Cognitive load effects on early visual perceptual processing.
Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia
2018-05-01
Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.
‘If you are good, I get better’: the role of social hierarchy in perceptual decision-making
Pannunzi, Mario; Ayneto, Alba; Deco, Gustavo; Sebastián-Gallés, Nuria
2014-01-01
So far, it was unclear if social hierarchy could influence sensory or perceptual cognitive processes. We evaluated the effects of social hierarchy on these processes using a basic visual perceptual decision task. We constructed a social hierarchy where participants performed the perceptual task separately with two covertly simulated players (superior, inferior). Participants were faster (better) when performing the discrimination task with the superior player. We studied the time course when social hierarchy was processed using event-related potentials and observed hierarchical effects even in early stages of sensory-perceptual processing, suggesting early top–down modulation by social hierarchy. Moreover, in a parallel analysis, we fitted a drift-diffusion model (DDM) to the results to evaluate the decision making process of this perceptual task in the context of a social hierarchy. Consistently, the DDM pointed to nondecision time (probably perceptual encoding) as the principal period influenced by social hierarchy. PMID:23946003
'If you are good, I get better': the role of social hierarchy in perceptual decision-making.
Santamaría-García, Hernando; Pannunzi, Mario; Ayneto, Alba; Deco, Gustavo; Sebastián-Gallés, Nuria
2014-10-01
So far, it was unclear if social hierarchy could influence sensory or perceptual cognitive processes. We evaluated the effects of social hierarchy on these processes using a basic visual perceptual decision task. We constructed a social hierarchy where participants performed the perceptual task separately with two covertly simulated players (superior, inferior). Participants were faster (better) when performing the discrimination task with the superior player. We studied the time course when social hierarchy was processed using event-related potentials and observed hierarchical effects even in early stages of sensory-perceptual processing, suggesting early top-down modulation by social hierarchy. Moreover, in a parallel analysis, we fitted a drift-diffusion model (DDM) to the results to evaluate the decision making process of this perceptual task in the context of a social hierarchy. Consistently, the DDM pointed to nondecision time (probably perceptual encoding) as the principal period influenced by social hierarchy. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.
Pan, Yi; Luo, Qianying; Cheng, Min
2016-08-01
Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.
Sanders, Lisa D; Astheimer, Lori B
2008-05-01
Some of the most important information we encounter changes so rapidly that our perceptual systems cannot process all of it in detail. Spatially selective attention is critical for perception when more information than can be processed in detail is presented simultaneously at distinct locations. When presented with complex, rapidly changing information, listeners may need to selectively attend to specific times rather than to locations. We present evidence that listeners can direct selective attention to time points that differ by as little as 500 msec, and that doing so improves target detection, affects baseline neural activity preceding stimulus presentation, and modulates auditory evoked potentials at a perceptually early stage. These data demonstrate that attentional modulation of early perceptual processing is temporally precise and that listeners can flexibly allocate temporally selective attention over short intervals, making it a viable mechanism for preferentially processing the most relevant segments in rapidly changing streams.
Perceptual load-dependent neural correlates of distractor interference inhibition.
Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N
2011-01-18
The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.
Perceptual Load-Dependent Neural Correlates of Distractor Interference Inhibition
Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M.; Potenza, Marc N.
2011-01-01
Background The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. Methodology/Principal Findings We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Conclusions Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load. PMID:21267080
Face race processing and racial bias in early development: A perceptual-social linkage.
Lee, Kang; Quinn, Paul C; Pascalis, Olivier
2017-06-01
Infants have asymmetrical exposure to different types of faces (e.g., more human than other-species, more female than male, and more own-race than other-race). What are the developmental consequences of such experiential asymmetry? Here we review recent advances in research on the development of cross-race face processing. The evidence suggests that greater exposure to own- than other-race faces in infancy leads to developmentally early perceptual differences in visual preference, recognition, category formation, and scanning of own- and other-race faces. Further, such perceptual differences in infancy may be associated with the emergence of implicit racial bias, consistent with a Perceptual-Social Linkage Hypothesis. Current and future work derived from this hypothesis may lay an important empirical foundation for the development of intervention programs to combat the early occurrence of implicit racial bias.
Neurological evidence linguistic processes precede perceptual simulation in conceptual processing.
Louwerse, Max; Hutchinson, Sterling
2012-01-01
There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky - ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes.
Neurological Evidence Linguistic Processes Precede Perceptual Simulation in Conceptual Processing
Louwerse, Max; Hutchinson, Sterling
2012-01-01
There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky – ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes. PMID:23133427
Task-Set Reconfiguration and Perceptual Processing: Behavioral and Electrophysiological Evidence
ERIC Educational Resources Information Center
Mackenzie, Ian G.; Leuthold, Hartmut
2011-01-01
Oriet and Jolicoeur (2003) proposed that an endogenous task-set reconfiguration process acts as a hard bottleneck during which even early perceptual processing is impossible. We examined this assumption using a psychophysiological approach. Participants were required to switch between magnitude and parity judgment tasks within a predictable task…
The role of perceptual load in inattentional blindness.
Cartwright-Finch, Ula; Lavie, Nilli
2007-03-01
Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the effects of load on conscious perception using the "inattentional blindness" paradigm. As predicted by load theory, awareness of a task-irrelevant stimulus was significantly reduced by higher perceptual load (with increased numbers of search items, or a harder discrimination vs. detection task). These results demonstrate that conscious perception of task-irrelevant stimuli critically depends upon the level of task-relevant perceptual load rather than intentions or expectations, thus enhancing the resolution to the early vs. late selection debate offered by the perceptual load theory.
The Role of Perceptual Load in Inattentional Blindness
ERIC Educational Resources Information Center
Cartwright-Finch, Ula; Lavie, Nilli
2007-01-01
Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the…
Influence of early attentional modulation on working memory
Gazzaley, Adam
2011-01-01
It is now established that attention influences working memory (WM) at multiple processing stages. This liaison between attention and WM poses several interesting empirical questions. Notably, does attention impact WM via its influences on early perceptual processing? If so, what are the critical factors at play in this attention-perception-WM interaction. I review recent data from our laboratory utilizing a variety of techniques (electroencephalography (EEG), functional MRI (fMRI) and transcranial magnetic stimulation (TMS)), stimuli (features and complex objects), novel experimental paradigms, and research populations (younger and older adults), which converge to support the conclusion that top-down modulation of visual cortical activity at early perceptual processing stages (100–200 ms after stimulus onset) impacts subsequent WM performance. Factors that affect attentional control at this stage include cognitive load, task practice, perceptual training, and aging. These developments highlight the complex and dynamic relationships among perception, attention, and memory. PMID:21184764
ERIC Educational Resources Information Center
Hirschfeld, Gerrit; Zwitserlood, Pienie; Dobel, Christian
2011-01-01
We investigated whether and when information conveyed by spoken language impacts on the processing of visually presented objects. In contrast to traditional views, grounded-cognition posits direct links between language comprehension and perceptual processing. We used a magnetoencephalographic cross-modal priming paradigm to disentangle these…
Attention affects visual perceptual processing near the hand.
Cosman, Joshua D; Vecera, Shaun P
2010-09-01
Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.
Perceptual load interacts with stimulus processing across sensory modalities.
Klemen, J; Büchel, C; Rose, M
2009-06-01
According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.
ERIC Educational Resources Information Center
Bertone, Armando; Hanck, Julie; Kogan, Cary; Chaudhuri, Avi; Cornish, Kim
2010-01-01
We have previously described (see companion paper, this issue) the utility of using perceptual signatures for defining and dissociating condition-specific neural functioning underlying early visual processes in autism and FXS. These perceptually-driven hypotheses are based on differential performance evidenced only at the earliest stages of visual…
ERIC Educational Resources Information Center
Fisher, Anna V.
2011-01-01
Is processing of conceptual information as robust as processing of perceptual information early in development? Existing empirical evidence is insufficient to answer this question. To examine this issue, 3- to 5-year-old children were presented with a flexible categorization task, in which target items (e.g., an open red umbrella) shared category…
Chmielewski, Witold X; Beste, Christian
2016-05-25
A multitude of sensory inputs needs to be processed during sensorimotor integration. A crucial factor for detecting relevant information is its complexity, since information content can be conflicting at a perceptual level. This may be central to executive control processes, such as response inhibition. This EEG study aims to investigate the system neurophysiological mechanisms behind effects of perceptual conflict on response inhibition. We systematically modulated perceptual conflict by integrating a Global-local task with a Go/Nogo paradigm. The results show that conflicting perceptual information, in comparison to non-conflicting perceptual information, impairs response inhibition performance. This effect was evident regardless of whether the relevant information for response inhibition is displayed on the global, or local perceptual level. The neurophysiological data suggests that early perceptual/ attentional processing stages do not underlie these modulations. Rather, processes at the response selection level (P3), play a role in changed response inhibition performance. This conflict-related impairment of inhibitory processes is associated with activation differences in (inferior) parietal areas (BA7 and BA40) and not as commonly found in the medial prefrontal areas. This suggests that various functional neuroanatomical structures may mediate response inhibition and that the functional neuroanatomical structures involved depend on the complexity of sensory integration processes.
Fleischhauer, Monika; Strobel, Alexander; Diers, Kersten; Enge, Sören
2014-02-01
The Implicit Association Test (IAT) is a widely used latency-based categorization task that indirectly measures the strength of automatic associations between target and attribute concepts. So far, little is known about the perceptual and cognitive processes underlying personality IATs. Thus, the present study examined event-related potential indices during the execution of an IAT measuring neuroticism (N = 70). The IAT effect was strongly modulated by the P1 component indicating early facilitation of relevant visual input and by a P3b-like late positive component reflecting the efficacy of stimulus categorization. Both components covaried, and larger amplitudes led to faster responses. The results suggest a relationship between early perceptual and semantic processes operating at a more automatic, implicit level and later decision-related categorization of self-relevant stimuli contributing to the IAT effect. Copyright © 2013 Society for Psychophysiological Research.
Electrophysiological evidence for effects of color knowledge in object recognition.
Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X
2010-01-29
Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Asymmetric Engagement of Amygdala and Its Gamma Connectivity in Early Emotional Face Processing
Liu, Tai-Ying; Chen, Yong-Sheng; Hsieh, Jen-Chuen; Chen, Li-Fen
2015-01-01
The amygdala has been regarded as a key substrate for emotion processing. However, the engagement of the left and right amygdala during the early perceptual processing of different emotional faces remains unclear. We investigated the temporal profiles of oscillatory gamma activity in the amygdala and effective connectivity of the amygdala with the thalamus and cortical areas during implicit emotion-perceptual tasks using event-related magnetoencephalography (MEG). We found that within 100 ms after stimulus onset the right amygdala habituated to emotional faces rapidly (with duration around 20–30 ms), whereas activity in the left amygdala (with duration around 50–60 ms) sustained longer than that in the right. Our data suggest that the right amygdala could be linked to autonomic arousal generated by facial emotions and the left amygdala might be involved in decoding or evaluating expressive faces in the early perceptual emotion processing. The results of effective connectivity provide evidence that only negative emotional processing engages both cortical and subcortical pathways connected to the right amygdala, representing its evolutional significance (survival). These findings demonstrate the asymmetric engagement of bilateral amygdala in emotional face processing as well as the capability of MEG for assessing thalamo-cortico-limbic circuitry. PMID:25629899
Tuned by experience: How orientation probability modulates early perceptual processing.
Jabar, Syaheed B; Filipowicz, Alex; Anderson, Britt
2017-09-01
Probable stimuli are more often and more quickly detected. While stimulus probability is known to affect decision-making, it can also be explained as a perceptual phenomenon. Using spatial gratings, we have previously shown that probable orientations are also more precisely estimated, even while participants remained naive to the manipulation. We conducted an electrophysiological study to investigate the effect that probability has on perception and visual-evoked potentials. In line with previous studies on oddballs and stimulus prevalence, low-probability orientations were associated with a greater late positive 'P300' component which might be related to either surprise or decision-making. However, the early 'C1' component, thought to reflect V1 processing, was dampened for high-probability orientations while later P1 and N1 components were unaffected. Exploratory analyses revealed a participant-level correlation between C1 and P300 amplitudes, suggesting a link between perceptual processing and decision-making. We discuss how these probability effects could be indicative of sharpening of neurons preferring the probable orientations, due either to perceptual learning, or to feature-based attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perceptual load corresponds with factors known to influence visual search
Roper, Zachary J. J.; Cosman, Joshua D.; Vecera, Shaun P.
2014-01-01
One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a non-circular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spill-over to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. These results suggest that perceptual load might be defined in part by well-characterized, continuous factors that influence visual search. PMID:23398258
Attractive Serial Dependence in the Absence of an Explicit Task.
Fornaciai, Michele; Park, Joonkoo
2018-03-01
Attractive serial dependence refers to an adaptive change in the representation of sensory information, whereby a current stimulus appears to be similar to a previous one. The nature of this phenomenon is controversial, however, as serial dependence could arise from biased perceptual representations or from biased traces of working memory representation at a decisional stage. Here, we demonstrated a neural signature of serial dependence in numerosity perception emerging early in the visual processing stream even in the absence of an explicit task. Furthermore, a psychophysical experiment revealed that numerosity perception is biased by a previously presented stimulus in an attractive way, not by repulsive adaptation. These results suggest that serial dependence is a perceptual phenomenon starting from early levels of visual processing and occurring independently from a decision process, which is consistent with the view that these biases smooth out noise from neural signals to establish perceptual continuity.
Mid-level perceptual features distinguish objects of different real-world sizes.
Long, Bria; Konkle, Talia; Cohen, Michael A; Alvarez, George A
2016-01-01
Understanding how perceptual and conceptual representations are connected is a fundamental goal of cognitive science. Here, we focus on a broad conceptual distinction that constrains how we interact with objects--real-world size. Although there appear to be clear perceptual correlates for basic-level categories (apples look like other apples, oranges look like other oranges), the perceptual correlates of broader categorical distinctions are largely unexplored, i.e., do small objects look like other small objects? Because there are many kinds of small objects (e.g., cups, keys), there may be no reliable perceptual features that distinguish them from big objects (e.g., cars, tables). Contrary to this intuition, we demonstrated that big and small objects have reliable perceptual differences that can be extracted by early stages of visual processing. In a series of visual search studies, participants found target objects faster when the distractor objects differed in real-world size. These results held when we broadly sampled big and small objects, when we controlled for low-level features and image statistics, and when we reduced objects to texforms--unrecognizable textures that loosely preserve an object's form. However, this effect was absent when we used more basic textures. These results demonstrate that big and small objects have reliably different mid-level perceptual features, and suggest that early perceptual information about broad-category membership may influence downstream object perception, recognition, and categorization processes. (c) 2015 APA, all rights reserved).
Leech, Robert; Aydelott, Jennifer; Symons, Germaine; Carnevale, Julia; Dick, Frederic
2007-11-01
How does the development and consolidation of perceptual, attentional, and higher cognitive abilities interact with language acquisition and processing? We explored children's (ages 5-17) and adults' (ages 18-51) comprehension of morphosyntactically varied sentences under several competing speech conditions that varied in the degree of attentional demands, auditory masking, and semantic interference. We also evaluated the relationship between subjects' syntactic comprehension and their word reading efficiency and general 'speed of processing'. We found that the interactions between perceptual and attentional processes and complex sentence interpretation changed considerably over the course of development. Perceptual masking of the speech signal had an early and lasting impact on comprehension, particularly for more complex sentence structures. In contrast, increased attentional demand in the absence of energetic auditory masking primarily affected younger children's comprehension of difficult sentence types. Finally, the predictability of syntactic comprehension abilities by external measures of development and expertise is contingent upon the perceptual, attentional, and semantic milieu in which language processing takes place.
Perceptual load corresponds with factors known to influence visual search.
Roper, Zachary J J; Cosman, Joshua D; Vecera, Shaun P
2013-10-01
One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a noncircular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spillover to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. We conclude that rather than be arbitrarily defined, perceptual load might be defined by well-characterized, continuous factors that influence visual search. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Nelson, Michael D; Crisostomo, Marisa; Khericha, Alifiya; Russo, Francis; Thorne, Gary L
2012-01-01
We briefly summarize two important debates regarding selective attention (early vs late selection; perceptual load vs distractor dilution). Also, we report the results of an attempt to replicate Lavie (1995, Journal of Experimental Psychology: Human Perception and Performance 21 451-468). We suggest that measures capable of characterizing the capacity of information processing systems (compared to reporting only mean reaction time) could add great clarity to this literature.
Load theory behind the wheel; perceptual and cognitive load effects.
Murphy, Gillian; Greene, Ciara M
2017-09-01
Perceptual Load Theory has been proposed as a resolution to the longstanding early versus late selection debate in cognitive psychology. There is much evidence in support of Load Theory but very few applied studies, despite the potential for the model to shed light on everyday attention and distraction. Using a driving simulator, the effect of perceptual and cognitive load on drivers' visual search was assessed. The findings were largely in line with Load Theory, with reduced distractor processing under high perceptual load, but increased distractor processing under high cognitive load. The effect of load on driving behaviour was also analysed, with significant differences in driving behaviour under perceptual and cognitive load. In addition, the effect of perceptual load on drivers' levels of awareness was investigated. High perceptual load significantly increased inattentional blindness and deafness, for stimuli that were both relevant and irrelevant to driving. High perceptual load also increased RTs to hazards. The current study helps to advance Load Theory by illustrating its usefulness outside of traditional paradigms. There are also applied implications for driver safety and roadway design, as the current study suggests that perceptual and cognitive load are important factors in driver attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Marini, Francesco; Marzi, Carlo A.
2016-01-01
The visual system leverages organizational regularities of perceptual elements to create meaningful representations of the world. One clear example of such function, which has been formalized in the Gestalt psychology principles, is the perceptual grouping of simple visual elements (e.g., lines and arcs) into unitary objects (e.g., forms and shapes). The present study sought to characterize automatic attentional capture and related cognitive processing of Gestalt-like visual stimuli at the psychophysiological level by using event-related potentials (ERPs). We measured ERPs during a simple visual reaction time task with bilateral presentations of physically matched elements with or without a Gestalt organization. Results showed that Gestalt (vs. non-Gestalt) stimuli are characterized by a larger N2pc together with enhanced ERP amplitudes of non-lateralized components (N1, N2, P3) starting around 150 ms post-stimulus onset. Thus, we conclude that Gestalt stimuli capture attention automatically and entail characteristic psychophysiological signatures at both early and late processing stages. Highlights We studied the neural signatures of the automatic processes of visual attention elicited by Gestalt stimuli. We found that a reliable early correlate of attentional capture turned out to be the N2pc component. Perceptual and cognitive processing of Gestalt stimuli is associated with larger N1, N2, and P3 PMID:27630555
Different Approaches to the Study of Early Perceptual Learning
ERIC Educational Resources Information Center
Bhatt, Ramesh S.; Quinn, Paul C.
2011-01-01
Bhatt and Quinn (2011) review evidence indicating that learning plays a powerful role in the development of perceptual organization, and provide a theoretical framework for studying this process. The fact that prominent researchers in diverse areas of cognitive development and adult cognition have commented on this paper (Aslin, 2011; Goldstone,…
Varieties of cognitive penetration in visual perception.
Vetter, Petra; Newen, Albert
2014-07-01
Is our perceptual experience a veridical representation of the world or is it a product of our beliefs and past experiences? Cognitive penetration describes the influence of higher level cognitive factors on perceptual experience and has been a debated topic in philosophy of mind and cognitive science. Here, we focus on visual perception, particularly early vision, and how it is affected by contextual expectations and memorized cognitive contents. We argue for cognitive penetration based on recent empirical evidence demonstrating contextual and top-down influences on early visual processes. On the basis of a perceptual model, we propose different types of cognitive penetration depending on the processing level on which the penetration happens and depending on where the penetrating influence comes from. Our proposal has two consequences: (1) the traditional controversy on whether cognitive penetration occurs or not is ill posed, and (2) a clear-cut perception-cognition boundary cannot be maintained. Copyright © 2014 Elsevier Inc. All rights reserved.
Load theory of selective attention and cognitive control.
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W; Viding, Essi
2004-09-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention. ((c) 2004 APA, all rights reserved)
Tso, Ivy F; Calwas, Anita M; Chun, Jinsoo; Mueller, Savanna A; Taylor, Stephan F; Deldin, Patricia J
2015-08-01
Using gaze information to orient attention and guide behavior is critical to social adaptation. Previous studies have suggested that abnormal gaze perception in schizophrenia (SCZ) may originate in abnormal early attentional and perceptual processes and may be related to paranoid symptoms. Using event-related brain potentials (ERPs), this study investigated altered early attentional and perceptual processes during gaze perception and their relationship to paranoid delusions in SCZ. Twenty-eight individuals with SCZ or schizoaffective disorder and 32 demographically matched healthy controls (HCs) completed a gaze-discrimination task with face stimuli varying in gaze direction (direct, averted), head orientation (forward, deviated), and emotion (neutral, fearful). ERPs were recorded during the task. Participants rated experienced threat from each face after the task. Participants with SCZ were as accurate as, though slower than, HCs on the task. Participants with SCZ displayed enlarged N170 responses over the left hemisphere to averted gaze presented in fearful relative to neutral faces, indicating a heightened encoding sensitivity to faces signaling external threat. This abnormality was correlated with increased perceived threat and paranoid delusions. Participants with SCZ also showed a reduction of N170 modulation by head orientation (normally increased amplitude to deviated faces relative to forward faces), suggesting less integration of contextual cues of head orientation in gaze perception. The psychophysiological deviations observed during gaze discrimination in SCZ underscore the role of early attentional and perceptual abnormalities in social information processing and paranoid symptoms of SCZ. (c) 2015 APA, all rights reserved).
Bradley, Margaret M.; Lang, Peter J.
2013-01-01
During rapid serial visual presentation (RSVP), the perceptual system is confronted with a rapidly changing array of sensory information demanding resolution. At rapid rates of presentation, previous studies have found an early (e.g., 150–280 ms) negativity over occipital sensors that is enhanced when emotional, as compared with neutral, pictures are viewed, suggesting facilitated perception. In the present study, we explored how picture composition and the presence of people in the image affect perceptual processing of pictures of natural scenes. Using RSVP, pictures that differed in perceptual composition (figure–ground or scenes), content (presence of people or not), and emotional content (emotionally arousing or neutral) were presented in a continuous stream for 330 ms each with no intertrial interval. In both subject and picture analyses, all three variables affected the amplitude of occipital negativity, with the greatest enhancement for figure–ground compositions (as compared with scenes), irrespective of content and emotional arousal, supporting an interpretation that ease of perceptual processing is associated with enhanced occipital negativity. Viewing emotional pictures prompted enhanced negativity only for pictures that depicted people, suggesting that specific features of emotionally arousing images are associated with facilitated perceptual processing, rather than all emotional content. PMID:23780520
Shen, Mowei; Xu, Haokui; Zhang, Haihang; Shui, Rende; Zhang, Meng; Zhou, Jifan
2015-08-01
Visual working memory (VWM) has been traditionally viewed as a mental structure subsequent to visual perception that stores the final output of perceptual processing. However, VWM has recently been emphasized as a critical component of online perception, providing storage for the intermediate perceptual representations produced during visual processing. This interactive view holds the core assumption that VWM is not the terminus of perceptual processing; the stored visual information rather continues to undergo perceptual processing if necessary. The current study tests this assumption, demonstrating an example of involuntary integration of the VWM content, by creating the Ponzo illusion in VWM: when the Ponzo illusion figure was divided into its individual components and sequentially encoded into VWM, the temporally separated components were involuntarily integrated, leading to the distorted length perception of the two horizontal lines. This VWM Ponzo illusion was replicated when the figure components were presented in different combinations and presentation order. The magnitude of the illusion was significantly correlated between VWM and perceptual versions of the Ponzo illusion. These results suggest that the information integration underling the VWM Ponzo illusion is constrained by the laws of visual perception and similarly affected by the common individual factors that govern its perception. Thus, our findings provide compelling evidence that VWM functions as a buffer serving perceptual processes at early stages. Copyright © 2015 Elsevier B.V. All rights reserved.
Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection
Denison, Rachel N.; Silver, Michael A.
2014-01-01
During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685
Processing of unattended, simple negative pictures resists perceptual load.
Sand, Anders; Wiens, Stefan
2011-05-11
As researchers debate whether emotional pictures can be processed irrespective of spatial attention and perceptual load, negative and neutral pictures of simple figure-ground composition were shown at fixation and were surrounded by one, two, or three letters. When participants performed a picture discrimination task, there was evidence for motivated attention; that is, an early posterior negativity (EPN) and late positive potential (LPP) to negative versus neutral pictures. When participants performed a letter discrimination task, the EPN was unaffected whereas the LPP was reduced. Although performance decreased substantially with the number of letters (one to three), the LPP did not decrease further. Therefore, attention to simple, negative pictures at fixation seems to resist manipulations of perceptual load.
Chromatic Perceptual Learning but No Category Effects without Linguistic Input.
Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.
Gestalt perception modulates early visual processing.
Herrmann, C S; Bosch, V
2001-04-17
We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.
The development of perceptual grouping biases in infancy: a Japanese-English cross-linguistic study.
Yoshida, Katherine A; Iversen, John R; Patel, Aniruddh D; Mazuka, Reiko; Nito, Hiromi; Gervain, Judit; Werker, Janet F
2010-05-01
Perceptual grouping has traditionally been thought to be governed by innate, universal principles. However, recent work has found differences in Japanese and English speakers' non-linguistic perceptual grouping, implicating language in non-linguistic perceptual processes (Iversen, Patel, & Ohgushi, 2008). Two experiments test Japanese- and English-learning infants of 5-6 and 7-8 months of age to explore the development of grouping preferences. At 5-6 months, neither the Japanese nor the English infants revealed any systematic perceptual biases. However, by 7-8 months, the same age as when linguistic phrasal grouping develops, infants developed non-linguistic grouping preferences consistent with their language's structure (and the grouping biases found in adulthood). These results reveal an early difference in non-linguistic perception between infants growing up in different language environments. The possibility that infants' linguistic phrasal grouping is bootstrapped by abstract perceptual principles is discussed. Copyright 2010 Elsevier B.V. All rights reserved.
Development of Early Handwriting: Visual-Motor Control during Letter Copying
ERIC Educational Resources Information Center
Maldarelli, Jennifer E.; Kahrs, Björn A.; Hunt, Sarah C.; Lockman, Jeffrey J.
2015-01-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor, and…
Chromatic Perceptual Learning but No Category Effects without Linguistic Input
Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669
Mid-level perceptual features contain early cues to animacy.
Long, Bria; Störmer, Viola S; Alvarez, George A
2017-06-01
While substantial work has focused on how the visual system achieves basic-level recognition, less work has asked about how it supports large-scale distinctions between objects, such as animacy and real-world size. Previous work has shown that these dimensions are reflected in our neural object representations (Konkle & Caramazza, 2013), and that objects of different real-world sizes have different mid-level perceptual features (Long, Konkle, Cohen, & Alvarez, 2016). Here, we test the hypothesis that animates and manmade objects also differ in mid-level perceptual features. To do so, we generated synthetic images of animals and objects that preserve some texture and form information ("texforms"), but are not identifiable at the basic level. We used visual search efficiency as an index of perceptual similarity, as search is slower when targets are perceptually similar to distractors. Across three experiments, we find that observers can find animals faster among objects than among other animals, and vice versa, and that these results hold when stimuli are reduced to unrecognizable texforms. Electrophysiological evidence revealed that this mixed-animacy search advantage emerges during early stages of target individuation, and not during later stages associated with semantic processing. Lastly, we find that perceived curvature explains part of the mixed-animacy search advantage and that observers use perceived curvature to classify texforms as animate/inanimate. Taken together, these findings suggest that mid-level perceptual features, including curvature, contain cues to whether an object may be animate versus manmade. We propose that the visual system capitalizes on these early cues to facilitate object detection, recognition, and classification.
Effects of selective attention on perceptual filling-in.
De Weerd, P; Smith, E; Greenberg, P
2006-03-01
After few seconds, a figure steadily presented in peripheral vision becomes perceptually filled-in by its background, as if it "disappeared". We report that directing attention to the color, shape, or location of a figure increased the probability of perceiving filling-in compared to unattended figures, without modifying the time required for filling-in. This effect could be augmented by boosting attention. Furthermore, the frequency distribution of filling-in response times for attended figures could be predicted by multiplying the frequencies of response times for unattended figures with a constant. We propose that, after failure of figure-ground segregation, the neural interpolation processes that produce perceptual filling-in are enhanced in attended figure regions. As filling-in processes are involved in surface perception, the present study demonstrates that even very early visual processes are subject to modulation by cognitive factors.
Neural representation of form-contingent color filling-in in the early visual cortex.
Hong, Sang Wook; Tong, Frank
2017-11-01
Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.
Knowledge is power: how conceptual knowledge transforms visual cognition.
Collins, Jessica A; Olson, Ingrid R
2014-08-01
In this review, we synthesize the existing literature demonstrating the dynamic interplay between conceptual knowledge and visual perceptual processing. We consider two theoretical frameworks that demonstrate interactions between processes and brain areas traditionally considered perceptual or conceptual. Specifically, we discuss categorical perception, in which visual objects are represented according to category membership, and highlight studies showing that category knowledge can penetrate early stages of visual analysis. We next discuss the embodied account of conceptual knowledge, which holds that concepts are instantiated in the same neural regions required for specific types of perception and action, and discuss the limitations of this framework. We additionally consider studies showing that gaining abstract semantic knowledge about objects and faces leads to behavioral and electrophysiological changes that are indicative of more efficient stimulus processing. Finally, we consider the role that perceiver goals and motivation may play in shaping the interaction between conceptual and perceptual processing. We hope to demonstrate how pervasive such interactions between motivation, conceptual knowledge, and perceptual processing are in our understanding of the visual environment, and to demonstrate the need for future research aimed at understanding how such interactions arise in the brain.
Dissociating sensory from decision processes in human perceptual decision making.
Mostert, Pim; Kok, Peter; de Lange, Floris P
2015-12-15
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.
Dissociating sensory from decision processes in human perceptual decision making
Mostert, Pim; Kok, Peter; de Lange, Floris P.
2015-01-01
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393
Knowledge is Power: How Conceptual Knowledge Transforms Visual Cognition
Collins, Jessica A.; Olson, Ingrid R.
2014-01-01
In this review we synthesize the existing literature demonstrating the dynamic interplay between conceptual knowledge and visual perceptual processing. We consider two theoretical frameworks demonstrating interactions between processes and brain areas traditionally considered perceptual or conceptual. Specifically, we discuss categorical perception, in which visual objects are represented according to category membership, and highlight studies showing that category knowledge can penetrate early stages of visual analysis. We next discuss the embodied account of conceptual knowledge, which holds that concepts are instantiated in the same neural regions required for specific types of perception and action, and discuss the limitations of this framework. We additionally consider studies showing that gaining abstract semantic knowledge about objects and faces leads to behavioral and electrophysiological changes that are indicative of more efficient stimulus processing. Finally, we consider the role that perceiver goals and motivation may play in shaping the interaction between conceptual and perceptual processing. We hope to demonstrate how pervasive such interactions between motivation, conceptual knowledge, and perceptual processing are to our understanding of the visual environment, and demonstrate the need for future research aimed at understanding how such interactions arise in the brain. PMID:24402731
Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M
2011-05-01
The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.
Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.
Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T
2018-06-13
Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict. Copyright © 2018 the authors 0270-6474/18/385632-17$15.00/0.
Response terminated displays unload selective attention
Roper, Zachary J. J.; Vecera, Shaun P.
2013-01-01
Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional “spill-over” to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional “spill-over” by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented. PMID:24399983
Response terminated displays unload selective attention.
Roper, Zachary J J; Vecera, Shaun P
2013-01-01
Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional "spill-over" to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional "spill-over" by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.
Habibi, Ruth; Khurana, Beena
2012-01-01
Facial recognition is key to social interaction, however with unfamiliar faces only generic information, in the form of facial stereotypes such as gender and age is available. Therefore is generic information more prominent in unfamiliar versus familiar face processing? In order to address the question we tapped into two relatively disparate stages of face processing. At the early stages of encoding, we employed perceptual masking to reveal that only perception of unfamiliar face targets is affected by the gender of the facial masks. At the semantic end; using a priming paradigm, we found that while to-be-ignored unfamiliar faces prime lexical decisions to gender congruent stereotypic words, familiar faces do not. Our findings indicate that gender is a more salient dimension in unfamiliar relative to familiar face processing, both in early perceptual stages as well as later semantic stages of person construal. PMID:22389697
Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.
Byers, Anna; Serences, John T
2014-09-01
Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.
The Relationship Between Perceptual Egocentrism and Field Dependence in Early Childhood
ERIC Educational Resources Information Center
Bowd, Alan D.
1975-01-01
Kindergarten children were administered tests of inductive reasoning and field dependence and a series of perceptual egocentrism tasks. Results confirm a positive relation between field dependence and perceptual egocentrism; they also question the validity of the field-dependence construct in early childhood. (GO)
Spering, Miriam; Montagnini, Anna; Gegenfurtner, Karl R
2008-11-24
Visual processing of color and luminance for smooth pursuit and saccadic eye movements was investigated using a target selection paradigm. In two experiments, stimuli were varied along the dimensions color and luminance, and selection of the more salient target was compared in pursuit and saccades. Initial pursuit was biased in the direction of the luminance component whereas saccades showed a relative preference for color. An early pursuit response toward luminance was often reversed to color by a later saccade. Observers' perceptual judgments of stimulus salience, obtained in two control experiments, were clearly biased toward luminance. This choice bias in perceptual data implies that the initial short-latency pursuit response agrees with perceptual judgments. In contrast, saccades, which have a longer latency than pursuit, do not seem to follow the perceptual judgment of salience but instead show a stronger relative preference for color. These substantial differences in target selection imply that target selection processes for pursuit and saccadic eye movements use distinctly different weights for color and luminance stimuli.
Sex differences in face gender recognition: an event-related potential study.
Sun, Yueting; Gao, Xiaochao; Han, Shihui
2010-04-23
Multiple level neurocognitive processes are involved in face processing in humans. The present study examined whether the early face processing such as structural encoding is modulated by task demands that manipulate attention to perceptual or social features of faces and such an effect, if any, is different between men and women. Event-related brain potentials were recorded from male and female adults while they identified a low-level perceptual feature of faces (i.e., face orientation) and a high-level social feature of faces (i.e., gender). We found that task demands that required the processing of face orientations or face gender resulted in modulations of both the early occipital/temporal negativity (N170) and the late central/parietal positivity (P3). The N170 amplitude was smaller in the gender relative to the orientation identification task whereas the P3 amplitude was larger in the gender identification task relative to the orientation identification task. In addition, these effects were much stronger in women than in men. Our findings suggest that attention to social information in faces such as gender modulates both the early encoding of facial structures and late evaluative process of faces to a greater degree in women than in men.
Selective Interference on the Holistic Processing of Faces in Working Memory
ERIC Educational Resources Information Center
Cheung, Olivia S.; Gauthier, Isabel
2010-01-01
Faces and objects of expertise compete for early perceptual processes and holistic processing resources (Gauthier, Curran, Curby, & Collins, 2003). Here, we examined the nature of interference on holistic face processing in working memory by comparing how various types of loads affect selective attention to parts of face composites. In dual…
Andersen, Lau M; Pedersen, Michael N; Sandberg, Kristian; Overgaard, Morten
2016-06-01
Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual consciousness: An early, occipitally realized component occurring 130-320 ms after stimulus onset and a late, frontally realized component occurring 320-510 ms after stimulus onset. Recent studies have suggested that the late component may not be uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than frontal sources during both the early and late time ranges. These results are the first of its kind where the predictive values of the 2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources in realizing perceptual consciousness. The results have important consequences for current theories of perceptual consciousness, especially theories emphasizing the role of frontal sources. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Perceptual load, voluntary attention, and aging: an event-related potential study
Wang, Yan; Fu, Shimin; Greenwood, Pamela; Luo, Yuejia; Parasuraman, Raja
2012-01-01
The locus of attentional selection is known to vary with perceptual load (Lavie et al., 2004). Under voluntary attention, perceptual load modulates selective visual processing at an early cortical stage, as reflected in the posterior P1 and N1 components of the event-related potentials (ERPs). Adult aging also affects both behavioral and ERP signs of attentional selection. However, it is not known whether perceptual load modulates this relationship. Accordingly, in the present study ERPs were recorded in a voluntary attention task. Young and old participants were asked to discriminate the direction of a target line embedded within a display of four lines that appeared in the left or right visual field. Participants responded faster and more accurately to valid relative to invalid trials and to low-load relative to high-load condition. Older participants responded more slowly and with lower accuracy than young participants in all conditions. The amplitudes of the posterior contralateral P1 and N1 components in valid trials were larger than that in invalid trials in all conditions. N1 amplitude was larger under the high load condition than that in the low load condition. Moreover, in the high perceptual load condition, the old group had a larger N1 than the young group at contralateral sites. The findings suggest that under voluntary attention, perceptual load and aging modulates attentional selection at an early but not the earliest stage, during the N1 (120–200ms) time range. Increased N1 amplitude in older adults may reflect increased demands on target discrimination in high perceptual load. PMID:22248536
Neural correlates of context-dependent feature conjunction learning in visual search tasks.
Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U
2016-06-01
Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Blinded by the load: attention, awareness and the role of perceptual load
Lavie, Nilli; Beck, Diane M.; Konstantinou, Nikos
2014-01-01
What is the relationship between attention and conscious awareness? Awareness sometimes appears to be restricted to the contents of focused attention, yet at other times irrelevant distractors will dominate awareness. This contradictory relationship has also been reflected in an abundance of discrepant research findings leading to an enduring controversy in cognitive psychology. Lavie's load theory of attention suggests that the puzzle can be solved by considering the role of perceptual load. Although distractors will intrude upon awareness in conditions of low load, awareness will be restricted to the content of focused attention when the attended information involves high perceptual load. Here, we review recent evidence for this proposal with an emphasis on the various subjective blindness phenomena, and their neural correlates, induced by conditions of high perceptual load. We also present novel findings that clarify the role of attention in the response to stimulus contrast. Overall, this article demonstrates a critical role for perceptual load across the spectrum of perceptual processes leading to awareness, from the very early sensory responses related to contrast detection to explicit recognition of semantic content. PMID:24639578
Blinded by the load: attention, awareness and the role of perceptual load.
Lavie, Nilli; Beck, Diane M; Konstantinou, Nikos
2014-05-05
What is the relationship between attention and conscious awareness? Awareness sometimes appears to be restricted to the contents of focused attention, yet at other times irrelevant distractors will dominate awareness. This contradictory relationship has also been reflected in an abundance of discrepant research findings leading to an enduring controversy in cognitive psychology. Lavie's load theory of attention suggests that the puzzle can be solved by considering the role of perceptual load. Although distractors will intrude upon awareness in conditions of low load, awareness will be restricted to the content of focused attention when the attended information involves high perceptual load. Here, we review recent evidence for this proposal with an emphasis on the various subjective blindness phenomena, and their neural correlates, induced by conditions of high perceptual load. We also present novel findings that clarify the role of attention in the response to stimulus contrast. Overall, this article demonstrates a critical role for perceptual load across the spectrum of perceptual processes leading to awareness, from the very early sensory responses related to contrast detection to explicit recognition of semantic content.
Ho, Tiffany C; Zhang, Shunan; Sacchet, Matthew D; Weng, Helen; Connolly, Colm G; Henje Blom, Eva; Han, Laura K M; Mobayed, Nisreen O; Yang, Tony T
2016-01-01
While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed.
Ho, Tiffany C.; Zhang, Shunan; Sacchet, Matthew D.; Weng, Helen; Connolly, Colm G.; Henje Blom, Eva; Han, Laura K. M.; Mobayed, Nisreen O.; Yang, Tony T.
2016-01-01
While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed. PMID:26869950
How does Learning Impact Development in Infancy? The Case of Perceptual Organization
Bhatt, Ramesh S.; Quinn, Paul C.
2011-01-01
Pattern perception and organization are critical functions of the visual cognition system. Many organizational processes are available early in life, such that infants as young 3 months of age are able to readily utilize a variety of cues to organize visual patterns. However, other processes are not readily evident in young infants, and their development involves perceptual learning. We describe a theoretical framework that addresses perceptual learning in infancy and the manner in which it affects visual organization and development. It identifies five kinds of experiences that induce learning, and suggests that they work via attentional and unitization mechanisms to modify visual organization. In addition, the framework proposes that this kind of learning is abstract, domain general, functional at different ages in a qualitatively similar manner, and has a long-term impact on development through a memory reactivation process. Although most models of development assume that experience is fundamental to development, very little is actually known about the process by which experience affects development. The proposed framework is an attempt to account for this process in the domain of perception. PMID:21572570
Cortical Plasticity and Olfactory Function in Early Blindness
Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.
2016-01-01
Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596
Emotional conflict occurs at an early stage: evidence from the emotional face-word Stroop task.
Zhu, Xiang-ru; Zhang, Hui-jun; Wu, Ting-ting; Luo, Wen-bo; Luo, Yue-jia
2010-06-30
The perceptual processing of emotional conflict was studied using electrophysiological techniques to measure event-related potentials (ERPs). The emotional face-word Stroop task in which emotion words are written in prominent red color across a face was use to study emotional conflict. In each trial, the emotion word and facial expression were either congruent or incongruent (in conflict). When subjects were asked to identify the expression of the face during a trial, the incongruent condition evoked a more negative N170 ERP component in posterior lateral sites than in the congruent condition. In contrast, when subjects were asked to identify the word during a trial, the incongruent condition evoked a less negative N170 component than the congruent condition. The present findings extend our understanding of the control processes involved in emotional conflict by demonstrating that differentiation of emotional congruency begins at an early perceptual processing stage. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Cloutier, Jasmin; Li, Tianyi; Mišic, Bratislav; Correll, Joshua; Berman, Marc G
2017-09-01
An extended distributed network of brain regions supports face perception. Face familiarity influences activity in brain regions involved in this network, but the impact of perceptual familiarity on this network has never been directly assessed with the use of partial least squares analysis. In the present work, we use this multivariate statistical analysis to examine how face-processing systems are differentially recruited by characteristics of the targets (i.e. perceptual familiarity and race) and of the perceivers (i.e. childhood interracial contact). Novel faces were found to preferentially recruit a large distributed face-processing network compared with perceptually familiar faces. Additionally, increased interracial contact during childhood led to decreased recruitment of distributed brain networks previously implicated in face perception, salience detection, and social cognition. Current results provide a novel perspective on the impact of cross-race exposure, suggesting that interracial contact early in life may dramatically shape the neural substrates of face perception generally. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Martens, Ulla; Hubner, Ronald
2013-01-01
While hemispheric differences in global/local processing have been reported by various studies, it is still under dispute at which processing stage they occur. Primarily, it was assumed that these asymmetries originate from an early perceptual stage. Instead, the content-level binding theory (Hubner & Volberg, 2005) suggests that the hemispheres…
Baumgarten, Thomas J; Königs, Sara; Schnitzler, Alfons; Lange, Joachim
2017-03-09
Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13-18 Hz). This can be compellingly explained by a model of discrete perceptual cycles.
Perceptual learning effect on decision and confidence thresholds.
Solovey, Guillermo; Shalom, Diego; Pérez-Schuster, Verónica; Sigman, Mariano
2016-10-01
Practice can enhance of perceptual sensitivity, a well-known phenomenon called perceptual learning. However, the effect of practice on subjective perception has received little attention. We approach this problem from a visual psychophysics and computational modeling perspective. In a sequence of visual search experiments, subjects significantly increased the ability to detect a "trained target". Before and after training, subjects performed two psychophysical protocols that parametrically vary the visibility of the "trained target": an attentional blink and a visual masking task. We found that confidence increased after learning only in the attentional blink task. Despite large differences in some observables and task settings, we identify common mechanisms for decision-making and confidence. Specifically, our behavioral results and computational model suggest that perceptual ability is independent of processing time, indicating that changes in early cortical representations are effective, and learning changes decision criteria to convey choice and confidence. Copyright © 2016 Elsevier Inc. All rights reserved.
Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan
2016-01-15
Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.
Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses
Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli
2015-01-01
Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858
ERIC Educational Resources Information Center
Verleger, Rolf; Schuknecht, Simon-Vitus; Jaskowski, Piotr; Wagner, Ullrich
2008-01-01
Sleep has proven to support the memory consolidation in many tasks including learning of perceptual skills. Explicit, conscious types of memory have been demonstrated to benefit particularly from slow-wave sleep (SWS), implicit, non-conscious types particularly from rapid eye movement (REM) sleep. By comparing the effects of early-night sleep,…
Neural correlates of cigarette health warning avoidance among smokers.
Stothart, George; Maynard, Olivia; Lavis, Rosie; Munafò, Marcus
2016-04-01
Eye-tracking technology has indicated that daily smokers actively avoid pictorial cigarette package health warnings. Avoidance may be due to a pre-cognitive perceptual bias or a higher order cognitive bias, such as reduced emotional processing. Using electroencephalography (EEG), this study aimed to identify the temporal point at which smokers' responses to health warnings begin to differ. Non-smokers (n=20) and daily smokers (n=20) viewed pictorial cigarette package health warnings and neutral control stimuli. These elicited Event Related Potentials reflecting early perceptual processing (visual P1), pre-attentive change detection (visual Mismatch Negativity), selective attentional orientation (P3) and a measure of emotional processing, the Late Positive Potential (LPP). There was no evidence for a difference in P1 responses between smokers and non-smokers. There was no difference in vMMN and P3 amplitude but some evidence for a delay in vMMN latency amongst smokers. There was strong evidence for delayed and reduced LPP to health warning stimuli amongst smokers compared to non-smokers. We find no evidence for an early perceptual bias in smokers' visual perception of health warnings but strong evidence that smokers are less sensitive to the emotional content of cigarette health warnings. Future health warning development should focus on increasing the emotional salience of pictorial health warning content amongst smokers. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Huh, Young Eun; Park, Jongkyu; Suh, Mee Kyung; Lee, Sang Eun; Kim, Jumin; Jeong, Yuri; Kim, Hee-Tae; Cho, Jin Whan
2015-08-01
In Parkinson variant of multiple system atrophy (MSA-P), patterns of early speech impairment and their distinguishing features from Parkinson's disease (PD) require further exploration. Here, we compared speech data among patients with early-stage MSA-P, PD, and healthy subjects using quantitative acoustic and perceptual analyses. Variables were analyzed for men and women in view of gender-specific features of speech. Acoustic analysis revealed that male patients with MSA-P exhibited more profound speech abnormalities than those with PD, regarding increased voice pitch, prolonged pause time, and reduced speech rate. This might be due to widespread pathology of MSA-P in nigrostriatal or extra-striatal structures related to speech production. Although several perceptual measures were mildly impaired in MSA-P and PD patients, none of these parameters showed a significant difference between patient groups. Detailed speech analysis using acoustic measures may help distinguish between MSA-P and PD early in the disease process. Copyright © 2015 Elsevier Inc. All rights reserved.
Emotional and movement-related body postures modulate visual processing
Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio
2015-01-01
Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213
Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making.
Lou, Bin; Li, Yun; Philiastides, Marios G; Sajda, Paul
2014-02-15
Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. © 2013 Elsevier Inc. All rights reserved.
Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making
Lou, Bin; Li, Yun; Philiastides, Marios G.; Sajda, Paul
2013-01-01
Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. PMID:24185020
Acute Stress and Perceptual Load Consume the Same Attentional Resources: A Behavioral-ERP Study
Tiferet-Dweck, Chen; Hensel, Michael; Kirschbaum, Clemens; Tzelgov, Joseph; Friedman, Alon; Salti, Moti
2016-01-01
Stress and perceptual load affect selective attention in a paradoxical manner. They can facilitate selectivity or disrupt it. This EEG study was designed to examine the reciprocal relations between stress, load and attention. Two groups of subjects, one that performed the Trier Social Stress Test (TSST), and a control group, were asked to respond to a target letter under low and high perceptual load in the absence or presence of a distractor. In the control group, the distractor increased response times (RTs) for high and low load. In the TSST group, distractor increased RTs under low load only. ERPs showed that distractor’s presentation attenuated early visual P1 component and shortened its latency. In the TSST group, distractor reduced P1 component under high load but did not affect its latency. Source localization demonstrated reduced activation in V1 in response to distractors presence in the P1 time window for the TSST group compared to the control group. A behavioral replication revealed that in the TSST group distractors were less perceived under high load. Taken together, our results show that stress and perceptual load affect selectivity through the early stages of visual processing and might increase selectivity in a manner that would block conscious perception of irrelevant stimuli. PMID:27196027
The Role of the Auditory Brainstem in Processing Musically Relevant Pitch
Bidelman, Gavin M.
2013-01-01
Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294
Early perception and structural identity: neural implementation
NASA Astrophysics Data System (ADS)
Ligomenides, Panos A.
1992-03-01
It is suggested that there exists a minimal set of rules for the perceptual composition of the unending variety of spatio-temporal patterns in our perceptual world. Driven by perceptual discernment of "sudden change" and "unexpectedness", these rules specify conditions (such as co-linearity and virtual continuation) for perceptual grouping and for recursive compositions of perceptual "modalities" and "signatures". Beginning with a smallset of primitive perceptual elements, selected contextually at some relevant level of abstraction, perceptual compositions can graduate to an unlimited variety of spatiotemporal signatures, scenes and activities. Local discernible elements, often perceptually ambiguous by themselves, may be integrated into spatiotemporal compositions, which generate unambiguous perceptual separations between "figure" and "ground". The definition of computational algorithms for the effective instantiation of the rules of perceptual grouping remains a principal problem. In this paper we present our approach for solving the problem of perceptual recognition within the confines of one-D variational profiles. More specifically, concerning "early" (pre-attentive) recognition, we define the "structural identity of a k-norm, k ∈ K,"--SkID--as a tool for discerning and locating the instantiation of spatiotemporal objects or events. The SkID profile also serves a s a reference coordinate framework for the "perceptual focusing of attention" and the eventual assessment of resemblance. Neural network implementations of pre-attentive and attentive recognition are also discussed briefly. Our principles are exemplified by application to one-D perceptual profiles, which allows simplicity of definitions and of the rules of perceptual composition.
Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath
2018-05-24
Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Visual naming deficits in dyslexia: An ERP investigation of different processing domains.
Araújo, Susana; Faísca, Luís; Reis, Alexandra; Marques, J Frederico; Petersson, Karl Magnus
2016-10-01
Naming speed deficits are well documented in developmental dyslexia, expressed by slower naming times and more errors in response to familiar items. Here we used event-related potentials (ERPs) to examine at what processing level the deficits in dyslexia emerge during a discrete-naming task. Dyslexic and skilled adult control readers performed a primed object-naming task, in which the relationship between the prime and the target was manipulated along perceptual, semantic and phonological dimensions. A 3×2 design that crossed Relationship Type (Visual, Phonemic Onset, and Semantic) with Relatedness (Related and Unrelated) was used. An attenuated N/P190 - indexing early visual processing - and N300 - which index late visual processing - was observed to pictures preceded by perceptually related (vs. unrelated) primes in the control but not in the dyslexic group. These findings suggest suboptimal processing in early stages of object processing in dyslexia, when integration and mapping of perceptual information to a more form-specific percept in memory take place. On the other hand, both groups showed an N400 effect associated with semantically related pictures (vs. unrelated), taken to reflect intact integration of semantic similarities in both dyslexic and control readers. We also found an electrophysiological effect of phonological priming in the N400 range - that is, an attenuated N400 to objects preceded by phonemic related primes vs. unrelated - while it showed a more widespread distributed and more pronounced over the right hemisphere in the dyslexics. Topographic differences between groups might have originated from a word form encoding process with different characteristics in dyslexics compared to control readers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Young Skilled Deaf Readers Have an Enhanced Perceptual Span in Reading.
Bélanger, Nathalie N; Lee, Michelle; Schotter, Elizabeth R
2017-04-27
Recently, Bélanger, Slattery, Mayberry and Rayner (2012) showed, using the moving window paradigm, that profoundly deaf adults have a wider perceptual span during reading relative to hearing adults matched on reading level. This difference might be related to the fact that deaf adults allocate more visual attention to simple stimuli in the parafovea (Bavelier, Dye & Hauser, 2006). Importantly, this reorganization of visual attention in deaf individuals is already manifesting in deaf children (Dye, Hauser & Bavelier, 2009). This leads to questions about the time course of the emergence of an enhanced perceptual span (which is under attentional control; Rayner, 2014; Miellet, O'Donnell, & Sereno, 2009) in young deaf readers. The present research addressed this question by comparing the perceptual spans of young deaf readers (age 7-15) and young hearing children (age 7-15). Young deaf readers, like deaf adults, were found to have a wider perceptual span relative to their hearing peers matched on reading level, suggesting that strong and early reorganization of visual attention in deaf individuals goes beyond the processing of simple visual stimuli and emerges into more cognitively complex tasks, such as reading.
How Does Learning Impact Development in Infancy? The Case of Perceptual Organization
ERIC Educational Resources Information Center
Bhatt, Ramesh S.; Quinn, Paul C.
2011-01-01
Pattern perception and organization are critical functions of the visual cognition system. Many organizational processes are available early in life, such that infants as young 3 months of age are able to readily utilize a variety of cues to organize visual patterns. However, other processes are not readily evident in young infants, and their…
Ester, Edward F.; Deering, Sean
2014-01-01
Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking ∼80–130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking ∼230–330 ms poststimulus). A simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data. We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity primarily by modulating the gain of neural responses during early sensory processing PMID:25274817
Verleger, Rolf; Schuknecht, Simon-Vitus; Jaśkowski, Piotr; Wagner, Ullrich
2008-11-01
Sleep has proven to support the memory consolidation in many tasks including learning of perceptual skills. Explicit, conscious types of memory have been demonstrated to benefit particularly from slow-wave sleep (SWS), implicit, non-conscious types particularly from rapid eye movement (REM) sleep. By comparing the effects of early-night sleep, rich in SWS, and late-night sleep, rich in REM sleep, we aimed to separate the contribution of these two sleep stages in a metacontrast masking paradigm in which explicit and implicit aspects in perceptual learning could be assessed separately by stimulus identification and priming, respectively. We assumed that early sleep intervening between two sessions of task performance would specifically support stimulus identification, while late sleep would specifically support priming. Apart from overt behavior, event-related EEG potentials (ERPs) were measured to record the cortical mechanisms associated with behavioral changes across sleep. In contrast to our hypothesis, late-night sleep appeared to be more important for changes of behavior, both for stimulus identification, which tended to improve across late-night sleep, and for priming, with the increase of errors induced by masked stimuli correlating with the duration of REM sleep. ERP components proved sensitive to presence of target shapes in the masked stimuli and to their priming effects. Of these components, the N2 component, indicating processing of conflict, became larger across early-night sleep and was related to the duration of S4 sleep, the deepest substage of SWS containing particularly high portions of EEG slow waves. These findings suggest that sleep promotes perceptual learning primarily by its REM sleep portion, but indirectly also by way of improved action monitoring supported by deep slow-wave sleep.
The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention.
Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao
2015-01-01
The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage.
The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention
Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao
2015-01-01
The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage. PMID:26098079
Almeida, Diogo; Poeppel, David; Corina, David
The human auditory system distinguishes speech-like information from general auditory signals in a remarkably fast and efficient way. Combining psychophysics and neurophysiology (MEG), we demonstrate a similar result for the processing of visual information used for language communication in users of sign languages. We demonstrate that the earliest visual cortical responses in deaf signers viewing American Sign Language (ASL) signs show specific modulations to violations of anatomic constraints that would make the sign either possible or impossible to articulate. These neural data are accompanied with a significantly increased perceptual sensitivity to the anatomical incongruity. The differential effects in the early visual evoked potentials arguably reflect an expectation-driven assessment of somatic representational integrity, suggesting that language experience and/or auditory deprivation may shape the neuronal mechanisms underlying the analysis of complex human form. The data demonstrate that the perceptual tuning that underlies the discrimination of language and non-language information is not limited to spoken languages but extends to languages expressed in the visual modality.
Perceptual processing affects conceptual processing.
Van Dantzig, Saskia; Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W
2008-04-05
According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task in alternation. Responses on the property-verification task were slower for those trials that were preceded by a perceptual trial in a different modality than for those that were preceded by a perceptual trial in the same modality. This finding of a modality-switch effect across perceptual processing and conceptual processing supports the hypothesis that perceptual and conceptual representations are partially based on the same systems. 2008 Cognitive Science Society, Inc.
The time course of perceptual grouping: the role of segregation and shape formation.
Razpurker-Apfeld, Irene; Kimchi, Ruth
2007-07-01
The time course of perceptual grouping was examined in two experiments, using a primed matching task. In different conditions, elements were grouped into columns/rows by common lightness, into a shape (triangle/ arrow or square/cross) by common lightness, and into a shape without segregation of elements. The results showed an early and rapid grouping into columns/rows by common lightness and into a shape when no segregation from other elements was involved. Goodness of shape (i.e., triangle/arrow vs. square/cross) had no influence on how early grouping was evident, but the relatively poorer shapes appeared to consolidate with time. In contrast, grouping into a shape that involved segregation and required resolving figure-ground relations between segregated units, as grouping into a shape by common lightness, consumed time, regardless of shape goodness. These results suggest that the time course of grouping varies as a function of the processes involved in it (e.g., segregation and shape formation) and the conditions prevailing for each process.
Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease
Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.
2013-01-01
We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256
Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing.
Tu, Tao; Schneck, Noam; Muraskin, Jordan; Sajda, Paul
2017-12-13
Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain-network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal "late" regions on perceptual processes occurring in "early" perceptual regions. SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious-e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions. Copyright © 2017 the authors 0270-6474/17/3712226-12$15.00/0.
Baumgarten, Thomas J.; Königs, Sara; Schnitzler, Alfons; Lange, Joachim
2017-01-01
Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13–18 Hz). This can be compellingly explained by a model of discrete perceptual cycles. PMID:28276493
Coupled auralization and virtual video for immersive multimedia displays
NASA Astrophysics Data System (ADS)
Henderson, Paul D.; Torres, Rendell R.; Shimizu, Yasushi; Radke, Richard; Lonsway, Brian
2003-04-01
The implementation of maximally-immersive interactive multimedia in exhibit spaces requires not only the presentation of realistic visual imagery but also the creation of a perceptually accurate aural experience. While conventional implementations treat audio and video problems as essentially independent, this research seeks to couple the visual sensory information with dynamic auralization in order to enhance perceptual accuracy. An implemented system has been developed for integrating accurate auralizations with virtual video techniques for both interactive presentation and multi-way communication. The current system utilizes a multi-channel loudspeaker array and real-time signal processing techniques for synthesizing the direct sound, early reflections, and reverberant field excited by a moving sound source whose path may be interactively defined in real-time or derived from coupled video tracking data. In this implementation, any virtual acoustic environment may be synthesized and presented in a perceptually-accurate fashion to many participants over a large listening and viewing area. Subject tests support the hypothesis that the cross-modal coupling of aural and visual displays significantly affects perceptual localization accuracy.
Perceptual learning as improved probabilistic inference in early sensory areas.
Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre
2011-05-01
Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.
Development of early handwriting: Visual-motor control during letter copying.
Maldarelli, Jennifer E; Kahrs, Björn A; Hunt, Sarah C; Lockman, Jeffrey J
2015-07-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor, and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N = 23) and adults (N = 11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: Children frequently interrupted their writing midletter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor, and cognitive processes contributes to advances in the development of letter writing skill. (c) 2015 APA, all rights reserved).
Development of Early Handwriting: Visual-Motor Control During Letter Copying
Maldarelli, Jennifer E.; Kahrs, Björn A.; Hunt, Sarah C.; Lockman, Jeffrey J.
2015-01-01
Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N=23) and adults (N=11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: children frequently interrupted their writing mid-letter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor and cognitive processes contributes to advances in the development of letter writing skill. PMID:26029821
ERIC Educational Resources Information Center
Nittrouer, Susan; Burton, Lisa Thuente
2005-01-01
This study tested the hypothesis that early language experience facilitates the development of language-specific perceptual weighting strategies believed to be critical for accessing phonetic structure. In turn, that structure allows for efficient storage and retrieval of words in verbal working memory, which is necessary for sentence…
Audiovisual speech perception development at varying levels of perceptual processing
Lalonde, Kaylah; Holt, Rachael Frush
2016-01-01
This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children. PMID:27106318
Audiovisual speech perception development at varying levels of perceptual processing.
Lalonde, Kaylah; Holt, Rachael Frush
2016-04-01
This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.
The Development of Attentional Biases for Faces in Infancy: A Developmental Systems Perspective
Reynolds, Greg D.; Roth, Kelly C.
2018-01-01
We present an integrative review of research and theory on major factors involved in the early development of attentional biases to faces. Research utilizing behavioral, eye-tracking, and neuroscience measures with infant participants as well as comparative research with animal subjects are reviewed. We begin with coverage of research demonstrating the presence of an attentional bias for faces shortly after birth, such as newborn infants’ visual preference for face-like over non-face stimuli. The role of experience and the process of perceptual narrowing in face processing are examined as infants begin to demonstrate enhanced behavioral and neural responsiveness to mother over stranger, female over male, own- over other-race, and native over non-native faces. Next, we cover research on developmental change in infants’ neural responsiveness to faces in multimodal contexts, such as audiovisual speech. We also explore the potential influence of arousal and attention on early perceptual preferences for faces. Lastly, the potential influence of the development of attention systems in the brain on social-cognitive processing is discussed. In conclusion, we interpret the findings under the framework of Developmental Systems Theory, emphasizing the combined and distributed influence of several factors, both internal (e.g., arousal, neural development) and external (e.g., early social experience) to the developing child, in the emergence of attentional biases that lead to enhanced responsiveness and processing of faces commonly encountered in the native environment. PMID:29541043
Basic-Level and Superordinate-like Categorical Representations in Early Infancy.
ERIC Educational Resources Information Center
Behl-Chadha, Gundeep
1996-01-01
Examined three- to four-month-old infants' ability to form perceptually based categorical representation in the domains of natural kinds and artifacts. By showing the availability of perceptually driven basic and superordinate-like representations in early infancy that closely correspond to adult conceptual categories, findings underscored the…
Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E
2012-12-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.
Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.
2015-01-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402
Schlottmann, Anne; Cole, Katy; Watts, Rhianna; White, Marina
2013-01-01
Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: it is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information. PMID:23874308
Enhanced Access to Early Visual Processing of Perceptual Simultaneity in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Falter, Christine M.; Braeutigam, Sven; Nathan, Roger; Carrington, Sarah; Bailey, Anthony J.
2013-01-01
We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset delays. Participants with ASD distinguished…
Pilly, Praveen K.; Grossberg, Stephen; Seitz, Aaron R.
2009-01-01
Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are controversial, since such learning may also be attributed to plasticity in later stages of sensory processing or in readout from sensory to decision stages, or to changes in high-level central processing. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show direction-selective learning for the designated contrast polarity that does not transfer to the opposite contrast polarity. This polarity specificity was replicated in a double training procedure in which subjects were additionally exposed to the opposite polarity. Taken together, these results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells. Finally, a theoretical explanation is provided to understand the data. PMID:19800358
Perceptual Processing Affects Conceptual Processing
ERIC Educational Resources Information Center
van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.
2008-01-01
According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…
Superordinate Level Processing Has Priority Over Basic-Level Processing in Scene Gist Recognition
Sun, Qi; Zheng, Yang; Sun, Mingxia; Zheng, Yuanjie
2016-01-01
By combining a perceptual discrimination task and a visuospatial working memory task, the present study examined the effects of visuospatial working memory load on the hierarchical processing of scene gist. In the perceptual discrimination task, two scene images from the same (manmade–manmade pairing or natural–natural pairing) or different superordinate level categories (manmade–natural pairing) were presented simultaneously, and participants were asked to judge whether these two images belonged to the same basic-level category (e.g., street–street pairing) or not (e.g., street–highway pairing). In the concurrent working memory task, spatial load (position-based load in Experiment 1) and object load (figure-based load in Experiment 2) were manipulated. The results were as follows: (a) spatial load and object load have stronger effects on discrimination of same basic-level scene pairing than same superordinate level scene pairing; (b) spatial load has a larger impact on the discrimination of scene pairings at early stages than at later stages; on the contrary, object information has a larger influence on at later stages than at early stages. It followed that superordinate level processing has priority over basic-level processing in scene gist recognition and spatial information contributes to the earlier and object information to the later stages in scene gist recognition. PMID:28382195
Zhao, Xudong; Li, Xiujun; Shi, Wendian
2017-09-14
Inhibitory tagging (IT), a flexible central control mechanism based on the current task goals, reduces the cognitive conflict effect at the cued location by blocking the incompatible stimulus-response (S-R) code. However, it is unknown whether IT has a similar effect on emotional conflict. Thus, we combined the face-word Stroop task with the manipulation of inhibition of return (IOR) and used event-related potential (ERP) technology to simultaneously examine the modulation effect of IT on emotional and cognitive conflict processing. At the cued location, we found that the two types of conflict effect were significantly reduced and that the conflict processing-related N450 effect was absent. Our data further revealed that IT had similar effects on emotional and cognitive conflict processing. Although a negative difference wave (Nd) was found in the time window of 160 and 220ms, which may reflect the impaired early perceptual processing of the target at the cued location, the effect of Nd was not affected by stimulus congruency. These results illustrate that the cueing effect of conflict processing does not arise from the early stage of perceptual processing, but rather results from the blocked S-R code of the distractors due to IT functioning during the later stage of processing. Copyright © 2017. Published by Elsevier B.V.
Visual training improves perceptual grouping based on basic stimulus features.
Kurylo, Daniel D; Waxman, Richard; Kidron, Rachel; Silverstein, Steven M
2017-10-01
Training on visual tasks improves performance on basic and higher order visual capacities. Such improvement has been linked to changes in connectivity among mediating neurons. We investigated whether training effects occur for perceptual grouping. It was hypothesized that repeated engagement of integration mechanisms would enhance grouping processes. Thirty-six participants underwent 15 sessions of training on a visual discrimination task that required perceptual grouping. Participants viewed 20 × 20 arrays of dots or Gabor patches and indicated whether the array appeared grouped as vertical or horizontal lines. Across trials stimuli became progressively disorganized, contingent upon successful discrimination. Four visual dimensions were examined, in which grouping was based on similarity in luminance, color, orientation, and motion. Psychophysical thresholds of grouping were assessed before and after training. Results indicate that performance in all four dimensions improved with training. Training on a control condition, which paralleled the discrimination task but without a grouping component, produced no improvement. In addition, training on only the luminance and orientation dimensions improved performance for those conditions as well as for grouping by color, on which training had not occurred. However, improvement from partial training did not generalize to motion. Results demonstrate that a training protocol emphasizing stimulus integration enhanced perceptual grouping. Results suggest that neural mechanisms mediating grouping by common luminance and/or orientation contribute to those mediating grouping by color but do not share resources for grouping by common motion. Results are consistent with theories of perceptual learning emphasizing plasticity in early visual processing regions.
Perceptual-Motor Programs Do Not Facilitate Development: Why Not Play?
ERIC Educational Resources Information Center
Corrie, Loraine; Barratt-Pugh, Caroline
1997-01-01
Early childhood perceptual-motor programs as preventive and remedial measures present three concerns: (1) they have minimal positive effects; (2) funds could be used to investigate more effective educational strategies; and (3) the rationale for these programs does not fit with the Australian Early Childhood Association's Code of Ethics. Play is…
Multiple Cues in Social Perception: The Time Course of Processing Race and Facial Expression
Kubota, Jennifer T.; Ito, Tiffany A.
2007-01-01
The purpose of the present study was to examine the time course of race and expression processing to determine how these cues influence early perceptual as well as explicit categorization judgments. Despite their importance in social perception, little research has examined how social category information and emotional expression are processed over time. Moreover, although models of face processing suggest that the two cues should be processed independently, this has rarely been directly examined. Event-related brain potentials were recorded as participants made race and emotion categorization judgments of Black and White men posing either happy, angry, or neutral expressions. Our findings support that processing of race and emotion cues occur independently and in parallel, relatively early in processing. PMID:17940587
Effect of perceptual load on conceptual processing: an extension of Vermeulen's theory.
Xie, Jiushu; Wang, Ruiming; Sun, Xun; Chang, Song
2013-10-01
The effect of color and shape load on conceptual processing was studied. Perceptual load effects have been found in visual and auditory conceptual processing, supporting the theory of embodied cognition. However, whether different types of visual concepts, such as color and shape, share the same perceptual load effects is unknown. In the current experiment, 32 participants were administered simultaneous perceptual and conceptual tasks to assess the relation between perceptual load and conceptual processing. Keeping color load in mind obstructed color conceptual processing. Hence, perceptual processing and conceptual load shared the same resources, suggesting embodied cognition. Color conceptual processing was not affected by shape pictures, indicating that different types of properties within vision were separate.
Perceptual priming versus explicit memory: dissociable neural correlates at encoding.
Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah
2002-05-15
We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.
Out of sight, out of mind: Categorization learning and normal aging.
Schenk, Sabrina; Minda, John P; Lech, Robert K; Suchan, Boris
2016-10-01
The present combined EEG and eye tracking study examined the process of categorization learning at different age ranges and aimed to investigate to which degree categorization learning is mediated by visual attention and perceptual strategies. Seventeen young subjects and ten elderly subjects had to perform a visual categorization task with two abstract categories. Each category consisted of prototypical stimuli and an exception. The categorization of prototypical stimuli was learned very early during the experiment, while the learning of exceptions was delayed. The categorization of exceptions was accompanied by higher P150, P250 and P300 amplitudes. In contrast to younger subjects, elderly subjects had problems in the categorization of exceptions, but showed an intact categorization performance for prototypical stimuli. Moreover, elderly subjects showed higher fixation rates for important stimulus features and higher P150 amplitudes, which were positively correlated with the categorization performances. These results indicate that elderly subjects compensate for cognitive decline through enhanced perceptual and attentional processing of individual stimulus features. Additionally, a computational approach has been applied and showed a transition away from purely abstraction-based learning to an exemplar-based learning in the middle block for both groups. However, the calculated models provide a better fit for younger subjects than for elderly subjects. The current study demonstrates that human categorization learning is based on early abstraction-based processing followed by an exemplar-memorization stage. This strategy combination facilitates the learning of real world categories with a nuanced category structure. In addition, the present study suggests that categorization learning is affected by normal aging and modulated by perceptual processing and visual attention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vision after 53 years of blindness.
Sikl, Radovan; Simecček, Michal; Porubanová-Norquist, Michaela; Bezdíček, Ondřej; Kremláček, Jan; Stodůlka, Pavel; Fine, Ione; Ostrovsky, Yuri
2013-01-01
Several studies have shown that visual recovery after blindness that occurs early in life is never complete. The current study investigated whether an extremely long period of blindness might also cause a permanent impairment of visual performance, even in a case of adult-onset blindness. We examined KP, a 71-year-old man who underwent a successful sight-restoring operation after 53 years of blindness. A set of psychophysical tests designed to assess KP's face perception, object recognition, and visual space perception abilities were conducted six months and eight months after the surgery. The results demonstrate that regardless of a lengthy period of normal vision and rich pre-accident perceptual experience, KP did not fully integrate this experience, and his visual performance remained greatly compromised. This was particularly evident when the tasks targeted finer levels of perceptual processing. In addition to the decreased robustness of his memory representations, which was hypothesized as the main factor determining visual impairment, other factors that may have affected KP's performance were considered, including compromised visual functions, problems with perceptual organization, deficits in the simultaneous processing of visual information, and reduced cognitive abilities.
Caharel, Stéphanie; Leleu, Arnaud; Bernard, Christian; Viggiano, Maria-Pia; Lalonde, Robert; Rebaï, Mohamed
2013-11-01
The properties of the face-sensitive N170 component of the event-related brain potential (ERP) were explored through an orientation discrimination task using natural faces, objects, and Arcimboldo paintings presented upright or inverted. Because Arcimboldo paintings are composed of non-face objects but have a global face configuration, they provide great control to disentangle high-level face-like or object-like visual processes at the level of the N170, and may help to examine the implication of each hemisphere in the global/holistic processing of face formats. For upright position, N170 amplitudes in the right occipito-temporal region did not differ between natural faces and Arcimboldo paintings but were larger for both of these categories than for objects, supporting the view that as early as the N170 time-window, the right hemisphere is involved in holistic perceptual processing of face-like configurations irrespective of their features. Conversely, in the left hemisphere, N170 amplitudes differed between Arcimboldo portraits and natural faces, suggesting that this hemisphere processes local facial features. For upside-down orientation in both hemispheres, N170 amplitudes did not differ between Arcimboldo paintings and objects, but were reduced for both categories compared to natural faces, indicating that the disruption of holistic processing with inversion leads to an object-like processing of Arcimboldo paintings due to the lack of local facial features. Overall, these results provide evidence that global/holistic perceptual processing of faces and face-like formats involves the right hemisphere as early as the N170 time-window, and that the local processing of face features is rather implemented in the left hemisphere. © 2013.
Hindi Attar, Catherine; Müller, Matthias M
2012-01-01
A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.
Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio
2002-05-01
This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.
A Tangent Bundle Theory for Visual Curve Completion.
Ben-Yosef, Guy; Ben-Shahar, Ohad
2012-07-01
Visual curve completion is a fundamental perceptual mechanism that completes the missing parts (e.g., due to occlusion) between observed contour fragments. Previous research into the shape of completed curves has generally followed an "axiomatic" approach, where desired perceptual/geometrical properties are first defined as axioms, followed by mathematical investigation into curves that satisfy them. However, determining psychophysically such desired properties is difficult and researchers still debate what they should be in the first place. Instead, here we exploit the observation that curve completion is an early visual process to formalize the problem in the unit tangent bundle R(2) × S(1), which abstracts the primary visual cortex (V1) and facilitates exploration of basic principles from which perceptual properties are later derived rather than imposed. Exploring here the elementary principle of least action in V1, we show how the problem becomes one of finding minimum-length admissible curves in R(2) × S(1). We formalize the problem in variational terms, we analyze it theoretically, and we formulate practical algorithms for the reconstruction of these completed curves. We then explore their induced visual properties vis-à-vis popular perceptual axioms and show how our theory predicts many perceptual properties reported in the corresponding perceptual literature. Finally, we demonstrate a variety of curve completions and report comparisons to psychophysical data and other completion models.
Perceptual Training Prevents the Emergence of the Other Race Effect during Infancy
Heron-Delaney, Michelle; Anzures, Gizelle; Herbert, Jane S.; Quinn, Paul C.; Slater, Alan M.; Tanaka, James W.; Lee, Kang; Pascalis, Olivier
2011-01-01
Experience plays a crucial role in the development of the face processing system. At 6 months of age infants can discriminate individual faces from their own and other races. By 9 months of age this ability to process other-race faces is typically lost, due to minimal experience with other-race faces, and vast exposure to own-race faces, for which infants come to manifest expertise [1]. This is known as the Other Race Effect. In the current study, we demonstrate that exposing Caucasian infants to Chinese faces through perceptual training via picture books for a total of one hour between 6 and 9 months allows Caucasian infants to maintain the ability to discriminate Chinese faces at 9 months of age. The development of the processing of face race can be modified by training, highlighting the importance of early experience in shaping the face representation. PMID:21625638
ERIC Educational Resources Information Center
Beers, Carol; And Others
The perceptual motor development module, the eleventh in a series developed for the Early Childhood-Special Education Teacher Preparation Program at the University of Virginia, provides the student with basic information on the physiological development of young children. A number of learning and measurement activities related to children's…
ERIC Educational Resources Information Center
Whitcraft, Carol
Investigations and theories concerning interrelationships of motoric experiences, perceptual-motor skills, and learning are reviewed, with emphasis on early engramming of form and space concepts. Covered are studies on haptic perception of form, the matching of perceptual data and motor information, Kephart's perceptual-motor theory, and…
Atypical neural responses to vocal anger in attention-deficit/hyperactivity disorder.
Chronaki, Georgia; Benikos, Nicholas; Fairchild, Graeme; Sonuga-Barke, Edmund J S
2015-04-01
Deficits in facial emotion processing, reported in attention-deficit/hyperactivity disorder (ADHD), have been linked to both early perceptual and later attentional components of event-related potentials (ERPs). However, the neural underpinnings of vocal emotion processing deficits in ADHD have yet to be characterised. Here, we report the first ERP study of vocal affective prosody processing in ADHD. Event-related potentials of 6-11-year-old children with ADHD (n = 25) and typically developing controls (n = 25) were recorded as they completed a task measuring recognition of vocal prosodic stimuli (angry, happy and neutral). Audiometric assessments were conducted to screen for hearing impairments. Children with ADHD were less accurate than controls at recognising vocal anger. Relative to controls, they displayed enhanced N100 and attenuated P300 components to vocal anger. The P300 effect was reduced, but remained significant, after controlling for N100 effects by rebaselining. Only the N100 effect was significant when children with ADHD and comorbid conduct disorder (n = 10) were excluded. This study provides the first evidence linking ADHD to atypical neural activity during the early perceptual stages of vocal anger processing. These effects may reflect preattentive hyper-vigilance to vocal anger in ADHD. © 2014 Association for Child and Adolescent Mental Health.
Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics
Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun
2013-01-01
When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304
Pre-stimulus EEG oscillations correlate with perceptual alternation of speech forms.
Barraza, Paulo; Jaume-Guazzini, Francisco; Rodríguez, Eugenio
2016-05-27
Speech perception is often seen as a passive process guided by physical stimulus properties. However, ongoing brain dynamics could influence the subsequent perceptual organization of the speech, to an as yet unknown extent. To elucidate this issue, we analyzed EEG oscillatory activity before and immediately after the repetitive auditory presentation of words inducing the so-called verbal transformation effect (VTE), or spontaneous alternation of meanings due to its rapid repetition. Subjects indicated whether the meaning of the bistable word changed or not. For the Reversal more than for the Stable condition, results show a pre-stimulus local alpha desynchronization (300-50ms), followed by an early post-stimulus increase of local beta synchrony (0-80ms), and then a late increase and decrease of local alpha (200-340ms) and beta (360-440ms) synchrony respectively. Additionally, the ERPs showed that reversal positivity (RP) and reversal negativity components (RN), along with a late positivity complex (LPC) correlate with switching between verbal forms. Our results show how the ongoing dynamics brain is actively involved in the perceptual organization of the speech, destabilizing verbal perceptual states, and facilitating the perceptual regrouping of the elements composing the linguistic auditory stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Working memory enhances visual perception: evidence from signal detection analysis.
Soto, David; Wriglesworth, Alice; Bahrami-Balani, Alex; Humphreys, Glyn W
2010-03-01
We show that perceptual sensitivity to visual stimuli can be modulated by matches between the contents of working memory (WM) and stimuli in the visual field. Observers were presented with an object cue (to hold in WM or to merely attend) and subsequently had to identify a brief target presented within a colored shape. The cue could be re-presented in the display, where it surrounded either the target (on valid trials) or a distractor (on invalid trials). Perceptual identification of the target, as indexed by A', was enhanced on valid relative to invalid trials but only when the cue was kept in WM. There was minimal effect of the cue when it was merely attended and not kept in WM. Verbal cues were as effective as visual cues at modulating perceptual identification, and the effects were independent of the effects of target saliency. Matches to the contents of WM influenced perceptual sensitivity even under conditions that minimized competition for selecting the target. WM cues were also effective when targets were less likely to fall in a repeated WM stimulus than in other stimuli in the search display. There were no effects of WM on decisional criteria, in contrast to sensitivity. The findings suggest that reentrant feedback from WM can affect early stages of perceptual processing.
Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka
2015-01-01
Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.
Evidence of a Transition from Perceptual to Category Induction in 3- to 9-Year-Old Children
ERIC Educational Resources Information Center
Badger, Julia R.; Shapiro, Laura R.
2012-01-01
We examined whether inductive reasoning development is better characterized by accounts assuming an early category bias versus an early perceptual bias. We trained 264 children aged 3 to 9 years to categorize novel insects using a rule that directly pitted category membership against appearance. This was followed by an induction task with…
ERIC Educational Resources Information Center
Ricker, Ashley A.; Corley, Robin; DeFries, John C.; Wadsworth, Sally J.; Reynolds, Chandra A.
2018-01-01
The present study prospectively evaluated cumulative early life perceived stress in relation to differential change in memory and perceptual speed from middle childhood to early adulthood. We aimed to identify periods of cognitive development susceptible to the effects of perceived stress among both adopted and nonadopted individuals. The sample…
Boehm, Ilka; Finke, Beatrice; Tam, Friederike I; Fittig, Eike; Scholz, Michael; Gantchev, Krassimir; Roessner, Veit; Ehrlich, Stefan
2016-12-01
Anorexia nervosa (AN), a severe mental disorder with an onset during adolescence, has been found to be difficult to treat. Identifying variables that predict long-term outcome may help to develop better treatment strategies. Since body image distortion and weight gain are central elements of diagnosis and treatment of AN, the current study investigated perceptual body image distortion, defined as the accuracy of evaluating one's own perceived body size in relation to the actual body size, as well as total and early weight gain during inpatient treatment as predictors for long-term outcome in a sample of 76 female adolescent AN patients. Long-term outcome was defined by physical, psychological and psychosocial adjustment using the Morgan-Russell outcome assessment schedule as well as by the mere physical outcome consisting of menses and/or BMI approximately 3 years after treatment. Perceptual body image distortion and early weight gain predicted long-term outcome (explained variance 13.3 %), but not the physical outcome alone. This study provides first evidence for an association of perceptual body image distortion with long-term outcome of adolescent anorexia nervosa and underlines the importance of sufficient early weight gain.
Carlson, Matthew T
2018-04-01
Language-specific restrictions on sound sequences in words can lead to automatic perceptual repair of illicit sound sequences. As an example, no Spanish words begin with /s/-consonant sequences ([#sC]), and where necessary (e.g., foreign loanwords) [#sC] is repaired by inserting an initial [e], (e.g. foreign loanwords, cf., esnob, from English snob). As a result, Spanish speakers tend to perceive an illusory [e] before [#sC] sequences. Interestingly, this perceptual illusion is weaker in early Spanish-English bilinguals, whose other language, English, allows [#sC]. The present study explored whether this apparent influence of the English language on Spanish is restricted to early bilinguals, whose early language experience includes a mixture of both languages, or whether later learning of second language (L2) English can also induce a weakening of the first language (L1) perceptual illusion. Two groups of late Spanish-English bilinguals, immersed in Spanish or English, were tested on the same Spanish AX (same-different) discrimination task used in a study by Carlson et al., (2016) and their results compared with the Spanish monolinguals from Carlson et al.'s study. Like early bilinguals, late bilinguals exhibited a reduced impact of perceptual prothesis on discrimination accuracy. Additionally, late bilinguals, particularly in English immersion, were slowest when responding against the Spanish perceptual illusion. Robust L1 perceptual illusions thus appear to be malleable in the face of later L2 learning. It is argued that these results are consonant with the need for late bilinguals to navigate alternative, conflicting representations of the same acoustic material, even in unilingual L1 speech perception tasks.
Effects of linguistic experience on early levels of perceptual tone processing
NASA Astrophysics Data System (ADS)
Huang, Tsan; Johnson, Keith
2005-04-01
This study investigated the phenomenon of language-specificity in Mandarin Chinese tone perception. The main question was whether linguistic experience affects the earliest levels of perceptual processing of tones. Chinese and American English listeners participated in four perception experiments, which involved short inter-stimulus intervals (300 ms or 100 ms) and an AX discrimination or AX degree-of-difference rating task. Three experiments used natural speech monosyllabic tone stimuli and one experiment used time-varying sinusoidal simulations of Mandarin tones. AE listeners showed psychoacoustic listening in all experiments, paying much attention to onset and offset pitch. Chinese listeners showed language-specific patterns in all experiments to various degrees, where tonal neutralization rules reduced perceptual distance between two otherwise contrastive tones for Chinese listeners. Since these experiments employed procedures hypothesized to tap the auditory trace mode (Pisoni, Percept. Psychophys. 13, 253-260 (1973)], language-specificity found in this study seems to support the proposal of an auditory cortical map [Guenther et al., J. Acoust. Soc. Am. 23, 213-221 (1999)]. But the model needs refining to account for different degrees of language-specificity, which are better handled by Johnsons (2004, TLS03:26-41) lexical distance model, although the latter model is too rigid in assuming that linguistic experience does not affect low-level perceptual tasks such as AX discrimination with short ISIs.
The development of perceptual attention and articulatory skill in one or two languages
NASA Astrophysics Data System (ADS)
Fowler, Carol; Best, Catherine
2002-05-01
Infants acquire properties of their native language especially during the second half of the first year of life. Models, such as Jusczyk's WRAPSA, Best's PAM, Kuhl's NLM, and Werker's account describe changes in perceptual or attentional space that may underlie the perceptual changes that infants exhibit. Unknown is the relation of these changes to changes in speechlike vocalizations that occur at the same time. Future research should address whether the perceptual models predict production learning. Other issues concern how the perceptual and articulatory systems develop for infants exposed to more than one language. Do multiple perceptual spaces develop, or does one space accommodate both languages? For infants exposed to just one language, but living in an environment where the ambient and pedagogical language is different (say, infants in a monolingual Spanish home in the U.S.), early language learning fosters learning the native language, but it may impede learning the ambient language. How much or how little does early exposure to the ambient language allow development of perceptual and articulatory systems for the ambient language? A final issue addresses whether the emergence of lexical, morphological and/or syntactic abilities in the second year is related to further changes in speech perception and production. [Work supported by NICHD.
ERIC Educational Resources Information Center
Passig, David; Schwartz, Timor
2014-01-01
Background: The ability to think analogically is central to the process of learning and understanding reality and there is a broad consensus among researchers that we can improve this ability. Immigrants who have emigrated from developing to developed countries tend to experience tremendous challenges in their early years as immigrants. Their…
Mihalas, Stefan; Dong, Yi; von der Heydt, Rüdiger; Niebur, Ernst
2011-01-01
Visual attention is often understood as a modulatory field acting at early stages of processing, but the mechanisms that direct and fit the field to the attended object are not known. We show that a purely spatial attention field propagating downward in the neuronal network responsible for perceptual organization will be reshaped, repositioned, and sharpened to match the object's shape and scale. Key features of the model are grouping neurons integrating local features into coherent tentative objects, excitatory feedback to the same local feature neurons that caused grouping neuron activation, and inhibition between incompatible interpretations both at the local feature level and at the object representation level. PMID:21502489
Howe, Tsu-Hsin; Chen, Hao-Ling; Lee, Candy Chieh; Chen, Ying-Dar; Wang, Tien-Ni
2017-10-01
Visual perceptual motor skills have been proposed as underlying courses of handwriting difficulties. However, there is no evaluation tool currently available to assess these skills comprehensively and to serve as a sensitive measure. The purpose of this study was to validate the Computerized Perceptual Motor Skills Assessment (CPMSA), a newly developed evaluation tool for children in early elementary grades. Its test-retest reliability, concurrent validity, discriminant validity, and responsiveness were examined in 43 typically developing children and 26 children with handwriting difficulty. The CPMSA demonstrated excellent reliability across all subtests with intra-class correlation coefficients (ICCs)≥0.80. Significant moderate correlations between the domains of the CPMSA and corresponding gold standards including Beery VMI, the TVPS-3, and the eye-hand coordination subtest of the DTVP-2 demonstrated good concurrent validity. In addition, the CPMSA showed evidence of discriminant validity in samples of children with and without handwriting difficulty. This article provides evidence in support of the CPMSA. The CPMSA is a reliable, valid, and promising measure of visual perceptual motor skills for children in early elementary grades. Directions for future study and improvements to the assessment are discussed. Copyright © 2017. Published by Elsevier Ltd.
Perceptual organization and visual attention.
Kimchi, Ruth
2009-01-01
Perceptual organization--the processes structuring visual information into coherent units--and visual attention--the processes by which some visual information in a scene is selected--are crucial for the perception of our visual environment and to visuomotor behavior. Recent research points to important relations between attentional and organizational processes. Several studies demonstrated that perceptual organization constrains attentional selectivity, and other studies suggest that attention can also constrain perceptual organization. In this chapter I focus on two aspects of the relationship between perceptual organization and attention. The first addresses the question of whether or not perceptual organization can take place without attention. I present findings demonstrating that some forms of grouping and figure-ground segmentation can occur without attention, whereas others require controlled attentional processing, depending on the processes involved and the conditions prevailing for each process. These findings challenge the traditional view, which assumes that perceptual organization is a unitary entity that operates preattentively. The second issue addresses the question of whether perceptual organization can affect the automatic deployment of attention. I present findings showing that the mere organization of some elements in the visual field by Gestalt factors into a coherent perceptual unit (an "object"), with no abrupt onset or any other unique transient, can capture attention automatically in a stimulus-driven manner. Taken together, the findings discussed in this chapter demonstrate the multifaceted, interactive relations between perceptual organization and visual attention.
He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna
2014-04-01
Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.
Reber, Rolf; Wurtz, Pascal; Zimmermann, Thomas D
2004-03-01
Perceptual fluency is the subjective experience of ease with which an incoming stimulus is processed. Although perceptual fluency is assessed by speed of processing, it remains unclear how objective speed is related to subjective experiences of fluency. We present evidence that speed at different stages of the perceptual process contributes to perceptual fluency. In an experiment, figure-ground contrast influenced detection of briefly presented words, but not their identification at longer exposure durations. Conversely, font in which the word was written influenced identification, but not detection. Both contrast and font influenced subjective fluency. These findings suggest that speed of processing at different stages condensed into a unified subjective experience of perceptual fluency.
Visual Perceptual Learning and Models.
Dosher, Barbara; Lu, Zhong-Lin
2017-09-15
Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.
Brandone, Amanda C; Pence, Khara L; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy
2007-01-01
This paper explores how children use two possible solutions to the verb-mapping problem: attention to perceptually salient actions and attention to social and linguistic information (speaker cues). Twenty-two-month-olds attached a verb to one of two actions when perceptual cues (presence/absence of a result) coincided with speaker cues but not when these cues were placed into conflict (Experiment 1), and not when both possible referent actions were perceptually salient (Experiment 2). By 34 months, children were able to override perceptual cues to learn the name of an action that was not perceptually salient (Experiment 3). Results demonstrate an early reliance on perceptual information for verb mapping and an emerging tendency to weight speaker information more heavily over developmental time.
Training directionally selective motion pathways can significantly improve reading efficiency
NASA Astrophysics Data System (ADS)
Lawton, Teri
2004-06-01
This study examined whether perceptual learning at early levels of visual processing would facilitate learning at higher levels of processing. This was examined by determining whether training the motion pathways by practicing leftright movement discrimination, as found previously, would improve the reading skills of inefficient readers significantly more than another computer game, a word discrimination game, or the reading program offered by the school. This controlled validation study found that practicing left-right movement discrimination 5-10 minutes twice a week (rapidly) for 15 weeks doubled reading fluency, and significantly improved all reading skills by more than one grade level, whereas inefficient readers in the control groups barely improved on these reading skills. In contrast to previous studies of perceptual learning, these experiments show that perceptual learning of direction discrimination significantly improved reading skills determined at higher levels of cognitive processing, thereby being generalized to a new task. The deficits in reading performance and attentional focus experienced by the person who struggles when reading are suggested to result from an information overload, resulting from timing deficits in the direction-selectivity network proposed by Russell De Valois et al. (2000), that following practice on direction discrimination goes away. This study found that practicing direction discrimination rapidly transitions the inefficient 7-year-old reader to an efficient reader.
Perceived visual speed constrained by image segmentation
NASA Technical Reports Server (NTRS)
Verghese, P.; Stone, L. S.
1996-01-01
Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.
Intermittent regime of brain activity at the early, bias-guided stage of perceptual learning.
Nikolaev, Andrey R; Gepshtein, Sergei; van Leeuwen, Cees
2016-11-01
Perceptual learning improves visual performance. Among the plausible mechanisms of learning, reduction of perceptual bias has been studied the least. Perceptual bias may compensate for lack of stimulus information, but excessive reliance on bias diminishes visual discriminability. We investigated the time course of bias in a perceptual grouping task and studied the associated cortical dynamics in spontaneous and evoked EEG. Participants reported the perceived orientation of dot groupings in ambiguous dot lattices. Performance improved over a 1-hr period as indicated by the proportion of trials in which participants preferred dot groupings favored by dot proximity. The proximity-based responses were compromised by perceptual bias: Vertical groupings were sometimes preferred to horizontal ones, independent of dot proximity. In the evoked EEG activity, greater amplitude of the N1 component for horizontal than vertical responses indicated that the bias was most prominent in conditions of reduced visual discriminability. The prominence of bias decreased in the course of the experiment. Although the bias was still prominent, prestimulus activity was characterized by an intermittent regime of alternating modes of low and high alpha power. Responses were more biased in the former mode, indicating that perceptual bias was deployed actively to compensate for stimulus uncertainty. Thus, early stages of perceptual learning were characterized by episodes of greater reliance on prior visual preferences, alternating with episodes of receptivity to stimulus information. In the course of learning, the former episodes disappeared, and biases reappeared only infrequently.
Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing
Schneck, Noam
2017-01-01
Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain–network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal “late” regions on perceptual processes occurring in “early” perceptual regions. SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious—e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions. PMID:29118108
Couperus, J W
2010-11-26
This study explored effects of perceptual load on stimulus processing in the presence and absence of an attended stimulus. Participants were presented with a bilateral or unilateral display and asked to perform a discrimination task at either low or high perceptual load. Electrophysiological responses to stimuli were then compared at the P100 and N100. As in previous studies, perceptual load modified processing of attended and unattended stimuli seen at occipital scalp sites. Moreover, perceptual load modulated attention effects when the attended stimulus was presented at high perceptual load for unilateral displays. However, this was not true when the attended and unattended stimulus appeared simultaneously in bilateral displays. Instead, only a main effect of perceptual load was found. Reductions in processing contralateral to the unattended stimulus at the N100 provide support for Lavie's (1995) theory of selective attention. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Perceptual Filtering in L2 Lexical Memory: A Neural Network Approach to Second Language Acquisition
ERIC Educational Resources Information Center
Nelson, Robert
2012-01-01
A number of asymmetries in lexical memory emerge when monolinguals and early bilinguals are compared to (relatively) late second language (L2) learners. Their study promises to provide insight into the internal processes that both support and ultimately limit L2 learner achievement. Generally, theory building in L2 and bilingual lexical memory has…
ERIC Educational Resources Information Center
Crookes, Kate; McKone, Elinor
2009-01-01
Historically, it was believed the perceptual mechanisms involved in individuating faces developed only very slowly over the course of childhood, and that adult levels of expertise were not reached until well into adolescence. Over the last 10 years, there has been some erosion of this view by demonstrations that all adult-like behavioural…
Finding the Balance between Process and Product through Perceptual Lesson Planning
ERIC Educational Resources Information Center
Uhrmacher, P. Bruce; Conrad, Bradley M.; Moroye, Christy M.
2013-01-01
Background/Context: Lesson planning is one of the most common activities required of teachers; however, since the late 1970s and early 1980s, it has not been a major focus of study, either conceptually or empirically. Although there are recent articles on the topic, much of the current work is specific to examining a particular teaching method or…
Qian, Miao K; Quinn, Paul C; Heyman, Gail D; Pascalis, Olivier; Fu, Genyue; Lee, Kang
2017-10-12
This study tracked the long-term effect of perceptual individuation training on reducing 5-year-old Chinese children's (N = 95, M age = 5.64 years) implicit pro-Asian/anti-Black racial bias. Initial training to individuate other-race Black faces, followed by supplementary training occurring 1 week later, resulted in a long-term reduction of pro-Asian/anti-Black bias (70 days). In contrast, training Chinese children to recognize White or Asian faces had no effect on pro-Asian/anti-Black bias. Theoretically, the finding that individuation training can have a long-term effect on reducing implicit racial bias in preschoolers suggests that a developmentally early causal linkage between perceptual and social processing of faces is not a transitory phenomenon. Practically, the data point to an effective intervention method for reducing implicit racism in young children. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Visual attention and the apprehension of spatial relations: the case of depth.
Moore, C M; Elsinger, C L; Lleras, A
2001-05-01
Several studies have shown that targets defined on the basis of the spatial relations between objects yield highly inefficient visual search performance (e.g., Logan, 1994; Palmer, 1994), suggesting that the apprehension of spatial relations may require the selective allocation of attention within the scene. In the present study, we tested the hypothesis that depth relations might be different in this regard and might support efficient visual search. This hypothesis was based, in part, on the fact that many perceptual organization processes that are believed to occur early and in parallel, such as figure-ground segregation and perceptual completion, seem to depend on the assignment of depth relations. Despite this, however, using increasingly salient cues to depth (Experiments 2-4) and including a separate test of the sufficiency of the most salient depth cue used (Experiment 5), no evidence was found to indicate that search for a target defined by depth relations is any different than search for a target defined by other types of spatial relations, with regard to efficiency of search. These findings are discussed within the context of the larger literature on early processing of three-dimensional characteristics of visual scenes.
Mermillod, Martial; Grynberg, Delphine; Pio-Lopez, Léo; Rychlowska, Magdalena; Beffara, Brice; Harquel, Sylvain; Vermeulen, Nicolas; Niedenthal, Paula M.; Dutheil, Frédéric; Droit-Volet, Sylvie
2018-01-01
Recent research suggests that conceptual or emotional factors could influence the perceptual processing of stimuli. In this article, we aimed to evaluate the effect of social information (positive, negative, or no information related to the character of the target) on subjective (perceived and felt valence and arousal), physiological (facial mimicry) as well as on neural (P100 and N170) responses to dynamic emotional facial expressions (EFE) that varied from neutral to one of the six basic emotions. Across three studies, the results showed reduced ratings of valence and arousal of EFE associated with incongruent social information (Study 1), increased electromyographical responses (Study 2), and significant modulation of P100 and N170 components (Study 3) when EFE were associated with social (positive and negative) information (vs. no information). These studies revealed that positive or negative social information reduces subjective responses to incongruent EFE and produces a similar neural and physiological boost of the early perceptual processing of EFE irrespective of their congruency. In conclusion, the article suggests that the presence of positive or negative social context modulates early physiological and neural activity preceding subsequent behavior. PMID:29375330
Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections.
Sporns, O; Tononi, G; Edelman, G M
1991-01-01
The segmentation of visual scenes is a fundamental process of early vision, but the underlying neural mechanisms are still largely unknown. Theoretical considerations as well as neurophysiological findings point to the importance in such processes of temporal correlations in neuronal activity. In a previous model, we showed that reentrant signaling among rhythmically active neuronal groups can correlate responses along spatially extended contours. We now have modified and extended this model to address the problems of perceptual grouping and figure-ground segregation in vision. A novel feature is that the efficacy of the connections is allowed to change on a fast time scale. This results in active reentrant connections that amplify the correlations among neuronal groups. The responses of the model are able to link the elements corresponding to a coherent figure and to segregate them from the background or from another figure in a way that is consistent with the so-called Gestalt laws.
Modeling Perceptual Grouping and Figure-Ground Segregation by Means of Active Reentrant Connections
NASA Astrophysics Data System (ADS)
Sporns, Olaf; Tononi, Giulio; Edelman, Gerald M.
1991-01-01
The segmentation of visual scenes is a fundamental process of early vision, but the underlying neural mechanisms are still largely unknown. Theoretical considerations as well as neurophysiological findings point to the importance in such processes of temporal correlations in neuronal activity. In a previous model, we showed that reentrant signaling among rhythmically active neuronal groups can correlate responses along spatially extended contours. We now have modified and extended this model to address the problems of perceptual grouping and figure-ground segregation in vision. A novel feature is that the efficacy of the connections is allowed to change on a fast time scale. This results in active reentrant connections that amplify the correlations among neuronal groups. The responses of the model are able to link the elements corresponding to a coherent figure and to segregate them from the background or from another figure in a way that is consistent with the so-called Gestalt laws.
Building phonetic categories: an argument for the role of sleep
Earle, F. Sayako; Myers, Emily B.
2014-01-01
The current review provides specific predictions for the role of sleep-mediated memory consolidation in the formation of new speech sound representations. Specifically, this discussion will highlight selected literature on the different ideas concerning category representation in speech, followed by a broad overview of memory consolidation and how it relates to human behavior, as relevant to speech/perceptual learning. In combining behavioral and physiological accounts from animal models with insights from the human consolidation literature on auditory skill/word learning, we are in the early stages of understanding how the transfer of experiential information between brain structures during sleep manifests in changes to online perception. Arriving at the conclusion that this process is crucial in perceptual learning and the formation of novel categories, further speculation yields the adjacent claim that the habitual disruption in this process leads to impoverished quality in the representation of speech sounds. PMID:25477828
Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real
Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin
2014-01-01
The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481
Action Intentions Modulate Allocation of Visual Attention: Electrophysiological Evidence
Wykowska, Agnieszka; Schubö, Anna
2012-01-01
In line with the Theory of Event Coding (Hommel et al., 2001), action planning has been shown to affect perceptual processing – an effect that has been attributed to a so-called intentional weighting mechanism (Wykowska et al., 2009; Hommel, 2010). This paper investigates the electrophysiological correlates of action-related modulations of selection mechanisms in visual perception. A paradigm combining a visual search task for size and luminance targets with a movement task (grasping or pointing) was introduced, and the EEG was recorded while participants were performing the tasks. The results showed that the behavioral congruency effects, i.e., better performance in congruent (relative to incongruent) action-perception trials have been reflected by a modulation of the P1 component as well as the N2pc (an ERP marker of spatial attention). These results support the argumentation that action planning modulates already early perceptual processing and attention mechanisms. PMID:23060841
Differential temporal dynamics during visual imagery and perception.
Dijkstra, Nadine; Mostert, Pim; Lange, Floris P de; Bosch, Sander; van Gerven, Marcel Aj
2018-05-29
Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery. © 2018, Dijkstra et al.
Auditory cortical processing in real-world listening: the auditory system going real.
Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin
2014-11-12
The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.
Reward speeds up and increases consistency of visual selective attention: a lifespan comparison.
Störmer, Viola; Eppinger, Ben; Li, Shu-Chen
2014-06-01
Children and older adults often show less favorable reward-based learning and decision making, relative to younger adults. It is unknown, however, whether reward-based processes that influence relatively early perceptual and attentional processes show similar lifespan differences. In this study, we investigated whether stimulus-reward associations affect selective visual attention differently across the human lifespan. Children, adolescents, younger adults, and older adults performed a visual search task in which the target colors were associated with either high or low monetary rewards. We discovered that high reward value speeded up response times across all four age groups, indicating that reward modulates attentional selection across the lifespan. This speed-up in response time was largest in younger adults, relative to the other three age groups. Furthermore, only younger adults benefited from high reward value in increasing response consistency (i.e., reduction of trial-by-trial reaction time variability). Our findings suggest that reward-based modulations of relatively early and implicit perceptual and attentional processes are operative across the lifespan, and the effects appear to be greater in adulthood. The age-specific effect of reward on reducing intraindividual response variability in younger adults likely reflects mechanisms underlying the development and aging of reward processing, such as lifespan age differences in the efficacy of dopaminergic modulation. Overall, the present results indicate that reward shapes visual perception across different age groups by biasing attention to motivationally salient events.
Lambert, Anthony J; Wootton, Adrienne
2017-08-01
Different patterns of high density EEG activity were elicited by the same peripheral stimuli, in the context of Landmark Cueing and Perceptual Discrimination tasks. The C1 component of the visual event-related potential (ERP) at parietal - occipital electrode sites was larger in the Landmark Cueing task, and source localisation suggested greater activation in the superior parietal lobule (SPL) in this task, compared to the Perceptual Discrimination task, indicating stronger early recruitment of the dorsal visual stream. In the Perceptual Discrimination task, source localisation suggested widespread activation of the inferior temporal gyrus (ITG) and fusiform gyrus (FFG), structures associated with the ventral visual stream, during the early phase of the P1 ERP component. Moreover, during a later epoch (171-270ms after stimulus onset) increased temporal-occipital negativity, and stronger recruitment of ITG and FFG were observed in the Perceptual Discrimination task. These findings illuminate the contrasting functions of the dorsal and ventral visual streams, to support rapid shifts of attention in response to contextual landmarks, and conscious discrimination, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Serial grouping of 2D-image regions with object-based attention in humans.
Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R
2016-06-13
After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.
De Sanctis, Pierfilippo; Katz, Richard; Wylie, Glenn R; Sehatpour, Pejman; Alexopoulos, George S; Foxe, John J
2008-10-01
Evidence has emerged for age-related amplification of basic sensory processing indexed by early components of the visual evoked potential (VEP). However, since these age-related effects have been incidental to the main focus of these studies, it is unclear whether they are performance dependent or alternately, represent intrinsic sensory processing changes. High-density VEPs were acquired from 19 healthy elderly and 15 young control participants who viewed alphanumeric stimuli in the absence of any active task. The data show both enhanced and delayed neural responses within structures of the ventral visual stream, with reduced hemispheric asymmetry in the elderly that may be indicative of a decline in hemispheric specialization. Additionally, considerably enhanced early frontal cortical activation was observed in the elderly, suggesting frontal hyper-activation. These age-related differences in early sensory processing are discussed in terms of recent proposals that normal aging involves large-scale compensatory reorganization. Our results suggest that such compensatory mechanisms are not restricted to later higher-order cognitive processes but may also be a feature of early sensory-perceptual processes.
Furley, Philip; Memmert, Daniel; Schmid, Simone
2013-03-01
In two experiments, we transferred perceptual load theory to the dynamic field of team sports and tested the predictions derived from the theory using a novel task and stimuli. We tested a group of college students (N = 33) and a group of expert team sport players (N = 32) on a general perceptual load task and a complex, soccer-specific perceptual load task in order to extend the understanding of the applicability of perceptual load theory and further investigate whether distractor interference may differ between the groups, as the sport-specific processing task may not exhaust the processing capacity of the expert participants. In both, the general and the specific task, the pattern of results supported perceptual load theory and demonstrates that the predictions of the theory also transfer to more complex, unstructured situations. Further, perceptual load was the only determinant of distractor processing, as we neither found expertise effects in the general perceptual load task nor the sport-specific task. We discuss the heuristic utility of using response-competition paradigms for studying both general and domain-specific perceptual-cognitive adaptations.
Associative (prosop)agnosia without (apparent) perceptual deficits: a case-study.
Anaki, David; Kaufman, Yakir; Freedman, Morris; Moscovitch, Morris
2007-04-09
In associative agnosia early perceptual processing of faces or objects are considered to be intact, while the ability to access stored semantic information about the individual face or object is impaired. Recent claims, however, have asserted that associative agnosia is also characterized by deficits at the perceptual level, which are too subtle to be detected by current neuropsychological tests. Thus, the impaired identification of famous faces or common objects in associative agnosia stems from difficulties in extracting the minute perceptual details required to identify a face or an object. In the present study, we report the case of a patient DBO with a left occipital infarct, who shows impaired object and famous face recognition. Despite his disability, he exhibits a face inversion effect, and is able to select a famous face from among non-famous distractors. In addition, his performance is normal in an immediate and delayed recognition memory for faces, whose external features were deleted. His deficits in face recognition are apparent only when he is required to name a famous face, or select two faces from among a triad of famous figures based on their semantic relationships (a task which does not require access to names). The nature of his deficits in object perception and recognition are similar to his impairments in the face domain. This pattern of behavior supports the notion that apperceptive and associative agnosia reflect distinct and dissociated deficits, which result from damage to different stages of the face and object recognition process.
Social contact and other-race face processing in the human brain
Silvert, Laetitia; Hewstone, Miles; Nobre, Anna C.
2008-01-01
The present study investigated the influence social factors upon the neural processing of faces of other races using event-related potentials. A multi-tiered approach was used to identify face-specific stages of processing, to test for effects of race-of-face upon processing at these stages and to evaluate the impact of social contact and individuating experience upon these effects. The results showed that race-of-face has significant effects upon face processing, starting from early perceptual stages of structural encoding, and that social factors may play an important role in mediating these effects. PMID:19015091
Gorlick, Marissa A.; Mather, Mara
2012-01-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigated whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural/man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, and size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic/perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. PMID:22142207
Sakaki, Michiko; Gorlick, Marissa A; Mather, Mara
2011-12-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. (c) 2011 APA, all rights reserved.
The impact of memory load and perceptual cues on puzzle learning by 24-month olds.
Barr, Rachel; Moser, Alecia; Rusnak, Sylvia; Zimmermann, Laura; Dickerson, Kelly; Lee, Herietta; Gerhardstein, Peter
2016-11-01
Early childhood is characterized by memory capacity limitations and rapid perceptual and motor development [Rovee-Collier (1996). Infant Behavior & Development, 19, 385-400]. The present study examined 2-year olds' reproduction of a sliding action to complete an abstract fish puzzle under different levels of memory load and perceptual feature support. Experimental groups were compared to baseline controls to assess spontaneous rates of production of the target actions; baseline production was low across all experiments. Memory load was manipulated in Exp. 1 by adding pieces to the puzzle, increasing sequence length from 2 to 3 items, and to 3 items plus a distractor. Although memory load did not influence how toddlers learned to manipulate the puzzle pieces, it did influence toddlers' achievement of the goal-constructing the fish. Overall, girls were better at constructing the puzzle than boys. In Exp. 2, the perceptual features of the puzzle were altered by changing shape boundaries to create a two-piece horizontally cut puzzle (displaying bilateral symmetry), and by adding a semantically supportive context to the vertically cut puzzle (iconic). Toddlers were able to achieve the goal of building the fish equally well across the 2-item puzzle types (bilateral symmetry, vertical, iconic), but how they learned to manipulate the puzzle pieces varied as a function of the perceptual features. Here, as in Exp. 1, girls showed a different pattern of performance from the boys. This study demonstrates that changes in memory capacity and perceptual processing influence both goal-directed imitation learning and motoric performance. © 2016 Wiley Periodicals, Inc.
Enhanced Perceptual Processing of Speech in Autism
ERIC Educational Resources Information Center
Jarvinen-Pasley, Anna; Wallace, Gregory L.; Ramus, Franck; Happe, Francesca; Heaton, Pamela
2008-01-01
Theories of autism have proposed that a bias towards low-level perceptual information, or a featural/surface-biased information-processing style, may compromise higher-level language processing in such individuals. Two experiments, utilizing linguistic stimuli with competing low-level/perceptual and high-level/semantic information, tested…
Interplay Between the Object and Its Symbol: The Size-Congruency Effect
Shen, Manqiong; Xie, Jiushu; Liu, Wenjuan; Lin, Wenjie; Chen, Zhuoming; Marmolejo-Ramos, Fernando; Wang, Ruiming
2016-01-01
Grounded cognition suggests that conceptual processing shares cognitive resources with perceptual processing. Hence, conceptual processing should be affected by perceptual processing, and vice versa. The current study explored the relationship between conceptual and perceptual processing of size. Within a pair of words, we manipulated the font size of each word, which was either congruent or incongruent with the actual size of the referred object. In Experiment 1a, participants compared object sizes that were referred to by word pairs. Higher accuracy was observed in the congruent condition (e.g., word pairs referring to larger objects in larger font sizes) than in the incongruent condition. This is known as the size-congruency effect. In Experiments 1b and 2, participants compared the font sizes of these word pairs. The size-congruency effect was not observed. In Experiments 3a and 3b, participants compared object and font sizes of word pairs depending on a task cue. Results showed that perceptual processing affected conceptual processing, and vice versa. This suggested that the association between conceptual and perceptual processes may be bidirectional but further modulated by semantic processing. Specifically, conceptual processing might only affect perceptual processing when semantic information is activated. The current study PMID:27512529
Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto
2014-01-01
A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867
Parks, Colleen M
2013-07-01
Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which suggest that the extent to which perceptual fluency matters on a recognition test depends in large part on the task demands. A test that recruits perceptual processing for discrimination should show greater perceptual effects and smaller conceptual effects than standard recognition, similar to the pattern of effects found in perceptual implicit memory tasks. This idea was tested in the current experiment by crossing a levels of processing manipulation with a modality manipulation on a series of recognition tests that ranged from conceptual (standard recognition) to very perceptually demanding (a speeded recognition test with degraded stimuli). Results showed that the levels of processing effect decreased and the effect of modality increased when tests were made perceptually demanding. These results support the idea that surface-level features influence performance on recognition tests when they are made salient by the task demands. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Perceptual processing during trauma, priming and the development of intrusive memories
Sündermann, Oliver; Hauschildt, Marit; Ehlers, Anke
2013-01-01
Background Intrusive reexperiencing in posttraumatic stress disorder (PTSD) is commonly triggered by stimuli with perceptual similarity to those present during the trauma. Information processing theories suggest that perceptual processing during the trauma and enhanced perceptual priming contribute to the easy triggering of intrusive memories by these cues. Methods Healthy volunteers (N = 51) watched neutral and trauma picture stories on a computer screen. Neutral objects that were unrelated to the content of the stories briefly appeared in the interval between the pictures. Dissociation and data-driven processing (as indicators of perceptual processing) and state anxiety during the stories were assessed with self-report questionnaires. After filler tasks, participants completed a blurred object identification task to assess priming and a recognition memory task. Intrusive memories were assessed with telephone interviews 2 weeks and 3 months later. Results Neutral objects were more strongly primed if they occurred in the context of trauma stories than if they occurred during neutral stories, although the effect size was only moderate (ηp2=.08) and only significant when trauma stories were presented first. Regardless of story order, enhanced perceptual priming predicted intrusive memories at 2-week follow-up (N = 51), but not at 3 months (n = 40). Data-driven processing, dissociation and anxiety increases during the trauma stories also predicted intrusive memories. Enhanced perceptual priming and data-driven processing were associated with lower verbal intelligence. Limitations It is unclear to what extent these findings generalize to real-life traumatic events and whether they are specific to negative emotional events. Conclusions The results provide some support for the role of perceptual processing and perceptual priming in reexperiencing symptoms. PMID:23207970
Ren, Xuezhu; Altmeyer, Michael; Reiss, Siegbert; Schweizer, Karl
2013-02-01
Perceptual attention and executive attention represent two higher-order types of attention and associate with distinctly different ways of information processing. It is hypothesized that these two types of attention implicate different cognitive processes, which are assumed to account for the differential effects of perceptual attention and executive attention on fluid intelligence. Specifically, an encoding process is assumed to be crucial in completing the tasks of perceptual attention while two executive processes, updating and shifting, are stimulated in completing the tasks of executive attention. The proposed hypothesis was tested by means of an integrative approach combining experimental manipulations and psychometric modeling. In a sample of 210 participants the encoding process has proven indispensable in completing the tasks of perceptual attention, and this process accounted for a considerable part of fluid intelligence that was assessed by two figural reasoning tests. In contrast, the two executive processes, updating and shifting, turned out to be necessary in performance according to the tasks of executive attention and these processes accounted for a larger part of the variance in fluid intelligence than that of the processes underlying perceptual attention. Copyright © 2012 Elsevier B.V. All rights reserved.
Is auditory perceptual timing a core deficit of developmental coordination disorder?
Trainor, Laurel J; Chang, Andrew; Cairney, John; Li, Yao-Chuen
2018-05-09
Time is an essential dimension for perceiving and processing auditory events, and for planning and producing motor behaviors. Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting 5-6% of children that is characterized by deficits in motor skills. Studies show that children with DCD have motor timing and sensorimotor timing deficits. We suggest that auditory perceptual timing deficits may also be core characteristics of DCD. This idea is consistent with evidence from several domains, (1) motor-related brain regions are often involved in auditory timing process; (2) DCD has high comorbidity with dyslexia and attention deficit hyperactivity, which are known to be associated with auditory timing deficits; (3) a few studies report deficits in auditory-motor timing among children with DCD; and (4) our preliminary behavioral and neuroimaging results show that children with DCD at age 6 and 7 have deficits in auditory time discrimination compared to typically developing children. We propose directions for investigating auditory perceptual timing processing in DCD that use various behavioral and neuroimaging approaches. From a clinical perspective, research findings can potentially benefit our understanding of the etiology of DCD, identify early biomarkers of DCD, and can be used to develop evidence-based interventions for DCD involving auditory-motor training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.
Cognitive penetration of early vision in face perception.
Cecchi, Ariel S
2018-06-13
Cognitive and affective penetration of perception refers to the influence that higher mental states such as beliefs and emotions have on perceptual systems. Psychological and neuroscientific studies appear to show that these states modulate the visual system at the visuomotor, attentional, and late levels of processing. However, empirical evidence showing that similar consequences occur in early stages of visual processing seems to be scarce. In this paper, I argue that psychological evidence does not seem to be either sufficient or necessary to argue in favour of or against the cognitive penetration of perception in either late or early vision. In order to do that we need to have recourse to brain imaging techniques. Thus, I introduce a neuroscientific study and argue that it seems to provide well-grounded evidence for the cognitive penetration of early vision in face perception. I also examine and reject alternative explanations to my conclusion. Copyright © 2018 Elsevier Inc. All rights reserved.
The Dynamics of Perceptual Learning: An Incremental Reweighting Model
ERIC Educational Resources Information Center
Petrov, Alexander A.; Dosher, Barbara Anne; Lu, Zhong-Lin
2005-01-01
The mechanisms of perceptual learning are analyzed theoretically, probed in an orientation-discrimination experiment involving a novel nonstationary context manipulation, and instantiated in a detailed computational model. Two hypotheses are examined: modification of early cortical representations versus task-specific selective reweighting.…
Perceptual Learning: Use-Dependent Cortical Plasticity.
Li, Wu
2016-10-14
Our perceptual abilities significantly improve with practice. This phenomenon, known as perceptual learning, offers an ideal window for understanding use-dependent changes in the adult brain. Different experimental approaches have revealed a diversity of behavioral and cortical changes associated with perceptual learning, and different interpretations have been given with respect to the cortical loci and neural processes responsible for the learning. Accumulated evidence has begun to put together a coherent picture of the neural substrates underlying perceptual learning. The emerging view is that perceptual learning results from a complex interplay between bottom-up and top-down processes, causing a global reorganization across cortical areas specialized for sensory processing, engaged in top-down attentional control, and involved in perceptual decision making. Future studies should focus on the interactions among cortical areas for a better understanding of the general rules and mechanisms underlying various forms of skill learning.
Dissociation between perceptual processing and priming in long-term lorazepam users.
Giersch, Anne; Vidailhet, Pierre
2006-12-01
Acute effects of lorazepam on visual information processing, perceptual priming and explicit memory are well established. However, visual processing and perceptual priming have rarely been explored in long-term lorazepam users. By exploring these functions it was possible to test the hypothesis that difficulty in processing visual information may lead to deficiencies in perceptual priming. Using a simple blind procedure, we tested explicit memory, perceptual priming and visual perception in 15 long-term lorazepam users and 15 control subjects individually matched according to sex, age and education level. Explicit memory, perceptual priming, and the identification of fragmented pictures were found to be preserved in long-term lorazepam users, contrary to what is usually observed after an acute drug intake. The processing of visual contour, on the other hand, was still significantly impaired. These results suggest that the effects observed on low-level visual perception are independent of the acute deleterious effects of lorazepam on perceptual priming. A comparison of perceptual priming in subjects with low- vs. high-level identification of new fragmented pictures further suggests that the ability to identify fragmented pictures has no influence on priming. Despite the fact that they were treated with relatively low doses and far from peak plasma concentration, it is noteworthy that in long-term users memory was preserved.
Fava, Eswen; Hull, Rachel; Bortfeld, Heather
2014-01-01
Initially, infants are capable of discriminating phonetic contrasts across the world’s languages. Starting between seven and ten months of age, they gradually lose this ability through a process of perceptual narrowing. Although traditionally investigated with isolated speech sounds, such narrowing occurs in a variety of perceptual domains (e.g., faces, visual speech). Thus far, tracking the developmental trajectory of this tuning process has been focused primarily on auditory speech alone, and generally using isolated sounds. But infants learn from speech produced by people talking to them, meaning they learn from a complex audiovisual signal. Here, we use near-infrared spectroscopy to measure blood concentration changes in the bilateral temporal cortices of infants in three different age groups: 3-to-6 months, 7-to-10 months, and 11-to-14-months. Critically, all three groups of infants were tested with continuous audiovisual speech in both their native and another, unfamiliar language. We found that at each age range, infants showed different patterns of cortical activity in response to the native and non-native stimuli. Infants in the youngest group showed bilateral cortical activity that was greater overall in response to non-native relative to native speech; the oldest group showed left lateralized activity in response to native relative to non-native speech. These results highlight perceptual tuning as a dynamic process that happens across modalities and at different levels of stimulus complexity. PMID:25116572
Schmetz, Emilie; Rousselle, Laurence; Ballaz, Cécile; Detraux, Jean-Jacques; Barisnikov, Koviljka
2017-06-20
This study aims to examine the different levels of visual perceptual object recognition (early, intermediate, and late) defined in Humphreys and Riddoch's model as well as basic visual spatial processing in children using a new test battery (BEVPS). It focuses on the age sensitivity, internal coherence, theoretical validity, and convergent validity of this battery. French-speaking, typically developing children (n = 179; 5 to 14 years) were assessed using 15 new computerized subtests. After selecting the most age-sensitive tasks though ceiling effect and correlation analyses, an exploratory factorial analysis was run with the 12 remaining subtests to examine the BEVPS' theoretical validity. Three separate factors were identified for the assessment of the stimuli's basic features (F1, four subtests), view-dependent and -independent object representations (F2, six subtests), and basic visual spatial processing (F3, two subtests). Convergent validity analyses revealed positive correlations between F1 and F2 and the Beery-VMI visual perception subtest, while no such correlations were found for F3. Children's performances progressed until the age of 9-10 years in F1 and in view-independent representations (F2), and until 11-12 years in view-dependent representations (F2). However, no progression with age was observed in F3. Moreover, the selected subtests, present good-to-excellent internal consistency, which indicates that they provide reliable measures for the assessment of visual perceptual processing abilities in children.
The Impact of Meaning and Dimensionality on Copying Accuracy in Individuals with Autism
ERIC Educational Resources Information Center
Sheppard, Elizabeth; Ropar, Danielle; Mitchell, Peter
2007-01-01
Weak Central Coherence (Frith, 1989) predicts that, in autism, perceptual processing is relatively unaffected by conceptual analysis. Enhanced Perceptual Functioning (Mottron & Burack, 2001) predicts that the perceptual processing of those with autism is less influenced by conceptual analysis only when higher-level processing is detrimental to…
Modelling Peri-Perceptual Brain Processes in a Deep Learning Spiking Neural Network Architecture.
Gholami Doborjeh, Zohreh; Kasabov, Nikola; Gholami Doborjeh, Maryam; Sumich, Alexander
2018-06-11
Familiarity of marketing stimuli may affect consumer behaviour at a peri-perceptual processing level. The current study introduces a method for deep learning of electroencephalogram (EEG) data using a spiking neural network (SNN) approach that reveals the complexity of peri-perceptual processes of familiarity. The method is applied to data from 20 participants viewing familiar and unfamiliar logos. The results support the potential of SNN models as novel tools in the exploration of peri-perceptual mechanisms that respond differentially to familiar and unfamiliar stimuli. Specifically, the activation pattern of the time-locked response identified by the proposed SNN model at approximately 200 milliseconds post-stimulus suggests greater connectivity and more widespread dynamic spatio-temporal patterns for familiar than unfamiliar logos. The proposed SNN approach can be applied to study other peri-perceptual or perceptual brain processes in cognitive and computational neuroscience.
Exogenous attention facilitates location transfer of perceptual learning.
Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa
2015-01-01
Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.
Exogenous attention facilitates location transfer of perceptual learning
Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa
2015-01-01
Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity. PMID:26426818
Mevorach, Carmel; Tsal, Yehoshua; Humphreys, Glyn W
2014-01-10
According to perceptual load theory (Lavie, 2005) distractor interference is determined by the availability of attentional resources. If target processing does not exhaust resources (with low perceptual load) distractor processing will take place resulting in interference with a primary task; however, when target processing uses-up attentional capacity (with high perceptual load) interference can be avoided. An alternative account (Tsal and Benoni, 2010a) suggests that perceptual load effects can be based on distractor dilution by the mere presence of additional neutral items in high-load displays so that the effect is not driven by the amount of attention resources required for target processing. Here we tested whether patients with unilateral neglect or extinction would show dilution effects from neutral items in their contralesional (neglected/extinguished) field, even though these items do not impose increased perceptual load on the target and at the same time attract reduced attentional resources compared to stimuli in the ipsilesional field. Thus, such items do not affect the amount of attention resources available for distractor processing. We found that contralesional neutral elements can eliminate distractor interference as strongly as centrally presented ones in neglect/extinction patients, despite contralesional items being less well attended. The data are consistent with an account in terms of perceptual dilution of distracters rather than available resources for distractor processing. We conclude that distractor dilution can underlie the elimination of distractor interference in visual displays.
Conceptual and perceptual encoding instructions differently affect event recall.
García-Bajos, Elvira; Migueles, Malen; Aizpurua, Alaitz
2014-11-01
When recalling an event, people usually retrieve the main facts and a reduced proportion of specific details. The objective of this experiment was to study the effects of conceptually and perceptually driven encoding in the recall of conceptual and perceptual information of an event. The materials selected for the experiment were two movie trailers. To enhance the encoding instructions, after watching the first trailer participants answered conceptual or perceptual questions about the event, while a control group answered general knowledge questions. After watching the second trailer, all of the participants completed a closed-ended recall task consisting of conceptual and perceptual items. Conceptual information was better recalled than perceptual details and participants made more perceptual than conceptual commission errors. Conceptually driven processing enhanced the recall of conceptual information, while perceptually driven processing not only did not improve the recall of descriptive details, but also damaged the standard conceptual/perceptual recall relationship.
Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.
Bidelman, Gavin M; Grall, Jeremy
2014-11-01
Pitch relationships in music are characterized by their degree of consonance, a hierarchical perceptual quality that distinguishes how pleasant musical chords/intervals sound to the ear. The origins of consonance have been debated since the ancient Greeks. To elucidate the neurobiological mechanisms underlying these musical fundamentals, we recorded neuroelectric brain activity while participants listened passively to various chromatic musical intervals (simultaneously sounding pitches) varying in their perceptual pleasantness (i.e., consonance/dissonance). Dichotic presentation eliminated acoustic and peripheral contributions that often confound explanations of consonance. We found that neural representations for pitch in early human auditory cortex code perceptual features of musical consonance and follow a hierarchical organization according to music-theoretic principles. These neural correlates emerge pre-attentively within ~ 150 ms after the onset of pitch, are segregated topographically in superior temporal gyrus with a rightward hemispheric bias, and closely mirror listeners' behavioral valence preferences for the chromatic tone combinations inherent to music. A perceptual-based organization implies that parallel to the phonetic code for speech, elements of music are mapped within early cerebral structures according to higher-order, perceptual principles and the rules of Western harmony rather than simple acoustic attributes. Copyright © 2014 Elsevier Inc. All rights reserved.
Rey, Amandine Eve; Riou, Benoit; Versace, Rémy
2014-01-01
Based on recent behavioral and neuroimaging data suggesting that memory and perception are partially based on the same sensorimotor system, the theoretical aim of the present study was to show that it is difficult to dissociate memory mechanisms from perceptual mechanisms other than on the basis of the presence (perceptual processing) or absence (memory processing) of the characteristics of the objects involved in the processing. In line with this assumption, two experiments using an adaptation of the Ebbinghaus illusion paradigm revealed similar effects irrespective of whether the size difference between the inner circles and the surrounding circles was manipulated perceptually (the size difference was perceptually present, Experiment 1) or merely reactivated in memory (the difference was perceptually absent, Experiment 2).
Seitz, Aaron R
2017-07-10
Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.
Kéri, Szabolcs; Kiss, Imre; Kelemen, Oguz; Benedek, György; Janka, Zoltán
2005-10-01
Schizophrenia is associated with impaired visual information processing. The aim of this study was to investigate the relationship between anomalous perceptual experiences, positive and negative symptoms, perceptual organization, rapid categorization of natural images and magnocellular (M) and parvocellular (P) visual pathway functioning. Thirty-five unmedicated patients with schizophrenia and 20 matched healthy control volunteers participated. Anomalous perceptual experiences were assessed with the Bonn Scale for the Assessment Basic Symptoms (BSABS). General intellectual functions were evaluated with the revised version of the Wechsler Adult Intelligence Scale. The 1-9 version of the Continuous Performance Test (CPT) was used to investigate sustained attention. The following psychophysical tests were used: detection of Gabor patches with collinear and orthogonal flankers (perceptual organization), categorization of briefly presented natural scenes (rapid visual processing), low-contrast and frequency-doubling vernier threshold (M pathway functioning), isoluminant colour vernier threshold and high spatial frequency discrimination (P pathway functioning). The patients with schizophrenia were impaired on test of perceptual organization, rapid visual processing and M pathway functioning. There was a significant correlation between BSABS scores, negative symptoms, perceptual organization, rapid visual processing and M pathway functioning. Positive symptoms, IQ, CPT and P pathway measures did not correlate with these parameters. The best predictor of the BSABS score was the perceptual organization deficit. These results raise the possibility that multiple facets of visual information processing deficits can be explained by M pathway dysfunctions in schizophrenia, resulting in impaired attentional modulation of perceptual organization and of natural image categorization.
Perceptual load manipulation reveals sensitivity of the face-selective N170 to attention.
Mohamed, Tarik N; Neumann, Markus F; Schweinberger, Stefan R
2009-05-27
It has been controversial whether the face-sensitive N170 is affected by selective attention. We manipulated attention sensu Lavie's perceptual load theory to short (200 ms) presentations of task-irrelevant unfamiliar faces or houses, while participants identified superimposed target letters 'X' versus 'N'. These targets were strings of either six identical (low load) or six different letters (high load). Under low load, we found a prominent face-selective N170 response. Under high load, however, we not only observed a dramatic reduction of the face N170 but also an unexpected enhancement of the house N170, such that face selectivity was almost completely lost. We conclude that the early stages of face processing indexed by the N170 strongly depend on selective attention.
Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia
ERIC Educational Resources Information Center
Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue
2011-01-01
Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…
Speech Synthesis Using Perceptually Motivated Features
2012-01-23
with others a few years prior (with the concurrence of the project’s program manager. Willard Larkin). The Perceptual Flow of Phonetic Information and...34The Perceptual Flow of Phonetic Processing," consonant confusion matrices are analyzed for patterns of phonetic-feature decoding errors conditioned...decoding) is also observed. From these conditional probability patterns, it is proposed that they reflect a temporal flow of perceptual processing
Consensus paper: the role of the cerebellum in perceptual processes.
Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A
2015-04-01
Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.
Neurofeedback training of gamma band oscillations improves perceptual processing.
Salari, Neda; Büchel, Christian; Rose, Michael
2014-10-01
In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.
Human body perception and higher-level person perception are dissociated in early development.
Slaughter, Virginia
2011-01-01
Abstract Developmental data support the proposal that human body perceptual processing is distinct from other aspects of person perception. Infants are sensitive to human bodily motion and attribute goals to human arm movements before they demonstrate recognition of human body structure. The developmental data suggest the possibility of bidirectional linkages between EBA- and FBA-mediated representations and these higher-level elements of person perception.
Curby, Kim M; Gauthier, Isabel
2009-06-10
The identification of faces has a temporal advantage over that of other object categories. The orientation-specific nature of this advantage suggests that it stems from our extensive experience and resulting expertise with upright faces. While experts can identify objects faster than novices, it is unclear exactly how the temporal dynamics of identification are changed by expertise and whether the nature of this temporal advantage is similar for face and non-face objects of expertise. Here, we titrated encoding time using a backward-masking paradigm with variable stimulus-mask onset-asynchronies and mapped the resulting effect on recognition for upright and inverted faces (Experiment 1) and for cars among car experts and car novices (Experiment 2). Performance for upright faces and cars among car experts rose above chance between 33 and 70 ms before that for inverted faces or cars among car novices. A shifted exponential function fitted to these data suggested that performance started to rise earlier for experts than for novices, but that additional encoding time increased performance at a similar rate. Experience influences the availability of information early in processing, possibly through the recruitment of more category-selective neurons, while the rate of perceptual processing may be less flexible and limited by inherent physiological constraints.
Palumbo, Letizia; Jellema, Tjeerd
2013-01-01
Emotional facial expressions are immediate indicators of the affective dispositions of others. Recently it has been shown that early stages of social perception can already be influenced by (implicit) attributions made by the observer about the agent's mental state and intentions. In the current study possible mechanisms underpinning distortions in the perception of dynamic, ecologically-valid, facial expressions were explored. In four experiments we examined to what extent basic perceptual processes such as contrast/context effects, adaptation and representational momentum underpinned the perceptual distortions, and to what extent 'emotional anticipation', i.e. the involuntary anticipation of the other's emotional state of mind on the basis of the immediate perceptual history, might have played a role. Neutral facial expressions displayed at the end of short video-clips, in which an initial facial expression of joy or anger gradually morphed into a neutral expression, were misjudged as being slightly angry or slightly happy, respectively (Experiment 1). This response bias disappeared when the actor's identity changed in the final neutral expression (Experiment 2). Videos depicting neutral-to-joy-to-neutral and neutral-to-anger-to-neutral sequences again produced biases but in opposite direction (Experiment 3). The bias survived insertion of a 400 ms blank (Experiment 4). These results suggested that the perceptual distortions were not caused by any of the low-level perceptual mechanisms (adaptation, representational momentum and contrast effects). We speculate that especially when presented with dynamic, facial expressions, perceptual distortions occur that reflect 'emotional anticipation' (a low-level mindreading mechanism), which overrules low-level visual mechanisms. Underpinning neural mechanisms are discussed in relation to the current debate on action and emotion understanding.
Palumbo, Letizia; Jellema, Tjeerd
2013-01-01
Emotional facial expressions are immediate indicators of the affective dispositions of others. Recently it has been shown that early stages of social perception can already be influenced by (implicit) attributions made by the observer about the agent’s mental state and intentions. In the current study possible mechanisms underpinning distortions in the perception of dynamic, ecologically-valid, facial expressions were explored. In four experiments we examined to what extent basic perceptual processes such as contrast/context effects, adaptation and representational momentum underpinned the perceptual distortions, and to what extent ‘emotional anticipation’, i.e. the involuntary anticipation of the other’s emotional state of mind on the basis of the immediate perceptual history, might have played a role. Neutral facial expressions displayed at the end of short video-clips, in which an initial facial expression of joy or anger gradually morphed into a neutral expression, were misjudged as being slightly angry or slightly happy, respectively (Experiment 1). This response bias disappeared when the actor’s identity changed in the final neutral expression (Experiment 2). Videos depicting neutral-to-joy-to-neutral and neutral-to-anger-to-neutral sequences again produced biases but in opposite direction (Experiment 3). The bias survived insertion of a 400 ms blank (Experiment 4). These results suggested that the perceptual distortions were not caused by any of the low-level perceptual mechanisms (adaptation, representational momentum and contrast effects). We speculate that especially when presented with dynamic, facial expressions, perceptual distortions occur that reflect ‘emotional anticipation’ (a low-level mindreading mechanism), which overrules low-level visual mechanisms. Underpinning neural mechanisms are discussed in relation to the current debate on action and emotion understanding. PMID:23409112
Shape-specific perceptual learning in a figure-ground segregation task.
Yi, Do-Joon; Olson, Ingrid R; Chun, Marvin M
2006-03-01
What does perceptual experience contribute to figure-ground segregation? To study this question, we trained observers to search for symmetric dot patterns embedded in random dot backgrounds. Training improved shape segmentation, but learning did not completely transfer either to untrained locations or to untrained shapes. Such partial specificity persisted for a month after training. Interestingly, training on shapes in empty backgrounds did not help segmentation of the trained shapes in noisy backgrounds. Our results suggest that perceptual training increases the involvement of early sensory neurons in the segmentation of trained shapes, and that successful segmentation requires perceptual skills beyond shape recognition alone.
Are neural correlates of visual consciousness retinotopic?
ffytche, Dominic H; Pins, Delphine
2003-11-14
Some visual neurons code what we see, their defining characteristic being a response profile which mirrors conscious percepts rather than veridical sensory attributes. One issue yet to be resolved is whether, within a given cortical area, conscious visual perception relates to diffuse activity across the entire population of such cells or focal activity within the sub-population mapping the location of the perceived stimulus. Here we investigate the issue in the human brain with fMRI, using a threshold stimulation technique to dissociate perceptual from non-perceptual activity. Our results point to a retinotopic organisation of perceptual activity in early visual areas, with independent perceptual activations for different regions of visual space.
Don't look at me in anger! Enhanced processing of angry faces in anticipation of public speaking.
Wieser, Matthias J; Pauli, Paul; Reicherts, Philipp; Mühlberger, Andreas
2010-03-01
Anxiety is supposed to enhance the processing of threatening information. Here, we investigated the cortical processing of angry faces during anticipated public speaking. To elicit anxiety, a group of participants was told that they would have to perform a public speech. As a control condition, another group was told that they would have to write a short essay. During anticipation of these tasks, participants saw facial expressions (angry, happy, and neutral) while electroencephalogram was recorded. Event-related potential analysis revealed larger N170 amplitudes for angry compared to happy and neutral faces in the anxiety group. The early posterior negativity as an index of motivated attention was also enhanced for angry compared to happy and neutral faces in participants anticipating public speaking. These results indicate that fear of public speaking influences early perceptual processing of faces such that especially the processing of angry faces is facilitated.
Perry, Anat; Aviezer, Hillel; Goldstein, Pavel; Palgi, Sharon; Klein, Ehud; Shamay-Tsoory, Simone G
2013-11-01
The neuropeptide oxytocin (OT) has been repeatedly reported to play an essential role in the regulation of social cognition in humans in general, and specifically in enhancing the recognition of emotions from facial expressions. The later was assessed in different paradigms that rely primarily on isolated and decontextualized emotional faces. However, recent evidence has indicated that the perception of basic facial expressions is not context invariant and can be categorically altered by context, especially body context, at early perceptual levels. Body context has a strong effect on our perception of emotional expressions, especially when the actual target face and the contextually expected face are perceptually similar. To examine whether and how OT affects emotion recognition, we investigated the role of OT in categorizing facial expressions in incongruent body contexts. Our results show that in the combined process of deciphering emotions from facial expressions and from context, OT gives an advantage to the face. This advantage is most evident when the target face and the contextually expected face are perceptually similar. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perceptual and processing differences between physical and dichorhinic odor mixtures.
Schütze, M; Negoias, S; Olsson, M J; Hummel, T
2014-01-31
Perceptual integration of sensory input from our two nostrils has received little attention in comparison to lateralized inputs for vision and hearing. Here, we investigated whether a binary odor mixture of eugenol and l-carvone (smells of cloves and caraway) would be perceived differently if presented as a mixture in one nostril (physical mixture), vs. the same two odorants in separate nostrils (dichorhinic mixture). In parallel, we investigated whether the different types of presentation resulted in differences in olfactory event-related potentials (OERP). Psychophysical ratings showed that the dichorhinic mixtures were perceived as more intense than the physical mixtures. A tendency for shift in perceived quality was also observed. In line with these perceptual changes, the OERP showed a shift in latencies and amplitudes for early (more "sensory") peaks P1 and N1 whereas no significant differences were observed for the later (more "cognitive") peak P2. The results altogether suggest that the peripheral level is a site of interaction between odorants. Both psychophysical ratings and, for the first time, electrophysiological measurements converge on this conclusion. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Perceptual Learning Improves Contrast Sensitivity of V1 Neurons in Cats
Hua, Tianmiao; Bao, Pinglei; Huang, Chang-Bing; Wang, Zhenhua; Xu, Jinwang
2010-01-01
Summary Background Perceptual learning has been documented in adult humans over a wide range of tasks. Although the often observed specificity of learning is generally interpreted as evidence for training-induced plasticity in early cortical areas, physiological evidence for training-induced changes in early visual cortical areas is modest, despite reports of learning-induced changes of cortical activities in fMRI studies. To reveal the physiological bases of perceptual learning, we combined psychophysical measurements with extracellular single-unit recording under anesthetized preparations, and examined the effects of training in grating orientation identification on both perceptual and neuronal contrast sensitivity functions of cats. Results We have found that training significantly improved perceptual contrast sensitivity of the cats to gratings with the spatial frequencies near the ‘trained’ spatial frequency, with stronger effects in the trained eye. Consistent with behavioral assessments, the mean contrast sensitivity of neurons recorded from V1 of the trained cats was significantly higher than that of neurons recorded from the untrained cats. Furthermore, in the trained cats, the contrast sensitivity of V1 neurons responding preferentially to stimuli presented via the trained eyes was significantly greater than that of neurons responding preferentially to stimuli presented via the ‘untrained’ eyes. The effect was confined to the trained spatial frequencies. In both trained and untrained cats, the neuronal contrast sensitivity functions derived from the contrast sensitivity of the individual neurons were highly correlated with behaviorally determined perceptual contrast sensitivity functions. Conclusions We suggest that training-induced neuronal contrast-gain in area V1 underlies behaviorally determined perceptual contrast sensitivity improvements. PMID:20451388
Looking without Perceiving: Impaired Preattentive Perceptual Grouping in Autism Spectrum Disorder
Carther-Krone, Tiffany A.; Shomstein, Sarah; Marotta, Jonathan J.
2016-01-01
Before becoming aware of a visual scene, our perceptual system has organized and selected elements in our environment to which attention should be allocated. Part of this process involves grouping perceptual features into a global whole. Individuals with autism spectrum disorders (ASD) rely on a more local processing strategy, which may be driven by difficulties perceptually grouping stimuli. We tested this notion using a line discrimination task in which two horizontal lines were superimposed on a background of black and white dots organized so that, on occasion, the dots induced the Ponzo illusion if perceptually grouped together. Results showed that even though neither group was aware of the illusion, the ASD group was significantly less likely than typically developing group to make perceptual judgments influenced by the illusion, revealing difficulties in preattentive grouping of visual stimuli. This may explain why individuals with ASD rely on local processing strategies, and offers new insight into the mechanism driving perceptual grouping in the typically developing human brain. PMID:27355678
Processing reafferent and exafferent visual information for action and perception.
Reichenbach, Alexandra; Diedrichsen, Jörn
2015-01-01
A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.
Causal Relations Drive Young Children's Induction, Naming, and Categorization
ERIC Educational Resources Information Center
Opfer, John E.; Bulloch, Megan J.
2007-01-01
A number of recent models and experiments have suggested that evidence of early category-based induction is an artifact of perceptual cues provided by experimenters. We tested these accounts against the prediction that different relations (causal versus non-causal) determine the types of perceptual similarity by which children generalize. Young…
Perceptual and Motor Development in Infants and Children. Second Edition.
ERIC Educational Resources Information Center
Cratty, Bryant J.
Motor behavior, motor performance, and motor learning are discussed at length within the context of infant and child development. Individual chapters focus on the following: the sensory-motor behavior of infants; analysis of selected perceptual-motor programs; beginnings of movement in infants; gross motor attributes in early childhood; visual…
Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning
ERIC Educational Resources Information Center
Bartolucci, Marco; Smith, Andrew T.
2011-01-01
Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…
Perceptual Fading without Retinal Adaptation
ERIC Educational Resources Information Center
Hsieh, Po-Jang; Colas, Jaron T.
2012-01-01
A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…
ERIC Educational Resources Information Center
Brown, Judy; And Others
1981-01-01
Two approaches to facilitating perceptual-motor development in children ages 4-6 were investigated. Fifteen children (the experimental group) received integrated physical education/music instruction based on Kodaly and Dalcroze (Eurhythmics) concepts. The control group received movement exploration and self-testing instruction. Significant…
Distortions in memory for visual displays
NASA Technical Reports Server (NTRS)
Tversky, Barbara
1989-01-01
Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.
Implicit Race Bias Decreases the Similarity of Neural Representations of Black and White Faces
Brosch, Tobias; Bar-David, Eyal; Phelps, Elizabeth A.
2013-01-01
Implicit race bias has been shown to affect decisions and behaviors. It may also change perceptual experience by increasing perceived differences between social groups. We investigated how this phenomenon may be expressed at the neural level by testing whether the distributed blood-oxygenation-level-dependent (BOLD) patterns representing Black and White faces are more dissimilar in participants with higher implicit race bias. We used multivoxel pattern analysis to predict the race of faces participants were viewing. We successfully predicted the race of the faces on the basis of BOLD activation patterns in early occipital visual cortex, occipital face area, and fusiform face area (FFA). Whereas BOLD activation patterns in early visual regions, likely reflecting different perceptual features, allowed successful prediction for all participants, successful prediction on the basis of BOLD activation patterns in FFA, a high-level face-processing region, was restricted to participants with high pro-White bias. These findings suggest that stronger implicit pro-White bias decreases the similarity of neural representations of Black and White faces. PMID:23300228
Scalf, Paige E; Torralbo, Ana; Tapia, Evelina; Beck, Diane M
2013-01-01
Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.
Serial grouping of 2D-image regions with object-based attention in humans
Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R
2016-01-01
After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188
Musical training during early childhood enhances the neural encoding of speech in noise
Strait, Dana L.; Parbery-Clark, Alexandra; Hittner, Emily; Kraus, Nina
2012-01-01
For children, learning often occurs in the presence of background noise. As such, there is growing desire to improve a child’s access to a target signal in noise. Given adult musicians’ perceptual and neural speech-in-noise enhancements, we asked whether similar effects are present in musically-trained children. We assessed the perception and subcortical processing of speech in noise and related cognitive abilities in musician and nonmusician children that were matched for a variety of overarching factors. Outcomes reveal that musicians’ advantages for processing speech in noise are present during pivotal developmental years. Supported by correlations between auditory working memory and attention and auditory brainstem response properties, we propose that musicians’ perceptual and neural enhancements are driven in a top-down manner by strengthened cognitive abilities with training. Our results may be considered by professionals involved in the remediation of language-based learning deficits, which are often characterized by poor speech perception in noise. PMID:23102977
Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections.
Sporns, O; Tononi, G; Edelman, G M
1991-01-01
The segmentation of visual scenes is a fundamental process of early vision, but the underlying neural mechanisms are still largely unknown. Theoretical considerations as well as neurophysiological findings point to the importance in such processes of temporal correlations in neuronal activity. In a previous model, we showed that reentrant signaling among rhythmically active neuronal groups can correlate responses along spatially extended contours. We now have modified and extended this model to address the problems of perceptual grouping and figure-ground segregation in vision. A novel feature is that the efficacy of the connections is allowed to change on a fast time scale. This results in active reentrant connections that amplify the correlations among neuronal groups. The responses of the model are able to link the elements corresponding to a coherent figure and to segregate them from the background or from another figure in a way that is consistent with the so-called Gestalt laws. Images PMID:1986358
Perceptual load influences selective attention across development.
Couperus, Jane W
2011-09-01
Research suggests that visual selective attention develops across childhood. However, there is relatively little understanding of the neurological changes that accompany this development, particularly in the context of adult theories of selective attention, such as N. Lavie's (1995) perceptual load theory of attention. This study examined visual selective attention across development from 7 years of age to adulthood. Specifically, the author examined if changes in processing as a function of selective attention are similarly influenced by perceptual load across development. Participants were asked to complete a task at either low or high perceptual load while processing of an unattended probe stimulus was examined using event related potentials. Similar to adults, children and teens showed reduced processing of the unattended stimulus as perceptual load increased at the P1 visual component. However, although there were no qualitative differences in changes in processing, there were quantitative differences, with shorter P1 latencies in teens and adults compared with children, suggesting increases in the speed of processing across development. In addition, younger children did not need as high a perceptual load to achieve the same difference in performance between low and high perceptual load as adults. Thus, this study demonstrates that although there are developmental changes in visual selective attention, the mechanisms by which visual selective attention is achieved in children may share similarities with adults.
The effects of attention on perceptual implicit memory.
Rajaram, S; Srinivas, K; Travers, S
2001-10-01
Reports on the effects of dividing attention at study on subsequent perceptual priming suggest that perceptual priming is generally unaffected by attentional manipulations as long as word identity is processed. We tested this hypothesis in three experiments by using the implicit word fragment completion and word stem completion tasks. Division of attention was instantiated with the Stroop task in order to ensure the processing of word identity even when the participant's attention was directed to a stimulus attribute other than the word itself. Under these conditions, we found that even though perceptual priming was significant, it was significantly reduced in magnitude. A stem cued recall test in Experiment 2 confirmed a more deleterious effect of divided attention on explicit memory. Taken together, our findings delineate the relative contributions of perceptual analysis and attentional processes in mediating perceptual priming on two ubiquitously used tasks of word fragment completion and word stem completion.
Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B
2012-07-16
Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.
Accurate expectancies diminish perceptual distraction during visual search
Sy, Jocelyn L.; Guerin, Scott A.; Stegman, Anna; Giesbrecht, Barry
2014-01-01
The load theory of visual attention proposes that efficient selective perceptual processing of task-relevant information during search is determined automatically by the perceptual demands of the display. If the perceptual demands required to process task-relevant information are not enough to consume all available capacity, then the remaining capacity automatically and exhaustively “spills-over” to task-irrelevant information. The spill-over of perceptual processing capacity increases the likelihood that task-irrelevant information will impair performance. In two visual search experiments, we tested the automaticity of the allocation of perceptual processing resources by measuring the extent to which the processing of task-irrelevant distracting stimuli was modulated by both perceptual load and top-down expectations using behavior, functional magnetic resonance imaging, and electrophysiology. Expectations were generated using a trial-by-trial cue that provided information about the likely load of the upcoming visual search task. When the cues were valid, behavioral interference was eliminated and the influence of load on frontoparietal and visual cortical responses was attenuated relative to when the cues were invalid. In conditions in which task-irrelevant information interfered with performance and modulated visual activity, individual differences in mean blood oxygenation level dependent responses measured from the left intraparietal sulcus were negatively correlated with individual differences in the severity of distraction. These results are consistent with the interpretation that a top-down biasing mechanism interacts with perceptual load to support filtering of task-irrelevant information. PMID:24904374
Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.
Lloyd-Jones, Toby J.; Roberts, Mark V.; Leek, E. Charles; Fouquet, Nathalie C.; Truchanowicz, Ewa G.
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured – yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects. PMID:23155393
Musical training modulates the early but not the late stage of rhythmic syntactic processing.
Sun, Lijun; Liu, Fang; Zhou, Linshu; Jiang, Cunmei
2018-02-01
Syntactic processing is essential for musical understanding. Although the processing of harmonic syntax has been well studied, very little is known about the neural mechanisms underlying rhythmic syntactic processing. The present study investigated the neural processing of rhythmic syntax and whether and to what extent long-term musical training impacts such processing. Fourteen musicians and 14 nonmusicians listened to syntactic-regular or syntactic-irregular rhythmic sequences and judged the completeness of these sequences. Nonmusicians, as well as musicians, showed a P600 effect to syntactic-irregular endings, indicating that musical exposure and perceptual learning of music are sufficient to enable nonmusicians to process rhythmic syntax at the late stage. However, musicians, but not nonmusicians, also exhibited an early right anterior negativity (ERAN) response to syntactic-irregular endings, which suggests that musical training only modulates the early but not the late stage of rhythmic syntactic processing. These findings revealed for the first time the neural mechanisms underlying the processing of rhythmic syntax in music, which has important implications for theories of hierarchically organized music cognition and comparative studies of syntactic processing in music and language. © 2017 Society for Psychophysiological Research.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Tacikowski, P; Ehrsson, H H
2016-04-01
Self-related stimuli, such as one's own name or face, are processed faster and more accurately than other types of stimuli. However, what remains unknown is at which stage of the information processing hierarchy this preferential processing occurs. Our first aim was to determine whether preferential self-processing involves mainly perceptual stages or also post-perceptual stages. We found that self-related priming was stronger than other-related priming only because of perceptual prime-target congruency. Our second aim was to dissociate the role of conscious and unconscious factors in preferential self-processing. To this end, we compared the "self" and "other" conditions in trials where primes were masked or unmasked. In two separate experiments, we found that self-related priming was stronger than other-related priming but only in the unmasked trials. Together, our results suggest that preferential access to the self-concept occurs mainly at the perceptual and conscious stages of the stimulus processing hierarchy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania
2014-12-01
A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re-education programs in children presenting with deficits in social cue processing.
Distracted and confused?: selective attention under load.
Lavie, Nilli
2005-02-01
The ability to remain focused on goal-relevant stimuli in the presence of potentially interfering distractors is crucial for any coherent cognitive function. However, simply instructing people to ignore goal-irrelevant stimuli is not sufficient for preventing their processing. Recent research reveals that distractor processing depends critically on the level and type of load involved in the processing of goal-relevant information. Whereas high perceptual load can eliminate distractor processing, high load on "frontal" cognitive control processes increases distractor processing. These findings provide a resolution to the long-standing early and late selection debate within a load theory of attention that accommodates behavioural and neuroimaging data within a framework that integrates attention research with executive function.
Human single neuron activity precedes emergence of conscious perception.
Gelbard-Sagiv, Hagar; Mudrik, Liad; Hill, Michael R; Koch, Christof; Fried, Itzhak
2018-05-25
Identifying the neuronal basis of spontaneous changes in conscious experience in the absence of changes in the external environment is a major challenge. Binocular rivalry, in which two stationary monocular images lead to continuously changing perception, provides a unique opportunity to address this issue. We studied the activity of human single neurons in the medial temporal and frontal lobes while patients were engaged in binocular rivalry. Here we report that internal changes in the content of perception are signaled by very early (~-2000 ms) nonselective medial frontal activity, followed by selective activity of medial temporal lobe neurons that precedes the perceptual change by ~1000 ms. Such early activations are not found for externally driven perceptual changes. These results suggest that a medial fronto-temporal network may be involved in the preconscious internal generation of perceptual transitions.
Early Development of Object Unity: Evidence for Perceptual Completion in Newborns
ERIC Educational Resources Information Center
Valenza, Eloisa; Bulf, Hermann
2011-01-01
The present study aimed to investigate whether perceptual completion is available at birth, in the absence of any visual experience. An extremely underspecified kinetic visual display composed of four spatially separated fragments arranged to give rise to an illusory rectangle that occluded a vertical rod (illusory condition) or rotated so as not…
Neural Patterns of the Implicit Association Test
Healy, Graham F.; Boran, Lorraine; Smeaton, Alan F.
2015-01-01
The Implicit Association Test (IAT) is a reaction time based categorization task that measures the differential associative strength between bipolar targets and evaluative attribute concepts as an approach to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early (250–450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in this time range is known to index processes related to cognitive control and semantic processing. A central focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down modulation of attention/perceptual processing) may be components in the effective measurement of IAT effects, as factors such as physical setting or task instruction can change an IAT measurement. In this study we further implicate the role of proactive cognitive control and top-down modulation of attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where more rapid word categorizations driving the IAT effect are present, they are at least partly explainable by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-related activity. The identified brain regions involved with reduced reaction times on congruent blocks coincide with those of previous studies. PMID:26635570
Petitto, L. A.; Berens, M. S.; Kovelman, I.; Dubins, M. H.; Jasinska, K.; Shalinsky, M.
2011-01-01
In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4–6 months, older 10–12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and nonlinguistic Tone stimuli. We found that phonetic processing in bilingual and monolingual babies is accomplished with the same language-specific brain areas classically observed in adults, including the left superior temporal gyrus (associated with phonetic processing) and the left inferior frontal cortex (associated with the search and retrieval of information about meanings, and syntactic and phonological patterning), with intriguing developmental timing differences: left superior temporal gyrus activation was observed early and remained stably active over time, while left inferior frontal cortex showed greater increase in neural activation in older babies notably at the precise age when babies’ enter the universal first-word milestone, thus revealing a first-time focal brain correlate that may mediate a universal behavioral milestone in early human language acquisition. A difference was observed in the older bilingual babies’ resilient neural and behavioral sensitivity to Non-Native phonetic contrasts at a time when monolingual babies can no longer make such discriminations. We advance the “Perceptual Wedge Hypothesis”as one possible explanation for how exposure to greater than one language may alter neural and language processing in ways that we suggest are advantageous to language users. The brains of bilinguals and multilinguals may provide the most powerful window into the full neural “extent and variability” that our human species’ language processing brain areas could potentially achieve. PMID:21724244
Beyond Perceptual Symbols: A Call for Representational Pluralism
ERIC Educational Resources Information Center
Dove, Guy
2009-01-01
Recent evidence from cognitive neuroscience suggests that certain cognitive processes employ perceptual representations. Inspired by this evidence, a few researchers have proposed that cognition is inherently perceptual. They have developed an innovative theoretical approach that rests on the notion of perceptual simulation and marshaled several…
Perceptual Aspects of Motor Performance.
ERIC Educational Resources Information Center
Gallahue, David L.
Perceptual-motor functioning is a cyclic process involving: (1) organizing incoming sensory stimuli with past or stored perceptual information; (2) making motor (internal) decisions based on the combination of sensory (present) and perceptual (past) information; (3) executing the actual movement (observable act) itself; and (4) evaluating the act…
Nematzadeh, Nasim; Powers, David M W; Lewis, Trent W
2017-12-01
Why does our visual system fail to reconstruct reality, when we look at certain patterns? Where do Geometrical illusions start to emerge in the visual pathway? How far should we take computational models of vision with the same visual ability to detect illusions as we do? This study addresses these questions, by focusing on a specific underlying neural mechanism involved in our visual experiences that affects our final perception. Among many types of visual illusion, 'Geometrical' and, in particular, 'Tilt Illusions' are rather important, being characterized by misperception of geometric patterns involving lines and tiles in combination with contrasting orientation, size or position. Over the last decade, many new neurophysiological experiments have led to new insights as to how, when and where retinal processing takes place, and the encoding nature of the retinal representation that is sent to the cortex for further processing. Based on these neurobiological discoveries, we provide computer simulation evidence from modelling retinal ganglion cells responses to some complex Tilt Illusions, suggesting that the emergence of tilt in these illusions is partially related to the interaction of multiscale visual processing performed in the retina. The output of our low-level filtering model is presented for several types of Tilt Illusion, predicting that the final tilt percept arises from multiple-scale processing of the Differences of Gaussians and the perceptual interaction of foreground and background elements. The model is a variation of classical receptive field implementation for simple cells in early stages of vision with the scales tuned to the object/texture sizes in the pattern. Our results suggest that this model has a high potential in revealing the underlying mechanism connecting low-level filtering approaches to mid- and high-level explanations such as 'Anchoring theory' and 'Perceptual grouping'.
Predicting perceptual learning from higher-order cortical processing.
Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan
2016-01-01
Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.
Visual perceptual skills in children born with very low birth weights.
Davis, Deborah Winders; Burns, Barbara M; Wilkerson, Shirley A; Steichen, Jean J
2005-01-01
A disproportionate number of very low birth weight (VLBW; < or =1500 g) children require special education services and have school-related problems even when they are free from major disabilities and have average intelligence quotient scores. Visual-perceptual problems have been suggested as contributors to deficits in academic performance, but few data are available describing specific visual-perceptual problems. This study was designed to identify specific visual-perceptual skills in VLBW children. Participants were 92 VLBW children aged 4 through 5 years who were free from major disability and appropriate for gestational age at birth. The Test of Visual-Perceptual Skills (non-motor)-Revised was used. Despite intelligent quotient scores in the average range, the majority (63% to 78.3%) of the children performed below age level on all seven subscales of a normed assessment of visual perceptual skills. Results suggest that visual perceptual screening should be considered as a part of routine evaluations of preschool-aged children born prematurely. Early identification of specific deficits could lead to interventions to improve achievement trajectories for these high-risk children.
Evolutionary relevance facilitates visual information processing.
Jackson, Russell E; Calvillo, Dusti P
2013-11-03
Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.
Issues in Perceptual Speech Analysis in Cleft Palate and Related Disorders: A Review
ERIC Educational Resources Information Center
Sell, Debbie
2005-01-01
Perceptual speech assessment is central to the evaluation of speech outcomes associated with cleft palate and velopharyngeal dysfunction. However, the complexity of this process is perhaps sometimes underestimated. To draw together the many different strands in the complex process of perceptual speech assessment and analysis, and make…
ERIC Educational Resources Information Center
Connell, Louise; Lynott, Dermot
2012-01-01
Abstract concepts are traditionally thought to differ from concrete concepts by their lack of perceptual information, which causes them to be processed more slowly and less accurately than perceptually-based concrete concepts. In two studies, we examined this assumption by comparing concreteness and imageability ratings to a set of perceptual…
To hear or not to hear: Voice processing under visual load.
Zäske, Romi; Perlich, Marie-Christin; Schweinberger, Stefan R
2016-07-01
Adaptation to female voices causes subsequent voices to be perceived as more male, and vice versa. This contrastive aftereffect disappears under spatial inattention to adaptors, suggesting that voices are not encoded automatically. According to Lavie, Hirst, de Fockert, and Viding (2004), the processing of task-irrelevant stimuli during selective attention depends on perceptual resources and working memory. Possibly due to their social significance, faces may be an exceptional domain: That is, task-irrelevant faces can escape perceptual load effects. Here we tested voice processing, to study whether voice gender aftereffects (VGAEs) depend on low or high perceptual (Exp. 1) or working memory (Exp. 2) load in a relevant visual task. Participants adapted to irrelevant voices while either searching digit displays for a target (Exp. 1) or recognizing studied digits (Exp. 2). We found that the VGAE was unaffected by perceptual load, indicating that task-irrelevant voices, like faces, can also escape perceptual-load effects. Intriguingly, the VGAE was increased under high memory load. Therefore, visual working memory load, but not general perceptual load, determines the processing of task-irrelevant voices.
Attention modulates visual size adaptation.
Kreutzer, Sylvia; Fink, Gereon R; Weidner, Ralph
2015-01-01
The current study determined in healthy subjects (n = 16) whether size adaptation occurs at early, i.e., preattentive, levels of processing or whether higher cognitive processes such as attention can modulate the illusion. To investigate this issue, bottom-up stimulation was kept constant across conditions by using a single adaptation display containing both small and large adapter stimuli. Subjects' attention was directed to either the large or small adapter stimulus by means of a luminance detection task. When attention was directed toward the small as compared to the large adapter, the perceived size of the subsequent target was significantly increased. Data suggest that different size adaptation effects can be induced by one and the same stimulus depending on the current allocation of attention. This indicates that size adaptation is subject to attentional modulation. These findings are in line with previous research showing that transient as well as sustained attention modulates visual features, such as contrast sensitivity and spatial frequency, and influences adaptation in other contexts, such as motion adaptation (Alais & Blake, 1999; Lankheet & Verstraten, 1995). Based on a recently suggested model (Pooresmaeili, Arrighi, Biagi, & Morrone, 2013), according to which perceptual adaptation is based on local excitation and inhibition in V1, we conclude that guiding attention can boost these local processes in one or the other direction by increasing the weight of the attended adapter. In sum, perceptual adaptation, although reflected in changes of neural activity at early levels (as shown in the aforementioned study), is nevertheless subject to higher-order modulation.
Brown, J; Sherrill, C; Gench, B
1981-08-01
Two approaches to facilitating perceptual-motor development in children, ages 4 to 6 yr., were investigated. The experimental group (n = 15) received 24 sessions of integrated physical education/music instruction based upon concepts of Kodaly and Dalcroze. The control group (n = 15) received 24 sessions of movement exploration and self-testing instruction. Analysis of covariance indicated that significant improvement occurred only in the experimental group, with discharges changes in the motor, auditory, and language aspects of perceptual-motor performance as well as total score.
Cognitive Penetration and Attention
Gross, Steven
2017-01-01
Zenon Pylyshyn argues that cognitively driven attentional effects do not amount to cognitive penetration of early vision because such effects occur either before or after early vision. Critics object that in fact such effects occur at all levels of perceptual processing. We argue that Pylyshyn’s claim is correct—but not for the reason he emphasizes. Even if his critics are correct that attentional effects are not external to early vision, these effects do not satisfy Pylyshyn’s requirements that the effects be direct and exhibit semantic coherence. In addition, we distinguish our defense from those found in recent work by Raftopoulos and by Firestone and Scholl, argue that attention should not be assimilated to expectation, and discuss alternative characterizations of cognitive penetrability, advocating a kind of pluralism. PMID:28275358
Yin, Jun; Ding, Xiaowei; Zhou, Jifan; Shui, Rende; Li, Xinyu; Shen, Mowei
2013-10-01
Historically, perceptual grouping is associated with physical principles. This article reports a novel finding that social information-cooperative but not competitive relationships-can drive perceptual grouping of objects in dynamic chase. Particularly, each relationship was constructed with human-generated chasing motions (i.e., two predators and one prey), and its role on perceptual grouping was examined by grouping-induced effect-attentional consequences. The results showed that: (1) Predators can be perceived as a group due to their cooperative relationship, causing attention to automatically spread within grouped predators, thus the response to target appearing on uncued predator is also facilitated; and (2) The attentional effect on competitive predators has no difference from any condition which controls low-level motion patterns, even including the random-motion condition wherein no grouping factor was contained. These findings extend perceptual grouping into the social field, implying that social information gets involved in visual cognition at an early perceptual stage. Copyright © 2013 Elsevier B.V. All rights reserved.
Harrison, Neil R.; Ziessler, Michael
2016-01-01
The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621
Harrison, Neil R; Ziessler, Michael
2016-01-01
The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.'s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation.
Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception.
Mottron, Laurent; Dawson, Michelle; Soulières, Isabelle; Hubert, Benedicte; Burack, Jake
2006-01-01
We propose an "Enhanced Perceptual Functioning" model encompassing the main differences between autistic and non-autistic social and non-social perceptual processing: locally oriented visual and auditory perception, enhanced low-level discrimination, use of a more posterior network in "complex" visual tasks, enhanced perception of first order static stimuli, diminished perception of complex movement, autonomy of low-level information processing toward higher-order operations, and differential relation between perception and general intelligence. Increased perceptual expertise may be implicated in the choice of special ability in savant autistics, and in the variability of apparent presentations within PDD (autism with and without typical speech, Asperger syndrome) in non-savant autistics. The overfunctioning of brain regions typically involved in primary perceptual functions may explain the autistic perceptual endophenotype.
ERIC Educational Resources Information Center
Thai, Khanh-Phuong; Son, Ji Y.; Hoffman, Jessica; Devers, Christopher; Kellman, Philip J.
2014-01-01
Mathematics is the study of structure but students think of math as solving problems according to rules. Students can learn procedures, but they often have trouble knowing when to apply learned procedures, especially to problems unlike those they trained with. In this study, the authors rely on the psychological mechanism of perceptual learning…
The Development of Perceptual Grouping Biases in Infancy: A Japanese-English Cross-Linguistic Study
ERIC Educational Resources Information Center
Yoshida, Katherine A.; Iversen, John R.; Patel, Aniruddh D.; Mazuka, Reiko; Nito, Hiromi; Gervain, Judit; Werker, Janet F.
2010-01-01
Perceptual grouping has traditionally been thought to be governed by innate, universal principles. However, recent work has found differences in Japanese and English speakers' non-linguistic perceptual grouping, implicating language in non-linguistic perceptual processes (Iversen, Patel, & Ohgushi, 2008). Two experiments test Japanese- and…
NASA Technical Reports Server (NTRS)
Kole, James A.; Schneider, Vivian I.; Healy, Alice F.; Barshi, Immanuel
2017-01-01
Subjects trained in a standard data entry task, which involved typing numbers (e.g., 5421) using their right hands. At test (6 months post-training), subjects completed the standard task, followed by a left-hand variant (typing with their left hands) that involved the same perceptual, but different motoric, processes as the standard task. At a second test (8 months post-training), subjects completed the standard task, followed by a code variant (translating letters into digits, then typing the digits with their right hands) that involved different perceptual, but the same motoric, processes as the standard task. For each of the three tasks, half the trials were trained numbers (old) and half were new. Repetition priming (faster response times to old than new numbers) was found for each task. Repetition priming for the standard task reflects retention of trained numbers; for the left-hand variant reflects transfer of perceptual processes; and for the code variant reflects transfer of motoric processes. There was thus evidence for both specificity and generalizability of training data entry perceptual and motoric processes over very long retention intervals.
Systems view on spatial planning and perception based on invariants in agent-environment dynamics
Mettler, Bérénice; Kong, Zhaodan; Li, Bin; Andersh, Jonathan
2015-01-01
Modeling agile and versatile spatial behavior remains a challenging task, due to the intricate coupling of planning, control, and perceptual processes. Previous results have shown that humans plan and organize their guidance behavior by exploiting patterns in the interactions between agent or organism and the environment. These patterns, described under the concept of Interaction Patterns (IPs), capture invariants arising from equivalences and symmetries in the interaction with the environment, as well as effects arising from intrinsic properties of human control and guidance processes, such as perceptual guidance mechanisms. The paper takes a systems' perspective, considering the IP as a unit of organization, and builds on its properties to present a hierarchical model that delineates the planning, control, and perceptual processes and their integration. The model's planning process is further elaborated by showing that the IP can be abstracted, using spatial time-to-go functions. The perceptual processes are elaborated from the hierarchical model. The paper provides experimental support for the model's ability to predict the spatial organization of behavior and the perceptual processes. PMID:25628524
Improving Early Numeracy of Young Children with Special Education Needs.
ERIC Educational Resources Information Center
Van Luit, Johannes E. H.; Schopman, Esther A.
2000-01-01
Sixty-two students from special needs kindergartens were given early mathematics intervention. The early numeracy program was developed for children with disabilities and early numeracy difficulties by basing instruction on perceptual gestalt theory. Children performed better at posttest than controls but failed to transfer their knowledge to…
Human visual perceptual organization beats thinking on speed.
van der Helm, Peter A
2017-05-01
What is the degree to which knowledge influences visual perceptual processes? This question, which is central to the seeing-versus-thinking debate in cognitive science, is often discussed using examples claimed to be proof of one stance or another. It has, however, also been muddled by the usage of different and unclear definitions of perception. Here, for the well-defined process of perceptual organization, I argue that including speed (or efficiency) into the equation opens a new perspective on the limits of top-down influences of thinking on seeing. While the input of the perceptual organization process may be modifiable and its output enrichable, the process itself seems so fast (or efficient) that thinking hardly has time to intrude and is effective mostly after the fact.
Time course of spatial and feature selective attention for partly-occluded objects.
Kasai, Tetsuko; Takeya, Ryuji
2012-07-01
Attention selects objects/groups as the most fundamental units, and this may be achieved by an attention-spreading mechanism. Previous event-related potential (ERP) studies have found that attention-spreading is reflected by a decrease in the N1 spatial attention effect. The present study tested whether the electrophysiological attention effect is associated with the perception of object unity or amodal completion through the use of partly-occluded objects. ERPs were recorded in 14 participants who were required to pay attention to their left or right visual field and to press a button for a target shape in the attended field. Bilateral stimuli were presented rapidly, and were separated, connected, or connected behind an occluder. Behavioral performance in the connected and occluded conditions was worse than that in the separated condition, indicating that attention spread over perceptual object representations after amodal completion. Consistently, the late N1 spatial attention effect (180-220 ms post-stimulus) and the early phase (230-280 ms) of feature selection effects (target N2) at contralateral sites decreased, equally for the occluded and connected conditions, while the attention effect in the early N1 latency (140-180 ms) shifted most positively for the occluded condition. These results suggest that perceptual organization processes for object recognition transiently modulate spatial and feature selection processes in the visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recurrent V1-V2 interaction in early visual boundary processing.
Neumann, H; Sepp, W
1999-11-01
A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours.
Michael, George Andrew; Bacon, Elisabeth; Offerlin-Meyer, Isabelle
2007-09-01
There is a general consensus that benzodiazepines affect attentional processes, yet only few studies have tried to investigate these impairments in detail. The purpose of the present study was to investigate the effects of a single dose of Lorazepam on performance in a target cancellation task with important time constraints. We measured correct target detections and correct distractor rejections, misses and false positives. The results show that Lorazepam produces multiple kinds of shifts in performance, which suggests that it impairs multipLe processes: (a) the evolution of performance over time was not the same between the placebo and the Lorazepam groups, with the Lorazepam affecting performance quite early after the beginning of the test. This is suggestive of a depletion of attentional resources during sequential attentional processing; (b) Lorazepam affected differently target and distractor processing, with target detection being the most impaired; (c) misses were more frequent under Lorazepam than under placebo, but no such difference was observed as far as false positives were concerned. Signal detection analyses showed that Lorazepam (d) decreased perceptual discrimination, and (e) reliably increased response bias. Our results bring new insights on the multiple effects of Lorazepam on selective attention which, when combined, may have deleterious effects on human performance.
Gomes, Hilary; Barrett, Sophia; Duff, Martin; Barnhardt, Jack; Ritter, Walter
2008-03-01
We examined the impact of perceptual load by manipulating interstimulus interval (ISI) in two auditory selective attention studies that varied in the difficulty of the target discrimination. In the paradigm, channels were separated by frequency and target/deviant tones were softer in intensity. Three ISI conditions were presented: fast (300ms), medium (600ms) and slow (900ms). Behavioral (accuracy and RT) and electrophysiological measures (Nd, P3b) were observed. In both studies, participants evidenced poorer accuracy during the fast ISI condition than the slow suggesting that ISI impacted task difficulty. However, none of the three measures of processing examined, Nd amplitude, P3b amplitude elicited by unattended deviant stimuli, or false alarms to unattended deviants, were impacted by ISI in the manner predicted by perceptual load theory. The prediction based on perceptual load theory, that there would be more processing of irrelevant stimuli under conditions of low as compared to high perceptual load, was not supported in these auditory studies. Task difficulty/perceptual load impacts the processing of irrelevant stimuli in the auditory modality differently than predicted by perceptual load theory, and perhaps differently than in the visual modality.
Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco
2011-04-26
Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.
Early-onset Alzheimer's Disease Phenotypes: Neuropsychology and Neural Networks
2017-05-11
Alzheimer Disease, Early Onset; Alzheimer Disease; Alzheimer Disease, Late Onset; Dementia, Alzheimer Type; Logopenic Progressive Aphasia; Primary Progressive Aphasia; Visuospatial/Perceptual Abilities; Posterior Cortical Atrophy; Executive Dysfunction; Corticobasal Degeneration; Ideomotor Apraxia
Perceptual learning and human expertise
NASA Astrophysics Data System (ADS)
Kellman, Philip J.; Garrigan, Patrick
2009-06-01
We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual learning in areas such as aviation, mathematics, and medicine. Research in perceptual learning promises to advance scientific accounts of learning, and perceptual learning technology may offer similar promise in improving education.
ERIC Educational Resources Information Center
Huang-Pollock, Cynthia L.; Nigg, Joel T.; Carr, Thomas H.
2005-01-01
Background: Whether selective attention is a primary deficit in childhood Attention Deficit Hyperactivity Disorder (ADHD) remains in active debate. Methods: We used the "perceptual load" paradigm to examine both early and late selective attention in children with the Primarily Inattentive (ADHD-I) and Combined subtypes (ADHD-C) of ADHD. Results:…
Woolgar, Alexandra; Williams, Mark A; Rich, Anina N
2015-04-01
Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.
Binocular rivalry from invisible patterns
Zou, Jinyou; He, Sheng; Zhang, Peng
2016-01-01
Binocular rivalry arises when incompatible images are presented to the two eyes. If the two eyes’ conflicting features are invisible, leading to identical perceptual interpretations, does rivalry competition still occur? Here we investigated whether binocular rivalry can be induced from conflicting but invisible spatial patterns. A chromatic grating counterphase flickering at 30 Hz appeared uniform, but produced significant tilt aftereffect and orientation-selective adaptation. The invisible pattern also generated significant BOLD activities in the early visual cortex, with minimal response in the parietal and frontal cortical areas. Compared with perceptually matched uniform stimuli, a monocularly presented invisible chromatic grating enhanced the rivalry competition with a low-contrast visible grating presented to the other eye. Furthermore, switching from a uniform field to a perceptually matched invisible chromatic grating produced interocular suppression at approximately 200 ms after onset of the invisible grating. Experiments using briefly presented monocular probes revealed evidence for sustained rivalry competition between two invisible gratings during continuous dichoptic presentations. These findings indicate that even without visible interocular conflict, and with minimal engagement of frontoparietal cortex and consciousness related top-down feedback, perceptually identical patterns with invisible conflict features produce rivalry competition in the early visual cortex. PMID:27354535
Impairments in the Face-Processing Network in Developmental Prosopagnosia and Semantic Dementia
Mendez, Mario F.; Ringman, John M.; Shapira, Jill S.
2015-01-01
Background Developmental prosopagnosia (DP) and semantic dementia (SD) may be the two most common neurologic disorders of face processing, but their main clinical and pathophysiologic differences have not been established. To identify those features, we compared patients with DP and SD. Methods Five patients with DP, five with right temporal-predominant SD, and ten normal controls underwent cognitive, visual perceptual, and face-processing tasks. Results Although the patients with SD were more cognitively impaired than those with DP, the two groups did not differ statistically on the visual perceptual tests. On the face-processing tasks, the DP group had difficulty with configural analysis and they reported relying on serial, feature-by-feature analysis or awareness of salient features to recognize faces. By contrast, the SD group had problems with person knowledge and made semantically related errors. The SD group had better face familiarity scores, suggesting a potentially useful clinical test for distinguishing SD from DP. Conclusions These two disorders of face processing represent clinically distinguishable disturbances along a right hemisphere face-processing network: DP, characterized by early configural agnosia for faces, and SD, characterized primarily by a multimodal person knowledge disorder. We discuss these preliminary findings in the context of the current literature on the face-processing network; recent studies suggest an additional right anterior temporal, unimodal face familiarity-memory deficit consistent with an “associative prosopagnosia.” PMID:26705265
Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.
Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao
2013-01-01
Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.
Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training
Bernstein, Lynne E.; Auer, Edward T.; Eberhardt, Silvio P.; Jiang, Jintao
2013-01-01
Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called “reverse hierarchy theory” of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning. PMID:23515520
Spering, Miriam; Montagnini, Anna
2011-04-22
Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.
A Scalable Distributed Approach to Mobile Robot Vision
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.
1997-01-01
This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).
Native sound category formation in simultaneous bilingual acquisition
NASA Astrophysics Data System (ADS)
Bosch, Laura
2004-05-01
The consequences of early bilingual exposure on the perceptual reorganization processes that occur by the end of the first year of life were analyzed in a series of experiments on the capacity to discriminate vowel and consonant contrasts, comparing monolingual and bilingual infants (Catalan/Spanish) at different age levels. For bilingual infants, the discrimination of target vowel contrasts, which reflect different amount of overlapping and acoustic distance between the two languages of exposure, suggested a U-shaped developmental pattern. A similar trend was observed in the bilingual infants discrimination of a fricative voicing contrast, present in only one of the languages in their environment. The temporary decline in sensitivity found at 8 months for vowel targets and at 12 months for the voicing contrast reveals the specific perceptual processes that bilingual infants develop in order to deal with their complex linguistic input. Data from adult bilingual subjects on a lexical decision task involving these contrasts add to this developmental picture and suggest the existence of a dominant language even in simultaneous bilingual acquisition. [Work supported by JSMF 10001079BMB.
Funnell, Elaine; Wilding, John
2011-02-01
We report a longitudinal study of an exceptional child (S.R.) whose early-acquired visual agnosia, following encephalitis at 8 weeks of age, did not prevent her from learning to construct an increasing vocabulary of visual object forms (drawn from different categories), albeit slowly. S.R. had problems perceiving subtle differences in shape; she was unable to segment local letters within global displays; and she would bring complex scenes close to her eyes: a symptom suggestive of an attempt to reduce visual crowding. Investigations revealed a robust ability to use the gestalt grouping factors of proximity and collinearity to detect fragmented forms in noisy backgrounds, compared with a very weak ability to segment fragmented forms on the basis of contrasts of shape. When contrasts in spatial grouping and shape were pitted against each other, shape made little contribution, consistent with problems in perceiving complex scenes, but when shape contrast was varied, and spatial grouping was held constant, S.R. showed the same hierarchy of difficulty as the controls, although her responses were slowed. This is the first report of a child's visual-perceptual development following very early neurological impairments to the visual cortex. Her ability to learn to perceive visual shape following damage at a rudimentary stage of perceptual development contrasts starkly with the loss of such ability in childhood cases of acquired visual agnosia that follow damage to the established perceptual system. Clearly, there is a critical period during which neurological damage to the highly active, early developing visual-perceptual system does not prevent but only impairs further learning.
Monge, Zachary A.; Madden, David J.
2016-01-01
Several hypotheses attempt to explain the relation between cognitive and perceptual decline in aging (e.g., common-cause, sensory deprivation, cognitive load on perception, information degradation). Unfortunately, the majority of past studies examining this association have used correlational analyses, not allowing for these hypotheses to be tested sufficiently. This correlational issue is especially relevant for the information degradation hypothesis, which states that degraded perceptual signal inputs, resulting from either age-related neurobiological processes (e.g., retinal degeneration) or experimental manipulations (e.g., reduced visual contrast), lead to errors in perceptual processing, which in turn may affect non-perceptual, higher-order cognitive processes. Even though the majority of studies examining the relation between age-related cognitive and perceptual decline have been correlational, we reviewed several studies demonstrating that visual manipulations affect both younger and older adults’ cognitive performance, supporting the information degradation hypothesis and contradicting implications of other hypotheses (e.g., common-cause, sensory deprivation, cognitive load on perception). The reviewed evidence indicates the necessity to further examine the information degradation hypothesis in order to identify mechanisms underlying age-related cognitive decline. PMID:27484869
Cultural Differences in Perceptual Reorganization in US and Pirahã Adults
Yoon, Jennifer M. D.; Witthoft, Nathan; Winawer, Jonathan; Frank, Michael C.; Everett, Daniel L.; Gibson, Edward
2014-01-01
Visual illusions and other perceptual phenomena can be used as tools to uncover the otherwise hidden constructive processes that give rise to perception. Although many perceptual processes are assumed to be universal, variable susceptibility to certain illusions and perceptual effects across populations suggests a role for factors that vary culturally. One striking phenomenon is seen with two-tone images—photos reduced to two tones: black and white. Deficient recognition is observed in young children under conditions that trigger automatic recognition in adults. Here we show a similar lack of cue-triggered perceptual reorganization in the Pirahã, a hunter-gatherer tribe with limited exposure to modern visual media, suggesting such recognition is experience- and culture-specific. PMID:25411970
Neural Network Perception for Mobile Robot Guidance
1992-02-16
of this dissertation, the perceptual process - ing module (See Figure 1.1). The job of the perceptual processing module is to transform the information...organization in a perceptual net- work ", Computer, Vol. 21 pp. 105-117. [Linsker, 1989] Linsker, R. (1989) Designing a sensory processing system: What can...Dean A. Pomerleau Support for this work has come from DARPA, under contracts DACA76-35-C-0019, DACA76-85-C-0003, DACA76-85-C-0002, DACA76-89-C-0014 and
Syllabic Patterns in the Early Vocalizations of Quichua Children
ERIC Educational Resources Information Center
Gildersleeve-Neumann, Christina E.; Davis, Barbara L.; Macneilage, Peter F.
2013-01-01
To understand the interactions between production patterns common to children regardless of language environment and the early appearance of production effects based on perceptual learning from the ambient language requires the study of languages with diverse phonological properties. Few studies have evaluated early phonological acquisition…
Nikolova, Yuliya S.; Iruku, Swetha P.; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R.; Sibille, Etienne
2015-01-01
The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of accelerated aging. PMID:26441752
Early experience shapes vocal neural coding and perception in songbirds
Woolley, Sarah M. N.
2012-01-01
Songbirds, like humans, are highly accomplished vocal learners. The many parallels between speech and birdsong and conserved features of mammalian and avian auditory systems have led to the emergence of the songbird as a model system for studying the perceptual mechanisms of vocal communication. Laboratory research on songbirds allows the careful control of early life experience and high-resolution analysis of brain function during vocal learning, production and perception. Here, I review what songbird studies have revealed about the role of early experience in the development of vocal behavior, auditory perception and the processing of learned vocalizations by auditory neurons. The findings of these studies suggest general principles for how exposure to vocalizations during development and into adulthood influences the perception of learned vocal signals. PMID:22711657
The influence of schizotypal traits on attention under high perceptual load.
Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna
2018-03-01
Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.
NASA Astrophysics Data System (ADS)
Dolinsky, Margaret
2006-02-01
This paper will discuss the potentiality towards a methodology for creating perceptual shifts in virtual reality (VR) environments. A perceptual shift is a cognitive recognition of having experienced something extra-marginal, on the boundaries of normal awareness, outside of conditioned attenuation. Definitions of perceptual shifts demonstrate a historical tradition for the wonder of devices as well as analyze various categories of sensory and optical illusions. Neuroscience and cognitive science attempt to explain perceptual shifts through biological and perceptual mechanisms using the sciences. This paper explores perspective, illusion and projections to situate an artistic process in terms of perceptual shifts. Most VR environments rely on a single perceptual shift while there remains enormous potential for perceptual shifts in VR. Examples of artwork and VR environments develop and present this idea.
Fast perceptual image hash based on cascade algorithm
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya
2017-09-01
In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.
Zooming in on the cause of the perceptual load effect in the go/no-go paradigm.
Chen, Zhe; Cave, Kyle R
2016-08-01
Perceptual load theory (Lavie, 2005) claims that attentional capacity that is not used for the current task is allocated to irrelevant distractors. It predicts that if the attentional demands of the current task are high, distractor interference will be low. One particularly powerful demonstration of perceptual load effects on distractor processing relies on a go/no-go cue that is interpreted by either simple feature detection or feature conjunction (Lavie, 1995). However, a possible alternative interpretation of these effects is that the differential degree of distractor processing is caused by how broadly attention is allocated (attentional zoom) rather than to perceptual load. In 4 experiments, we show that when stimuli are arranged to equalize the extent of spatial attention across conditions, distractor interference varies little whether cues are defined by a simple feature or a conjunction, and that the typical perceptual load effect emerges only when attentional zoom can covary with perceptual load. These results suggest that attentional zoom can account for the differential degree of distractor processing traditionally attributed to perceptual load in the go/no-go paradigm. They also provide new insight into how different factors interact to control distractor interference. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
To Perceive or Not Perceive: The Role of Gamma-band Activity in Signaling Object Percepts
Castelhano, João; Rebola, José; Leitão, Bruno; Rodriguez, Eugenio; Castelo-Branco, Miguel
2013-01-01
The relation of gamma-band synchrony to holistic perception in which concerns the effects of sensory processing, high level perceptual gestalt formation, motor planning and response is still controversial. To provide a more direct link to emergent perceptual states we have used holistic EEG/ERP paradigms where the moment of perceptual “discovery” of a global pattern was variable. Using a rapid visual presentation of short-lived Mooney objects we found an increase of gamma-band activity locked to perceptual events. Additional experiments using dynamic Mooney stimuli showed that gamma activity increases well before the report of an emergent holistic percept. To confirm these findings in a data driven manner we have further used a support vector machine classification approach to distinguish between perceptual vs. non perceptual states, based on time-frequency features. Sensitivity, specificity and accuracy were all above 95%. Modulations in the 30–75 Hz range were larger for perception states. Interestingly, phase synchrony was larger for perception states for high frequency bands. By focusing on global gestalt mechanisms instead of local processing we conclude that gamma-band activity and synchrony provide a signature of holistic perceptual states of variable onset, which are separable from sensory and motor processing. PMID:23785494
Perceptual Learning as a potential treatment for amblyopia: a mini-review
Levi, Dennis M.; Li, Roger W.
2009-01-01
Amblyopia is a developmental abnormality that results from physiological alterations in the visual cortex and impairs form vision. It is a consequence of abnormal binocular visual experience during the “sensitive period” early in life. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. A number of studies over the last twelve years or so suggest that Perceptual Learning (PL) may provide an important new method for treating amblyopia. The aim of this mini-review is to provide a critical review and “meta-analysis” of perceptual learning in adults and children with amblyopia, with a view to extracting principles that might make PL more effective and efficient. Specifically we evaluate: What factors influence the outcome of perceptual learning?Specificity and generalization – two sides of the coin.Do the improvements last?How does PL improve visual function?Should PL be part of the treatment armamentarium? A review of the extant studies makes it clear that practicing a visual task results in a long-lasting improvement in performance in an amblyopic eye. The improvement is generally strongest for the trained eye, task, stimulus and orientation, but appears to have a broader spatial frequency bandwidth than in normal vision. Importantly, practicing on a variety of different tasks and stimuli seems to transfer to improved visual acuity. Perceptual learning operates via a reduction of internal neural noise and/or through more efficient use of the stimulus information by retuning the weighting of the information. The success of PL raises the question of whether it should become a standard part of the armamentarium for the clinical treatment of amblyopia, and suggests several important principles for effective perceptual learning in amblyopia. PMID:19250947
ERIC Educational Resources Information Center
Wood, Milton E.
The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…
Beyond perceptual load and dilution: a review of the role of working memory in selective attention
de Fockert, Jan W.
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed. PMID:23734139
Beyond perceptual load and dilution: a review of the role of working memory in selective attention.
de Fockert, Jan W
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.
Sustained Perceptual Deficits from Transient Sensory Deprivation
Sanes, Dan H.
2015-01-01
Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms. PMID:26224865
Chen, Wei-Ying; Wu, Sheng K; Song, Tai-Fen; Chou, Kuei-Ming; Wang, Kuei-Yuan; Chang, Yao-Ching; Goodbourn, Patrick T
2016-12-07
The specific demands of a combat-sport discipline may be reflected in the perceptual-motor performance of its athletes. Taekwondo, which emphasizes kicking, might require faster perceptual processing to compensate for longer latencies to initiate lower-limb movements and to give rapid visual feedback for dynamic postural control, while Karate, which emphasizes both striking with the hands and kicking, might require exceptional eye-hand coordination and fast perceptual processing. In samples of 38 Taekwondo athletes (16 females, 22 males; mean age = 19.9 years, SD = 1.2), 24 Karate athletes (9 females, 15 males; mean age = 18.9 years, SD = 0.9), and 35 Nonathletes (20 females, 15 males; mean age = 20.6 years, SD = 1.5), we measured eye-hand coordination with the Finger-Nose-Finger task, and both perceptual-processing speed and attentional control with the Covert Orienting of Visual Attention (COVAT) task. Eye-hand coordination was significantly better for Karate athletes than for Taekwondo athletes and Nonathletes, but reaction times for the upper extremities in the COVAT task-indicative of perceptual-processing speed-were faster for Taekwondo athletes than for Karate athletes and Nonathletes. In addition, we found no significant difference among groups in attentional control, as indexed by the reaction-time cost of an invalid cue in the COVAT task. The results suggest that athletes in different combat sports exhibit distinct profiles of perceptual-motor performance. © The Author(s) 2016.
Perceptual context and individual differences in the language proficiency of preschool children.
Banai, Karen; Yifat, Rachel
2016-02-01
Although the contribution of perceptual processes to language skills during infancy is well recognized, the role of perception in linguistic processing beyond infancy is not well understood. In the experiments reported here, we asked whether manipulating the perceptual context in which stimuli are presented across trials influences how preschool children perform visual (shape-size identification; Experiment 1) and auditory (syllable identification; Experiment 2) tasks. Another goal was to determine whether the sensitivity to perceptual context can explain part of the variance in oral language skills in typically developing preschool children. Perceptual context was manipulated by changing the relative frequency with which target visual (Experiment 1) and auditory (Experiment 2) stimuli were presented in arrays of fixed size, and identification of the target stimuli was tested. Oral language skills were assessed using vocabulary, word definition, and phonological awareness tasks. Changes in perceptual context influenced the performance of the majority of children on both identification tasks. Sensitivity to perceptual context accounted for 7% to 15% of the variance in language scores. We suggest that context effects are an outcome of a statistical learning process. Therefore, the current findings demonstrate that statistical learning can facilitate both visual and auditory identification processes in preschool children. Furthermore, consistent with previous findings in infants and in older children and adults, individual differences in statistical learning were found to be associated with individual differences in language skills of preschool children. Copyright © 2015 Elsevier Inc. All rights reserved.
Limited Cognitive Resources Explain a Trade-Off between Perceptual and Metacognitive Vigilance.
Maniscalco, Brian; McCurdy, Li Yan; Odegaard, Brian; Lau, Hakwan
2017-02-01
Why do experimenters give subjects short breaks in long behavioral experiments? Whereas previous studies suggest it is difficult to maintain attention and vigilance over long periods of time, it is unclear precisely what mechanisms benefit from rest after short experimental blocks. Here, we evaluate decline in both perceptual performance and metacognitive sensitivity (i.e., how well confidence ratings track perceptual decision accuracy) over time and investigate whether characteristics of prefrontal cortical areas correlate with these measures. Whereas a single-process signal detection model predicts that these two forms of fatigue should be strongly positively correlated, a dual-process model predicts that rates of decline may dissociate. Here, we show that these measures consistently exhibited negative or near-zero correlations, as if engaged in a trade-off relationship, suggesting that different mechanisms contribute to perceptual and metacognitive decisions. Despite this dissociation, the two mechanisms likely depend on common resources, which could explain their trade-off relationship. Based on structural MRI brain images of individual human subjects, we assessed gray matter volume in the frontal polar area, a region that has been linked to visual metacognition. Variability of frontal polar volume correlated with individual differences in behavior, indicating the region may play a role in supplying common resources for both perceptual and metacognitive vigilance. Additional experiments revealed that reduced metacognitive demand led to superior perceptual vigilance, providing further support for this hypothesis. Overall, results indicate that during breaks between short blocks, it is the higher-level perceptual decision mechanisms, rather than lower-level sensory machinery, that benefit most from rest. Perceptual task performance declines over time (the so-called vigilance decrement), but the relationship between vigilance in perception and metacognition has not yet been explored in depth. Here, we show that patterns in perceptual and metacognitive vigilance do not follow the pattern predicted by a previously suggested single-process model of perceptual and metacognitive decision making. We account for these findings by showing that regions of anterior prefrontal cortex (aPFC) previously associated with visual metacognition are also associated with perceptual vigilance. We also show that relieving metacognitive task demand improves perceptual vigilance, suggesting that aPFC may house a limited cognitive resource that contributes to both metacognition and perceptual vigilance. These findings advance our understanding of the mechanisms and dynamics of perceptual metacognition. Copyright © 2017 the authors 0270-6474/17/371213-12$15.00/0.
Face Attractiveness versus Artistic Beauty in Art Portraits: A Behavioral Study.
Schulz, Katharina; Hayn-Leichsenring, Gregor U
2017-01-01
From art portraits, the observer may derive at least two different hedonic values: The attractiveness of the depicted person and the artistic beauty of the image that relates to the way of presentation. We argue that attractiveness is a property that is predominantly driven by perceptual processes, while the perception of artistic beauty is based predominantly on cognitive processing. To test this hypothesis, we conducted two behavioral experiments. In a gist study (Experiment 1), we showed that ratings on attractiveness were higher after short-term presentation (50 ms) than after long-term presentation (3000 ms), while the opposite pattern was found for artistic beauty . In an experiment on perceptual contrast (Experiment 2), we showed that the perceptual contrast effect was stronger for attractiveness than for artistic beauty. These results are compatible with our hypothesis that appreciation of artistic beauty is cognitively modulated at least in part, while processing of attractiveness is predominantly driven perceptually. This dichotomy between cognitive and perceptual processing of different kinds of beauty suggests the participation of different neuronal mechanisms.
Face Attractiveness versus Artistic Beauty in Art Portraits: A Behavioral Study
Schulz, Katharina; Hayn-Leichsenring, Gregor U.
2017-01-01
From art portraits, the observer may derive at least two different hedonic values: The attractiveness of the depicted person and the artistic beauty of the image that relates to the way of presentation. We argue that attractiveness is a property that is predominantly driven by perceptual processes, while the perception of artistic beauty is based predominantly on cognitive processing. To test this hypothesis, we conducted two behavioral experiments. In a gist study (Experiment 1), we showed that ratings on attractiveness were higher after short-term presentation (50 ms) than after long-term presentation (3000 ms), while the opposite pattern was found for artistic beauty. In an experiment on perceptual contrast (Experiment 2), we showed that the perceptual contrast effect was stronger for attractiveness than for artistic beauty. These results are compatible with our hypothesis that appreciation of artistic beauty is cognitively modulated at least in part, while processing of attractiveness is predominantly driven perceptually. This dichotomy between cognitive and perceptual processing of different kinds of beauty suggests the participation of different neuronal mechanisms. PMID:29312091
Perceptual learning increases the strength of the earliest signals in visual cortex.
Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A
2010-11-10
Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.
Early sound patterns in the speech of two Brazilian Portuguese speakers.
Teixeira, Elizabeth Reis; Davis, Barbara L
2002-06-01
Sound patterns in the speech of two Brazilian-Portuguese speaking children are compared with early production patterns in English-learning children as well as English and Brazilian-Portuguese (BP) characteristics. The relationship between production system effects and ambient language influences in the acquisition of early sound patterns is of primary interest, as English and BP are characterized by differing phonological systems. Results emphasize the primacy of production system effects in early acquisition, although even the earliest word forms show evidence of perceptual effects from the ambient language in both BP children. Use of labials and coronals and low and midfront vowels in simple syllable shapes is consistent with acquisition data for this period across languages. However, potential ambient language influences include higher frequencies of dorsals, use of multisyllabic words, and different phone types in syllable-offset position. These results suggest that to fully understand early acquisition of sound systems one must account for both production system effects and perceptual effects from the ambient language.
Linguistic Processing of Accented Speech Across the Lifespan
Cristia, Alejandrina; Seidl, Amanda; Vaughn, Charlotte; Schmale, Rachel; Bradlow, Ann; Floccia, Caroline
2012-01-01
In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work. PMID:23162513
How the blind "see" Braille: lessons from functional magnetic resonance imaging.
Sadato, Norihiro
2005-12-01
What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.
Early top-down control of visual processing predicts working memory performance
Rutman, Aaron M.; Clapp, Wesley C.; Chadick, James Z.; Gazzaley, Adam
2009-01-01
Selective attention confers a behavioral benefit for both perceptual and working memory (WM) performance, often attributed to top-down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography (EEG) to study the temporal dynamics of top-down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 ms) event-related potential (ERP) during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory. PMID:19413473
Risse, Sarah; Hohenstein, Sven; Kliegl, Reinhold; Engbert, Ralf
2014-01-01
Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words. PMID:24771996
Theory of mind and perceptual context-processing in schizophrenia.
Uhlhaas, Peter J; Phillips, William A; Schenkel, Lindsay S; Silverstein, Steven M
2006-07-01
A series of studies have suggested that schizophrenia patients are deficient in theory of mind (ToM). However, the cognitive mechanisms underlying ToM deficits in schizophrenia are largely unknown. The present study examined the hypothesis that impaired ToM in schizophrenia can be understood as a deficit in context processing. Disorganised schizophrenia patients (N = 12), nondisorganised schizophrenia patients (N = 36), and nonpsychotic psychiatric patients (N = 26) were tested on three ToM tasks and a visual size perception task, a measure of perceptual context processing. In addition, statistical analyses were carried out which compared chronic, treatment-refractory schizophrenia patients (N = 28) to those with an episodic course of illness (N = 20). Overall, ToM performance was linked to deficits in context processing in schizophrenia patients. Statistical comparisons showed that disorganised as well as chronic schizophrenia patients were more impaired in ToM but more accurate in a visual size perception task where perceptual context is misleading. This pattern of results is interpreted as indicating a possible link between deficits in ToM and perceptual context processing, which together with deficits in perceptual grouping, are part of a broader dysfunction in cognitive coordination in schizophrenia.
Perceptual memory drives learning of retinotopic biases for bistable stimuli.
Murphy, Aidan P; Leopold, David A; Welchman, Andrew E
2014-01-01
The visual system exploits past experience at multiple timescales to resolve perceptual ambiguity in the retinal image. For example, perception of a bistable stimulus can be biased toward one interpretation over another when preceded by a brief presentation of a disambiguated version of the stimulus (positive priming) or through intermittent presentations of the ambiguous stimulus (stabilization). Similarly, prior presentations of unambiguous stimuli can be used to explicitly "train" a long-lasting association between a percept and a retinal location (perceptual association). These phenonema have typically been regarded as independent processes, with short-term biases attributed to perceptual memory and longer-term biases described as associative learning. Here we tested for interactions between these two forms of experience-dependent perceptual bias and demonstrate that short-term processes strongly influence long-term outcomes. We first demonstrate that the establishment of long-term perceptual contingencies does not require explicit training by unambiguous stimuli, but can arise spontaneously during the periodic presentation of brief, ambiguous stimuli. Using rotating Necker cube stimuli, we observed enduring, retinotopically specific perceptual biases that were expressed from the outset and remained stable for up to 40 min, consistent with the known phenomenon of perceptual stabilization. Further, bias was undiminished after a break period of 5 min, but was readily reset by interposed periods of continuous, as opposed to periodic, ambiguous presentation. Taken together, the results demonstrate that perceptual biases can arise naturally and may principally reflect the brain's tendency to favor recent perceptual interpretation at a given retinal location. Further, they suggest that an association between retinal location and perceptual state, rather than a physical stimulus, is sufficient to generate long-term biases in perceptual organization.
Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics
1981-08-01
the capabilities/limitations of the human visual perceptual processing system and improve the training effectiveness of visual simulation systems...Myron Braunstein of the University of California at Irvine performed all the work in the perceptual area. Mr. Timothy A. Zimmerlin contributed the... work . Thus, while some areas are related, each is resolved independently in order to focus on the basic perceptual limitation. In addition, the
Perceptual-Motor Behavior and Educational Processes.
ERIC Educational Resources Information Center
Cratty, Bryant J.
Addressed to elementary school and special class teachers, the text presents research-based information on perceptual-motor behavior and education, including movement and the human personality, research guidelines, and movement activities in general education. Special education is considered and perceptual motor abilities are discussed with…
IJzerman, Hans; Regenberg, Nina F E; Saddlemyer, Justin; Koole, Sander L
2015-05-01
Linguistic category priming is a novel paradigm to examine automatic influences of language on cognition (Semin, 2008). An initial article reported that priming abstract linguistic categories (adjectives) led to more global perceptual processing, whereas priming concrete linguistic categories (verbs) led to more local perceptual processing (Stapel & Semin, 2007). However, this report was compromised by data fabrication by the first author, so that it remains unclear whether or not linguistic category priming influences perceptual processing. To fill this gap in the literature, the present article reports 12 studies among Dutch and US samples examining the perceptual effects of linguistic category priming. The results yielded no evidence of linguistic category priming effects. These findings are discussed in relation to other research showing cultural variations in linguistic category priming effects (IJzerman, Saddlemyer, & Koole, 2014). The authors conclude by highlighting the importance of conducting and publishing replication research for achieving scientific progress. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Lightening the load: perceptual load impairs visual detection in typical adults but not in autism.
Remington, Anna M; Swettenham, John G; Lavie, Nilli
2012-05-01
Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enhanced perceptual capacity, leading to the superior performance and increased distractor processing previously reported. Using a signal-detection paradigm, we test this directly and demonstrate that, under higher levels of load, perceptual sensitivity was reduced in typical adults but not in adults with ASD. These findings confirm our hypothesis and offer a promising solution to the previous discrepancies by suggesting that increased distractor processing in ASD results not from a filtering deficit but from enhanced perceptual capacity.
NASA Astrophysics Data System (ADS)
Ishizu, Tomohiro; Sakamoto, Yasuhiro
2017-07-01
In this extensive and valuable theoretical article, Pelowski et al. propose a psychological architecture in art appreciation by introducing the concepts of early/bottom-up and relatively late/top-down stages. The former is dictated as automatic processing on perceptual features of visual images, while the latter comprises cognitive and evaluative processes where modulations from acquired knowledge and memories come into play with recurrent loops to form final experiences, as well as brain areas/networks which possibly have a role in each processing component [9].
Can Attention be Divided Between Perceptual Groups?
NASA Technical Reports Server (NTRS)
McCann, Robert S.; Foyle, David C.; Johnston, James C.; Hart, Sandra G. (Technical Monitor)
1994-01-01
Previous work using Head-Up Displays (HUDs) suggests that the visual system parses the HUD and the outside world into distinct perceptual groups, with attention deployed sequentially to first one group and then the other. New experiments show that both groups can be processed in parallel in a divided attention search task, even though subjects have just processed a stimulus in one perceptual group or the other. Implications for models of visual attention will be discussed.
Crew Interface Analysis: Selected Articles on Space Human Factors Research, 1987 - 1991
1993-07-01
recognitions to that distractor ) suggest that the perceptual type of the graph has a strong representation in memory . We found that both training with... processing strategy. If my goal were to compare the value of variables or (possibly) to compare a trend, I would select a perceptual strategy. If...be needed to determine specific processing models for different questions using the perceptual strategy. In addition, predictions about the memory
Perceptual Biases in Processing Facial Identity and Emotion
ERIC Educational Resources Information Center
Coolican, Jamesie; Eskes, Gail A.; McMullen, Patricia A.; Lecky, Erin
2008-01-01
Normal observers demonstrate a bias to process the left sides of faces during perceptual judgments about identity or emotion. This effect suggests a right cerebral hemisphere processing bias. To test the role of the right hemisphere and the involvement of configural processing underlying this effect, young and older control observers and patients…
ERIC Educational Resources Information Center
Yang, Cheng-Ta
2011-01-01
Change detection requires perceptual comparison and decision processes on different features of multiattribute objects. How relative salience between two feature-changes influences the processes has not been addressed. This study used the systems factorial technology to investigate the processes when detecting changes in a Gabor patch with visual…
Selective attention in perceptual adjustments to voice.
Mullennix, J W; Howe, J N
1999-10-01
The effects of perceptual adjustments to voice information on the perception of isolated spoken words were examined. In two experiments, spoken target words were preceded or followed within a trial by a neutral word spoken in the same voice or in a different voice as the target. Over-all, words were reproduced more accurately on trials on which the voice of the neutral word matched the voice of the spoken target word, suggesting that perceptual adjustments to voice interfere with word processing. This result, however, was mediated by selective attention to voice. The results provide further evidence of a close processing relationship between perceptual adjustments to voice and spoken word recognition.
Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong
2016-01-01
The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093
Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs
van Elk, Michiel
2015-01-01
Previous studies have shown that one’s prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face / house categorization task; Experiment 1) or a visual attention task (i.e. the global / local processing task; Experiment 2). In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical ‘global-to-local’ interference effect, whereas believers in conspiracy theories were characterized by a stronger ‘local-to-global interference effect’. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes. PMID:26114604
Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs.
van Elk, Michiel
2015-01-01
Previous studies have shown that one's prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face/house categorization task; Experiment 1) or a visual attention task (i.e. the global/local processing task; Experiment 2). In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical 'global-to-local' interference effect, whereas believers in conspiracy theories were characterized by a stronger 'local-to-global interference effect'. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes.
Krishnan, Ananthanarayan; Gandour, Jackson T
2014-12-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.
Krishnan, Ananthanarayan; Gandour, Jackson T.
2015-01-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information. PMID:25838636
Social Vision: Functional Forecasting and the Integration of Compound Social Cues
Adams, Reginald B.; Kveraga, Kestutis
2017-01-01
For decades the study of social perception was largely compartmentalized by type of social cue: race, gender, emotion, eye gaze, body language, facial expression etc. This was partly due to good scientific practice (e.g., controlling for extraneous variability), and partly due to assumptions that each type of social cue was functionally distinct from others. Herein, we present a functional forecast approach to understanding compound social cue processing that emphasizes the importance of shared social affordances across various cues (see too Adams, Franklin, Nelson, & Stevenson, 2010; Adams & Nelson, 2011; Weisbuch & Adams, 2012). We review the traditional theories of emotion and face processing that argued for dissociable and noninteracting pathways (e.g., for specific emotional expressions, gaze, identity cues), as well as more recent evidence for combinatorial processing of social cues. We argue here that early, and presumably reflexive, visual integration of such cues is necessary for adaptive behavioral responding to others. In support of this claim, we review contemporary work that reveals a flexible visual system, one that readily incorporates meaningful contextual influences in even nonsocial visual processing, thereby establishing the functional and neuroanatomical bases necessary for compound social cue integration. Finally, we explicate three likely mechanisms driving such integration. Together, this work implicates a role for cognitive penetrability in visual perceptual abilities that have often been (and in some cases still are) ascribed to direct encapsulated perceptual processes. PMID:29242738
Müller-Oehring, Eva M; Schulte, Tilman; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2013-01-01
Decline in visuospatial abilities with advancing age has been attributed to a demise of bottom-up and top-down functions involving sensory processing, selective attention, and executive control. These functions may be differentially affected by age-related volume shrinkage of subcortical and cortical nodes subserving the dorsal and ventral processing streams and the corpus callosum mediating interhemispheric information exchange. Fifty-five healthy adults (25-84 years) underwent structural MRI and performed a visual search task to test perceptual and attentional demands by combining feature-conjunction searches with "gestalt" grouping and attentional cueing paradigms. Poorer conjunction, but not feature, search performance was related to older age and volume shrinkage of nodes in the dorsolateral processing stream. When displays allowed perceptual grouping through distractor homogeneity, poorer conjunction-search performance correlated with smaller ventrolateral prefrontal cortical and callosal volumes. An alerting cue attenuated age effects on conjunction search, and the alertness benefit was associated with thalamic, callosal, and temporal cortex volumes. Our results indicate that older adults can capitalize on early parallel stages of visual information processing, whereas age-related limitations arise at later serial processing stages requiring self-guided selective attention and executive control. These limitations are explained in part by age-related brain volume shrinkage and can be mitigated by external cues.
Altering sensorimotor feedback disrupts visual discrimination of facial expressions.
Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula
2016-08-01
Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities.
Basirat, Anahita; Schwartz, Jean-Luc; Sato, Marc
2012-01-01
The verbal transformation effect (VTE) refers to perceptual switches while listening to a speech sound repeated rapidly and continuously. It is a specific case of perceptual multistability providing a rich paradigm for studying the processes underlying the perceptual organization of speech. While the VTE has been mainly considered as a purely auditory effect, this paper presents a review of recent behavioural and neuroimaging studies investigating the role of perceptuo-motor interactions in the effect. Behavioural data show that articulatory constraints and visual information from the speaker's articulatory gestures can influence verbal transformations. In line with these data, functional magnetic resonance imaging and intracranial electroencephalography studies demonstrate that articulatory-based representations play a key role in the emergence and the stabilization of speech percepts during a verbal transformation task. Overall, these results suggest that perceptuo (multisensory)-motor processes are involved in the perceptual organization of speech and the formation of speech perceptual objects. PMID:22371618
The effects of acute stress and perceptual load on distractor interference.
Sato, Hirotsune; Takenaka, Ippei; Kawahara, Jun I
2012-01-01
Selective attention can be improved under conditions in which a high perceptual load is assumed to exhaust cognitive resources, leaving scarce resources for distractor processing. The present study examined whether perceptual load and acute stress share common attentional resources by manipulating perceptual and stress loads. Participants identified a target within an array of nontargets that were flanked by compatible or incompatible distractors. Attentional selectivity was measured by longer reaction times in response to the incompatible than to the compatible distractors. Participants in the stress group participated in a speech test that increased anxiety and threatened self-esteem. The effect of perceptual load interacted with the stress manipulation in that participants in the control group demonstrated an interference effect under the low perceptual load condition, whereas such interference disappeared under the high perceptual load condition. Importantly, the stress group showed virtually no interference under the low perceptual load condition, whereas substantial interference occurred under the high perceptual load condition. These results suggest that perceptual and stress related demands consume the same attentional resources.
Interference from familiar natural distractors is not eliminated by high perceptual load.
He, Chunhong; Chen, Antao
2010-05-01
A crucial prediction of perceptual load theory is that high perceptual load can eliminate interference from distractors. However, Lavie et al. (Psychol Sci 14:510-515, 2003) found that high perceptual load did not eliminate interference when the distractor was a face. The current experiments examined the interaction between familiarity and perceptual load in modulating interference in a name search task. The data reveal that high perceptual load eliminated the interference effect for unfamiliar distractors that were faces or objects, but did not eliminate the interference for familiar distractors that were faces or objects. Based on these results, we proposed that the processing of familiar and natural stimuli may be immune to the effect of perceptual load.
Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks
Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.
2015-01-01
The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies. PMID:26496502
Late development of cue integration is linked to sensory fusion in cortex.
Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko
2015-11-02
Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex
Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko
2015-01-01
Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841
Zaman, Jonas; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Wiech, Katja; Van Diest, Ilse
2015-04-01
Recent neuropsychological theories emphasize the influence of maladaptive learning and memory processes on pain perception. However, the precise relationship between these processes as well as the underlying mechanisms remain poorly understood; especially the role of perceptual discrimination and its modulation by associative fear learning has received little attention so far. Experimental work with exteroceptive stimuli consistently points to effects of fear learning on perceptual discrimination acuity. In addition, clinical observations have revealed that in individuals with chronic pain perceptual discrimination is impaired, and that tactile discrimination training reduces pain. Based on these findings, we present a theoretical model of which the central tenet is that associative fear learning contributes to the development of chronic pain through impaired interoceptive and proprioceptive discrimination acuity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transfer of perceptual-motor training and the space adaptation syndrome
NASA Technical Reports Server (NTRS)
Kennedy, R. S.; Berbaum, K. S.; Williams, M. C.; Brannan, J.; Welch, R. B.
1987-01-01
Perceptual cue conflict may be the basis for the symptoms which are experienced by space travelers in microgravity conditions. Recovery has been suggested to take place after perceptual modification or reinterpretation. To elucidate this process, 10 subjects who repeatedly experienced a visual/vestibular conflict over trials and days, were tested in a similar but not identical perceptual situation (pseudo-Coriolis) to determine whether any savings in perceptual adaptation had occurred as compared to an unpracticed control group (N = 40). The practiced subjects experienced lessening dizziness and ataxia within and over sessions.
Unconscious memory bias in depression: perceptual and conceptual processes.
Watkins, P C; Martin, C K; Stern, L D
2000-05-01
Mood-congruent memory (MCM) bias in depression was investigated using 4 different implicit memory tests. Two of the implicit tests were perceptually driven, and 2 were conceptually driven. Depressed participants and nondepressed controls were assigned to 1 of 4 implicit memory tests after studying positive and negative adjectives. Results showed no MCM bias in the perceptually driven tests. MCM was demonstrated in 1 of the conceptually driven tests, but only for adjectives that were conceptually encoded. Results support the theory that mood-congruent processes in depression are limited to conceptual processing. However, activation of conceptual processes may not be sufficient for demonstrating mood congruency.
Nikolaou, Kyriaki; Critchley, Hugo; Duka, Theodora
2013-01-01
Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4 g/kg or 0.8 g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a "Go-stimulus" when it was followed by a "Stop-stimulus". In the control variant (VSST_C), participants responded to the "Go-stimulus" even if it was followed by a "Stop-stimulus". Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour.
Production-perception relationships during speech development
NASA Astrophysics Data System (ADS)
Menard, Lucie; Schwartz, Jean-Luc; Boe, Louis-Jean; Aubin, Jerome
2005-04-01
It has been shown that nonuniform growth of the supraglottal cavities, motor control development, and perceptual refinement shape the vowel systems during speech development. In this talk, we propose to investigate the role of perceptual constraints as a guide to the speakers task from birth to adulthood. Simulations with an articulatory-to-acoustic model, acoustic analyses of natural vowels, and results of perceptual tests provide evidence that the production-perception relationships evolve with age. At the perceptual level, results show that (i) linear combination of spectral peaks are good predictors of vowel targets, and (ii) focalization, defined as an acoustic pattern with close neighboring formants [J.-L. Schwartz, L.-J. Boe, N. Vallee, and C. Abry, J. Phonetics 25, 255-286 (1997)], is part of the speech task. At the production level, we propose that (i) frequently produced vowels in the baby's early sound inventory can in part be explained by perceptual templates, (ii) the achievement of these perceptual templates may require adaptive articulatory strategies for the child, compared with the adults, to cope with morphological differences. Results are discussed in the light of a perception for action control theory. [Work supported by the Social Sciences and Humanities Research Council of Canada.
The dissociation of perception and cognition in children with early brain damage.
Stiers, Peter; Vandenbussche, Erik
2004-03-01
Reduced non-verbal compared to verbal intelligence is used in many outcome studies of perinatal complications as an indication of visual perceptual impairment. To investigate whether this is justified, we re-examined data sets from two previous studies, both of which used the visual perceptual battery L94. The first study comprised 47 children at risk for cerebral visual impairment due to prematurity or birth asphyxia, who had been administered the McCarthy Scales of Children's abilities. The second study evaluated visual perceptual abilities in 82 children with a physical disability. These children's intellectual ability had been assessed with the Wechsler Intelligence Scale for Children-Revised and/or Wechsler Pre-school and Primary Scale of Intelligence-Revised. No significant association was found between visual perceptual impairment and (1) reduced non-verbal to verbal intelligence; (2) increased non-verbal subtest scatter; or (3) non-verbal subtest profile deviation, for any of the intelligence scales. This result suggests that non-verbal intelligence subtests assess a complex of cognitive skills that are distinct from visual perceptual abilities, and that this assessment is not hampered by deficits in perceptual abilities as manifested in these children.
Verifying different-modality properties for concepts produces switching costs.
Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W
2003-03-01
According to perceptual symbol systems, sensorimotor simulations underlie the representation of concepts. It follows that sensorimotor phenomena should arise in conceptual processing. Previous studies have shown that switching from one modality to another during perceptual processing incurs a processing cost. If perceptual simulation underlies conceptual processing, then verifying the properties of concepts should exhibit a switching cost as well. For example, verifying a property in the auditory modality (e.g., BLENDER-loud) should be slower after verifying a property in a different modality (e.g., CRANBERRIES-tart) than after verifying a property in the same modality (e.g., LEAVES-rustling). Only words were presented to subjects, and there were no instructions to use imagery. Nevertheless, switching modalities incurred a cost, analogous to the cost of switching modalities in perception. A second experiment showed that this effect was not due to associative priming between properties in the same modality. These results support the hypothesis that perceptual simulation underlies conceptual processing.
Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel
2009-12-01
The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed and a coding task (the Digit Symbol Substitution Test, DSST). More precisely, we tested the hypothesis that executive functions would mediate the age-related differences observed in the free-recall task better than perceptual speed. We also tested the assumption that a coding task, assumed to involve both executive processes and perceptual speed, would be the best mediator of age-related differences in memory. Findings first confirmed that the DSST combines executive processes and perceptual speed. Secondly, they showed that executive functions are a significant mediator of age-related differences in memory, and that DSST performance is the best predictor.
Multiple cognitive control mechanisms associated with the nature of conflict.
Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon
2010-06-07
Cognitive control is required to regulate conflict. The conflict monitoring theory suggests that the dorsal anterior cingulate cortex (dACC) is involved in detecting response conflict and the dorsolateral prefrontal cortex (DLPFC) plays a critical role in regulating conflict. Recent studies, however, have suggested that rostral dACC (rdACC) responds to response conflict whereas caudal dACC (cdACC) is associated with perceptual conflict. Moreover, DLPFC has been engaged only in regulation of response conflict. A neural network involved in perceptual conflict, however, remains unclear. In this study, we used functional magnetic resonance imaging (fMRI) in an attempt to reveal monitor-controller networks corresponding to either perceptual conflict or response conflict. A version of the Stroop color matching task was used to manipulate perceptual conflict, response conflict was manipulated by an arrow. The results demonstrated that rdACC and DLPFC were engaged in response conflict whereas cdACC and the dorsal portion of premotor cortex (pre-PMd) were involved in perceptual conflict. Interestingly, the posterior parietal cortex (PPC) was activated by both types of conflict. Correlation analyses between behavioral conflict effects and neural responses demonstrated that rdACC and DLPFC were associated with response conflict whereas cdACC and pre-PMd were associated with perceptual conflict. PPC was not correlated with either perceptual conflict or response conflict. We suggest that cdACC and pre-PMd play critical roles in perceptual conflict processing, and this network is independent from the rdACC/DLPFC network for response conflict processing. We also discussed the function of PPC in conflict processing. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Selective Attention to Perceptual Dimensions and Switching between Dimensions
ERIC Educational Resources Information Center
Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi
2013-01-01
In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…
Conflict-Induced Perceptual Filtering
ERIC Educational Resources Information Center
Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas
2012-01-01
In a variety of conflict paradigms, target and distractor stimuli are defined in terms of perceptual features. Interference evoked by distractor stimuli tends to be reduced when the ratio of congruent to incongruent trials is decreased, suggesting conflict-induced perceptual filtering (i.e., adjusting the processing weights assigned to stimuli…
Perceptual Load Alters Visual Excitability
ERIC Educational Resources Information Center
Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli
2011-01-01
Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…
Guerrero Arenas, Coral; Hidalgo Tobón, Silvia S; Dies Suarez, Pilar; Barragán Pérez, Eduardo; Castro Sierra, Eduardo; García, Julio; de Celis Alonso, Benito
2016-04-01
Early childhood is known to be a period when cortical plasticity phenomena are at a maximum. Music is a stimulus known to modulate these mechanisms. On the other hand, neurological impairments like blindness are also known to affect cortical plasticity. Here, we address how tonal and atonal musical stimuli are processed in control and blind young children. We aimed to understand the differences between the two groups when processing this physiological information. Atonal stimuli produced larger activations in cerebellum, fusiform, and temporal lobe structures than tonal. In contrast, tonal stimuli induced larger frontal lobe representations than atonal. Control participants presented large activations in cerebellum, fusiform, and temporal lobe. A correlation/connectivity study showed that the blind group incorporated larger amounts of perceptual information (somatosensory and motor) into tonal processing through the function of the anterior prefrontal cortex (APC). They also used the visual cortex in conjunction with the Wernicke's area to process this information. In contrast, controls processed sound with perceptual stimuli from auditory cortex structures (including Wernicke's area). In this case, information was processed through the dorsal posterior cingulate cortex and not the APC. The orbitofrontal cortex also played a key role for atonal interpretation in this group. Wernicke's area, known to be involved in speech, was heavily involved for both groups and all stimuli. The two groups presented clear differences in strategies for music processing, with very different recruitment of brain regions.
Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark
2017-05-01
There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.
Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian
2016-08-01
Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Impact of Early Bilingualism on Face Recognition Processes.
Kandel, Sonia; Burfin, Sabine; Méary, David; Ruiz-Tada, Elisa; Costa, Albert; Pascalis, Olivier
2016-01-01
Early linguistic experience has an impact on the way we decode audiovisual speech in face-to-face communication. The present study examined whether differences in visual speech decoding could be linked to a broader difference in face processing. To identify a phoneme we have to do an analysis of the speaker's face to focus on the relevant cues for speech decoding (e.g., locating the mouth with respect to the eyes). Face recognition processes were investigated through two classic effects in face recognition studies: the Other-Race Effect (ORE) and the Inversion Effect. Bilingual and monolingual participants did a face recognition task with Caucasian faces (own race), Chinese faces (other race), and cars that were presented in an Upright or Inverted position. The results revealed that monolinguals exhibited the classic ORE. Bilinguals did not. Overall, bilinguals were slower than monolinguals. These results suggest that bilinguals' face processing abilities differ from monolinguals'. Early exposure to more than one language may lead to a perceptual organization that goes beyond language processing and could extend to face analysis. We hypothesize that these differences could be due to the fact that bilinguals focus on different parts of the face than monolinguals, making them more efficient in other race face processing but slower. However, more studies using eye-tracking techniques are necessary to confirm this explanation.
Timing the impact of literacy on visual processing
Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W.; Cohen, Laurent; Dehaene, Stanislas
2014-01-01
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460
Timing the impact of literacy on visual processing.
Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W; Cohen, Laurent; Dehaene, Stanislas
2014-12-09
Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.
Perceptual-cognitive skill and the in situ performance of soccer players.
van Maarseveen, Mariëtte J J; Oudejans, Raôul R D; Mann, David L; Savelsbergh, Geert J P
2018-02-01
Many studies have shown that experts possess better perceptual-cognitive skills than novices (e.g., in anticipation, decision making, pattern recall), but it remains unclear whether a relationship exists between performance on those tests of perceptual-cognitive skill and actual on-field performance. In this study, we assessed the in situ performance of skilled soccer players and related the outcomes to measures of anticipation, decision making, and pattern recall. In addition, we examined gaze behaviour when performing the perceptual-cognitive tests to better understand whether the underlying processes were related when those perceptual-cognitive tasks were performed. The results revealed that on-field performance could not be predicted on the basis of performance on the perceptual-cognitive tests. Moreover, there were no strong correlations between the level of performance on the different tests. The analysis of gaze behaviour revealed differences in search rate, fixation duration, fixation order, gaze entropy, and percentage viewing time when performing the test of pattern recall, suggesting that it is driven by different processes to those used for anticipation and decision making. Altogether, the results suggest that the perceptual-cognitive tests may not be as strong determinants of actual performance as may have previously been assumed.
Cognition and adjustment after late and early operation for ruptured aneurysm.
Sonesson, B; Ljunggren, B; Säveland, H; Brandt, L
1987-09-01
Does early aneurysm operation, while lowering the overall management mortality, result in an unacceptable morbidity in terms of increased cognitive disturbances and psychosocial maladjustment? The present study evaluates quality of life, degree of cognitive dysfunction, and adjustment of 93 patients with satisfactory neurological recoveries after operations for ruptured supratentorial aneurysms. All patients had been in neurological Grades I to III (Hunt and Hess) after subarachnoid hemorrhage (SAH). Fifty-five patients were operated upon during the acute state, i.e., within 72 hours after bleeding (early surgery = ES), and 38 patients had been subjected to late surgery (LS), i.e., were operated on 9 days or more after SAH. Each patient was subjected to a clinical interview and a comprehensive neuropsychological investigation. The time interval between SAH and assessment varied between 12 and 103 months (mean, 56 months). The results confirm that there are indication of cognitive malfunctioning and psychosocial disturbances of varying severity and distribution in patients who have undergone LS. The pattern and distribution of sequelae after LS did not differ substantially from that in patients subjected to ES. The results offer strong support to the concept that remaining disturbances in cognition are mainly related to the impact of the initial hemorrhage per se. In patients with anterior communicating artery aneurysms, a larger decrease in tempo and perceptual vigilance was noted, suggesting that the subfrontal midline structures are particularly involved in processes demanding flexibility, attention, and capacity to adapt to novel demands in a perceptual situation.
Mason, Emily J; Hussey, Erin P; Molitor, Robert J; Ko, Philip C; Donahue, Manus J; Ally, Brandon A
2017-01-01
Early detection may be the key to developing therapies that will combat Alzheimer's disease (AD). It has been consistently demonstrated that one of the main pathologies of AD, tau, is present in the brain decades before a clinical diagnosis. Tau pathology follows a stereotypical route through the medial temporal lobe beginning in the entorhinal and perirhinal cortices. If early pathology leads to very subtle changes in behavior, it may be possible to detect these changes in subjects years before a clinical diagnosis can currently be made. We aimed to discover if cognitively normal middle-aged adults (40-60 years old) at increased risk for AD due to family history would have impaired performance on a cognitive task known to challenge the perirhinal cortex. Using an oddity detection task, we found that subjects with a family history of AD had lowered accuracy without demonstrating differences in rate of acquisition. There were no differences between subjects' medial temporal lobe volume or cortical thickness, indicating that the changes in behavior were not due to significant atrophy. These results demonstrate that subtle changes in perceptual processing are detectable years before a typical diagnosis even when there are no differences detectable in structural imaging data. Anatomically-targeted cognitive testing may be useful in identifying subjects in the earliest stages of AD.
Action video games do not improve the speed of information processing in simple perceptual tasks.
van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan
2014-10-01
Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks.
Action Video Games Do Not Improve the Speed of Information Processing in Simple Perceptual Tasks
van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U.; Ratcliff, Roger; Wagenmakers, Eric-Jan
2015-01-01
Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks. PMID:24933517
Emotion improves and impairs early vision.
Bocanegra, Bruno R; Zeelenberg, René
2009-06-01
Recent studies indicate that emotion enhances early vision, but the generality of this finding remains unknown. Do the benefits of emotion extend to all basic aspects of vision, or are they limited in scope? Our results show that the brief presentation of a fearful face, compared with a neutral face, enhances sensitivity for the orientation of subsequently presented low-spatial-frequency stimuli, but diminishes orientation sensitivity for high-spatial-frequency stimuli. This is the first demonstration that emotion not only improves but also impairs low-level vision. The selective low-spatial-frequency benefits are consistent with the idea that emotion enhances magnocellular processing. Additionally, we suggest that the high-spatial-frequency deficits are due to inhibitory interactions between magnocellular and parvocellular pathways. Our results suggest an emotion-induced trade-off in visual processing, rather than a general improvement. This trade-off may benefit perceptual dimensions that are relevant for survival at the expense of those that are less relevant.
Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli
Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.
2009-01-01
The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778
Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.
Störmer, Viola S; McDonald, John J; Hillyard, Steven A
2009-12-29
The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.
Mecklinger, Axel; Kriukova, Olga; Mühlmann, Heiner; Grunwald, Thomas
2014-01-01
Visual object identification is modulated by perceptual experience. In a cross-cultural ERP study we investigated whether cultural expertise determines how buildings that vary in their ranking between high and low according to the Western architectural decorum are perceived. Two groups of German and Chinese participants performed an object classification task in which high- and low-ranking Western buildings had to be discriminated from everyday life objects. ERP results indicate that an early stage of visual object identification (i.e., object model selection) is facilitated for high-ranking buildings for the German participants, only. At a later stage of object identification, in which object knowledge is complemented by information from semantic and episodic long-term memory, no ERP evidence for cultural differences was obtained. These results suggest that the identification of architectural ranking is modulated by culturally specific expertise with Western-style architecture already at an early processing stage.
Emotional facilitation of sensory processing in the visual cortex.
Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2003-01-01
A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.
Structural Salience and the Nonaccidentality of a Gestalt
ERIC Educational Resources Information Center
Strother, Lars; Kubovy, Michael
2012-01-01
We perceive structure through a process of perceptual organization. Here we report a new perceptual organization phenomenon--the facilitation of visual grouping by global curvature. Observers viewed patterns that they perceived as organized into collections of curves. The patterns were perceptually ambiguous such that the perceived orientation of…
Perceptual Specificity Effects in Rereading: Evidence from Eye Movements
ERIC Educational Resources Information Center
Sheridan, Heather; Reingold, Eyal M.
2012-01-01
The present experiments examined perceptual specificity effects using a rereading paradigm. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either presenting the target word in the same distortion typography…
Enhanced Perceptual Functioning in Autism: An Update, and Eight Principles of Autistic Perception
ERIC Educational Resources Information Center
Mottron, Laurent; Dawson, Michelle; Soulieres, Isabelle; Hubert, Benedicte; Burack, Jake
2006-01-01
We propose an "Enhanced Perceptual Functioning" model encompassing the main differences between autistic and non-autistic social and non-social perceptual processing: locally oriented visual and auditory perception, enhanced low-level discrimination, use of a more posterior network in "complex" visual tasks, enhanced perception…
Devue, Christel; Barsics, Catherine
2016-10-01
Most humans seem to demonstrate astonishingly high levels of skill in face processing if one considers the sophisticated level of fine-tuned discrimination that face recognition requires. However, numerous studies now indicate that the ability to process faces is not as fundamental as once thought and that performance can range from despairingly poor to extraordinarily high across people. Here we studied people who are super specialists of faces, namely portrait artists, to examine how their specific visual experience with faces relates to a range of face processing skills (perceptual discrimination, short- and longer term recognition). Artists show better perceptual discrimination and, to some extent, recognition of newly learned faces than controls. They are also more accurate on other perceptual tasks (i.e., involving non-face stimuli or mental rotation). By contrast, artists do not display an advantage compared to controls on longer term face recognition (i.e., famous faces) nor on person recognition from other sensorial modalities (i.e., voices). Finally, the face inversion effect exists in artists and controls and is not modulated by artistic practice. Advantages in face processing for artists thus seem to closely mirror perceptual and visual short term memory skills involved in portraiture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phenomenology and neurobiology of self disorder in schizophrenia: Primary factors.
Borda, Juan P; Sass, Louis A
2015-12-01
Schizophrenia is a heterogeneous syndrome, varying between persons and over course of illness. In this and a companion article, we argue that comprehension of this condition or set of conditions may require combining a phenomenological perspective emphasizing disorders of basic-self experience ("ipseity disturbance") with a multidimensional appreciation of possible neurobiological correlates--both primary and secondary. Previous attempts to link phenomenology and neurobiology generally focus on a single neurocognitive factor. We consider diverse aspects of schizophrenia in light of a diverse, albeit interacting, set of neurocognitive abnormalities, examining both synchronic (structural) interdependence and diachronic (temporal) succession. In this article we focus on the primary or foundational role of early perceptual and motoric disturbances that affect perceptual organization and especially intermodal or multisensory perceptual integration (“perceptual dys-integration”). These disturbances are discussed in terms of their implications for three interconnected aspects of selfhood in schizophrenia, primary forms of: disrupted "hold" or "grip" on the world, hyperreflexivity, diminished self-presence (self-affection). Disturbances of organization or integration imply forms of perceptual incoherence or diminished cognitive coordination. The effect is to disrupt one's ability to apprehend the world in holistic, vital, or contextually grounded fashion, or to fully identify with or experience the unity of one's own body or thinking--thereby generating an early and profound (albeit often subtle) disruption or diminishment of basic or core self and of the sense of existing in a coherent world. We discuss interrelationships or possible complementarities between these three aspects, and consider their relevance for a neurodevelopmental account of schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Beutter, Brent R.; Stone, Leland S.
1997-01-01
Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.
NASA Technical Reports Server (NTRS)
Beutter, B. R.; Stone, L. S.
1998-01-01
Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.
The changing landscape of functional brain networks for face processing in typical development.
Joseph, Jane E; Swearingen, Joshua E; Clark, Jonathan D; Benca, Chelsie E; Collins, Heather R; Corbly, Christine R; Gathers, Ann D; Bhatt, Ramesh S
2012-11-15
Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of functional segregation and integration of brain regions throughout development. The present study examined developmental changes in face network functional connectivity in children (5-12 years) and adults (18-43 years) during face-viewing using a graph-theory approach. A face-specific developmental change involved connectivity of the right occipital face area. During childhood, this node increased in strength and within-module clustering based on positive connectivity. These changes reflect an important role of the ROFA in segregation of function during childhood. In addition, strength and diversity of connections within a module that included primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-limbic integration. This integration was pronounced for faces but also emerged for natural objects. Taken together, the primary face-specific developmental changes involved segregation of a posterior visual module during childhood, possibly implicated in early stage perceptual face processing, and greater integration of visuo-limbic connections from childhood to adulthood, which may reflect processing related to development of perceptual expertise for individuation of faces and other visually homogenous categories. Copyright © 2012 Elsevier Inc. All rights reserved.
Collins, Jessica A.; Koski, Jessica E.; Olson, Ingrid R.
2016-01-01
An emerging body of research has supported the existence of a small face sensitive region in the ventral anterior temporal lobe (ATL), referred to here as the “anterior temporal face area”. The contribution of this region in the greater face-processing network remains poorly understood. The goal of the present study was to test the relative sensitivity of this region to perceptual as well as conceptual information about people and objects. We contrasted the sensitivity of this region to that of two highly-studied face-sensitive regions, the fusiform face area (FFA) and the occipital face area (OFA), as well as a control region in early visual cortex (EVC). Our findings revealed that multivoxel activity patterns in the anterior temporal face area contain information about facial identity, as well as conceptual attributes such as one’s occupation. The sensitivity of this region to the conceptual attributes of people was greater than that of posterior face processing regions. In addition, the anterior temporal face area overlaps with voxels that contain information about the conceptual attributes of concrete objects, supporting a generalized role of the ventral ATLs in the identification and conceptual processing of multiple stimulus classes. PMID:27199711
ERIC Educational Resources Information Center
Cleary, Laura; Brady, Nuala; Fitzgerald, Michael; Gallagher, Louise
2015-01-01
Impaired face perception in autism spectrum disorders is thought to reflect a perceptual style characterized by componential rather than configural processing of faces. This study investigated face processing in adolescents with autism spectrum disorders using the Thatcher illusion, a perceptual phenomenon exhibiting "inversion effects"…
Evidence accumulation detected in BOLD signal using slow perceptual decision making.
Krueger, Paul M; van Vugt, Marieke K; Simen, Patrick; Nystrom, Leigh; Holmes, Philip; Cohen, Jonathan D
2017-04-01
We assessed whether evidence accumulation could be observed in the BOLD signal during perceptual decision making. This presents a challenge since the hemodynamic response is slow, while perceptual decisions are typically fast. Guided by theoretical predictions of the drift diffusion model, we slowed down decisions by penalizing participants for incorrect responses. Second, we distinguished BOLD activity related to stimulus detection (modeled using a boxcar) from activity related to integration (modeled using a ramp) by minimizing the collinearity of GLM regressors. This was achieved by dissecting a boxcar into its two most orthogonal components: an "up-ramp" and a "down-ramp." Third, we used a control condition in which stimuli and responses were similar to the experimental condition, but that did not engage evidence accumulation of the stimuli. The results revealed an absence of areas in parietal cortex that have been proposed to drive perceptual decision making but have recently come into question; and newly identified regions that are candidates for involvement in evidence accumulation. Previous fMRI studies have either used fast perceptual decision making, which precludes the measurement of evidence accumulation, or slowed down responses by gradually revealing stimuli. The latter approach confounds perceptual detection with evidence accumulation because accumulation is constrained by perceptual input. We slowed down the decision making process itself while leaving perceptual information intact. This provided a more sensitive and selective observation of brain regions associated with the evidence accumulation processes underlying perceptual decision making than previous methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Harnessing the wandering mind: the role of perceptual load.
Forster, Sophie; Lavie, Nilli
2009-06-01
Perceptual load is a key determinant of distraction by task-irrelevant stimuli (e.g., Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82). Here we establish the role of perceptual load in determining an internal form of distraction by task-unrelated thoughts (TUTs or "mind-wandering"). Four experiments demonstrated reduced frequency of TUTs with high compared to low perceptual load in a visual-search task. Alternative accounts in terms of increased demands on responses, verbal working memory or motivation were ruled out and clear effects of load were found for unintentional TUTs. Individual differences in load effects on internal (TUTs) and external (response-competition) distractors were correlated. These results suggest that exhausting attentional capacity in task-relevant processing under high perceptual load can reduce processing of task-irrelevant information from external and internal sources alike.
Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance
Cortese, Aurelio; Amano, Kaoru; Koizumi, Ai; Kawato, Mitsuo; Lau, Hakwan
2016-01-01
A central controversy in metacognition studies concerns whether subjective confidence directly reflects the reliability of perceptual or cognitive processes, as suggested by normative models based on the assumption that neural computations are generally optimal. This view enjoys popularity in the computational and animal literatures, but it has also been suggested that confidence may depend on a late-stage estimation dissociable from perceptual processes. Yet, at least in humans, experimental tools have lacked the power to resolve these issues convincingly. Here, we overcome this difficulty by using the recently developed method of decoded neurofeedback (DecNef) to systematically manipulate multivoxel correlates of confidence in a frontoparietal network. Here we report that bi-directional changes in confidence do not affect perceptual accuracy. Further psychophysical analyses rule out accounts based on simple shifts in reporting strategy. Our results provide clear neuroscientific evidence for the systematic dissociation between confidence and perceptual performance, and thereby challenge current theoretical thinking. PMID:27976739
Age Differences in Face Processing: The Role of Perceptual Degradation and Holistic Processing.
Boutet, Isabelle; Meinhardt-Injac, Bozana
2018-01-24
We simultaneously investigated the role of three hypotheses regarding age-related differences in face processing: perceptual degradation, impaired holistic processing, and an interaction between the two. Young adults (YA) aged 20-33-year olds, middle-age adults (MA) aged 50-64-year olds, and older adults (OA) aged 65-82-year olds were tested on the context congruency paradigm, which allows measurement of face-specific holistic processing across the life span (Meinhardt-Injac, Persike & Meinhardt, 2014. Acta Psychologica, 151, 155-163). Perceptual degradation was examined by measuring performance with faces that were not filtered (FSF), with faces filtered to preserve low spatial frequencies (LSF), and with faces filtered to preserve high spatial frequencies (HSF). We found that reducing perceptual signal strength had a greater impact on MA and OA for HSF faces, but not LSF faces. Context congruency effects were significant and of comparable magnitude across ages for FSF, LSF, and HSF faces. By using watches as control objects, we show that these holistic effects reflect face-specific mechanisms in all age groups. Our results support the perceptual degradation hypothesis for faces containing only HSF and suggest that holistic processing is preserved in aging even under conditions of reduced signal strength. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.
Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H
2012-11-27
This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.
Studer-Eichenberger, Esther; Studer-Eichenberger, Felix; Koenig, Thomas
2016-01-01
The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.
Perceptual Decision-Making as Probabilistic Inference by Neural Sampling.
Haefner, Ralf M; Berkes, Pietro; Fiser, József
2016-05-04
We address two main challenges facing systems neuroscience today: understanding the nature and function of cortical feedback between sensory areas and of correlated variability. Starting from the old idea of perception as probabilistic inference, we show how to use knowledge of the psychophysical task to make testable predictions for the influence of feedback signals on early sensory representations. Applying our framework to a two-alternative forced choice task paradigm, we can explain multiple empirical findings that have been hard to account for by the traditional feedforward model of sensory processing, including the task dependence of neural response correlations and the diverging time courses of choice probabilities and psychophysical kernels. Our model makes new predictions and characterizes a component of correlated variability that represents task-related information rather than performance-degrading noise. It demonstrates a normative way to integrate sensory and cognitive components into physiologically testable models of perceptual decision-making. Copyright © 2016 Elsevier Inc. All rights reserved.
Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.
Feldmann-Wüstefeld, Tobias; Schubö, Anna
2014-04-01
Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.
Shared mechanisms of perceptual learning and decision making.
Law, Chi-Tat; Gold, Joshua I
2010-04-01
Perceptual decisions require the brain to weigh noisy evidence from sensory neurons to form categorical judgments that guide behavior. Here we review behavioral and neurophysiological findings suggesting that at least some forms of perceptual learning do not appear to affect the response properties of neurons that represent the sensory evidence. Instead, improved perceptual performance results from changes in how the sensory evidence is selected and weighed to form the decision. We discuss the implications of this idea for possible sites and mechanisms of training-induced improvements in perceptual processing in the brain. Copyright © 2009 Cognitive Science Society, Inc.
Gender Differences in Neural Responses to Perceptually Invisible Fearful Face—An ERP Study
Lee, Seung A.; Kim, Chai-Youn; Shim, Miseon; Lee, Seung-Hwan
2017-01-01
Women tend to respond to emotional stimuli differently from men. This study aimed at investigating whether neural responses to perceptually “invisible” emotional stimuli differ between men and women by exploiting event-related potential (ERP). Forty healthy participants (21 women) were recruited for the main experiment. A control experiment was conducted by excluding nine (7 women) participants from the main experiment and replacing them with additional ten (6 women) participants (total 41 participants) where Beck's Anxiety Inventory (BAI) and Beck's Depression Inventory (BDI) scores were controlled. Using the visual backward masking paradigm, either a fearful or a neutral face stimulus was presented in varied durations (subthreshold, near-threshold, or suprathreshold) followed by a mask. Participants performed a two-alternative forced choice (2-AFC) emotion discrimination task on each face. Behavioral analysis showed that participants were unaware of masked stimuli of which duration was the shortest and, therefore, processed at subthreshold. Nevertheless, women showed significantly larger response in P100 amplitude to subthreshold fearful faces than men. This result remained consistent in the control experiment. Our findings indicate gender-differences in neural response to subthreshold emotional face, which is reflected in the early processing stage. PMID:28184189
Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M.
2010-01-01
Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories). Findings indicated distinct areas of activation that differed for faces and names in regions typically associated with pre-semantic perceptual processes. In contrast, overlapping brain regions were activated in areas associated with the retrieval of biographical knowledge and associated social affective features. Specifically, activation for famous faces was primarily right lateralized and famous names were left lateralized. However, for both stimuli, similar areas of bilateral activity were observed in the early phases of perceptual processing. Activation for fame, irrespective of stimulus modality, activated an extensive left hemisphere network, with bilateral activity observed in the hippocampi, posterior cingulate, and middle temporal gyri. Findings are discussed within the framework of recent proposals concerning the neural network of person identification. PMID:20167415
ERIC Educational Resources Information Center
Peters, Donald L.; Willis, Sherry L.
This book summarizes theory and discusses major issues pertaining to child development in the early childhood years. Chapter I provides an introduction to the conceptual framework and major theories of child development. Chapter II deals with motor, sensory, and perceptual development. Chapter III focuses on the cognitive-developmental theory of…
From perceptual to lexico-semantic analysis--cortical plasticity enabling new levels of processing.
Schlaffke, Lara; Rüther, Naima N; Heba, Stefanie; Haag, Lauren M; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian; Schmidt-Wilcke, Tobias
2015-11-01
Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico-semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico-semantic analysis). Perceptual and lexico-semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico-semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico-semantic stimulus analysis. Importantly, the activation pattern remains task-related LOP and is thus the result of a decision process as to which LOP to engage in. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
From perceptual to lexico‐semantic analysis—cortical plasticity enabling new levels of processing
Schlaffke, Lara; Rüther, Naima N.; Heba, Stefanie; Haag, Lauren M.; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian
2015-01-01
Abstract Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico‐semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico‐semantic analysis). Perceptual and lexico‐semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico‐semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico‐semantic stimulus analysis. Importantly, the activation pattern remains task‐related LOP and is thus the result of a decision process as to which LOP to engage in. Hum Brain Mapp 36:4512–4528, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc. PMID:26304153
Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig
2013-06-01
Verbal stimuli often induce right-hemispheric activation in patients with aphasia after left-hemispheric stroke. This right-hemispheric activation is commonly attributed to functional reorganization within the language system. Yet previous evidence suggests that functional activation in right-hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required subjects to decide whether a stimulus is natural or man-made; the phonologic decision required a decision on whether a stimulus contains two or three syllables. Compared to phonologic or semantic decision, nonlinguistic perceptual decisions resulted in a stronger right-hemispheric activation. Specifically, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may, in some instances, be driven by a "nonlinguistic perceptual processing" mode that focuses on nonlinguistic word features. This raises the possibility that stronger activation of right inferior frontal areas during language tasks in aphasic patients with left-hemispheric stroke may at least partially reflect increased attentional focus on nonlinguistic perceptual aspects of language. Copyright © 2012 Wiley Periodicals, Inc.
Sheridan, Heather; Reingold, Eyal M
2012-12-01
The present study used eye tracking methodology to examine rereading benefits for spatially transformed text. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either applying the same type of transformation to the word during the first and second presentations (i.e., the congruent condition), or employing two different types of transformations across the two presentations of the word (i.e., the incongruent condition). Perceptual specificity effects were demonstrated such that fixation times for the second presentation of the target word were shorter for the congruent condition compared to the incongruent condition. Moreover, we demonstrated an additional perceptually non-specific effect such that second reading fixation times were shorter for the incongruent condition relative to a baseline condition that employed a normal typography (i.e., non-transformed) during the first presentation and a transformation during the second presentation. Both of these effects (i.e., perceptually specific and perceptually non-specific) were similar in magnitude for high and low frequency words, and both effects persisted across a 1 week lag between the first and second readings. We discuss the present findings in the context of the distinction between conscious and unconscious memory, and the distinction between perceptually versus conceptually driven processing. Copyright © 2012 Elsevier Inc. All rights reserved.
Cui, Xiaoyu; Gao, Chuanji; Zhou, Jianshe; Guo, Chunyan
2016-09-28
It has been widely shown that recognition memory includes two distinct retrieval processes: familiarity and recollection. Many studies have shown that recognition memory can be facilitated when there is a perceptual match between the studied and the tested items. Most event-related potential studies have explored the perceptual match effect on familiarity on the basis of the hypothesis that the specific event-related potential component associated with familiarity is the FN400 (300-500 ms mid-frontal effect). However, it is currently unclear whether the FN400 indexes familiarity or conceptual implicit memory. In addition, on the basis of the findings of a previous study, the so-called perceptual manipulations in previous studies may also involve some conceptual alterations. Therefore, we sought to determine the influence of perceptual manipulation by color changes on recognition memory when the perceptual or the conceptual processes were emphasized. Specifically, different instructions (perceptually or conceptually oriented) were provided to the participants. The results showed that color changes may significantly affect overall recognition memory behaviorally and that congruent items were recognized with a higher accuracy rate than incongruent items in both tasks, but no corresponding neural changes were found. Despite the evident familiarity shown in the two tasks (the behavioral performance of recognition memory was much higher than at the chance level), the FN400 effect was found in conceptually oriented tasks, but not perceptually oriented tasks. It is thus highly interesting that the FN400 effect was not induced, although color manipulation of recognition memory was behaviorally shown, as seen in previous studies. Our findings of the FN400 effect for the conceptual but not perceptual condition support the explanation that the FN400 effect indexes conceptual implicit memory.
Autism-specific covariation in perceptual performances: "g" or "p" factor?
Meilleur, Andrée-Anne S; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent
2014-01-01
Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor). Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor), which may drive perceptual abilities differently in autistic and non-autistic individuals.
Autism-Specific Covariation in Perceptual Performances: “g” or “p” Factor?
Meilleur, Andrée-Anne S.; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent
2014-01-01
Background Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. Methods We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. Results In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Conclusions Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or “g” factor). Instead, this residual covariation is accounted for by a common perceptual process (or “p” factor), which may drive perceptual abilities differently in autistic and non-autistic individuals. PMID:25117450
Subjective Confidence in Perceptual Judgments: A Test of the Self-Consistency Model
ERIC Educational Resources Information Center
Koriat, Asher
2011-01-01
Two questions about subjective confidence in perceptual judgments are examined: the bases for these judgments and the reasons for their accuracy. Confidence in perceptual judgments has been claimed to rest on qualitatively different processes than confidence in memory tasks. However, predictions from a self-consistency model (SCM), which had been…
Object-Based Attention Overrides Perceptual Load to Modulate Visual Distraction
ERIC Educational Resources Information Center
Cosman, Joshua D.; Vecera, Shaun P.
2012-01-01
The ability to ignore task-irrelevant information and overcome distraction is central to our ability to efficiently carry out a number of tasks. One factor shown to strongly influence distraction is the perceptual load of the task being performed; as the perceptual load of task-relevant information processing increases, the likelihood that…
The Relationship Between Perceptual Development and the Acquisition of Reading Skill. Final Report.
ERIC Educational Resources Information Center
Gibson, Eleanor J.
The work described in this report is aimed at understanding the role of cognitive development, especially perceptual development, in the reading process and its acquisition. The papers included describe: (1) a theory of perceptual learning, (2) an investigation of the perception of morphological information, (3) the role of categorical semantic…
Koshino, Hideya
2017-01-01
Working memory and attention are closely related. Recent research has shown that working memory can be viewed as internally directed attention. Working memory can affect attention in at least two ways. One is the effect of working memory load on attention, and the other is the effect of working memory contents on attention. In the present study, an interaction between working memory contents and perceptual load in distractor processing was investigated. Participants performed a perceptual load task in a standard form in one condition (Single task). In the other condition, a response-related distractor was maintained in working memory, rather than presented in the same stimulus display as a target (Dual task). For the Dual task condition, a significant compatibility effect was found under high perceptual load; however, there was no compatibility effect under low perceptual load. These results suggest that the way the contents of working memory affect visual search depends on perceptual load. Copyright © 2016 Elsevier B.V. All rights reserved.
Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.
Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim
2009-08-01
This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.
Sreenivasan, Kartik K; Jha, Amishi P
2007-01-01
Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.
Congenital prosopagnosia: face-blind from birth.
Behrmann, Marlene; Avidan, Galia
2005-04-01
Congenital prosopagnosia refers to the deficit in face processing that is apparent from early childhood in the absence of any underlying neurological basis and in the presence of intact sensory and intellectual function. Several such cases have been described recently and elucidating the mechanisms giving rise to this impairment should aid our understanding of the psychological and neural mechanisms mediating face processing. Fundamental questions include: What is the nature and extent of the face-processing deficit in congenital prosopagnosia? Is the deficit related to a more general perceptual deficit such as the failure to process configural information? Are any neural alterations detectable using fMRI, ERP or structural analyses of the anatomy of the ventral visual cortex? We discuss these issues in relation to the existing literature and suggest directions for future research.
Speed of perceptual grouping in acquired brain injury.
Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan
2014-09-01
Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection.
Huang-Pollock, Cynthia L; Nigg, Joel T; Carr, Thomas H
2005-11-01
Whether selective attention is a primary deficit in childhood Attention Deficit Hyperactivity Disorder (ADHD) remains in active debate. We used the perceptual load paradigm to examine both early and late selective attention in children with the Primarily Inattentive (ADHD-I) and Combined subtypes (ADHD-C) of ADHD. No evidence emerged for selective attention deficits in either of the subtypes, but sluggish cognitive tempo was associated with abnormal early selection. At least some, and possibly most, children with DSM-IV ADHD have normal selective attention. Results support the move away from theories of attention dysfunction as primary in ADHD-C. In ADHD-I, this was one of the first formal tests of posterior attention network dysfunction, and results did not support that theory. However, ADHD children with sluggish cognitive tempo (SCT) warrant more study for possible early selective attention deficits.
Perceptual dehumanization of faces is activated by norm violations and facilitates norm enforcement.
Fincher, Katrina M; Tetlock, Philip E
2016-02-01
This article uses methods drawn from perceptual psychology to answer a basic social psychological question: Do people process the faces of norm violators differently from those of others--and, if so, what is the functional significance? Seven studies suggest that people process these faces different and the differential processing makes it easier to punish norm violators. Studies 1 and 2 use a recognition-recall paradigm that manipulated facial-inversion and spatial frequency to show that people rely upon face-typical processing less when they perceive norm violators' faces. Study 3 uses a facial composite task to demonstrate that the effect is actor dependent, not action dependent, and to suggest that configural processing is the mechanism of perceptual change. Studies 4 and 5 use offset faces to show that configural processing is only attenuated when they belong to perpetrators who are culpable. Studies 6 and 7 show that people find it easier to punish inverted faces and harder to punish faces displayed in low spatial frequency. Taken together, these data suggest a bidirectional flow of causality between lower-order perceptual and higher-order cognitive processes in norm enforcement. PsycINFO Database Record (c) 2016 APA, all rights reserved.
The impact of emotion on perception: bias or enhanced processing?
Zeelenberg, René; Wagenmakers, Eric-Jan; Rotteveel, Mark
2006-04-01
Recent studies have shown that emotionally significant stimuli are often better identified than neutral stimuli. It is not clear, however, whether these results are due to enhanced perceptual processing or to a bias favoring the identification of emotionally significant stimuli over neutral stimuli. The present study used a two-alternative forced-choice perceptual identification task to disentangle the effects of bias and enhanced processing. We found that emotionally significant targets were better identified than neutral targets. In contrast, the emotional significance of the foil alternative had no effect on performance. The present results support the hypothesis that perceptual encoding of emotionally significant stimuli is enhanced.
The Impact of Perceptual Load on the Non-Conscious Processing of Fearful Faces
Wang, Lili; Feng, Chunliang; Mai, Xiaoqin; Jia, Lina; Zhu, Xiangru; Luo, Wenbo; Luo, Yue-jia
2016-01-01
Emotional stimuli can be processed without consciousness. In the current study, we used event-related potentials (ERPs) to assess whether perceptual load influences non-conscious processing of fearful facial expressions. Perceptual load was manipulated using a letter search task with the target letter presented at the fixation point, while facial expressions were presented peripherally and masked to prevent conscious awareness. The letter string comprised six letters (X or N) that were identical (low load) or different (high load). Participants were instructed to discriminate the letters at fixation or the facial expression (fearful or neutral) in the periphery. Participants were faster and more accurate at detecting letters in the low load condition than in the high load condition. Fearful faces elicited a sustained positivity from 250 ms to 700 ms post-stimulus over fronto-central areas during the face discrimination and low-load letter discrimination conditions, but this effect was completely eliminated during high-load letter discrimination. Our findings imply that non-conscious processing of fearful faces depends on perceptual load, and attentional resources are necessary for non-conscious processing. PMID:27149273
A Theory of Perceptual Learning: Uncertainty Reduction and Reading.
ERIC Educational Resources Information Center
Henk, William A.
Behaviorism cannot adequately explain language processing. A synthesis of the psycholinguistic and information processing approaches of cognitive psychology, however, can provide the basis for a speculative analysis of reading, if this synthesis is tempered by a perceptual learning theory of uncertainty reduction. Theorists of information…
Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.
Murphy, Gillian; Greene, Ciara M
2016-01-01
Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.
Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions
Murphy, Gillian; Greene, Ciara M.
2016-01-01
Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628
Metacognitive Confidence Increases with, but Does Not Determine, Visual Perceptual Learning.
Zizlsperger, Leopold; Kümmel, Florian; Haarmeier, Thomas
2016-01-01
While perceptual learning increases objective sensitivity, the effects on the constant interaction of the process of perception and its metacognitive evaluation have been rarely investigated. Visual perception has been described as a process of probabilistic inference featuring metacognitive evaluations of choice certainty. For visual motion perception in healthy, naive human subjects here we show that perceptual sensitivity and confidence in it increased with training. The metacognitive sensitivity-estimated from certainty ratings by a bias-free signal detection theoretic approach-in contrast, did not. Concomitant 3Hz transcranial alternating current stimulation (tACS) was applied in compliance with previous findings on effective high-low cross-frequency coupling subserving signal detection. While perceptual accuracy and confidence in it improved with training, there were no statistically significant tACS effects. Neither metacognitive sensitivity in distinguishing between their own correct and incorrect stimulus classifications, nor decision confidence itself determined the subjects' visual perceptual learning. Improvements of objective performance and the metacognitive confidence in it were rather determined by the perceptual sensitivity at the outset of the experiment. Post-decision certainty in visual perceptual learning was neither independent of objective performance, nor requisite for changes in sensitivity, but rather covaried with objective performance. The exact functional role of metacognitive confidence in human visual perception has yet to be determined.
Enhanced tactile encoding and memory recognition in congenital blindness.
D'Angiulli, Amedeo; Waraich, Paul
2002-06-01
Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.
Relationship of Perceptual Learning Styles and Academic Achievement among High School Students
ERIC Educational Resources Information Center
Rani, K. V.
2016-01-01
Perceptual Learning styles are different ways in which people process the information in the course of learning, intimately involved in producing more effective response stimuli. The objective of the study was to find out the correlation between the variables of Perceptual learning style in total and with its dimensions to Academic achievement.…
ERIC Educational Resources Information Center
Ratcliff, Roger; Smith, Philip L.
2010-01-01
The authors report 9 new experiments and reanalyze 3 published experiments that investigate factors affecting the time course of perceptual processing and its effects on subsequent decision making. Stimuli in letter-discrimination and brightness-discrimination tasks were degraded with static and dynamic noise. The onset and the time course of…
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
Kharlamov, Viktor; Campbell, Kenneth; Kazanina, Nina
2011-11-01
Speech sounds are not always perceived in accordance with their acoustic-phonetic content. For example, an early and automatic process of perceptual repair, which ensures conformity of speech inputs to the listener's native language phonology, applies to individual input segments that do not exist in the native inventory or to sound sequences that are illicit according to the native phonotactic restrictions on sound co-occurrences. The present study with Russian and Canadian English speakers shows that listeners may perceive phonetically distinct and licit sound sequences as equivalent when the native language system provides robust evidence for mapping multiple phonetic forms onto a single phonological representation. In Russian, due to an optional but productive t-deletion process that affects /stn/ clusters, the surface forms [sn] and [stn] may be phonologically equivalent and map to a single phonological form /stn/. In contrast, [sn] and [stn] clusters are usually phonologically distinct in (Canadian) English. Behavioral data from identification and discrimination tasks indicated that [sn] and [stn] clusters were more confusable for Russian than for English speakers. The EEG experiment employed an oddball paradigm with nonwords [asna] and [astna] used as the standard and deviant stimuli. A reliable mismatch negativity response was elicited approximately 100 msec postchange in the English group but not in the Russian group. These findings point to a perceptual repair mechanism that is engaged automatically at a prelexical level to ensure immediate encoding of speech inputs in phonological terms, which in turn enables efficient access to the meaning of a spoken utterance.
Neurophysiological evidence for the influence of past experience on figure-ground perception.
Trujillo, Logan T; Allen, John J B; Schnyer, David M; Peterson, Mary A
2010-02-10
A fundamental aspect of perceptual organization entails segregating visual input into shaped figures presented against shapeless backgrounds; an outcome termed "figure-ground perception" or "shape assignment." The present study examined how early in processing past experience exerts an influence on shape assignment. Event-related potential (ERP) measures of brain activity were recorded while observers viewed silhouettes of novel objects that differed in whether or not a familiar shape was suggested on the outside-the groundside-of their bounding edges (experimental versus control silhouettes, respectively). Observers perceived both types of silhouettes as novel shapes and were unaware of the familiar shape suggested on the groundside of experimental silhouettes. Nevertheless, we expected that the familiar shape would be implicitly identified early in processing and would compete for figural status with the novel shape on the inside. Early (106-156 ms) ERPs were larger for experimental silhouettes than for control silhouettes lacking familiarity cues. The early ERP difference occurred during a time interval within which edge-segmentation-dependent response differences have been observed in previous neurophysiological investigations of figure-ground perception. These results provide the first neurophysiological evidence for an influence of past experience during the earliest stages of shape assignment.
Implicit and explicit categorization of natural scenes.
Codispoti, Maurizio; Ferrari, Vera; De Cesarei, Andrea; Cardinale, Rossella
2006-01-01
Event-related potential (ERP) studies have consistently found that emotionally arousing (pleasant and unpleasant) pictures elicit a larger late positive potential (LPP) than neutral pictures in a window from 400 to 800 ms after picture onset. In addition, an early ERP component has been reported to vary with emotional arousal in a window from about 150 to 300 ms with affective, compared to neutral stimuli, prompting significantly less positivity over occipito-temporal sites. Similar early and late ERP components have been found in explicit categorization tasks, suggesting that selective attention to target features results in similar cortical changes. Several studies have shown that the affective modulation of the LPP persisted even when the same pictures are repeated several times, when they are presented as distractors, or when participants are engaged in a competing task. These results indicate that categorization of affective stimuli is an obligatory process. On the other hand, perceptual factors (e.g., stimulus size) seem to affect the early ERP component but not the affective modulation of the LPP. Although early and late ERP components vary with stimulus relevance, given that they are differentially affected by stimulus and task manipulations, they appear to index different facets of picture processing.
Schmetz, Emilie; Magis, David; Detraux, Jean-Jacques; Barisnikov, Koviljka; Rousselle, Laurence
2018-03-02
The present study aims to assess how the processing of basic visual perceptual (VP) components (length, surface, orientation, and position) develops in typically developing (TD) children (n = 215, 4-14 years old) and adults (n = 20, 20-25 years old), and in children with cerebral palsy (CP) (n = 86, 5-14 years old) using the first four subtests of the Battery for the Evaluation of Visual Perceptual and Spatial processing in children. Experiment 1 showed that these four basic VP processes follow distinct developmental trajectories in typical development. Experiment 2 revealed that children with CP present global and persistent deficits for the processing of basic VP components when compared with TD children matched on chronological age and nonverbal reasoning abilities.
Soto, Fabian A; Vucovich, Lauren; Musgrave, Robert; Ashby, F Gregory
2015-02-01
A common question in perceptual science is to what extent different stimulus dimensions are processed independently. General recognition theory (GRT) offers a formal framework via which different notions of independence can be defined and tested rigorously, while also dissociating perceptual from decisional factors. This article presents a new GRT model that overcomes several shortcomings with previous approaches, including a clearer separation between perceptual and decisional processes and a more complete description of such processes. The model assumes that different individuals share similar perceptual representations, but vary in their attention to dimensions and in the decisional strategies they use. We apply the model to the analysis of interactions between identity and emotional expression during face recognition. The results of previous research aimed at this problem have been disparate. Participants identified four faces, which resulted from the combination of two identities and two expressions. An analysis using the new GRT model showed a complex pattern of dimensional interactions. The perception of emotional expression was not affected by changes in identity, but the perception of identity was affected by changes in emotional expression. There were violations of decisional separability of expression from identity and of identity from expression, with the former being more consistent across participants than the latter. One explanation for the disparate results in the literature is that decisional strategies may have varied across studies and influenced the results of tests of perceptual interactions, as previous studies lacked the ability to dissociate between perceptual and decisional interactions.
Selective Attention in Early Dementia of Alzheimer Type
ERIC Educational Resources Information Center
Fernandez-Duque, Diego; Black, Sandra E.
2008-01-01
This study explored possible deficits in selective attention brought about by Dementia of Alzheimer Type (DAT). In three experiments, we tested patients with early DAT, healthy elderly, and young adults under low memory demands to assess perceptual filtering, conflict resolution, and set switching abilities. We found no evidence of impaired…
Bethany Ann Teachman: Award for Distinguished Scientific Early Career Contributions to Psychology
ERIC Educational Resources Information Center
American Psychologist, 2012
2012-01-01
Presents a short biography of one of the winners of the American Psychological Association's Award for Distinguished Scientific Early Career Contributions to Psychology. The 2012 winner is Bethany Ann Teachman for transformative, translational research integrating social cognition, life-span, and perceptual approaches to investigating clinical…
Asymmetries in Early Word Recognition: The Case of Stops and Fricatives
ERIC Educational Resources Information Center
Altvater-Mackensen, Nicole; van der Feest, Suzanne V. H.; Fikkert, Paula
2014-01-01
Toddlers' discrimination of native phonemic contrasts is generally unproblematic. Yet using those native contrasts in word learning and word recognition can be more challenging. In this article, we investigate perceptual versus phonological explanations for asymmetrical patterns found in early word recognition. We systematically investigated the…
Guiding Visual Attention in Decision Making--Verbal Instructions versus Flicker Cueing
ERIC Educational Resources Information Center
Canal-Bruland, Rouwen
2009-01-01
Perceptual-cognitive processes play an important role in open, fast-paced, interceptive sports such as tennis, basketball, and soccer. Visual information processing has been shown to distinguish skilled from less skilled athletes. Research on the perceptual demands of sports performance has raised questions regarding athletes' visual information…
Information-Processing Modules and Their Relative Modality Specificity
ERIC Educational Resources Information Center
Anderson, John R.; Qin, Yulin; Jung, Kwan-Jin; Carter, Cameron S.
2007-01-01
This research uses fMRI to understand the role of eight cortical regions in a relatively complex information-processing task. Modality of input (visual versus auditory) and modality of output (manual versus vocal) are manipulated. Two perceptual regions (auditory cortex and fusiform gyrus) only reflected perceptual encoding. Two motor regions were…
Beta oscillations define discrete perceptual cycles in the somatosensory domain.
Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim
2015-09-29
Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8-20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain.
High perceptual load leads to both reduced gain and broader orientation tuning
Stolte, Moritz; Bahrami, Bahador; Lavie, Nilli
2014-01-01
Due to its limited capacity, visual perception depends on the allocation of attention. The resultant phenomena of inattentional blindness, accompanied by reduced sensory visual cortex response to unattended stimuli in conditions of high perceptual load in the attended task, are now well established (Lavie, 2005; Lavie, 2010, for reviews). However, the underlying mechanisms for these effects remain to be elucidated. Specifically, is reduced perceptual processing under high perceptual load a result of reduced sensory signal gain, broader tuning, or both? We examined this question with psychophysical measures of orientation tuning under different levels of perceptual load in the task performed. Our results show that increased perceptual load leads to both reduced sensory signal and broadening of tuning. These results clarify the effects of attention on elementary visual perception and suggest that high perceptual load is critical for attentional effects on sensory tuning. PMID:24610952
Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.
Koshino, Hideya; Olid, Pilar
2015-01-01
The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.
Perceptual organization in computer vision - A review and a proposal for a classificatory structure
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1993-01-01
The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.
Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried
2013-01-01
Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.
Basic perceptual changes that alter meaning and neural correlates of recognition memory
Gao, Chuanji; Hermiller, Molly S.; Voss, Joel L.; Guo, Chunyan
2015-01-01
It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes (“squiggles”) were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of memory. These findings are relevant to understanding similarities and distinctions between perceptual and conceptual processing as well as the functional interpretation of neural correlates of recognition memory. PMID:25717298
Perceptual and conceptual information processing in schizophrenia and depression.
Dreben, E K; Fryer, J H; McNair, D M
1995-04-01
Schizophrenic patients (n = 20), depressive patients (n = 20), and normal adults (n = 20) were compared on global vs local analyses of perceptual information using tachistoscopic tasks and on top-down vs bottom-up conceptual processing using card-sort tasks. The schizophrenic group performed more poorly on tasks requiring either global analyses (counting lines when distracting circles were present) or top-down conceptual processing (rule learning) than they did on tasks requiring local analyses (counting heterogeneous lines) or bottom-up processing (attribute identification). The schizophrenic group appeared not to use conceptually guided processing. Normal adults showed the reverse pattern. The depressive group performed similarly to the schizophrenic group on perceptual tasks but closer to the normal group on conceptual tasks, thereby appearing to be less dependent on a particular information-processing strategy. These deficits in organizational strategy may be related to the use of available processing resources as well as the allocation of attention.
Digital visual communications using a Perceptual Components Architecture
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1991-01-01
The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.
Perceptual Anomalies in Schizophrenia: Integrating Phenomenology and Cognitive Neuroscience
Uhlhaas, Peter J.; Mishara, Aaron L.
2007-01-01
From phenomenological and experimental perspectives, research in schizophrenia has emphasized deficits in “higher” cognitive functions, including attention, executive function, as well as memory. In contrast, general consensus has viewed dysfunctions in basic perceptual processes to be relatively unimportant in the explanation of more complex aspects of the disorder, including changes in self-experience and the development of symptoms such as delusions. We present evidence from phenomenology and cognitive neuroscience that changes in the perceptual field in schizophrenia may represent a core impairment. After introducing the phenomenological approach to perception (Husserl, the Gestalt School), we discuss the views of Paul Matussek, Klaus Conrad, Ludwig Binswanger, and Wolfgang Blankenburg on perception in schizophrenia. These 4 psychiatrists describe changes in perception and automatic processes that are related to the altered experience of self. The altered self-experience, in turn, may be responsible for the emergence of delusions. The phenomenological data are compatible with current research that conceptualizes dysfunctions in perceptual processing as a deficit in the ability to combine stimulus elements into coherent object representations. Relationships of deficits in perceptual organization to cognitive and social dysfunction as well as the possible neurobiological mechanisms are discussed. PMID:17118973
Temporal expectancy in the context of a theory of visual attention.
Vangkilde, Signe; Petersen, Anders; Bundesen, Claus
2013-10-19
Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue-stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s(-1)) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations.
Variability of perceptual multistability: from brain state to individual trait
Kleinschmidt, Andreas; Sterzer, Philipp; Rees, Geraint
2012-01-01
Few phenomena are as suitable as perceptual multistability to demonstrate that the brain constructively interprets sensory input. Several studies have outlined the neural circuitry involved in generating perceptual inference but only more recently has the individual variability of this inferential process been appreciated. Studies of the interaction of evoked and ongoing neural activity show that inference itself is not merely a stimulus-triggered process but is related to the context of the current brain state into which the processing of external stimulation is embedded. As brain states fluctuate, so does perception of a given sensory input. In multistability, perceptual fluctuation rates are consistent for a given individual but vary considerably between individuals. There has been some evidence for a genetic basis for these individual differences and recent morphometric studies of parietal lobe regions have identified neuroanatomical substrates for individual variability in spontaneous switching behaviour. Moreover, disrupting the function of these latter regions by transcranial magnetic stimulation yields systematic interference effects on switching behaviour, further arguing for a causal role of these regions in perceptual inference. Together, these studies have advanced our understanding of the biological mechanisms by which the brain constructs the contents of consciousness from sensory input. PMID:22371620
Camera perspective bias in videotaped confessions: experimental evidence of its perceptual basis.
Ratcliff, Jennifer J; Lassiter, G Daniel; Schmidt, Heather C; Snyder, Celeste J
2006-12-01
The camera perspective from which a criminal confession is videotaped influences later assessments of its voluntariness and the suspect's guilt. Previous research has suggested that this camera perspective bias is rooted in perceptual rather than conceptual processes, but these data are strictly correlational. In 3 experiments, the authors directly manipulated perceptual processing to provide stronger evidence of its mediational role. Prior to viewing a videotape of a simulated confession, participants were shown a photograph of the confessor's apparent victim. Participants in a perceptual interference condition were instructed to visualize the image of the victim in their minds while viewing the videotape; participants in a conceptual interference condition were instructed instead to rehearse an 8-digit number. Because mental imagery and actual perception draw on the same available resources, the authors anticipated that the former, but not the latter, interference task would disrupt the camera perspective bias, if indeed it were perceptually mediated. Results supported this conclusion.
Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng
2010-01-01
We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388
Prior expectations facilitate metacognition for perceptual decision.
Sherman, M T; Seth, A K; Barrett, A B; Kanai, R
2015-09-01
The influential framework of 'predictive processing' suggests that prior probabilistic expectations influence, or even constitute, perceptual contents. This notion is evidenced by the facilitation of low-level perceptual processing by expectations. However, whether expectations can facilitate high-level components of perception remains unclear. We addressed this question by considering the influence of expectations on perceptual metacognition. To isolate the effects of expectation from those of attention we used a novel factorial design: expectation was manipulated by changing the probability that a Gabor target would be presented; attention was manipulated by instructing participants to perform or ignore a concurrent visual search task. We found that, independently of attention, metacognition improved when yes/no responses were congruent with expectations of target presence/absence. Results were modeled under a novel Bayesian signal detection theoretic framework which integrates bottom-up signal propagation with top-down influences, to provide a unified description of the mechanisms underlying perceptual decision and metacognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Roberts, Katherine L.; Allen, Harriet A.
2016-01-01
Ageing is associated with declines in both perception and cognition. We review evidence for an interaction between perceptual and cognitive decline in old age. Impoverished perceptual input can increase the cognitive difficulty of tasks, while changes to cognitive strategies can compensate, to some extent, for impaired perception. While there is strong evidence from cross-sectional studies for a link between sensory acuity and cognitive performance in old age, there is not yet compelling evidence from longitudinal studies to suggest that poor perception causes cognitive decline, nor to demonstrate that correcting sensory impairment can improve cognition in the longer term. Most studies have focused on relatively simple measures of sensory (visual and auditory) acuity, but more complex measures of suprathreshold perceptual processes, such as temporal processing, can show a stronger link with cognition. The reviewed evidence underlines the importance of fully accounting for perceptual deficits when investigating cognitive decline in old age. PMID:26973514
The effect of space flight on spatial orientation
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.; Satake, Hirotaka
1992-01-01
Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.
Nicotine facilitates memory consolidation in perceptual learning.
Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W
2013-01-01
Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Bingcan; Mao, Xinrui; Wang, Yujuan; Guo, Chunyan
2017-01-01
It is generally accepted that associative recognition memory is supported by recollection. In addition, recent research indicates that familiarity can support associative memory, especially when two items are unitized into a single item. Both perceptual and conceptual manipulations can be used to unitize items, but few studies have compared these two methods of unitization directly. In the present study, we investigated the effects of familiarity and recollection on successful retrieval of items that were unitized perceptually or conceptually. Participants were instructed to remember either a Chinese two-character compound or unrelated word-pairs, which were presented simultaneously or sequentially. Participants were then asked to recognize whether word-pairs were intact or rearranged. Event-related potential (ERP) recordings were performed during the recognition phase of the study. Two-character compounds were better discriminated than unrelated word-pairs and simultaneous presentation was found to elicit better discrimination than sequential presentation for unrelated word-pairs only. ERP recordings indicated that the early intact/rearranged effects (FN400), typically associated with familiarity, were elicited in compound word-pairs with both simultaneous and sequential presentation, and in simultaneously presented unrelated word-pairs, but not in sequentially presented unrelated word-pairs. In contrast, the late positive complex (LPC) effects associated with recollection were elicited in all four conditions. Together, these results indicate that while the engagement of familiarity in associative recognition is affected by both perceptual and conceptual unitization, conceptual unitization promotes a higher level of unitization (LOU). In addition, the engagement of recollection was not affected by unitized manipulations. It should be noted, however, that due to experimental design, the effects presented here may be due to semantic rather than episodic memory and future studies should take this into consideration when manipulating rearranged pairs. PMID:28400723
"The Mask Who Wasn't There": Visual Masking Effect with the Perceptual Absence of the Mask
ERIC Educational Resources Information Center
Rey, Amandine Eve; Riou, Benoit; Muller, Dominique; Dabic, Stéphanie; Versace, Rémy
2015-01-01
Does a visual mask need to be perceptually present to disrupt processing? In the present research, we proposed to explore the link between perceptual and memory mechanisms by demonstrating that a typical sensory phenomenon (visual masking) can be replicated at a memory level. Experiment 1 highlighted an interference effect of a visual mask on the…
Improving Perception to Make Distant Connections Closer
Goldstone, Robert L.; Landy, David; Brunel, Lionel C.
2011-01-01
One of the challenges for perceptually grounded accounts of high-level cognition is to explain how people make connections and draw inferences between situations that superficially have little in common. Evidence suggests that people draw these connections even without having explicit, verbalizable knowledge of their bases. Instead, the connections are based on sub-symbolic representations that are grounded in perception, action, and space. One reason why people are able to spontaneously see relations between situations that initially appear to be unrelated is that their eventual perceptions are not restricted to initial appearances. Training and strategic deployment allow our perceptual processes to deliver outputs that would have otherwise required abstract or formal reasoning. Even without people having any privileged access to the internal operations of perceptual modules, these modules can be systematically altered so as to better serve our high-level reasoning needs. Moreover, perceptually based processes can be altered in a number of ways to closely approximate formally sanctioned computations. To be concrete about mechanisms of perceptual change, we present 21 illustrations of ways in which we alter, adjust, and augment our perceptual systems with the intention of having them better satisfy our needs. PMID:22207861
Perceptual learning: top to bottom.
Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R
2014-06-01
Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Global processing in amblyopia: a review
Hamm, Lisa M.; Black, Joanna; Dai, Shuan; Thompson, Benjamin
2014-01-01
Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing. PMID:24987383
Attenuation of deep semantic processing during mind wandering: an event-related potential study.
Xu, Judy; Friedman, David; Metcalfe, Janet
2018-03-21
Although much research shows that early sensory and attentional processing is affected by mind wandering, the effect of mind wandering on deep (i.e. semantic) processing is relatively unexplored. To investigate this relation, we recorded event-related potentials as participants studied English-Spanish word pairs, one at a time, while being intermittently probed for whether they were 'on task' or 'mind wandering'. Both perceptual processing, indexed by the P2 component, and deep processing, indexed by a late, sustained slow wave maximal at parietal electrodes, was attenuated during periods preceding participants' mind wandering reports. The pattern when participants were on task, rather than mind wandering, is similar to the subsequent memory or difference in memory effect. These results support previous findings of sensory attenuation during mind wandering, and extend them to a long-duration slow wave by suggesting that the deeper and more sustained levels of processing are also disrupted.
Do People Who Became Blind Early in Life Develop a Better Sense of Smell? A Psychophysical Study
ERIC Educational Resources Information Center
Cuevas, Isabel; Plaza, Paula; Rombaux, Phillippe; Collignon, Olivier; De Volder, Anne G.; Renier, Laurent
2010-01-01
Using a set of psychophysical tests, we compared the olfactory abilities of 8 persons who became blind early in life and 16 sighted persons in a control group who were matched for age, sex, and handedness. The results indicated that those who became blind early in life developed compensatory perceptual mechanisms in the olfactory domain that…
Deroost, Natacha; Coomans, Daphné
2018-02-01
We examined the role of sequence awareness in a pure perceptual sequence learning design. Participants had to react to the target's colour that changed according to a perceptual sequence. By varying the mapping of the target's colour onto the response keys, motor responses changed randomly. The effect of sequence awareness on perceptual sequence learning was determined by manipulating the learning instructions (explicit versus implicit) and assessing the amount of sequence awareness after the experiment. In the explicit instruction condition (n = 15), participants were instructed to intentionally search for the colour sequence, whereas in the implicit instruction condition (n = 15), they were left uninformed about the sequenced nature of the task. Sequence awareness after the sequence learning task was tested by means of a questionnaire and the process-dissociation-procedure. The results showed that the instruction manipulation had no effect on the amount of perceptual sequence learning. Based on their report to have actively applied their sequence knowledge during the experiment, participants were subsequently regrouped in a sequence strategy group (n = 14, of which 4 participants from the implicit instruction condition and 10 participants from the explicit instruction condition) and a no-sequence strategy group (n = 16, of which 11 participants from the implicit instruction condition and 5 participants from the explicit instruction condition). Only participants of the sequence strategy group showed reliable perceptual sequence learning and sequence awareness. These results indicate that perceptual sequence learning depends upon the continuous employment of strategic cognitive control processes on sequence knowledge. Sequence awareness is suggested to be a necessary but not sufficient condition for perceptual learning to take place. Copyright © 2018 Elsevier B.V. All rights reserved.
Specificity of perceptual processing in rereading spatially transformed materials.
Horton, K D; McKenzie, B D
1995-05-01
While most studies using the task of reading spatially transformed text do not reveal evidence of specific perceptual transfer, a study by Masson (1986, Experiment 3) provides clear evidence of such effects. Several experiments were designed to identify the basis for this empirical discrepancy. The only substantive evidence of specific perceptual transfer occurred when the words were presented in an unfamiliar typography, although each study suggested a trend toward perceptual specificity effects. The results are discussed in terms of Graf and Ryan's (1990) ideas about the role of distinctive memory representations.
Conceptual versus Perceptual Text Processing Strategies: Differences between Good and Poor Readers.
ERIC Educational Resources Information Center
Shepard, Charlene R.; Reynolds, Ralph E.
Investigating the selective attention strategy, a study examined the type of attention allocated to important information by good and poor readers. Also tested was the methodological validity of using a conceptual (word recognition) perceptual (tachistoscopic word flash) task as a means of investigating the types of information processing that may…
Dilution: A Theoretical Burden or Just Load? A Reply to Tsal and Benoni (2010)
ERIC Educational Resources Information Center
Lavie, Nilli; Torralbo, Ana
2010-01-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and…
A Developmental Examination of Basic Perceptual Processes in Reading. Final Report.
ERIC Educational Resources Information Center
Lefton, Lester A.
This report summarizes four groups of experiments examining the nature of basic perceptual processes in reading. The first group examined the relationship of English orthography to reading, specifically the transfer of information from the icon to short-term memory. The second group of experiments examined the use of peripheral information…
ERIC Educational Resources Information Center
Cornes, Katherine; Donnelly, Nick; Godwin, Hayward; Wenger, Michael J.
2011-01-01
The Thatcher illusion (Thompson, 1980) is considered to be a prototypical illustration of the notion that face perception is dependent on configural processes and representations. We explored this idea by examining the relative contributions of perceptual and decisional processes to the ability of observers to identify the orientation of two…
How mechanisms of perceptual decision-making affect the psychometric function
Gold, Joshua I.; Ding, Long
2012-01-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the “neurometric” sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. PMID:22609483
Degree of Consistent Training and the Development of Automatic Processing.
1980-02-09
processing as composed of two qualitatively different modes of processing ( LaBerge , 1973, 1975, 1976; Posner and Snyder, 1975; Norman, 1976; Shiffrin and...Psychology, 1971, 2, 229-237. LaBerge , D. Attention and the measurement of perceptual learning. Memory and Cognition, 1973, 1, 268-276. LaBerge , D...York: Academic Press, 1975. LaBerge , D. Perceptual learning and attention. In W. K. Estes (Ed.), Handbook of Learning and Cognitive Processes (Vol. 4
Carroll, Rebecca; Uslar, Verena; Brand, Thomas; Ruigendijk, Esther
The authors aimed to determine whether hearing impairment affects sentence comprehension beyond phoneme or word recognition (i.e., on the sentence level), and to distinguish grammatically induced processing difficulties in structurally complex sentences from perceptual difficulties associated with listening to degraded speech. Effects of hearing impairment or speech in noise were expected to reflect hearer-specific speech recognition difficulties. Any additional processing time caused by the sustained perceptual challenges across the sentence may either be independent of or interact with top-down processing mechanisms associated with grammatical sentence structure. Forty-nine participants listened to canonical subject-initial or noncanonical object-initial sentences that were presented either in quiet or in noise. Twenty-four participants had mild-to-moderate hearing impairment and received hearing-loss-specific amplification. Twenty-five participants were age-matched peers with normal hearing status. Reaction times were measured on-line at syntactically critical processing points as well as two control points to capture differences in processing mechanisms. An off-line comprehension task served as an additional indicator of sentence (mis)interpretation, and enforced syntactic processing. The authors found general effects of hearing impairment and speech in noise that negatively affected perceptual processing, and an effect of word order, where complex grammar locally caused processing difficulties for the noncanonical sentence structure. Listeners with hearing impairment were hardly affected by noise at the beginning of the sentence, but were affected markedly toward the end of the sentence, indicating a sustained perceptual effect of speech recognition. Comprehension of sentences with noncanonical word order was negatively affected by degraded signals even after sentence presentation. Hearing impairment adds perceptual processing load during sentence processing, but affects grammatical processing beyond the word level to the same degree as in normal hearing, with minor differences in processing mechanisms. The data contribute to our understanding of individual differences in speech perception and language understanding. The authors interpret their results within the ease of language understanding model.
Two mechanisms of constructive recollection: Perceptual recombination and conceptual fluency.
Doss, Manoj K; Bluestone, Maximilian R; Gallo, David A
2016-11-01
Recollection is constructive and prone to distortion, but the mechanisms through which recollections can become embellished with rich yet illusory details are still debated. According to the conceptual fluency hypothesis, abstract semantic or conceptual activation increases the familiarity of a nonstudied event, causing one to falsely attribute imagined features to actual perception. In contrast, according to the perceptual recombination hypothesis, details from actually perceived events are partially recollected and become erroneously bound to a nonstudied event, again causing a detailed yet false recollection. Here, we report the first experiments aimed at disentangling these 2 mechanisms. Participants imagined pictures of common objects, and then they saw an actual picture of some of the imagined objects. We next presented misinformation associated with these studied items, designed to increase conceptual fluency (i.e., semantically related words) or perceptual recombination (i.e., perceptually similar picture fragments). Finally, we tested recollection for the originally seen pictures using verbal labels as retrieval cues. Consistent with conceptual fluency, processing-related words increased false recollection of pictures that were never seen, and consistent with perceptual recombination, processing picture fragments further increased false recollection. We also found that conceptual fluency was more short-lived than perceptual recombination, further dissociating these 2 mechanisms. These experiments provide strong evidence that conceptual fluency and perceptual recombination independently contribute to the constructive aspects of recollection. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Threshold Differences on Figure and Ground: Gelb and Granit (1923)
Kinateder, Max
2017-01-01
In 1923, Gelb and Granit, using a method of adjustment for a small red light, reported a lower threshold for the target when presented on a ground region than on an adjacent figural region. More recent work in perceptual organization has found precisely the opposite—a processing advantage seems to go to items presented on the figure, not the ground. Although Gelb and Granit continue to be cited for their finding, it has not previously been available as an English translation. Understanding their methodology and results is important for integrating early Gestalt theory with more recent investigations. PMID:28286640
Threshold Differences on Figure and Ground: Gelb and Granit (1923).
Kinateder, Max; Nelson, Rolf
2017-01-01
In 1923, Gelb and Granit, using a method of adjustment for a small red light, reported a lower threshold for the target when presented on a ground region than on an adjacent figural region. More recent work in perceptual organization has found precisely the opposite-a processing advantage seems to go to items presented on the figure, not the ground. Although Gelb and Granit continue to be cited for their finding, it has not previously been available as an English translation. Understanding their methodology and results is important for integrating early Gestalt theory with more recent investigations.
Short-term memory affects color perception in context.
Olkkonen, Maria; Allred, Sarah R
2014-01-01
Color-based object selection - for instance, looking for ripe tomatoes in the market - places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly.
Montoro, Pedro R; Luna, Dolores; Ortells, Juan J
2014-04-01
Previous studies making use of indirect processing measures have shown that perceptual grouping can occur outside the focus of attention. However, no previous study has examined the possibility of subliminal processing of perceptual grouping. The present work steps forward in the study of perceptual organization, reporting direct evidence of subliminal processing of Gestalt patterns. In two masked priming experiments, Gestalt patterns grouped by proximity or similarity that induced either a horizontal or vertical global orientation of the stimuli were presented as masked primes and followed by visible targets that could be congruent or incongruent with the orientation of the primes. The results showed a reliable priming effect in the complete absence of prime awareness for both proximity and similarity grouping principles. These findings suggest that a phenomenal report of the Gestalt pattern is not mandatory to observe an effect on the response based on the global properties of Gestalt stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.
Degraded perceptual and affective processing of racial out-groups: An electrophysiological approach.
Sheng, Feng; Du, Na; Han, Shihui
2017-08-01
Human beings process perceptual and affective information of racial out-groups in a degraded manner. Relative to racial in-group members, we lack perceptual individuation of racial out-group members and empathize their pain to a less degree. To date, however, the relationship between the deficiency of individuation and the impairment of empathy in responding to racial out-groups remains elusive. By recording event-related brain potentials in response to racial in-group and out-group faces portraying pain and neutral expressions, we simultaneously measured neural activity that underpinned individuation and empathy. Deficiency in individuating members of racial out-groups, manifesting as reduced reactivity of face-sensitive N170 in the occipitotemporal region of the brain, predicted attenuation of fronto-central empathic response to the suffering of racial out-groups. Further, the individuation bias mediated the influence of racial prejudice on racial in-group bias in empathic neural responses. These findings suggest an interplay between degraded perceptual and affective processing of racial out-groups.
The costs of emotional attention: affective processing inhibits subsequent lexico-semantic analysis.
Ihssen, Niklas; Heim, Sabine; Keil, Andreas
2007-12-01
The human brain has evolved to process motivationally relevant information in an optimized manner. The perceptual benefit for emotionally arousing material, termed motivated attention, is indexed by electrocortical amplification at various levels of stimulus analysis. An outstanding issue, particularly on a neuronal level, refers to whether and how perceptual enhancement for arousing signals translates into modified processing of information presented in temporal or spatial proximity to the affective cue. The present studies aimed to examine facilitation and interference effects of task-irrelevant emotional pictures on subsequent word identification. In the context of forced-choice lexical decision tasks, pictures varying in hedonic valence and emotional arousal preceded word/ pseudoword targets. Across measures and experiments, high-arousing compared to low-arousing pictures were associated with impaired processing of word targets. Arousing pleasant and unpleasant pictures prolonged word reaction times irrespective of stimulus-onset asynchrony (80 msec, 200 msec, 440 msec) and salient semantic category differences (e.g., erotica vs. mutilation pictures). On a neuronal level, interference was reflected in reduced N1 responses (204-264 msec) to both target types. Paralleling behavioral effects, suppression of the late positivity (404-704 msec) was more pronounced for word compared to pseudoword targets. Regional source modeling indicated that early reduction effects originated from inhibited cortical activity in posterior areas of the left inferior temporal cortex associated with orthographic processing. Modeling of later reduction effects argues for interference in distributed semantic networks comprising left anterior temporal and parietal sources. Thus, affective processing interferes with subsequent lexico-semantic analysis along the ventral stream.
Family Forces for Preschool Development of Health, Vocabulary and Perceptual Skills.
ERIC Educational Resources Information Center
Horodezky, Betty
The importance of parental attention in the facilitation of prereading skill development is examined in this paper. The first section presents a historical perspective on attitudes toward early childhood education, touching on the views of educators of past centuries and on recent trends in early childhood education in the United States. The…
Dilution: atheoretical burden or just load? A reply to Tsal and Benoni (2010).
Lavie, Nilli; Torralbo, Ana
2010-12-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere "dilution") for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load.
Lavie, Nilli; Torralbo, Ana
2010-01-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere “dilution”) for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load. PMID:21133554
Cejas, Ivette; Mitchell, Christine M; Hoffman, Michael; Quittner, Alexandra L
2018-04-05
To make longitudinal comparisons of intelligence quotient (IQ) in children with cochlear implants (CIs) and typical hearing peers from early in development to the school-age period. Children with additional comorbidities and CIs were also evaluated. To estimate the impact of socioeconomic status and oral language on school-age cognitive performance. This longitudinal study evaluated nonverbal IQ in a multicenter, national sample of 147 children with CIs and 75 typically hearing peers. IQ was evaluated at baseline, prior to cochlear implantation, using the Bayley Scales of Infant and Toddler Development and the Leiter International Performance Scale. School-age IQ was assessed using the Wechsler Intelligence Scales for Children. For the current study, only the Perceptual Reasoning and Processing Speed indices were administered. Oral language was evaluated using the Comprehensive Assessment of Spoken Language. Children in the CI group scored within the normal range of intelligence at both time points. However, children with additional comorbidities scored significantly worse on the Processing Speed, but not the Perceptual Reasoning Index. Maternal education and language were significantly related to school-age IQ in both groups. Importantly, language was the strongest predictor of intellectual functioning in both children with CIs and normal hearing. These results suggest that children using cochlear implants perform similarly to hearing peers on measures of intelligence, but those with severe comorbidities are at-risk for cognitive deficits. Despite the strong link between socioeconomic status and intelligence, this association was no longer significant once spoken language performance was accounted for. These results reveal the important contributions that early intervention programs, which emphasize language and parent training, contribute to cognitive functioning in school-age children with CIs. For families from economically disadvantaged backgrounds, who are at-risk for suboptimal outcomes, these early intervention programs are critical to improve overall functioning.
An integrated reweighting theory of perceptual learning
Dosher, Barbara Anne; Jeter, Pamela; Liu, Jiajuan; Lu, Zhong-Lin
2013-01-01
Improvements in performance on visual tasks due to practice are often specific to a retinal position or stimulus feature. Many researchers suggest that specific perceptual learning alters selective retinotopic representations in early visual analysis. However, transfer is almost always practically advantageous, and it does occur. If perceptual learning alters location-specific representations, how does it transfer to new locations? An integrated reweighting theory explains transfer over retinal locations by incorporating higher level location-independent representations into a multilevel learning system. Location transfer is mediated through location-independent representations, whereas stimulus feature transfer is determined by stimulus similarity at both location-specific and location-independent levels. Transfer to new locations/positions differs fundamentally from transfer to new stimuli. After substantial initial training on an orientation discrimination task, switches to a new location or position are compared with switches to new orientations in the same position, or switches of both. Position switches led to the highest degree of transfer, whereas orientation switches led to the highest levels of specificity. A computational model of integrated reweighting is developed and tested that incorporates the details of the stimuli and the experiment. Transfer to an identical orientation task in a new position is mediated via more broadly tuned location-invariant representations, whereas changing orientation in the same position invokes interference or independent learning of the new orientations at both levels, reflecting stimulus dissimilarity. Consistent with single-cell recording studies, perceptual learning alters the weighting of both early and midlevel representations of the visual system. PMID:23898204
Tactile perceptual learning: learning curves and transfer to the contralateral finger.
Kaas, Amanda L; van de Ven, Vincent; Reithler, Joel; Goebel, Rainer
2013-02-01
Tactile perceptual learning has been shown to improve performance on tactile tasks, but there is no agreement about the extent of transfer to untrained skin locations. The lack of such transfer is often seen as a behavioral index of the contribution of early somatosensory brain regions. Moreover, the time course of improvements has never been described explicitly. Sixteen subjects were trained on the Ludvigh task (a tactile vernier task) on four subsequent days. On the fifth day, transfer of learning to the non-trained contralateral hand was tested. In five subjects, we explored to what extent training effects were retained approximately 1.5 years after the final training session, expecting to find long-term retention of learning effects after training. Results showed that tactile perceptual learning mainly occurred offline, between sessions. Training effects did not transfer initially, but became fully available to the untrained contralateral hand after a few additional training runs. After 1.5 years, training effects were not fully washed out and could be recuperated within a single training session. Interpreted in the light of theories of visual perceptual learning, these results suggest that tactile perceptual learning is not fundamentally different from visual perceptual learning, but might proceed at a slower pace due to procedural and task differences, thus explaining the apparent divergence in the amount of transfer and long-term retention.
Goldstone, Robert L; Landy, David H; Son, Ji Y
2010-04-01
Although the field of perceptual learning has mostly been concerned with low- to middle-level changes to perceptual systems due to experience, we consider high-level perceptual changes that accompany learning in science and mathematics. In science, we explore the transfer of a scientific principle (competitive specialization) across superficially dissimilar pedagogical simulations. We argue that transfer occurs when students develop perceptual interpretations of an initial simulation and simply continue to use the same interpretational bias when interacting with a second simulation. In arithmetic and algebraic reasoning, we find that proficiency in mathematics involves executing spatially explicit transformations to notational elements. People learn to attend mathematical operations in the order in which they should be executed, and the extent to which students employ their perceptual attention in this manner is positively correlated with their mathematical experience. For both science and mathematics, relatively sophisticated performance is achieved not by ignoring perceptual features in favor of deep conceptual features, but rather by adapting perceptual processing so as to conform with and support formally sanctioned responses. These "rigged-up perceptual systems" offer a promising approach to educational reform. Copyright © 2009 Cognitive Science Society, Inc.
Skilled deaf readers have an enhanced perceptual span in reading.
Bélanger, Nathalie N; Slattery, Timothy J; Mayberry, Rachel I; Rayner, Keith
2012-07-01
Recent evidence suggests that, compared with hearing people, deaf people have enhanced visual attention to simple stimuli viewed in the parafovea and periphery. Although a large part of reading involves processing the fixated words in foveal vision, readers also utilize information in parafoveal vision to preprocess upcoming words and decide where to look next. In the study reported here, we investigated whether auditory deprivation affects low-level visual processing during reading by comparing the perceptual span of deaf signers who were skilled and less-skilled readers with the perceptual span of skilled hearing readers. Compared with hearing readers, the two groups of deaf readers had a larger perceptual span than would be expected given their reading ability. These results provide the first evidence that deaf readers' enhanced attentional allocation to the parafovea is used during complex cognitive tasks, such as reading.
Zhang, Xiaobin; Li, Qiong; Eskine, Kendall J; Zuo, Bin
2014-01-01
The current studies extend perceptual symbol systems theory to the processing of gender categorization by revealing that gender categorization recruits perceptual simulations of spatial height and size dimensions. In study 1, categorization of male faces were faster when the faces were in the "up" (i.e., higher on the vertical axis) rather than the "down" (i.e., lower on the vertical axis) position and vice versa for female face categorization. Study 2 found that responses to male names depicted in larger font were faster than male names depicted in smaller font, whereas opposite response patterns were given for female names. Study 3 confirmed that the effect in Study 2 was not due to metaphoric relationships between gender and social power. Together, these findings suggest that representation of gender (social categorization) also involves processes of perceptual simulation.
Face-to-face: Perceived personal relevance amplifies face processing
Pittig, Andre; Schupp, Harald T.; Alpers, Georg W.
2017-01-01
Abstract The human face conveys emotional and social information, but it is not well understood how these two aspects influence face perception. In order to model a group situation, two faces displaying happy, neutral or angry expressions were presented. Importantly, faces were either facing the observer, or they were presented in profile view directed towards, or looking away from each other. In Experiment 1 (n = 64), face pairs were rated regarding perceived relevance, wish-to-interact, and displayed interactivity, as well as valence and arousal. All variables revealed main effects of facial expression (emotional > neutral), face orientation (facing observer > towards > away) and interactions showed that evaluation of emotional faces strongly varies with their orientation. Experiment 2 (n = 33) examined the temporal dynamics of perceptual-attentional processing of these face constellations with event-related potentials. Processing of emotional and neutral faces differed significantly in N170 amplitudes, early posterior negativity (EPN), and sustained positive potentials. Importantly, selective emotional face processing varied as a function of face orientation, indicating early emotion-specific (N170, EPN) and late threat-specific effects (LPP, sustained positivity). Taken together, perceived personal relevance to the observer—conveyed by facial expression and face direction—amplifies emotional face processing within triadic group situations. PMID:28158672
[Visual perception abilities in children with reading disabilities].
Werpup-Stüwe, Lina; Petermann, Franz
2015-05-01
Visual perceptual abilities are increasingly being neglected in research concerning reading disabilities. This study measures the visual perceptual abilities of children with disabilities in reading. The visual perceptual abilities of 35 children with specific reading disorder and 30 controls were compared using the German version of the Developmental Test of Visual Perception – Adolescent and Adult (DTVP-A). 11 % of the children with specific reading disorder show clinically relevant performance on the DTVP-A. The perceptual abilities of both groups differ significantly. No significant group differences exist after controlling for general IQ or Perceptional Reasoning Index, but they do remain after controlling for Verbal Comprehension, Working Memory, and Processing Speed Index. The number of children with reading difficulties suffering from visual perceptual disorders has been underestimated. For this reason, visual perceptual abilities should always be tested when making a reading disorder diagnosis. Profiles of IQ-test results of children suffering from reading and visual perceptual disorders should be interpreted carefully.
Ecker, Ullrich K H; Arend, Anna M; Bergström, Kirstin; Zimmer, Hubert D
2009-09-01
Research on the effects of perceptual manipulations on recognition memory has suggested that (a) recollection is selectively influenced by task-relevant information and (b) familiarity can be considered perceptually specific. The present experiment tested divergent assumptions that (a) perceptual features can influence conscious object recollection via verbal code despite being task-irrelevant and that (b) perceptual features do not influence object familiarity if study is verbal-conceptual. At study, subjects named objects and their presentation colour; this was followed by an old/new object recognition test. Event-related potentials (ERP) showed that a study-test manipulation of colour impacted selectively on the ERP effect associated with recollection, while a size manipulation showed no effect. It is concluded that (a) verbal predicates generated at study are potent episodic memory agents that modulate recollection even if the recovered feature information is task-irrelevant and (b) commonly found perceptual match effects on familiarity critically depend on perceptual processing at study.
Strategy-Selection in Question-Answering.
1985-10-03
34 form of "perceptual learning." They note that levels of processing (See Craik & Lockhart , 1972) affect recognition memory but not perceptual... Craik , F. I. M., & Lockhart , R. S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11...practice, subjects seemed able to achieve higher levels of performance on both tasks. One possibility they consider is that the processes involved *. in the
Janik McErlean, Agnieszka B; Banissy, Michael J
2017-01-01
Synesthetic experiences of color have been traditionally conceptualized as a perceptual phenomenon. However, recent evidence suggests a role of higher order cognition in the formation of synesthetic experiences. Here, we discuss how synesthetic experiences of color differ from and influence veridical color processing, and how non-perceptual processes such as imagery and color memory might play a role in eliciting synesthetic color experience. Copyright © 2016 Cognitive Science Society, Inc.
Plant, Katherine L; Stanton, Neville A
2015-01-01
The perceptual cycle model (PCM) has been widely applied in ergonomics research in domains including road, rail and aviation. The PCM assumes that information processing occurs in a cyclical manner drawing on top-down and bottom-up influences to produce perceptual exploration and actions. However, the validity of the model has not been addressed. This paper explores the construct validity of the PCM in the context of aeronautical decision-making. The critical decision method was used to interview 20 helicopter pilots about critical decision-making. The data were qualitatively analysed using an established coding scheme, and composite PCMs for incident phases were constructed. It was found that the PCM provided a mutually exclusive and exhaustive classification of the information-processing cycles for dealing with critical incidents. However, a counter-cycle was also discovered which has been attributed to skill-based behaviour, characteristic of experts. The practical applications and future research questions are discussed. Practitioner Summary: This paper explores whether information processing, when dealing with critical incidents, occurs in the manner anticipated by the perceptual cycle model. In addition to the traditional processing cycle, a reciprocal counter-cycle was found. This research can be utilised by those who use the model as an accident analysis framework.
Thompson, Valerie A; Turner, Jamie A Prowse; Pennycook, Gordon; Ball, Linden J; Brack, Hannah; Ophir, Yael; Ackerman, Rakefet
2013-08-01
Although widely studied in other domains, relatively little is known about the metacognitive processes that monitor and control behaviour during reasoning and decision-making. In this paper, we examined the conditions under which two fluency cues are used to monitor initial reasoning: answer fluency, or the speed with which the initial, intuitive answer is produced (Thompson, Prowse Turner, & Pennycook, 2011), and perceptual fluency, or the ease with which problems can be read (Alter, Oppenheimer, Epley, & Eyre, 2007). The first two experiments demonstrated that answer fluency reliably predicted Feeling of Rightness (FOR) judgments to conditional inferences and base rate problems, which subsequently predicted the amount of deliberate processing as measured by thinking time and answer changes; answer fluency also predicted retrospective confidence judgments (Experiment 3b). Moreover, the effect of answer fluency on reasoning was independent from the effect of perceptual fluency, establishing that these are empirically independent constructs. In five experiments with a variety of reasoning problems similar to those of Alter et al. (2007), we found no effect of perceptual fluency on FOR, retrospective confidence or accuracy; however, we did observe that participants spent more time thinking about hard to read stimuli, although this additional time did not result in answer changes. In our final two experiments, we found that perceptual disfluency increased accuracy on the CRT (Frederick, 2005), but only amongst participants of high cognitive ability. As Alter et al.'s samples were gathered from prestigious universities, collectively, the data to this point suggest that perceptual fluency prompts additional processing in general, but this processing may results in higher accuracy only for the most cognitively able. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Meng, Xiangzhi; Lin, Ou; Wang, Fang; Jiang, Yuzheng; Song, Yan
2014-01-01
Background High order cognitive processing and learning, such as reading, interact with lower-level sensory processing and learning. Previous studies have reported that visual perceptual training enlarges visual span and, consequently, improves reading speed in young and old people with amblyopia. Recently, a visual perceptual training study in Chinese-speaking children with dyslexia found that the visual texture discrimination thresholds of these children in visual perceptual training significantly correlated with their performance in Chinese character recognition, suggesting that deficits in visual perceptual processing/learning might partly underpin the difficulty in reading Chinese. Methodology/Principal Findings To further clarify whether visual perceptual training improves the measures of reading performance, eighteen children with dyslexia and eighteen typically developed readers that were age- and IQ-matched completed a series of reading measures before and after visual texture discrimination task (TDT) training. Prior to the TDT training, each group of children was split into two equivalent training and non-training groups in terms of all reading measures, IQ, and TDT. The results revealed that the discrimination threshold SOAs of TDT were significantly higher for the children with dyslexia than for the control children before training. Interestingly, training significantly decreased the discrimination threshold SOAs of TDT for both the typically developed readers and the children with dyslexia. More importantly, the training group with dyslexia exhibited significant enhancement in reading fluency, while the non-training group with dyslexia did not show this improvement. Additional follow-up tests showed that the improvement in reading fluency is a long-lasting effect and could be maintained for up to two months in the training group with dyslexia. Conclusion/Significance These results suggest that basic visual perceptual processing/learning and reading ability in Chinese might at least partially rely on overlapping mechanisms. PMID:25247602
Modeling Perceptual Decision Processes
2014-09-17
Ratcliff, & Wagenmakers, in press). Previous research suggests that playing action video games improves performance on sensory, perceptual, and...estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster...third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the
ERIC Educational Resources Information Center
Quinn, Paul C.; Schyns, Philippe G.; Goldstone, Robert L.
2006-01-01
The relation between perceptual organization and categorization processes in 3- and 4-month-olds was explored. The question was whether an invariant part abstracted during category learning could interfere with Gestalt organizational processes. A 2003 study by Quinn and Schyns had reported that an initial category familiarization experience in…
Processing Capacity under Perceptual and Cognitive Load: A Closer Look at Load Theory
ERIC Educational Resources Information Center
Fitousi, Daniel; Wenger, Michael J.
2011-01-01
Variations in perceptual and cognitive demands (load) play a major role in determining the efficiency of selective attention. According to load theory (Lavie, Hirst, Fockert, & Viding, 2004) these factors (a) improve or hamper selectivity by altering the way resources (e.g., processing capacity) are allocated, and (b) tap resources rather than…
Perceptual Processing of Mandarin Nasals by L1 and L2 Mandarin Speakers
ERIC Educational Resources Information Center
Lai, Yi-hsiu
2012-01-01
Nasals are cross-linguistically susceptible to change, especially in the syllable final position. Acoustic reports on Mandarin nasal production have recently shown that the syllable-final distinction is frequently dropped. Few studies, however, have addressed the issue of perceptual processing in Mandarin nasals for L1 and L2 speakers of Mandarin…
Neural signatures of conscious and unconscious emotional face processing in human infants.
Jessen, Sarah; Grossmann, Tobias
2015-03-01
Human adults can process emotional information both with and without conscious awareness, and it has been suggested that the two processes rely on partly distinct brain mechanisms. However, the developmental origins of these brain processes are unknown. In the present event-related brain potential (ERP) study, we examined the brain responses of 7-month-old infants in response to subliminally (50 and 100 msec) and supraliminally (500 msec) presented happy and fearful facial expressions. Our results revealed that infants' brain responses (Pb and Nc) over central electrodes distinguished between emotions irrespective of stimulus duration, whereas the discrimination between emotions at occipital electrodes (N290 and P400) only occurred when faces were presented supraliminally (above threshold). This suggests that early in development the human brain not only discriminates between happy and fearful facial expressions irrespective of conscious perception, but also that, similar to adults, supraliminal and subliminal emotion processing relies on distinct neural processes. Our data further suggest that the processing of emotional facial expressions differs across infants depending on their behaviorally shown perceptual sensitivity. The current ERP findings suggest that distinct brain processes underpinning conscious and unconscious emotion perception emerge early in ontogeny and can therefore be seen as a key feature of human social functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gelman, Susan A.; Meyer, Meredith
2013-01-01
Categorization is a process that spans all of development, beginning in earliest infancy yet changing as children’s knowledge and cognitive skills develop. In this review article, we address three core issues regarding childhood categorization. First, we discuss the extent to which early categories are rooted in perceptual similarity versus knowledge-enriched theories. We argue for a composite perspective in which categories are steeped in commonsense theories from a young age but also are informed by low-level similarity and associative learning cues. Second, we examine the role of language in early categorization. We review evidence to suggest that language is a powerful means of expressing, communicating, shaping, and supporting category knowledge. Finally, we consider categories in context. We discuss sources of variability and flexibility in children’s categories, as well as the ways in which children’s categories are used within larger knowledge systems (e.g., to form analogies, make inferences, or construct theories). Categorization is a process that is intrinsically tied to nearly all aspects of cognition, and its study provides insight into cognitive development, broadly construed. PMID:23440312
Becoming musically enculturated: effects of music classes for infants on brain and behavior.
Trainor, Laurel J; Marie, Céline; Gerry, David; Whiskin, Elaine; Unrau, Andrea
2012-04-01
Musical enculturation is a complex, multifaceted process that includes the development of perceptual processing specialized for the pitch and rhythmic structures of the musical system in the culture, understanding of esthetic and expressive norms, and learning the pragmatic uses of music in different social situations. Here, we summarize the results of a study in which 6-month-old Western infants were randomly assigned to 6 months of either an active participatory music class or a class in which they experienced music passively while playing. Active music participation resulted in earlier enculturation to Western tonal pitch structure, larger and/or earlier brain responses to musical tones, and a more positive social trajectory. Furthermore, the data suggest that early exposure to cultural norms of musical expression leads to early preferences for those norms. We conclude that musical enculturation begins in infancy and that active participatory music making in a positive social setting accelerates enculturation. © 2012 New York Academy of Sciences.
Höfling, Volkmar; Weck, Florian
2017-03-01
Studies of the comorbidity of hypochondriasis have indicated high rates of cooccurrence with other anxiety disorders. In this study, the contrast among hypochondriasis, panic disorder, and social phobia was investigated using specific processes drawing on cognitive-perceptual models of hypochondriasis. Affective, behavioral, cognitive, and perceptual processes specific to hypochondriasis were assessed with 130 diagnosed participants based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria (66 with hypochondriasis, 32 with panic disorder, and 32 with social phobia). All processes specific to hypochondriasis were more intense for patients with hypochondriasis in contrast to those with panic disorder or social phobia (0.61 < d < 2.67). No differences were found between those with hypochondriasis with comorbid disorders and those without comorbid disorders. Perceptual processes were shown to best discriminate between patients with hypochondriasis and those with panic disorder.
Gabeza, R
1995-03-01
The dual nature of the Japanese writing system was used to investigate two assumptions of the processing view of memory transfer: (1) that both perceptual and conceptual processing can contribute to the same memory test (mixture assumption) and (2) that both can be broken into more specific processes (subdivision assumption). Supporting the mixture assumption, a word fragment completion test based on ideographic kanji characters (kanji fragment completion test) was affected by both perceptual (hiragana/kanji script shift) and conceptual (levels-of-processing) study manipulations kanji fragments, because it did not occur with the use of meaningless hiragana fragments. The mixture assumption is also supported by an effect of study script on an implicit conceptual test (sentence completion), and the subdivision assumption is supported by a crossover dissociation between hiragana and kanji fragment completion as a function of study script.
Temporal expectancy in the context of a theory of visual attention
Vangkilde, Signe; Petersen, Anders; Bundesen, Claus
2013-01-01
Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue–stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s−1) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations. PMID:24018716
Motor–sensory convergence in object localization: a comparative study in rats and humans
Horev, Guy; Saig, Avraham; Knutsen, Per Magne; Pietr, Maciej; Yu, Chunxiu; Ahissar, Ehud
2011-01-01
In order to identify basic aspects in the process of tactile perception, we trained rats and humans in similar object localization tasks and compared the strategies used by the two species. We found that rats integrated temporally related sensory inputs (‘temporal inputs’) from early whisk cycles with spatially related inputs (‘spatial inputs’) to align their whiskers with the objects; their perceptual reports appeared to be based primarily on this spatial alignment. In a similar manner, human subjects also integrated temporal and spatial inputs, but relied mainly on temporal inputs for object localization. These results suggest that during tactile object localization, an iterative motor–sensory process gradually converges on a stable percept of object location in both species. PMID:21969688
Perceptual asymmetry in texture perception.
Williams, D; Julesz, B
1992-07-15
A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.
Greater perceptual sensitivity to happy facial expression.
Maher, Stephen; Ekstrom, Tor; Chen, Yue
2014-01-01
Perception of subtle facial expressions is essential for social functioning; yet it is unclear if human perceptual sensitivities differ in detecting varying types of facial emotions. Evidence diverges as to whether salient negative versus positive emotions (such as sadness versus happiness) are preferentially processed. Here, we measured perceptual thresholds for the detection of four types of emotion in faces--happiness, fear, anger, and sadness--using psychophysical methods. We also evaluated the association of the perceptual performances with facial morphological changes between neutral and respective emotion types. Human observers were highly sensitive to happiness compared with the other emotional expressions. Further, this heightened perceptual sensitivity to happy expressions can be attributed largely to the emotion-induced morphological change of a particular facial feature (end-lip raise).
Detecting perceptual groupings in textures by continuity considerations
NASA Technical Reports Server (NTRS)
Greene, Richard J.
1990-01-01
A generalization is presented for the second derivative of a Gaussian D(sup 2)G operator to apply to problems of perceptual organization involving textures. Extensions to other problems of perceptual organization are evident and a new research direction can be established. The technique presented is theoretically pleasing since it has the potential of unifying the entire area of image segmentation under the mathematical notion of continuity and presents a single algorithm to form perceptual groupings where many algorithms existed previously. The eventual impact on both the approach and technique of image processing segmentation operations could be significant.
Lightness computation by the human visual system
NASA Astrophysics Data System (ADS)
Rudd, Michael E.
2017-05-01
A model of achromatic color computation by the human visual system is presented, which is shown to account in an exact quantitative way for a large body of appearance matching data collected with simple visual displays. The model equations are closely related to those of the original Retinex model of Land and McCann. However, the present model differs in important ways from Land and McCann's theory in that it invokes additional biological and perceptual mechanisms, including contrast gain control, different inherent neural gains for incremental, and decremental luminance steps, and two types of top-down influence on the perceptual weights applied to local luminance steps in the display: edge classification and spatial integration attentional windowing. Arguments are presented to support the claim that these various visual processes must be instantiated by a particular underlying neural architecture. By pointing to correspondences between the architecture of the model and findings from visual neurophysiology, this paper suggests that edge classification involves a top-down gating of neural edge responses in early visual cortex (cortical areas V1 and/or V2) while spatial integration windowing occurs in cortical area V4 or beyond.
Immediate transfer of synesthesia to a novel inducer.
Mroczko, Aleksandra; Metzinger, Thomas; Singer, Wolf; Nikolić, Danko
2009-11-30
In synesthesia, a certain stimulus (e.g. grapheme) is associated automatically and consistently with a stable perceptual-like experience (e.g. color). These associations are acquired in early childhood and remain robust throughout the lifetime. Synesthetic associations can transfer to novel inducers in adulthood as one learns a second language that uses another writing system. However, it is not known how long this transfer takes. We found that grapheme-color associations can transfer to novel graphemes after only a 10-minute writing exercise. Most subjects experienced synesthetic associations immediately after learning a new Glagolitic grapheme. Using a Stroop task, we provide objective evidence for the creation of novel associations between the newly learned graphemes and synesthetic colors. Also, these associations generalized to graphemes handwritten by another person. The fast learning process and the generalization suggest that synesthesia begins at the semantic level of representation with the activation of a certain concept (the inducer), which then, uniquely for the synesthetes, activates representations at the perceptual level (the concurrent). Thus, the results imply that synesthesia is a much more flexible and plastic phenomenon than has been believed until now.
de Borst, Aline W; de Gelder, Beatrice
2017-08-01
Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Montemayor, Carlos; Haladjian, Harry H.
2017-01-01
The main thesis of this paper is that two prevailing theories about cognitive penetration are too extreme, namely, the view that cognitive penetration is pervasive and the view that there is a sharp and fundamental distinction between cognition and perception, which precludes any type of cognitive penetration. These opposite views have clear merits and empirical support. To eliminate this puzzling situation, we present an alternative theoretical approach that incorporates the merits of these views into a broader and more nuanced explanatory framework. A key argument we present in favor of this framework concerns the evolution of intentionality and perceptual capacities. An implication of this argument is that cases of cognitive penetration must have evolved more recently and that this is compatible with the cognitive impenetrability of early perceptual stages of processing information. A theoretical approach that explains why this should be the case is the consciousness and attention dissociation framework. The paper discusses why concepts, particularly issues concerning concept acquisition, play an important role in the interaction between perception and cognition. PMID:28174551