase, Claudia M.; Silbereisen, Rainer K.

    2011-01-01

    Drawing on two nationally representative German studies (N[subscript 1] = 1744, N[subscript 2] = 759), we examined correlates of early, on-time, and late curfew autonomy, a retrospective indicator of behavioural autonomy, in young and middle adulthood (19-37 years of age). Adjustment in four domains was considered: educational attainment,…

  12. Early-Time Solution of the Horizontal Unconfined Aquifer in the Buildup Phase

    NASA Astrophysics Data System (ADS)

    Gravanis, Elias; Akylas, Evangelos

    2017-10-01

    We derive the early-time solution of the Boussinesq equation for the horizontal unconfined aquifer in the buildup phase under constant recharge and zero inflow. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turns out to be asymptotic and it is regularized by resummation techniques that are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.

  13. Evolution of the Arctic-North Atlantic and the Western Tethys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, P.A.

    1988-01-01

    This volume provides an overview of the late Paleozoic to recent geological evolution of the continents and shelves bordering the North Atlantic Ocean, the Norwegian-Greenland Sea, the Arctic Ocean, and the Mediterranean Sea. The evolution of these seas has been the subject of many studies and compilations, which discuss the evolution of oceanic basins on the basis of their magnetic sea-floor anomalies. The volume presented combines this information with geological data from the adjacent shelf and onshore areas. It retraces the evolution of sedimentary basins developed during the rifting phases that preceded the opening of these oceans and highlights themore » scope of the associated intra-plate phenomena. The author presents a reconstruction of the late Paleozoic and early Mesozoic development of Europe, northernmost Africa and northeastern North America-Greenland and discusses the different orogenic cycles that accompanied the stepwise assembly of Pangea and the early rifting phases heralding its break-up.« less

  14. [Part time work instead of early retirement: successful breakthrough for flexible and later retirement?].

    PubMed

    Bäcker, G; Naegele, G

    1996-01-01

    In order to stop the trend towards early retirement in Germany a law to promote partial retirement recently has been passed by parliament. Concerning the impact on the labour market the raising of the pension age for older unemployed which is fixed in this law has to be seen as contraproductive and it will deteriorate the financial situation of unemployed older workers. Concerning the implementation of partial-retirement as such, there are momentous obstacles to realize part-time working arrangements in practice: the insufficient financial compensation for older workers and the obligation for employers to hire unemployed workers. Supplementary collective agreements are seen to be necessary to establish part-time work for older workers.

  15. Interest of waiting time for spontaneous early reconnection after cavotricuspid isthmus ablation: A monocentric randomized trial.

    PubMed

    Marchandise, Sébastien; Scavée, Christophe; Barbraud, Cynthia; de Meester de Ravenstein, Christophe; Balola Bagalwa, Mittérand; Goesaert, Cédric; Reis-Pinheiro, Ivone; le Polain de Waroux, Jean-Benoit

    2017-12-01

    The aim of this study was to determine the rate of recurrent atrial flutter (AFl) after isolated cavotricuspid isthmus (CTI) ablation and to evaluate the impact of a waiting period with the search for early resumption of the CTI block on the long-term outcome. Three hundred and nineteen consecutive patients referred for typical AFl ablation were randomly assigned to CTI ablation with continuous reevaluation of the CTI block during 30 minutes and early reablation if needed (waiting time [WT] + group, n  =  155) or to CTI ablation with no waiting period after proven bidirectional CTI block (WT - group, n  =  164). All patients were regularly followed-up. In the WT+ group, 10 patients (6%) presented a recovery across the CTI (time to recovery: 17 ± 7') and were reablated at the end of the waiting period. After a median follow-up of 21 months, the rate of recurrent AFl was significantly higher in the WT - group as compared to the WT+ group (11.6% [19/164] vs 2.5% [4/155], respectively; P  =  0.007). However, no significant differences in the subsequent rate of AF were observed between the two groups (29% [WT -] vs 32% [WT+], P  =  0.66). During the follow-up, 28 patients from the WT - group underwent a second ablation procedure (16 AFl redo and 12 AF ablation) versus 10 patients form the WT+ group (three AFl redo and seven AF ablation). Waiting 30 minutes after CTI ablation to check for early resumption and early reablation allows for decreasing significantly the rate of recurrent atrial flutter. © 2017 Wiley Periodicals, Inc.

  16. Early Adolescent Boys' Exposure to Internet Pornography: Relationships to Pubertal Timing, Sensation Seeking, and Academic Performance

    ERIC Educational Resources Information Center

    Beyens, Ine; Vandenbosch, Laura; Eggermont, Steven

    2015-01-01

    Research has demonstrated that adolescents regularly use Internet pornography. This two-wave panel study aimed to test an integrative model in early adolescent boys (M[subscript age] = 14.10; N = 325) that (a) explains their exposure to Internet pornography by looking at relationships with pubertal timing and sensation seeking, and (b) explores…

  17. Improving global paleogeography since the late Paleozoic using paleobiology

    NASA Astrophysics Data System (ADS)

    Cao, Wenchao; Zahirovic, Sabin; Flament, Nicolas; Williams, Simon; Golonka, Jan; Dietmar Müller, R.

    2017-12-01

    Paleogeographic reconstructions are important to understand Earth's tectonic evolution, past eustatic and regional sea level change, paleoclimate and ocean circulation, deep Earth resources and to constrain and interpret the dynamic topography predicted by mantle convection models. Global paleogeographic maps have been compiled and published, but they are generally presented as static maps with varying map projections, different time intervals represented by the maps and different plate motion models that underlie the paleogeographic reconstructions. This makes it difficult to convert the maps into a digital form and link them to alternative digital plate tectonic reconstructions. To address this limitation, we develop a workflow to restore global paleogeographic maps to their present-day coordinates and enable them to be linked to a different tectonic reconstruction. We use marine fossil collections from the Paleobiology Database to identify inconsistencies between their indicative paleoenvironments and published paleogeographic maps, and revise the locations of inferred paleo-coastlines that represent the estimated maximum transgression surfaces by resolving these inconsistencies. As a result, the consistency ratio between the paleogeography and the paleoenvironments indicated by the marine fossil collections is increased from an average of 75 % to nearly full consistency (100 %). The paleogeography in the main regions of North America, South America, Europe and Africa is significantly revised, especially in the Late Carboniferous, Middle Permian, Triassic, Jurassic, Late Cretaceous and most of the Cenozoic. The global flooded continental areas since the Early Devonian calculated from the revised paleogeography in this study are generally consistent with results derived from other paleoenvironment and paleo-lithofacies data and with the strontium isotope record in marine carbonates. We also estimate the terrestrial areal change over time associated with

  18. [Evaluation on stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval].

    PubMed

    Zhang, Ping; Ma, Kai-Jun; Zhang, Heng; Wang, Hui-Jun; Shen, Yi-Wen; Chen, Long

    2012-04-01

    To explore the stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval (PMI) in order to find the most stable marker. Ten individuals with similar environmental conditions (the average store temperature: 25 degrees C) and different PMI ranging from 4.3 to 22.3 h were selected. Total RNA was extracted from each sample and six commonly internal controls were used including beta-actin, GAPDH, B2M, U6, 18S rRNA and HSA-miR-1, and the expression was detected in cardiac muscle by real-time RT-PCR. The expression stability of internal controls was evaluated using genormPLUS software during early PMI. The internal control with the most stability was selected. The relationship between the most stable marker and its expression level affected by some other parameters such as age, gender and cause of death was also analyzed. The U6 showed the most stable expression during early PMI in cardiac muscle, and its expression level was not affected by those parameters including age, gender and cause of death (P > 0.05). U6 may be a valuable internal control for the study of relationship between PMI determination and degradation of nucleic acid in human cardiac muscle by real-time RT-PCR.

  19. Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.

    1997-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  20. Preliminary Geologic Map of the the Little Piute Mountains, San Bernardino County, California

    USGS Publications Warehouse

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl E.; Phelps, Geoffrey A.

    1995-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  1. Poverty and Awakening Cortisol in Adolescence: The Importance of Timing in Early Life

    PubMed Central

    McFarland, Michael J.; Hayward, Mark D.

    2015-01-01

    The deleterious effects of poverty on mental and physical health are routinely argued to operate, at least in part, via dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, although empirical examinations connecting poverty with HPA axis functioning are rare. Research on the effects of timing of poverty is a particularly neglected aspect of this relationship. This study uses 15 years of prospective data from the Study of Early Child Care and Youth Development to assess how exposure to poverty during infancy, childhood, and adolescence is related to awakening cortisol (n = 826), a marker of HPA axis functioning. Among female participants, poverty exposure in infancy and adolescence, but not childhood, was negatively associated with awakening cortisol. Poverty exposure was unrelated to cortisol among male participants. The importance of timing and gender differences are discussed along with directions for future research. PMID:26140229

  2. Birth, life, and demise of the Andean-syn-collisional Gissar arc: Late Paleozoic tectono-magmatic-metamorphic evolution of the southwestern Tian Shan, Tajikistan

    NASA Astrophysics Data System (ADS)

    Worthington, James R.; Kapp, Paul; Minaev, Vladislav; Chapman, James B.; Mazdab, Frank K.; Ducea, Mihai N.; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2017-10-01

    The amalgamation of the Central Asian Orogenic Belt in the southwestern Tian Shan in Tajikistan is represented by tectono-magmatic-metamorphic processes that accompanied late Paleozoic ocean closure and collision between the Karakum-Tarim and Kazakh-Kyrgyz terranes. Integrated U-Pb geochronology, thermobarometry, pseudosection modeling, and Hf geochemistry constrain the timing and petro-tectonic nature of these processes. The Gissar batholith and the Garm massif represent an eastward, along-strike increase in paleodepth from upper-batholith ( 21-7 km) to arc-root ( 36-19 km) levels of the Andean-syn-collisional Gissar arc, which developed from 323-288 Ma in two stages: (i) Andean, I-type granitoid magmatism from 323-306 Ma due to northward subduction of the Gissar back-arc ocean basin under the Gissar microcontinent, which was immediately followed by (ii) syn-collisional, I-S-type granitoid magmatism in the Gissar batholith and the Garm massif from 304-288 Ma due to northward subduction/underthrusting of Karakum marginal-continental crust under the Gissar microcontinent. A rapid isotopic pull-up from 288-286 Ma signals the onset of juvenile, alkaline-syenitic, post-collisional magmatism by 280 Ma, which was driven by delamination of the Gissar arclogite root and consequent convective asthenospheric upwelling. Whereas M-HT/LP prograde metamorphism in the Garm massif (650-750°C/6-7 kbar) from 310-288 Ma was associated with subduction-magma inundation and crustal thickening, HT/LP heating and decompression to peak-metamorphic temperatures ( 800-820°C/6-4 kbar) at 288 ± 6 Ma was driven by the transmission of a post-collisional, mantle-derived heat wave through the Garm-massif crust.

  3. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  4. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment.

    PubMed

    Ruge, Diane; Tisch, Stephen; Hariz, Marwan I; Zrinzo, Ludvic; Bhatia, Kailash P; Quinn, Niall P; Jahanshahi, Marjan; Limousin, Patricia; Rothwell, John C

    2011-08-15

    Deep brain stimulation to the internal globus pallidus is an effective treatment for primary dystonia. The optimal clinical effect often occurs only weeks to months after starting stimulation. To better understand the underlying electrophysiological changes in this period, we assessed longitudinally 2 pathophysiological markers of dystonia in patients prior to and in the early treatment period (1, 3, 6 months) after deep brain stimulation surgery. Transcranial magnetic stimulation was used to track changes in short-latency intracortical inhibition, a measure of excitability of GABA(A) -ergic corticocortical connections and long-term potentiation-like synaptic plasticity (as a response to paired associative stimulation). Deep brain stimulation remained on for the duration of the study. Prior to surgery, inhibition was reduced and plasticity increased in patients compared with healthy controls. Following surgery and commencement of deep brain stimulation, short-latency intracortical inhibition increased toward normal levels over the following months with the same monotonic time course as the patients' clinical benefit. In contrast, synaptic plasticity changed rapidly, following a nonmonotonic time course: it was absent early (1 month) after surgery, and then over the following months increased toward levels observed in healthy individuals. We postulate that before surgery preexisting high levels of plasticity form strong memories of dystonic movement patterns. When deep brain stimulation is turned on, it disrupts abnormal basal ganglia signals, resulting in the absent response to paired associative stimulation at 1 month. Clinical benefit is delayed because engrams of abnormal movement persist and take time to normalize. Our observations suggest that plasticity may be a driver of long-term therapeutic effects of deep brain stimulation in dystonia. Copyright © 2011 Movement Disorder Society.

  5. Neighborhood Poverty Impacts Children's Physical Health and Well-Being over Time: Evidence from the Early Development Instrument

    ERIC Educational Resources Information Center

    Cushon, Jennifer A.; Vu, Lan T. H.; Janzen, Bonnie L.; Muhajarine, Nazeem

    2011-01-01

    Research Findings: The purpose of this study was to investigate how neighborhoods and neighborhood socioeconomic disadvantage impact school readiness over time. School readiness was measured using the Early Development Instrument (EDI) for 3 populations of kindergartners in 2001, 2003, and 2005 in Saskatoon, Saskatchewan, Canada. EDI results…

  6. A three-dimensional simulation of transition and early turbulence in a time-developing mixing layer

    NASA Technical Reports Server (NTRS)

    Cain, A. B.; Reynolds, W. C.; Ferziger, J. H.

    1981-01-01

    The physics of the transition and early turbulence regimes in the time developing mixing layer was investigated. The sensitivity of the mixing layer to the disturbance field of the initial condition is considered. The growth of the momentum thickness, the mean velocity profile, the turbulence kinetic energy, the Reynolds stresses, the anisotropy tensor, and particle track pictures of computations are all examined in an effort to better understand the physics of these regimes. The amplitude, spectrum shape, and random phases of the initial disturbance field were varied. A scheme of generating discrete orthogonal function expansions on some nonuniform grids was developed. All cases address the early or near field of the mixing layer. The most significant result shows that the secondary instability of the mixing layer is produced by spanwise variations in the straining field of the primary vortex structures.

  7. Chronology of paleozoic metamorphism and deformation in the Blue Ridge thrust complex, North Carolina and Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, S.A.; Dallmeyer, R.D.

    1997-05-01

    The Blue Ridge province in northwestern North Carolina and northeastern Tennessee records a multiphase collisional and accretionary history from the Mesoproterozoic through the Paleozoic. To constrain the tectonothermal evolution in this region, radiometric ages have been determined for 23 regionally metamorphosed amphibolites, granitic gneisses, and pelitic schists and from mylonites along shear zones that bound thrust sheets and within an internal shear zone. The garnet ages from the Pumpkin Patch a thrust sheet (458, 455, and 451 Ma) are similar to those from the structurally overlying Spruce Pine thrust sheet (460, 456, 455, and 450 Ma). Both thrust sheets exhibitmore » similar upper amphibolite-facies conditions. Because of the high closure temperature for garnet, the garnet ages are interpreted to date growth at or near the peak of Taconic metamorphism. Devonian metamorphic ages are recognized in the Spruce Pine thrust sheet, where Sm-Nd and Rb-Sr garnet ages of 386 and 393 Ma and mineral isochron ages of 397 {+-} 14 and 375 {+-} 27 Ma are preserved. Hornblendes record similar {sup 40}Ar/{sup 39}Ar, Sm-Nd, and Rb-Sr ages of 398 to 379 Ma. Devonian {sup 40}Ar/{sup 39}Ar hornblende ages are also recorded in the structurally lower Pumpkin Patch thrust sheet. The Devonian mineral ages are interpreted to date a discrete tectonothermal event, as opposed to uplift and slow cooling from an Ordovician metamorphic event. The Mississippian mylonitization is interpreted to represent thrusting and initial assembly of crystalline sheets associated with the Alleghanian orogeny. The composite thrust stack of the Blue Ridge complex was subsequently thrust northwestward along the Linville Falls fault during middle Alleghanian orogeny (about 300 Ma).« less

  8. Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians

    USGS Publications Warehouse

    Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.

    2016-01-01

    An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.

  9. The risk of early mortality of polytrauma patients associated to ISS, NISS, APACHE II values and prothrombin time.

    PubMed

    Mica, Ladislav; Rufibach, Kaspar; Keel, Marius; Trentz, Otmar

    2013-01-01

    The early hemodynamic normalization of polytrauma patients may lead to better survival outcomes. The aim of this study was to assess the diagnostic quality of trauma and physiological scores from widely used scoring systems in polytrauma patients. In total, 770 patients with ISS > 16 who were admitted to a trauma center within the first 24 hours after injury were included in this retrospective study. The patients were subdivided into three groups: those who died on the day of admission, those who died within the first three days, and those who survived for longer than three days. ISS, NISS, APACHE II score, and prothrombin time were recorded at admission. The descriptive statistics for early death in polytrauma patients who died on the day of admission, 1-3 days after admission, and > 3 days after admission were: ISS of 41.0, 34.0, and 29.0, respectively; NISS of 50.0, 50.0, and 41.0, respectively; APACHE II score of 30.0, 25.0, and 15.0, respectively; and prothrombin time of 37.0%, 56.0%, and 84%, respectively. These data indicate that prothrombin time (AUC: 0.89) and APACHE II (AUC: 0.88) have the greatest prognostic utility for early death. The estimated densities of the scores may suggest a direction for resuscitative procedures in polytrauma patients. "Retrospektive Analysen in der Chirurgischen Intensivmedizin"StV01-2008.

  10. Hypothermic machine perfusion permits extended cold ischemia times with improved early graft function.

    PubMed

    Guy, Alison; McGrogan, Damian; Inston, Nicholas; Ready, Andrew

    2015-04-01

    The logistics of deceased-donor renal transplants are largely affected by cold ischemia time. However, to attain successful outcomes, other issues must be considered. Extending cold ischemia time to accommodate these issues would be valuable. We investigated the role of hypothermic machine perfusion to extend cold ischaemia time. Deceased-donor kidneys were allocated to a storage method, depending on predicted time to operation. Kidneys to be transplanted from 8:00 AM to 8:00 PM in the transplant room remained in static cold storage. If predicted operating time was out of hours, the kidney was transferred to hypothermic machine perfusion and transplanted at the earliest opportunity on the dedicated transplant list. There were 74 kidneys transplanted from hypothermic machine perfusion and 101 kidneys from static cold storage. Median cold ischemia time was 23.85 hours in the hypothermic machine perfusion group, compared with 13 hours in the static cold storage group (P ≤ .0001). There were 20 kidneys (27%) from hypothermic machine perfusion that had delayed graft function, compared with 47 kidneys (47%) in the static cold storage group (P = .012). There were no other significant differences in graft or postoperative complications. This study demonstrated that improved early graft outcomes can be achieved following longer cold ischemia time by using hypothermic machine perfusion rather than static cold storage. This effect is likely multifactorial including the inherent effects of hypothermic machine perfusion, improved recipient preparation, and possibly better perioperative conditions.

  11. Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform

    USGS Publications Warehouse

    Artemieva, I.M.

    2003-01-01

    A new mechanism for Paleozoic subsidence of the Russian, or East European, platform is suggested, since a model of lithosphere tilting during the Uralian subduction does not explain the post-Uralian sedimentation record. Alternatively, I propose that the Proterozoic and Paleozoic rifting (when a platform-scale Central Russia rift system and a set of Paleozoic rifts were formed) modified the structure and composition of cratonic lithosphere, and these tectono-magmatic events are responsible for the post-Uralian subsidence of the Russian platform. To support this hypothesis, (a) the thermal regime and the thickness of the lithosphere are analyzed, and (b) lithospheric density variations of non-thermal origin are calculated from free-board constraints. The results indicate that Proterozoic and Paleozoic rifting had different effects on the lithospheric structure and composition. (1) Proterozoic rifting is not reflected in the present thermal regime and did not cause significant lithosphere thinning (most of the Russian platform has lithospheric thickness of 150-180 km and the lithosphere of the NE Baltic Shield is 250-300 km thick). Paleozoic rifting resulted in pronounced lithospheric thinning (to 120-140 km) in the southern parts of the Russian platform. (2) Lithospheric density anomalies suggest that Proterozoic-Paleozoic rifting played an important role in the platform subsidence. The lithospheric mantle of the Archean-early Proterozoic part of the Baltic Shield is ??? 1.4 ?? 0.2% less dense than the typical Phanerozoic upper mantle. However, the density deficit in the subcrustal lithosphere of most of the Russian platform is only about (0.4-0.8) ?? 0.2% and decreases southwards to ???0%. Increased densities (likely associated with low depletion values) in the Russian platform suggest strong metasomatism of the cratonic lithosphere during rifting events, which led to its subsidence. It is proposed that only the lower part of the cratonic lithosphere was

  12. Very early reaction intermediates detected by microsecond time scale kinetics of cytochrome cd1-catalyzed reduction of nitrite.

    PubMed

    Sam, Katharine A; Strampraad, Marc J F; de Vries, Simon; Ferguson, Stuart J

    2008-10-10

    Paracoccus pantotrophus cytochrome cd(1) is a nitrite reductase found in the periplasm of many denitrifying bacteria. It catalyzes the reduction of nitrite to nitric oxide during the denitrification part of the biological nitrogen cycle. Previous studies of early millisecond intermediates in the nitrite reduction reaction have shown, by comparison with pH 7.0, that at the optimum pH, approximately pH 6, the earliest intermediates were lost in the dead time of the instrument. Access to early time points (approximately 100 micros) through use of an ultra-rapid mixing device has identified a spectroscopically novel intermediate, assigned as the Michaelis complex, formed from reaction of fully reduced enzyme with nitrite. Spectroscopic observation of the subsequent transformation of this species has provided data that demand reappraisal of the general belief that the two subunits of the enzyme function independently.

  13. Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Neuroth, H.; Ahrendt, H.; Dörr, W.; Franke, W.

    The Saxothuringian flysch basin, on the north flank of the Central European Variscides, was fed and eventually overthrust by the northwestern, active margin of the Tepla-Barrandian terrane. Clast spectra, mineral composition and isotopic ages of detrital mica and zircon have been analyzed in order to constrain accretion and exhumation of rocks in the orogenic wedge. The earliest clastic sediments preserved are of early Famennian age (ca. 370Ma). They are exposed immediately to the NW of the suture, and belong to the par-autochthon of the foreland. Besides ultramafic (?ophiolite) material, these rocks contain clasts derived from Early Paleozoic continental slope sediments, originally deposited at the NW margin of the Saxothuringian basin. These findings, together with the paleogeographic position of the Famennian clastics debris on the northwestern passive margin, indicate that the Saxothuringian narrow ocean had been closed by that time. Microprobe analyses of detrital hornblendes suggest derivation from the ``Randamphibolit'' unit, now present in the middle part of the Saxothuringian allochthon (Münchberg nappes). Detrital zircons of metamorphic rocks formed a little earlier (ca. 380Ma) indicate rapid recycling at the tectonic front. The middle part of the flysch sequence (ca. early to middle Viséan), both in the par-autochthon and in the allochthon, contains abundant clasts of Paleozoic rocks derived from the northwestern slope and rise, together with debris of Cadomian basement, 500-Ma granitoids and 380Ma (early Variscan) crystalline rocks. All of these source rocks were still available in the youngest part of the flysch (c. middle to late Viséan), but some clasts record, in addition, accretion of the northwestern shelf. Our findings permit deduction of minimum rates of tectonic shortening well in excess of 10-30mm per year, and rates of exhumation of ca. 3mm/a, and possibly more.

  14. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Bracciali, Laura; Najman, Yani; Parrish, Randall R.; Akhter, Syed H.; Millar, Ian

    2015-04-01

    The Himalayan orogen provides a type example on which a number of models of the causes and consequences of crustal deformation are based and it has been suggested that it is the site of a variety of feedbacks between tectonics and erosion. Within the broader orogen, fluvial drainages partly reflect surface uplift, different climatic zones and a response to crustal deformation. In the eastern Himalaya, the unusual drainage configuration of the Yarlung Tsangpo-Brahmaputra River has been interpreted either as antecedent drainage distorted by the India-Asia collision (and as such applied as a passive strain marker of lateral extrusion), latest Neogene tectonically-induced river capture, or glacial damming-induced river diversion events. Here we apply a multi-technique approach to the Neogene paleo-Brahmaputra deposits of the Surma Basin (Bengal Basin, Bangladesh) to test the long-debated occurrence and timing of river capture of the Yarlung Tsangpo by the Brahmaputra River. We provide U-Pb detrital zircon and rutile, isotopic (Sr-Nd and Hf) and petrographic evidence consistent with river capture of the Yarlung Tsangpo by the Brahmaputra River in the Early Miocene. We document influx of Cretaceous-Paleogene zircons in Early Miocene sediments of the paleo-Brahmaputra River that we interpret as first influx of material from the Asian plate (Transhimalayan arc) indicative of Yarlung Tsangpo contribution. Prior to capture, the predominantly Precambrian-Paleozoic zircons indicate that only the Indian plate was drained. Contemporaneous with Transhimalayan influx reflecting the river capture, we record arrival of detrital material affected by Cenozoic metamorphism, as indicated by rutiles and zircons with Cenozoic U-Pb ages and an increase in metamorphic grade of detritus as recorded by petrography. We interpret this as due to a progressively increasing contribution from the erosion of the metamorphosed core of the orogen. Whole rock Sr-Nd isotopic data from the same samples

  15. Later Education Start Times in Adolescence: Time for Change

    ERIC Educational Resources Information Center

    Kelley, Paul; Lee, Clark

    2015-01-01

    School start times for adolescents in the United States are typically too early to be healthy for this age group. There is significant evidence from the research literature that early starts have serious negative impacts on students. In particular, early education start times in adolescence cause chronic sleep deprivation, which damages both…

  16. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  17. The 2014 Mw 6.0 Napa Earthquake, California: Observations from Real-time GPS-enhanced Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Johanson, I. A.; Grapenthin, R.; Allen, R. M.

    2014-12-01

    Recently, progress has been made to demonstrate feasibility and benefits of including real-time GPS (rtGPS) in earthquake early warning and rapid response systems. While most concepts have yet to be integrated into operational environments, the Berkeley Seismological Laboratory is currently running an rtGPS based finite fault inversion scheme in true real-time, which is triggered by the seismic-based ShakeAlert system and then sends updated earthquake alerts to a test receiver. The Geodetic Alarm System (G-larmS) was online and responded to the 2014 Mw6.0 South Napa earthquake in California. We review G-larmS' performance during this event and for 13 aftershocks, and we present rtGPS observations and real-time modeling results for the main shock. The first distributed slip model and a magnitude estimate of Mw5.5 were available 24 s after the event origin time, which could be reduced to 14 s after a bug fix (~8 s S-wave travel time, ~6 s data latency). The system continued to re-estimate the magnitude once every second: it increased to Mw5.9 3 s after the first alert and stabilized at Mw5.8 after 15 s. G-larmS' solutions for the subsequent small magnitude aftershocks demonstrate that Mw~6.0 is the current limit for alert updates to contribute back to the seismic-based early warning system.

  18. Early Radiosurgery Improves Hearing Preservation in Vestibular Schwannoma Patients With Normal Hearing at the Time of Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akpinar, Berkcan; Mousavi, Seyed H., E-mail: mousavish@upmc.edu; McDowell, Michael M.

    Purpose: Vestibular schwannomas (VS) are increasingly diagnosed in patients with normal hearing because of advances in magnetic resonance imaging. We sought to evaluate whether stereotactic radiosurgery (SRS) performed earlier after diagnosis improved long-term hearing preservation in this population. Methods and Materials: We queried our quality assessment registry and found the records of 1134 acoustic neuroma patients who underwent SRS during a 15-year period (1997-2011). We identified 88 patients who had VS but normal hearing with no subjective hearing loss at the time of diagnosis. All patients were Gardner-Robertson (GR) class I at the time of SRS. Fifty-seven patients underwent earlymore » (≤2 years from diagnosis) SRS and 31 patients underwent late (>2 years after diagnosis) SRS. At a median follow-up time of 75 months, we evaluated patient outcomes. Results: Tumor control rates (decreased or stable in size) were similar in the early (95%) and late (90%) treatment groups (P=.73). Patients in the early treatment group retained serviceable (GR class I/II) hearing and normal (GR class I) hearing longer than did patients in the late treatment group (serviceable hearing, P=.006; normal hearing, P<.0001, respectively). At 5 years after SRS, an estimated 88% of the early treatment group retained serviceable hearing and 77% retained normal hearing, compared with 55% with serviceable hearing and 33% with normal hearing in the late treatment group. Conclusions: SRS within 2 years after diagnosis of VS in normal hearing patients resulted in improved retention of all hearing measures compared with later SRS.« less

  19. Short-Term responses of breeding birds of grassland and early successional habitat to timing of haying in Northwestern Arkansas

    USGS Publications Warehouse

    Luscier, J.D.; Thompson, W.L.

    2009-01-01

    In 2003, we evaluated nest survival and density of the Dickcissel (Spiza americana), Eastern Meadowlark (Sturnella magna), Field Sparrow (Spizella pusilla), and Red-winged Blackbird (Agelaius phoeniceus) in four unhayed, two early-hayed (26-31 May) and three late-hayed (17-25 June) fields in northwestern Arkansas. Rope dragging and observations revealed 89 nests. Daily nest-survival rates (SE) prior to haying ranged from 0.94 (0.03) to 0.97 (0.02). Early haying affected both nest-survival rates and bird densities negatively, whereas late haying had minimal effects. Fifteen nests in hayed portions of early-hayed fields were destroyed, whereas only 2 of 52 nests were affected by late haying. Density was at least 0.98 birds ha-1 higher in unhayed than in early-hayed fields and 1.03 birds ha-1 higher in late-hayed than in early-hayed fields. In northwestern Arkansas, postponing haying until mid- to late June would allow time for nestlings to fledge, would have little effect on bird densities, and would affect hay nutrition and regrowth minimally. ?? The Cooper Ornithological Society, 2009.

  20. Health-related effects of early part-time sick leave due to musculoskeletal disorders: a randomized controlled trial.

    PubMed

    Shiri, Rahman; Kausto, Johanna; Martimo, Kari-Pekka; Kaila-Kangas, Leena; Takala, Esa-Pekka; Viikari-Juntura, Eira

    2013-01-01

    Previously we reported that early part-time sick leave enhances return to work (RTW) among employees with musculoskeletal disorders (MSD). This paper assesses the health-related effects of this intervention. Patients aged 18-60 years who were unable to perform their regular work due to MSD were randomized to part- or full-time sick leave groups. In the former, workload was reduced by halving working time. Using validated questionnaires, we assessed pain intensity and interference with work and sleep, region-specific disability due to MSD, self-rated general health, health-related quality of life (measured via EuroQol), productivity loss, depression, and sleep disturbance at baseline, 1, 3, 8, 12, and 52 weeks. We analyzed the repeated measures data (171-356 observations) with the generalized estimating equation approach. The intervention (part-time sick leave) and control (full-time sick leave) groups did not differ with regard to pain intensity, pain interference with work and sleep, region-specific disability, productivity loss, depression, or sleep disturbance. The intervention group reported better self-rated general health (adjusted P=0.07) and health-related quality of life (adjusted P=0.02) than the control group. In subgroup analyses, the intervention was more effective among the patients whose current problem began occurring <6 weeks before baseline and those with ≤30% productivity loss at baseline. Our findings showed that part-time sick leave did not exacerbate pain-related symptoms and functional disability, but improved self-rated general health and health-related quality of life in the early stage of work disability due to MSD.