Sample records for early phase insulin

  1. Impact of incretin on early-phase insulin secretion and glucose excursion.

    PubMed

    Shen, Jie; Chen, Zhi; Chen, Chaofeng; Zhu, Xiao; Han, Yajuan

    2013-10-01

    This study investigated the impact of incretin on early-phase insulin secretion and glucose excursion. The normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM) groups included 16, 8, and 19 subjects, respectively. Subjects underwent continuous glucose monitoring for 3 days, followed by an oral glucose tolerance test. Plasma glucose, insulin, glucagon, total glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-l (GLP-1) levels were measured at 30-min increments for 2 h after glucose intake. Differences with P < 0.05 were considered statistically significant. The area under the curve (AUC) of total GIP (120-min GIP-AUC) of the T2DM group was significantly lower than those of the NGT and IGT groups. The 120-min GLP-1-AUC of the NGT group was significantly larger than those of the T2DM and IGT groups. The early-phase insulin secretion index (ΔI30/ΔG30) of the T2DM group was significantly lower than those of the NGT and IGT groups. Mean amplitudes of glycemic excursions (MAGEs) went in the order of NGT < IGT < T2DM (P < 0.01, IGT vs. NGT; P < 0.001, T2DM vs. IGT). The 120-min GIP-AUC was negatively correlated with MAGE (r = -0.464), but uncorrelated with ΔI30/ΔG30. The 120-min GLP-1-AUC was positively correlated with ΔI30/ΔG30 (r = 0.580), but negatively correlated with MAGE (r = -0.606). Incretin may ameliorate glucose excursions, and GLP-1 may exert them by promoting early-phase insulin secretion. No correlation was observed between GIP secretion and early-phase insulin secretion.

  2. [The correlation between serum uric acid level and early-phase insulin secretion in subjects with normal glucose regulation].

    PubMed

    Lu, L; Zheng, F P; Li, H

    2016-05-01

    To investigate the correlation between serum uric acid (SUA) level and early-phase insulin secretion in subjects with normal glucose regulation (NGR). Totally 367 community NGR residents confirmed by a 75g oral glucose tolerance test were enrolled. The insulin resistance index (HOMA-IR) and the early-phase insulin secretion index after a glucose load (ΔI30/ΔG30) were used to estimate the insulin sensitivity and the early-phase insulin secretion, respectively. The subjects were divided into 4 groups according to the SUA level quartiles. Differences in early-phase insulin levels, ΔI30/ΔG30, and HOMA-IR were compared among the 4 groups. Age, BMI, waist circumference, systolic blood pressure, diastolic blood pressure, fasting insulin (FINS), 30 minutes postprandial insulin(30 minINS), 2 hours postprandial insulin(2hINS), HOMA-IR and TG levels increased across the rising categories of SUA levels, while the HDL-C was decreased across the SUA groups (P<0.01). The SUA level was positively correlated with age(r=0.157, P<0.01), BMI(r=0.262, P<0.01), waist circumference(r=0.372, P<0.01), systolic blood pressure(r=0.200, P<0.01), diastolic blood pressure(r=0.254, P<0.01), 30 minutes postprandial plasma glucose(r=0.118, P=0.023), FINS(r=0.249, P<0.01), 30minINS(r=0.189, P<0.01), 2hINS(r=0.206, P<0.01), glycosylated hemoglobin(HbA1c, r=0.106, P=0.042), HOMA-IR(r=0.244, P<0.01), TG(r=0.350, P<0.01), ΔI30/ΔG30(r=0.144, P<0.01), and negatively correlated with HDL-C level(r=-0.321, P<0.01). Multiple stepwise regression analysis showed that SUA(β=0.292, P<0.01) and HOMA-IR(β=29.821, P<0.01) were positively associated with ΔI30/ΔG30. SUA level is closely related with the early-phase insulin secretion in NGR subjects.

  3. Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide.

    PubMed

    Owens, D R; Cozma, L S; Luzio, S D

    2002-12-01

    The major contributory factor to increasing hyperglycaemia in established Type 2 diabetes mellitus (T2DM) appears to be the progressive delay and attenuation of the prandial insulin response. An important consequence of this derangement is that hepatic glucose production is no longer suppressed during times of prandial glucose intake. Together with a relative impairment in the rate of peripheral glucose disposal, this leads to supra-physiological plasma glucose excursions, which may damage the vasculature. An obvious therapeutic strategy, therefore, would be to increase insulin availability when most needed--in the early prandial phase. In experiments with exogenous insulin interventions, peak post-prandial blood glucose increments were curtailed without undue increases in total insulin exposure. However, available evidence suggests that the sulphonylurea glibenclamide does not effectively alter early-phase prandial insulin release but predominately increases late-phase and basal insulin output, thus incurring the risk of hypoglycaemia. The novel insulin secretagogue repaglinide, by contrast, augments early-phase prandial insulin secretion when taken before meals, as shown by studies in non-diabetic people and patients with newly diagnosed, previously untreated T2DM. Repaglinide exerts its greatest effect on the insulin secretion rate during the first 30 min after a meal is started, thereby going some way to restoring the early insulin secretion curve seen after a meal in non-diabetic people. No residual secretagogue activity is seen 4 hr after taking a single dose of up to 2 mg. Prandial glucose regulation with repaglinide could be associated with lower post-prandial glucose excursions and less risk of post-prandial hypoglycaemia than glibenclamide.

  4. Effect of repaglinide and gliclazide on glycaemic control, early-phase insulin secretion and lipid profiles in.

    PubMed

    Zhang, Hong; Bu, Ping; Xie, Yan-Hong; Luo, Juan; Lei, Min-Xiang; Mo, Zhao-Hui; Liao, Er-Yuan

    2011-01-01

    Both repaglinide and gliclazide are insulin secretagogues widely used in the treatment of type 2 diabetes. They stimulate insulin secretion through distinct mechanisms and may benefit patients from different aspects. The present study was to evaluate the effects of repaglinide or gliclazide on glycaemic control, insulin secretion, and lipid profiles in type 2 diabetes patients. A total of 47 newly diagnosed type 2 diabetes patients were randomized 1:1 to receive a 4-week treatment with repaglinide or gliclazide. The standard mixed meal tolerance test was performed before and after the treatment. Plasma glucose (PG), insulin concentration, and lipid profiles were measured. The area under insulin concentration curve (AUC(ins)) and the early-phase insulin secretion index (ΔI(30)/ΔG(30)) were calculated. After the trial, fasting and postprandial PG and postprandial insulin improved significantly in both groups (P < 0.05). The maximum insulin concentration occurred earlier in the repaglinide group than that in the gliclazide group. AUC(ins) increased in both groups (P < 0.05), but no significant difference was found between groups. ΔI(30)/ΔG(30) increased in both groups (P < 0.05), especially in the repaglinide group (P < 0.05). Triglyceride and total cholesterol decreased significantly in the repaglinide group in some time points, while no significant change was observed in the gliclazide group. Repaglinide and gliclazide had similar effects on glycaemic control and total insulin secretion, while repaglinide had more effects on improvements in β-cell function and lipid metabolism.

  5. Use of First-phase Insulin Secretion in Early Diagnosis of Thyroid Diabetes and Type 2 Diabetes Mellitus

    PubMed Central

    Meng, Li-Heng; Huang, Yao; Zhou, Jia; Liang, Xing-Huan; Xian, Jing; Li, Li; Qin, Ying-Fen

    2017-01-01

    .05). Compared with the other five groups, the Ip/I0, AIR0′~10′, and AUCins-IVGTT values of the T2DM group were significantly decreased (all P < 0.05). The Ip/I0 and AUCins-IVGTT values of the TNGT group were higher than those of the NGT group (all P < 0.05). Conclusions: β-cell function in TDM patients is superior to that in T2DM patients. First-phase insulin secretion could be used as an early diagnostic marker to differentiate TDM and T2DM. PMID:28345543

  6. 1,5-anhydroglucitol is associated with early-phase insulin secretion in chinese patients with newly diagnosed type 2 diabetes mellitus.

    PubMed

    Ma, Xiaojing; Hao, Yaping; Hu, Xiang; Luo, Yuqi; Deng, Zixuan; Zhou, Jian; Bao, Yuqian; Jia, Weiping

    2015-05-01

    The goal of the present study was to explore the correlations of 1,5-anhydroglucitol (l,5-AG), glycated hemoglobin (HbA1c), and glycated albumin (GA) with insulin sensitivity and secretion. In total, 302 patients with newly diagnosed type 2 diabetes mellitus (166 men, 136 women) were enrolled in this study. The homeostasis model assessment for insulin resistance (HOMA-IR) and homeostasis model assessment for β-cell function (HOMA-β) were calculated to determine the basal insulin sensitivity and secretion. The insulinogenic index (IGI) was used to evaluate early-phase insulin secretion. 1,5-AG and GA were assayed via the enzymatic method, and HbA1c was detected by high-pressure liquid chromatography. Among all 302 subjects, the serum 1,5-AG level was 13.1±7.2 μg/mL, and the HbA1c and GA levels [median (interquartile range)] were 6.7% (6.2-7.3%) and 17.7% (16.0-19.5%), respectively. Increased 1,5-AG quartiles were accompanied by trends toward a decreased HOMA-IR and an increased HOMA-β and IGI (for all trends, P<0.001). 1,5-AG was negatively associated with HOMA-IR (r=-0.200, P<0.001) and positively associated with HOMA-β and IGI (r=0.210 and 0.413, respectively; both P<0.001). 1,5-AG was independently related to HOMA-IR and HOMA-β and exhibited an independent positive association with IGI (standardized β=0.242, P<0.001). Additionally, both HbA1c and GA were independently correlated with HOMA-IR and HOMA-β. 1,5-AG is not only correlated with basal insulin sensitivity and secretion, but also closely associated with early-phase insulin secretion in Chinese patients with newly diagnosed type 2 diabetes mellitus.

  7. Direct stimulation of immediate-early genes by intranuclear insulin in trypsin-treated H35 hepatoma cells.

    PubMed Central

    Lin, Y J; Harada, S; Loten, E G; Smith, R M; Jarett, L

    1992-01-01

    H35 hepatoma cells were treated with trypsin to abolish insulin binding and insulin-stimulated receptor kinase activity. Insulin was, however, internalized by fluid-phase endocytosis in trypsin-treated cells. Furthermore, nuclear accumulation of insulin was similar in control and trypsin-treated hepatoma cells. Northern blot analysis revealed insulin increased g33 and c-fos mRNA concentrations identically in control and trypsin-treated cells but had no effect on beta 2-microglobulin mRNA. Actinomycin D treatment prior to or after insulin addition demonstrated that insulin increased gene transcription and had no effect on mRNA degradation. These studies suggest that the accumulation of intact insulin in cell nuclei may be directly involved in the increased transcription of immediate-early genes. Images PMID:1409684

  8. Impaired insulin secretion in the spontaneous diabetes rats.

    PubMed

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  9. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse.

    PubMed

    Head, W Steven; Orseth, Meredith L; Nunemaker, Craig S; Satin, Leslie S; Piston, David W; Benninger, Richard K P

    2012-07-01

    Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.

  10. Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic β-cells.

    PubMed

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Nakamichi, Yoko; Nagamatsu, Shinya

    2010-12-01

    Functional insulin receptor and its downstream effector PI3K (phosphoinositide 3-kinase) have been identified in pancreatic β-cells, but their involvement in the regulation of insulin secretion from β-cells remains unclear. In the present study, we investigated the physiological role of insulin and PI3K in glucose-induced biphasic insulin exocytosis in primary cultured β-cells and insulinoma Min6 cells using total internal reflection fluorescent microscopy. The pretreatment of β-cells with insulin induced the rapid increase in intracellular Ca2+ levels and accelerated the exocytotic response without affecting the second-phase insulin secretion. The inhibition of PI3K not only abolished the insulin-induced rapid development of the exocytotic response, but also potentiated the second-phase insulin secretion. The rapid development of Ca2+ and accelerated exocytotic response induced by insulin were accompanied by the translocation of the Ca2+-permeable channel TrpV2 (transient receptor potential V2) in a PI3K-dependent manner. Inhibition of TrpV2 by the selective blocker tranilast, or the expression of shRNA (short-hairpin RNA) against TrpV2 suppressed the effect of insulin in the first phase, but the second phase was not affected. Thus our results demonstrate that insulin treatment induced the acceleration of the exocytotic response during the glucose-induced first-phase response by the insertion of TrpV2 into the plasma membrane in a PI3K-dependent manner.

  11. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer's disease therapeutics.

    PubMed

    de la Monte, Suzanne M

    Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol . 2011 Sep 12. Alzheimer's disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer's, subsequent neurodegeneration might be prevented. Administering systemic insulin to elderly non-diabetics poses unacceptable risks of inadvertant hypoglycemia. However, intranasal delivery directs the insulin into the brain, avoiding systemic side-effects. This pilot study demonstrates both efficacy and safety of using intranasal insulin to treat early Alzheimer's and mild cognitive impairment, i.e. the precursor to Alzheimer's. Significant improvements in learning, memory, and cognition occured within a few months, but without intranasal insulin, brain function continued to deteriorate in measurable degrees. Intranasal insulin therapy holds promise for halting progression of Alzheimer's disease.

  12. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  13. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  14. Role of intestinal inflammation as an early event in obesity and insulin resistance

    PubMed Central

    Ding, Shengli; Lund, Pauline K.

    2013-01-01

    Purpose of review To highlight recent evidence supporting a concept that intestinal inflammation is a mediator or contributor to development of obesity and insulin resistance. Recent findings Current views suggest that obesity-associated systemic and adipose tissue inflammation promote insulin resistance, which underlies many obesity-linked health risks. Diet-induced changes in gut microbiota also contribute to obesity. Recent findings support a concept that high fat diet and bacteria interact to promote early inflammatory changes in the small intestine that contribute to development of or susceptibility to obesity and insulin resistance. This review summarizes the evidence supporting a role of intestinal inflammation in diet-induced obesity and insulin resistance and discusses mechanisms. Summary The role of diet-induced intestinal inflammation as an early biomarker and mediator of obesity, and insulin resistance warrants further study. PMID:21587067

  15. Predictors of early discontinuation of basal insulin therapy in type 2 diabetes in primary care.

    PubMed

    Kostev, K; Dippel, F W; Rathmann, W

    2016-04-01

    To identify patient-related characteristics and other impact factors predicting early discontinuation of basal insulin therapy in type 2 diabetes in primary care. A total of 4837 patients who started basal insulin therapy (glargine: n=3175; NPH: n=1662) in 1072 general and internal medicine practices throughout Germany were retrospectively analyzed (Disease Analyser Database: 01/2008-03/2014). Early discontinuation was defined as switching back to oral antidiabetic drugs (OAD) therapy within 90 days after first basal insulin prescription (index date, ID). Patient records were assessed 365 days prior and post ID. Logistic regression models were used to adjust for age, sex, diabetes duration, diabetologist care, disease management program participation, HbA1c, and comorbidity. Within 3 months after ID, 202 (6.8%) of glargine patients switched back to OAD (NPH: 130 (8.5%); p<0.05). In multivariable logistic regression, predictors of early basal insulin discontinuation were ≥1 documented hypoglycemia before ID (adjusted Odds ratio; 95% CI: 2.20; 1.27-3.82), diagnosed depression (1.31; 1.01-1.70) and referrals to specialists within 90 days after ID (2.06; 1.61-2.63). Diabetologist care (0.57; 0.36-0.89) and glargine treatment (vs. NPH: 0.78; 0.61-0.98) were related to a lower odds of having early insulin discontinuation. Less than 10% of type 2 diabetes patients switched back to oral antidiabetic drugs within 90 days after start of basal insulin therapy. In particular, patients with baseline depression and frequent or severe hypoglycemia have a higher likelihood for early discontinuation of basal insulin, whereas use of insulin glargine and diabetologist care are related to an increased chance of continuous insulin treatment. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  16. β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion

    PubMed Central

    Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton

    2013-01-01

    Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500

  17. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  18. The cephalic phase insulin response to nutritive and low-calorie sweeteners in solid and beverage form.

    PubMed

    Dhillon, Jaapna; Lee, Janice Y; Mattes, Richard D

    2017-11-01

    The purpose of the study was to examine the role of the cephalic phase insulin response (CPIR) following exposure to nutritive and low-calorie sweeteners in solid and beverage form in overweight and obese adults. In addition, the role of learning on the CPIR to nutritive and low-calorie sweetener exposure was tested. Sixty-four overweight and obese adults (age: 18-50years, BMI: 24-37kg/m 2 , body fat percentage>25% for men and >32% for women) were sham-fed (at 2-minute intervals for 14min) a randomly assigned test load comprised of a nutritive (sucrose) or low-calorie sweetener (sucralose) in beverage or solid form in phase 1 of the study. A 2-3ml blood sample was collected before and 2, 6, 10, 14, 61, 91 and 121min after oral exposure for serum insulin and glucose analysis. During phase 2, participants underwent a 2-week training period to facilitate associative learning between the sensory properties of test loads and their post-ingestive effects. In phase 3, participants were retested for their cephalic phase responses as in phase 1. Participants were classified as responders if they demonstrated a positive insulin response (rise of serum insulin above baseline i.e. Δ insulin) 2min post-stimulus in phase 1. Among responders exposed to the same sweetener in Phases 1 and 3, the proportion of participants that displayed a rise of insulin with oral exposure to sucralose was significantly greater when the stimulus was in the solid form compared to the beverage form. Sucralose and sucrose exposure elicited similarly significant increases in serum insulin 2min after exposure and significant decreases after 2min in responders in both food forms. The solid food form elicited greater CPIR over 2, 6 and 10min than the beverage form. There was no effect of learning on insulin responses after training. The results indicate the presence of a significant CPIR in a subset of individuals with overweight or obesity after oral exposure to sucralose, especially when present in

  19. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies

    PubMed Central

    Mahon, Jeffrey L.; Beam, Craig A.; Marcovina, Santica M.; Boulware, David C.; Palmer, Jerry P.; Winter, William E.; Skyler, Jay S.; Krischer, Jeffrey P.

    2018-01-01

    Background Detection of below-threshold first-phase insulin release or FPIR (1 + 3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. Methods One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. Results The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p < 0.05). Conclusions An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. PMID:21843518

  20. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies.

    PubMed

    Mahon, Jeffrey L; Beam, Craig A; Marcovina, Santica M; Boulware, David C; Palmer, Jerry P; Winter, William E; Skyler, Jay S; Krischer, Jeffrey P

    2011-11-20

    Detection of below-threshold first-phase insulin release or FPIR (1+3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p<0.05). An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. [Effect of early high fat diet on pancreatic β cellularity and insulin sensibility in young rats].

    PubMed

    Xie, Kun-Xia; Xiao, Yan-Feng; Xu, Er-Di; Yin, Chun-Yan; Yi, Xiao-Qing; Chang, Ming

    2010-09-01

    To study the effects of early high fat diet on sugar metaboliam, insulin sensibility and pancreatic β cellularity in young rats. Sixty male weaned young rats were randomly fed with high fat diet (high fat group) and normal diet (control group). The body weight, viscus fattiness and fasting plasma glucose (FPG) were measured after 3, 6 and 9 weeks. Serum insulin level was measured with radioimmunoassay. The ultrastructure of pancreas was observed under an electricmicroscope. The high fat group had significantly higher body weight and visceral fat weight than the control group after 3 weeks. There were no significant differences in the FPG level between the two groups at all time points. The levels of fasting insulin and HOMAIR in the high fat group were significantly higher than those in the control group after 3, 6 and 9 weeks (P<0.01). Dilation of rough endoplasmic reticulum and mild swelling of mitochondria of islet β-cells were observed in the high fat group after 6 weeks. Early high fat diet may induce a reduction in insulin sensitivity and produce insulin resistance in young rats. Endoplasmic reticulum expansion in β-cells may be an early sign of β-cell damage due to obesity.

  2. Early Events in Insulin Fibrillization Studied by Time-Lapse Atomic Force Microscopy

    PubMed Central

    Podestà, Alessandro; Tiana, Guido; Milani, Paolo; Manno, Mauro

    2006-01-01

    The importance of understanding the mechanism of protein aggregation into insoluble amyloid fibrils lies not only in its medical consequences, but also in its more basic properties of self-organization. The discovery that a large number of uncorrelated proteins can form, under proper conditions, structurally similar fibrils has suggested that the underlying mechanism is a general feature of polypeptide chains. In this work, we address the early events preceding amyloid fibril formation in solutions of zinc-free human insulin incubated at low pH and high temperature. Here, we show by time-lapse atomic force microscopy that a steady-state distribution of protein oligomers with a quasiexponential tail is reached within a few minutes after heating. This metastable phase lasts for a few hours, until fibrillar aggregates are observable. Although for such complex systems different aggregation mechanisms can occur simultaneously, our results indicate that the prefibrillar phase is mainly controlled by a simple coagulation-evaporation kinetic mechanism, in which concentration acts as a critical parameter. These experimental facts, along with the kinetic model used, suggest a critical role for thermal concentration fluctuations in the process of fibril nucleation. PMID:16239333

  3. Age and body weight effects on glucose and insulin tolerance in colony cats maintained since weaning on high dietary carbohydrate.

    PubMed

    Backus, R C; Cave, N J; Ganjam, V K; Turner, J B M; Biourge, V C

    2010-12-01

    High dietary carbohydrate is suggested to promote development of diabetes mellitus in cats. Glucose tolerance, insulin sensitivity, and insulin secretion were assessed in young [0.8-2.3 (median = 1.1) years, n = 13] and mature [4.0-7.0 (median 5.8) years, n = 12] sexually intact females of a large (n ≅ 700) feline colony in which only dry-type diets (35% metabolizable energy as carbohydrate) were fed from weaning. Insulin sensitivity was assessed from the 'late-phase' (60-120 min) plasma insulin response of intravenous glucose tolerance tests (IVGTTs) and from fractional change in glycaemia from baseline 15 min after an insulin bolus (0.1 U/kg, i.v.). Insulin secretion was assessed from the 'early-phase' (0-15 min) plasma insulin response of IVGTTs. Compared to the young cats, the mature cats had greater body weights [2.3-3.8 (median = 2.9) vs. 3.0-6.3 (median = 4.0) kg, p < 0.01], greater late-phase insulin responses (p < 0.05), lower insulin-induced glycaemic changes (p = 0.06), lower early-phase insulin responses (p < 0.05), and non-significantly different rates of glucose disposal. The late-phase insulin response was correlated with body weight and age (p < 0.05). When group assignments were balanced for body weight, the age-group differences and correlations became non-significant. The findings indicate that body weight gain is more likely than dry-type diets to induce the pre-diabetic conditions of insulin resistance and secretion dysfunction. © 2010 The Authors. Journal of Animal Physiology and Animal Nutrition © 2010 Blackwell Verlag GmbH.

  4. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    PubMed

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  5. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    PubMed

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  6. Insulin glargine 300 units/mL: A new basal insulin product for diabetes mellitus.

    PubMed

    Clements, Jennifer N; Bello, Larkin

    2016-03-15

    The pharmacokinetics, efficacy, and safety of U-300 insulin glargine for the management of diabetes are reviewed. U-300 (300 units/mL) insulin glargine is a long-acting basal insulin with low within-day variability, high day-to-day reproducibility, longer duration, and constant pharmacokinetic profile compared with U-100 (100 units/mL) insulin glargine. U-300 was evaluated in six randomized, active-comparator, open-label, Phase III clinical studies (EDITION trials) among patients with type 1 or 2 diabetes. The primary endpoint for all EDITION studies was the reduction in glycosylated hemoglobin from baseline to six months. Safety endpoints included confirmed or nocturnal hypoglycemia between week 9 and month 6 and the change in weight from baseline. For hypoglycemic episodes, U-300 insulin glargine was superior to U-100 insulin glargine when comparing the risk of hypoglycemia. U-300 insulin glargine is supplied in a prefilled device (for safety purposes) and packaged in boxes of three or five pens. It is still early to determine the role of U-300 insulin glargine in diabetes management. When compared with U-100 insulin glargine, U-300 insulin glargine appeared to be associated with a lower risk of hypoglycemia and nocturnal hypoglycemia, most likely due to its pharmacokinetics. The wholesale average cost of U-300 insulin glargine is $335.48 per box of three pens. The efficacy outcomes of U-300 insulin glargine were similar to those of U-100 insulin glargine, but the constant pharmacokinetic profile and longer duration of action of U-300 insulin glargine may help certain patients with type 1 or type 2 diabetes achieve better glycemic control. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  7. Relationships of the early insulin secretory response and oral disposition index with gastric emptying in subjects with normal glucose tolerance.

    PubMed

    Marathe, Chinmay S; Rayner, Christopher K; Lange, Kylie; Bound, Michelle; Wishart, Judith; Jones, Karen L; Kahn, Steven E; Horowitz, Michael

    2017-02-01

    The oral disposition index, the product of the early insulin secretory response during an oral glucose tolerance test and insulin sensitivity, is used widely for both the prediction of, and evaluation of the response to interventions, in type 2 diabetes. Gastric emptying, which determines small intestinal exposure of nutrients, modulates postprandial glycemia. The aim of this study was to determine whether the insulin secretory response and the disposition index (DI) related to gastric emptying in subjects with normal glucose tolerance. Thirty-nine subjects consumed a 350 mL drink containing 75 g glucose labeled with 99m Tc-sulfur colloid. Gastric emptying (by scintigraphy), blood glucose (G) and plasma insulin (I) were measured between t  = 0-120 min. The rate of gastric emptying was derived from the time taken for 50% emptying ( T 50 ) and expressed as kcal/min. The early insulin secretory response was estimated by the ratio of the change in insulin (∆I 0-30 ) to that of glucose at 30 min (∆G 0-30 ) represented as ∆I 0-30 /∆G 0-30 Insulin sensitivity was estimated as 1/fasting insulin and the DI was then calculated as ∆I 0-30 /∆G 0-30  × 1/fasting insulin. There was a direct relationship between ∆G 0-30 and gastric emptying ( r  = 0.47, P  = 0.003). While there was no association of either ∆I 0-30 ( r  = -0.16, P  = 0.34) or fasting insulin ( r  = 0.21, P  = 0.20), there were inverse relationships between the early insulin secretory response ( r  = -0.45, P  = 0.004) and the DI ( r  = -0.33, P  = 0.041), with gastric emptying. We conclude that gastric emptying is associated with both insulin secretion and the disposition index in subjects with normal glucose tolerance, such that when gastric emptying is relatively more rapid, both the early insulin secretory response and the disposition index are less. These findings should be interpreted as "hypothesis generating" and provide the rationale for longitudinal studies to

  8. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice

    PubMed Central

    Dinger, Katharina; Kasper, Philipp; Hucklenbruch-Rother, Eva; Vohlen, Christina; Jobst, Eva; Janoschek, Ruth; Bae-Gartz, Inga; van Koningsbruggen-Rietschel, Silke; Plank, Christian; Dötsch, Jörg; Alejandre Alcázar, Miguel Angel

    2016-01-01

    Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma. PMID:27087690

  9. Controlled delivery of basal insulin from phase-sensitive polymeric systems after subcutaneous administration: in vitro release, stability, biocompatibility, in vivo absorption, and bioactivity of insulin.

    PubMed

    Al-Tahami, Khaled; Oak, Mayura; Singh, Jagdish

    2011-06-01

    The purpose of this study was to investigate the phase-sensitive delivery systems (D,L-polylactide in triacetin) for controlled delivery of insulin at basal level. The effect of varying concentration of zinc, polymer, and insulin on the in vitro release of insulin was evaluated. Stability of released insulin was investigated by differential scanning calorimetry, circular dichroism, and matrix-assisted laser desorption/ionization time of flight mass spectrometry. In Vivo insulin absorption and bioactivity were studied in diabetic rats. In vitro and In Vivo biocompatibility of delivery systems were evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and skin histology, respectively. Extended release profiles of insulin for 2, 4, and 8 weeks from delivery systems containing 20%, 30%, and 40% (w/v) polymer concentration was observed. A ratio of 1:5 insulin hexamer to zinc was shown to be optimum. Physical and chemical stability of released insulin was greatly conserved. In Vivo studies demonstrated controlled release of insulin with reduction in blood glucose for approximately 1 month. In vitro and In Vivo studies demonstrated that the delivery system was biocompatible and controlled the delivery of insulin for longer durations after single subcutaneous injection. Copyright © 2010 Wiley-Liss, Inc.

  10. Lower rates of hypoglycemia during maintenance treatment with insulin degludec/insulin aspart versus biphasic insulin aspart 30: a combined analysis of two Phase 3a studies in type 2 diabetes.

    PubMed

    Christiansen, Jens Sandahl; Niskanen, Leo; Rasmussen, Søren; Johansen, Thue; Fulcher, Greg

    2016-09-01

    Insulin degludec/insulin aspart (IDegAsp) is a soluble coformulation of the basal analog insulin degludec and the rapid-acting prandial insulin aspart in a single injection. The present combined analysis of two Phase 3a trials compared the incidence of hypoglycemia in participants treated twice daily with IDegAsp or biphasic insulin aspart 30 (BIAsp 30). Hypoglycemia data were analyzed from two similarly designed randomized controlled open-label treat-to-target Phase 3a clinical trials of adults with type 2 diabetes (T2D). Participants were treated twice daily with IDegAsp or BIAsp 30, with breakfast and their main evening meal. Over 26 weeks, the rates of overall confirmed, nocturnal confirmed and severe hypoglycemic events were 19%, 57%, and 39% lower, respectively, with IDegAsp (n = 504) than BIAsp 30 (n = 364); estimated rate ratios were 0.81 (95% confidence interval [CI] 0.67, 0.98; P = 0.0341), 0.43 (95% CI 0.31, 0.59; P = 0.0001), and 0.61 (95% CI 0.26, 1.45; P = NS). The between-treatment differences were more pronounced during the maintenance period (≥16 weeks); compared with BIAsp 30, rates of overall confirmed, nocturnal confirmed and severe hypoglycemic events with IDegAsp were 0.69 (95% CI 0.55, 0.87; -31%; P = 0.0015); 0.38 (95% CI 0.25, 0.58; -62%; P < 0.0001), and 0.16 (95% CI 0.04, 0.59; -84%; P = 0.0061), respectively. Compared with BIAsp 30 twice daily, IDegAsp twice daily provided similar improvements in glycemic control with a lower risk of hypoglycemia, particularly nocturnal hypoglycemia, in subjects with T2D previously treated with insulin. © 2016 The Authors. Journal of Diabetes published by John Wiley & Sons Australia, Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  11. Smoking is associated with increased hepatic lipase activity, insulin resistance, dyslipidaemia and early atherosclerosis in Type 2 diabetes.

    PubMed

    Kong, C; Nimmo, L; Elatrozy, T; Anyaoku, V; Hughes, C; Robinson, S; Richmond, W; Elkeles, R S

    2001-06-01

    We have studied the relationships between hepatic lipase activity, smoking, dyslipidaemia insulin resistance, and early atherosclerosis in 67 Type 2 diabetic subjects, 47 non-smokers and 20 smokers. Insulin resistance was measured using an insulin modified frequently sampled intravenous glucose tolerance test. Early atherosclerosis was assessed using high-resolution ultrasound to measure carotid intima media thickness (IMT) and an arterial ultrasonic score (AUS). Smokers had higher serum cholesterol and triglyceride, lower HDL and HDL2 cholesterol as well as increased hepatic lipase activity. They were also more insulin resistant than non-smokers. Smokers also had higher patient AUS scores. On multiple regression analysis, hepatic lipase activity emerged as the most significant variable affecting patient AUS. We suggest that smoking accentuates the dyslipidaemia of Type 2 diabetic subjects and this is associated with increased hepatic lipase activity. This may be one mechanism whereby smoking further increases the risk of cardiovascular disease in Type 2 diabetes.

  12. Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection.

    PubMed

    Pettis, Ronald J; Ginsberg, Barry; Hirsch, Laurence; Sutter, Diane; Keith, Steven; McVey, Elaine; Harvey, Noel G; Hompesch, Marcus; Nosek, Leszek; Kapitza, Christoph; Heinemann, Lutz

    2011-04-01

    This study compared insulin lispro (IL) pharmacokinetics (PK) and pharmacodynamics (PD) delivered via microneedle intradermal (ID) injection with subcutaneous (SC) injection under euglycemic glucose clamp conditions. Ten healthy male volunteers were administered 10 international units (IU) of IL at 3 microneedle lengths (1.25, 1.50, or 1.75 mm) in a randomized, crossover fashion on Days 1-3 followed by a repetitive ID 1.5-mm microneedle dose (Day 4) and an SC dose (Day 5). Microneedle ID delivery resulted in more rapid absorption of IL, with decreased time to maximum insulin concentration (ID vs. SC: 36.0-46.4 vs. 64.3 min, P < 0.05) and higher fractional availability at early postinjection times. ID produced more rapid effects on glucose uptake with shorter times to maximal and early half-maximal glucose infusion rates (GIRs) (ID vs. SC: time to maximum GIR, 106-112 vs. 130 min, P < 0.05; early half-maximal GIR, 29-35 vs. 42 min), increased early GIR area under the curve (AUC), and faster offset of insulin action (shorter time to late half-maximal GIR: 271-287 vs. 309 min). Relative total insulin bioavailability (AUC to 360 min and AUC to infinite measurement) did not significantly differ between administration routes. ID PK/PD parameters showed some variation as a function of needle length. Delivery of ID IL was generally well tolerated, although transient, localized wheal formation and redness were observed at injection sites. Microneedle ID insulin lispro delivery enables more rapid onset and offset of metabolic effect than SC therapy and is safe and well tolerated; further study for insulin therapy is warranted.

  13. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    PubMed

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Insulin treatment partially prevents cognitive and hippocampal alterations as well as glucocorticoid dysregulation in early-onset insulin-deficient diabetic rats.

    PubMed

    Marissal-Arvy, Nathalie; Campas, Marie-Neige; Semont, Audrey; Ducroix-Crepy, Céline; Beauvieux, Marie-Christine; Brossaud, Julie; Corcuff, Jean-Benoit; Helbling, Jean-Christophe; Vancassel, Sylvie; Bouzier-Sore, Anne-Karine; Touyarot, Katia; Ferreira, Guillaume; Barat, Pascal; Moisan, Marie-Pierre

    2018-04-17

    The diagnosis of Type 1 Diabetes (T1D) in ever younger children led us to question the impact of insulin deficiency or chronic hyperglycemia on cerebral development and memory performances. Here, we sought abnormalities in these traits in a model of streptozotocin-induced diabetes in juvenile rats treated or not by insulin. We made the assumption that such alterations would be related, at least in part, to excessive glucocorticoid exposition in hippocampal neurons. We have compared 3 groups of juvenile rats: controls, untreated diabetics and insulin-treated diabetics. Diabetes was induced by streptozotocin (65 mg/kg IP/day, 2 consecutive days), at postnatal days 21 and 22 and a subcutaneous pellet delivering 2 U of insulin/day was implanted in treated diabetic rats 3 days later. Three weeks after diabetes induction, cognitive performances (Y maze, object location and recognition tests), in vivo brain structure (brain volume and water diffusion by structural magnetic resonance imaging), and hippocampal neurogenesis (immunohistochemical labeling) measurements were undertaken. Corticosterone levels were evaluated in plasma under basal and stress conditions, and within hippocampus together with 11β-dehydrocorticosterone to assess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. The comparison of the three experimental groups revealed that, compared to controls, untreated diabetic rats showed decreased cognitive performances in Y-maze and object location test (p < 0.05), decreased brain and hippocampal microstructure (p < 0.05), and decreased maturation and survival of hippocampal newborn neurons (p < 0.05). These alterations were associated with increased plasma corticosterone at the baseline nadir of its secretion (p < 0.001) and during the recovery phase following a restraint stress (p < 0.001), as well as increased hippocampal corticosterone levels (p < 0.01) and 11β-HSD1 activity (p < 0.05). As untreated diabetic

  15. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome.

    PubMed

    Lemas, Dominick J; Young, Bridget E; Baker, Peter R; Tomczik, Angela C; Soderborg, Taylor K; Hernandez, Teri L; de la Houssaye, Becky A; Robertson, Charles E; Rudolph, Michael C; Ir, Diana; Patinkin, Zachary W; Krebs, Nancy F; Santorico, Stephanie A; Weir, Tiffany; Barbour, Linda A; Frank, Daniel N; Friedman, Jacob E

    2016-05-01

    Increased maternal body mass index (BMI) is a robust risk factor for later pediatric obesity. Accumulating evidence suggests that human milk (HM) may attenuate the transfer of obesity from mother to offspring, potentially through its effects on early development of the infant microbiome. Our objective was to identify early differences in intestinal microbiota in a cohort of breastfeeding infants born to obese compared with normal-weight (NW) mothers. We also investigated relations between HM hormones (leptin and insulin) and both the taxonomic and functional potentials of the infant microbiome. Clinical data and infant stool and fasting HM samples were collected from 18 NW [prepregnancy BMI (in kg/m(2)) <24.0] and 12 obese (prepregnancy BMI >30.0) mothers and their exclusively breastfed infants at 2 wk postpartum. Infant body composition at 2 wk was determined by air-displacement plethysmography. Infant gastrointestinal microbes were estimated by using 16S amplicon and whole-genome sequencing. HM insulin and leptin were determined by ELISA; short-chain fatty acids (SCFAs) were measured in stool samples by using gas chromatography. Power was set at 80%. Infants born to obese mothers were exposed to 2-fold higher HM insulin and leptin concentrations (P < 0.01) and showed a significant reduction in the early pioneering bacteria Gammaproteobacteria (P = 0.03) and exhibited a trend for elevated total SCFA content (P < 0.06). Independent of maternal prepregnancy BMI, HM insulin was positively associated with both microbial taxonomic diversity (P = 0.03) and Gammaproteobacteria (e.g., Enterobacteriaceae; P = 0.04) and was negatively associated with Lactobacillales (e.g., Streptococcaceae; P = 0.05). Metagenomic analysis showed that HM leptin and insulin were associated with decreased bacterial proteases, which are implicated in intestinal permeability, and reduced concentrations of pyruvate kinase, a biomarker of pediatric gastrointestinal inflammation. Our results

  16. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus

    PubMed Central

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-01-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal–bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  17. Evidence for a direct effect of captopril on early steps of insulin action in BC3H-1 myocytes.

    PubMed

    Moisés, Regina S; Carvalho, Carla R O; Shiota, Debora; Saad, Mario J A

    2003-03-01

    Captopril, an angiotensin-converting enzyme (ACE) inhibitor, has been reported to improve insulin sensitivity. However, despite extensive investigation, the mechanisms responsible for this effect are not fully understood. Reduction of plasma angiotensin II and inhibition of kininase II have been suggested to contribute to improve insulin sensitivity. Insulin binding was measured at tracer insulin concentration in intact cells with or without captopril treatment. Specific binding, expressed as percent of total insulin added, was not different in control and captopril-treated cells. However, captopril treatment caused an increase in insulin-induced insulin receptor substrate-1 (IRS-1) phosphorylation accompanied by an increased association of IRS-1 with phosphoinositide-3 kinase (PI-3 kinase), despite no change on insulin receptor (IR) autophosphorylation. There was also an increased threonine kinase B (AKT) phosphorylation in captopril-treated cells followed by enhanced basal and insulin-stimulated glucose uptake. These results indicate that captopril treatment has a direct effect on early phosphorylation events induced by insulin in BC3H-1 myocytes. Copyright 2003, Elsevier Science (USA). All rights reserved.

  18. Phase III of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    information about this phase of Early Restoration, including fact sheets on each project. The final Phase III 44 projects are documented in a final Record of Decision. Information about Phase III of Early Archive Home Phase III of Early Restoration Phase III of Early Restoration Beach habitat would be restored

  19. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome12

    PubMed Central

    Lemas, Dominick J; Young, Bridget E; Baker, Peter R; Tomczik, Angela C; Soderborg, Taylor K; Hernandez, Teri L; de la Houssaye, Becky A; Robertson, Charles E; Rudolph, Michael C; Ir, Diana; Patinkin, Zachary W; Krebs, Nancy F; Santorico, Stephanie A; Weir, Tiffany; Barbour, Linda A; Frank, Daniel N; Friedman, Jacob E

    2016-01-01

    Background: Increased maternal body mass index (BMI) is a robust risk factor for later pediatric obesity. Accumulating evidence suggests that human milk (HM) may attenuate the transfer of obesity from mother to offspring, potentially through its effects on early development of the infant microbiome. Objectives: Our objective was to identify early differences in intestinal microbiota in a cohort of breastfeeding infants born to obese compared with normal-weight (NW) mothers. We also investigated relations between HM hormones (leptin and insulin) and both the taxonomic and functional potentials of the infant microbiome. Design: Clinical data and infant stool and fasting HM samples were collected from 18 NW [prepregnancy BMI (in kg/m2) <24.0] and 12 obese (prepregnancy BMI >30.0) mothers and their exclusively breastfed infants at 2 wk postpartum. Infant body composition at 2 wk was determined by air-displacement plethysmography. Infant gastrointestinal microbes were estimated by using 16S amplicon and whole-genome sequencing. HM insulin and leptin were determined by ELISA; short-chain fatty acids (SCFAs) were measured in stool samples by using gas chromatography. Power was set at 80%. Results: Infants born to obese mothers were exposed to 2-fold higher HM insulin and leptin concentrations (P < 0.01) and showed a significant reduction in the early pioneering bacteria Gammaproteobacteria (P = 0.03) and exhibited a trend for elevated total SCFA content (P < 0.06). Independent of maternal prepregnancy BMI, HM insulin was positively associated with both microbial taxonomic diversity (P = 0.03) and Gammaproteobacteria (e.g., Enterobacteriaceae; P = 0.04) and was negatively associated with Lactobacillales (e.g., Streptococcaceae; P = 0.05). Metagenomic analysis showed that HM leptin and insulin were associated with decreased bacterial proteases, which are implicated in intestinal permeability, and reduced concentrations of pyruvate kinase, a biomarker of pediatric

  20. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  1. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance.

    PubMed

    Olmstead, Keedrian I; La Frano, Michael R; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A; Newman, John W; Fiehn, Oliver; Crocker, Daniel E; Filipp, Fabian V; Ortiz, Rudy M

    2017-05-01

    Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance.

  2. Therapeutics in pediatric diabetes: insulin and non-insulin approaches. Part of a series on Pediatric Pharmacology, guest edited by Gianvincenzo Zuccotti, Emilio Clementi, and Massimo Molteni.

    PubMed

    Kim, Jongoh; Kim, Se Min; Nguyen, Ha Cam Thuy; Redondo, Maria Jose

    2012-01-01

    Treatment of pediatric diabetes can be challenging. Strict glucose control can be accompanied by hypoglycemia and weight gain. Recently, there have been many developments in insulin preparations and delivery methods which make insulin levels more close to a physiologic pattern. Newly developed rapid/long acting analogues and delivery devices such as continuous subcutaneous insulin infusion (CSII, insulin pump) may reduce hypoglycemia and improve glycemic control. CSII combined with continuous glucose monitoring can achieve even better glycemic control. The closed-loop system is rapidly evolving and an artificial pancreas will be available in the near future. It is now recognized that several hormones other than insulin such as glucagon, amylin, and incretins contribute to glucose homeostasis. The role of co-adjuncts such as metformin, amylin analogues, and incretin based therapy is now emerging. Immunotherapy in a high risk population or patients in the early phase of type 1 diabetes may prevent further destruction of pancreatic β cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation during diet-induced insulin resistance in dogs.

    PubMed

    Broussard, Josiane L; Kolka, Cathryn M; Castro, Ana V B; Asare Bediako, Isaac; Paszkiewicz, Rebecca L; Szczepaniak, Edward W; Szczepaniak, Lidia S; Knutson, Kristen L; Kim, Stella P; Bergman, Richard N

    2015-11-01

    A normal consequence of increased energy intake and insulin resistance is compensatory hyperinsulinaemia through increased insulin secretion and/or reduced insulin clearance. Failure of compensatory mechanisms plays a central role in the pathogenesis of type 2 diabetes mellitus; consequently, it is critical to identify in vivo signal(s) involved in hyperinsulinaemic compensation. We have previously reported that high-fat feeding leads to an increase in nocturnal NEFA concentration. We therefore designed this study to test the hypothesis that elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation for insulin resistance. Blood sampling was conducted in male dogs to determine 24 h profiles of NEFA at baseline and during high-fat feeding with and without acute nocturnal NEFA suppression using a partial A1 adenosine receptor agonist. High-fat feeding increased nocturnal NEFA and reduced insulin sensitivity, effects countered by an increase in acute insulin response to glucose (AIR(g)). Pharmacological NEFA inhibition after 8 weeks of high-fat feeding lowered NEFA to baseline levels and reduced AIR(g) with no effect on insulin sensitivity. A significant relationship emerged between nocturnal NEFA levels and AIR(g). This relationship indicates that the hyperinsulinaemic compensation induced in response to high-fat feeding was prevented when the nocturnal NEFA pattern was returned to baseline. Elevated nocturnal NEFA are an important signal for hyperinsulinaemic compensation during diet-induced insulin resistance.

  4. Phase III Early Restoration Public Meetings | NOAA Gulf Spill Restoration

    Science.gov Websites

    Archive Home Phase III Early Restoration Public Meetings Phase III Early Restoration Public Meetings share Posted on December 6, 2013 | Assessment and Early Restoration Restoration Area Title: Phase III Early on the draft plan for the third phase of Early Restoration, which proposes more than $625 million in

  5. Phase V of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Phase V Early Restoration Plan and Environmental Assessment. The project will acquire land along Florida million. Phase V Early Restoration Plan and Environmental Assessment (pdf, 10 MB) Draft Phase V Early Restoration Plan and Environmental Assessment (Executive Summary) (2 MB) Phase V Fact Sheet (pdf, 2 MB) Gulf

  6. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    PubMed Central

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  7. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    PubMed

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  8. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint.

    PubMed

    Arkell, Karolina; Knutson, Hans-Kristian; Frederiksen, Søren S; Breil, Martin P; Nilsson, Bernt

    2018-01-12

    With the shift of focus of the regulatory bodies, from fixed process conditions towards flexible ones based on process understanding, model-based optimization is becoming an important tool for process development within the biopharmaceutical industry. In this paper, a multi-objective optimization study of separation of three insulin variants by reversed-phase chromatography (RPC) is presented. The decision variables were the load factor, the concentrations of ethanol and KCl in the eluent, and the cut points for the product pooling. In addition to the purity constraints, a solubility constraint on the total insulin concentration was applied. The insulin solubility is a function of the ethanol concentration in the mobile phase, and the main aim was to investigate the effect of this constraint on the maximal productivity. Multi-objective optimization was performed with and without the solubility constraint, and visualized as Pareto fronts, showing the optimal combinations of the two objectives productivity and yield for each case. Comparison of the constrained and unconstrained Pareto fronts showed that the former diverges when the constraint becomes active, because the increase in productivity with decreasing yield is almost halted. Consequently, we suggest the operating point at which the total outlet concentration of insulin reaches the solubility limit as the most suitable one. According to the results from the constrained optimizations, the maximal productivity on the C 4 adsorbent (0.41 kg/(m 3  column h)) is less than half of that on the C 18 adsorbent (0.87 kg/(m 3  column h)). This is partly caused by the higher selectivity between the insulin variants on the C 18 adsorbent, but the main reason is the difference in how the solubility constraint affects the processes. Since the optimal ethanol concentration for elution on the C 18 adsorbent is higher than for the C 4 one, the insulin solubility is also higher, allowing a higher pool concentration

  9. Some engineering aspects of insulin delivery systems.

    PubMed

    Spencer, W J; Bair, R E; Carlson, G A; Love, J T; Urenda, R S; Eaton, R P; Schade, D S

    1980-01-01

    The characteristics of electronically controlled insulin delivery systems are presented. Early experiments with an external system have shown promise in providing improved glycemic control over conventional methods of single or multiple subcutaneous insulin injections. The encouraging results with external insulin delivery systems have led to the development and early testing in dogs of an implantable system with remote controls to permit variable insulin flow rates. A number of questions remain to be answered before widespread experimentation with external and implanted insulin delivery systems is possible. There appears to be no major development problems with the engineering aspects of such systems.

  10. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Hernández-Corona, Diana M; Ramírez-Rodríguez, Alejandra M

    2017-10-01

    To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.

  11. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  12. Phase IV of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Trustees published the Final Phase IV Early Restoration Plan and Environmental Assessments. The plan habitats. Useful Links: Final Phase IV Early Restoration Plan and Environmental Assessments (pdf, 4.8 MB ) Final Phase IV Early Restoration Plan and Environmental Assessments Executive Summary (pdf, 729 KB

  13. [Effectiveness of increased contents of dietary fiber in early stages of non-insulin-dependent diabetes mellitus].

    PubMed

    Krashenitsa, G M; Botvineva, L A; Mogila, A V

    1994-01-01

    Patients with early NIDDM were put on routine diet N 9 (food fiber 25 g/day) and test diet (food fiber 55 g/day). The diet of both groups (group 1 and 2, respectively) was supplemented with oral mineral water Essentuki 17. High-fiber diets proved to be effective for the above patients as they induced positive trends in NIDDM clinical symptoms, body weight, lowering of basal insulin, an increase in insulin immediate pool. There was also a reduction of insulinemia and hyperglycemia later in the course of glucose tolerance test. The above shifts were more pronounced in 2 patients.

  14. Early-effect of bariatric surgery (Scopinaro method) on intestinal hormones and adipokines in insulin resistant Wistar rat.

    PubMed

    Dib, N; Kiciak, A; Pietrzak, P; Ferenc, K; Jaworski, P; Kapica, M; Tarnowski, W; Zabielski, R

    2013-10-01

    Bariatric surgery consists in duodenal exclusion from the food passage in obese patients with coexistent type 2 diabetes. Nowadays bariatric surgery is considered the most effective method of glycemic index normalization and insulin resistance reduction. Recent results on obese and non-obese rats showed remission of type 2 diabetes symptoms within few days after the surgery. The aim of the present work was to analyze the mechanisms of neuro-hormonal regulation responsible for early normalization of metabolic syndrome after bariatric surgery. In present study the concentration of selected intestinal hormones and adipokines in blood plasma and gastrointestinal tissues were analyzed. Study was conducted on Wistar rats. Animals were divided into three groups (each n=6): control (SH) shame-operated rats; animals in which visceral fat tissue was extracted (LP); and rats in which Scopinaro bariatric surgery was performed (BPD). Immunochemistry analysis of blood plasma showed decrease of insulin concentration in BPD and LP and increase of polypeptide YY (PYY) in BPD group as compared to the control. In duodenal mucosa homogenates the tendency to reduce insulin in LP and BPD group, and increase PYY and visfatin in BPD group was observed. Histometry analysis showed reduction of mucosa thickness in excluded segments of gastrointestinal tract in BPD group as compared to the SH and LP. Concluding, model studies on rats allowed better understanding of mechanisms important for early normalization of glycemic index and insulin resistance reduction in rats.

  15. Biphasic insulin-releasing effect of BTS 67 582 in rats.

    PubMed

    Storey, D A; Bailey, C J

    1998-12-01

    BTS 67 582 (1,1-dimethyl-2(2-morpholinophenyl)guanidine fumarate) is being developed as a short-acting anti-diabetic insulin secretagogue. The effect of BTS 67 582 on the phasic pattern of insulin release was assessed in anaesthetized normal rats by measuring arterial plasma insulin concentrations while arterial glucose concentrations were fixed at 6, 8.5 and 12.5 mM. Intravenous BTS 67 582 (10 mg kg(-1)) induced an immediate but transient increase in insulin concentrations which declined by 10 min (first phase). This was followed by a smaller but sustained increase in insulin concentrations (second phase). The increment from basal to peak insulin release (0-2 min) was independent of glucose, but the first phase was maintained for longer and the second phase was greater at the highest concentration of glucose (12.5 mM). BTS 67 582 also extended the first-phase insulin response to a standard intravenous glucose challenge and enhanced the rate of glucose disappearance by approximately 12%. Thus BTS 67 582 causes biphasic stimulation of insulin release and augments the insulin-releasing effect of glucose.

  16. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    PubMed

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  17. The interaction of insulin with phospholipids

    PubMed Central

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholineInsulin decreased the [14C]glucose solubilized by phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid, but not by sphingomyelin. 5. The significance of these results and the molecular requirements for the formation of insulin–phospholipid complexes in chloroform are discussed. PMID:5158903

  18. Gene expression profiles of Vibrio parahaemolyticus in the early stationary phase.

    PubMed

    Meng, L; Alter, T; Aho, T; Huehn, S

    2015-09-01

    Vibrio (V.) parahaemolyticus is an aquatic bacterium capable of causing foodborne gastroenteritis. In the environment or the food chain, V. parahaemolyticus cells are usually forced into the stationary phase, the common phase for bacterial survival in the environment. So far, little is known about whole genomic expression of V. parahaemolyticus in the early stationary phase compared with the exponential growth phase. We performed whole transcriptomic profiling of V. parahaemolyticus cells in both phases (exponential and early stationary phase). Our data showed in total that 172 genes were induced in early stationary phase, while 61 genes were repressed in early stationary phase compared with the exponential phase. Three functional categories showed stable gene expression in the early stationary phase. Eleven functional categories showed that up-regulation of genes was dominant over down-regulation in the early stationary phase. Although genes related to endogenous metabolism were repressed in the early stationary phase, massive regulation of gene expression occurred in the early stationary phase, indicating the expressed gene set of V. parahaemolyticus in the early stationary phase impacts environmental survival. Vibrio (V.) parahaemolyticus is one of the main bacterial causes of foodborne intestinal infections. This bacterium usually is forced into stationary phase in the environment, which includes, e.g. seafood. When bacteria are in stationary phase, physiological changes can lead to a resistance to many stresses, including physical and chemical challenges during food processing. To the best of our knowledge, highlighting the whole genome expression changes in the early stationary phase compared with exponential phase, as well as the investigation of physiological changes of V. parahaemolyticus such as the survival mechanism in the stationary phase has been the very first study in this field. © 2015 The Society for Applied Microbiology.

  19. Insulin degludec/insulin aspart versus biphasic insulin aspart 30 twice daily in insulin-experienced Japanese subjects with uncontrolled type 2 diabetes: Subgroup analysis of a Pan-Asian, treat-to-target Phase 3 Trial.

    PubMed

    Taneda, Shinji; Hyllested-Winge, Jacob; Gall, Mari-Anne; Kaneko, Shizuka; Hirao, Koichi

    2017-03-01

    The present study was a subgroup analysis of a Pan-Asian Phase 3 open-label randomized treat-to-target trial evaluating insulin degludec/insulin aspart (IDegAsp) and biphasic insulin aspart 30 (BIAsp 30) in Japanese subjects with type 2 diabetes inadequately controlled on insulin. Eligible subjects (n = 178) were randomized (2: 1) to twice-daily (b.i.d.) IDegAsp or BIAsp 30 with or without metformin for 26 weeks, titrated to a blood glucose target of between 3.9 and <5.0 mmol/L. Changes in HbA 1c , the proportion of responders reaching the HbA 1c target, and changes in fasting plasma glucose, nine-point self-monitored plasma glucose profiles, and body weight were assessed. At 26 weeks, the decrease in HbA 1c was similar in both groups. Fasting plasma glucose was lower with IDegAsp than BIAsp 30 (estimated treatment difference -1.50 mmol/L; 95 % confidence interval [CI] -1.98, -1.01). Overall confirmed hypoglycemia rates were similar; the nocturnal confirmed hypoglycemia rate was lower with IDegAsp than BIAsp 30 (estimated rate ratio 0.44; 95 % CI 0.20, 0.99). No severe hypoglycemic episodes were reported. The results indicate that IDegAsp b.i.d. improves glycemic control and, compared with BIAsp 30, lowers the rate of nocturnal confirmed hypoglycemia. © 2016 The Authors. Journal of Diabetes published John Wiley & Sons Australia, Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  20. An Overview of Insulin Pumps and Glucose Sensors for the Generalist

    PubMed Central

    McAdams, Brooke H.; Rizvi, Ali A.

    2016-01-01

    Continuous subcutaneous insulin, or the insulin pump, has gained popularity and sophistication as a near-physiologic programmable method of insulin delivery that is flexible and lifestyle-friendly. The introduction of continuous monitoring with glucose sensors provides unprecedented access to, and prediction of, a patient’s blood glucose levels. Efforts are underway to integrate the two technologies, from “sensor-augmented” and “sensor-driven” pumps to a fully-automated and independent sensing-and-delivery system. Implantable pumps and an early-phase “bionic pancreas” are also in active development. Fine-tuned “pancreas replacement” promises to be one of the many avenues that offers hope for individuals suffering from diabetes. Although endocrinologists and diabetes specialists will continue to maintain expertise in this field, it behooves the primary care physician to have a working knowledge of insulin pumps and sensors to ensure optimal clinical care and decision-making for their patients. PMID:26742082

  1. Insulin therapy in patients with cystic fibrosis in the pre-diabetes stage: a systematic review.

    PubMed

    Pu, Mariana Zorrón Mei Hsia; Christensen-Adad, Flávia Corrêa; Gonçalves, Aline Cristina; Minicucci, Walter José; Ribeiro, José Dirceu; Ribeiro, Antonio Fernando

    2016-09-01

    To elucidate whether insulin is effective or not in patients with cystic fibrosis before the diabetes mellitus phase. The study was performed according to the Prisma method between August and September 2014, using the PubMed, Embase, Lilacs and SciELO databases. Prospective studies published in English, Portuguese and Spanish from 2002 to 2014, evaluating the effect of insulin on weight parameters, body mass index and pulmonary function in patients with cystic fibrosis, with a mean age of 17.37 years before the diabetes mellitus phase were included. Eight articles were identified that included 180 patients undergoing insulin use. Sample size ranged from 4 to 54 patients, with a mean age ranging from 12.4 to 28 years. The type of follow-up, time of insulin use, the dose and implementation schedule were very heterogeneous between studies. There are theoretical reasons to believe that insulin has a beneficial effect in the studied population. The different methods and populations assessed in the studies do not allow us to state whether early insulin therapy should or should not be carried out in patients with cystic fibrosis prior to the diagnosis of diabetes. Therefore, studies with larger samples and insulin use standardization are required. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats.

    PubMed

    Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-01

    Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.

  3. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  4. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  5. Pharmacogenomics in early-phase clinical development

    PubMed Central

    Burt, Tal; Dhillon, Savita

    2015-01-01

    Pharmacogenomics (PGx) offers the promise of utilizing genetic fingerprints to predict individual responses to drugs in terms of safety, efficacy and pharmacokinetics. Early-phase clinical trial PGx applications can identify human genome variations that are meaningful to study design, selection of participants, allocation of resources and clinical research ethics. Results can inform later-phase study design and pipeline developmental decisions. Nevertheless, our review of the clinicaltrials.gov database demonstrates that PGx is rarely used by drug developers. Of the total 323 trials that included PGx as an outcome, 80% have been conducted by academic institutions after initial regulatory approval. Barriers for the application of PGx are discussed. We propose a framework for the role of PGx in early-phase drug development and recommend PGx be universally considered in study design, result interpretation and hypothesis generation for later-phase studies, but PGx results from underpowered studies should not be used by themselves to terminate drug-development programs. PMID:23837482

  6. Internalization and localization of basal insulin peglispro in cells.

    PubMed

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than

  7. NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin-dependent diabetes mellitus immediately after glycogen-depleting exercise.

    PubMed Central

    Price, T B; Perseghin, G; Duleba, A; Chen, W; Chase, J; Rothman, D L; Shulman, R G; Shulman, G I

    1996-01-01

    To examine the impact of insulin resistance on the insulin-dependent and insulin-independent portions of muscle glycogen synthesis during recovery from exercise, we studied eight young, lean, normoglycemic insulin-resistant (IR) offspring of individuals with non-insulin-dependent diabetes mellitus and eight age-weight matched control (CON) subjects after plantar flexion exercise that lowered muscle glycogen to approximately 25% of resting concentration. After approximately 20 min of exercise, intramuscular glucose 6-phosphate and glycogen were simultaneously monitored with 31P and 13C NMR spectroscopies. The postexercise rate of glycogen resynthesis was nonlinear. Glycogen synthesis rates during the initial insulin independent portion (0-1 hr of recovery) were similar in the two groups (IR, 15.5 +/- 1.3 mM/hr and CON, 15.8 +/- 1.7 mM/hr); however, over the next 4 hr, insulin-dependent glycogen synthesis was significantly reduced in the IR group [IR, 0.1 +/- 0.5 mM/hr and CON, 2.9 +/- 0.2 mM/hr; (P < or = 0.001)]. After exercise there was an initial rise in glucose 6-phosphate concentrations that returned to baseline after the first hour of recovery in both groups. In summary, we found that following muscle glycogen-depleting exercise, IR offspring of parents with non-insulin-dependent diabetes mellitus had (i) normal rates of muscle glycogen synthesis during the insulin-independent phase of recovery from exercise and (ii) severely diminished rates of muscle glycogen synthesis during the subsequent recovery period (2-5 hr), which has previously been shown to be insulin-dependent in normal CON subjects. These data provide evidence that exercise and insulin stimulate muscle glycogen synthesis in humans by different mechanisms and that in the IR subjects the early response to stimulation by exercise is normal. PMID:8643574

  8. Insulin-Sensitizers, Polycystic Ovary Syndrome and Gynaecological Cancer Risk

    PubMed Central

    Lauretta, Rosa; Lanzolla, Giulia; Vici, Patrizia; Mariani, Luciano; Moretti, Costanzo

    2016-01-01

    Preclinical, early phase clinical trials and epidemiological evidence support the potential role of insulin-sensitizers in cancer prevention and treatment. Insulin-sensitizers improve the metabolic and hormonal profile in PCOS patients and may also act as anticancer agents, especially in cancers associated with hyperinsulinemia and oestrogen dependent cancers. Several lines of evidence support the protection against cancer exerted by dietary inositol, in particular inositol hexaphosphate. Metformin, thiazolidinediones, and myoinositol postreceptor signaling may exhibit direct inhibitory effects on cancer cell growth. AMPK, the main molecular target of metformin, is emerging as a target for cancer prevention and treatment. PCOS may be correlated to an increased risk for developing ovarian and endometrial cancer (up to threefold). Several studies have demonstrated an increase in mortality rate from ovarian cancer among overweight/obese PCOS women compared with normal weight women. Long-term use of metformin has been associated with lower rates of ovarian cancer. Considering the evidence supporting a higher risk of gynaecological cancer in PCOS women, we discuss the potential use of insulin-sensitizers as a potential tool for chemoprevention, hypothesizing a possible rationale through which insulin-sensitizers may inhibit tumourigenesis. PMID:27725832

  9. Time delay compensation for closed-loop insulin delivery systems: a simulation study.

    PubMed

    Reboldi, G P; Home, P D; Calabrese, G; Fabietti, P G; Brunetti, P; Massi Benedetti, M

    1991-06-01

    Closed loop insulin therapy certainly represents the best possible approach to insulin replacement. However, present limitations preclude wider application of the so-called artificial pancreas. Therefore, a thorough understanding of these limitations is needed to design better systems for future long-term use. The present simulation study was design: to obtain better information on the impact of the measurement delay of currently available closed-loop devices both during closed-loop insulin delivery and blood glucose clamp studies, and to design and test a time delay compensator based on the method originally described by O.J. Smith. Simulations were performed on a Compaq Deskpro 486/25 personal computer under MS-DOS operating system using Simnon rel. 3.00 software. There was a direct relationship between measurement delay and amount of insulin delivered, i.e., the longer the delay the higher the insulin dose needed to control a rise in blood glucose; the closed-loop response in presence of a time delay was qualitatively impaired both during insulin delivery and blood glucose clamp studies; time delay compensation was effective in reducing the insulin dose and improving controller stability during the early phase of clamp studies. However, the robustness of a Smith's predictor-based controller should be carefully evaluated before implementation in closed-loop systems can be considered.

  10. Comparison of insulin analogue B9AspB27Glu and soluble human insulin in insulin-treated diabetes.

    PubMed

    Kang, S; Owens, D R; Vora, J P; Brange, J

    1990-02-10

    Postprandial plasma glucose excursions and plasma levels of free insulin after subcutaneous bolus injection of a rapidly absorbed monomeric insulin analogue (B9AspB27Glu) or soluble human insulin ('Actrapid HM' U100) were studied in six insulin-treated diabetic subjects. 10 U actrapid or an equimolar amount of the analogue were injected, in random order with an interval of 1 week, immediately before a 500 kcal test meal. Basal insulin levels were similar on the 2 study days (mean 74.1 [SE 5.1] pmol/l, actrapid; 79.7 [13.0] pmol/l, analogue). After injection of actrapid plasma free insulin levels rose slowly, reaching a plateau by 105 min at 222 (19) pmol/l. Injection of the analogue resulted in a rapid early peak at 30 min (798 [112] pmol/l), and levels were significantly higher than those after actrapid between 15 and 210 min. The more physiological plasma insulin levels achieved with the analogue were accompanied by a substantial reduction in postprandial plasma glucose excursions; the integrated area under the incremental plasma glucose curve was 45% lower after the analogue than after actrapid.

  11. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    PubMed Central

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  12. An Evolutionary Perspective on Basal Insulin in Diabetes Treatment: Role of Insulin Therapy In Diabetes.

    PubMed

    Rodbard, Helena W

    2016-10-01

    The availability of human insulin and subsequently insulin analogs that more closely mimic the body's physiology have contributed to increased safety in patients with diabetes and a greater role in patients with T2DM. This greater role is supported by clear evidence that early use of insulin in T2DM results in long-term improvements in glycemic control and beta-cell function compared with oral agents.

  13. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  14. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  15. Monitoring Insulin Aggregation via Capillary Electrophoresis

    PubMed Central

    Pryor, Elizabeth; Kotarek, Joseph A.; Moss, Melissa A.; Hestekin, Christa N.

    2011-01-01

    Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation. PMID:22272138

  16. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion

    PubMed Central

    Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.

    2015-01-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564

  17. Novel hepato-preferential basal insulin peglispro (BIL) does not differentially affect insulin sensitivity compared with insulin glargine in patients with type 1 and type 2 diabetes.

    PubMed

    Porksen, Niels; Linnebjerg, Helle; Garhyan, Parag; Lam, Eric C Q; Knadler, Mary P; Jacober, Scott J; Hoevelmann, Ulrike; Plum-Moerschel, Leona; Watkins, Elaine; Gastaldelli, Amalia; Heise, Tim

    2017-04-01

    Basal insulin peglispro (BIL) is a novel PEGylated basal insulin with a flat pharmacokinetic and glucodynamic profile and reduced peripheral effects, which results in a hepato-preferential action. In Phase 3 trials, patients with T1DM treated with BIL had lower prandial insulin requirements, yet improved prandial glucose control, relative to insulin glargine (GL). We hypothesized that this may be because of an enhanced sensitivity to prandial insulin with BIL resulting from lower chronic peripheral insulin action. Two open-label, randomized, 2-period crossover clinical studies were conducted in 28 patients with T1DM and 24 patients with T2DM. In each study period, patients received once-daily, individualized, stable, subcutaneous doses of BIL or GL for 5 weeks before a euglycaemic 2-step hyperinsulinemic clamp procedure (with [6,6- 2 H 2 ]-glucose in 12 of the patients with T1DM). M-values were derived from the clamp procedure for all patients, with rate of glucose appearance (Ra) and disappearance (Rd) and insulin sensitivity index (SI) determined from the clamps with [6,6- 2 H 2 ]-glucose. There were no statistically significant differences between BIL and GL in key measures of hepatic (% Ra suppression during the low-dose insulin infusion; 78.7% with BIL, 81.8% with GL) or peripheral (M-value and M/I during the high-dose insulin infusion, Rd and SI) insulin sensitivity in patients with T1DM or T2DM. The need to reduce prandial insulin observed with BIL during phase 3 trials cannot be explained by the differential effects of BIL and GL on sensitivity to prandial insulin in either T1DM or T2DM. © 2016 John Wiley & Sons Ltd.

  18. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  19. Effects of Exercise Intensity on Postprandial Improvement in Glucose Disposal and Insulin Sensitivity in Prediabetic Adults

    PubMed Central

    Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.

    2014-01-01

    Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632

  20. Early Intervention Services for Early-Phase Psychosis - Centre for integrative psychiatry in Psychiatric Hospital "Sveti Ivan", Croatia.

    PubMed

    Matić, Katarina; Gereš, Natko; Gerlach, Josefina; Prskalo-Čule, Diana; Zadravec Vrbanc, Tihana; Lovretić, Vanja; Librenjak, Dina; Vuk Pisk, Sandra; Ivezić, Ena; Šimunović Filipčić, Ivona; Jeleč, Vjekoslav; Filipčić, Igor

    2018-06-01

    There is a growing body of evidence suggesting that early and effective management in the critical early years of schizophrenia can improve long-term outcomes. The objective of this study was to evaluate time to relapse of the patients with early-phase psychosis treated in the Centre for integrative psychiatry (CIP). We performed a retrospective cohort study on the sample of 373 early-phase psychosis patients admitted to Psychiatric Hospital "Sveti Ivan", Zagreb Croatia: from January 1, 2015 to December 31, 2017. The primary outcome was time to relapse. Patients who were admitted to group psychotherapeutic program after the end of acute treatment had 70% lower hazard for relapse (HR=0.30; 95% CI 0.16-0.58). Patients who were included first in the psychotherapeutic program and then treated and controlled in the daily hospital had 74% lower hazard for relapse (HR=0.26; 95% CI 0.10-0.67). In early-phase psychosis, integrative early intervention service has relevant beneficial effects compare to treatment as usual. These results justified the implementation of multimodal early intervention services in treatment of patients with early-phase psychosis.

  1. 2,3-diphosphoglycerate, nucleotide phosophate, and organic and inorganic phosphate levels during the early phases of diabetic ketoacidosis.

    PubMed

    Kanter, Y; Gerson, J R; Bessman, A N

    1977-05-01

    The relation between serum and red blood cell (RBC) inorganic phosphate levels, RBC 2,3-diphosphoglycerate (2,3-DPG) levels, RBC nucleotide phosphate (Pn), and RBC total phosphate (Pt) levels were studied during the early phases of treatment and recovery from diabetic ketoacidosis (DKA). A steady drop in serum inorganic phosphate was found during the first 24 hours of insulin treatment and was most profound at 24 hours. No statistically significant changes (P less than 0.05) were found in red cell inorganic phosphate or nucleotide phosphate levels during the 24-hour study period. The levels of total red cell phosphate were lower in this group of patients than in nonacidotic diabetic subjects and decreased slightly after 24 hours of treatment. The red cell 2,3-DPG levels were low at the initiation of therapy and remained low during the 24-hour study period. Glucose, bicarbonate, lactate, and ketone levels fell in linear patterns with treatment. In view of the current evidence for the effects of low 2,3-DPG on oxygen delivery and the relation of low serum phosphate levels to RBC glycolysis and 2,3-DPG formation, this study reemphasizes the need for phosphate replacement during the early phases of treatment of DKA.

  2. Two-year efficacy and safety of AIR inhaled insulin in patients with type 1 diabetes: An open-label randomized controlled trial.

    PubMed

    Garg, Satish K; Mathieu, Chantal; Rais, Nadeem; Gao, Haitao; Tobian, Janet A; Gates, Jeffrey R; Ferguson, Jeffrey A; Webb, David M; Berclaz, Pierre-Yves

    2009-09-01

    Patients with type 1 diabetes require intensive insulin therapy for optimal glycemic control. AIR((R)) inhaled insulin (system from Eli Lilly and Company, Indianapolis, IN) (AIR is a registered trademark of Alkermes, Inc., Cambridge, MA) may be an efficacious and safe alternative to subcutaneously injected (SC) mealtime insulin. This was a Phase 3, 2-year, randomized, open-label, active-comparator, parallel-group study in 385 patients with type 1 diabetes who were randomly assigned to receive AIR insulin or SC insulin (regular human insulin or insulin lispro) at mealtimes. Both groups received insulin glargine once daily. Efficacy measures included mean change in hemoglobin A1C (A1C) from baseline to end point, eight-point self-monitored blood glucose profiles, and insulin dosage. Safety assessments included hypoglycemic events, pulmonary function tests, adverse events, and insulin antibody levels. In both treatment groups, only 20% of subjects reached the target of A1C <7.0%. A significant A1C difference of 0.44% was seen favoring SC insulin, with no difference between the groups in insulin doses or hypoglycemic events at end point. Patients in both treatment groups experienced progressive decreases in lung function, but larger (reversible) decrements in diffusing capacity of the lung for carbon monoxide (DL(CO)) were associated with AIR insulin treatment. Greater weight gain was seen with SC insulin treatment. The AIR inhaled insulin program was terminated by the sponsor prior to availability of any Phase 3 data for reasons unrelated to safety or efficacy. Despite early termination, this trial provides evidence that AIR insulin was less efficacious in lowering A1C and was associated with a greater decrease in DL(CO) and increased incidence of cough than SC insulin in patients with type 1 diabetes.

  3. Clinical use of the co-formulation of insulin degludec and insulin aspart.

    PubMed

    Kumar, A; Awata, T; Bain, S C; Ceriello, A; Fulcher, G R; Unnikrishnan, A G; Arechavaleta, R; Gonzalez-Gálvez, G; Hirose, T; Home, P D; Kaku, K; Litwak, L; Madsbad, S; Pinget, M; Mehta, R; Mithal, A; Tambascia, M; Tibaldi, J; Christiansen, J S

    2016-08-01

    To provide a review of the available data and practical use of insulin degludec with insulin aspart (IDegAsp). Premixed insulins provide basal and prandial glucose control; however, they have an intermediate-acting prandial insulin component and do not provide as effective basal coverage as true long-acting insulins, owing to the physicochemical incompatibility of their individual components, coupled with the inflexibility of adjustment. The molecular structure of the co-formulation of IDegAsp, a novel insulin preparation, allows these two molecules to coexist without affecting their individual pharmacodynamic profiles. Clinical evidence in phase 2/3 trials of IDegAsp efficacy and safety in type 1 and type 2 diabetes mellitus (T1DM and T2DM) have been assessed and summarised. In people with T2DM, once- and twice-daily dosing provides similar overall glycaemic control (HbA1c ) to current modern insulins, but with lower risk of nocturnal hypoglycaemia. In prior insulin users, glycaemic control was achieved with lower or equal insulin doses vs. other basal+meal-time or premix insulin regimens. In insulin-naïve patients with T2DM, IDegAsp can be started once or twice-daily, based on individual need. People switching from more than once-daily basal or premix insulin therapy can be converted unit-to-unit to once-daily IDegAsp, although this strategy should be assessed by the physician on an individual basis. IDegAsp offers physicians and people with T2DM a simpler insulin regimen than other available basal-bolus or premix-based insulin regimens, with stable daytime basal coverage, a lower rate of hypoglycaemia and some flexibility in injection timing compared with premix insulins. © 2016 John Wiley & Sons Ltd.

  4. The quantitative insulin sensitivity check index is not able to detect early metabolic alterations in young patients with polycystic ovarian syndrome.

    PubMed

    Angioni, Stefano; Sanna, Stefania; Magnini, Roberta; Melis, Gian Benedetto; Fulghesu, Anna Maria

    2011-07-01

    To verify whether QUICKY is a suitable method for the identification of metabolic deterioration in normal weight patients affected by polycystic ovarian syndrome (PCOS). Prospective clinical study. Seventy-nine PCOS normal weight adolescent subjects, 50 eumenorrheic, normal weight, non-hirsute controls matched for age and BMI. Quantitative insulin sensitivity check index (QUICKY) and integrated secretory area under the curve of insulin values (I-AUC) during oral glucose tolerance test were calculated. Seventy-nine PCOS and 50 controls were studied. Normal insulin sensitivity was defined as upper control 95th percentile by QUICKY values <0.31, I-AUC at 180 min < 16,645. When applying the calculated I-AUC cut-off, 41 PCOS were classified as normoinsulinemic and 38 as hyperinsulinemic, whereas using the calculated QUICKY cut-off, only 19 PCOS could be classified as insulin resistant (IR). Fifteen out of the 60 non-IR PCOS presented hyperinsulinemia; fasting glucose and insulin levels and QUICKY were not sufficient to identify these subjects. Thus, QUICKY displayed a low sensitivity (44%) and specificity (91%) in the diagnosis of the metabolic disorder disclosed by I-AUC. CONCLUSIONS.: In young normal weight patients with PCOS the prevalence of early alterations of insulin metabolism are not detectable by QUICKY studies.

  5. Combination of Peptide YY3–36 with GLP-17–36 amide Causes an Increase in First-Phase Insulin Secretion after IV Glucose

    PubMed Central

    Tan, Tricia M.; Salem, Victoria; Troke, Rachel C.; Alsafi, Ali; Field, Benjamin C. T.; De Silva, Akila; Misra, Shivani; Baynes, Kevin C. R.; Donaldson, Mandy; Minnion, James; Ghatei, Mohammad A.; Godsland, Ian F.

    2014-01-01

    Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY3–36 and GLP-17–36 amide, on glucose homeostasis are unknown. Objective: This study sought to investigate the acute effects of PYY3–36 and GLP-17–36 amide, individually and in combination, on insulin secretion and sensitivity. Setting and Design: Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY3–36 alone, GLP-17–36 amide alone, and a combination of PYY3–36 and GLP-17–36 amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility. Results: PYY3–36 alone caused a small but nonsignificant increase in AIRg. GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide did increase AIRg significantly. No significant differences in SI were observed with any intervention. Conclusions: PYY3–36 lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY3–36 and GLP-17–36 amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI. PMID:25144632

  6. Monomeric insulins and their experimental and clinical implications.

    PubMed

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    hypoglycemic response with the analogues were observed. The monomeric insulin had no lag phase and followed a monoexponential course throughout the absorption process. In contrast, two phases in rate of absorption were identified for the dimer and three for the normal hexameric human insulin. The initial lag phase and the subsequent accelerated absorption of soluble insulin can now be explained by the associated state of native insulin in pharmaceutical formulation and its progressive dissociation into smaller units during the absorption process. In the light of these results, the effects of insulin concentration, injected volume, temperature, and massage on the absorption process are now also understood.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Comparison of insulin sensitivity, glucose sensitivity, and first phase insulin secretion in patients treated with repaglinide or gliclazide.

    PubMed

    Wu, Chung-Ze; Pei, Dee; Hsieh, An-Tsz; Wang, Kun; Lin, Jiunn-Diann; Lee, Li-Hsiu; Chu, Yi-Min; Hsiao, Fone-Ching; Pei, Chun; Hsia, Te-Lin

    2010-03-01

    The traditional sulfonylureas with long half-lives have sustained stimulatory effects on insulin secretion compared to the short-acting insulin secretagogue. In this study, we used the frequently sampled intravenous glucose tolerance test (FSIGT) to evaluate the insulin sensitivity (IS), glucose sensitivity (SG), and acute insulin response after glucose load (AIRg) after 4 months treatment with either gliclazide or repaglinide. The design of study was randomizedcrossover. We enrolled 20 patients with new-onset type 2 diabetes (mean age, 49.3 years). Totally three FSIGTs were performed, one before and one after each of the two treatment periods as aforementioned. No significant differences in fasting plasma glucose, insulin, body mass index, blood pressure, glycated hemoglobin, or lipids were noted between the two treatments. After the repaglinide treatment, higher AIRg, lower IS, and lower SG were noted, but they did not reach statistical significance. The disposal index (DI) was also not significantly different between the two treatments. In conclusion, since non-significantly higher DI, AIRg, lower IS and SG were noted after repaglinide treatment, it might be a better treatment for diabetes, relative to gliclazide.

  8. Basal plasma insulin and homeostasis model assessment (HOMA) are indicators of insulin sensitivity in cats.

    PubMed

    Appleton, D J; Rand, J S; Sunvold, G D

    2005-06-01

    The objective of this study was to compare simpler indices of insulin sensitivity with the minimal model-derived insulin sensitivity index to identify a simple and reliable alternative method for assessing insulin sensitivity in cats. In addition, we aimed to determine whether this simpler measure or measures showed consistency of association across differing body weights and glucose tolerance levels. Data from glucose tolerance and insulin sensitivity tests performed in 32 cats with varying body weights (underweight to obese), including seven cats with impaired glucose tolerance, were used to assess the relationship between Bergman's minimal model-derived insulin sensitivity index (S(I)), and various simpler measures of insulin sensitivity. The most useful overall predictors of insulin sensitivity were basal plasma insulin concentrations and the homeostasis model assessment (HOMA), which is the product of basal glucose and insulin concentrations divided by 22.5. It is concluded that measurement of plasma insulin concentrations in cats with food withheld for 24 h, in conjunction with HOMA, could be used in clinical research projects and by practicing veterinarians to screen for reduced insulin sensitivity in cats. Such cats may be at increased risk of developing impaired glucose tolerance and type 2 diabetes mellitus. Early detection of these cats would enable preventative intervention programs such as weight reduction, increased physical activity and dietary modifications to be instigated.

  9. DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance.

    PubMed

    Østergaard, Mette V; Pinto, Vanda; Stevenson, Kirsty; Worm, Jesper; Fink, Lisbeth N; Coward, Richard J M

    2017-02-01

    Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies. Copyright © 2017 the American Physiological Society.

  10. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1more » plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.« less

  11. Insulin and insulin-like growth factor-1 (lGF-1) inhibit repair of potentially lethal radiation damage and chromosome aberrations and later DNA repair kinetics in plateau-phase A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayanth, V.R.; Belfi, C.A.; Swick, A.R.

    1995-08-01

    Plateau-phase A549 cells exhibit a high capacity for repair of potentially lethal radiation damage (PLD) when allowed to recover in their own spent medium. Addition of either insulin or insulin-like growth factor-1 (IGF-1) to the spent medium 60 to 120 min before irradiation significantly inhibits PLD repair. The 9-h recovery factor (survival with holding/survival without holding)is reduced from 10.8 {plus_minus} 0.7 to 3.4 {plus_minus}0.3 by insulin and to 3.0 {plus_minus} 0.4 by IGF-1. Neither growth factor alters the cell age distribution of the plateau-phase cells, increases the rate of incorporation of 5-bromo-2{prime}-deoxyuridine into DNA, or alters the extent of radiation-inducedmore » mitotic delay in cells subcultured immediately after irradiation. Both insulin and IGF-1 alter the kinetics for rejoining of DNA double-strand breaks (DSBs), slowing the fast component of rejoining significantly. However, these growth factors have no effect on the initial level of DSBs or on the percentage of residual unrejoined breaks at 120 min postirradiation. Both growth factors affect repair of lesions leading to dicentric, but not to acentric, chromosome aberrations significantly. In control cells (treated with phosphate-buffered saline, 90 min prior to irradiation), the half-time for disappearance of dicentrics was 4.1 h (3.4 to 5.1 h), and 47.1 {plus_minus} 3.7% of the residual damage remained at 24 h postirradiation. Insulin and IGF-1 increased the half-time for disappearance of dicentrics to 5.2 h (3.9 to 7.7 h) and 5.7 h (5.5 to 5.9 h), respectively, and increased residual damage to 56.1 {plus_minus}5.9% and 60.8 {plus_minus} 6.0%, respectively. Overall, these data show that insulin and IGF-1 inhibit PLD repair in A54j9 cells by mechanisms which are independent of changes in cell cycle parameters. The data suggest that the growth factors act by inducing changes in chromatin conformation which promote misrepair of radiation-damaged DNA. 49 refs., 5 figs., 4 tabs.« less

  12. Phase III Early Restoration Meeting | NOAA Gulf Spill Restoration

    Science.gov Websites

    Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News Publications Press Releases Story programmatic approach to early restoration planning for Phase III and future early restoration plans. Open

  13. Phase III Early Restoration Meeting - Pensacola, FL (rescheduled) | NOAA

    Science.gov Websites

    Restoration Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News programmatic approach to early restoration planning for Phase III and future early restoration plans. Open

  14. Generational change in fasting glucose and insulin among children at ages 5-16y: Modelled on the EarlyBird study (2015) and UK growth standards (1990) (EarlyBird 69).

    PubMed

    Mostazir, Mohammod; Jeffery, Alison; Voss, Linda; Wilkin, Terence

    2017-01-01

    Pre-diabetes is a state of beta-cell stress caused by excess demand for insulin. Body mass is an important determinant of insulin demand, and BMI has risen substantially over recent time. We sought to model changes in the parameters of glucose control against rising BMI over the past 25years. Using random coefficient mixed models, we established the correlations between HbA1C, fasting glucose, fasting insulin, HOMA2-IR and BMI in contemporary (2015) children (N=307) at ages 5-16y from the EarlyBird study, and modelled their corresponding values 25years ago according to the distribution of BMI in the UK Growth Standards (1990). There was little change in HbA1C or fasting glucose over the 25y period at any age or in either gender. On the other hand, the estimates for fasting insulin and HOMA2-IR were substantially higher in both genders in 2015 compared with 1990. Insofar as it is determined by body mass, there has been a substantial rise in beta cell demand among children over the past 25years. The change could be detected by fasting insulin and HOMA2-IR, but not by fasting glucose or HbA1C. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Comparison of surrogate indices for insulin sensitivity with parameters of the intravenous glucose tolerance test in early lactation dairy cattle.

    PubMed

    Alves-Nores, V; Castillo, C; Hernandez, J; Abuelo, A

    2017-10-01

    The aim of this study was to investigate the correlation between different surrogate indices and parameters of the intravenous glucose tolerance test (IVGTT) in dairy cows at the start of their lactation. Ten dairy cows underwent IVGTT on Days 3 to 7 after calving. Areas under the curve during the 90 min after infusion, peak and nadir concentrations, elimination rates, and times to reach half-maximal and basal concentrations for glucose, insulin, nonesterified fatty acids, and β-hydroxybutyrate were calculated. Surrogate indices were computed using the average of the IVGTT basal samples, and their correlation with the IVGTT parameters studied through the Spearman's rank test. No statistically significant or strong correlation coefficients (P > 0.05; |ρ| < 0.50) were observed between the insulin sensitivity measures derived from the IVGTT and any of the surrogate indices. Therefore, these results support that the assessment of insulin sensitivity in early lactation cattle cannot rely on the calculation of surrogate indices in just a blood sample, and the more laborious tests (ie, hyperinsulinemic euglycemic clamp test or IVGTT) should be employed to predict the sensitivity of the peripheral tissues to insulin accurately. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Metacognition in Early Phase Psychosis: Toward Understanding Neural Substrates

    PubMed Central

    Vohs, Jenifer L.; Hummer, Tom A.; Yung, Matthew G.; Francis, Michael M.; Lysaker, Paul H.; Breier, Alan

    2015-01-01

    Individuals in the early phases of psychotic illness have disturbed metacognitive capacity, which has been linked to a number of poor outcomes. Little is known, however, about the neural systems associated with metacognition in this population. The purpose of this study was to elucidate the neuroanatomical correlates of metacognition. We anticipated that higher levels of metacognition may be dependent upon gray matter density (GMD) of regions within the prefrontal cortex. Examining whole-brain structure in 25 individuals with early phase psychosis, we found positive correlations between increased medial prefrontal cortex and ventral striatum GMD and higher metacognition. These findings represent an important step in understanding the path through which the biological correlates of psychotic illness may culminate into poor metacognition and, ultimately, disrupted functioning. Such a path will serve to validate and promote metacognition as a viable treatment target in early phase psychosis. PMID:26132568

  17. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    PubMed

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  18. Insulin-like molecules in the beetle Tenebrio molitor.

    PubMed

    Sevala, V M; Sevala, V L; Loughton, B G

    1993-07-01

    Immunocytochemical staining of the nervous system of larva, pupa, and adult stage of Tenebrio molitor with anti-insulin serum demonstrated insulin-like peptides in the protocerebrum, corpora allata, and suboesophageal ganglion. During pupal development, marked changes in staining intensity of the protocerebral cells were detected. The staining pattern suggests release of insulin-like peptides early on day 0 and again on day 3 of the stadium. Injections of anti-insulin at these times caused significant delays in the timing of pupal/adult ecdysis. An immunoblot of haemolymph from day-3 pupae revealed a 6.5-kDa insulin-like molecule. These results suggest that the prothoracicotropic hormone of T. molitor is an insulin-like molecule.

  19. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme.

    PubMed

    Affholter, J A; Cascieri, M A; Bayne, M L; Brange, J; Casaretto, M; Roth, R A

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. First-phase insulin secretion has limited impact on postprandial glycemia in subjects with type 2 diabetes: correlations between hyperglycemic glucose clamp and meal test.

    PubMed

    Rave, Klaus; Sidharta, Patricia N; Dingemanse, Jasper; Heinemann, Lutz; Roggen, Kerstin

    2010-02-01

    Lack of first-phase insulin (INS) secretion is regarded as causative for high postprandial glucose excursions in subjects with type 2 diabetes. We aimed to determine the impact of early INS secretion on postprandial glycemia. Twenty subjects with type 2 diabetes (age 54 +/- 8 years, body mass index 28.7 +/- 2.7 kg/m(2) [mean +/- SD]) underwent a hyperglycemic glucose clamp and a meal test twice separated by a washout period of 4 weeks. Multiple regression analysis was used to identify determinants of postprandial glycemia. During hyperglycemic glucose clamps eight subjects showed a preserved first-phase INS secretion (P1+), whereas 12 subjects showed none (P1-). Both subject groups differed in fasting blood glucose (BG) (116 +/- 7 vs. 147 +/- 31 mg/dL, P = 0.011) and glycosylated hemoglobin (6.0 +/- 0.4 vs. 6.7 +/- 0.8, P = 0.041). Total INS secretory response during glucose clamps was higher in P1+ than P1- (INS-area under the concentration vs. time curve [AUC](0-120 min) 6.7 +/- 2.7 vs. 3.2 +/- 2.1 mU.min/mL; P = 0.006). During meal tests, however, INS-AUC(0-120 min) was similar between P1+ and P1-, whereas early INS secretion was still different (INS-AUC(0-60 min) 3.9 +/- 1.8 vs. 2.1 +/- 1.0 mU.min/mL; P = 0.031). Despite higher INS-AUC(0-60 min) in P1+, early postprandial BG was comparable between groups (BG-AUC(0-60 min) 1.5 +/- 0.5 vs. 1.6 +/- 0.6 g.min/dL; difference not significant). Multiple regression analyses showed no impact of first-phase INS secretion on postprandial glycemia, either in P1+ or in P1-. Nevertheless, in P1-, but not in P1+, postprandial glycemia was negatively correlated with INS sensitivity (R(2) = 0.83, P < 0.001). This study, correlating results of hyperglycemic glucose clamps with meal tests, shows that a preserved first-phase INS secretion has only a limited impact on postprandial glucose excursions in a group of subjects in early-stage type 2 diabetes.

  1. Early and progressive insulin resistance in young, non-obese cancer survivors treated with hematopoietic stem cell transplantation.

    PubMed

    Bizzarri, Carla; Pinto, Rita M; Ciccone, Sara; Brescia, Letizia P; Locatelli, Franco; Cappa, Marco

    2015-09-01

    It is unclear whether there is a causative relationship between the development of metabolic syndrome (MS) and increased risk of early cardiovascular morbidity in patients receiving hematopoietic stem cell transplantation (HSCT) during childhood. Early identification of risk factors associated with insulin resistance, MS, and abnormal glucose tolerance during childhood or adolescence in these patients could represent a useful tool for preventing cardiovascular disorders. In a single-center, prospective, descriptive, cross-sectional study, we studied 45 survivors of hematological malignancies (age: 13.9 ± 4.8 years) treated with HSCT before the age of 18 years and 90 matched healthy controls. We collected clinical, imaging, and laboratory data including oral glucose tolerance test (OGTT). 7/45 patients (15.6%) showed abnormal glucose tolerance at OGTT, 1/45 (2.2%) was obese, and none fulfilled the criteria for MS. A waist/height ratio >0.5 was associated with patients with abnormal glucose tolerance (85.7% of cases), compared to patients with normal glucose tolerance (42.1%) and controls (23.3%). In patients with abnormal glucose tolerance, use of total body irradiation (TBI) as conditioning regimen was more common, and time elapsed from HSCT was longer. Patients treated with HSCT may develop insulin resistance early after transplantation. They do not show overt obesity, but have redistribution of fat tissue with central fat accumulation. The main factors associated with increased metabolic risk are TBI and time from HSCT. Evaluation of MS and glucose tolerance should be part of hormonal follow-up, which should be routinely proposed to these patients. © 2015 Wiley Periodicals, Inc.

  2. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: the Pune Children's Study.

    PubMed

    Yajnik, Chittaranjan S; Katre, Prachi A; Joshi, Suyog M; Kumaran, Kalyanaraman; Bhat, Dattatray S; Lubree, Himangi G; Memane, Nilam; Kinare, Arun S; Pandit, Anand N; Bhave, Sheila A; Bavdekar, Ashish; Fall, Caroline H D

    2015-07-01

    The Pune Children's Study aimed to test whether glucose and insulin measurements in childhood predict cardiovascular risk factors in young adulthood. We followed up 357 participants (75% follow-up) at 21 years of age who had undergone detailed measurements at 8 years of age (glucose, insulin, HOMA-IR and other indices). Oral glucose tolerance, anthropometry, plasma lipids, BP, carotid intima-media thickness (IMT) and arterial pulse wave velocity (PWV) were measured at 21 years. Higher fasting glucose, insulin and HOMA-IR at 8 years predicted higher glucose, insulin, HOMA-IR, BP, lipids and IMT at 21 years. A 1 SD change in 8 year variables was associated with a 0.10-0.27 SD change at 21 years independently of obesity/adiposity at 8 years of age. A greater rise in glucose-insulin variables between 8 and 21 years was associated with higher cardiovascular risk factors, including PWV. Participants whose HOMA-IR measurement remained in the highest quartile (n = 31) had a more adverse cardiovascular risk profile compared with those whose HOMA-IR measurement remained in the lowest quartile (n = 28). Prepubertal glucose-insulin metabolism is associated with adult cardiovascular risk and markers of atherosclerosis. Our results support interventions to improve glucose-insulin metabolism in childhood to reduce cardiovascular risk in later life.

  4. Insulin structure and stability.

    PubMed

    Brange, J; Langkjoer, L

    1993-01-01

    Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the

  5. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.

    PubMed

    Rebolledo, O R; Marra, C A; Raschia, A; Rodriguez, S; Gagliardino, J J

    2008-11-01

    The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, alpha-tocopherol, beta-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic beta-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

  6. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women.

    PubMed

    Liao, Shunyao; Liu, Yunqiang; Chen, Xiaojuan; Tan, Yuande; Mei, Jie; Song, Wenzhong; Gan, Lu; Wang, Hailian; Yin, Shi; Dong, Xianjue; Chi, Shu; Deng, Shaoping

    2015-11-01

    We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m(2)) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute's proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to β-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis. © The Author(s) 2015.

  7. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    PubMed

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  8. Adiponectin and Lipid Profiles Compared with Insulins in Relation to Early Growth of British South Asian and European Children: The Manchester Children's Growth and Vascular Health Study

    PubMed Central

    Bansal, Narinder; Anderson, Simon G.; Vyas, Avni; Gemmell, Isla; Charlton-Menys, Valentine; Oldroyd, John; Pemberton, Philip; Durrington, Paul N.; Clayton, Peter E.

    2011-01-01

    Context: Adiponectin, high-density lipoprotein cholesterol (HDL-C) and insulin concentrations may be important in the pathophysiology of cardiovascular disease. Objective: We tested the hypothesis that serum adiponectin rather than insulin differs from early life, between South Asians and Europeans, with a potentially key role in excess cardiovascular risk characteristic of adult South Asians. Design and Participants: We conducted a longitudinal study of 215 British-born children of European (n = 138) and South Asian (n = 77) origin, from birth to 3 yr. Main Outcome Measure: Serum adiponectin, insulin, proinsulin and HDL-C concentrations were assessed in relation to ethnic group and growth in anthropometric variables from 0–3 yr of age. Results: Serum adiponectin was lower in South Asian children, despite their smaller size, notable at age 3–6 months (9.5 vs. 11.8 mg/liter; P = 0.04), with no ethnic differences in serum lipids or insulin or proinsulin. In mixed-effects longitudinal models for HDL-C, determinants were adiponectin (P = 0.034), age (P < 0.001), and body mass index (P < 0.001) but not ethnicity. None of these or growth variables affected either insulin or proinsulin. In a fully adjusted mixed-effects longitudinal model including age, sex, insulin, and proinsulin, the independent determinants of serum adiponectin were height [21.3 (95% confidence interval = 31.7–10.8 cm lower, for every 1 mmol/liter increase in adiponectin, P < 0.001], HDL-C [2.8 (1.3–4.2) mmol/liter higher, P < 0.0001], body mass index (lower, P = 0.03), and South Asian ethnicity (lower, P = 0.01). Conclusions: These British South Asian-origin infants have lower serum adiponectin but no differences in HDL-C or insulin molecules. In South Asians, factors affecting adiponectin metabolism in early life, rather than insulin resistance, likely determine later excess cardiovascular risk. PMID:21632814

  9. Adiponectin and lipid profiles compared with insulins in relation to early growth of British South Asian and European children: the Manchester children's growth and vascular health study.

    PubMed

    Bansal, Narinder; Anderson, Simon G; Vyas, Avni; Gemmell, Isla; Charlton-Menys, Valentine; Oldroyd, John; Pemberton, Philip; Durrington, Paul N; Clayton, Peter E; Cruickshank, J Kennedy

    2011-08-01

    Adiponectin, high-density lipoprotein cholesterol (HDL-C) and insulin concentrations may be important in the pathophysiology of cardiovascular disease. We tested the hypothesis that serum adiponectin rather than insulin differs from early life, between South Asians and Europeans, with a potentially key role in excess cardiovascular risk characteristic of adult South Asians. We conducted a longitudinal study of 215 British-born children of European (n = 138) and South Asian (n = 77) origin, from birth to 3 yr. Serum adiponectin, insulin, proinsulin and HDL-C concentrations were assessed in relation to ethnic group and growth in anthropometric variables from 0-3 yr of age. Serum adiponectin was lower in South Asian children, despite their smaller size, notable at age 3-6 months (9.5 vs. 11.8 mg/liter; P = 0.04), with no ethnic differences in serum lipids or insulin or proinsulin. In mixed-effects longitudinal models for HDL-C, determinants were adiponectin (P = 0.034), age (P < 0.001), and body mass index (P < 0.001) but not ethnicity. None of these or growth variables affected either insulin or proinsulin. In a fully adjusted mixed-effects longitudinal model including age, sex, insulin, and proinsulin, the independent determinants of serum adiponectin were height [21.3 (95% confidence interval = 31.7-10.8 cm lower, for every 1 mmol/liter increase in adiponectin, P < 0.001], HDL-C [2.8 (1.3-4.2) mmol/liter higher, P < 0.0001], body mass index (lower, P = 0.03), and South Asian ethnicity (lower, P = 0.01). These British South Asian-origin infants have lower serum adiponectin but no differences in HDL-C or insulin molecules. In South Asians, factors affecting adiponectin metabolism in early life, rather than insulin resistance, likely determine later excess cardiovascular risk.

  10. Early Diet and Later Cancer Risk: Prospective Associations of Dietary Patterns During Critical Periods of Childhood with the GH-IGF Axis, Insulin Resistance and Body Fatness in Younger Adulthood.

    PubMed

    Günther, Anke L B; Schulze, Matthias B; Kroke, Anja; Diethelm, Katharina; Joslowski, Gesa; Krupp, Danika; Wudy, Stefan; Buyken, Anette E

    2015-01-01

    Early life, adiposity rebound, and puberty represent critical growth periods when food choices could have long-term relevance for cancer risk. We aimed to relate dietary patterns during these periods to the growth hormone-insulin-like-growth-factor (GH-IGF) axis, insulin resistance, and body fatness in adulthood. Data from the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study participants with outcome data at 18-37 years, and ≥2 dietary records during early life (1-2 yr; n = 128), adiposity rebound (4-6 years, n = 179), or puberty (girls 9-14, boys 10-15 yr; n = 213) were used. Dietary patterns at these ages were derived by 1) reduced rank regression (RRR) to explain variation in adult IGF-I, IGF-binding protein-3 (IGFBP-3), homoeostasis model assessment for insulin resistance (HOMA-IR) and fat-mass index; 2) principal component analysis (PCA). Regarding RRR, the patterns "cake/canned fruit/cheese & eggs" (early life), "sweets & dairy" (adiposity rebound) and "high-fat foods" (pubertal boys) were independently associated with higher adult HOMA-IR. Furthermore, the patterns "favorable carbohydrate sources" (early life), "snack & convenience foods" (adiposity rebound), and "traditional & convenience carbohydrates" (pubertal boys) were related to adult IGFBP-3 (P trend < 0.01). PCA identified "healthy" patterns for all periods, but none was associated with the outcomes (P trend > 0.1). In conclusion, dietary patterns during sensitive growth periods may be of long-term relevance for adult insulin resistance and IGFBP-3.

  11. A novel regulation of IRS1 (insulin receptor substrate-1) expression following short term insulin administration

    PubMed Central

    2005-01-01

    Reduced insulin-mediated glucose transport in skeletal muscle is a hallmark of the pathophysiology of T2DM (Type II diabetes mellitus). Impaired intracellular insulin signalling is implicated as a key underlying mechanism. Attention has focused on early signalling events such as defective tyrosine phosphorylation of IRS1 (insulin receptor substrate-1), a major target for the insulin receptor tyrosine kinase. This is required for normal induction of signalling pathways key to many of the metabolic actions of insulin. Conversely, increased serine/threonine phosphorylation of IRS1 following prolonged insulin exposure (or in obesity) reduces signalling capacity, partly by stimulating IRS1 degradation. We now show that IRS1 levels in human muscle are actually increased 3-fold following 1 h of hyperinsulinaemic euglycaemia. Similarly, transient induction of IRS1 (3-fold) in the liver or muscle of rodents occurs following feeding or insulin injection respectively. The induction by insulin is also observed in cell culture systems, although to a lesser degree, and is not due to reduced proteasomal targeting, increased protein synthesis or gene transcription. Elucidation of the mechanism by which insulin promotes IRS1 stability will permit characterization of the importance of this novel signalling event in insulin regulation of liver and muscle function. Impairment of this process would reduce IRS1 signalling capacity, thereby contributing to the development of hyperinsulinaemia/insulin resistance prior to the appearance of T2DM. PMID:16128672

  12. Insulin and the Burned Patient

    DTIC Science & Technology

    2007-01-01

    until recently due to the belief that this was a beneficial “fight or flight” response and should not be dis- turbed, as the risks ( hypoglycemia ) out... hypoglycemia was lessened (7). From this, it was postulated that an insulin resistance probably exists following se- vere injury. The early 1980s saw...the burned limb, again suggesting insulin re- sistance that in this instance was local- ized (8). Severe burn was also shown to cause an increase in

  13. Insulin glulisine: an evaluation of its pharmacodynamic properties and clinical application.

    PubMed

    Helms, Kristen L; Kelley, Kristi W

    2009-04-01

    To evaluate the pharmacodynamic properties, efficacy, safety, and clinical application of insulin glulisine, a rapid-acting insulin analog, in the treatment of diabetes mellitus in ambulatory and hospitalized patients. Searches were performed with the headings glulisine, insulin analog, [LysB3, GluB29] insulin, insulin glulisine, rDNA insulin, rapid-acting insulin, SoloStar, safety, efficacy, pharmacodynamics, and cost analysis within MEDLINE and PubMed, American Diabetes Association (ADA), the Food and Drug Administration (FDA), and Sanofi-aventis Pharmaceuticals (1990-August 2008). Phase 1, Phase 2, Phase 3, and postmarketing trials examining the efficacy and safety of glulisine in type 1 or type 2 diabetes were reviewed. Studies published as abstracts and the manufacturer's product information supplemented data absent from clinical trials. Insulin glulisine is a rapid-acting insulin with relative equivalence in efficacy and safety to other short- and rapid-acting insulins. Glulisine's onset of action of 20 minutes and 4-hour duration of action allow for bolus administration 15-20 minutes prior to or up to 20 minutes after meals. Clinical trials have demonstrated the safety and efficacy in adults with type 1 or type 2 diabetes. Several studies indicated a statistically significant decrease of hemoglobin A1C (A1C) with glulisine compared with regular insulin (0.10 decrease); however, no difference in A1C control was found compared with insulin aspart or lispro. Significant adverse effects appear to be limited to localized and systemic allergic reactions and hypoglycemia. Insulin glulisine is a safe and effective rapid-acting insulin analog for the treatment of adults with diabetes. Clinical benefit over other short- and rapid-acting insulin products is not established. Addition of insulin glulisine to a formulary should be based on institution-specific availability and cost differences between glulisine, lispro, and aspart in the absence of superiority of clinical

  14. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: Focus on insulin glulisine

    PubMed Central

    Ulrich, Heather; Snyder, Benjamin; K Garg, Satish

    2007-01-01

    Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM)-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs) reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI). Insulin glulisine (Apidra®) is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs). The safety and tolerability profile of insulin glulisine is also comparable to that of insulin lispro or RHI in type 1 or 2 DM and it has been shown to be as safe and effective when used in a continuous subcutaneous insulin infusion (CSII). In summary, insulin glulisine is a safe, effective, and well tolerated rapid-acting insulin analogue across all BMIs and a worthy option for prandial

  15. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  16. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis.

    PubMed

    Wang, Feng; Han, Lili; Hu, Dayi

    2017-01-01

    Studies on the association of fasting insulin concentrations or insulin resistance with subsequent risk of hypertension have yielded conflicting results. To quantitatively assess the association of fasting insulin concentrations or homeostasis model assessment insulin resistance (HOMA-IR) with incident hypertension in a general population by performing a meta-analysis. We searched the PubMed and Embase databases until August 31, 2016 for prospective observational studies investigating the elevated fasting insulin concentrations or HOMA-IR with subsequent risk of hypertension in the general population. Pooled risk ratio (RR) and 95% confidence interval (CI) of hypertension was calculated for the highest versus the lowest category of fasting insulin or HOMA-IR. Eleven studies involving 10,230 hypertension cases were identified from 55,059 participants. Meta-analysis showed that the pooled adjusted RR of hypertension was 1.54 (95% CI 1.34-1.76) for fasting insulin concentrations and 1.43 (95% CI 1.27-1.62) for HOMA-IR comparing the highest to the lowest category. Subgroup analysis results showed that the association of fasting insulin concentrations with subsequent risk of hypertension seemed more pronounced in women (RR 2.07; 95% CI 1.19-3.60) than in men (RR 1.48; 95% CI 1.17-1.88). This meta-analysis suggests that elevated fasting insulin concentrations or insulin resistance as estimated by homeostasis model assessment is independently associated with an exacerbated risk of hypertension in the general population. Early intervention of hyperinsulinemia or insulin resistance may help clinicians to identify the high risk of hypertensive population. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Why don't doctors use early insulinization therapy in patients with diabetes mellitus type 2?: A qualitative approach in a Mexican city].

    PubMed

    Lagunes-Córdoba, Roberto; Galindo-Guevara, Isaac; Reyes, Atalia Castillo; Romero-Aparicio, Citlalli; Rosas-Santiago, Francisco Javier

    2017-01-01

    Early insulinization therapy is regarded as an efficient aid to improve long term control and quality of life in patients with diabetes mellitus type 2 (DM2). Nevertheless, both patients and medical staff confront barriers in using this therapeutic tool. This study employs a qualitative approach to explore the barriers to early insulinization among medical staff from the public sector in the city of Xalapa, Veracruz, México. Between 2015 and 2016, in-depth interviews were conducted with general and specialist physicians offering primary health care to patients with DM2. The transcribed interviews were analyzed to extract and organize categories and subcategories of barriers among medical staff. These barriers were then grouped into three categories and exemplified with interview excerpts: barriers coming from the medical staff itself, barriers emerging from the doctor-patient interaction, and institutional barriers. Uses for the classification obtained are discussed, as are some of the solutions proposed by study participants.

  18. Insulin resistance in young adults born small for gestational age (SGA).

    PubMed

    Putzker, Stephanie; Bechtold-Dalla Pozza, Susanne; Kugler, Karl; Schwarz, Hans P; Bonfig, Walter

    2014-03-01

    This work aimed to assess glucose metabolism and insulin sensitivity in young adults born small for gestational age (SGA) as well as to measure the body composition and adipocytokines of these subjects. A total of 108 out of 342 SGA-born participants were invited for reexamination from the former Bavarian Longitudinal Study (BLS), in which 7505 risk-newborns of the years 1985 to 1986 were prospectively followed. Of these, 76 (34 female/42 male) participants at the age of 19.7±0.5 years were enrolled. Clinical examination and oral glucose tolerance testing (oGTT) was performed with assessment of insulin resistance indices, HbA1c, body mass index (BMI), adipocytokines, and body composition by bioimpedance analysis (BIA). A total of 25 out of 76 (32.9%) patients had abnormal fasting and/or glucose-stimulated insulin levels. Glucose values measured during oGTT showed no abnormalities, except one participant who had impaired glucose tolerance. Homeostasis model assessment insulin resistance index (HOMA-IR) was 1.92±4.2, and insulin sensitivity index by Matsuda (ISI(Matsuda)) showed mean values of 7.85±4.49. HOMA-IR>2.5 was found in 8 patients (10.5%), and 20 patients (26.3%) had an ISI(Matsuda)<5, both interpreted as insulin resistant. No alterations of adipocytokines were found. Fat mass (FM) measured by BIA was within the normal range for both genders and correlated significantly with BMI (r=0.465, p<0.001) and leptin (r=0.668, p>0.001), but not with adiponectin. Insulin resistance correlated with change in weight-for-height Z-score during the first 3 months of age, indicating that weight gain during that early phase might be a risk factor for the development of insulin resistance in children born SGA. A high percentage of insulin-resistant subjects were reconfirmed in a large German cohort of young adults born SGA. Therefore, regular screening for disturbances in glucose metabolism is recommended in these subjects.

  19. Closed-loop insulin delivery during pregnancy complicated by type 1 diabetes.

    PubMed

    Murphy, Helen R; Elleri, Daniela; Allen, Janet M; Harris, Julie; Simmons, David; Rayman, Gerry; Temple, Rosemary; Dunger, David B; Haidar, Ahmad; Nodale, Marianna; Wilinska, Malgorzata E; Hovorka, Roman

    2011-02-01

    This study evaluated closed-loop insulin delivery with a model predictive control (MPC) algorithm during early (12-16 weeks) and late gestation (28-32 weeks) in pregnant women with type 1 diabetes. Ten women with type 1 diabetes (age 31 years, diabetes duration 19 years, BMI 24.1 kg/m(2), booking A1C 6.9%) were studied over 24 h during early (14.8 weeks) and late pregnancy (28.0 weeks). A nurse adjusted the basal insulin infusion rate from continuous glucose measurements (CGM), fed into the MPC algorithm every 15 min. Mean glucose and time spent in target (63-140 mg/dL), hyperglycemic (>140 to ≥ 180 mg/dL), and hypoglycemic (<63 to ≤ 50 mg/dL) were calculated using plasma and sensor glucose measurements. Linear mixed-effects models were used to compare glucose control during early and late gestation. During closed-loop insulin delivery, median (interquartile range) plasma glucose levels were 117 (100.8-154.8) mg/dL in early and 126 (109.8-140.4) mg/dL in late gestation (P = 0.72). The overnight mean (interquartile range) plasma glucose time in target was 84% (50-100%) in early and 100% (94-100%) in late pregnancy (P = 0.09). Overnight mean (interquartile range) time spent hyperglycemic (>140 mg/dL) was 7% (0-40%) in early and 0% (0-6%) in late pregnancy (P = 0.25) and hypoglycemic (<63 mg/dL) was 0% (0-3%) and 0% (0-0%), respectively (P = 0.18). Postprandial glucose control, glucose variability, insulin infusion rates, and CGM sensor accuracy were no different in early or late pregnancy. MPC algorithm performance was maintained throughout pregnancy, suggesting that overnight closed-loop insulin delivery could be used safely during pregnancy. More work is needed to achieve optimal postprandial glucose control.

  20. The insulin receptor.

    PubMed

    Kaplan, S A

    1984-03-01

    Cells are endowed with specific cognitive molecules that function as receptors for hormones, neurotransmitters, and other intercellular messengers. The receptor molecules may be present in the plasma membrane, cytoplasm, or nucleus. When occupied by the messenger, the receptor is coupled to the cellular machinery that responds to the message-bearing molecules. For some hormones the events following attachment of the messenger to the receptor are well known. An example is the generation of cAMP after combination of glucagon with its receptor and the series of steps culminating in activation of phosphorylase. In the case of many other messengers, including insulin, the nature of these coupling steps is not known. Receptors are subject to the regulatory processes of synthesis, degradation, and conformational change; alterations in receptor properties may have significant effects on the qualitative and quantitative responses of the cell to the extracellular messenger. The insulin receptor is located in the plasma membrane, is composed of two pairs of subunits, and has a molecular weight of about 350,000. It is located in cells such as adipocytes, hepatocytes, and skeletal muscle cells as well as in cells not considered to be typical target organ cells. Insulin receptors in nonfetal cells are downregulated by exposure of the cells to high concentrations of insulin. Other factors that regulate insulin binding include muscular exercise, diet, thyroid hormones, glucocorticoids, androgens, estrogens, and cyclic nucleotides. The fetus has high concentrations of insulin receptors in several tissues. These begin to appear early in fetal life and may outnumber those found in adult tissues. Fetal insulin receptors are unusual in that they may not undergo downregulation but may experience the opposite when exposed to insulin in high concentrations. Thus the offspring of a mother with poorly controlled diabetes may be placed in double jeopardy by fetal hyperinsulinemia and

  1. Insulin/IGF and sex hormone axes in human endometrium and associations with endometrial cancer risk factors.

    PubMed

    Merritt, Melissa A; Strickler, Howard D; Einstein, Mark H; Yang, Hannah P; Sherman, Mark E; Wentzensen, Nicolas; Brouwer-Visser, Jurriaan; Cossio, Maria Jose; Whitney, Kathleen D; Yu, Herbert; Gunter, Marc J; Huang, Gloria S

    2016-06-01

    Experimental and observational data link insulin, insulin-like growth factor (IGF), and estrogens to endometrial tumorigenesis. However, there are limited data regarding insulin/IGF and sex hormone axes protein and gene expression in normal endometrial tissues, and very few studies have examined the impact of endometrial cancer risk factors on endometrial tissue biology. We evaluated endometrial tissues from 77 premenopausal and 30 postmenopausal women who underwent hysterectomy for benign indications and had provided epidemiological data. Endometrial tissue mRNA and protein levels were measured using quantitative real-time PCR and immunohistochemistry, respectively. In postmenopausal women, we observed higher levels of phosphorylated IGF-I/insulin receptor (pIGF1R/pIR) in diabetic versus non-diabetic women (p value =0.02), while women who reported regular nonsteroidal anti-inflammatory drug use versus no use had higher levels of insulin and progesterone receptors (both p values ≤0.03). We also noted differences in pIGF1R/pIR staining with OC use (postmenopausal women only), and the proportion of estrogen receptor-positive tissues varied by the number of live births and PTEN status (premenopausal only) (p values ≤0.04). Compared to premenopausal proliferative phase women, postmenopausal women exhibited lower mRNA levels of IGF1, but higher IGFBP1 and IGFBP3 expression (all p values ≤0.004), and higher protein levels of the receptors for estrogen, insulin, and IGF-I (all p values ≤0.02). Conversely, pIGF1R/pIR levels were higher in premenopausal proliferative phase versus postmenopausal endometrium (p value =0.01). These results highlight links between endometrial cancer risk factors and mechanistic factors that may contribute to early events in the multistage process of endometrial carcinogenesis.

  2. Relationship between serum secreted frizzled-related protein 4 levels and the first-phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance.

    PubMed

    Liu, Fang; Qu, Hua; Li, Yingjie; Tang, Qian; Yang, Zesong; Wang, Hang; Deng, Huacong

    2015-01-01

    Recent evidence suggests that serum secreted frizzled-related protein (SFRP) 4 may affect β-cell function. In a cross-sectional clinical study, 56 subjects with type 2 diabetes mellitus (T2DM), 52 subjects with impaired glucose tolerance (IGT) and 42 normal glucose tolerance (NGT) subjects were enrolled to investigate the relationship between SFRP4 levels and the first-phase of glucose-stimulated insulin secretion, glucose metabolism and inflammation. Intravenous glucose tolerance tests were conducted, and acute insulin response (AIR), the area under the curve of the first-phase (0-10 min) insulin secretion (AUC), and the glucose disposition index (GDI) were calculated. The serum levels of SFRP4, IL-1β, plasma glucose, serum lipid, and glycated hemoglobin (HbA1c) were measured. Levels of serum SFRP4 and IL-1β in the T2DM group and IGT group were significantly higher than those in the NGT group (P < 0.01). The AIR, AUC and GDI between the three groups showed a progressive decrease from the NGT to IGT groups with the lowest value in the T2DM groups (P < 0.01). The serum SFRP4 levels were negatively correlated with AIR, AUC, GDI and HOMA-β (P < 0.01) and were positively correlated with fasting plasma glucose, HbA1c, hs-CRP, and IL-1β (P < 0.01). Our study provides evidence that the concentrations of serum SFRP4 in T2DM and IGT subjects were increased and were correlated closely with glycose metabolic disorder, the first-phase of glucose-stimulated insulin secretion and chronic low-grade inflammation. SFRP4 may participate in the development of type 2 diabetes mellitus.

  3. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle.

    PubMed

    Hayirli, A

    2006-10-01

    As a result of a marked decline in dry matter intake (DMI) prior to parturition and a slow rate of increase in DMI relative to milk production after parturition, dairy cattle experience a negative energy balance. Changes in nutritional and metabolic status during the periparturient period predispose dairy cattle to develop hepatic lipidosis and ketosis. The metabolic profile during early lactation includes low concentrations of serum insulin, plasma glucose, and liver glycogen and high concentrations of serum glucagon, adrenaline, growth hormone, plasma beta-hydroxybutyrate and non-esterified fatty acids, and liver triglyceride. Moreover, during late gestation and early lactation, flow of nutrients to fetus and mammary tissues are accorded a high degree of metabolic priority. This priority coincides with lowered responsiveness and sensitivity of extrahepatic tissues to insulin, which presumably plays a key role in development of hepatic lipidosis and ketosis. Hepatic lipidosis and ketosis compromise production, immune function, and fertility. Cows with hepatic lipidosis and ketosis have low tissue responsiveness to insulin owing to ketoacidosis. Insulin has numerous roles in metabolism of carbohydrates, lipids and proteins. Insulin is an anabolic hormone and acts to preserve nutrients as well as being a potent feed intake regulator. In addition to the major replacement therapy to alleviate severity of negative energy balance, administration of insulin with concomitant delivery of dextrose increases efficiency of treatment for hepatic lipidosis and ketosis. However, data on use of insulin to prevent these lipid-related metabolic disorders are limited and it should be investigated.

  4. A meta-analysis of rate ratios for nocturnal confirmed hypoglycaemia with insulin degludec vs. insulin glargine using different definitions for hypoglycaemia.

    PubMed

    Heller, S; Mathieu, C; Kapur, R; Wolden, M L; Zinman, B

    2016-04-01

    A prospective meta-analysis of phase 3 trials showed lower rates of nocturnal hypoglycaemia with insulin degludec vs. insulin glargine. We investigated the consistency of the results across different definitions of hypoglycaemia. This post-hoc, patient-level meta-analysis included six randomized, controlled, 26- or 52-week phase 3a trials in insulin-naïve participants with Type 2 diabetes mellitus (Type 2 diabetesinsulin naïve ), participants with Type 2 diabetes mellitus using basal-bolus therapy (Type 2 diabetesBB ) and those with Type 1 diabetes mellitus. We used three definitions of hypoglycaemia and different timescales for the nocturnal period. Rates were analysed for the entire core trial period, the 'maintenance period' only, and the extension trial set population. Analyses utilized a negative binomial regression model. In Type 2 diabetesinsulin naïve participants, risk of nocturnal hypoglycaemia was significantly lower with insulin degludec vs. insulin glargine for all hypoglycaemia definitions and trial periods. Risk was also lower for the timescale 21.59-05.59, but not 00.01-07.59. For Type 2 diabetesBB , nocturnal hypoglycaemia rates were lower with insulin degludec vs. insulin glargine across all definitions, timescales and trial periods, with one exception. For individuals with Type 1 diabetes mellitus, nocturnal hypoglycaemia risk was significantly lower with insulin degludec during the maintenance period for the original definition (plasma glucose < 3.1 mmol/l, timescale 00.01-05.59) and in the extension trial set population for all hypoglycaemia definitions except for the nocturnal timescale 00.01-07.59. Compared with insulin glargine, insulin degludec is associated with lower rates of nocturnal hypoglycaemia in people with Type 2 diabetes mellitus, and similar or lower rates in Type 1 diabetes mellitus, across different definitions. © 2015 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  5. Daily Physical Activity Assessed by a Triaxial Accelerometer Is Beneficially Associated with Waist Circumference, Serum Triglycerides, and Insulin Resistance in Japanese Patients with Prediabetes or Untreated Early Type 2 Diabetes.

    PubMed

    Hamasaki, Hidetaka; Noda, Mitsuhiko; Moriyama, Sumie; Yoshikawa, Reo; Katsuyama, Hisayuki; Sako, Akahito; Mishima, Shuichi; Kakei, Masafumi; Ezaki, Osamu; Yanai, Hidekatsu

    2015-01-01

    To investigate the association between daily physical activity and metabolic risk factors in Japanese adults with prediabetes or untreated early type 2 diabetes (T2D). Daily physical activity level was measured using a triaxial accelerometer. We assessed correlations between physical activity level and waist circumference, blood pressure, fasting levels of plasma glucose, serum triglycerides, and insulin and homeostasis model assessment-insulin resistance (HOMA-IR). A total of 80 patients were studied. After adjustment for age and body mass index, in all subjects, physical activity level was negatively associated with waist circumference (β = -0.124, P = 0.018) and fasting serum triglycerides (β = -0.239, P = 0.035), insulin (β = -0.224, P = 0.022). In men, physical activity level was negatively associated with systolic blood pressure (β = -0.351, P = 0.044), fasting plasma glucose (β = -0.369, P = 0.025) and insulin (β = -0.362, P = 0.012), and HOMA-IR (β = -0.371, P = 0.011). No significant associations were found between physical activity level and metabolic risk factors in women. Objectively measured daily physical activity is beneficially associated with waist circumference, serum triglycerides, and insulin resistance in individuals with prediabetes or untreated early T2D. (This trial is registered with UMIN000015774.).

  6. Cord plasma insulin and in utero exposure to ambient air pollution.

    PubMed

    Madhloum, Narjes; Janssen, Bram G; Martens, Dries S; Saenen, Nelly D; Bijnens, Esmée; Gyselaers, Wilfried; Penders, Joris; Vanpoucke, Charlotte; Lefebvre, Wouter; Plusquin, Michelle; Nawrot, Tim S

    2017-08-01

    Cardio-metabolic risk factors including insulin levels are at young age barely perceived as harmful, but over time these risk factors may track and lead to higher risk of metabolic syndrome. Studies showed that exposure to air pollution is associated with an increased risk of insulin resistance in childhood. We determined whether the origin of type 2 diabetes can be found in the early childhood by examining the levels of insulin in the neonatal cord blood and whether this can be considered as a disease marker for later life. In the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort, we recruited 620 mother-infant pairs between February 2nd 2010 until August 12th 2014 at the East-Limburg Hospital in Genk, Belgium. We investigated in 590 newborns the association between cord plasma insulin levels and exposure to particulate matter (PM 2.5 and PM 10 ) and nitrogen dioxide (NO 2 ) in various exposure windows during pregnancy. Trimester-specific air pollutant exposure levels were estimated for each mother's home address using a spatiotemporal model. Cord plasma insulin levels averaged 33.1pmol/L (25-75th percentile: 20.1-53.5), while PM 2.5 exposure during pregnancy averaged (SD) 13.7μg/m 3 (2.4). Independent of maternal age, newborn's sex, birth weight, gestational age, parity, early-pregnancy BMI, ethnicity, smoking status, time of the day, maternal education, time of delivery, and season of delivery, cord plasma insulin levels increased with 15.8% (95% CI 7.8 to 24.4, p<0.0001) for each SD increment in PM 2.5 levels during the entire pregnancy and was most pronounced in the 2nd trimester (13.1%, 95% CI 3.4 to 23.7, p=0.007) of pregnancy. The results for PM 10 exposure were similar with those of PM 2.5 exposure but we did not observe an association between cord blood insulin levels and NO 2 exposure. Exposure to particulate air pollution during pregnancy is associated with increased levels of cord plasma insulin at birth. The public health relevance of

  7. Effect of Gymnema sylvestre Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.

    PubMed

    Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza

    2017-08-01

    Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m 2 vs. 30.4 ± 2.2 kg/m 2 , P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.

  8. Plasma Metabolomic Profiling Suggests Early Indications for Predisposition to Latent Insulin Resistance in Children Conceived by ICSI

    PubMed Central

    Margeli, Alexandra; Mantzou, Emilia; Konsta, Maria; Loutradis, Dimitrios; Mastorakos, George; Papassotiriou, Ioannis; Klapa, Maria I.; Kanaka-Gantenbein, Christina; Chrousos, George P.

    2014-01-01

    Background There have been increasing indications about an epigenetically-based elevated predisposition of assisted reproductive technology (ART) offspring to insulin resistance, which can lead to an unfavorable cardio-metabolic profile in adult life. However, the relevant long-term systematic molecular studies are limited, especially for the IntraCytoplasmic Sperm Injection (ICSI) method, introduced in 1992. In this study, we carefully defined a group of 42 prepubertal ICSI and 42 naturally conceived (NC) children. We assessed differences in their metabolic profile based on biochemical measurements, while, for a subgroup, plasma metabolomic analysis was also performed, investigating any relevant insulin resistance indices. Methods & Results Auxological and biochemical parameters of 42 6.8±2.1 yrs old ICSI-conceived and 42 age-matched controls were measured. Significant differences between the groups were determined using univariate and multivariate statistics, indicating low urea and low-grade inflammation markers (YKL-40, hsCRP) and high triiodothyronine (T3) in ICSI-children compared to controls. Moreover, plasma metabolomic analysis carried out for a subgroup of 10 ICSI- and 10 NC girls using Gas Chromatography-Mass Spectrometry (GC-MS) indicated clear differences between the two groups, characterized by 36 metabolites linked to obesity, insulin resistance and metabolic syndrome. Notably, the distinction between the two girl subgroups was accentuated when both their biochemical and metabolomic measurements were employed. Conclusions The present study contributes a large auxological and biochemical dataset of a well-defined group of pre-pubertal ICSI-conceived subjects to the research of the ART effect to the offspring's health. Moreover, it is the first time that the relevant usefulness of metabolomics was investigated. The acquired results are consistent with early insulin resistance in ICSI-offspring, paving the way for further systematic investigations

  9. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    PubMed

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  10. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  11. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  12. Volunteering for early phase gene transfer research in Parkinson disease.

    PubMed

    Kim, S Y H; Holloway, R G; Frank, S; Beck, C A; Zimmerman, C; Wilson, R; Kieburtz, K

    2006-04-11

    For early phase trials of novel interventions-such as gene transfer for Parkinson disease (PD)--whose focus is primarily on safety and tolerability, it is important that participants have a realistic understanding of the goals of such research. Recently, some have expressed concern that patients with PD may have unrealistic expectations. The authors examined why patients with PD might volunteer for invasive early phase research by interviewing 92 patients with PD and comparing those who would (n = 46) and those who would not (n = 46) participate in a hypothetical phase I gene-transfer study. The two groups' demographic, clinical, functional, and quality of life measures, as well as their understanding of the research protocol, were similar. The groups did not differ on their perception of potential for personal benefit nor on the level of likelihood of benefit they saw as a precondition for volunteering. However, those willing to participate tended to perceive lower probability of risk, were tolerant of greater probability of risk, and were more optimistic about the phase I study's potential benefits to society. They also appeared more decisive and action-oriented than the unwilling group. It is likely that the decision whether to participate in early phase PD gene transfer studies will depend mostly on patients' attitudes regarding risk, optimism about science, and an action orientation, rather than on their clinical, functional, or demographic characteristics.

  13. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  14. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    NASA Technical Reports Server (NTRS)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  15. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life.

    PubMed

    Velazquez, Miguel A; Sheth, Bhavwanti; Smith, Stephanie J; Eckert, Judith J; Osmond, Clive; Fleming, Tom P

    2018-02-01

    Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin+N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin+N-bcaa, N-insulin+L-bcaa, and L-insulin+N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Short-term fasting promotes insulin expression in rat hypothalamus.

    PubMed

    Dakic, Tamara B; Jevdjovic, Tanja V; Peric, Mina I; Bjelobaba, Ivana M; Markelic, Milica B; Milutinovic, Bojana S; Lakic, Iva V; Jasnic, Nebojsa I; Djordjevic, Jelena D; Vujovic, Predrag Z

    2017-07-01

    In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Cloning of a new member of the insulin gene superfamily (INSL4) expressed in human placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, D.; Laurent, A.; Janneau, J.L.

    1995-09-20

    A new member of the insulin gene superfamily was identified by screening a subtracted cDNA library of first-trimester human placenta and, hence, was tentatively named early placenta insulin-like peptide (EPIL). In this paper, we report the cloning and sequencing of the EPIL cDNA and the EPIL gene (INSL4). Comparison of the deduced amino acid sequence of the early placenta insulin-like peptide revealed significant overall and structural homologies with members of the insulin-like hormone superfamily. Moreover, the organization of the early placenta insulin-like gene, which is composed of two exons and one intron, is similiar to that of insulin and relaxin.more » By in situ hybridization, the INSL4 gene was assigned to band p24 of the short arm of chromosome 9. RT-PCR analysis of EPIL tissue distribution revealed that its transcripts are expressed in the placenta and uterus. 22 refs., 3 figs.« less

  18. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. © 2016 The Author(s).

  19. Gene expression of tumour necrosis factor and insulin signalling-related factors in subcutaneous adipose tissue during the dry period and in early lactation in dairy cows.

    PubMed

    Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A

    2010-10-01

    Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.

  20. Insulin lispro low mixture twice daily versus basal insulin glargine once daily and prandial insulin lispro once daily in patients with type 2 diabetes requiring insulin intensification: a randomized phase IV trial.

    PubMed

    Tinahones, F J; Gross, J L; Onaca, A; Cleall, S; Rodríguez, A

    2014-10-01

    To compare the efficacy and safety of two insulin intensification strategies in patients with type 2 diabetes inadequately controlled on basal insulin glargine with metformin and/or pioglitazone. A multinational, randomized, open-label trial that compared insulin lispro low mixture (LM25; n = 236) twice daily with a basal-prandial regimen of insulin glargine once daily and insulin lispro once daily (IGL; n = 240) over 24 weeks in patients with HbA1c 7.5-10.5% and fasting plasma glucose ≤ 6.7 mmol/l. The primary objective was to assess non-inferiority [per-protocol (PP) population], and then superiority [intention-to-treat (ITT) population], of LM25 versus IGL according to change in HbA1c after 24 weeks (non-inferiority margin 0.4%, two-sided significance level 0.05). Estimated change [least squares (LS) mean (95% CI)] in HbA1c after 24 weeks: -1.30 (-1.44, -1.16)% with LM25 and -1.08 (-1.22, -0.94)% with IGL. Non-inferiority was shown [LS mean (95% CI) HbA1c treatment difference -0.21 (-0.38, -0.04) (PP population)]; gated superiority assessment showed a statistically significant advantage for LM25 (p = 0.010; ITT population). Mean blood glucose, glycaemic variability, overall tolerability and hypoglycaemic episodes per patient-year did not show significant differences between treatments during the study. In patients with type 2 diabetes inadequately controlled on once-daily basal insulin glargine and metformin and/or pioglitazone, intensification with LM25 was superior to a basal-prandial approach in terms of reduction in HbA1c after 24 weeks and did not increase hypoglycaemia episodes. © 2014 The Authors. Diabetes, Obesity and Metabolism published by JohnWiley & Sons Ltd.

  1. 40 CFR 76.8 - Early election for Group 1, Phase II boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.8 Early election for Group 1... plan and: (i) If a Phase I Acid Rain permit governing the source at which the unit is located has been... chapter to include the early election plan; or (ii) If a Phase I Acid Rain permit governing the source at...

  2. 40 CFR 76.8 - Early election for Group 1, Phase II boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.8 Early election for Group 1... plan and: (i) If a Phase I Acid Rain permit governing the source at which the unit is located has been... chapter to include the early election plan; or (ii) If a Phase I Acid Rain permit governing the source at...

  3. 40 CFR 76.8 - Early election for Group 1, Phase II boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.8 Early election for Group 1... plan and: (i) If a Phase I Acid Rain permit governing the source at which the unit is located has been... chapter to include the early election plan; or (ii) If a Phase I Acid Rain permit governing the source at...

  4. 40 CFR 76.8 - Early election for Group 1, Phase II boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.8 Early election for Group 1... plan and: (i) If a Phase I Acid Rain permit governing the source at which the unit is located has been... chapter to include the early election plan; or (ii) If a Phase I Acid Rain permit governing the source at...

  5. 40 CFR 76.8 - Early election for Group 1, Phase II boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.8 Early election for Group 1... plan and: (i) If a Phase I Acid Rain permit governing the source at which the unit is located has been... chapter to include the early election plan; or (ii) If a Phase I Acid Rain permit governing the source at...

  6. Phase III Early Restoration Meeting - Corpus Christi, TX | NOAA Gulf Spill

    Science.gov Websites

    Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News programmatic approach to early restoration planning for Phase III and future early restoration plans. Open

  7. The Impact of Sleep Debt on Excess Adiposity and Insulin Sensitivity in Patients with Early Type 2 Diabetes Mellitus

    PubMed Central

    Arora, Teresa; Chen, Mimi Z.; Cooper, Ashley R.; Andrews, Rob C.; Taheri, Shahrad

    2016-01-01

    Study Objectives: We examined cross-sectional and prospective associations between sleep debt and adiposity measures, as well as homeostatic model assessment-insulin resistance (HOMA-IR) in early type 2 diabetes. Methods: Prospective data analysis from participants of a randomized controlled trial based on an intensive lifestyle intervention (usual care, diet, or diet and physical activity). Data were collected at baseline, 6 months, and 12 months post-intervention. The study was performed across five secondary care centers in the United Kingdom. Patients (n = 593) with a recent diagnosis of type 2 diabetes were recruited. Objective height and weight were ascertained for obesity status (body mass index [BMI]; ≥ 30 kg/m2), waist circumference (cm) for central adiposity, and fasting blood samples drawn to examine insulin resistance (IR). Seven-day sleep diaries were used to calculate weekday sleep debt at baseline, calculated as average weekend sleep duration minus average weekday sleep duration. Results: At baseline, compared to those without weekday sleep debt, those with weekday sleep debt were 72% more likely to be obese (OR = 1.72 [95% CI:1.03–2.88]). At six months, weekday sleep debt was significantly associated with obesity and IR after adjustment, OR = 1.90 (95% CI:1.10–3.30), OR = 2.07 (95% CI:1.02–4.22), respectively. A further increase at 12 months was observed for sleep debt with obesity and IR: OR = 2.10 (95% CI:1.14–3.87), OR = 3.16 (95% CI:1.38–7.24), respectively. For every 30 minutes of weekday sleep debt, the risk of obesity and IR at 12 months increased by 18% and 41%, respectively. Conclusions: Sleep debt resulted in long-term metabolic disruption, which may promote the progression of type 2 diabetes in newly diagnosed patients. Sleep hygiene/education could be an important factor for future interventions to target early diabetes. Citation: Arora T, Chen MZ, Cooper AR, Andrews RC, Taheri S. The impact of sleep debt on excess adiposity

  8. Insulin-like growth factor 1, liver enzymes, and insulin resistance in patients with PCOS and hirsutism.

    PubMed

    Çakir, Evrim; Topaloğlu, Oya; Çolak Bozkurt, Nujen; Karbek Bayraktar, Başak; Güngüneş, Aşkın; Sayki Arslan, Müyesser; Öztürk Ünsal, İlknur; Tutal, Esra; Uçan, Bekir; Delıbaşi, Tuncay

    2014-01-01

    Hyperinsulinemia and insulin resistance are commonly seen in patients with hirsutism and polycystic ovary syndrome (PCOS), and are associated with cardiovascular disease risk. However, it is not yet known whether insulin-like growth factor I (IGF-I) and alanine transaminase (ALT) produced by the liver play roles in hyperinsulinemia and subclinical atherosclerotic process in patients with PCOS and idiopathic hirsutism (IH). This was a prospective case-controlled study. The study population consisted of 25 reproductive-age PCOS women, 33 women with IH, and 25 control subjects. Mean IGF-I levels and median ALT levels were higher in patients with IH and PCOS than controls, but these differences were not statistically significant. The participants who had a homeostasis model assessment insulin resistance index (HOMA-IR) greater than 2.7 had significantly higher IGF-1 and ALT levels. ALT levels were positively correlated with body mass index, FG, insulin and HOMA-IR. The study illustrated that IGF-1 and ALT levels were significantly higher in patients with increased insulin resistance. Due to short disease duration in younger participants, we did not observe any correlation between IGF-1 and hyperinsulinemia. These findings suggest that increased hepatic production of IGF-I and ALT might be an early indicator of insulin resistance in hirsutism.

  9. Closed-Loop Insulin Delivery During Pregnancy Complicated by Type 1 Diabetes

    PubMed Central

    Murphy, Helen R.; Elleri, Daniela; Allen, Janet M.; Harris, Julie; Simmons, David; Rayman, Gerry; Temple, Rosemary; Dunger, David B.; Haidar, Ahmad; Nodale, Marianna; Wilinska, Malgorzata E.; Hovorka, Roman

    2011-01-01

    OBJECTIVE This study evaluated closed-loop insulin delivery with a model predictive control (MPC) algorithm during early (12–16 weeks) and late gestation (28–32 weeks) in pregnant women with type 1 diabetes. RESEARCH DESIGN AND METHODS Ten women with type 1 diabetes (age 31 years, diabetes duration 19 years, BMI 24.1 kg/m2, booking A1C 6.9%) were studied over 24 h during early (14.8 weeks) and late pregnancy (28.0 weeks). A nurse adjusted the basal insulin infusion rate from continuous glucose measurements (CGM), fed into the MPC algorithm every 15 min. Mean glucose and time spent in target (63–140 mg/dL), hyperglycemic (>140 to ≥180 mg/dL), and hypoglycemic (<63 to ≤50 mg/dL) were calculated using plasma and sensor glucose measurements. Linear mixed-effects models were used to compare glucose control during early and late gestation. RESULTS During closed-loop insulin delivery, median (interquartile range) plasma glucose levels were 117 (100.8–154.8) mg/dL in early and 126 (109.8–140.4) mg/dL in late gestation (P = 0.72). The overnight mean (interquartile range) plasma glucose time in target was 84% (50–100%) in early and 100% (94–100%) in late pregnancy (P = 0.09). Overnight mean (interquartile range) time spent hyperglycemic (>140 mg/dL) was 7% (0–40%) in early and 0% (0–6%) in late pregnancy (P = 0.25) and hypoglycemic (<63 mg/dL) was 0% (0–3%) and 0% (0–0%), respectively (P = 0.18). Postprandial glucose control, glucose variability, insulin infusion rates, and CGM sensor accuracy were no different in early or late pregnancy. CONCLUSIONS MPC algorithm performance was maintained throughout pregnancy, suggesting that overnight closed-loop insulin delivery could be used safely during pregnancy. More work is needed to achieve optimal postprandial glucose control. PMID:21216859

  10. Efficacy of vildagliptin for prevention of postpartum diabetes in women with a recent history of insulin-requiring gestational diabetes: A phase II, randomized, double-blind, placebo-controlled study.

    PubMed

    Hummel, Sandra; Beyerlein, Andreas; Pfirrmann, Markus; Hofelich, Anna; Much, Daniela; Hivner, Susanne; Bunk, Melanie; Herbst, Melanie; Peplow, Claudia; Walter, Markus; Kohn, Denise; Hummel, Nadine; Kratzsch, Jürgen; Hummel, Michael; Füchtenbusch, Martin; Hasford, Joerg; Ziegler, Anette-G

    2018-03-01

    Women with insulin-requiring gestational diabetes mellitus (GDM) are at high risk of developing diabetes within a few years postpartum. We implemented this phase II study to test the hypothesis that vildagliptin, a dipeptidyl peptidase-4 inhibitor, is superior to placebo in terms of reducing the risk of postpartum diabetes. Women with insulin-requiring GDM were randomized to either placebo or 50 mg vildagliptin twice daily for 24 months followed by a 12-month observation period (EudraCT: 2007-000634-39). Both groups received lifestyle counseling. The primary efficacy outcomes were the diagnosis of diabetes (American Diabetes Association (ADA) criteria) or impaired fasting glucose (IFG)/impaired glucose tolerance (IGT). Between 2008 and 2015, 113 patients (58 vildagliptin, 55 placebo) were randomized within 2.2-10.4 (median 8.6) months after delivery. At the interim analysis, nine diabetic events and 28 IFG/IGT events had occurred. Fifty-two women withdrew before completing the treatment phase. Because of the low diabetes rate, the study was terminated. Lifestyle adherence was similar in both groups. At 24 months, the cumulative probability of postpartum diabetes was 3% and 5% (hazard ratio: 1.03; 95% confidence interval: 0.15-7.36) and IFG/IGT was 43% and 22% (hazard ratio: 0.55; 95% confidence interval: 0.26-1.19) in the placebo and vildagliptin groups, respectively. Vildagliptin was well tolerated with no unexpected adverse events. The study did not show significant superiority of vildagliptin over placebo in terms of reducing the risk of postpartum diabetes. However, treatment was safe and suggested some improvements in glycemic control, insulin resistance, and β-cell function. The study identified critical issues in performing clinical trials in the early postpartum period in women with GDM hampering efficacy assessments. With this knowledge, we have set a basis for which properly powered trials could be performed in women with recent GDM. TRIAL REGISTRATION

  11. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    PubMed

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  12. Phase III Early Restoration Meeting - Lake Charles, LA | NOAA Gulf Spill

    Science.gov Websites

    Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News early restoration planning for Phase III and future early restoration plans. Open House: 5:30pm Public

  13. Intranasal Insulin Therapy for Cognitive Impairment and Neurodegeneration: Current State of the Art

    PubMed Central

    de la Monte, Suzanne M.

    2015-01-01

    Introduction Growing evidence supports the concept that insulin resistance plays an important role in the pathogenesis of cognitive impairment and neurodegeneration, including in Alzheimer's disease (AD). The metabolic hypothesis has led to the development and utilization of insulin- and insulin agonist-based treatments. Therapeutic challenges faced include the ability to provide effective treatments that do not require repeated injections and also minimize potentially hazardous off-target effects. Areas covered This review covers the role of intra-nasal insulin therapy for cognitive impairment and neurodegeneration, particularly Alzheimer's disease. The literature reviewed focuses on data published within the past 5 years as this field is evolving rapidly. The author provides evidence that brain insulin resistance is an important and early abnormality in Alzheimer's disease, and that increasing brain supply and utilization of insulin improves cognition and memory. Emphasis was placed on discussing outcomes of clinical trials and interpreting discordant results to clarify the benefits and limitations of intranasal insulin therapy. Expert Opinion Intranasal insulin therapy can efficiently and directly target the brain to support energy metabolism, myelin maintenance, cell survival, and neuronal plasticity, which begin to fail in the early stages of neurodegeneration. Efforts must continue toward increasing the safety, efficacy, and specificity of intranasal insulin therapy. PMID:24215447

  14. Inhibition of Insulin Amyloid Fibrillation by a Novel Amphipathic Heptapeptide

    PubMed Central

    Ratha, Bhisma N.; Ghosh, Anirban; Brender, Jeffrey R.; Gayen, Nilanjan; Ilyas, Humaira; Neeraja, Chilukoti; Das, Kali P.; Mandal, Atin K.; Bhunia, Anirban

    2016-01-01

    The aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH2), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation. Thioflavin T fluorescence assays, circular dichroism spectroscopy, and one-dimensional proton NMR experiments suggest KR7 primarily targets the fiber elongation step with little effect on the early oligomerization steps in the lag time period. From confocal fluorescence and atomic force microscopy experiments, the net result appears to be the arrest of aggregation in an early, non-fibrillar aggregation stage. This mechanism is noticeably different from previous peptide-based inhibitors, which have primarily shifted the lag time with little effect on later stages of aggregation. As insulin is an important model system for understanding protein aggregation, the new peptide may be an important tool for understanding peptide-based inhibition of amyloid formation. PMID:27679488

  15. What next after basal insulin? Treatment intensification with lixisenatide in Asian patients with type 2 diabetes mellitus.

    PubMed

    Chan, Wing B; Luk, Andrea; Chow, Wing S; Yeung, Vincent T F

    2017-06-01

    There is increasing evidence that the pathophysiology of type 2 diabetes mellitus (T2DM) in Asian patients differs from that in Western patients, with early phase insulin deficiencies, increased postprandial glucose excursions, and increased sensitivity to insulin. Asian patients may also experience higher rates of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as nausea and vomiting, compared with their Western counterparts. These factors should be taken into consideration when selecting therapy for basal insulin treatment intensification in Asian patients. However, the majority of studies to establish various agents for treatment intensification in T2DM have been conducted in predominantly Western populations, and the levels of evidence available in Chinese or Asian patients are limited. This review discusses the different mechanisms of action of short-acting, prandial, and long-acting GLP-1RAs in addressing hyperglycemia, and describes the rationale and available clinical data for basal insulin in combination with the short-acting prandial GLP-1RA lixisenatide, with a focus on treatment of Asian patients with T2DM. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  16. Pharmacokinetics of insulin following intravenous and subcutaneous administration in canines.

    PubMed

    Ravis, W R; Comerci, C; Ganjam, V K

    1986-01-01

    Studies were conducted to examine the absorption and disposition kinetics of insulin in dogs following intravenous (IV) and subcutaneous (SC) administration of commercial preparations. After IV and SC dosing, the plasma levels were described by models which considered basal insulin level contributions. Intersubject variation in the disposition kinetics was small with half-lives of 0.52 +/- 0.05 h and total body clearances of 16.21 +/- 2.08 ml min-1 kg-1. Calculated insulin plasma secretion rates in the canines were 14.4 +/- 3.3 mUh-1 kg-1. Following SC injection of regular insulin, the rate and extent of absorption were noted to be quite variable. The absorption process appeared first-order with half-life values of 2.3 +/- 1.3 h and extents of absorption of 78 +/- 15 per cent with a range of 55-101 per cent. Insulin absorption from SC NPH preparations was evaluated as being composed of two zero-order release phases, a rapid and a slow release phase. With a dose of 1.65 U kg-1, the rapid release phase had an average duration of 1.5 h and a rate of 580 +/- 269 mUh-1 (4.2 per cent of dose) while the slow phase had a zero-order rate of 237 +/- 92 mU h-1 which continued beyond 12 h. The extent of absorption from the NPH preparation was 23.6 +/- 5.1 per cent and was significantly lower than that for the regular injection.

  17. UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis

    PubMed Central

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B.

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ∼2.20 W.m−2) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin’s structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  18. Early visual processing is enhanced in the midluteal phase of the menstrual cycle.

    PubMed

    Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Bryant, Richard A; Felmingham, Kim L

    2015-12-01

    Event-related potential (ERP) studies have revealed an early attentional bias in processing unpleasant emotional images in women. Recent neuroimaging data suggests there are significant differences in cortical emotional processing according to menstrual phase. This study examined the impact of menstrual phase on visual emotional processing in women compared to men. ERPs were recorded from 28 early follicular women, 29 midluteal women, and 27 men while they completed a passive viewing task of neutral and low- and high- arousing pleasant and unpleasant images. There was a significant effect of menstrual phase in early visual processing, as midluteal women displayed significantly greater P1 amplitude at occipital regions to all visual images compared to men. Both midluteal and early follicular women displayed larger N1 amplitudes than men (although this only reached significance for the midluteal group) to the visual images. No sex or menstrual phase differences were apparent in later N2, P3, or LPP. A condition effect demonstrated greater P3 and LPP amplitude to highly-arousing unpleasant images relative to all other stimuli conditions. These results indicate that women have greater early automatic visual processing compared to men, and suggests that this effect is particularly strong in women in the midluteal phase at the earliest stage of visual attention processing. Our findings highlight the importance of considering menstrual phase when examining sex differences in the cortical processing of visual stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Statistical controversies in clinical research: early-phase adaptive design for combination immunotherapies.

    PubMed

    Wages, N A; Slingluff, C L; Petroni, G R

    2017-04-01

    In recent years, investigators have asserted that the 3 + 3 design lacks flexibility, making its use in modern early-phase trial settings, such as combinations and/or biological agents, inefficient. More innovative approaches are required to address contemporary research questions, such as those posed in trials involving immunotherapies. We describe the implementation of an adaptive design for identifying an optimal treatment regimen, defined by low toxicity and high immune response, in an early-phase trial of a melanoma helper peptide vaccine plus novel adjuvant combinations. Operating characteristics demonstrate the ability of the method to effectively recommend optimal regimens in a high percentage of trials with reasonable sample sizes. The proposed design is a practical, early-phase, adaptive method for use with combined immunotherapy regimens. This design can be applied more broadly to early-phase combination studies, as it was used in an ongoing study of two small molecule inhibitors in relapsed/refractory mantle cell lymphoma. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Inhaled Insulin: A Clinical and Historical Review.

    PubMed

    Chan, Jason; Cheng-Lai, Angela

    Insulin is the most effective blood glucose lowering agent and remains one of the cornerstones of diabetes management. However, many individuals with diabetes are either reluctant to initiate or are nonadherent to their insulin therapy for various reasons, including fear of frequent injections. Technosphere Insulin (TI) is a novel inhaled insulin powder that is approved by the United States Food and Drug Administration for the management of diabetes. The results from 2 phase III clinical trials have shown that TI was noninferior to subcutaneous insulin aspart and superior to inhaled placebo in lowering HbA1c in patients with diabetes mellitus types 1 and 2, respectively. Across both studies, TI appears to be generally well tolerated, with the most common adverse events being hypoglycemia and cough. However, long-term pulmonary safety concerns have not been addressed and additional studies are needed. Overall, TI appears to be a promising noninvasive prandial insulin alternative for individuals with diabetes who are at risk for medication nonadherence due to aversion to frequent injections. This article provides a review of the historical development of TI, its safety and efficacy data, and its advantages and disadvantages over traditional injectable insulins.

  1. Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation.

    PubMed

    Rico, J E; Bandaru, V V R; Dorskind, J M; Haughey, N J; McFadden, J W

    2015-11-01

    Insulin resistance is a homeorhetic adaptation to parturition in dairy cows transitioning from late pregnancy to early lactation. An increase in prepartum adiposity can predispose periparturient cows to greater lipolysis and insulin resistance, thus increasing the risk for metabolic disease. Mechanisms mediating the development of insulin resistance in overweight peripartal dairy cows may depend on ceramide metabolism. The sphingolipid ceramide accumulates in plasma and tissues of overweight monogastric animals, and facilitates saturated fatty acid-induced insulin resistance. Considering this evidence, we hypothesized that plasma ceramides would be elevated in periparturient dairy cattle and that these sphingolipids would correlate with the magnitude of lipolysis and insulin resistance. To test our central hypothesis, multiparous Holstein cows were allocated into 2 groups according to their body condition score (BCS) at d -30 prepartum: lean (BCS <3.0; n=10) or overweight (BCS >4.0; n=11). Blood samples were collected at d -45, -30, -15, and -7, relative to expected parturition, and at d 4 postpartum. Plasma glucose, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) concentrations were measured, and insulin sensitivity was estimated. The concentrations of individual plasma ceramide and glycosylated ceramide were determined using liquid chromatography-based mass spectrometry. Results demonstrated that greater adiposity was associated with a greater loss in body condition during late pregnancy. Overweight cows had greater circulating concentrations of glucose, insulin, and NEFA, and lower insulin sensitivity relative to lean cows. We detected 30 different sphingolipids across 6 lipid classes with acyl chains ranging from 16 to 26 carbons. The most abundant plasma sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide, and C16:0-lactosylceramide. Plasma concentrations of total ceramide and monohexosylceramide increased as

  2. Efficacy and safety of fast-acting insulin aspart in comparison with insulin aspart in type 1 diabetes (onset 1): A 52-week, randomized, treat-to-target, phase III trial.

    PubMed

    Mathieu, Chantal; Bode, Bruce W; Franek, Edward; Philis-Tsimikas, Athena; Rose, Ludger; Graungaard, Tina; Birk Østerskov, Anne; Russell-Jones, David

    2018-05-01

    To compare the safety and efficacy of fast-acting insulin aspart (faster aspart) with conventional insulin aspart (IAsp) in adults with type 1 diabetes (T1D). onset 1 was a randomized, multicentre, treat-to-target, phase III, 52-week (initial 26 weeks + additional 26 weeks) trial conducted at 165 sites across 9 countries. Adults with T1D were randomly allocated to double-blind mealtime faster aspart or IAsp, each with once- or twice-daily insulin detemir. The primary endpoint, change in glycated haemoglobin (HbA1c) from baseline after the initial 26 weeks, has been reported previously. In the present paper, we report data from the full 52-week study period. Between August 2013 and June 2015, 381 participants were assigned to double-blind faster aspart and 380 participants to IAsp. After 52 weeks, estimated mean changes from baseline in HbA1c levels were -0.08% (faster aspart) and +0.01% (IAsp); estimated treatment difference significantly favoured faster aspart (-0.10% [95% confidence interval {CI} -0.19;-0.00]; P = .0424). Changes from baseline in 1-hour postprandial plasma glucose (PPG) increment (meal test; faster aspart -1.05 mmol/L; IAsp -0.14 mmol/L) also significantly favoured faster aspart (estimated treatment difference -0.91 mmol/L [95% CI -1.40;-0.43]; -16.48 mg/dL [95% CI -25.17;-7.80]; P = .0002). There was no difference in overall severe or blood glucose-confirmed hypoglycaemic episodes or treatment-emergent adverse events between treatments. At 52 weeks, overall glycaemic control had significantly improved with faster aspart vs IAsp, consistent with the 26-week study findings. Achieving an insulin profile closer to physiological insulin secretion with faster aspart translates into lower PPG and HbA1c levels compared with those achieved with IAsp in people with T1D. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  3. Differences in Cardiometabolic Risk between Insulin-Sensitive and Insulin-Resistant Overweight and Obese Children.

    PubMed

    Khan, Unab I; McGinn, Aileen P; Isasi, Carmen R; Groisman-Perelstein, Adriana; Diamantis, Pamela M; Ginsberg, Mindy; Wylie-Rosett, Judith

    2015-06-01

    It is known that 15-30% overweight/obese adults do not suffer cardiometabolic consequences. There is limited literature examining factors that can be used to assess cardiometabolic health in overweight/obese children. If such factors can be identified, they would aid in differentiating those most in need for aggressive management. Baseline data from 7- to 12-year-old, overweight, and obese children enrolled in a weight management program at an urban hospital were analyzed. Homeostatic model assessment for insulin resistance (HOMA-IR) <2.6 was used to define insulin-sensitive and HOMA-IR ≥2.6 was used to defined insulin-resistant participants. Demographics, physical activity measures, and cardiometabolic risk factors were compared between the two phenotypes. Odds ratios (ORs) examining the association between intermediate endpoints (metabolic syndrome [MetS], nonalcoholic fatty liver disease [NAFLD], systemic inflammation, and microalbuminuria) and the two metabolic phenotypes were evaluated. Of the 362 overweight/obese participants, 157 (43.5%) were insulin sensitive and 204 (56.5%) were insulin resistant. Compared to the insulin-sensitive group, the insulin-resistant group was older (8.6±1.6 vs. 9.9±1.7; p<0.001) and had a higher BMI z-score (1.89±0.42 vs. 2.04±0.42; p=0.001). After multivariable adjustment, compared to the insulin-sensitive group, the insulin-resistant group had higher odds of having MetS (OR, 5.47; 95% confidence interval [CI]: 1.72, 17.35; p=0.004) and NAFLD (OR, 8.66; 95% CI, 2.48, 30.31; p=0.001), but not systemic inflammation (OR, 1.06; 95% CI: 0.56, 2.03; p=0.86) or microalbuminuria (OR, 1.71; 95% CI, 0.49, 6.04; p=0.403). Using a HOMA-IR value of ≥2.6, clinical providers can identify prepubertal and early pubertal children most at risk. Focusing limited resources on aggressive weight interventions may lead to improvement in cardiometabolic health.

  4. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction*

    PubMed Central

    Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E.; Accili, Domenico

    2016-01-01

    Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo. The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure. PMID:26917725

  5. Immune deficiency could be an early risk factor for altered insulin sensitivity in antiretroviral-naive HIV-1-infected patients: the ANRS COPANA cohort.

    PubMed

    Boufassa, Faroudy; Goujard, Cécile; Viard, Jean-Paul; Carlier, Robert; Lefebvre, Bénédicte; Yeni, Patrick; Bouchaud, Olivier; Capeau, Jacqueline; Meyer, Laurence; Vigouroux, Corinne

    2012-01-01

    The relationships between immunovirological status, inflammatory markers, insulin resistance and fat distribution have not been studied in recently diagnosed (<1 year) antiretroviral-naive HIV-1-infected patients. We studied 214 antiretroviral-naive patients at enrolment in the metabolic substudy of the ANRS COPANA cohort. We measured clinical, immunovirological and inflammatory parameters, glucose/insulin during oral glucose tolerance test (OGTT), adipokines, subcutaneous and visceral fat surfaces (subcutaneous adipose tissue [SAT] and visceral adipose tissue [VAT], assessed by computed tomography) and the body fat distribution based on dual-energy X-ray absorptiometry (DEXA). Median age was 36 years; 28% of the patients were female and 35% of sub-Saharan origin; 20% had low CD4(+) T-cell counts (≤200/mm(3)). Patients with low CD4(+) T-cell counts were older and more frequently of sub-Saharan Africa origin, had lower body mass index (BMI) but no different SAT/VAT ratio and fat distribution than other patients. They also had lower total, low-density lipoprotein and high-density lipoprotein cholesterolaemia, higher triglyceridaemia and post-OGTT glycaemia, higher markers of insulin resistance (insulin during OGTT and homeostasis model assessment of insulin resistance) and of inflammation (high-sensitivity C-reactive protein, IL-6, tumour necrosis factor (TNF)-α, sTNFR1 and sTNFR2). After adjustment for age, sex, geographic origin, BMI and waist circumference, increased insulin resistance was not related to any inflammatory marker. In multivariate analysis, low CD4(+) T-cell count was an independent risk factor for altered insulin sensitivity (β-coefficient for HOMA-IR: +0.90; P=0.001; CD4(+) T-cell count >500/mm(3) as the reference), in addition to older age (β: +0.26 for a 10-year increase; P=0.01) and higher BMI (β: +0.07 for a 1-kg/m(2) increase; P=0.003). In ART-naive patients, severe immune deficiency but not inflammation could be an early risk factor for

  6. Early impaired β-cell function in chinese women with polycystic ovary syndrome.

    PubMed

    Tao, Tao; Li, Shengxian; Zhao, Aimin; Mao, Xiuyin; Liu, Wei

    2012-01-01

    The pathogenic factors that account for the development of diabetes condition in Chinese women with polycystic ovary syndrome (PCOS) remain elusive. To clarify the pathogenic features by evaluating the levels of insulin sensitivity and β cell function in these women with PCOS, either separately or by using of a disposition indexes (DIs). Cross-sectional study involving 137 Chinese women with PCOS and 123 normal women were examined by anthropometry, lipid profile, sex hormone, high-sensitivity C reactive protein, oral glucose tolerance tests and insulin tolerance tests. After controlling for BMI status, the Matsuda Index was significantly lower in women with PCOS in comparison to those of normal women (p<0.000). The early phase of insulin secretion (insulinogenic index) remained significantly lower in lean women with PCOS(LP) than those of both lean and obese women of control group (p=0.007, and p = 0.01, respectively). The mean HOMA-F values were significantly lower (p =0.045) in obese women with PCOS (OP) than those of BMI-matched women. Further, all DIs derived from non-fasting state indexes in women with PCOS were significantly lower than those of BMI-matched control women (p<0.001 for all). Lastly, DIs derived from fasting states indexes in OP were significantly lower than those of LP. Early impaired β cell function was detected in both LP and OP. However, more serious primary defect in insulin action was detected in LP compared to OP. These findings imply that early screening and intervention for PCOS would be therapeutic for Chinese women.

  7. Ultrafast-Acting Insulins: State of the Art

    PubMed Central

    Heinemann, Lutz; Muchmore, Douglas B.

    2012-01-01

    Optimal coverage of prandial insulin requirements remains an elusive goal. The invention of rapid-acting insulin analogs (RAIAs) was a big step forward in reducing postprandial glycemic excursions in patients with diabetes in comparison with using regular human insulin; however, even with these, the physiological situation cannot be adequately mimicked. Developing ultrafast-acting insulins (UFIs)—showing an even more rapid onset of action and a shorter duration of action after subcutaneous (SC) administration—is another step forward in achieving this goal. The need for UFIs has been gradually recognized over the years, and subsequently, a number of different approaches to cover this need are in clinical development. A rapid increase in circulating insulin levels can be achieved by different measures: modification of the primary structure of insulin molecule (as we know from RAIAs), addition of excipients that enhance the appearance in the monomeric state post-injection, or addition of enzymes that enable more free spreading of the insulin molecules in the SC tissue. Other measures to increase the insulin absorption rate increase the local blood flow nearby the insulin depot in the SC tissue, injecting the insulin intradermally or applying via another route, e.g., the lung. The development of these approaches is in different stages, from quite early stages to nearing market authorization. In time, daily practice will show if the introduction of UFIs will fulfill their clinical promise. In this review, the basic idea for UFIs will be presented and the different approaches will be briefly characterized. PMID:22920797

  8. Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons.

    PubMed

    McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu; Anzueto Guerra, Diana; Johnson-Pais, Teresa; Seidner, Steven; McCurnin, Donald; Muscogiuri, Giovanna; DeFronzo, Ralph; Musi, Nicolas; Blanco, Cynthia

    2017-05-01

    Premature infants have altered glucose regulation early in life and increased risk for diabetes in adulthood. Although prematurity leads to an increased risk of diabetes and metabolic syndrome in adult life, the role of hepatic glucose regulation and adaptation to an early extrauterine environment in preterm infants remain unknown. The purpose of this study was to investigate developmental differences in glucose metabolism, hepatic protein content, and gene expression of key insulin-signaling/gluconeogenic molecules. Fetal baboons were delivered at 67%, 75%, and term gestational age and euthanized at birth. Neonatal baboons were delivered prematurely (67% gestation), survived for two weeks, and compared with similar postnatal term animals and underwent serial hyperinsulinemic-euglycemic clamp studies. Premature baboons had decreased endogenous glucose production (EGP) compared with term animals. Consistent with these results, the gluconeogenic molecule, phosphoenolpyruvate carboxykinase messenger RNA, was decreased in preterm baboons compared with terms. Hepatic insulin signaling was altered by preterm birth as evidenced by decreased insulin receptor-β, p85 subunit of phosphoinositide 3-kinase, phosphorylated insulin receptor substrate 1, and Akt-1 under insulin-stimulated conditions. Furthermore, preterm baboons failed to have the normal increase in glycogen synthase kinase-α from fetal to postnatal life. The blunted responses in hepatic insulin signaling may contribute to the hyperglycemia of prematurity, while impaired EGP leads to hypoglycemia of prematurity. Copyright © 2017 Endocrine Society.

  9. Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons

    PubMed Central

    McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu; Anzueto Guerra, Diana; Johnson-Pais, Teresa; Seidner, Steven; McCurnin, Donald; Muscogiuri, Giovanna; DeFronzo, Ralph; Musi, Nicolas

    2017-01-01

    Premature infants have altered glucose regulation early in life and increased risk for diabetes in adulthood. Although prematurity leads to an increased risk of diabetes and metabolic syndrome in adult life, the role of hepatic glucose regulation and adaptation to an early extrauterine environment in preterm infants remain unknown. The purpose of this study was to investigate developmental differences in glucose metabolism, hepatic protein content, and gene expression of key insulin-signaling/gluconeogenic molecules. Fetal baboons were delivered at 67%, 75%, and term gestational age and euthanized at birth. Neonatal baboons were delivered prematurely (67% gestation), survived for two weeks, and compared with similar postnatal term animals and underwent serial hyperinsulinemic-euglycemic clamp studies. Premature baboons had decreased endogenous glucose production (EGP) compared with term animals. Consistent with these results, the gluconeogenic molecule, phosphoenolpyruvate carboxykinase messenger RNA, was decreased in preterm baboons compared with terms. Hepatic insulin signaling was altered by preterm birth as evidenced by decreased insulin receptor–β, p85 subunit of phosphoinositide 3-kinase, phosphorylated insulin receptor substrate 1, and Akt-1 under insulin-stimulated conditions. Furthermore, preterm baboons failed to have the normal increase in glycogen synthase kinase-α from fetal to postnatal life. The blunted responses in hepatic insulin signaling may contribute to the hyperglycemia of prematurity, while impaired EGP leads to hypoglycemia of prematurity. PMID:28324053

  10. Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death.

    PubMed

    Díaz, Ariel; Humeres, Claudio; González, Verónica; Gómez, María Teresa; Montt, Natalia; Sanchez, Gina; Chiong, Mario; García, Lorena

    2015-11-13

    In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death. However, all studies have been focused on insulin action during reperfusion. Here we explore the cardioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat cardiomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA fragmentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell death. Protective effects of insulin were dependent of Akt and NFκB. These novel results show that insulin reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-κB dependent mechanism. These novel findings clarify the role of insulin during ischemia and further support its use in early GIK perfusion to treat myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Clinical Evidence for the Earlier Initiation of Insulin Therapy in Type 2 Diabetes

    PubMed Central

    2013-01-01

    Abstract The natural history of type 2 diabetes mellitus (T2DM) is a relentless progression of β-cell failure and dysregulation of β-cell function with increasing metabolic derangement. Insulin remains the only glucose-lowering therapy that is efficacious throughout this continuum. However, the timing of introduction and the choice of insulin therapy remain contentious because of the heterogeneity of T2DM and the well-recognized behavioral and therapeutic challenges associated with this mode of therapy. Nevertheless, the early initiation of basal insulin has been shown to improve glycemic control and affect long-term outcomes in people with T2DM and is a treatment strategy supported by international guidelines as part of an individualized approach to chronic disease management. The rationale for early initiation of insulin is based on evidence demonstrating multifaceted benefits, including overcoming the glucotoxic effects of hyperglycemia, thereby facilitating “β-cell rest,” and preserving β-cell mass and function, while also improving insulin sensitivity. Independent of its effects on glycemic control, insulin possesses anti-inflammatory and antioxidant properties that may help protect against endothelial dysfunction and damage resulting in vascular disease. Insulin therapy and the achievement of good glycemic control earlier in T2DM provide long-term protection to end organs via “metabolic memory” regardless of subsequent treatments and degree of glycemic control. This is evidenced from long-term observations continuing from trials such as the United Kingdom Prospective Diabetes Study. As such, early initiation of insulin therapy may not only help to avoid the effects of prolonged glycemic burden, but may also positively alter the course of disease progression. PMID:23786228

  12. Different insulin concentrations in resuspended vs. unsuspended NPH insulin: Practical aspects of subcutaneous injection in patients with diabetes.

    PubMed

    Lucidi, P; Porcellati, F; Marinelli Andreoli, A; Candeloro, P; Cioli, P; Bolli, G B; Fanelli, C G

    2017-06-06

    This study measured the insulin concentration (Ins [C] ) of NPH insulin in vials and cartridges from different companies after either resuspension (R+) or not (R-; in the clear/cloudy phases of unsuspended NPH). Measurements included Ins [C] in NPH(R+) and in the clear/cloudy phases of NPH(R-), and the time needed to resuspend NPH and time for NPH(R+) to separate again into clear/cloudy parts. In vials of NPH(R+) (assumed to be 100%), Ins [C] in the clear phase of NPH(R-) was<1%, but 230±41% and 234±54% in the cloudy phases of Novo Nordisk and Eli Lilly NPH, respectively. Likewise, in pen cartridges, Ins [C] in the clear phase of NPH(R-) was<1%, but 182±33%, 204±22% and 229±62% in the cloudy phases of Novo, Lilly and Sanofi NPH. Time needed to resuspend NPH (spent in tipping) in vials was brief with both Novo (5±1s) and Lilly NPH (6±1s), but longer with all pen cartridges (50±8s, 40±6s and 30±4s from Novo, Lilly and Sanofi, respectively; P=0.022). Time required for 50% separation into cloudy and clear parts of NPH was longer with Novo (60±7min) vs. Lilly (18±3min) in vials (P=0.021), and affected by temperature, but not by the different diameter sizes of the vials. With pen cartridges, separation into clear and cloudy parts was significantly faster than in vials (P<0.01). Ins [C] in NPH preparations varies depending on their resuspension or not. Thus, subcutaneous injection of the same number of units of NPH in patients with diabetes may deliver different amounts of insulin depending on its prior NPH resuspension. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Short-term intensive insulin therapy could be the preferred option for new onset Type 2 diabetes mellitus patients with HbA1c > 9.

    PubMed

    Weng, Jianping

    2017-10-01

    patients, initiating insulin is difficult, although it has been almost 10 years since the ACE/AACE Diabetes Road Map suggested insulin therapy for treatment-naïve patients with high HbA1c. Lack of patient education resources in primary care and of provider knowledge as to approaches to insulin treatment (insulin initiation dosage, multiple daily injection or basal insulin supplement, insulin treatment duration) are major obstacles to selecting appropriately intensive but also timely therapy for newly diagnosed T2DM patients in clinical practice so as to minimize avoidable glycemic exposure. Treatment with STII early in the course of T2DM is of considerable interest. There is a wide range of evidence currently available supporting the use of STII therapy in newly diagnosed T2DM. For example, STII can quickly normalize glycemic control, improve β-cell function, restore first-phase insulin secretion, and even reduce glucagonemia in newly diagnosed T2DM, suggesting that it may provide unique capacity for modification of the natural process of diabetes. The largest and most robust clinical trial of STII therapy enrolled 382 newly diagnosed people with T2DM at nine centers in China and randomized them to either insulin (short-term continuous subcutaneous insulin infusion [CSII] or multiple daily injections [MDI]) or oral anti-hyperglycemic therapy. First-phase insulin secretion was increased in all three groups after 2 weeks of normoglycemia. Remission rates at 1 year were higher in the two insulin-treated groups (51.1% in the CSII group, 44.9% in the MDI group) than in the oral therapy group (26.7%). Furthermore, the increase in first-phase insulin response was maintained at 1 year in the two insulin-treated groups, but declined in the group allocated to oral medication (Fig. ). A beneficial effect of insulin therapy over oral anti-diabetic agents was also observed by Chen et al. [Figure: see text] A meta-analysis, including seven studies and 839 participants, further

  14. rDNA insulin glargine U300 – a critical appraisal

    PubMed Central

    Wang, Fei; Zassman, Stefanie; Goldberg, Philip A

    2016-01-01

    Background As the first once-daily basal insulin analog, insulin glargine 100 U/mL (Gla-100; Lantus®) rapidly evolved into the most commonly prescribed insulin therapy worldwide. However, this insulin has clinical limitations. The approval of new basal insulin analogs in 2015 has already started to alter the prescribing landscape. Objective To review the available evidence on the clinical efficacy and safety of a more concentrated insulin glargine (recombinant DNA origin) injection 300 U/mL (Gla-300) compared to insulin Gla-100 in patients with type 1 and type 2 diabetes mellitus (T1DM and T2DM). Methods The following electronic databases were searched: PubMed and MEDLINE (using Ovid platform), Scopus, BIOSIS, and Google Scholar through June 2016. Conference proceedings of the American Diabetes Association (2015–2016) were reviewed. We also manually searched reference lists of pertinent reviews and trials. Results A total of 6 pivotal Phase III randomized controlled trials known as the EDITION series were reviewed. All of these trials (n=3,500) were head-to-head comparisons evaluating the efficacy and tolerability of Gla-300 vs Gla-100 in a diverse population with T1DM and T2DM. These trials were of 6 months duration with a 6-month safety extension phase. Conclusion Gla-300 was as effective as Gla-100 for improving glycemic control over 6 months in all studies, with a lower risk of nocturnal hypoglycemia significant only in insulin-experienced patients with T2DM. Overall, patients on Gla-300 required 10%–18% more basal insulin, but with less weight gain compared with Gla-100. PMID:27980431

  15. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  16. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro.

    PubMed

    Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M

    2015-01-01

    This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters.

    PubMed

    Boyd, Ashleigh S; Wood, Kathryn J

    2010-06-04

    The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.

  18. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways *

    PubMed Central

    Erdem, Cemal; Nagle, Alison M.; Casa, Angelo J.; Litzenburger, Beate C.; Wang, Yu-fen; Taylor, D. Lansing; Lee, Adrian V.; Lezon, Timothy R.

    2016-01-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358

  19. Proteomic analysis of early phase of conidia germination in Aspergillus nidulans.

    PubMed

    Oh, Young Taek; Ahn, Chun-Seob; Kim, Jeong Geun; Ro, Hyeon-Su; Lee, Chang-Won; Kim, Jae Won

    2010-03-01

    In order to investigate proteins involved in early phase of conidia germination, proteomic analysis was performed using two-dimensional gel electrophoresis (2D-GE) in conjunction with MALDI-TOF mass spectrometry (MS). The expression levels of 241 proteins varied quantitatively with statistical significance (P<0.05) at the early phase of the germination stage. Out of these 57 were identified by MALDI-TOF MS. Through classification of physiological functions from Conserved Domain Database analysis, among the identified proteins, 21, 13, and 6 proteins were associated with energy metabolism, protein synthesis, and protein folding process, respectively. Interestingly, eight proteins, which are involved in detoxification of reactive oxygen species (ROS) including catalase A, thioredoxin reductase, and mitochondrial peroxiredoxin, were also identified. The expression levels of the genes were further confirmed using Northern blot and reverse transcriptase (RT)-PCR analyses. This study represents the first proteomic analysis of early phase of conidia germination and will contribute to a better understanding of the molecular events involved in conidia germination process. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice

    PubMed Central

    Zhong, Yong; Wang, Jun; Gu, Ping; Shao, Jiaqing; Lu, Bin; Jiang, Shisen

    2012-01-01

    Objective. To investigate the effect of ezetimibe on the insulin secretion in db/db mice. Methods. The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. Results. In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUCINS0−30 was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. Conclusion. Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice. PMID:23118741

  1. Leucine modulates dynamic phosphorylation events in insulin signaling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells

    PubMed Central

    2014-01-01

    Background Branched-chain amino acids, especially leucine, are known to interact with insulin signaling pathway and glucose metabolism. However, the mechanism by which this is exerted, remain to be clearly defined. In order to examine the effect of leucine on muscle insulin signaling, a set of experiments was carried out to quantitate phosphorylation events along the insulin signaling pathway in human skeletal muscle cell cultures. Cells were exposed to insulin, leucine or both, and phosphorylation events of key insulin signaling molecules were tracked over time so as to monitor time-related responses that characterize the signaling events and could be missed by a single sampling strategy limited to pre/post stimulus events. Results Leucine is shown to increase the magnitude of insulin-dependent phosphorylation of protein kinase B (AKT) at Ser473 and glycogen synthase kinase (GSK3β) at Ser21-9. Glycogen synthesis follows the same pattern of GSK3β, with a significant increase at 100 μM leucine plus insulin stimulus. Moreover, data do not show any statistically significant increase of pGSK3β and glycogen synthesis at higher leucine concentrations. Leucine is also shown to increase the magnitude of insulin-mediated extracellularly regulated kinase (ERK) phosphorylation; however, differently from AKT and GSK3β, ERK shows a transient behavior, with an early peak response, followed by a return to the baseline condition. Conclusions These experiments demonstrate a complementary effect of leucine on insulin signaling in a human skeletal muscle cell culture, promoting insulin-activated GSK3β phosphorylation and glycogen synthesis. PMID:24646332

  2. Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy.

    PubMed Central

    Yip, C M; Brader, M L; Frank, B H; DeFelippis, M R; Ward, M D

    2000-01-01

    Crystallographic studies of insulin-protamine complexes, such as neutral protamine Hagedorn (NPH) insulin, have been hampered by high crystal solvent content, small crystal dimensions, and extensive disorder in the protamine molecules. We report herein in situ tapping mode atomic force microscopy (TMAFM) studies of crystalline neutral protamine Lys(B28)Pro(B29) (NPL), a complex of Lys(B28)Pro(B29) insulin, in which the C-terminal prolyl and lysyl residues of human insulin are inverted, and protamine that is used as an intermediate time-action therapy for treating insulin-dependent diabetes. Tapping mode AFM performed at 6 degrees C on bipyramidally tipped tetragonal rod-shaped NPL crystals revealed large micron-sized islands separated by 44-A tall steps. Lattice images obtained by in situ TMAFM phase and height imaging on these islands were consistent with the arrangement of individual insulin-protamine complexes on the P4(1)2(1)2 (110) crystal plane of NPH, based on a low-resolution x-ray diffraction structure of NPH, arguing that the NPH and NPL insulins are isostructural. Superposition of the height and phase images indicated that tip-sample adhesion was larger in the interstices between NPL complexes in the (110) crystal plane than over the individual complexes. These results demonstrate the utility of low-temperature TMAFM height and phase imaging for the structural characterization of biomolecular complexes. PMID:10620310

  3. Early-life stress and the development of obesity and insulin resistance in juvenile bonnet macaques.

    PubMed

    Kaufman, Daniel; Banerji, Mary Ann; Shorman, Igor; Smith, Eric L P; Coplan, Jeremy D; Rosenblum, Leonard A; Kral, John G

    2007-05-01

    Stress is a risk factor for chronic illnesses such as obesity, type 2 diabetes, and hypertension and has been postulated to cause the metabolic syndrome via perturbation of the hypothalamo-pituitary-adrenal (HPA) axis. In our model of early-life stress (variable foraging demand [VFD]), food insecurity is imposed on monkey mothers for 16 weeks beginning when their nursing offspring are 3-5 months of age. Under VFD, food availability is never restricted, and the infant's growth is unaffected. VFD rearing does, however, cause a range of neurobiological abnormalities, including dysregulation of the HPA axis, manifested in abnormal cerebrospinal fluid cortisol and corticotropin-releasing factor levels. We previously reported spontaneous occurrence of metabolic syndrome in 14% of normally reared peripubertal bonnet macaques given ad libitum access to standard monkey chow. Here, we show that compared with normally reared monkeys, peripubertal VFD juveniles exhibit greater weight, BMI, abdominal circumference, and glucagon-like peptide-1 and decreased glucose disposal rates during hyperinsulinemic-euglycemic clamps. Our data suggest that early-life stress during a critical period of neuro development can result in the peripubertal emergence of obesity and insulin resistance.

  4. Improving influence of insulin on cognitive functions in humans.

    PubMed

    Kern, W; Peters, A; Fruehwald-Schultes, B; Deininger, E; Born, J; Fehm, H L

    2001-10-01

    Insulin receptors have been identified in limbic brain structures, but their functional relevance is still unclear. In order to characterize some of their effects, we evaluated auditory evoked brain potentials (AEP) in a vigilance task, behavioral measures of memory (recall of words) and selective attention (Stroop test) during infusion of insulin. The hormone was infused at two different rates (1.5 mU/kg x min, "low insulin", and 15 mU/kg x min, "high insulin"), inducing respectively serum levels of 543 +/- 34 and 24,029 +/- 1,595 pmol/l. This experimental design allowed to compare cognitive parameters under two conditions presenting markedly different insulin levels, but with minimal incidence on blood glucose concentrations since these were kept constant by glucose infusion. A "no insulin treatment" group was not included in order to avoid leaving patients infused with glucose without insulin treatment. Measures were taken during a baseline phase preceding insulin infusion and every 90 min during the 360 min of insulin infusion. Compared with "low insulin", "high insulin" induced a slow negative potential shift in the AEP over the frontal cortex (average amplitude, high insulin: 0.27 +/- 0.48 microV; low insulin: 1.87 +/- 0.48 microV, p < 0.005), which was paralleled by enhanced memory performance (words recalled, high insulin: 22.04 +/- 0.93; low insulin: 19.29 +/- 0.92, p < 0.05). Also, during "high insulin" subjects displayed enhanced performance on the Stroop test (p < 0.05) and expressed less difficulty in thinking than during "low insulin" (p < 0.03). Results indicate an improving effect of insulin on cognitive function, and may provide a frame for further investigations of neurobehavioral effects of insulin in patients with lowered or enhanced brain insulin, i.e., patients with Alzheimer's disease or diabetes mellitus. Copyright 2001 S. Karger AG, Basel

  5. Insulin lispro 25/75 and insulin lispro 50/50 as starter insulin in Japanese patients with type 2 diabetes: subanalysis of the CLASSIFY randomized trial.

    PubMed

    Watada, Hirotaka; Imori, Makoto; Li, Pengfei; Iwamoto, Noriyuki

    2017-07-28

    In Japan, premixed insulins are commonly used as starter insulin for type 2 diabetes. This subpopulation analysis assessed the efficacy and safety of twice-daily LM25 (25% insulin lispro/75% insulin lispro protamine) and LM50 (50% insulin lispro/50% insulin lispro protamine) as starter insulin in Japanese subjects, and compared these results with the whole-trial populations of East Asian subjects. In this subpopulation analysis of an open-label, phase 4, randomized trial (CLASSIFY), Japanese subjects received LM25 (n = 88) or LM50 (n = 84) twice-daily for 26 weeks. The primary outcome was change from baseline at Week 26 in glycated hemoglobin (HbA1c). Results for Japanese subjects were generally similar to those for the whole-trial population. Similar changes from baseline in HbA1c were observed for LM25 and LM50 groups (least squares [LS] mean difference [95% confidence interval] of LM25 - LM50 = 0.13 [-0.16, 0.41]%, 1.42 [-1.75, 4.48] mmol/mol, p = 0.388). More LM50-treated subjects than LM25-treated subjects achieved HbA1c targets of <7.0% (59.5% versus 43.2%; p = 0.034) or ≤6.5% (45.2% versus 28.4%; p = 0.027). The reduction in postprandial blood glucose concentrations after morning and evening meals was statistically significantly greater for LM50 than for LM25. The incidence of both hypoglycemia and treatment-emergent adverse events were similar between treatment groups. Both LM25 and LM50 twice daily appear to be effective and well tolerated as starter insulin, although LM50 might be more effective for Japanese type 2 diabetes patients.

  6. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.

    PubMed

    Ramon-Krauel, Marta; Pentinat, Thais; Bloks, Vincent W; Cebrià, Judith; Ribo, Silvia; Pérez-Wienese, Ricky; Vilà, Maria; Palacios-Marin, Ivonne; Fernández-Pérez, Antonio; Vallejo, Mario; Téllez, Noèlia; Rodríguez, Miguel Àngel; Yanes, Oscar; Lerin, Carles; Díaz, Rubén; Plosch, Torsten; Tietge, Uwe J F; Jimenez-Chillaron, Josep C

    2018-05-29

    Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.

  7. Preabsorptive insulin release and hypoglycemia in rats.

    PubMed

    Louis-Sylvestre, J

    1976-01-01

    Peripheral blood glucose and immunologically reactive insulin levels were determined in freely moving normal rats which were submitted either to a free oral glucose load or to a gastric administration of the glucose load. Identical determinations were performed in ventromedial hypothalamic nucleus-(VMH) lesioned and vagotomized rats after the same oral intake. It was demonstrated that: 1) a free oral glucose intake was immediately followed by two peaks of insulun release and a resultant decrease in blood glucose; 2) a gastric glucose load resulted in a single peak of insulin release and the concomitant decline in blood glucose; 3) the recorded blood glucose level was the resultant of the insulin-induced hypoglycemia and the postabsorptive hyperglycemia; and 4) the responses were largely exaggerated in VMH-lesioned rats and abolished by vagotomy. It is concluded that the early prandial insulin release reflexly induced by food-related stimuli temporarily enhances the metabolic conditions which provoke feeding.

  8. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    PubMed

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  9. Microemulsions for oral delivery of insulin: design, development and evaluation in streptozotocin induced diabetic rats.

    PubMed

    Sharma, G; Wilson, K; van der Walle, C F; Sattar, N; Petrie, J R; Ravi Kumar, M N V

    2010-10-01

    Insulin loaded microemulsions were developed adopting a low shear reverse micellar approach using didoceyldimethylammonium bromide (DMAB) as the surfactant, propylene glycol (PG) as the co-surfactant, triacetin (TA) as the oil phase and insulin solution as the aqueous phase. A ternary phase diagram was constructed based on multiple cloud point titration to highlight the reverse micellar region. The droplet sizes of the microemulsions were 161.7±24.7nm with PDI of 0.447±0.076 and insulin entrapment of ∼85%. Transmission electron microscopy (TEM) revealed the spherical nature and size homogeneity of the microemulsion droplets. The conformational stability of the entrapped insulin within microemulsions was confirmed by fluorescence spectroscopy and circular dichroism. The microemulsions displayed a 10-fold enhancement in bioavailability compared with plain insulin solution administered per oral in healthy rats. The short-term in vivo efficacy in STZ induced diabetic rats provided the proof of concept by a modest glucose reduction at a dose of 20IU/kg. Together this preliminary data indicate the promise of microemulsions for oral delivery of insulin. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Relationship of early pregnancy waist to hip ratio versus body mass index with gestational diabetes and insulin resistance

    PubMed Central

    Basraon, Sanmaan K.; Mele, Lisa; Myatt, Leslie; Roberts, James M.; Hauth, John C.; Leveno, Kenneth J.; Varner, Michael W.; Wapner, Ronald J.; Thorp, John M.; Peaceman, Alan M.; Ramin, Susan M.; Sciscione, Anthony; Tolosa, Jorge E.; Sorokin, Yoram

    2017-01-01

    Objective To determine the risk of gestational diabetes (GDM) and insulin resistance (IR) in obesity defined by body mass index (BMI), waist-to-hip ratio (WHR) or both combined. Methods Secondary analysis of a randomized multicenter trial of antioxidant supplementation versus placebo in nulliparous low-risk women to prevent pregnancy associated hypertension. Women between 9–16 weeks with data for WHR and BMI were analyzed for GDM (n=2300). Those with fasting glucose and insulin between 22–26 weeks (n=717) were analyzed for IR by homeostasis model assessment of insulin resistance (HOMA-IR; normal≤75thpercentile). WHR and BMI were categorized as normal (WHR<0.80; BMI<25kg/m2); overweight (WHR:0.8–0.84; BMI:25–29.9kg/m2); and obese (WHR≥0.85; BMI≥30kg/m2). ROC curves and logistic regression models were used. Results Compared with normal, the risks of GDM or IR were higher in obese by BMI or WHR. The subgroup with obesity by WHR but not by BMI had no increased risk of GDM. BMI was a better predictor of IR (AUC-0.71(BMI), 0.65(WHR), p=0.03) but similar to WHR for GDM (AUC-0.68(BMI), 0.63(WHR), p=0.18. Conclusion Increased WHR and BMI in early pregnancy are associated with IR and GDM. BMI is a better predictor of IR compared with WHR. Adding WHR to BMI does not improve its ability to detect GDM or IR. Trial Registration number NCT00135707 http://clinicaltrials.gov/ PMID:26352680

  11. Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review

    PubMed Central

    de Andrade, Maria Izabel Siqueira; Oliveira, Juliana Souza; Leal, Vanessa Sá; da Lima, Niedja Maria Silva; Costa, Emília Chagas; de Aquino, Nathalia Barbosa; de Lira, Pedro Israel Cabral

    2016-01-01

    Abstract Objective: To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. Data source: A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "adolescents", "insulin resistance" and "Receiver Operating Characteristics Curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using Receiver Operating Characteristics Curve to determine the index cutoff (HOMA-IR) were included. Data synthesis: A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a Receiver Operating Characteristics Curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff>2.5 for both genders. Conclusions: The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. PMID:26559605

  12. [Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review].

    PubMed

    Andrade, Maria Izabel Siqueira de; Oliveira, Juliana Souza; Leal, Vanessa Sá; Lima, Niedja Maria da Silva; Costa, Emília Chagas; Aquino, Nathalia Barbosa de; Lira, Pedro Israel Cabral de

    2016-06-01

    To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "Adolescents", "insulin resistance" and "ROC curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using ROC curve to determine the index cutoff (HOMA-IR) were included. A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a ROC curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff >2.5 for both genders. The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. A model to estimate insulin sensitivity in dairy cows.

    PubMed

    Holtenius, Paul; Holtenius, Kjell

    2007-10-11

    Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  14. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  15. Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance.

    PubMed

    Qiu, Jian; Bosch, Martha A; Meza, Cecilia; Navarro, Uyen-Vy; Nestor, Casey C; Wagner, Edward J; Rønnekleiv, Oline K; Kelly, Martin J

    2018-02-01

    Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17β-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation. Copyright © 2018 Endocrine Society.

  16. Challenges and perspective of drug repurposing strategies in early phase clinical trials.

    PubMed

    Kato, Shumei; Moulder, Stacy L; Ueno, Naoto T; Wheler, Jennifer J; Meric-Bernstam, Funda; Kurzrock, Razelle; Janku, Filip

    2015-01-01

    Despite significant investments in the development of new agents only 5% of cancer drugs entering Phase I clinical trials are ultimately approved for routine clinical cancer care. Drug repurposing strategies using novel combinations of previously tested anticancer agents could reduce the cost and improve treatment outcomes. At MD Anderson Cancer Center, early phase clinical trials with drug repurposing strategies demonstrated promising outcomes in patients with both rare and common treatment refractory advanced cancers. Despite clinical efficacy advancing drug repurposing strategies in the clinical trial trajectory beyond early phase studies has been challenging mainly due to lack of funding and interest from the pharmaceutical industry. In this review, we delineate our experience and challenges with drug repurposing strategies.

  17. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    PubMed

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Effects of Fetal Gender on Maternal and Fetal Insulin Resistance.

    PubMed

    Walsh, Jennifer M; Segurado, Ricardo; Mahony, Rhona M; Foley, Michael E; McAuliffe, Fionnuala M

    2015-01-01

    Gender plays a role in the development of a number of cardiovascular and metabolic diseases and it has been suggested that females may be more insulin resistant in utero. We sought to assess the relationship between infant gender and insulin resistance in a large pregnancy cohort. This is a secondary analysis of a cohort from the ROLO randomized control trial of low GI diet in pregnancy. Serum insulin, glucose and leptin were measured in early pregnancy and at 28 weeks. At delivery cord blood C-peptide and leptin were measured. A comparison of maternal factors, fetal biometry, insulin resistance and leptin was made between male and female offspring. A multivariate regression model was built to account for the possible effects of maternal BMI, birthweight and original study group assignment on findings. A total of 582 women were included in this secondary analysis, of whom 304 (52.2%) gave birth to male and 278 (47.8%) gave birth to female infants. Compared to male infants at birth, female infants were significantly lighter, (3945 ± 436 vs. 4081± 549g, p<0.001), shorter in length (52.36 ± 2.3 vs. 53.05 ± 2.4cm, p<0.001) and with smaller head circumferences (35.36 ± 1.5 vs. 36.10 ± 1.1cm, p<0.001) than males. On multiple regression analysis, women pregnant with female fetuses were less insulin resistant in early pregnancy, i.e. had lower HOMA indices (B = -0.19, p = 0.01). Additionally female fetuses had higher concentrations of both cord blood leptin and C-peptide at birth when compared to male offspring (B = 0.38, p<0.001 and B = 0.31, p = 0.03 respectively). These findings suggest gender is a risk factor for insulin resistance in-utero. Additionally, carrying a female fetus decreases the risk of insulin resistance in the mother, from as early as the first trimester.

  20. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    USDA-ARS?s Scientific Manuscript database

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  3. Utilization patterns of insulin therapy and healthcare services among Japanese insulin initiators during their first year: a descriptive analysis of administrative hospital data.

    PubMed

    Ikeda, Shunya; Crawford, Bruce; Sato, Masayo

    2016-01-12

    Type 2 diabetes poses an increasing healthcare burden in Japan. Although insulin treatment has diversified in recent years, the literature on the utilization of healthcare services among patients with type 2 diabetes undergoing different insulin therapy regimens is scarce. The current study aimed to characterize the real-world insulin treatment patterns and associated utilization of healthcare services among patients with type 2 diabetes who initiated insulin therapy during the study period. We examined data from a hospital-based database consisting of administrative and laboratory data from 121 acute-phase hospitals throughout Japan from April 2008 to August 2012. Patients diagnosed with type 2 diabetes and receiving continuous insulin therapy, defined by three insulin claims or more, were included in the analysis. Of the 2,145 insulin initiators, at initiation 46.5% received rapid-acting insulin alone, 36.6% received an intensive regimen, 11.4% received long-acting insulin alone, and 5.5% received pre-mixed insulin alone. Patients treated with rapid-acting insulin alone were older, experienced more comorbid conditions, had lower HbA1c, and more often had initiated their insulin treatment at inpatient admission, compared to patients treated with other types of insulin. Inpatient admission was more common and longer for patients taking rapid-acting insulin and an intensive regimen than those taking long-acting or pre-mixed insulin, and most were readmitted within 1 year. Utilization of outpatient clinics was approximately once per month, and emergency department visits were observed to be rare. This retrospective observational descriptive study found varied treatment and healthcare service utilization patterns, as well as disparities in patient characteristics across insulin regimens. Future research should assess the basis for these various utilization patterns associated with insulin to conduct robust analyses of clinical and economic outcomes.

  4. Insulin Secretagogues

    MedlinePlus

    ... the Spikes Is mealtime insulin right for you? Insulin Secretagogues September 2017 Download PDFs English Espanol Editors ... Additional Resources Affordable Insulin Project FDA What are insulin secretagogues? Insulin secretagogues are one type of medicine ...

  5. Elevated hepatic 11β-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia

    PubMed Central

    Chapagain, Ananda; Caton, Paul W.; Kieswich, Julius; Andrikopoulos, Petros; Nayuni, Nanda; Long, Jamie H.; Harwood, Steven M.; Webster, Scott P.; Raftery, Martin J.; Thiemermann, Christoph; Walker, Brian R.; Seckl, Jonathan R.; Corder, Roger; Yaqoob, Muhammad Magdi

    2014-01-01

    Insulin resistance and associated metabolic sequelae are common in chronic kidney disease (CKD) and are positively and independently associated with increased cardiovascular mortality. However, the pathogenesis has yet to be fully elucidated. 11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyzes intracellular regeneration of active glucocorticoids, promoting insulin resistance in liver and other metabolic tissues. Using two experimental rat models of CKD (subtotal nephrectomy and adenine diet) which show early insulin resistance, we found that 11βHSD1 mRNA and protein increase in hepatic and adipose tissue, together with increased hepatic 11βHSD1 activity. This was associated with intrahepatic but not circulating glucocorticoid excess, and increased hepatic gluconeogenesis and lipogenesis. Oral administration of the 11βHSD inhibitor carbenoxolone to uremic rats for 2 wk improved glucose tolerance and insulin sensitivity, improved insulin signaling, and reduced hepatic expression of gluconeogenic and lipogenic genes. Furthermore, 11βHSD1−/− mice and rats treated with a specific 11βHSD1 inhibitor (UE2316) were protected from metabolic disturbances despite similar renal dysfunction following adenine experimental uremia. Therefore, we demonstrate that elevated hepatic 11βHSD1 is an important contributor to early insulin resistance and dyslipidemia in uremia. Specific 11βHSD1 inhibitors potentially represent a novel therapeutic approach for management of insulin resistance in patients with CKD. PMID:24569863

  6. Brownian dynamics simulations of insulin microspheres formation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chakrabarti, Amit; Gunton, James

    2010-03-01

    Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.

  7. Cytokine expression during early and late phase of acute Puumala hantavirus infection

    PubMed Central

    2011-01-01

    Background Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. Results We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus infection in 2010 during a hantavirus epidemic in Germany. Hantavirus infection was confirmed by positive anti-hantavirus IgG/IgM. Cytokine expression of IL-2, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and TGF-β1 was analysed by ELISA during the early and late phase of acute hantavirus infection (average 6 and 12 days after onset of symptoms, respectively). A detailed description of the demographic and clinical presentation of severe hantavirus infection requiring hospitalization during the 2010 hantavirus epidemic in Germany is given. Acute hantavirus infection was characterized by significantly elevated levels of IL-2, IL-6, IL-8, TGF-β1 and TNF-α in both early and late phase compared to healthy controls. From early to late phase of disease, IL-6, IL-10 and TNF-α significantly decreased whereas TGF-β1 levels increased. Disease severity characterized by elevated creatinine and low platelet counts was correlated with high pro-inflammatory IL-6 and TNF-α but low immunosuppressive TGF-β1 levels and vice versa . Conclusion High expression of cytokines activating T-lymphocytes, monocytes and macrophages in the early phase of disease supports the hypothesis of an immune-mediated pathogenesis. In the late phase of disease, immunosuppressive TGF-β1 level increase significantly. We suggest that delayed induction of a protective immune mechanism to downregulate a massive early pro-inflammatory immune response might contribute to the pathologies characteristic of human hantavirus infection

  8. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    PubMed

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Insulin in human milk and the prevention of type 1 diabetes.

    PubMed

    Shehadeh, N; Shamir, R; Berant, M; Etzioni, A

    2001-12-01

    Although controversial, exclusive breast milk feeding was shown to exert a protective effect in preventing type 1 diabetes. In contrast, an early introduction of cow's milk-based formula in young infants may enhance the risk of disease, especially in genetically susceptible children, presumably by an increase of intestinal permeability to macromolecules such as bovine serum albumin and beta-casein, which may arouse autoimmunity. We have shown that human milk contains insulin in substantial concentrations, while insulin is barely detectable (if at all) in infant formulas. Orally administered insulin was demonstrated to promote gut maturation and to reduce intestinal permeability to macromolecules. Furthermore, oral insulin may induce tolerance to insulin and protect against the development of type 1 diabetes. We herewith raise a hypothesis that human milk is protective against the development of type 1 diabetes by virtue of the effects of its substantial content of insulin.

  10. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    PubMed

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-12-01

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  11. Phase III Early Restoration Meeting - Galveston, TX | NOAA Gulf Spill

    Science.gov Websites

    Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News planning for Phase III and future early restoration plans. Open House: 6:00pm Public Meeting: 6:30pm

  12. Characteristics of the Early Immune Response Following Transplantation of Mouse ES Cell Derived Insulin-Producing Cell Clusters

    PubMed Central

    Boyd, Ashleigh S.; Wood, Kathryn J.

    2010-01-01

    Background The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Methodology/Principal Findings Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Conclusions/Significance Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT. PMID:20532031

  13. Functional insulin receptors are overexpressed in thyroid tumors: is this an early event in thyroid tumorigenesis?

    PubMed

    Frittitta, L; Sciacca, L; Catalfamo, R; Ippolito, A; Gangemi, P; Pezzino, V; Filetti, S; Vigneri, R

    1999-01-15

    Insulin receptor (IR), a member of the receptor tyrosine kinase family, is expressed in normal thyroid cells and affects thyroid cell proliferation and differentiation. The authors measured IR content in benign and malignant thyroid tumors by three independent methods: a specific radioimmunoassay, 125I-insulin binding studies, and immunohistochemistry. The results obtained were compared with the IR content in paired, adjacent, normal thyroid tissue. To assess IR function in thyroid carcinoma cells, glucose uptake responsiveness to insulin was also studied in a human transformed thyroid cell line (B-CPAP) and in follicular carcinoma cells in primary culture. In 9 toxic adenomas, the average IR content was similar to that observed in the 9 paired normal thyroid tissue specimens from the same patients (2.2+/-0.3 vs. 2.1+/-0.3). In 13 benign nonfunctioning, or "cold," adenomas, the average IR content was significantly higher (P < 0.001) than in paired normal tissue specimens (4.3+/-0.5 vs. 1.8+/-0.1). In 12 papillary and 10 follicular carcinomas, IR content was significantly higher (P < 0.001) than in the adjacent normal thyroid tissue (4.0+/-0.4 vs. 1.6+/-0.2 and 5.6+/-1.0 vs. 1.8+/-0.2, respectively). The finding of a higher IR content in benign "cold" adenomas and in thyroid carcinomas was confirmed by both binding and immunostaining studies. The current studies indicate that 1) IR content is elevated in most follicular and papillary differentiated thyroid carcinomas, and 2) IR content is also elevated in most benign follicular adenomas ("cold" nodules) but not in highly differentiated, hyperfunctioning follicular adenomas ("hot" nodules), which very rarely become malignant. This observation suggests that increased IR expression is not restricted to the thyroid malignant phenotype but is already present in the premalignant "cold" adenomas. It may contribute, therefore, to thyroid tumorigenesis and/or represent an early event that gives a selective growth advantage

  14. Early-Phase 11C-PiB PET in Amyloid Angiopathy-Related Symptomatic Cerebral Hemorrhage: Potential Diagnostic Value?

    PubMed Central

    Aigbirhio, Franklin I.; Fryer, Tim D.; Menon, David K.; Warburton, Elizabeth A.; Baron, Jean-Claude

    2015-01-01

    Although late-phase (>35min post-administration) 11C-PiB-PET has good sensitivity in cerebral amyloid angiopathy (CAA), its specificity is poor due to frequently high uptake in healthy aged subjects. By detecting perfusion-like abnormalities, early-phase 11C-PiB-PET might add diagnostic value. Early-frame (1–6min) 11C-PiB-PET was obtained in 11 non-demented patients with probable CAA-related symptomatic lobar intracerebral haemorrhage (70±7yrs), 9 age-matched healthy controls (HCs) and 10 HCs <55yrs. There was a significant decrease in early-phase atrophy-corrected whole-cortex SUV relative to cerebellar vermis (SUVR) in the CAA vs age-matched HC group. None of the age-matched controls fell below the lower 95% confidence limit derived from the young HCs, while 6/11 CAA patients did (sensitivity = 55%, specificity = 100%). Combining both early- and late-phase 11C-PiB data did not change the sensitivity and specificity of late-phase PiB, but combined early- and late-phase positivity entails a very high suspicion of underlying Aβ-related clinical disorder, i.e., CAA or Alzheimer disease (AD). In order to clarify this ambiguity, we then show that the occipital/posterior cingulate ratio is markedly lower in CAA than in AD (N = 7). These pilot data suggest that early-phase 11C-PiB-PET may not only add to late-phase PiB-PET with respect to the unclear situation of late-phase positivity, but also help differentiate CAA from AD. PMID:26439113

  15. Self-management support for insulin therapy in type 2 diabetes.

    PubMed

    Funnell, Martha M; Kruger, Davida F; Spencer, Mary

    2004-01-01

    The purpose of this article is to describe the self-management support that can be provided by diabetes educators for type 2 diabetes patients who are transitioning from therapy with oral hypoglycemic agents to insulin. The role of the diabetes educator in patient education and self-management support during all aspects of insulin therapy is discussed. Phases during which support may be especially important include the decision-making process, initiation, and maintenance. Although some patients make the decision fairly easily, the introduction of insulin therapy is likely to raise many issues and questions for many type 2 diabetes patients. The more reluctant patients may experience psychological insulin resistance, a syndrome where insulin therapy is viewed as a threat or failure, which can affect health professionals as well. The diabetes educator can provide support and approaches to help diminish this resistance and make the transition to insulin therapy easier and more effective for patients with type 2 diabetes. Education and ongoing self-management support are needed for informed decision making and the initiation and maintenance of insulin therapy. Therefore, diabetes educators have a critical role to play during both the decision-making process and the safe transition to insulin therapy.

  16. Morphology of self assembled monolayers using liquid phase reaction on silica and their effect on the morphology of adsorbed insulin

    NASA Astrophysics Data System (ADS)

    Sharma, Indu; Pattanayek, Sudip K.; Aggarwal, Varsha; Ghosh, Subhasis

    2017-05-01

    The effect of roughness of two different categories of self-assembled monolayers (SAMs) with propyl amine and propyl groups respectively on the morphology of adsorbed insulin is observed. SAMs are obtained by liquid phase reaction of silica with organo silane coupling agents (SCA). The influence of the morphology and physical characteristics of the SAMs on the reaction time and concentration of the modifiers are explored. We have tested three SCA containing propyl amine with varying groups linked to Si present on it. In addition, we have used a silane coupling agent to prepare SAM of methyl head group. The approach of these molecules towards the surface depends on the head group and the groups linked to Si of the SCA. The morphology of the surfaces is analysed using power spectral density distribution (PSD), skewness, ellipsometry thickness and surface energy. Both chemical nature and physical morphology of the adsorbent influence the morphology of the adsorbed insulin. In general, a low number of aggregates of big size are formed on the surfaces obtained from low concentration of SAMs, while a higher number but of smaller size of aggregates are formed over surfaces obtained from 1% concentration of SAMs modifiers. The peak to valley ratio of the aggregates of insulin is strongly influenced by the size of grains of SCA over the adsorbent.

  17. Early Risk Reduction Phase 1 FLIR/Laser Designator Window. Revision

    DTIC Science & Technology

    1991-12-31

    Sandwich-Type FLIR Windows," Air Force AFWAL-TR-83- 4122, Nov 1983. 4-1 Hughes Danbury Optical Systems Final Report, "ATA Window Technology Program," PRBll...Risk Reduction -- Phase I, Optical Properties Measurement Techniques of Three Wide Band Window Materials," 22 August 1991. xii I i 86PR0869 30... Optical Systems, Lexington, MA, 02173, 1 Feb 1991. 5-7 McDonnell Aircraft Company Technical Memorandum TM 256.91.0056.01, "Early Risk Reduction -- Phase

  18. Interaction between IGFBP7 and insulin: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ruan, Wenjing; Kang, Zhengzhong; Li, Youzhao; Sun, Tianyang; Wang, Lipei; Liang, Lijun; Lai, Maode; Wu, Tao

    2016-04-01

    Insulin-like growth factor binding protein 7 (IGFBP7) can bind to insulin with high affinity which inhibits the early steps of insulin action. Lack of recognition mechanism impairs our understanding of insulin regulation before it binds to insulin receptor. Here we combine computational simulations with experimental methods to investigate the interaction between IGFBP7 and insulin. Molecular dynamics simulations indicated that His200 and Arg198 in IGFBP7 were key residues. Verified by experimental data, the interaction remained strong in single mutation systems R198E and H200F but became weak in double mutation system R198E-H200F relative to that in wild-type IGFBP7. The results and methods in present study could be adopted in future research of discovery of drugs by disrupting protein-protein interactions in insulin signaling. Nevertheless, the accuracy, reproducibility, and costs of free-energy calculation are still problems that need to be addressed before computational methods can become standard binding prediction tools in discovery pipelines.

  19. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    PubMed

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P < .05), A1C (5.8 ± 0.3 vs. 5.6% ± 0.4%, P < .05), AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P < .05), and total insulin secretion (0.45 ± 0.23 vs. 0.35 ± 0.18, P < .05), with a significant increase in high-density lipoprotein cholesterol (HDL-C) (1.3 ± 0.3 vs. 1.4 ± 0.3 mmol/L, P < .05). There were no significant differences after placebo administration. A. dracunculus administration for 90 days in patients with IGT significantly decreased SBP, A1C, AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.

  20. Acute cellular insulin resistance and hyperglycemia associated with hypophosphatemia after cardiac surgery.

    PubMed

    Garazi, Esther; Bridge, Suzanne; Caffarelli, Anthony; Ruoss, Stephen; Van der Starre, Pieter

    2015-01-15

    Successful glycemic control reduces morbidity and mortality in cardiac surgery patients. Protocols that include insulin infusions are commonly followed to achieve target blood glucose levels. Insulin resistance has been reported and linked to low serum phosphate levels in animal models and studies in diabetic outpatients, but not in postoperative patients. The following case series is a retrospective observational review of 8 cardiac surgery patients who developed insulin resistance early after surgery; this resistance was reversed by correcting serum hypophosphatemia. We discuss the multiple underlying mechanisms causing hypophosphatemia.

  1. The incidence of metabolic syndrome in obese Czech children: the importance of early detection of insulin resistance using homeostatic indexes HOMA-IR and QUICKI.

    PubMed

    Pastucha, D; Filipčíková, R; Horáková, D; Radová, L; Marinov, Z; Malinčíková, J; Kocvrlich, M; Horák, S; Bezdičková, M; Dobiáš, M

    2013-01-01

    Common alimentary obesity frequently occurs on a polygenic basis as a typical lifestyle disorder in the developed countries. It is associated with characteristic complex metabolic changes, which are the cornerstones for future metabolic syndrome development. The aims of our study were 1) to determine the incidence of metabolic syndrome (based on the diagnostic criteria defined by the International Diabetes Federation for children and adolescents) in Czech obese children, 2) to evaluate the incidence of insulin resistance according to HOMA-IR and QUICKI homeostatic indexes in obese children with and without metabolic syndrome, and 3) to consider the diagnostic value of these indexes for the early detection of metabolic syndrome in obese children. We therefore performed anthropometric and laboratory examinations to determine the incidence of metabolic syndrome and insulin resistance in the group of 274 children with obesity (128 boys and 146 girls) aged 9-17 years. Metabolic syndrome was found in 102 subjects (37 %). On the other hand, the presence of insulin resistance according to QUICKI <0.357 was identified in 86 % and according to HOMA-IR >3.16 in 53 % of obese subjects. This HOMA-IR limit was exceeded by 70 % children in the MS(+) group, but only by 43 % children in the MS(-) group (p<0.0001). However, a relatively high incidence of insulin resistance in obese children without metabolic syndrome raises a question whether the existing diagnostic criteria do not falsely exclude some cases of metabolic syndrome. On the basis of our results we suggest to pay a preventive attention also to obese children with insulin resistance even if they do not fulfill the actual diagnostic criteria for metabolic syndrome.

  2. Characteristics of repaglinide effects on insulin secretion.

    PubMed

    Takahashi, Harumi; Hidaka, Shihomi; Seki, Chihiro; Yokoi, Norihide; Seino, Susumu

    2018-06-05

    The dynamics of insulin secretion stimulated by repaglinide, a glinide, and the combinatorial effects of repaglinide and incretin were investigated. At 4.4 mM glucose, repaglinide induced insulin secretion with a gradually increasing first phase, showing different dynamics from that induced by glimepiride, a sulfonylurea. In the presence of glucagon-like peptide-1 (GLP-1), insulin secretion by repaglinide was augmented significantly but to lesser extent and showed different dynamics from that by glimepiride. At 4.4 mM glucose, the intracellular Ca 2+ level was gradually increased by repaglinide alone or repaglinide plus GLP-1, which differs from the Ca 2+ dynamics by glimepiride alone or glimepiride plus GLP-1, suggesting that the difference in Ca 2+ dynamics contributes to the difference in the dynamics of insulin secretion. At a higher concentration (8.8 mM) of glucose, the dynamics of insulin secretion stimulated by repaglinide was similar to that by glimepiride. Combination of repaglinide and GLP-1 significantly augmented insulin secretion, the amount of which was comparable to that by the combination of glimepiride and GLP-1. The Ca 2+ dynamics was similar for repaglinide and glimepiride at 8.8 mM glucose. Our data indicate that repaglinide has characteristic properties in its effects on the dynamics of insulin secretion and intracellular Ca 2+ and that the combination of repaglinide and GLP-1 stimulates insulin secretion more effectively than the combination of glimepiride and GLP-1 at a high concentration of glucose, providing a basis for its use in clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    PubMed Central

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P < 0.001). BMI remained unchanged in both treatment groups (P = 0.89). CONCLUSIONS Twenty-six weeks of valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of

  4. Role of nutrition in preventing insulin resistance in children.

    PubMed

    Blasetti, Annalisa; Franchini, Simone; Comegna, Laura; Prezioso, Giovanni; Chiarelli, Francesco

    2016-03-01

    Nutrition during prenatal, early postnatal and pubertal period is crucial for the development of insulin resistance and its consequences. During prenatal period fetal environment and nutrition seems to interfere with metabolism programming later in life. The type of dietary carbohydrates, glycemic index, protein, fat and micronutrient content in maternal nutrition could influence insulin sensitivity in the newborn. The effects of lactation on metabolism and nutritional behavior later in life have been studied. Dietary habits and quality of diet during puberty could prevent the onset of a pathological insulin resistance through an adequate distribution of macro- and micronutrients, a diet rich in fibers and vegetables and poor in saturated fats, proteins and sugars. We want to overview the latest evidences on the risk of insulin resistance later in life due to both nutritional behaviors and components during the aforementioned periods of life, following a chronological outline from fetal development to adolescence.

  5. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation.

    PubMed

    Mayer, Christopher M; Belsham, Denise D

    2010-01-01

    Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.

  6. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial.

    PubMed

    Zhao, Yong; Jiang, Zhaoshun; Zhao, Tingbao; Ye, Mingliang; Hu, Chengjin; Zhou, Huimin; Yin, Zhaohui; Chen, Yana; Zhang, Ye; Wang, Shanfeng; Shen, Jie; Thaker, Hatim; Jain, Summit; Li, Yunxiang; Diao, Yalin; Chen, Yingjian; Sun, Xiaoming; Fisk, Mary Beth; Li, Heng

    2013-07-09

    The prevalence of type 2 diabetes (T2D) is increasing worldwide and creating a significant burden on health systems, highlighting the need for the development of innovative therapeutic approaches to overcome immune dysfunction, which is likely a key factor in the development of insulin resistance in T2D. It suggests that immune modulation may be a useful tool in treating the disease. In an open-label, phase 1/phase 2 study, patients (N=36) with long-standing T2D were divided into three groups (Group A, oral medications, n=18; Group B, oral medications+insulin injections, n=11; Group C having impaired β-cell function with oral medications+insulin injections, n=7). All patients received one treatment with the Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, briefly co-cultures them with adherent cord blood-derived multipotent stem cells (CB-SCs), and returns the educated autologous cells to the patient's circulation. Clinical findings indicate that T2D patients achieve improved metabolic control and reduced inflammation markers after receiving Stem Cell Educator therapy. Median glycated hemoglobin (HbA1C) in Group A and B was significantly reduced from 8.61%±1.12 at baseline to 7.25%±0.58 at 12 weeks (P=2.62E-06), and 7.33%±1.02 at one year post-treatment (P=0.0002). Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) demonstrated that insulin sensitivity was improved post-treatment. Notably, the islet beta-cell function in Group C subjects was markedly recovered, as demonstrated by the restoration of C-peptide levels. Mechanistic studies revealed that Stem Cell Educator therapy reverses immune dysfunctions through immune modulation on monocytes and balancing Th1/Th2/Th3 cytokine production. Clinical data from the current phase 1/phase 2 study demonstrate that Stem Cell Educator therapy is a safe approach that produces lasting improvement in

  7. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial

    PubMed Central

    2013-01-01

    Background The prevalence of type 2 diabetes (T2D) is increasing worldwide and creating a significant burden on health systems, highlighting the need for the development of innovative therapeutic approaches to overcome immune dysfunction, which is likely a key factor in the development of insulin resistance in T2D. It suggests that immune modulation may be a useful tool in treating the disease. Methods In an open-label, phase 1/phase 2 study, patients (N = 36) with long-standing T2D were divided into three groups (Group A, oral medications, n = 18; Group B, oral medications + insulin injections, n = 11; Group C having impaired β-cell function with oral medications + insulin injections, n = 7). All patients received one treatment with the Stem Cell Educator therapy in which a patient’s blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, briefly co-cultures them with adherent cord blood-derived multipotent stem cells (CB-SCs), and returns the educated autologous cells to the patient’s circulation. Results Clinical findings indicate that T2D patients achieve improved metabolic control and reduced inflammation markers after receiving Stem Cell Educator therapy. Median glycated hemoglobin (HbA1C) in Group A and B was significantly reduced from 8.61% ± 1.12 at baseline to 7.25% ± 0.58 at 12 weeks (P = 2.62E-06), and 7.33% ± 1.02 at one year post-treatment (P = 0.0002). Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) demonstrated that insulin sensitivity was improved post-treatment. Notably, the islet beta-cell function in Group C subjects was markedly recovered, as demonstrated by the restoration of C-peptide levels. Mechanistic studies revealed that Stem Cell Educator therapy reverses immune dysfunctions through immune modulation on monocytes and balancing Th1/Th2/Th3 cytokine production. Conclusions Clinical data from the current phase 1/phase 2 study demonstrate that Stem Cell Educator

  8. Plasma Insulin Levels and Hypoglycemia Affect Subcutaneous Interstitial Glucose Concentration.

    PubMed

    Moscardó, Vanessa; Bondia, Jorge; Ampudia-Blasco, Francisco J; Fanelli, Carmine G; Lucidi, Paola; Rossetti, Paolo

    2018-04-01

    Continuous glucose monitoring (CGM) accuracy during hypoglycemia is suboptimal. This might be partly explained by insulin or hypoglycemia-induced changes in the plasma interstitial subcutaneous (SC) fluid glucose gradient. The aim of the present study was to assess the role of plasma insulin (PI) and hypoglycemia itself in the plasma and interstitial SC fluid glucose concentration in patients with type 1 diabetes mellitus. Eleven subjects with type 1 diabetes (age 36.5 ± 9.1 years, HbA 1c 7.9 ± 0.4% [62.8 ± 2.02 mmol/mol]; mean ± standard deviation) were evaluated under hyperinsulinemic euglycemia and hypoglycemia. Each subject underwent two randomized crossover clamps with either a primed 0.3 (low insulin) or 1 mU/(kg·min) (high insulin) insulin infusion. The raw CGM signal was normalized with median preclamp values to obtain a standardized measure of the interstitial glucose (IG) concentration before statistical analysis. The mean PI concentration was greater in high insulin studies (HISs) versus low insulin studies (LISs) (412.89 ± 13.63 vs. 177.22 ± 10.05 pmol/L). During hypoglycemia, glucagon, adrenaline, free fatty acids, glycerol, and beta-OH-butyrate were higher in the LIS (P < 0.0001). Likewise, the IG concentration was significantly different (P < 0.0001). This was due to lower IG concentration than plasma glucose (PG) concentration during the euglycemic hyperinsulinemic phases in the HIS. In contrast, no difference was observed during hypoglycemia. This was the result of an unchanged PG/IG gradient during the entire LIS, while in the HIS, this gradient increased during the hyperinsulinemic euglycemia phase. Both PI levels and hypoglycemia affect the relationship between IG and PG concentration. ClinicalTrials.gov Identifier: NCT01714895.

  9. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    PubMed Central

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  10. The early origins of obesity and insulin resistance: timing, programming and mechanisms.

    PubMed

    Nicholas, L M; Morrison, J L; Rattanatray, L; Zhang, S; Ozanne, S E; McMillen, I C

    2016-02-01

    Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.

  11. Emergent Triglyceride-lowering Therapy With Early High-volume Hemofiltration Against Low-Molecular-Weight Heparin Combined With Insulin in Hypertriglyceridemic Pancreatitis: A Prospective Randomized Controlled Trial.

    PubMed

    He, Wen-Hua; Yu, Min; Zhu, Yin; Xia, Liang; Liu, Pi; Zeng, Hao; Zhu, Yong; Lv, Nong-Hua

    2016-10-01

    To compare the value of emergent triglyceride (TG)-lowering therapies between early high-volume hemofiltration (HVHF) and low-molecular-weight heparin (LMWH) combined with insulin (LMWH+insulin) as well as their effects on the outcomes of hypertriglyceridemic pancreatitis (HTGP) patients. In this randomized controlled trial, 66 HTGP patients presenting within 3 days after the onset of symptoms from August 2011 to October 2013 were assigned randomly to receive either HVHF or LMWH+insulin as an emergent TG-lowering therapy. Thirty-three patients were included in each group, and the therapy was started as soon as possible after admission. TG levels, clinical outcomes, and inflammatory biomarkers were compared between the 2 groups. Thirty-two individuals in the HVHF group and 34 in the LMWH+insulin group were included in the final analysis. Characteristics of the patients in both groups were roughly comparable. HVHF could remove TG from the plasma and achieve its target (<500 mg/dL) in approximately 9 hours, whereas the target was not achieved within 48 hours in patients receiving the LMWH+insulin treatment (P<0.05). However, no differences were found in terms of the majority of the clinical outcomes, including local pancreatic complications (P>0.05), the requirement of surgical intervention (P=0.49), mortality (P=0.49), and the duration of hospitalization (P=0.144). Furthermore, an unexpectedly higher incidence of persistent organ failure was observed in the HVHF group compared with the LMWH+insulin group (risk ratio with HVHF, 2.42; 95% confidence interval, 1.15-5.11; P=0.01). Hospital charges for patients in the HVHF group were approximately 2-fold higher than those for patients in the LMWH+insulin group (5.20±4.90 vs. 2.92±3.21, P=0.03). We selected a systemic inflammatory response syndrome score of at least 2 at baseline as a predictor of SAP patients, and the subgroup analyses showed that HVHF cannot improve the prognosis of the predicted SAP patients compared

  12. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls.

    PubMed

    Legro, Richard S; Castracane, V Daniel; Kauffman, Robert P

    2004-02-01

    Approximately 50% to 70% of all women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and this hormone insensitivity probably contributes to the hyperandrogenism that is responsible for the signs and symptoms of PCOS. Although uncertainty exists, early detection and treatment of insulin resistance in this population could ultimately reduce the incidence or severity of diabetes mellitus, dyslipidemia, hypertension, and cardiovascular disease. Even if that proves to be the case, there are still several problems with our current approach to insulin sensitivity assessment in PCOS, including the apparent lack of consensus on what defines PCOS and "normal" insulin sensitivity, ethnic and genetic variability, the presence of other factors contributing to insulin resistance such as obesity, stress, and aging, and concern about whether simplified models of insulin sensitivity have the precision to predict treatment needs, responses, and future morbidity. Although the hyperinsulinemic-euglycemic clamp technique is the gold standard for measuring insulin sensitivity, it is too expensive, time-consuming, and labor-intensive to be of practical use in an office setting. Homeostatic measurements (fasting glucose/insulin ratio or homeostatic model assessment [HOMA] value) and minimal model tests (particularly the oral glucose tolerance test [OGTT]) represent the easiest office-based assessments of insulin resistance in the PCOS patient. The OGTT is probably the best simple, office-based method to assess women with PCOS because it provides information about both insulin resistance and glucose intolerance. The diagnosis of glucose intolerance holds greater prognostic and treatment implications. All obese women with PCOS should be screened for the presence of insulin resistance by looking for other stigmata of the insulin resistance syndrome such as hypertension, dyslipidemia, central obesity, and glucose intolerance.

  13. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-12-1-0138 TITLE: Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT PRINCIPAL INVESTIGATOR...NUMBER W81XWH-12-1-0138 Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...method for early detection of amyloid plaque in Alzheimer’s disease , with three Specific Aims: #1 Develop and optimize an x-ray PCCT to explore the

  14. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status.

    PubMed

    Zhou, Meicen; Zhu, Lixin; Cui, Xiangli; Feng, Linbo; Zhao, Xuefeng; He, Shuli; Ping, Fan; Li, Wei; Li, Yuxiu

    2016-06-07

    Triglyceride/high-density lipoprotein-cholesterol (TG/HDL-C) ratio was a surrogate marker of IR; however, the relationship of TG/HDL-C with IR might vary by ethnicity. This study aims to investigate whether lipid ratios-TG/HDL-C, cholesterol/high-density lipoprotein-cholesterol (TC/HDL-C) ratio, low-density lipoprotein-cholesterol/high-density lipoprotein-cholesterol (LDL-C/HDL-C)) could be potential clinical markers of insulin resistance (IR) and β cell function and further to explore the optimal cut-offs in a Chinese population with different levels of glucose tolerance. Four hundred seventy-nine subjects without a history of diabetes underwent a 75 g 2 h Oral Glucose Tolerance Test (OGTT). New-onset diabetes (n = 101), pre-diabetes (n = 186), and normal glucose tolerance (n = 192) were screened. IR was defined by HOMA-IR > 2.69. Based on indices (HOMA-β, early-phase disposition index [DI30], (ΔIns30/ΔGlu30)/HOMA-IR and total-phase index [DI120]) that indicated different phases of insulin secretion, the subjects were divided into two groups, and the lower group was defined as having inadequate β cell compensation. Logistic regression models and accurate estimates of the areas under receiver operating characteristic curves (AUROC) were obtained. In all of the subjects, TG/HDL, TC/HDL-C, LDL-C/HDL-C, and TG were significantly associated with IR. The AUROCs of TG/HDL-C and TG were 0.71 (95 % CI: 0.66-0.75) and 0.71 (95 % CI: 0.65-0.75), respectively. The optimal cut-offs of TG/HDL-C and TG for IR diagnosis were 1.11 and 1.33 mmol/L, respectively. The AUROCs of TC/HDL-C and LDL-C/HDL-C were 0.66 and 0.65, respectively, but they were not acceptable for IR diagnosis. TG/HDL-C,LDL-C/HDL-C and TG were significantly associated with HOMA-β, but AUROCs were less than 0.50; therefore, the lipid ratios could not be predictors of basal β cell dysfunction. None of the lipid ratios was associated with early-phase insulin secretion. Only TG/HDL-C and

  15. The co-formulation of insulin degludec and insulin aspart lowers fasting plasma glucose and rates of confirmed and nocturnal hypoglycaemia, independent of baseline glycated haemoglobin levels, disease duration or body mass index: A pooled meta-analysis of phase III studies in patients with type 2 diabetes.

    PubMed

    Haluzík, Martin; Fulcher, Greg; Pieber, Thomas R; Bardtrum, Lars; Tutkunkardas, Deniz; Rodbard, Helena W

    2018-02-16

    To investigate whether the proven benefits of insulin degludec (IDeg) combined with insulin aspart (IAsp), known as IDegAsp, given twice daily, extend across a wide spectrum of patients with diabetes. This was a post hoc pooled analysis of 5 phase III randomized, 26-week, open-label, treat-to-target trials comparing IDegAsp twice daily (n = 1111) with one of two comparators: premixed insulin (biphasic insulin aspart 30 [BIAsp 30]) twice daily (n = 561) or IDeg once daily + IAsp (n = 136). Patient data were stratified according to baseline glycated haemoglobin (HbA1c) or fasting plasma glucose (FPG) categories, as well as by baseline duration of diabetes or body mass index (BMI) categories. We conducted a meta-analysis of 5 clinical trials: NCT01513590, NCT01009580, NCT01059812, NCT01680341 and NCT01713530. End-of-trial results were broadly consistent, with differences between IDegAsp and comparators observed in phase III trials. HbA1c results were similar for IDegAsp and the comparators in all baseline characteristic (HbA1c, duration of diabetes or BMI) and category groups (number ranges). Significantly lower FPG level was observed with IDegAsp vs comparators in all baseline characteristic and most category groups (excluding FPG <5.5 mmol/L). Significantly lower insulin doses were observed with IDegAsp vs comparators in all baseline characteristic and half of the category groups, and significantly lower rates of confirmed and nocturnal confirmed hypoglycaemia were observed with IDegAsp vs comparators in all baseline variable and category groups. IDegAsp retains a consistent safety and efficacy profile in patients with different baseline characteristics. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  16. Effect of Early Expressed Human Milk on Insulin-Like Growth Factor 1 and Short-Term Outcomes in Preterm Infants.

    PubMed

    Serrao, Francesca; Papacci, Patrizia; Costa, Simonetta; Giannantonio, Carmen; Cota, Francesco; Vento, Giovanni; Romagnoli, Costantino

    2016-01-01

    Preterm breast milk contains high levels of bioactive components, including insulin-like growth factor 1 (IGF-1), that are reduced by Holder pasteurization. Animal studies have shown that milk-borne IGF-1 is likely absorbed intact in a bioactive form by the intestines. The aim of this study was to assess if early non-pasteurized expressed breast milk nutrition may affect IGF-1 plasma levels in premature infants. We also investigated the possible association between early expressed milk nutrition and short-term outcomes. Fifty-two preterm infants with gestational age < 31 weeks were divided into two groups according to expressed breast milk intake (< or ≥ 50 mL/Kg/day) until 32 weeks of postmenstrual age when blood sampling for IGF-1 analysis was performed. In our population, early expressed breast milk does not affect IGF-1 plasma levels (p 0.48). An association was observed between early expressed milk nutrition and a lower incidence of bronchopulmonary dysplasia, sepsis, feeding intolerance, need for parenteral nutrition and length of hospitalization. Contrary to the results in some animal studies, our results did not seem to show that early expressed breast milk can help to maintain postnatal IGF-1 near foetal levels in preterm infants. The observed protective effect of expressed breast milk on short-term outcomes can be the starting point for further study of the effects of non-pasteurized human milk in preterm infants.

  17. A cost-controlling treatment strategy of adding liraglutide to insulin in type 2 diabetes.

    PubMed

    de Wit, H M; Vervoort, G M M; de Galan, B E; Tack, C J

    2017-09-01

    Addition of the GLP-1 receptor agonist liraglutide to insulin can reverse insulin-associated weight gain, improve HbA1c and decrease the need for insulin, but is expensive. From a cost perspective, such treatment should be discontinued when it is clear that treatment targets will not be achieved. Our aim was to find the best cost-controlling treatment strategy: the shortest possible trial period needed to discriminate successfully treated patients from those failing to achieve predefined targets of treatment success. We used data from the 'Effect of Liraglutide on insulin-associated wEight GAiN in patients with Type 2 diabetes' (ELEGANT) trial, comparing additional liraglutide (n = 47) and standard insulin therapy (n = 24) during 26 weeks, to calculate the costs associated with different trial periods. Treatment success after 26 weeks was defined by having achieved ≥ 2 of the following: ≥ 4% weight loss, HbA1c ≤ 53 mmol/mol (7%), and/or discontinuation of insulin. The additional direct costs of adding liraglutide for 26 weeks were € 699 per patient, or € 137 per 1 kg weight loss, compared with standard therapy. The best cost-controlling treatment strategy (identifying 21 of 23 responders, treating four non-responders) was to continue treatment in patients showing ≥ 3% weight loss or ≥ 60% decrease in insulin dose at 8 weeks, with a total cost of € 246 for this t rial period, saving € 453 in case of early discontinuation. An 8-week trial period of adding liraglutide to insulin in patients with insulin-associated weight gain is an effective cost-controlling treatment strategy if the liraglutide is discontinued in patients not showing an early response regarding weight loss or insulin reduction.

  18. Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin.

    PubMed

    Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A; Eitel, Simon H; Meier, Thomas; Schoenleber, Ralph O; Kent, Stephen B H

    2017-01-31

    We have systematically explored three approaches based on 9-fluorenylmethoxycarbonyl (Fmoc) chemistry solid phase peptide synthesis (SPPS) for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the "hybrid method", in which maximally protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[O-β-(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High-resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies could yield an efficient total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lispro insulin in people with non-alcoholic liver cirrhosis and type 2 diabetes mellitus.

    PubMed

    Gentile, S; Guarino, G; Strollo, F; Romano, M; Genovese, S; Masarone, M; Ceriello, A

    2016-03-01

    To compare metabolic control under lispro and recombinant regular human insulin (RHI) in people with diet-unresponsive type 2 diabetes mellitus (T2DM) and compensated non-alcoholic liver disease (CLD). 108 people with T2DM and CLD were randomly allocated to RHI or lispro according to a 12+12 week cross-over protocol. A 1-week continuous glucose monitoring (CGM) session was performed at the end of each treatment period followed by a standard meal test with a 12IU lispro or RHI shot ahead. CGM showed higher glycemic excursions under RHI than under lispro (p<0.01) with lower glucose levels in the late post-absorption phase (p<0.05) and even more during the night (p<0.01). Post-challenge incremental areas under the curve (ΔAUC) were undistinguishable for insulin but lower for glucose, while insulin peaked higher and earlier and glycemic excursions were lower with lispro than with RHI (0.05early postprandial glucose levels and late postprandial hypoglycemic rates and therefore might represent the treatment of choice for people with T2DM and compensated CLD. This might depend on its faster/shorter-living effects, as well as, on the lower liver glucose output expected from its earlier hepatic distribution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Biosimilar insulins.

    PubMed

    Heinemann, Lutz

    2012-08-01

    Until now most insulin used in developed countries is manufactured and distributed by a small number of multinational companies. Other pharmaceutical companies - many of these are located in countries such as India or China - are also able to manufacture insulin with modern biotechnological methods. Additionally, the patents for many insulin formulations have expired or are going to expire soon. This enables such companies to produce insulins and to apply for market approval of these as biosimilar insulins (BIs) in highly regulated markets such as the EU or the US. To understand the complexity of BIs' approval and usage, scientific and regulatory aspects have to be discussed. Differences in the manufacturing process (none of the insulin-manufacturing procedures are identical) result in the fact that all insulin that might become BIs differ from the originator insulin to some extent. The question is, have such differences in the structure of the insulin molecule and or the purity and so on clinically relevant consequences for the biological effects induced or not. The guidelines already in place in the EU for market approval require that the manufacturer demonstrates that his insulin has a safety and efficacy profile that is similar to that of the 'original' insulin formulation. Recently guidelines for biosimilars were issued in the US; however, these do not cover insulin. Although a challenging approval process for insulins to become BI might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant, and do warrant a careful and evidence-driven approval process. Nevertheless, it is very likely that in the next years, BIs will come to the market also in highly regulated markets.

  1. Expectations about insulin therapy, perceived insulin-delivery system social acceptability, and insulin treatment satisfaction contribute to decreases in insulin therapy self-efficacy in patients with type 2 diabetes after 36 weeks insulin therapy.

    PubMed

    Hayes, Risa P; Curtis, Bradley; Ilag, Liza; Nelson, David R; Wong, Mayme; Funnell, Martha

    2013-09-01

    Self-efficacy plays a critical role in diabetes self-care. Herein we explore factors contributing to decreased insulin therapy self-efficacy in insulin-naïve patients with type 2 diabetes mellitus (T2DM) initiating and managing insulin therapy over 36 weeks. The study was conducted within an international, randomized clinical trial comparing two insulin therapies administered by insulin pen in patients with T2DM inadequately controlled with oral antihyperglycemic medications. Patients completed the Self-Efficacy about Insulin Therapy Questionnaire (SEITQ) at baseline and endpoint. Patients also completed patient-reported measures assessing expectations about insulin therapy at baseline and perceptions about insulin therapy and insulin-delivery system (IDS) satisfaction at endpoint. Baseline and endpoint SEITQ scores were compared. Using prespecified criteria, patients were classified as having "decreased" or "no change/improved" insulin self-efficacy. Demographic, clinical, and patient-reported variables were entered into a logistic regression model with decreased insulin self-efficacy (yes or no) as the dependent variable. Baseline and endpoint SEITQ data were available for 450 insulin-naïve T2DM patients (mean age 59 years; 53% female; 57% Caucasian; mean baseline HbA1c 9.4%; 80.0 mmol/mol). Insulin therapy self-efficacy improved from baseline to endpoint (74.0 vs 77.5; P<0.001). Logistic regression analysis indicated that lower IDS satisfaction (P<0.0001), lower IDS social acceptability (P=0.004), and more positive expectations of insulin therapy (P<0.0001) were associated with decreased insulin self-efficacy. A candid discussion between clinicians and their insulin-naïve T2DM patients about the benefits and challenges of insulin therapy may prevent unrealistic expectations that could potentially undermine insulin self-efficacy. © 2013 Wiley Publishing Asia Pty Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  2. Failure to increase insulin secretory capacity during pregnancy-induced insulin resistance is associated with ethnicity and gestational diabetes.

    PubMed

    Mørkrid, Kjersti; Jenum, Anne K; Sletner, Line; Vårdal, Mari H; Waage, Christin W; Nakstad, Britt; Vangen, Siri; Birkeland, Kåre I

    2012-10-01

    To assess changes in insulin resistance and β-cell function in a multiethnic cohort of women in Oslo, Norway, from early to 28 weeks' gestation and 3 months post partum and relate the findings to gestational diabetes mellitus (GDM). Population-based cohort study of 695 healthy pregnant women from Western Europe (41%), South Asia (25%), Middle East (15%), East Asia (6%) and elsewhere (13%). Blood samples and demographics were recorded at mean 15 (V1) and 28 (V2) weeks' gestation and 3 months post partum (V3). Universal screening was by 75 g oral glucose tolerance test at V2, GDM with modified IADPSG criteria (no 1-h measurement): fasting plasma glucose (PG) ≥5.1 or 2-h PG ≥8.5 mmol/l. Homeostatic model assessment (HOMA)-β (β-cell function) and HOMA-IR (insulin resistance) were calculated from fasting glucose and C-peptide. Characteristics were comparable across ethnic groups, except age (South Asians: younger, P<0.001) and prepregnant BMI (East Asians: lower, P=0.040). East and South Asians were more insulin resistant than Western Europeans at V1. From V1 to V2, the increase in insulin resistance was similar across the ethnic groups, but the increase in β-cell function was significantly lower for the East and South Asians compared with Western Europeans. GDM women compared with non-GDM women were more insulin resistant at V1; from V1 to V2, their β-cell function increased significantly less and the percentage increase in β-cell function did not match the change in insulin resistance. Pregnant women from East Asia and South Asia were more insulin resistant and showed poorer HOMA-β-cell function than Western Europeans.

  3. Insulin Glargine 300 U/mL: A Review in Diabetes Mellitus.

    PubMed

    Blair, Hannah A; Keating, Gillian M

    2016-03-01

    Insulin glargine 300 U/mL (Toujeo(®)) is a long-acting basal insulin analogue approved for the treatment of diabetes mellitus. Insulin glargine 300 U/mL has a more stable and prolonged pharmacokinetic/pharmacodynamic profile than insulin glargine 100 U/mL (Lantus(®)), with a duration of glucose-lowering activity exceeding 24 h. In several 6-month phase III trials, insulin glargine 300 U/mL achieved comparable glycaemic control to that seen with insulin glargine 100 U/mL in patients with type 1 or type 2 diabetes, albeit with consistently higher daily basal insulin requirements. These improvements in glycaemic control were maintained during longer-term (12 months) treatment. Insulin glargine 300 U/mL was generally associated with a lower risk of nocturnal hypoglycaemia than insulin glargine 100 U/mL in insulin-experienced patients with type 2 diabetes, while the risk of nocturnal hypoglycaemia did not significantly differ between treatment groups in insulin-naïve patients with type 2 diabetes or in patients with type 1 diabetes. To conclude, once-daily subcutaneous insulin glargine 300 U/mL is an effective and generally well tolerated basal insulin therapy option for patients with type 1 or type 2 diabetes.

  4. Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.

    2018-02-01

    Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.

  5. Age- and sex-specific reference values for fasting serum insulin levels and insulin resistance/sensitivity indices in healthy Iranian adults: Tehran Lipid and Glucose Study.

    PubMed

    Tohidi, Maryam; Ghasemi, Asghar; Hadaegh, Farzad; Derakhshan, Arash; Chary, Abdolreza; Azizi, Fereidoun

    2014-04-01

    Increased insulin concentration is a surrogate for insulin resistance and early assessment of fasting insulin may help in identifying those who are potentially at high risk of type 2 diabetes, hypertension, and cardiovascular disease. The aim of this study was to determine age- and sex-related reference values for serum insulin and insulin resistance/sensitivity indices in Iranian subjects. Serum insulin levels were measured by electrochemiluminescence immunoassay in 5786 participants of the Tehran Lipid and Glucose Study. After application of exclusion criteria, 309 non-obese healthy subjects (124 men and 185 women), aged 24-83 y, were included. The International Federation of Clinical Chemistry guidelines (non-parametric method) and the robust method were used for determining reference values. Overall 95% reference values for fasting insulin were 1.61-11.37, 2.34-11.98, and 2.11-12.49 μU/mL in men, women, and total population respectively. Mean fasting insulin concentration showed a decreasing trend with age in both genders (p for trend ≤0.001). Age, waist circumference, and systolic blood pressures were biological determinants of fasting insulin in both genders; in addition, insulin was modulated by triglycerides in men and fasting glucose in women. Reference intervals for HOMA1-IR, HOMA2-IR, and QUICKI were 0.63-2.68, 0.40-1.80, and 0.33-0.42, respectively. This study presents the first set of reference values for fasting serum insulin to be 2-12 μU/mL for both genders in a healthy sample of Iranian adults along with the reference values for insulin resistance/sensitivity indices. These values could be used for identifying subjects with insulin resistance in epidemiological and clinical research. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    even too short (see postprandial glycaemic excursions with test meals in the publication by Rosenstock et al. in The Lancet (1)). In the end a number of aspects are of relevance for the success of a given product; one key aspect is clearly the price. However, for patients also practical aspects (handling, need for regular pulmonary function test etc.) are of importance. We shall have to see how creatively MannKind will handle all such questions. Until now Al Mann and his colleagues were able to manage a number of challenges during the clinical development process successfully, so one can have hopes for the market success of TI. However, it is clear that at the same time, if TI fails like Exubera did before, this will be the end for pulmonary insulin in general. Not too many original publications presenting data from clinical trials were published in the last year when it comes to oral insulin (OI), nasal insulin or transdermal insulin developments; simply none with transdermal insulin. Also at the last international congresses not many studies about ARIA were presented. At least in part this might be still a reflection of the shockwaves that the failure of Exubera has sent out to pharmaceutical companies and venture capitalists; they are quite reluctant to invest in any of these developments. However, a considerable number of reviews (in some cases more than original papers!) were published about ARIA. These reviews are listed for completeness, but in most cases are not further commented. OI is still the area of research most companies are active in; however, in some cases it is not clear how active they really are (e.g. Diabetology). Nevertheless, at least some companies are quite active and progressed in their clinical development programme close to market approval, e.g. the large Indian company Biocon is in late phase 3 with IN-105 and the small Israel-based company Oramed is in phase 2b. It appears that other interesting OI developments (e.g. Diasome) were not very

  7. Multinational Consensus: Insulin Initiation with Insulin Degludec/Aspart (IDegAsp).

    PubMed

    Kalra, Sanjay; Atkin, Stephen; Cervera, Antonio; Das, Ashok Kumar; Demir, Ozgur; Demir, Tevfik; Fariduddin, Md; Vo, Khoa Tuan; Ku, Bon Jeong; Kumar, Ajay; Latif, Zafar A; Malek, Rachid; Matawaran, Bien J; Mehta, Roopa; Tran, Nam Quang; Panelo, Araceli; Ruder, Sundeep; Saldana, Joel Rodriquez; Shaikh, Khalid A; Shakya, Amit; Shrestha, Dina; Unnikrishnan, A G

    2018-05-23

    Insulin degludec/aspart (IDegAsp) is the first soluble insulin co-formulation, combining a long-acting insulin degludec (IDeg) and rapid-acting insulin aspart (IAsp). In type 2 diabetes patients with oral antidiabetes agent (OAD) inadequacy, insulin initiation with IDegAsp once daily provides superior long-term glycemic control compared to insulin glargine, with similar fasting plasma glucose (FPG) and insulin doses, and numerically lower rates of overall and nocturnal hypoglycemia. Furthermore, in patients with uncontrolled type 2 diabetes previously treated with insulins, IDegAsp twice daily effectively improves glycated hemoglobin and FPG, with fewer hypoglycemic episodes versus premix insulins and basal bolus therapy. In patients with type 1 diabetes mellitus, IDegAsp once daily with two doses of IAsp is a convenient, yet effective, regimen as compared to the conventional 4-5 injection-based basal bolus therapy. IDegAsp is an appropriate and reasonable option for initiation of insulin therapy in both type 1 and type 2 diabetes.

  8. Accumulation of unsaturated lipids in monocytes during early phase pyrogen tolerance.

    PubMed

    Szewczenko-Pawlikowski, M; Kozak, W

    2000-04-12

    This paper presents data that inspired a new explanation for the mechanism of early phase endotoxin tolerance. Rabbits injected intravenously with LPS from Salmonella abortus developed a two-phase fever (6 h) and monophasic hyperlipidemia of very low density lipoproteins (two consecutive days). If during these days rabbits were injected with the same dose of LPS at 24-h intervals, the second phase of fever disappeared, i.e. early phase pyrogenic tolerance was obtained. This was correlated with a decrease of lipoprotein hyperlipidemia (measured 1.5 h after LPS injection) and an accumulation of lipids rich in double bonds in monocytes (measured 3.5 h after LPS injection). Results showed that the degree of unsaturation of acyl chains (AC) in monocytes (AC/DB, DB=double bonds) is negatively correlated (r=-0.72) with fever response (fever index). The authors maintain that a gradual increase in monocyte membrane fluidity is an adaptation to repeated exposure of monocytes to lipid A and is responsible for the progressive desensitization of monocytes to endotoxin. It is suggested that disorders of this mechanism lead to an accumulation of abnormal quantities of saturated lipids and cholesterol within macrophages, which, as foam cells, are the starting point for atherosclerosis pathology.

  9. Visible light-induced insulin aggregation on surfaces via photoexcitation of bound thioflavin T.

    PubMed

    Chouchane, Karim; Pignot-Paintrand, Isabelle; Bruckert, Franz; Weidenhaupt, Marianne

    2018-04-01

    Insulin is known to form amyloid aggregates when agitated in a hydrophobic container. Amyloid aggregation is routinely measured by the fluorescence of the conformational dye thioflavin T, which, when incorporated into amyloid fibers, fluoresces at 480 nm. The kinetics of amyloid aggregation in general is characterized by an initial lag-phase, during which aggregative nuclei form on the hydrophobic surface. These nuclei then lead to the formation of fibrils presenting a rapid growth during the elongation phase. Here we describe a novel mechanism of insulin amyloid aggregation which is surprisingly devoid of a lag-time for nucleation. The excitation of thioflavin T by visible light at 440 nm induces the aggregation of thioflavin T-positive insulin fibrils on hydrophobic surfaces in the presence of strong agitation and at physiological pH. This process is material surface-induced and depends on the fact that surface-adsorbed insulin can bind thioflavin T. Light-induced insulin aggregation kinetics is thioflavin T-mediated and is based on an energy transfer from visible light to the protein via thioflavin T. It relies on a constant supply of thioflavin T and insulin from the solution to the aggregate. The growth rate increases with the irradiance and with the concentration of thioflavin T. The supply of insulin seems to be the limiting factor of aggregate growth. This light-induced aggregation process allows the formation of local surface-bound aggregation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Hyperinsulinemic hypoglycemia associated with insulin antibodies caused by exogenous insulin analog.

    PubMed

    Su, Chih-Ting; Lin, Yi-Chun

    2016-01-01

    Insulin antibodies (IA) associated with exogenous insulin administration seldom caused hypoglycemia and had different characteristics from insulin autoantibodies (IAA) found in insulin autoimmune syndrome (IAS), which was first described by Dr Hirata in 1970. The characteristic of IAS is the presence of insulin-binding autoantibodies and related fasting or late postprandial hypoglycemia. Here, we report a patient with type 1 diabetes mellitus under insulin glargine and insulin aspart treatment who developed recurrent spontaneous post-absorptive hyperinsulinemic hypoglycemia with the cause probably being insulin antibodies induced by exogenous injected insulin. Examinations of serial sera disclosed a high titre of insulin antibodies (33%, normal <5%), high insulin concentration (111.9 IU/mL) and undetectable C-peptide when hypoglycemia occurred. An oral glucose tolerance test revealed persistent high serum levels of total insulin and undetectable C-peptide. Image studies of the pancreas were unremarkable, which excluded the diagnosis of insulinoma. The patient does not take any of the medications containing sulfhydryl compounds, which had been reported to cause IAS. After administering oral prednisolone for 3 weeks, hypoglycemic episodes markedly improved, and he was discharged smoothly. Insulin autoimmune syndrome (IAS) or IAS-like situation should be one of the differential diagnosis in patients with hyperinsulinemic hypoglycemia.Although less reported, insulin antibodies (IA) caused by exogenous insulin analog should be considered as the cause of hypoglycemia.Patients with suspected insulin autoimmune syndrome (IAS) should be screened for drugs related to autoimmunity to endogenous insulin.

  11. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity.

    PubMed

    Nayak, Minakshi; Eekhoff, Marelise E W; Peinhaupt, Miriam; Heinemann, Akos; Desoye, Gernot; van Poppel, Mireille N M

    2016-01-01

    Cytokines contribute to insulin resistance in pregnancy, but the role of distinct cytokines is not fully understood. To study whether cytokines produced by tissues other than skeletal muscle are associated with glucose and insulin metabolism activity in overweight and obese women and to study whether these associations can be modified by physical activity. A longitudinal study with 44 overweight and obese pregnant women was conducted. Changes in cytokines levels (IFN-γ, IP-10, IL1-α, MIP1-α, adiponectin and leptin) and ICAM1 from early (15wk) to late (32wk) pregnancy were determined. Physical activity was measured objectively with accelerometers. In linear regression models, the associations between (changes in) cytokine levels and fasting glucose, fasting insulin and HOMA-IR were studied. Both IFN-γ and IP-10 levels increased from early to late pregnancy, and adiponectin levels decreased. IFN-γ and IP-10 were positively associated with fasting glucose, whereas IL-1α, ICAM1 and adiponectin were inversely associated with insulin and insulin resistance. The association of IL-1α with insulin and insulin resistance was only found in women with low levels of physical activity. IFN-γ, IP-10, IL1-α, ICAM1, and adiponectin may play a role in glucose and insulin metabolism in pregnancy. The relationship of IL-1α with insulin and insulin resistance might be moderated by levels of physical activity. Further studies are required to confirm the role of these cytokines in glucose and insulin metabolism in obese pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Phase III Early Restoration Meeting - Port Arthur, TX | NOAA Gulf Spill

    Science.gov Websites

    Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News planning for Phase III and future early restoration plans. Open House: 6:00pm Public Meeting: 6:30pm

  13. Phase III Early Restoration Meeting - Panama City, FL | NOAA Gulf Spill

    Science.gov Websites

    Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News planning for Phase III and future early restoration plans. Open House: 6:00pm Public Meeting: 6:30pm

  14. Diet reduction to requirements in obese/overfed ewes from early gestation prevents glucose/insulin dysregulation and returns fetal adiposity and organ development to control levels

    PubMed Central

    Tuersunjiang, Nuermaimaiti; Odhiambo, John F.; Long, Nathan M.; Shasa, Desiree R.; Nathanielsz, Peter W.

    2013-01-01

    Obesity at conception and excess gestational weight gain pose significant risks for adverse health consequences in human offspring. This study evaluated the effects of reducing dietary intake of obese/overfed ewes beginning in early gestation on fetal development. Sixty days prior to conception, ewes were assigned to a control diet [CON: 100% of National Research Council (NRC) recommendations], a diet inducing maternal obesity (MO: 150% of NRC recommendations), or a maternal obesity intervention diet (MOI: 150% of NRC recommendations to day 28 of gestation, then 100% NRC) until necropsy at midgestation (day 75) or late (day 135) gestation. Fetal size and weight, as well as fetal organ weights, were greater (P < 0.05) at midgestation in MO ewes than those of CON and MOI ewes. By late gestation, whereas fetal size and weight did not differ among dietary groups, cardiac ventricular weights and wall thicknesses as well as liver and perirenal fat weights remained elevated in fetuses from MO ewes compared with those from CON and MOI ewes. MO ewes and fetuses exhibited elevated (P < 0.05) plasma concentrations of triglycerides, cholesterol, insulin, glucose, and cortisol at midgestation compared with CON and MOI ewes and fetuses. In late gestation, whereas plasma triglycerides and cholesterol, insulin, and cortisol remained elevated in MO vs. CON and MOI ewes and fetuses, glucose concentrations were elevated in both MO and MOI fetuses compared with CON fetuses, which was associated with elevated placental GLUT3 expression in both groups. These data are consistent with the concept that reducing maternal diet of obese/overfed ewes to requirements from early gestation can prevent subsequent alterations in fetal growth, adiposity, and glucose/insulin dynamics. PMID:23921140

  15. Diet reduction to requirements in obese/overfed ewes from early gestation prevents glucose/insulin dysregulation and returns fetal adiposity and organ development to control levels.

    PubMed

    Tuersunjiang, Nuermaimaiti; Odhiambo, John F; Long, Nathan M; Shasa, Desiree R; Nathanielsz, Peter W; Ford, Stephen P

    2013-10-01

    Obesity at conception and excess gestational weight gain pose significant risks for adverse health consequences in human offspring. This study evaluated the effects of reducing dietary intake of obese/overfed ewes beginning in early gestation on fetal development. Sixty days prior to conception, ewes were assigned to a control diet [CON: 100% of National Research Council (NRC) recommendations], a diet inducing maternal obesity (MO: 150% of NRC recommendations), or a maternal obesity intervention diet (MOI: 150% of NRC recommendations to day 28 of gestation, then 100% NRC) until necropsy at midgestation (day 75) or late (day 135) gestation. Fetal size and weight, as well as fetal organ weights, were greater (P < 0.05) at midgestation in MO ewes than those of CON and MOI ewes. By late gestation, whereas fetal size and weight did not differ among dietary groups, cardiac ventricular weights and wall thicknesses as well as liver and perirenal fat weights remained elevated in fetuses from MO ewes compared with those from CON and MOI ewes. MO ewes and fetuses exhibited elevated (P < 0.05) plasma concentrations of triglycerides, cholesterol, insulin, glucose, and cortisol at midgestation compared with CON and MOI ewes and fetuses. In late gestation, whereas plasma triglycerides and cholesterol, insulin, and cortisol remained elevated in MO vs. CON and MOI ewes and fetuses, glucose concentrations were elevated in both MO and MOI fetuses compared with CON fetuses, which was associated with elevated placental GLUT3 expression in both groups. These data are consistent with the concept that reducing maternal diet of obese/overfed ewes to requirements from early gestation can prevent subsequent alterations in fetal growth, adiposity, and glucose/insulin dynamics.

  16. Insulin resistance predicts early cardiovascular morbidity in men without diabetes mellitus, with effect modification by physical activity.

    PubMed

    Hellgren, Margareta I; Daka, Bledar; Jansson, Per-Anders; Lindblad, Ulf; Larsson, Charlotte A

    2015-07-01

    to assess how well insulin resistance predicts cardiovascular disease (CVD) in non-diabetic men and women and to explore the influence of physical activity. in this prospective study 2563 men and women without diabetes were examined with an oral glucose tolerance test, anthropometric measurements and blood pressure assessment. Questionnaires about lifestyle and physical activity were completed. Insulin resistance was estimated by fasting concentrations of plasma insulin and by HOMA index for insulin resistance. Participants were followed up for cardiovascular morbidity and mortality during an 8-year period, using information from the National Swedish Inpatient and Mortality registers. at follow-up, HOMAir predicted CVD morbidity in males (50 events) and females (28 events) combined (HRage/sex-adj 1.4, 95% CI 1.1-1.7); however, when stratified by gender HOMAir was predictive solely in men (HRage-adj 1.8, 95% CI 1.3-2.4), whereas no association was found in women (HRage-adj 1.1, 95% CI 0.8-1.5). When stratifying the data for high and low physical activity, the predictive value of insulin resistance became stronger in sedentary men (HRage-adj 2.3, 95% CI 1.5-3.4) but was abolished in men performing moderate to vigorous physical activity (HRage-adj 1.0, 95% CI 0.6-1.6). The results remained when step-wise adjusted also for BMI, ApoB/ApoA1 and hypertension, as well as for smoking, alcohol consumption and education. Outcome for fasting plasma insulin was similar to HOMAir. insulin resistance predicts CVD in the general population; however, men may be more vulnerable to increased insulin resistance than women, and physically inactive men seem to be at high risk. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Beryllium and boron constraints on an early Galactic bright phase

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Schramm, David N.; Truran, James W.

    1993-01-01

    The recent observations of Be and B in metal-deficient halo dwarfs are used to constrain a 'bright phase' of enhanced cosmic-ray flux in the early Galaxy. Assuming that this Be and B arises from cosmic-ray spallation in the early Galaxy, limits are placed on the intensity of the early (Population II) cosmic-ray flux relative to the present (Population I) flux. A simple estimate of bounds on the flux ratio is 1 - 40. This upper bound would restrict galaxies like our own from producing neutrino fluxes that would be detectable in any currently proposed detectors. It is found that the relative enhancement of the early flux varies inversely with the relative time of enhancement. It is noted that associated gamma-ray production via pp - pi sup 0 pp may be a significant contribution to the gamma-ray background above 100 MeV.

  18. Single-dose carbohydrate treatment in the immediate preoperative phase diminishes development of postoperative peripheral insulin resistance.

    PubMed

    Gjessing, Petter Fosse; Hagve, Martin; Fuskevåg, Ole-Martin; Revhaug, Arthur; Irtun, Øivind

    2015-02-01

    Preoperative oral carbohydrate (CHO) treatment is known to reduce postoperative insulin resistance, but the necessity of a preoperative evening dose is uncertain. We investigated the effect of single-dose CHO treatment two hours before surgery on postoperative insulin sensitivity. Thirty two pigs (∼ 30 kg) were randomized to 4 groups (n = 8) followed by D-[6,6-(2)H2] glucose infusion and hyperinsulinemic-euglycemic step clamping. Two groups received a morning drink of 25 g carbohydrate (CHO/surgery and CHO/control). Animals in the other two groups were fasted overnight (fasting/surgery and fasting/control). Counter-regulatory hormones, free fatty acids (FFA) and liver and muscle glycogen content were measured serially. Glucose infusion rates needed to maintain euglycemia were higher after CHO/surgery than fasting/surgery during low (8.54 ± 0.82 vs. 6.15 ± 0.27 mg/kg/min, P < 0.05), medium (17.26 ± 1.08 vs. 14.02 ± 0.56 mg/kg/min, P < 0.02) and high insulin clamping (19.83 ± 0.95 vs. 17.16 ± 0.58 mg/kg/min, P < 0.05). The control groups exhibited identical insulin sensitivity. Compared to their respective controls, insulin-stimulated whole-body glucose disposal was significantly reduced after fasting/surgery (-41%, P < 0.001), but not after CHO/surgery (-16%, P = 0.180). CHO reduced FFA perioperatively (P < 0.05) and during the clamp procedures (P < 0.02), but did not affect hepatic insulin sensitivity, liver and muscle glycogen content or counter-regulatory hormone profiles. A strong negative correlation between peripheral insulin sensitivity and mean cortisol levels was seen in fasted (R = -0.692, P = 0.003), but not in CHO loaded pigs. Single-dose preoperative CHO treatment is sufficient to reduce postoperative insulin resistance, possibly due to the antilipolytic effects and antagonist properties of preoperative hyperinsulinemia on the suppressant actions of cortisol on carbohydrate oxidation. Copyright © 2014 Elsevier Ltd and European Society for

  19. Early Childhood Technology Integrated Instructional System (EC-TIIS) Phase 1: A Final Report

    ERIC Educational Resources Information Center

    Hutinger, Patricia; Robinson, Linda; Schneider, Carol

    2004-01-01

    The Early Childhood Technology Integrated Instructional System (EC-TIIS), a Steppingstones of Technology Innovation Phase 1--Development project, was developed by the Center for Best Practices in Early Childhood (the Center) at Western Illinois University as an online instructional system. EC-TIIS' ultimate goal was to improve technology services…

  20. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    PubMed

    Cardoso, Rodolfo C; Veiga-Lopez, Almudena; Moeller, Jacob; Beckett, Evan; Pease, Anthony; Keller, Erica; Madrigal, Vanessa; Chazenbalk, Gregorio; Dumesic, Daniel; Padmanabhan, Vasantha

    2016-02-01

    Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood.

  1. Dispositional Optimism and Therapeutic Expectations in Early Phase Oncology Trials

    PubMed Central

    Jansen, Lynn A.; Mahadevan, Daruka; Appelbaum, Paul S.; Klein, William MP; Weinstein, Neil D.; Mori, Motomi; Daffé, Racky; Sulmasy, Daniel P.

    2016-01-01

    Purpose Prior research has identified unrealistic optimism as a bias that might impair informed consent among patient-subjects in early phase oncology trials. Optimism, however, is not a unitary construct – it can also be defined as a general disposition, or what is called dispositional optimism. We assessed whether dispositional optimism would be related to high expectations for personal therapeutic benefit reported by patient-subjects in these trials but not to the therapeutic misconception. We also assessed how dispositional optimism related to unrealistic optimism. Methods Patient-subjects completed questionnaires designed to measure expectations for therapeutic benefit, dispositional optimism, unrealistic optimism, and the therapeutic misconception. Results Dispositional optimism was significantly associated with higher expectations for personal therapeutic benefit (Spearman r=0.333, p<0.0001), but was not associated with the therapeutic misconception. (Spearman r=−0.075, p=0.329). Dispositional optimism was weakly associated with unrealistic optimism (Spearman r=0.215, p=0.005). In multivariate analysis, both dispositional optimism (p=0.02) and unrealistic optimism (p<0.0001) were independently associated with high expectations for personal therapeutic benefit. Unrealistic optimism (p=.0001), but not dispositional optimism, was independently associated with the therapeutic misconception. Conclusion High expectations for therapeutic benefit among patient-subjects in early phase oncology trials should not be assumed to result from misunderstanding of specific information about the trials. Our data reveal that these expectations are associated with either a dispositionally positive outlook on life or biased expectations about specific aspects of trial participation. Not all manifestations of optimism are the same, and different types of optimism likely have different consequences for informed consent in early phase oncology research. PMID:26882017

  2. [Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy].

    PubMed

    Pesić, Milica; Zivić, Sasa; Radenković, Sasa; Velojić, Milena; Dimić, Dragan; Antić, Slobodan

    2007-04-01

    Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin) for basal insulin supply in patients with type 1 diabetes. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IT) were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15); 2. NPH insulin twice daily (n = 15); 3. insulin glargine once daily (n = 18). Meal time insulin aspart was continued in all groups. Fasting blood glucose (FBG) was lower in the glargine group (7.30+/-0.98 mmol/1) than in the twice daily NPH group (7.47+/-1.06 mmol/1), but without significant difference. FBG was significantly higher in the once daily NPH group (8.44+/-0.85 mmol/l; p < 0.05). HbAlc after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72+/-0.86% to 6.87+/-0.50%), as well as in the twice daily NPH group (from 7.80+/-0.83% to 7.01+/-0.63%). Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56+/-2.09) than in both NPH groups (9.0+/-1.65 in twice daily NPH group and 8.13+/-1.30 in other NPH group) (episodes/patients-month, p < 0.05). Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbAlc and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  3. Post-glucose load changes of plasma key metabolite and insulin concentrations during pregnancy and lactation in ewes with different susceptibility to pregnancy toxaemia.

    PubMed

    Duehlmeier, R; Fluegge, I; Schwert, B; Ganter, M

    2013-10-01

    Insulin resistance during late gestation may act as a predisposing factor of ovine pregnancy toxaemia (OPT). To evaluate the insulin action on energy metabolism in ewes with different susceptibilities to OPT, intravenous glucose tolerance tests (1 mmol glucose/kg body weight) were performed in 5.6 ± 0.7 year old, slightly underfed German Blackheaded Mutton ewes [high-risk (HR) ewes] and 2.5 year old, overnourished Finnish Landrace ewes [low-risk (LR) ewes] during mid and late pregnancy, during early lactation and during the dry period. Plasma samples were analysed for glucose, insulin, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (β-HB). The glucose elimination rate and the glucose-stimulated first-phase insulin secretion were significantly (p < 0.05) lower in the HR, in relation to the LR group combining the data of all gestational stages. The basal rate of lipolysis was significantly increased in the HR ewes during late pregnancy, but the NEFA clearance after the glucose load was similar in both groups during all reproductive stages. Plasma β-HB concentrations decreased only in the LR ewes after the glucose load during late pregnancy. Results indicate an insulin resistance in the HR ewes regarding the glucose utilization and the ketone body formation during late pregnancy. The insulin resistance in the HR ewes may represent one predisposing factor responsible for the susceptibility to OPT. Further scientific work is necessary to elucidate whether this insulin resistance was due to breed, age or nutritional state. © 2012 Blackwell Verlag GmbH.

  4. 78 FR 39736 - Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ..., choosing a study population, using a control group and blinding, dose selection, treatment plans...] Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular... document entitled ``Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

  5. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  6. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.

  7. Long-term outcome of individuals treated with oral insulin: diabetes prevention trial-type 1 (DPT-1) oral insulin trial.

    PubMed

    Vehik, Kendra; Cuthbertson, David; Ruhlig, Holly; Schatz, Desmond A; Peakman, Mark; Krischer, Jeffrey P

    2011-07-01

    To evaluate the long-term intervention effects of oral insulin on the development of type 1 diabetes and to assess the rate of progression to type 1 diabetes before and after oral insulin treatment was stopped in the Diabetes Prevention Trial-Type 1 (DPT-1). The follow-up included subjects who participated in the early intervention of oral insulin (1994-2003) to prevent or delay type 1 diabetes. A telephone survey was conducted in 2009 to determine whether diabetes had been diagnosed and, if not, an oral glucose tolerance test (OGTT), hemoglobin A1c (HbA1c), and autoantibody levels were obtained on all subjects who agreed to participate. Of 372 subjects randomized, 97 developed type 1 diabetes before follow-up; 75% of the remaining 275 subjects were contacted. In the interim, 77 subjects had been diagnosed with type 1 diabetes and 54 of the remainder have had an OGTT; 10 of these were diagnosed with type 1 diabetes, subsequently. Among individuals meeting the original criteria for insulin autoantibodies (IAAs) (≥80 nU/mL), the overall benefit of oral insulin remained significant (P=0.05). However, the hazard rate in this group increased (from 6.4% [95% CI 4.5-9.1] to 10.0% [7.1-14.1]) after cessation of therapy, which approximated the rate of individuals treated with placebo (10.2% [7.1-14.6]). Overall, the oral insulin treatment effect in individuals with confirmed IAA≥80 nU/mL appeared to be maintained with additional follow-up; however, once therapy stopped, the rate of developing diabetes in the oral insulin group increased to a rate similar to that in the placebo group.

  8. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  9. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol)

    PubMed Central

    Bromberg, Lev; Rashba-Step, Julia; Scott, Terrence

    2005-01-01

    Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, tind) ranged from tens to several hundreds of seconds. The dependence of tind on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2–3.4 and 2.2 mJ/m2 at equilibrium temperatures of 25 and 37°C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation. PMID:16254391

  10. Better Glycemic Control and Weight Loss With the Novel Long-Acting Basal Insulin LY2605541 Compared With Insulin Glargine in Type 1 Diabetes

    PubMed Central

    Rosenstock, Julio; Bergenstal, Richard M.; Blevins, Thomas C.; Morrow, Linda A.; Prince, Melvin J.; Qu, Yongming; Sinha, Vikram P.; Howey, Daniel C.; Jacober, Scott J.

    2013-01-01

    OBJECTIVE To compare effects of LY2605541 versus insulin glargine on daily mean blood glucose as part of a basal-bolus regimen for type 1 diabetes. RESEARCH DESIGN AND METHODS In this randomized, Phase 2, open-label, 2 × 2 crossover study, 137 patients received once-daily basal insulin (LY2605541 or glargine) plus mealtime insulin for 8 weeks, followed by crossover treatment for 8 weeks. Daily mean blood glucose was obtained from 8-point self-monitored blood glucose profiles. The noninferiority margin was 10.8 mg/dL. RESULTS LY2605541 met noninferiority and superiority criteria compared with insulin glargine in daily mean blood glucose (144.2 vs. 151.7 mg/dL, least squares mean difference = −9.9 mg/dL [90% CI −14.6 to −5.2], P < 0.001). Fasting blood glucose variability and A1C were reduced with LY2605541 compared with insulin glargine (both P < 0.001). Mealtime insulin dose decreased with LY2605541 and increased with insulin glargine. Mean weight decreased 1.2 kg with LY2605541 and increased 0.7 kg with insulin glargine (P < 0.001). The total hypoglycemia rate was higher for LY2605541 (P = 0.04) and the nocturnal hypoglycemia rate was lower (P = 0.01), compared with insulin glargine. Adverse events (including severe hypoglycemia) were similar, although more gastrointestinal-related events occurred with LY2605541 (15% vs. 4%, P < 0.001). Mean changes (all within normal range) were higher for alanine aminotransferase, aspartate aminotransferase, triglycerides, and LDL-cholesterol and lower for HDL-cholesterol with LY2605541 compared with insulin glargine (all P < 0.02). CONCLUSIONS In type 1 diabetes, compared with insulin glargine, LY2605541, a novel, long-acting basal insulin, demonstrated greater improvements in glycemic control, increased total hypoglycemia, and reduced nocturnal hypoglycemia, as well as reduced weight and lowered mealtime insulin doses. PMID:23193209

  11. Effects of methyltestosterone on insulin secretion and sensitivity in women.

    PubMed

    Diamond, M P; Grainger, D; Diamond, M C; Sherwin, R S; Defronzo, R A

    1998-12-01

    The frequent coexistence of hyperandrogenism and insulin resistance is well established; however, whether a cause and effect relationship exists remains to be established. In this study we tested the hypothesis that short-term androgen administered to women would induce insulin resistance. To test this hypothesis, regularly menstruating, nonobese women were studied before and during methyltestosterone administration (5 mg tid for 10-12 days) by the hyperglycemic (n=8) and euglycemic, hyperinsulinemic (n=7) clamp techniques. Short-term methyltestosterone administration had no significant effects on the fasting levels of glucose, insulin, c-peptide, glucagon, or glucose turnover. During the hyperglycemic clamp studies, the mean glucose level during the final hour was 203+/-2 and 201+/-1 mg/dL in the methyltestosterone and control studies, respectively. The insulin response to this hyperglycemic challenge was slightly but not significantly greater during methyltestosterone treatment (first phase 59+/-8 vs. 50+/-8 microU/mL in controls; second phase 74+/-9 vs. 67+/-9 microU/mL in controls; total insulin response 133+/-16 vs. 117+/-15 microU/mL in controls). In spite of this, glucose uptake was reduced from the control study value of 10.96+/-1.11 to 7.3+/-0.70 mg/kg/min by methyltestosterone (P < 0.05). The ratio of glucose uptake per unit of insulin was also significantly reduced from a control study value of 14.3+/-1.4 to 9.4+/-1.3 mg/kg/min per microU/mL x 100 during methyltestosterone administration. In the euglycemic hyperinsulinemic clamp studies, insulin was infused at rates of 0.25 and 1.0 mU/kg/min to achieve insulin levels of approximately 25 and 68 microU/mL, respectively. During low-dose insulin infusion, rates of endogenous hepatic glucose production were equivalently suppressed from basal values of 2.37+/-0.29 and 2.40+/-0.27 mg/kg/min to 0.88+/-0.25 and 0.77+/-0.26 mg/kg/min in the methyltestesterone and control studies respectively. Whole body glucose

  12. Effects of Dexamethasone and Insulin Alone or in Combination on Energy and Protein Metabolism Indicators and Milk Production in Dairy Cows in Early Lactation - A Randomized Controlled Trial.

    PubMed

    Sami, Mehrdad; Mohri, Mehrdad; Seifi, Hesam A

    2015-01-01

    This study investigated the effects of dexamethasone and insulin, when administered at 3rd or 10th day of lactation on energy and protein metabolism in dairy cows. Two hundred Holstein cows were enrolled in a randomized controlled clinical trial. The cows were randomly assigned to receive 1 of 4 treatments at 3 or 10 days in milk: control group, 10-mL i.m. injection of sterile water, group insulin, s.c. injection of 100 units of insulin, group dexamethasone, i.m. injection of 20 mg of dexamethasone, group insulin plus dexamethasone, i.m. injection of 20 mg of dexamethasone and 100 units of insulin. The cows randomly assigned to receive the treatments on 3 or 10 days of lactation. Serum samples obtained at the time of enrollment, time of treatment and at 2, 4, 7 and 14 days after intervention. The sera were analyzed for β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), glucose, cholesterol, albumin, urea, and aspartate amino transferase (AST). Data were analyzed using a repeated measures mixed model that accounted for the effects of parity, body condition score, dystocia, retained placenta, metritis and the random effect of cow. There was no significant interaction of group of treatment and time of intervention (day 3 or 10 post-partum) on serum components. Cows that received insulin or dexamethasone alone or in combination, had lower BHBA 2 days after treatment compared with control cows, whereas concentrations of NEFA, were unaffected suggesting that glucocorticoids lipolytic effects do not appear to be important in healthy cows. AST activities significantly reduced in cows that received dexamethasone with or without insulin at 2 and 4 days after treatment. Albumin and urea concentrations 2 days after treatment were higher for cows that received dexamethasone only or dexamethasone plus insulin compared with control and Ins received cows. There were no treatment effects on test-day milk production, milk fat and protein percentages. The results suggested

  13. Polycystic ovary syndrome and insulin: our understanding in the past, present and future.

    PubMed

    Mayer, Stéphanie B; Evans, William S; Nestler, John E

    2015-03-01

    Insulin resistance is prevalent in women with polycystic ovary syndrome (PCOS), and plays a critical pathophysiologic role in both the metabolic and reproductive complications of PCOS. This review focuses on the contribution of insulin resistance to anovulation in PCOS and to the high risk for Type 2 diabetes, metabolic syndrome and early cardiovasular disease. Key points for clinicians emphasized by this review are the following: PCOS is a clinical diagnosis and alternative diagnoses must be excluded; PCOS carries an inherent risk of insulin resistance and, hence, metabolic consequences for which women with PCOS should be screened regardless of BMI or degree of obesity; and PCOS is associated with infertility and this should be discussed early on in care of women diagnosed with PCOS, recognizing that there are several possible strategies to address infertility in women with PCOS, each with its own risks and benefits.

  14. Variability of Directly Measured First-Pass Hepatic Insulin Extraction and its Association With Insulin Sensitivity and Plasma Insulin.

    PubMed

    Asare-Bediako, Isaac; Paszkiewicz, Rebecca L; Kim, Stella P; Woolcott, Orison O; Kolka, Cathryn M; Burch, Miguel A; Kabir, Morvarid; Bergman, Richard N

    2018-05-11

    While the β-cells secrete insulin, it is the liver with its first-pass insulin extraction (FPE) that regulates the amount of insulin allowed into circulation for action on target tissues. The metabolic clearance rate of insulin, of which FPE is the dominant component, is reported to be a major determinant of insulin sensitivity (SI). We studied the intricate relationship between FPE, SI and fasting insulin. We used a direct method of measuring FPE, the paired portal/peripheral infusion protocol (PPII) where insulin is infused step-wise, either via the portal vein or a peripheral vein in healthy young dogs (n =12). FPE is calculated as the difference in clearance rates (slope of infusion rate vs. steady insulin plot) between the paired experiments. Significant correlations were found between FPE vs. clamp assessed SI (r s = 0.74); FPE vs. fasting insulin (r s = -0.64) and SI vs. fasting insulin (r s = - 0.67). Also, we found a wide variance in FPE (22.4 -77.2%; mean ± SD of 50.4 ± 19.1%) which is reflected in the variability of plasma insulin (48.1 ± 30.9pM) and SI (9.4 ± 5.8 x10 4 dL * kg -1 * min -1 * pM -1 ). FPE could be the nexus of regulation of both plasma insulin and SI. © 2018 by the American Diabetes Association.

  15. Insulin resistance syndrome in children.

    PubMed

    Ten, Svetlana; Maclaren, Noel

    2004-06-01

    The insulin resistance syndrome (syndrome X, metabolic syndrome) has become the major health problem of our times. Associated obesity, dyslipidemia, atherosclerosis, hypertension, and type 2 diabetes conspire to shorten life spans, while hyperandrogenism with polycystic ovarian syndrome affect the quality of life and fertility of increasing numbers of women. Whereas a growing number of single genetic diseases affecting satiety or energy metabolism have been found to produce the clinical phenotype, strong familial occurrences, especially in racially prone groups such as those from the Indian subcontinent, or individuals of African, Hispanic, and American Indian descents, together with emerging genetic findings, are revealing the polygenetic nature of the syndrome. However, the strong lifestyle factors of excessive carbohydrate and fat consumption and lack of exercise are important keys to the phenotypic expression of the syndrome. The natural history includes small for gestational age birth weight, excessive weight gains during childhood, premature pubarche, an allergic diathesis, acanthosis nigricans, striae compounded by gynecomastia, hypertriglyceridemia, hepatic steatosis, premature atherosclerosis, hypertension, polycystic ovarian syndrome, and focal glomerulonephritis appearing increasingly through adolescence into adulthood. Type 2 diabetes, which develops because of an inherent and/or an acquired failure of an insulin compensatory response, is increasingly seen from early puberty onward, as is atheromatous disease leading to coronary heart disease and stroke. A predisposition to certain cancers and Alzheimer's disease is also now recognized. The looming tragedy from growing numbers of individuals affected by obesity/insulin resistance syndrome requires urgent public health approaches directed at their early identification and intervention during childhood. Such measures include educating the public on the topic, limiting the consumption of sucrose

  16. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    PubMed

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  17. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    PubMed

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Insulin Therapy

    MedlinePlus

    ... Your Health Resources Drugs, Procedures & Devices Prescription Medicines Insulin Therapy Insulin Therapy Share Print When you digest food, your ... you eat into glucose (a form of sugar). Insulin allows this glucose to enter all the cells ...

  19. Numerical investigation of the early flight phase in ski-jumping.

    PubMed

    Gardan, N; Schneider, A; Polidori, G; Trenchard, H; Seigneur, J M; Beaumont, F; Fourchet, F; Taiar, R

    2017-07-05

    The purpose of this study is to develop a numerical methodology based on real data from wind tunnel experiments to investigate the effect of the ski jumper's posture and speed on aerodynamic forces in a wide range of angles of attack. To improve our knowledge of the aerodynamic behavior of the ski jumper and his equipment during the early flight phase of the ski jump, we applied CFD methodology to evaluate the influence of angle of attack (α=14°, 21.5°, 29°, 36.5° and 44°) and speed (u=23, 26 and 29m/s) on aerodynamic forces in the situation of stable attitude of the ski jumper's body and skis. The standard k-ω turbulence model was used to investigate both the influence of the ski jumper's posture and speed on aerodynamic performance during the early flight phase. Numerical results show that the ski jumper's speed has very little impact on the lift and drag coefficients. Conversely, the lift and drag forces acting on the ski jumper's body during the early flight phase of the jump are strongly influenced by the variations of the angle of attack. The present results suggest that the greater the ski jumper's angle of inclination, with respect to the relative flow, the greater the pressure difference between the lower and upper parts of the skier. Further studies will focus on the dependency of the parameters with both the angle of attack α and the body-ski angle β as control variables. It will be possible to test and optimize different ski jumping styles in different ski jumping hills and investigate different environmental conditions such as temperature, altitude or crosswinds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dispositional optimism and therapeutic expectations in early-phase oncology trials.

    PubMed

    Jansen, Lynn A; Mahadevan, Daruka; Appelbaum, Paul S; Klein, William M P; Weinstein, Neil D; Mori, Motomi; Daffé, Racky; Sulmasy, Daniel P

    2016-04-15

    Prior research has identified unrealistic optimism as a bias that might impair informed consent among patient-subjects in early-phase oncology trials. However, optimism is not a unitary construct; it also can be defined as a general disposition, or what is called dispositional optimism. The authors assessed whether dispositional optimism would be related to high expectations for personal therapeutic benefit reported by patient-subjects in these trials but not to the therapeutic misconception. The authors also assessed how dispositional optimism related to unrealistic optimism. Patient-subjects completed questionnaires designed to measure expectations for therapeutic benefit, dispositional optimism, unrealistic optimism, and the therapeutic misconception. Dispositional optimism was found to be significantly associated with higher expectations for personal therapeutic benefit (Spearman rank correlation coefficient [r], 0.333; P<.0001), but was not associated with the therapeutic misconception (Spearman r, -0.075; P = .329). Dispositional optimism was found to be weakly associated with unrealistic optimism (Spearman r, 0.215; P = .005). On multivariate analysis, both dispositional optimism (P = .02) and unrealistic optimism (P<.0001) were found to be independently associated with high expectations for personal therapeutic benefit. Unrealistic optimism (P = .0001), but not dispositional optimism, was found to be independently associated with the therapeutic misconception. High expectations for therapeutic benefit among patient-subjects in early-phase oncology trials should not be assumed to result from misunderstanding of specific information regarding the trials. The data from the current study indicate that these expectations are associated with either a dispositionally positive outlook on life or biased expectations concerning specific aspects of trial participation. Not all manifestations of optimism are the same, and different types of optimism likely have

  1. Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus.

    PubMed

    Lau, Ip Tim; Lee, Ka Fai; So, Wing Yee; Tan, Kathryn; Yeung, Vincent Tok Fai

    2017-01-01

    To review published clinical studies on the efficacy and safety of new insulin glargine 300 units/mL (Gla-300), a new long-acting insulin analog, for the treatment of type 1 and type 2 diabetes mellitus (T1DM, T2DM). Data sources comprised primary research articles on Gla-300, including pharmacodynamic, pharmacokinetic, and clinical studies. In pharmacodynamic and pharmacokinetic studies, Gla-300 showed a flatter time-action profile and longer duration of action than Gla-100. Noninferiority of Gla-300 versus Gla-100 for lowering of glycated hemoglobin was demonstrated in Phase III clinical studies covering a range of T1DM and T2DM patient populations. Over 6-12 months of follow-up, Gla-300 consistently showed comparable glycemic efficacy with less hypoglycemia vs Gla-100, even during the first 8 weeks of treatment. Although titrated insulin doses were 11%-17% higher with Gla-300 vs Gla-100, changes in body weight were similar or favored Gla-300. Clinical studies provide evidence that the pharmacodynamic and pharmacokinetic properties of Gla-300 may translate into clinical benefits in both T1DM and T2DM. Gla-300 may provide a new option for people initiating basal insulin, those requiring higher basal insulin doses, those with T1DM, and those who may be at increased risk for hypoglycemia, such as people with chronic kidney disease, the elderly, and those with cardiovascular comorbidities.

  2. Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus

    PubMed Central

    Lau, Ip Tim; Lee, Ka Fai; So, Wing Yee; Tan, Kathryn; Yeung, Vincent Tok Fai

    2017-01-01

    Objective To review published clinical studies on the efficacy and safety of new insulin glargine 300 units/mL (Gla-300), a new long-acting insulin analog, for the treatment of type 1 and type 2 diabetes mellitus (T1DM, T2DM) Materials and methods Data sources comprised primary research articles on Gla-300, including pharmacodynamic, pharmacokinetic, and clinical studies. Results In pharmacodynamic and pharmacokinetic studies, Gla-300 showed a flatter time–action profile and longer duration of action than Gla-100. Noninferiority of Gla-300 versus Gla-100 for lowering of glycated hemoglobin was demonstrated in Phase III clinical studies covering a range of T1DM and T2DM patient populations. Over 6–12 months of follow-up, Gla-300 consistently showed comparable glycemic efficacy with less hypoglycemia vs Gla-100, even during the first 8 weeks of treatment. Although titrated insulin doses were 11%–17% higher with Gla-300 vs Gla-100, changes in body weight were similar or favored Gla-300. Conclusion Clinical studies provide evidence that the pharmacodynamic and pharmacokinetic properties of Gla-300 may translate into clinical benefits in both T1DM and T2DM. Gla-300 may provide a new option for people initiating basal insulin, those requiring higher basal insulin doses, those with T1DM, and those who may be at increased risk for hypoglycemia, such as people with chronic kidney disease, the elderly, and those with cardiovascular comorbidities. PMID:28721081

  3. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    NASA Astrophysics Data System (ADS)

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  4. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    PubMed Central

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna M.; Nowakowska, Maria; Szczubiałka, Krzysztof

    2015-01-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2. PMID:25629028

  5. Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance.

    PubMed

    Hayata, Hiroki; Miyazaki, Hiroaki; Niisato, Naomi; Yokoyama, Noriko; Marunaka, Yoshinori

    2014-02-28

    Insulin resistance in the skeletal muscle is manifested by diminished insulin-stimulated glucose uptake and is a core factor in the pathogenesis of type 2 diabetes mellitus (DM), but the mechanism causing insulin resistance is still unknown. Our recent study has shown that pH of interstitial fluids was lowered in early developmental stage of insulin resistance in OLETF rats, a model of type 2 DM. Therefore, in the present study, we confirmed effects of the extracellular pH on the insulin signaling pathway in a rat skeletal muscle-derived cell line, L6 cell. The phosphorylation level (activation) of the insulin receptor was significantly diminished in low pH media. The phosphorylation level of Akt, which is a downstream target of the insulin signaling pathway, also decreased in low pH media. Moreover, the insulin binding to its receptor was reduced by lowering extracellular pH, while the expression of insulin receptors on the plasma membrane was not affected by the extracellular pH. Finally, insulin-stimulated 2-deoxyglucose uptake in L6 cells was diminished in low pH media. Our present study suggests that lowered extracellular pH conditions may produce the pathogenesis of insulin resistance in skeletal muscle cells. Copyright © 2014. Published by Elsevier Inc.

  6. Early Onset Diabetes - Genetic And Hormonal Analysis In Pakistani Population.

    PubMed

    Wahid, Maryam; Kamran, Mohammad

    2016-01-01

    Mitochondrial DNA mutation and hormonal imbalance is involved in the pathogenesis of early onset diabetes but data is lacking in Pakistani population. The study was planned to delineate the clinical presentation of early onset diabetes with possible hormonal and genetic etiological factors and aascertain the possible etiological role of insulin and glucagon in these patients either on oral hypoglycaemic or subcutaneous insulin therapy. Retrospective, analytical case control study with conventional sampling technique carried at Centre for Research in Experimental and Applied Medicine (CREAM) affiliated with the department of Biochemistry and Molecular Biology, Army Medical College Rawalpindi from Dec 2006 to July 2011. Study included the patients (20-35 years of age) with early onset diabetes on oral hypoglycemic (n=240), insulin therapy (n=280), and compared with non-diabetic healthy controls (n=150). A fragment surrounding tRNALeu (UUR) gene was amplified by AmpliTaq from mtDNA which was extracted from peripheral blood leucocytes. Then it was subjected to restriction endonucleases, ApaI for A3242G mutation and HaeIII for G3316A mutation detection. Plasma glucose, glycosylated Hb, osmolality, insulin and glucagon levels along with ABGs analysis was also done. Non diabetic controls comprised of 51% males and 49% females, diabetics on oral hypoglycemic 60% males and 40 % females and on insulin therapy 54% males and 46% females. Insulin dependent diabetics had statistically significant hyperglucagonemia, acidemia and bicarbonate deficit. MtDNA A3242G and G3316A mutations were not detected. relative hyperglucagonemia and acidemia in Insulin dependent diabetics was a potent threat leading to DKA. The absence of two mtDNA mutations in ND1 gene rules out the possibility of involvement of these mutations in early onset diabetes in Pakistani population.

  7. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  8. Attitudes towards insulin initiation in type 2 diabetes patients among healthcare providers: A survey research.

    PubMed

    Escalada, Javier; Orozco-Beltran, Domingo; Morillas, Carlos; Alvarez-Guisasola, Fernando; Gomez-Peralta, Fernando; Mata-Cases, Manel; Palomares, Rafael; Iglesias, Rosario; Carratalá-Munuera, Concepción

    2016-12-01

    To describe the views of healthcare providers about starting insulin in patients with type 2 diabetes and to determine the specific factors that contribute to delay insulin initiation. Two-phases observational descriptive study. In the quantitative phase we conducted a cross-sectional survey of a sample of 380 healthcare professionals (general practitioners (GPs), endocrinologists, internists and nurses). In the qualitative phase, a discussion group reviewed the results of the survey to propose solutions. In poorly controlled patients, 46% of GPs vs. 43.2% of internists and 31.3% of endocrinologists waited 3-6months before starting insulin, and 71.4% of GPs vs. 66.7% of internists vs. 58.8% of endocrinologists need to confirm twice the HbA1c levels. The upper level of basal glucose more frequently considered as good control is 130mg/dL for GPs (35.7%), and 120mg/dL for internists (35.8%) and endocrinologists (37.5%). In patients without comorbidities, 32.5% of endocrinologists vs. 27.2% of internists vs. 17.9% of GPs initiated insulin when HbA1c was >7% while 26.3% of endocrinologists vs. 28.4% of internists vs. 38.4% of GPs initiated insulin when HbA1c was >8%. The interference of the therapy with the patient' social life and the need for time management were the most accepted barriers to initiate insulin. There are significant differences between GPs and endocrinologists regarding the insulin initiation and GPs and internists felt less empowered to manage patients with diabetes. Specific training for professionals and joint work with patients could improve the glycemic control. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Diabetes management: optimizing roles for nurses in insulin initiation

    PubMed Central

    Levich, Bridget R

    2011-01-01

    Type 2 diabetes is a major public health concern. Screening and early diagnosis followed by prompt and aggressive treatment interventions can help control progression of diabetes and its complications. Nurses are often the first healthcare team members to interact with patients and are being called on to apply their specialized knowledge, training, and skills to educate and motivate patients with diabetes about insulin use and practical ways to achieve treatment goals. Clinical nurse specialists possess specific training and skills to provide this level of care, while staff or office-based nurses may be trained by physicians to fulfill a task-specific role. This manuscript reviews the benefits of intensive glycemic control in type 2 diabetes, therapeutic goals and guidelines, advances in insulin therapy, and contribution of nurses in overcoming barriers to insulin initiation and related aspects of diabetes care. Nurses are particularly well positioned to fill the gap and improve efficiency in diabetes-related healthcare by assisting patients with insulin initiation and other aspects of glycemic self-management. PMID:21468244

  10. Development of Environmental Load Estimation Model for Road Drainage Systems in the Early Design Phase

    NASA Astrophysics Data System (ADS)

    Park, Jin-Young; Lee, Dong-Eun; Kim, Byung-Soo

    2017-10-01

    Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and LCA (life cycle assessment) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review in the early design phase where it is difficult to obtain such information. In this study, computation system for construction quantity based on standard cross section of road drainage facilities was developed to compute construction quantity required for LCA using only information available in the early design phase to develop and verify the effectiveness of a model that can perform environmental load estimation. The result showed that it is an effective model that can be used in the early design phase as it revealed a 13.39% mean absolute error rate.

  11. Impact of diet on the efficacy of insulin lispro mix 25 and insulin lispro mix 50 as starter insulin in East Asian patients with type 2 diabetes: Subgroup analysis of the Comparison Between Low Mixed Insulin and Mid Mixed Insulin as Starter Insulin For Patients with Type 2 Diabetes Mellitus (CLASSIFY Study) randomized trial.

    PubMed

    Chen, Wei; Qian, Lei; Watada, Hirotaka; Li, Peng Fei; Iwamoto, Noriyuki; Imori, Makoto; Yang, Wen Ying

    2017-01-01

    The pathophysiology of diabetes differs between Asian and Western patients in many ways, and diet is a primary contributor. The present study examined the effect of diet on the efficacy of 25% insulin lispro/75% insulin lispro protamine suspension (LM25) and 50% insulin lispro/50% insulin lispro protamine suspension (LM50) as starter insulin in Chinese and Japanese patients with type 2 diabetes and inadequate glycemic control with oral antidiabetic medication. This was a predefined subgroup analysis of a phase 4, open-label, 26-week, parallel-arm, randomized (computer-generated random sequence) trial (21 January 2013 to 22 August 2014). Nutritional intake was assessed from food records kept by participants before study drug administration. Outcomes assessed were changes from baseline in self-monitored blood glucose, 1,5-anhydroglucitol and glycated hemoglobin. In total, 328 participants were randomized to receive twice-daily LM25 (n = 168) or LM50 (n = 160). Median daily nutritional intake (by weight and percentage of total energy) was 230.8 g of carbohydrate (54%), 56.5 g of fat (31%) and 66 g of protein (15%). Improvements in self-monitored blood glucose were significantly greater (P ≤ 0.028) in the LM50 group than in the LM25 group, regardless of nutritional intake. When carbohydrate (by weight or percentage energy) or fat (by weight) intake exceeded median levels, LM50 was significantly more efficacious than LM25 (P ≤ 0.026) in improving 1,5-anhydroglucitol and glycated hemoglobin. Glycemic control improved in both LM25 and LM50 groups, but LM50 was significantly more efficacious under certain dietary conditions, particularly with increased carbohydrate intake. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  12. Early insulin sensitivity after restrictive bariatric surgery, inconsistency between HOMA-IR and steady-state plasma glucose levels.

    PubMed

    van Dielen, Francois M H; Nijhuis, Jeroen; Rensen, Sander S M; Schaper, Nicolaas C; Wiebolt, Janneke; Koks, Afra; Prakken, Fred J; Buurman, Wim A; Greve, Jan Willem M

    2010-01-01

    The low-grade inflammatory condition present in morbid obesity is thought to play a causative role in the pathophysiology of insulin resistance (IR). Bariatric surgery fails to improve this inflammatory condition during the first months after surgery. Considering the close relation between inflammation and IR, we conducted a study in which insulin sensitivity was measured during the first months after bariatric surgery. Different methods to measure IR shortly after bariatric surgery have given inconsistent data. For example, the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) levels have been reported to decrease rapidly after bariatric surgery, although clamp techniques have shown sustained insulin resistance. In the present study, we evaluated the use of steady-state plasma glucose (SSPG) levels to assess insulin sensitivity 2 months after bariatric surgery. Insulin sensitivity was measured using HOMA-IR and SSPG levels in 11 subjects before surgery and at 26% excess weight loss (approximately 2 months after restrictive bariatric surgery). The SSPG levels after 26% excess weight loss did not differ from the SSPG levels before surgery (14.3 +/- 5.4 versus 14.4 +/- 2.7 mmol/L). In contrast, the HOMA-IR values had decreased significantly (3.59 +/- 1.99 versus 2.09 +/- 1.02). During the first months after restrictive bariatric surgery, we observed a discrepancy between the HOMA-IR and SSPG levels. In contrast to the HOMA-IR values, the SSPG levels had not improved, which could be explained by the ongoing inflammatory state after bariatric surgery. These results suggest that during the first months after restrictive bariatric surgery, HOMA-IR might not be an adequate marker of insulin sensitivity. Copyright 2010 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  13. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  14. Failure to initiate early insulin therapy - A risk factor for diabetic retinopathy in insulin users with Type 2 diabetes mellitus: Sankara Nethralaya-Diabetic Retinopathy Epidemiology and Molecular Genetics Study (SN-DREAMS, Report number 35).

    PubMed

    Gupta, Aditi; Delhiwala, Kushal S; Raman, Rajiv P G; Sharma, Tarun; Srinivasan, Sangeetha; Kulothungan, Vaitheeswaran

    2016-06-01

    Insulin users have been reported to have a higher incidence of diabetic retinopathy (DR). The aim was to elucidate the factors associated with DR among insulin users, especially association between duration, prior to initiating insulin for Type 2 diabetes mellitus (DM) and developing DR. Retrospective cross-sectional observational study included 1414 subjects having Type 2 DM. Insulin users were defined as subjects using insulin for glycemic control, and insulin nonusers as those either not using any antidiabetic treatment or using diet control or oral medications. The duration before initiating insulin after diagnosis was calculated by subtracting the duration of insulin usage from the duration of DM. DR was clinically graded using Klein's classification. SPSS (version 9.0) was used for statistical analysis. Insulin users had more incidence of DR (52.9% vs. 16.3%, P < 0.0001) and sight threatening DR (19.1% vs. 2.4%, P < 0.0001) in comparison to insulin nonusers. Among insulin users, longer duration of DM (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.00-1.25, P = 0.044) and abdominal obesity (OR 1.15, 95% CI 1.02-1.29, P = 0.021) was associated with DR. The presence of DR was significantly associated with longer duration (≥5 years) prior to initiating insulin therapy, overall (38.0% vs. 62.0%, P = 0.013), and in subjects with suboptimal glycemic control (32.5% vs. 67.5%, P = 0.022). The presence of DR is significantly associated with longer duration of diabetes (>5 years) and sub-optimal glycemic control (glycosylated hemoglobin <7.0%). Among insulin users, abdominal obesity was found to be a significant predictor of DR; DR is associated with longer duration prior to initiating insulin therapy in Type 2 DM subjects with suboptimal glycemic control.

  15. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  16. Imaging of early acceleration phase of the 2013-2014 Boso slow slip event

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Kato, A.; Obara, K.; Miura, S.; Kato, T.

    2014-12-01

    Based on GPS and seismic data, we examine the spatiotemporal evolution of a slow slip event (SSE) and associated seismic activity that occurred off the Boso peninsula, central Japan, from December 2013 to January 2014. We use GPS data from 71 stations of the GEONET and 6 stations operated by Earthquake Research Institute of the University of Tokyo and Tohoku University around the Boso peninsula. We apply a modified version of the Network Inversion Filter to the GPS time series at the 77 stations to estimate the spatiotemporal evolution of daily cumulative slip and slip rate on the subducting Philippine Sea plate. In addition, we create an improved earthquake catalog by applying a matched filter technique to continuous seismograms and examine the spatiotemporal relations between slow slip and seismicity. We find that the SSE started in early December 2013. The spatiotemporal evolution of slow slip and seismicity is divided into two distinct phases, an earlier slow phase from early to 30 December 2013 (Phase I) and a subsequent faster phase from 30 December 2013 to 9 January 2014 (Phase II). During Phase I, slip accelerated slowly up to a maximum rate of 1.6 m/yr with potentially accelerating along-strike propagation at speeds on the order of 1 km/day or less and no accompanying seismicity. On the other hand, during Phase II, slip accelerated rapidly up to a maximum rate of 4.5 m/yr and then rapidly decelerated. The slip front propagated along strike at a constant speed of ~10 km/day. During the Phase II, slow slip was accompanied by seismic swarm activity that was highly correlated in space and time with slip rate, suggesting that the swarm activity was triggered by stress loading due to slow slip. Early slow acceleration of slip has not been identified in the past Boso SSEs in 1996, 2002, 2007, and 2011. It is not clear at this point whether the past Boso SSEs started with slow acceleration similarly to the 2013-2014 SSE. The transition from the slow to the

  17. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    PubMed

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P < 0.05) and glycogen synthesis rate (38%, P < 0.02) were significantly reduced after 5 h compared with 3 h of lipid infusion. Despite the development of insulin resistance, there was no difference in the phosphorylation state of multiple insulin-signaling intermediates or muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  18. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  19. Early detection of liver steatosis by magnetic resonance imaging in rats infused with glucose and intralipid solutions and correlation to insulin levels.

    PubMed

    d'Assignies, Gaspard; Fontés, Ghislaine; Kauffmann, Claude; Latour, Martin; Gaboury, Louis; Boulanger, Yvan; Van Beers, Bernard E; Soulez, Gilles; Poitout, Vincent; Tang, An

    2013-12-01

    Magnetic resonance (MR) techniques allow noninvasive fat quantification. We aimed to investigate the accuracy of MR imaging (MRI), MR spectroscopy (MRS) and histological techniques to detect early-onset liver steatosis in three rat phenotypes assigned to an experimental glucolipotoxic model or a control group. This study was approved by the institutional committee for the protection of animals. Thirty-two rats (13 young Wistar, 6 old Wistar and 13 diabetic Goto-Kakizaki rats) fed a standard diet were assigned to a 72h intravenous infusion of glucose and Intralipid fat emulsion or a saline infusion. Plasma insulin levels were measured. Steatosis was quantified in ex vivo livers with gradient-recalled multi-echo MRI, MRS and histology as fat fractions (FF). A significant correlation was found between multi-echo MRI-FF and MRS-FF (r=0.81, p<0.01) and a weaker correlation was found between histology and MRS-FF (r=0.60, p<0.01). MRS and MRI accurately distinguished young Wistar and Goto-Kakizaki rats receiving the glucose+Intralipid infusion from those receiving the saline control whereas histology did not. Significant correlations were found between MRI or MRS and insulin plasma level (r=0.63, p<0.01; r=0.57, p<0.01), and between MRI or MRS and C-peptide concentration (r=0.54, p<0.01; r=0.44, p<0.02). Multi-echo MRI and MRS may be more sensitive to measure early-onset liver steatosis than histology in an experimental glucolipotoxic rat model. © 2013.

  20. Characterization of the intravenous glucose tolerance test and the combined glucose-insulin test in donkeys.

    PubMed

    Mendoza, F J; Aguilera-Aguilera, R; Gonzalez-De Cara, C A; Toribio, R E; Estepa, J C; Perez-Ecija, A

    2015-12-01

    Glucose-insulin dynamic challenges such as the intravenous glucose tolerance test (IVGTT) and combined glucose-insulin test (CGIT) have not been described in donkeys. The objectives of this study were (1) to characterize the IVGTT and CGIT in healthy adult donkeys, and (2) to establish normal glucose-insulin proxies. Sixteen donkeys were used and body morphometric variables obtained each. For the IVGTT, glucose (300 mg/kg) was given IV. For the CGIT, glucose (150 mg/kg) followed by recombinant insulin (0.1 IU/kg) were administered IV. Blood samples for glucose and insulin determinations were collected over 300 min. In the IVGTT the positive phase lasted 160.9 ± 13.3 min, glucose concentration peaked at 323.1 ± 9.2 mg/dL and declined at a rate of 1.28 ± 0.15 mg/dL/min. The glucose area under the curve (AUC) was 21.4 ± 1.9 × 10(3) mg/dL/min and the insulin AUC was 7.2 ± 0.9 × 10(3) µIU/mL/min. The positive phase of the CGIT curve lasted 44 ± 3 min, with a glucose clearance rate of 2.01 ± 0.18 mg/dL/min. The negative phase lasted 255.9 ± 3 min, decreasing glucose concentration at rate of -0.63 ± 0.06 mg/dL/min, and reaching a nadir (33.1 ± 3.6 mg/dL) at 118.3 ± 6.3 min. The glucose and insulin AUC values were 15.2 ± 0.9 × 10(3) mg/dL/min and 13.2 ± 0.9 × 10(3) µIU/mL/min. This is the first study characterizing CGIT and IVGTT, and glucose-insulin proxies in healthy adult donkeys. Distinct glucose dynamics, when compared with horses, support the use of species-specific protocols to assess endocrine function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Perspectives and Open Problems in the Early Phases of Left-Right Patterning

    PubMed Central

    Vandenberg, Laura N.; Levin, Michael

    2009-01-01

    Summary Embryonic left-right (LR) patterning is a fascinating aspect of embryogenesis. The field currently faces important questions about the origin of LR asymmetry, the mechanisms by which consistent asymmetry is imposed on the scale of the whole embryo, and the degree of conservation of early phases of LR patterning among model systems. Recent progress on planar cell polarity and cellular asymmetry in a variety of tissues and species provides a new perspective on the early phases of LR patterning. Despite the huge diversity in body-plans over which consistent LR asymmetry is imposed, and the apparent divergence in molecular pathways that underlie laterality, the data reveal conservation of physiological modules among phyla and a basic scheme of cellular chirality amplified by a planar cell polarity-like pathway over large cell fields. PMID:19084609

  2. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  3. Induction of NPY/AgRP orexigenic peptide expression in rat hypothalamus is an early event in fasting: relationship with circulating leptin, insulin and glucose.

    PubMed

    Palou, Mariona; Sánchez, Juana; Rodríguez, Ana M; Priego, Teresa; Picó, Catalina; Palou, Andreu

    2009-01-01

    Hypothalamus is crucial in the control of energy intake and expenditure in mammals, presenting two interconnected populations of neurons producing orexigenic NPY/AgRP (neuropeptide Y; agouti related peptide) and anorexigenic POMC/CART (pro-opiomelanocortin; cocaine and amphetamine regulated transcript) neuropeptides. We aimed to shed more light on the response and sensitivity in the production of these neuropeptides to face nutritional changes, particularly food deprivation, and on the signals that regulate them. Male Wistar rats were fasted for 0, 4, 8 and 24h and refed for 3h after 8h fasting. mRNA levels of gastric and adipose tissue (retroperitoneal, mesenteric and inguinal) leptin, and of hypothalamic NPY, AgRP, POMC, CART, leptin receptor, SOCS3 (suppressor of cytokine signaling 3) and insulin receptor were analyzed. Gastric and circulating leptin, and circulating insulin, glucose and ghrelin were also determined. The only neuropeptide mRNAs that responded (increasing) to the short-term periods of fasting used were those of NPY (transiently) and AgRP, and these changes were accompanied by an increase in leptin receptor mRNA levels and by a decrease in adipose and gastric leptin expression and in the circulating levels of leptin, insulin and glucose, but without changes in circulating ghrelin. The elevation in AgRP and leptin receptor mRNA levels and the drop in circulating leptin were not reverted with refeeding. It is suggested that the induction of expression of the orexigenic molecules in NPY/AgRP neurons is an early event upon fasting, related with changes in leptin, insulin and glucose levels, but with the role of leptin signaling in particular. 2009 S. Karger AG, Basel.

  4. Filter Paper Blood Spot Enzyme Linked Immunoassay for Insulin and Application in the Evaluation of Determinants of Child Insulin Resistance

    PubMed Central

    Martin, Richard M.; Patel, Rita; Zinovik, Alexander; Kramer, Michael S.; Oken, Emily; Vilchuck, Konstantin; Bogdanovich, Natalia; Sergeichick, Natalia; Gunnarsson, Robert; Grufman, Lisa; Foo, Ying; Gusina, Nina

    2012-01-01

    Background In large-scale epidemiology, bloodspot sampling by fingerstick onto filter paper has many advantages, including ease and low costs of collection, processing and transport. We describe the development of an enzyme-linked immunoassay (ELISA) for quantifying insulin from dried blood spots and demonstrate its application in a large trial. Methods We adapted an existing commercial kit (Mercodia Human Insulin ELISA, 10-1113-01) to quantify insulin from two 3-mm diameter discs (≈6 µL of blood) punched from whole blood standards and from trial samples. Paediatricians collected dried blood spots in a follow-up of 13,879 fasted children aged 11.5 years (interquartile range 11.3–11.8 years) from 31 trial sites across Belarus. We quantified bloodspot insulin levels and examined their distribution by demography and anthropometry. Results Mean intra-assay (n = 157) coefficients of variation were 15% and 6% for ‘low’ (6.7 mU/L) and ‘high’ (23.1 mU/L) values, respectively; the respective inter-assay values (n = 33) were 23% and 11%. The intraclass correlation coefficient between 50 paired whole bloodspot versus serum samples, collected simultaneously, was 0.90 (95% confidence interval 0.85 to 0.95). Bloodspot insulin was stable for at least 31 months at −80°C, for one week at +30°C and following four freeze-thaw cycles. Paediatricians collected a median of 8 blood spots from 13,487 (97%) children. The geometric mean insulin (log standard deviation) concentrations amongst 12,812 children were 3.0 mU/L (1.1) in boys and 4.0 mU/L (1.0) in girls and were positively associated with pubertal stage, measures of central and peripheral adiposity, height and fasting glucose. Conclusions Our simple and convenient bloodspot assay is suitable for the measurement of insulin in very small volumes of blood collected on filter paper cards and can be applied to large-scale epidemiology studies of the early-life determinants of circulating insulin. PMID:23056434

  5. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    PubMed

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    PubMed Central

    2011-01-01

    Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust

  7. Ultra-Early Phase pathologies of Alzheimer's disease and other neurodegenerative diseases.

    PubMed

    Okazawa, Hitoshi

    2017-01-01

    The concept of neurodegenerative diseases and the therapeutics targeting these intractable diseases are changing rapidly. Protein aggregation as the top of pathological cascade is now challenged, and many alternative ideas are proposed. Early molecular pathologies before microscopic detection of diseases protein aggregates, which I propose to call "Ultra-Early Phase pathologies or phase 0 pathologies", are the focus of research that might explain the failures of clinical trials with anti-Aβ antibodies against Alzheimer's disease. In this review article, I summarize the critical issues that should be successfully and consistently answered by a new concept of neurodegeneration. For reevaluating old concepts and reconstructing a new concept of neurodegeneration that will replace the old ones, non-biased comprehensive approaches including proteome combined with systems biology analyses will be a powerful tool. I introduce our recent efforts in this orientation that have reached to the stage of non-clinical proof of concept applicable to clinical trials.

  8. A retrospective database analysis of insulin use patterns in insulin-naïve patients with type 2 diabetes initiating basal insulin or mixtures

    PubMed Central

    Bonafede, Machaon MK; Kalsekar, Anupama; Pawaskar, Manjiri; Ruiz, Kimberly M; Torres, Amelito M; Kelly, Karen R; Curkendall, Suellen M

    2010-01-01

    Objective: To describe insulin persistence among patients with type 2 diabetes initiating insulin therapy with basal insulin or insulin mixtures and determine factors associated with nonpersistence. Research design and methods: The Thomson Reuters MarketScan® databases were used to retrospectively analyze insulin-naïve patients with type 2 diabetes by initiating insulin therapy. Insulin use was described using a variety of measures. The persistence to insulin was described using both a gap-based measure and the number of claims measure. Results: Patients in the basal insulin cohort (N = 15,255) primarily used insulin analogs (88.1%) and vial and syringe (97%). Patients in the mixture cohort (N = 2,732) were more likely to initiate on human insulin mixtures (62.5%) and vial and syringe (68.1%). Average time between insulin refills was 80 and 71 days for basal and mixture initiators, respectively. Nearly, 75% of basal insulin initiators and 65% of insulin mixture initiators had a 90-day gap in insulin prescriptions. More than half of all the patients had at least one insulin prescription per quarter. Patients initiating with insulin analogs were more likely to be persistent compared with those initiating with human insulin across both cohorts and measures of persistence (P < 0.001). Conclusion: Persistence to insulin therapy is poorer than one would anticipate, but appears to be higher in users of insulin analogs and insulin mixtures. PMID:20622915

  9. Economic benefits of improved insulin stability in insulin pumps.

    PubMed

    Weiss, Richard C; van Amerongen, Derek; Bazalo, Gary; Aagren, Mark; Bouchard, Jonathan R

    2011-05-01

    Insulin pump users discard unused medication and infusion sets according to labeling and manufacturer's instructions. The stability labeling for insulin aspart (rDNA origin] (Novolog) was increased from two days to six. The associated savings was modeled from the perspective of a hypothetical one-million member health plan and the total United States population. The discarded insulin volume and the number of infusion sets used under a two-day stability scenario versus six were modeled. A mix of insulin pumps of various reservoir capacities with a range of daily insulin dosages was used. Average daily insulin dose was 65 units ranging from 10 to 150 units. Costs of discarded insulin aspart [rDNA origin] were calculated using WAC (Average Wholesale Price minus 16.67%). The cost of pump supplies was computed for the two-day scenario assuming a complete infusion set change, including reservoirs, every two days. Under the six-day scenario complete infusion sets were discarded every six days while cannulas at the insertion site were changed midway between complete changes. AWP of least expensive supplies was used to compute their costs. For the hypothetical health plan (1,182 pump users) the annual reduction in discarded insulin volume between scenarios was 19.8 million units. The corresponding cost reduction for the plan due to drug and supply savings was $3.4 million. From the U.S. population perspective, savings of over $1 billion were estimated. Using insulin that is stable for six days in pump reservoirs can yield substantial savings to health plans and other payers, including patients.

  10. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  11. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    PubMed

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  12. Insulin Infusion Set: The Achilles Heel of Continuous Subcutaneous Insulin Infusion

    PubMed Central

    Heinemann, Lutz; Krinelke, Lars

    2012-01-01

    Continuous subcutaneous insulin infusion from an insulin pump depends on reliable transfer of the pumped insulin to the subcutaneous insulin depot by means of an insulin infusion set (IIS). Despite their widespread use, the published knowledge about IISs and related issues regarding the impact of placement and wear time on insulin absorption/insulin action is relatively small. We also have to acknowledge that our knowledge is limited with regard to how often patients encounter issues with IISs. Reading pump wearer blogs, for instance, suggests that these are a frequent source of trouble. There are no prospective clinical studies available on current IIS and insulin formulations that provide representative data on the type and frequency of issues with infusion sets. The introduction of new IISs and patch pumps may foster a reassessment of available products and of patient problems related to their use. The aim of this review is to summarize the current knowledge and recommendations about IISs and to highlight potential directions of IIS development in order to make insulin absorption safer and more efficient. PMID:22920824

  13. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  14. ALTERATIONS IN GLUCOSE EFFECTIVENESS AND INSULIN DYNAMICS: POLYCYSTIC OVARY SYNDROME OR BODY MASS INDEX

    PubMed Central

    Vuguin, Patricia; Sopher, Aviva B.; Roumimper, Hailey; Chin, Vivian; Silfen, Miriam; McMahon, Donald J.; Fennoy, Ilene; Oberfield, Sharon E.

    2018-01-01

    Background/Aims To delineate the relationship of PCOS, obesity, and hyperandrogenemia (HA) with glucose and insulin dynamics in adolescents across a broad body mass index (BMI). Methods Seventy-four PCOS (16 yr) and 82 controls (16 yr) were evaluated by an oral glucose tolerance test. Subjects were categorized by BMI: normal weight (NW; 21±0.4 kg/m2), overweight/obese (OO; 33±1.0 kg/m2), and severe obesity (SO; 48±1.4 kg/m2). Indices of glucose and insulin dynamics were determined. Multiple linear regression analysis was used to evaluate the contribution of PCOS, HA and BMI to these indices. Results BMI was significantly associated with systolic and diastolic blood pressure and insulin resistance. A significant interaction between BMI and PCOS and indices of post-glucose load was observed. The mean difference in peak glucose, early glucose response, area under the curve for glucose, and glucose effectiveness (SgIo) between PCOS and C were significantly different between OO and SO. In PCOS, testosterone was positively associated with BMI, fasting insulin, early insulin response, diastolic blood pressure, and negatively associated with Sglo. Conclusions Abnormal glucose dynamics in adolescents with PCOS is mainly due to SO. The combination of PCOS and SO has a synergistic effect on glucose dynamics when compared to all other groups. PMID:28478437

  15. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  16. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  17. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease.

    PubMed

    Velazquez, Ramon; Tran, An; Ishimwe, Egide; Denner, Larry; Dave, Nikhil; Oddo, Salvatore; Dineley, Kelly T

    2017-10-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are not known, several risk factors have been identified. Among these, type two diabetes (T2D), a chronic metabolic disease, is one of the most prevalent risk factors for AD. Insulin resistance, which is associated with T2D, is defined as diminished or absent insulin signaling and is reflected by peripheral blood hyperglycemia and impaired glucose clearance. In this study, we used complementary approaches to probe for peripheral insulin resistance, central nervous system (CNS) insulin sensitivity and energy homeostasis in Tg2576 and 3xTg-AD mice, two widely used animal models of AD. We report that CNS insulin signaling abnormalities are evident months before peripheral insulin resistance. In addition, we find that brain energy metabolism is differentially altered in both mouse models, with 3xTg-AD mice showing more extensive changes. Collectively, our data suggest that early AD may reflect engagement of different signaling networks that influence CNS metabolism, which in turn may alter peripheral insulin signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Prediction of gestational diabetes mellitus in the first trimester: comparison of C-reactive protein, fasting plasma glucose, insulin and insulin sensitivity indices.

    PubMed

    Ozgu-Erdinc, A Seval; Yilmaz, Saynur; Yeral, M Ilkin; Seckin, K Doga; Erkaya, Salim; Danisman, A Nuri

    2015-11-01

    To develop a predictive index based on high sensitivity C-reactive protein (hs-CRP), fasting plasma glucose (FPG) and fasting plasma insulin (FPI) measurements for early diagnosis of gestational diabetes mellitus (GDM). Healthy pregnant women who were screened for GDM during their first antenatal visit were included in this retrospective cohort study. FPG, FPI and serum hs-CRP concentrations were measured between weeks 11 and 14. A two-step glucose challenge test was carried out between gestational weeks 24 and 28. Fasting glucose/insulin ratio (FIGR), Homeostatic Model Assessment Insulin Resistance (HOMA-IR), HOMA-β indices and Quantitative Insulin Sensitivity Check Index (QUICKI) were used to estimate insulin sensitivity and β-cell function. Of the 450 women who were eligible for the study, 49 (11.2%) were diagnosed with GDM at weeks 24-28. The median FPG and hs-CRP levels were higher in the GDM diagnosed women compared to the others. Comparison of accuracy measures resulted in the highest specificity (87.2%; 95% CI 83.5-90.1) and diagnostic odds ratio (3.9; 95% CI 2.1-7.6) for hs-CRP. FPG and hs-CRP in the first trimester are correlated with later development of GDM in the pregnancy. In our study, FPG provided a better sensitivity while hs-CRP exhibited a better specificity for prediction of GDM.

  19. Contrasting weight changes with LY2605541, a novel long-acting insulin, and insulin glargine despite similar improved glycaemic control in T1DM and T2DM.

    PubMed

    Jacober, S J; Rosenstock, J; Bergenstal, R M; Prince, M J; Qu, Y; Beals, J M

    2014-04-01

    The basal insulin analogue LY2605541, a PEGylated insulin lispro with prolonged duration of action, was previously shown to be associated with modest weight loss in Phase 2, randomized, open-label trials in type 2 (N=288) and type 1 (N=137) diabetes mellitus (T2DM and T1DM), compared with modest weight gain with insulin glargine. Exploratory analyses were conducted to further characterize these findings. Pearson correlations between change in body weight and other variables were calculated. Continuous variables were analysed using a mixed linear model with repeated measurements. Proportions of subjects with weight loss were analysed using Fisher's exact test for T2DM and Nagelkerke's method for T1DM. Weight loss was more common in LY2605541-treated patients than in patients treated with insulin glargine (T2DM: 56.9 vs. 40.2%, p=0.011; T1DM: 66.1 vs. 40.3%, p<0.001). More LY2605541-treated patients experienced ≥5% weight loss compared to patients treated with glargine (T2DM: 4.8 vs. 0%, p=0.033; T1DM: 11.9 vs. 0.8%, p<0.001). In both the T1DM and T2DM studies, weight change did not correlate with baseline body mass index (BMI), or change in HDL-cholesterol in either treatment group. No consistent correlations were found across both studies between weight change and any of the variables assessed; however, weight change was significantly correlated with hypoglycaemia rate in glargine-treated T2DM patients. In two Phase 2 trials, improved glycaemic control with long-acting basal insulin analogue LY2605541 is associated with weight loss in previously insulin-treated patients. This weight change is independent of baseline BMI or hypoglycaemia.

  20. Duration of diabetes and effectiveness of insulin in the management of insulin-naïve Korean patients uncontrolled on oral antidiabetic drugs: a sub-analysis of the MOdaliTy of Insulin treatment eValuation (MOTIV) registry results.

    PubMed

    Kim, Sang Soo; Kim, In Joo; Kim, Yong Ki; Yoon, Kun Ho; Son, Ho Young; Park, Sung Woo; Sung, Yeon Ah; Baek, Hong Sun; Ha, Kyoung Soo

    2014-08-01

    To investigate whether duration of diabetes has an impact on the effectiveness of insulinization in diabetes management. This open-label, noninterventional, observational registry was conducted at >500 centers in Korea. Patients with diabetes, on oral antidiabetic drugs, with HbA1c ≥7 % (53 mmol/mol) in the preceding 3 months, being considered for initiation of basal insulin by their physicians, were included. Data were collected at baseline and at 3 and 6 months. Of 6,616 patients evaluated, 62.5 % had diabetes for <10 years, while only 6.5 % patients had diabetes for ≥20 years. At the end of study, average HbA1c in patients with diabetes for <10 years, for 10 to <20 years, and for ≥20 years was 7.3 ± 1.0 % (56 ± 10.9 mmol/mol), 7.4 ± 1.0 % (57 ± 10.9 mmol/mol), and 7.6 ± 1.1 % (60 ± 12.0 mmol/mol), respectively. Over half the patients (50.7 %) with diabetes <10 years achieved HbA1c <7 % (53 mmol/mol) by the end of study, while only 42.1 and 35.1 % patients with diabetes for 10 to <20 and ≥20 years, respectively, achieved their target. The average insulin dosage required for per unit HbA1c reduction was significantly different among the groups according to duration of type 2 diabetes mellitus (p < 0.05). Among patients who achieved HbA1c <7 %, proportion of patients with hypoglycemia in the ≥20 years group was higher than that in the <10 years, 10 to <20 years groups. Early insulin administration provided a better glycemic control with less insulin dosage and lower frequency of hypoglycemic events. Thus, early insulinization might hold the key to better management of type 2 diabetes mellitus.

  1. [Cephalic phase of insulin secretion and the variety of the food in rat feed].

    PubMed

    Louis-Sylvestre, J; Le Magnen, J

    1983-01-01

    Immunologically reactive insulin levels were determined in freely-moving normal rats offered three different test-meals. In test I, they were offered their normal diet for 4.5 min. In test II, they first ate the same diet for the same amount of time, then a cookie for 6 min, and finally they had free access to lard. In test III, the normal diet was followed by a synthetic sweetener and then by vaseline. It was shown that in a varied meal (tests II and III), the ingestion of each new food was immediately followed by a peak of insulin secretion superimposed on normal postprandial hyperinsulinemia. This resulted in an overall increase in insulinemia over the 15-min period measured. It is well known that in a varied meal more food is consumed. Thus, it may be that when a varied meal is offered, final satiety is postponed. This could be due to sensorially-triggered peaks of insulin secretion which would explain why the "cafeteria diet" induces hyperphagia and obesity.

  2. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements.

    PubMed

    Pearson, Scott M; Trujillo, Jennifer M

    2018-04-01

    We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 ( n = 95) or insulin degludec ( n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1-12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19-60 interquartile range (IQR)] units at baseline to 34.5 (19-70 IQR) units after follow up ( p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different ( p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 ( p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different.

  4. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements

    PubMed Central

    Trujillo, Jennifer M.

    2018-01-01

    Background: We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. Methods: This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 (n = 95) or insulin degludec (n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1–12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Results: Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19–60 interquartile range (IQR)] units at baseline to 34.5 (19–70 IQR) units after follow up (p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different (p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 (p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Conclusions: Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different. PMID:29619208

  5. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  6. Comparison of insulin lispro mix 25 with insulin lispro mix 50 as insulin starter in Chinese patients with type 2 diabetes mellitus (CLASSIFY study): Subgroup analysis of a Phase 4 open-label randomized trial.

    PubMed

    Su, Qing; Liu, Chao; Zheng, Hongting; Zhu, Jun; Li, Peng Fei; Qian, Lei; Yang, Wen Ying

    2017-06-01

    Premixed insulins are recommended starter insulins in Chinese patients after oral antihyperglycemic medication (OAM) failure. In the present study, we compared the efficacy and safety of insulin lispro mix 25 (LM25) twice daily (b.i.d.) and insulin lispro mix 50 (LM50) b.i.d. as a starter insulin regimen in Chinese patients with type 2 diabetes mellitus (T2DM) who had inadequate glycemic control with OAMs. The primary efficacy outcome in the present open-label parallel randomized clinical trial was change in HbA1c from baseline to 26 weeks. Patients were randomized in a ratio of 1:  1 to LM25 (n = 80) or LM50 (n = 76). A mixed-effects model with repeated measures was used to analyze continuous variables. The Cochran-Mantel-Haenszel test with stratification factor was used to analyze categorical variables. At the end of the study, LM50 was more efficacious than LM25 in reducing mean HbA1c levels (least-squares [LS] mean difference 0.48; 95 % confidence interval [CI] 0.22, 0.74; P < 0.001). More subjects in the LM50 than LM25 group achieved HbA1c targets of <7.0 % (72.4 % vs 45.0 %; P = 0.001) or ≤6.5 % (52.6 % vs 20.0 %; P < 0.001). Furthermore, LM50 was more effective than LM25 at reducing HbA1c in patients with baseline HbA1c, blood glucose excursion, and postprandial glucose greater than or equal to median levels (P ≤ 0.001). The rate and incidence of hypoglycemic episodes and increase in weight at the end of the study were similar between treatment groups. In Chinese patients with T2DM, LM50 was more efficacious than LM25 as a starter insulin. © 2016 The Authors. Journal of Diabetes published by John Wiley & Sons Australia, Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  7. Improvement in insulin resistance is greater when infliximab is added to methotrexate during intensive treatment of early rheumatoid arthritis-results from the IDEA study.

    PubMed

    Bissell, Lesley-Anne; Hensor, Elizabeth M A; Kozera, Lukasz; Mackie, Sarah L; Burska, Agata N; Nam, Jacqueline L; Keen, Helen; Villeneuve, Edith; Donica, Helena; Buch, Maya H; Conaghan, Philip G; Andrews, Jacqueline; Emery, Paul; Morgan, Ann W

    2016-12-01

    To determine the change in established biomarkers of cardiovascular (CV) risk, namely, total cholesterol/high-density lipoprotein cholesterol ratio (TC/HDL-C), N-terminal pro-brain natriuretic peptide (NT-proBNP) and insulin resistance (IR) in patients with early RA treated with two different treat-to-target strategies. Fasting glucose, lipids, insulin and NT-proBNP were measured at baseline, weeks 26 and 78 in 79 DMARD-naïve RA patients, free of CV disease, as part of a double-blind randomized controlled trial of MTX with either infliximab (IFX) or methylprednisolone as induction therapy. Homeostasis model assessment-estimated IR (HOMA-IR) (glucose*insulin/405) was used to measure IR. Multiple imputation was employed, and linear regression analyses were adjusted for baseline values. Changes in DAS44-CRP did not differ between the treatment arms at weeks 26 and 78. Mean TC/HDL-C, HOMA-IR and NT-proBNP improved in both groups at weeks 26 and 78, although change in NT-proBNP was not statistically significant at week 78. Changes in TC/HDL-C and NT-proBNP were similar between treatment arms, but HOMA-IR values in the IFX + MTX arm were 42% lower than those treated with MTX + methylprednisolone at week 78 (P = 0.003); the difference remained significant after adjustment for baseline BMI, ACPA positivity, smoking status and intramuscular glucocorticoid use (P = 0.007). When implementing a treat-to-target approach, treatment of early RA was associated with improvement in TC/HDL-C, HOMA-IR and NT-proBNP, and a greater long-term improvement in HOMA-IR was seen in those treated with IFX. EU Clinical Trials Register, http://www.clinicaltrialsregister.eu, Eudract-2005-005013-37; ISRTCNregisrty, http://www.isrctn.com, ISRCTN48638981. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Lixisenatide plus basal insulin in patients with type 2 diabetes mellitus: a meta-analysis.

    PubMed

    Charbonnel, Bernard; Bertolini, Monica; Tinahones, Francisco J; Domingo, Manuel Puig; Davies, Melanie

    2014-01-01

    The efficacy of the once-daily prandial GLP-1 receptor agonist lixisenatide plus basal insulin in T2DM was assessed by pooling results of phase III trials. A meta-analysis was performed of results from three trials in the GetGoal clinical program concerning lixisenatide or placebo plus basal insulin with/without OADs. The primary endpoint was change in HbA1c from baseline to week 24. Secondary endpoints were change in PPG, FPG, insulin dose, and weight from baseline to week 24. Hypoglycemia rates and several composite endpoints were assessed. Lixisenatide plus basal insulin was significantly more effective than basal insulin alone at reducing HbA1c at 24 weeks. Composite and secondary endpoints were improved significantly with lixisenatide plus basal insulin, with the exception of FPG, which showed no significant difference between the groups. Lixisenatide plus basal insulin was associated with an increased incidence of hypoglycemia versus basal insulin alone. Lixisenatide plus basal insulin resulted in significant improvement in glycemic control versus basal insulin alone, particularly in terms of controlling PPG. Prandial lixisenatide in combination with basal insulin is a suitable option for treatment intensification in patients with T2DM insufficiently controlled with basal insulin, as these agents have complementary effects on PPG and FPG, respectively. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus.

    PubMed

    Hamada, Daisuke; Maynard, Robert; Schott, Eric; Drinkwater, Christopher J; Ketz, John P; Kates, Stephen L; Jonason, Jennifer H; Hilton, Matthew J; Zuscik, Michael J; Mooney, Robert A

    2016-06-01

    Obesity is a state of chronic inflammation that is associated with insulin resistance and type 2 diabetes mellitus (DM), as well as an increased risk of osteoarthritis (OA). This study was undertaken to define the links between obesity-associated inflammation, insulin resistance, and OA, by testing the hypotheses that 1) tumor necrosis factor (TNF) is critical in mediating these pathologic changes in OA, and 2) insulin has direct effects on the synovial joint that are compromised by insulin resistance. The effects of TNF and insulin on catabolic gene expression were determined in fibroblast-like synoviocytes (FLS) isolated from human OA synovium. Synovial TNF expression and OA progression were examined in 2 mouse models, high-fat (HF) diet-fed obese mice with type 2 DM and TNF-knockout mice. Insulin resistance was investigated in synovium from patients with type 2 DM. Insulin receptors (IRs) were abundant in both mouse and human synovial membranes. Human OA FLS were insulin responsive, as indicated by the dose-dependent phosphorylation of IRs and Akt. In cultures of human OA FLS with exogenous TNF, the expression and release of MMP1, MMP13, and ADAMTS4 by FLS were markedly increased, whereas after treatment with insulin, these effects were selectively inhibited by >50%. The expression of TNF and its abundance in the synovium were elevated in samples from obese mice with type 2 DM. In TNF-knockout mice, increases in osteophyte formation and synovial hyperplasia associated with the HF diet were blunted. The synovium from OA patients with type 2 DM contained markedly more macrophages and showed elevated TNF levels as compared to the synovium from OA patients without diabetes. Moreover, insulin-dependent phosphorylation of IRs and Akt was blunted in cultures of OA FLS from patients with type 2 DM. TNF appears to be involved in mediating the advanced progression of OA seen in type 2 DM. While insulin plays a protective, antiinflammatory role in the synovium, insulin

  10. Early follicular phase hormone levels in relation to patterns of alcohol, tobacco, and coffee use.

    PubMed

    Lucero, J; Harlow, B L; Barbieri, R L; Sluss, P; Cramer, D W

    2001-10-01

    To examine the effects of alcohol, caffeine, and tobacco use on early follicular phase FSH, LH, E2, and sex hormone-binding globulin (SHBG). Cross-sectional study. Academic medical center. Four hundred ninety-eight women selected from the general population, ages 36-45, who were not currently pregnant, breast feeding, or using exogenous hormones. A general questionnaire assessing demography, anthropometry, and smoking habits and a standardized dietary questionnaire assessing food and beverage frequencies, including sources of alcohol and caffeine. FSH, LH, E2, and SHBG levels measured during the early follicular phase of the menstrual cycle. Significant associations observed in a univariate analysis included age > or =40 and current smoking associated with higher FSH; higher body mass index (BMI) associated with lower SHBG levels; and daily alcohol use, cholesterol consumption greater than the median, and coffee use >1 cup/d associated with higher E2 levels. In a multivariate model, total caffeine use was significantly associated with E2 levels after adjustment for age, BMI, total calories, current smoking, alcohol, cholesterol consumption, and day of sampling. Early follicular phase E2 increased from 28.2 pg/mL for women consuming < or =100 mg of caffeine to 45.2 pg/mL for women consuming > or =500 mg of caffeine per day, about a 70% increase. Coffee consumption and total caffeine use may increase early follicular phase E2 levels independent of related habits of alcohol or tobacco use.

  11. Developmental Programming: Impact of Prenatal Testosterone Excess on Insulin Sensitivity, Adiposity, and Free Fatty Acid Profile in Postpubertal Female Sheep

    PubMed Central

    Veiga-Lopez, A.; Moeller, J.; Patel, D.; Ye, W.; Pease, A.; Kinns, J.

    2013-01-01

    Prenatal T excess causes reproductive and metabolic disruptions including insulin resistance, attributes of women with polycystic ovary syndrome. This study tested whether increases in visceral adiposity, adipocyte size, and total free fatty acids underlie the insulin resistance seen in prenatal T-treated female sheep. At approximately 16 months of age, insulin resistance and adipose tissue partitioning were determined via hyperinsulinemic euglycemic clamp and computed tomography, respectively, in control and prenatal T-treated females. Three months later, adipocyte size and free fatty acid composition were determined. Results revealed that at the postpubertal time points tested, insulin sensitivity was increased, visceral adiposity and adipocyte size in both the sc and the visceral compartments were reduced, and circulating palmitic acid was increased in prenatal T-treated females relative to controls. In parallel studies, 20-month-old prenatal T-treated females tended to have increased basal insulin to glucose ratio. Relative to earlier findings of reduced insulin sensitivity of prenatal T-treated females during early life and adulthood, these findings of increased insulin sensitivity and reduced adiposity postpubertally are suggestive of a period of developmental adaptation. The disruption observed in free fatty acid metabolism a few months later correspond to a time point when the insulin sensitivity indices of prenatal T-treated animals appear to shift toward insulin resistance. In summary, current findings of improved insulin sensitivity and reduced visceral adiposity in postpubertal prenatal T-treated sheep relative to our earlier findings of reduced insulin sensitivity during early postnatal life and adulthood are indicative of a period of developmental adaptation. PMID:23525243

  12. Fatty liver disease, glucose tolerance and insulin resistance in obese adolescents.

    PubMed

    Slyper, A H; Rosenberg, H; Kabra, A; Huang, W-M; Blech, B; Matsumura, M M

    2015-12-01

    Adult studies suggest that intra-hepatic fat predicts 2-h blood glucose levels and type 2 diabetes, and may have a role in the development of insulin resistance. Our study objective was to explore relationships between intra-hepatic fat and (i) blood glucose levels and (ii) insulin resistance determined by homeostasis model assessment (HOMA) in a group of obese adolescents. Subjects were 61 obese non-diabetic male and female volunteers aged 12-18 years inclusive with a body mass index >95th percentile for age and 2-h blood glucose <200 mg dL(-1) . Each subject underwent 2-h glucose tolerance testing and measurement of haemoglobin A1c, ultrasensitive C-reactive protein and fasting insulin. Visceral, subcutaneous abdominal and intra-hepatic fat were determined by magnetic resonance imaging. Intra-hepatic fat was measured by gradient echo chemical shift imaging. Alanine aminotransferase levels and hepatic phase difference were not significant correlates of fasting or 2-h glucose. In a multiple regression model including hepatic phase difference and visceral fat volume, visceral fat volume was the sole predictor of HOMA. This study provides no support to the notion that intra-hepatic fat has a role in the regulation of fasting blood glucose, 2-h postprandial blood glucose or systemic insulin resistance. © 2014 World Obesity.

  13. Functional Role of Serotonin in Insulin Secretion in a Diet-Induced Insulin-Resistant State

    PubMed Central

    Kim, Kyuho; Oh, Chang-Myung; Ohara-Imaizumi, Mica; Park, Sangkyu; Namkung, Jun; Yadav, Vijay K.; Tamarina, Natalia A.; Roe, Michael W.; Philipson, Louis H.; Karsenty, Gerard; Nagamatsu, Shinya

    2015-01-01

    The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic β-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases β-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in β-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of β-cell-specific Htr2b−/− (Htr2b βKO), Htr3a−/− (Htr3a knock-out [KO]), and β-cell-specific tryptophan hydroxylase 1 (Tph1)−/− (Tph1 βKO) mice on a high-fat diet (HFD). Htr2b βKO, Htr3a KO, and Tph1 βKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 βKO mice developed glucose intolerance, but Htr2b βKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 βKO mice, and 5-HT treatment improved insulin secretion from Tph1 βKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in β-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state. PMID:25426873

  14. The Impact of Sleep Debt on Excess Adiposity and Insulin Sensitivity in Patients with Early Type 2 Diabetes Mellitus.

    PubMed

    Arora, Teresa; Chen, Mimi Z; Cooper, Ashley R; Andrews, Rob C; Taheri, Shahrad

    2016-05-15

    We examined cross-sectional and prospective associations between sleep debt and adiposity measures, as well as homeostatic model assessment-insulin resistance (HOMA-IR) in early type 2 diabetes. Prospective data analysis from participants of a randomized controlled trial based on an intensive lifestyle intervention (usual care, diet, or diet and physical activity). Data were collected at baseline, 6 months, and 12 months post-intervention. The study was performed across five secondary care centers in the United Kingdom. Patients (n = 593) with a recent diagnosis of type 2 diabetes were recruited. Objective height and weight were ascertained for obesity status (body mass index [BMI]; ≥ 30 kg/m(2)), waist circumference (cm) for central adiposity, and fasting blood samples drawn to examine insulin resistance (IR). Seven-day sleep diaries were used to calculate weekday sleep debt at baseline, calculated as average weekend sleep duration minus average weekday sleep duration. At baseline, compared to those without weekday sleep debt, those with weekday sleep debt were 72% more likely to be obese (OR = 1.72 [95% CI:1.03-2.88]). At six months, weekday sleep debt was significantly associated with obesity and IR after adjustment, OR = 1.90 (95% CI:1.10-3.30), OR = 2.07 (95% CI:1.02-4.22), respectively. A further increase at 12 months was observed for sleep debt with obesity and IR: OR = 2.10 (95% CI:1.14-3.87), OR = 3.16 (95% CI:1.38-7.24), respectively. For every 30 minutes of weekday sleep debt, the risk of obesity and IR at 12 months increased by 18% and 41%, respectively. Sleep debt resulted in long-term metabolic disruption, which may promote the progression of type 2 diabetes in newly diagnosed patients. Sleep hygiene/education could be an important factor for future interventions to target early diabetes. © 2016 American Academy of Sleep Medicine.

  15. Insulin sensitivity and carotid intima-media thickness: relationship between insulin sensitivity and cardiovascular risk study.

    PubMed

    Kozakova, Michaela; Natali, Andrea; Dekker, Jacqueline; Beck-Nielsen, Henning; Laakso, Markku; Nilsson, Peter; Balkau, Beverley; Ferrannini, Ele

    2013-06-01

    Despite a wealth of experimental data in animal models, the independent association of insulin resistance with early carotid atherosclerosis in man has not been demonstrated. We studied a European cohort of 525 men and 655 women (mean age, 44 ± 8 years) free of conditions known to affect carotid wall (diabetes mellitus, hypertension, and dyslipidemia). All subjects received an oral glucose tolerance test, a euglycemic hyperinsulinemic clamp (M/I as a measure of insulin sensitivity), and B-mode carotid ultrasound. In 833 participants (380 men), the carotid ultrasound was repeated after 3 years. In men, baseline intima-media thickness in the common carotid artery (CCA-IMT) was significantly higher (P<0.05) in the lowest M/I tertile, whereas in women CCA-IMT was higher (P<0.0005) in the highest fasting plasma glucose tertile (after adjustment for established risk factors). In multiple regression models, with CCA-IMT as the dependent variable and with risk factors and univariate metabolic correlates as independent variables, circulating free fatty acids and the leptin:adiponectin ratio replaced M/I as independent metabolic determinants of CCA-IMT in men. The strongest metabolic determinant of CCA-IMT in women was fasting plasma glucose. Three-year CCA-IMT changes were not associated with any cardio-metabolic risk factor. In young-to-middle aged apparently healthy people, the association of CCA-IMT with insulin sensitivity and its metabolic correlates differs between men and women. Lower insulin sensitivity is associated with higher IMT only in men; this association seems to be mediated by circulating free fatty acids and adipocytokines. In women, CCA-IMT is independently associated with fasting plasma glucose.

  16. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  17. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation.

    PubMed

    Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling

    2016-01-01

    Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin-phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin-phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity.

  18. Challenges constraining insulin access in Nepal-a country with no local insulin production.

    PubMed

    Sharma, Abhishek; Bhandari, Parash Mani; Neupane, Dipika; Kaplan, Warren A; Mishra, Shiva Raj

    2018-05-01

    Nepal is facing an increasing burden of diabetes and relies almost entirely on insulin imported through India. We employed a modified version of the WHO/Health Action International standard survey to assess insulin availability and prices, along with qualitative interviews with insulin retailers (pharmacists) and wholesalers in the Kathmandu Valley, Nepal. The mean availability of the two human insulins listed on the 2011 Nepal Essential Medicine List were 14.3% and 42.85% in the surveyed private- and public-sector pharmacies, respectively, compared with the WHO target of 80% availability. The median consumer price of human insulin cartridges, analogue insulin cartridges and pens was, respectively, 2.1, 4.6 and 5.3 times that of human insulin vials (US$5.54). The insulin cartridges made in India were less expensive (p<0.001) than those made elsewhere. The lowest-paid worker would need to spend between 3 and 17 days' wages to purchase a monthly insulin supply out of pocket. Insulin access is limited in Kathmandu owing to low availability and the highly unaffordable price. Insulin access could improve with the government exploring additional suppliers, pooling insulin tenders, auditing insulin utilization and developing independent prescribing guidelines. Furthermore, there is a need to educate physicians and develop a consensus statement on insulin initiation to curb the growing analogue use and promote rational use.

  19. Quantifying Insulin Sensitivity and Entero-Insular Responsiveness to Hyper- and Hypoglycemia in Ferrets

    PubMed Central

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J.; Ode, Katie Larson; Philipson, Louis H.; Engelhardt, John F.; Norris, Andrew W.

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes. PMID:24594704

  20. Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets.

    PubMed

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J; Ode, Katie Larson; Philipson, Louis H; Engelhardt, John F; Norris, Andrew W

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5-6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.

  1. Cross-reactivity of insulin analogues with three insulin assays.

    PubMed

    Dayaldasani, A; Rodríguez Espinosa, M; Ocón Sánchez, P; Pérez Valero, V

    2015-05-01

    Immunometric assays have recently shown higher specificity in the detection of human insulin than radioimmunoassays with almost no cross-reaction with proinsulin or C peptide. The introduction of the new insulin analogues on the market, however, has raised the need to define their cross-reactivity in these assays. Several studies have been published in this regard with different results. The analogues studied were insulins lispro, aspart, glargine, detemir, and glulisine. Insulin concentrations were measured in Immulite(®) 2000 and Advia Centaur(®) XP (Siemens Healthcare Diagnostics), and Elecsys(®) Modular Analytics E170 (Roche). All samples were processed 15 times in the same analytical run following a random sequence. Those samples which showed statistically and clinically significant changes in insulin concentration were reprocessed using increasing concentrations of analogue, and this was done twice, using two different serum pools, one with a low concentration of insulin and one with a high concentration of insulin. In the Elecsys(®) E170 analyser, glargine showed statistical changes (comparison of mean concentrations with p < 0.05) and clinically significant changes in measured insulin (percentage difference 986.2% > reference change value: 59.8%), and the interference increased with increasing concentrations of analogue; the differences were not significant in the case of the other analogues. In the Advia Centaur(®) and Immulite(®) 2000 only the results for glulisine did not present significance (percentage difference 44.7% < reference change value 103.5%). Increasing concentrations of aspart, glargine, and lispro showed increased interference in Immulite(®) 2000. In the Elecsys(®) E170 assay, relevant cross-reactivity was only detected with insulin glargine, whereas in the other analysers all analogues except glulisine showed significant interference. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Original paper: Efficacy and safety analysis of insulin degludec/insulin aspart compared with biphasic insulin aspart 30: A phase 3, multicentre, international, open-label, randomised, treat-to-target trial in patients with type 2 diabetes fasting during Ramadan.

    PubMed

    Hassanein, Mohamed; Echtay, Akram Salim; Malek, Rachid; Omar, Mahomed; Shaikh, Shehla Sajid; Ekelund, Magnus; Kaplan, Kadriye; Kamaruddin, Nor Azmi

    2018-01-01

    To compare the efficacy and safety of insulin degludec/insulin aspart (IDegAsp) and biphasic insulin aspart 30 (BIAsp 30) before, during and after Ramadan in patients with type 2 diabetes mellitus (T2DM) who fasted during Ramadan. In this multinational, randomised, treat-to-target trial, patients with T2DM who intended to fast and were on basal, pre- or self-mixed insulin ± oral antidiabetic drugs for ≥90 days were randomised (1:1) to IDegAsp twice daily (BID) or BIAsp 30 BID. Treatment period included pre-Ramadan treatment initiation (with insulin titration for 8-20 weeks), Ramadan (4 weeks) and post-Ramadan (4 weeks). Insulin doses were reduced by 30-50% for the pre-dawn meal (suhur) on the first day of Ramadan, and readjusted to the pre-Ramadan levels at the end of Ramadan. Hypoglycaemia was analysed as overall (severe or plasma glucose <3.1 mmol/L [56 mg/dL]), nocturnal (00:01-05:59) or severe (requiring assistance of another person). During the treatment period, IDegAsp (n = 131) had significantly lower overall and nocturnal hypoglycaemia rates with similar glycaemic efficacy, versus BIAsp 30 (n = 132). During Ramadan, despite achieving significantly lower pre-iftar (meal at sunset) self-measured plasma glucose (estimated treatment difference: -0.54 mmol/L [-1.02; -0.07] 95% CI , p = .0247; post hoc) with similar overall glycaemic efficacy, IDegAsp showed significantly lower overall and nocturnal hypoglycaemia rates versus BIAsp 30. IDegAsp is a suitable therapeutic agent for patients who need insulin for sustained glucose control before, during and after Ramadan fasting, with a significantly lower risk of hypoglycaemia, versus BIAsp 30, an existing premixed insulin analogue. Copyright © 2017. Published by Elsevier B.V.

  3. Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells.

    PubMed

    Xie, Li; Zhu, Dan; Dolai, Subhankar; Liang, Tao; Qin, Tairan; Kang, Youhou; Xie, Huanli; Huang, Ya-Chi; Gaisano, Herbert Y

    2015-06-01

    Of the four exocytotic syntaxins (Syns), much is now known about the role of Syn-1A (pre-docked secretory granules [SGs]) and Syn-3 (newcomer SGs) in insulin exocytosis. Some work was reported on Syn-4's role in biphasic glucose-stimulated insulin secretion (GSIS), but its precise role in insulin SG exocytosis remains unclear. In this paper we examine this role in human beta cells. Endogenous function of Syn-4 in human islets was assessed by knocking down its expression with lentiviral single hairpin RNA (lenti-shRNA)-RFP. Biphasic GSIS was determined by islet perifusion assay. Single-cell analysis of exocytosis of red fluorescent protein (RFP)-positive beta cells (exhibiting near-total depletion of Syn-4) was by patch clamp capacitance measurements (Cm) and total internal reflection fluorescence microscopy (TIRFM), the latter to further assess single SG behaviour. Co-immunoprecipitations were conducted on INS-1 cells to assess exocytotic complexes. Syn-4 knockdown (KD) of 77% in human islets caused a concomitant reduction in cognate Munc18c expression (46%) without affecting expression of other exocytotic proteins; this resulted in reduction of GSIS in the first phase (by 42%) and the second phase (by 40%). Cm of RFP-tagged Syn-4-KD beta cells showed severe inhibition in the readily releasable pool (by 71%) and mobilisation from reserve pools (by 63%). TIRFM showed that Syn-4-KD-induced inhibition of first-phase GSIS was attributed to reduction in exocytosis of both pre-docked and newcomer SGs (which undergo minimal residence or docking time at the plasma membrane before fusion). Second-phase inhibition was attributed to reduction in newcomer SGs. Stx-4 co-immunoprecipitated Munc18c, VAMP2 and VAMP8, suggesting that these exocytotic complexes may be involved in exocytosis of pre-docked and newcomer SGs. Syn-4 is involved in distinct molecular machineries that influence exocytosis of both pre-docked and newcomer SGs in a manner functionally redundant to Syn-1A and

  4. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry.

    PubMed Central

    Nettleton, E J; Tito, P; Sunde, M; Bouchard, M; Dobson, C M; Robinson, C V

    2000-01-01

    The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils. PMID:10920035

  5. Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis

    PubMed Central

    Hummer, Tom A.; Vohs, Jenifer L.; Yung, Matthew G.; Liffick, Emily; Mehdiyoun, Nicole F.; Radnovich, Alexander J.; McDonald, Brenna C.; Saykin, Andrew J.; Breier, Alan

    2015-01-01

    Studies have demonstrated that episodic memory (EM) is often preferentially disrupted in schizophrenia. The neural substrates that mediate EM impairment in this illness are not fully understood. Several functional magnetic resonance imaging (fMRI) studies have employed EM probe tasks to elucidate the neural underpinnings of impairment, though results have been inconsistent. The majority of EM imaging studies have been conducted in chronic forms of schizophrenia with relatively few studies in early phase patients. Early phase schizophrenia studies are important because they may provide information regarding when EM deficits occur and address potential confounds more frequently observed in chronic populations. In this study, we assessed brain activation during the performance of visual scene encoding and recognition fMRI tasks in patients with earlyphase psychosis (n=35) and age, sex, and race matched healthy control subjects (n = 20). Patients demonstrated significantly lower activation than controls in the right hippocampus and left fusiform gyrus during scene encoding and lower activation in the posterior cingulate, precuneus, and left middle temporal cortex during recognition of target scenes. Symptom levels were not related to the imaging findings, though better cognitive performance in patients was associated with greater right hippocampal activation during encoding. These results provide evidence of altered function in neuroanatomical circuitry subserving EM early in the course of psychotic illness, which may have implications for pathophysiological models of this illness. PMID:25749917

  6. Vitamin D Supplementation Does Not Impact Insulin Resistance in Black and White Children.

    PubMed

    Ferira, Ashley J; Laing, Emma M; Hausman, Dorothy B; Hall, Daniel B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2016-04-01

    Vitamin D supplementation trials with diabetes-related outcomes have been conducted almost exclusively in adults and provide equivocal findings. The objective of this study was to determine the dose-response of vitamin D supplementation on fasting glucose, insulin, and a surrogate measure of insulin resistance in white and black children aged 9–13 years, who participated in the Georgia, Purdue, and Indiana University (or GAPI) trial: a 12-week multisite, randomized, triple-masked, dose-response, placebo-controlled vitamin D trial. Black and white children in the early stages of puberty (N = 323, 50% male, 51% black) were equally randomized to receive vitamin D3 (0, 400, 1000, 2000, or 4000 IU/day) for 12 weeks. Fasting serum 25-hydroxyvitamin D (25(OH)D), glucose and insulin were assessed at baseline and weeks 6 and 12. Homeostasis model assessment of insulin resistance was used as a surrogate measure of insulin resistance. Statistical analyses were conducted as intent-to-treat using a mixed effects model. Baseline serum 25(OH)D was inversely associated with insulin (r = −0.140, P = 0.017) and homeostasis model assessment of insulin resistance (r = −0.146, P = 0.012) after adjusting for race, sex, age, pubertal maturation, fat mass, and body mass index. Glucose, insulin, and insulin resistance increased (F > 5.79, P < .003) over the 12 weeks, despite vitamin D dose-dependent increases in serum 25(OH)D. Despite significant baseline inverse relationships between serum 25(OH)D and measures of insulin resistance, vitamin D supplementation had no impact on fasting glucose, insulin, or a surrogate measure of insulin resistance over 12 weeks in apparently healthy children.

  7. Immunosuppressive Therapy in Treatment of Refractory Hypoglycemia in Type B Insulin Resistance: A Case Report

    PubMed Central

    Sirisena, Imali

    2017-01-01

    Type B insulin resistance is a rare syndrome characterized by fluctuating glucose levels (ranging from hyperglycemia with extreme insulin resistance to intractable hypoglycemia without exogenous insulin administration), high serum insulin levels, and insulin receptor autoantibodies. Most cases occur in the African American population in association with other underlying autoimmune systemic diseases. Treatments with high-dose steroids, immunosuppressants, and plasmapheresis have been used, with variable outcomes, in patients without spontaneous remission. We report the case of a 60-year-old African American woman with history of systemic lupus erythematosus presenting with extreme fluctuations in glucose levels, ranging from severe hyperglycemia to refractory hypoglycemia, with high serum concentration of insulin in both phases. Her presentation and phenotype were very similar to those seen in known cases of type B insulin resistance associated with insulin receptor antibodies. Treatment in other reported cases used a combination of high-dose steroids and immunosuppressants. We tried high-dose steroids, azathioprine, and intravenous immunoglobulins, which resulted in improvement and barely detectable insulin receptor antibody. We present a case of type B insulin resistance with abnormally low titers of insulin receptor antibodies despite a typical clinical course and response. Future research is needed to improve diagnosis and treatment in this rare disease. PMID:29264467

  8. Lifecourse Childhood Adiposity Trajectories Associated With Adolescent Insulin Resistance

    PubMed Central

    Huang, Rae-Chi; de Klerk, Nicholas H.; Smith, Anne; Kendall, Garth E.; Landau, Louis I.; Mori, Trevor A.; Newnham, John P.; Stanley, Fiona J.; Oddy, Wendy H.; Hands, Beth; Beilin, Lawrence J.

    2011-01-01

    OBJECTIVE In light of the obesity epidemic, we aimed to characterize novel childhood adiposity trajectories from birth to age 14 years and to determine their relation to adolescent insulin resistance. RESEARCH DESIGN AND METHODS A total of 1,197 Australian children with cardiovascular/metabolic profiling at age 14 years were studied serially from birth to age 14 years. Semiparametric mixture modeling was applied to anthropometric data over eight time points to generate adiposity trajectories of z scores (weight-for-height and BMI). Fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) were compared at age 14 years between adiposity trajectories. RESULTS Seven adiposity trajectories were identified. Three (two rising and one chronic high adiposity) trajectories comprised 32% of the population and were associated with significantly higher fasting insulin and HOMA-IR compared with a reference trajectory group (with longitudinal adiposity z scores of approximately zero). There was a significant sex by trajectory group interaction (P < 0.001). Girls within a rising trajectory from low to moderate adiposity did not show increased insulin resistance. Maternal obesity, excessive weight gain during pregnancy, and gestational diabetes were more prevalent in the chronic high adiposity trajectory. CONCLUSIONS A range of childhood adiposity trajectories exist. The greatest insulin resistance at age 14 years is seen in those with increasing trajectories regardless of birth weight and in high birth weight infants whose adiposity remains high. Public health professionals should urgently target both excessive weight gain in early childhood across all birth weights and maternal obesity and excessive weight gain during pregnancy. PMID:21378216

  9. Effects of Dexamethasone and Insulin Alone or in Combination on Energy and Protein Metabolism Indicators and Milk Production in Dairy Cows in Early Lactation – A Randomized Controlled Trial

    PubMed Central

    Sami, Mehrdad; Mohri, Mehrdad; Seifi, Hesam A.

    2015-01-01

    Objectives This study investigated the effects of dexamethasone and insulin, when administered at 3rd or 10th day of lactation on energy and protein metabolism in dairy cows. Materials and Methods Two hundred Holstein cows were enrolled in a randomized controlled clinical trial. The cows were randomly assigned to receive 1 of 4 treatments at 3 or 10 days in milk: control group, 10-mL i.m. injection of sterile water, group insulin, s.c. injection of 100 units of insulin, group dexamethasone, i.m. injection of 20 mg of dexamethasone, group insulin plus dexamethasone, i.m. injection of 20 mg of dexamethasone and 100 units of insulin. The cows randomly assigned to receive the treatments on 3 or 10 days of lactation. Serum samples obtained at the time of enrollment, time of treatment and at 2, 4, 7 and 14 days after intervention. The sera were analyzed for β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), glucose, cholesterol, albumin, urea, and aspartate amino transferase (AST). Data were analyzed using a repeated measures mixed model that accounted for the effects of parity, body condition score, dystocia, retained placenta, metritis and the random effect of cow. Results There was no significant interaction of group of treatment and time of intervention (day 3 or 10 post-partum) on serum components. Cows that received insulin or dexamethasone alone or in combination, had lower BHBA 2 days after treatment compared with control cows, whereas concentrations of NEFA, were unaffected suggesting that glucocorticoids lipolytic effects do not appear to be important in healthy cows. AST activities significantly reduced in cows that received dexamethasone with or without insulin at 2 and 4 days after treatment. Albumin and urea concentrations 2 days after treatment were higher for cows that received dexamethasone only or dexamethasone plus insulin compared with control and Ins received cows. There were no treatment effects on test-day milk production, milk fat and

  10. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  11. An isocaloric low glycemic index diet improves insulin sensitivity in women with polycystic ovary syndrome.

    PubMed

    Barr, Suzanne; Reeves, Sue; Sharp, Kay; Jeanes, Yvonne M

    2013-11-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting 5% to 10% of women worldwide. Approximately half of women with PCOS are lean, yet may still present with central obesity and metabolic disturbances. Low-glycemic index (GI) dietary intervention studies have demonstrated improvements in insulin sensitivity in insulin-resistant populations; however, there is little evidence of this effect in women with PCOS. This research aimed to determine the efficacy of an isocaloric low-GI dietary intervention on insulin sensitivity, independent of weight change, in women with PCOS. A nonrandomized 12-week low-GI dietary intervention, preceded by a 12-week habitual diet control phase and proceeded by a 12-week follow-up phase was conducted. Dietary intake, body composition, and metabolic risk markers were determined at baseline, after completion of the habitual diet control phase, and after the low-GI dietary intervention. Twenty-six participants were recruited at baseline, 22 commenced and 21 participants completed the low-GI dietary intervention phase. The primary outcome was change in insulin sensitivity. Secondary outcomes included assessment of changes to lipids, body composition, and estimated macronutrient intake. Repeated measures analysis of variance with Bonferroni correction were used to detect changes to outcomes across study timepoints. Twenty-one women with PCOS with mean (± standard deviation) age of 32.1±6.7 years completed the 12-week low-GI dietary intervention. As expected, no significant changes occurred during the 12-week habitual diet control phase. However, during the dietary intervention phase, dietary GI decreased from 54.5±3.5 to 48.6±5.1 (P<0.001) with a concurrent small reduction in saturated fat intake (12.4%±3% to 11.7%±3% contribution from energy, P=0.03), despite no specific recommendations to modify fat intake. Measures of insulin sensitivity and nonesterified fatty acid improved after intervention (P=0.03 and P=0

  12. Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection

    NASA Astrophysics Data System (ADS)

    Park, Eun-Joo; Dodds, Jeff; Barrie Smith, Nadine

    2010-03-01

    Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190±96 mg/dl (mean±SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

  13. Polycystic ovary syndrome (PCOS), insulin resistance and insulin-like growth factors (IGfs)/IGF-binding proteins (IGFBPs).

    PubMed

    Wang, Hsin-Shih; Wang, Tzu-Hao

    2003-08-01

    Polycystic ovary syndrome (PCOS) is the most frequent androgen disorder of ovarian function. Hyperinsulinemia with insulin resistance is believed to be a key link in the enigmatic generation of the symptoms of PCOS such as anovulatory infertility and hyperandrogenism. Regression of these symptoms may be achieved by reducing the hyperinsulinemia. A growing body of evidence suggests that PCOS patients with hyperinsulinemia have a higher risk to develop diabetes mellitus, hypertension and cardiovascular disease as compared to age-matched women. Although oral contraceptives, progestins, antiandrogens, and ovulation induction agents remain standard therapies, weight loss should also be vigorously encouraged to ameliorate the metabolic consequences of PCOS. In addition, insulin-sensitizing agents are now being shown to be useful alone or combined with standard therapies to alleviate hyperinsulinemia in PCOS. Finally and most importantly, early identification of patients at risk and prompt initiation of therapies, followed by long-term surveillance and management, may promote the patient's long-term health.

  14. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  15. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients.

    PubMed

    Hu, Xiaolei; Chen, Fengling

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. © 2018 The authors.

  16. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients

    PubMed Central

    Hu, Xiaolei

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. PMID:29233817

  17. Reduced nocturnal hypoglycaemia with basal insulin peglispro compared with insulin glargine: pooled analyses of five randomized controlled trials.

    PubMed

    Rosenstock, Julio; Marre, Michel; Qu, Yongming; Zhang, Shuyu; Bastyr, Edward J; Prince, Melvin J; Chang, Annette M

    2016-11-01

    Basal insulin peglispro (BIL) is a novel basal insulin with hepato-preferential action, resulting from reduced peripheral effects. This report summarizes hypoglycaemia data from five BIL phase III studies with insulin glargine as the comparator, including three double-blind trials. Prespecified pooled analyses (n = 4927) included: patients with type 2 diabetes (T2D) receiving basal insulin only, those with T2D on basal-bolus therapy, and those with type 1 diabetes (T1D). BIL treatment resulted in a 36-45% lower nocturnal hypoglycaemia rate compared with glargine, despite greater reduction in glycated haemoglobin (HbA1c) and higher basal insulin dosing. The total hypoglycaemia rate was similar in patients with T2D on basal treatment only, trended towards being higher (10%) in patients with T2D on basal-bolus treatment (p = .053), and was 15% higher (p < .001) with BIL versus glargine in patients with T1D, with more daytime hypoglycaemia in the T1D and T2D groups who were receiving basal-bolus therapy. In T1D, during the maintenance treatment period (26-52 weeks), the total hypoglycaemia rate was not significantly different. There were no differences in severe hypoglycaemia in the T1D or T2D pooled analyses. BIL versus glargine treatment resulted in greater HbA1c reduction with less nocturnal hypoglycaemia in all patient populations, higher daytime hypoglycaemia with basal-bolus therapy in the T1D and T2D groups, and an associated increase in total hypoglycaemia in the patients with T1D. © 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  18. The effect of tubing dwell time on insulin adsorption during intravenous insulin infusions.

    PubMed

    Thompson, Cecilia D; Vital-Carona, Jessica; Faustino, E Vincent S

    2012-10-01

    Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration-dwell time combination five times. Comparisons were performed using analyses of variance. For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy.

  19. Effect of insulin analog initiation therapy on LDL/HDL subfraction profile and HDL associated enzymes in type 2 diabetic patients.

    PubMed

    Aslan, Ibrahim; Kucuksayan, Ertan; Aslan, Mutay

    2013-04-24

    Insulin treatment can lead to good glycemic control and result in improvement of lipid parameters in type 2 diabetic patients. This study was designed to evaluate the effect of insulin analog initiation therapy on low-density lipoprotein (LDL)/ high-density lipoprotein (HDL) sub-fractions and HDL associated enzymes in type 2 diabetic patients during early phase. Twenty four type 2 diabetic patients with glycosylated hemoglobin (HbA1c) levels above 10% despite ongoing combination therapy with sulphonylurea and metformin were selected. Former treatment regimen was continued for the first day followed by substitution of sulphonylurea therapy with different insulin analogs (0.4 U/kg/day) plus metformin. Glycemic profiles were determined over 72 hours by continuous glucose monitoring system (CGMS) and blood samples were obtained from all patients at 24 and 72 hours. Plasma levels of cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), apolipoprotein B (apoB) and apolipoprotein A-1 (apoA-I) were determined by enzyme-linked immunosorbent assay (ELISA). Measurement of CETP and LCAT activity was performed via fluorometric analysis. Paraoxonase (PON1) enzyme activity was assessed from the rate of enzymatic hydrolysis of phenyl acetate to phenol formation. LDL and HDL subfraction analysis was done by continuous disc polyacrylamide gel electrophoresis. Mean blood glucose, total cholesterol (TC), triglyceride (TG) and very low-density lipoprotein cholesterol (VLDL-C) levels were significantly decreased while HDL-C levels were significantly increased after insulin treatment. Although LDL-C levels were not significantly different before and after insulin initiation therapy a significant increase in LDL-1 subgroup and a significant reduction in atherogenic LDL-3 and LDL-4 subgroups were observed. Insulin analog initiation therapy caused a significant increase in HDL-large, HDL- intermediate and a significant reduction in HDL-small subfractions

  20. 78 FR 5816 - Guidance for Industry on Clinical Pharmacogenomics: Premarket Evaluation in Early-Phase Clinical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    .... The guidance provides recommendations on when and how genomic principles should be considered and... recommendations on when and how genomic principles should be considered and applied in early-phase clinical... the larger, later adequate, and well-controlled trials (phase 3) that are needed to support marketing...

  1. [Insulin-glucose ratio and body fat composition in patients with chronic anovulation and sterility].

    PubMed

    Vital Reyes, V S; Enríquez Miranda, M C; Martínez Martínez, E; Coronel, M C; Hinojosa Cruz, J C; Téllez Velasco, S

    2002-02-01

    A clinical, descriptive, and transversal study was conducted in a group of patients with chronic anovulation and sterility, to correlate insulin resistance, determined by the fasting glucose/insulin ratio, with body fat composition using anthropometrics parameters and the interaction of light near infrared region method, we studied 41 young patients with chronic anovulation and sterility. Based on their body mass index, all patients had obesity or overweight. Similarly, most of them presented with a percentage of body fat over the recommended limits. Forty percent of all studied patients had a fasting glucose/insulin ratio below 4.5, which corresponds to insulin resistance. The correlation between the percentage of body fat and fasting glucose/insulin ratio was significant, as was the correlation between body mass index and the percentage of body fat. We found overweight or obesity in the majority of our patients, and insulin resistance in almost half of them. Such disturbances were positively associated with the percentage of body fat and android distribution. Therefore, we recommend a routinely anthropometrics evaluation in these patients as well as fasting glucose/insulin ratio determination in order to act in an early stage over the natural history of metabolic syndrome, whose common denominator is insulin resistance.

  2. Development of diet-induced insulin resistance in adult Drosophila melanogaster.

    PubMed

    Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N; Bauer, Johannes H

    2012-08-01

    The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson's Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. © 2012 Elsevier B.V. All rights reserved.

  3. Development of diet-induced insulin resistance in adult Drosophila melanogaster

    PubMed Central

    Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N.; Bauer, Johannes H.

    2013-01-01

    The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson’s Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. PMID:22542511

  4. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  5. Rapid Characterization of Insulin Modifications and Sequence Variations by Proteinase K Digestion and UHPLC-ESI-MS

    NASA Astrophysics Data System (ADS)

    Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu

    2018-01-01

    Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.

  6. Rapid Characterization of Insulin Modifications and Sequence Variations by Proteinase K Digestion and UHPLC-ESI-MS

    NASA Astrophysics Data System (ADS)

    Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu

    2018-05-01

    Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.

  7. Effect of intensive insulin treatment on plasma levels of lipoprotein-associated phospholipase A2 and secretory phospholipase A2 in patients with newly diagnosed type 2 diabetes.

    PubMed

    Lin, Xiu-Hong; Xu, Ming-Tong; Tang, Jv-Ying; Mai, Li-Fang; Wang, Xiao-Yi; Ren, Meng; Yan, Li

    2016-11-23

    China has the highest absolute disease burden of diabetes worldwide. For diabetic patients, diabetes-related vascular complications are major causes of morbidity and mortality. The roles of lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) and secretory phospholipase A 2 (sPLA 2 ) as inflammatory markers have been recently evaluated in the pathogenesis of both diabetes and atherosclerosis. We aimed to determine the mechanism through which patients with newly diagnosed type 2 diabetes gain long-term vascular benefit from intensive insulin therapy by evaluating the change in Lp-PLA 2 and sPLA 2 levels after early intensive insulin treatment and its relevance with insulin resistance and pancreatic β-cell function. In total, 90 patients with newly diagnosed type 2 diabetes mellitus were enrolled. All patients received continuous subcutaneous insulin infusion (CSII) for approximately 2 weeks. Intravenous glucose-tolerance test (IVGTT) and oral glucose-tolerance test (OGTT) were performed, and plasma concentrations of Lp-PLA 2 and sPLA 2 were measured before and after CSII. Levels of Lp-PLA 2 and sPLA 2 were significantly higher in diabetic patients with macroangiopathy than in those without (P < 0.05). After CSII, the sPLA 2 level decreased significantly in all diabetic patients (P < 0.05), while the Lp-PLA2 level changed only in those with macroangiopathy (P < 0.05). The area under the curve of insulin in IVGTT and OGTT, the acute insulin response (AIR 3-5 ), early phase of insulin secretion (ΔIns30/ΔG30), modified β-cell function index, and homeostatic model assessment for β-cell function (HOMA-β) increased after treatment even when adjusted for the influence of insulin resistance (IR; P < 0.001). The HOMA-IR was lower after treatment, and the three other indicators adopted to estimate insulin sensitivity (ISI ced , IAI, and QUICKI) were higher after treatment (P < 0.05). Correlation analysis showed that the decrease in the Lp-PLA 2 and s

  8. The relationship between insulin secretion, the insulin-like growth factor axis and growth in children with cystic fibrosis.

    PubMed

    Ripa, Paulus; Robertson, Ian; Cowley, David; Harris, Margaret; Masters, I Brent; Cotterill, Andrew M

    2002-03-01

    Cystic fibrosis-related diabetes mellitus (CFRD) is an increasingly common complication of cystic fibrosis. CFRD is preceded by a progressive decline in insulin secretion but there is no accepted definition of the prediabetic state in CFRD. This prediabetic state appears to have adverse effects on clinical status, nutrition and lung function, but there is no direct evidence that the impaired glucose homeostasis is the cause of these deteriorations. This study examined the prevalence of glucose intolerance and impaired insulin secretion in a population of children with CF without CFRD. Severe CF lung disease is often associated with poor weight gain and slower growth but the mechanism for this is still unclear. The relationships between the current state of glucose homeostasis, insulin secretion and the insulin-like growth factor axis, height velocity, nutrition status and lung function were therefore studied. Eighteen children with cystic fibrosis aged 9.5-15 years had oral glucose tolerance tests and 14 of these also had intravenous glucose tolerance tests (four refused). Blood samples were collected for insulin, C-peptide, glucose, HbA1c, insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein (IGFBP)-1 and IGFBP-3. Data on height, weight, puberty status, clinical score (Shwachman score) and lung function were recorded. Height velocity, height and weight standard deviation scores (SDS) were calculated using WHO/CDC data. The mean height SDS (-0.52 +/- 0.17) was less than the normal population (P = 0.007) and the mean height velocity was 4.6 +/- 0.5 cm/year, 39% with a height velocity less than the third percentile for age. The weight SDS and body mass index (BMI) were similar to the normal population. Four children had impaired glucose tolerance. The first-phase insulin response (FPIR) was below the first percentile of normal population values in nine (65%). Impaired FPIR or impaired glucose tolerance did not correlate with the Shwachman score

  9. Insulin pumps and insulin quality--requirements and problems.

    PubMed

    Brange, J; Havelund, S

    1983-01-01

    In developing insulin solution suitable for delivery devices the chemical and biological stability, as well as the physical stability, must be taken into consideration. Addition of certain mono- and disaccharides increases the physical stability of neutral insulin solutions, but concurrently the chemical and biological stability decrease to an unacceptable degree. Addition of Ca-ions in low concentrations offers a physiologically acceptable method for stabilizing neutral insulin solutions against heat precipitation without affecting the quality, including the chemical and biological stability.

  10. Comparison of prandial AIR inhaled insulin alone to intensified insulin glargine alone and to AIR insulin plus intensified insulin glargine in patients with type 2 diabetes previously treated with once-daily insulin glargine.

    PubMed

    Rosenstock, Julio; Eliaschewitz, Freddy G; Heilmann, Cory R; Muchmore, Douglas B; Hayes, Risa P; Belin, Ruth M

    2009-09-01

    Patients with type 2 diabetes often initiate insulin with once-daily basal insulin. Over time, many patients intensify their insulin regimens in an attempt to attain and sustain glycemic targets. This study compares three intensification approaches: changing insulin glargine to preprandial AIR inhaled insulin (developed by Alkermes, Inc. [Cambridge, MA] and Eli Lilly and Company [Indianapolis, IN]; AIR is a registered trademark of Alkermes, Inc.), intensifying glargine via validated titration algorithms (IG), or adding AIR insulin while intensifying glargine (AIR + IG). Five hundred sixty patients with hemoglobin A(1c) (A1C) of 7.5-10.5%, on one or more antihyperglycemic medications, and on once-daily insulin glargine for > or =4 months were randomly allocated to one of the three treatments lasting 52 weeks. The primary objective assessed between-group differences in A1C mean change from baseline to 24 weeks using last-observation-carried-forward (LOCF) in the intent-to-treat population. At 24 weeks, A1C was reduced from a mean baseline of 8.5% to 7.7%, 7.9%, and 7.5% for the AIR, IG, and AIR + IG groups, respectively. AIR produced 0.20% greater A1C decrease than IG (least-squares mean difference = -0.20%; 95% confidence interval [CI], -0.39, -0.02). AIR + IG had a 0.35% greater A1C decrease versus IG (95% CI, -0.57, -0.13). The -0.15% difference between AIR + IG versus AIR was not significant (P < 0.198). More hypoglycemia categorized as severe occurred with AIR alone versus IG alone at LOCF end points. More nocturnal hypoglycemia occurred with IG alone versus AIR alone and AIR + IG. Preprandial inhaled insulin provides an alternative for patients not optimized on insulin glargine alone. Glycemic control, hypoglycemic risk, delivery preference, and regimen complexity must be considered when selecting insulin initiation and optimization regimens.

  11. Toward understanding insulin fibrillation.

    PubMed

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  12. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    PubMed Central

    Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling

    2016-01-01

    Purpose Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Methods Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Results Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. Conclusion With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. PMID:26966360

  13. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    PubMed

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose < or =215 mg/dL. Twenty patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p < .002), whereas conventional

  14. The Effect of Tubing Dwell Time on Insulin Adsorption During Intravenous Insulin Infusions

    PubMed Central

    Vital-Carona, Jessica; Faustino, E. Vincent S.

    2012-01-01

    Abstract Background Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. Materials and Methods In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration–dwell time combination five times. Comparisons were performed using analyses of variance. Results For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. Conclusions We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy. PMID:22746979

  15. Geoeffectiveness during the early phase of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Pande, Bimal

    Geoeffectiveness during the early phase of Solar Cycle 24 \\underline{} Abstract\\underline{} It is very important and interesting to understand the solar eruptions because it produces the geoeffectiveness in our Earth environment. In the rise phase of the solar cycle, geoeffective events are less frequent, thus this provide us better opportunity to study these events including the detection of their source regions. Keeping this in mind, we have analysed the data of rise phase of current solar cycle 24 ( 2009-2012). During above time period, we have selected 59 geoeffective events having Disturbance Storm Time (Dst) index < -50 nT. Based on the Dst index, we divided the events into two categories i.e. moderate (< -50 nT > -100 nT ) and intense ( <-100 nT). To locate the solar source regions of geoeffective and SEPs associated events, we have used available images, movies and Solar Geophysical data (SGD) list: for example movies from SOHO/EIT, images and movies from the Solar Dynamic Observatory (SDO). In this study, we will discuss and compare the different properties of associated CMEs, flares and their relation with geoeffectiveness.

  16. Glucose-Responsive Implantable Polymeric Microdevices for "Smart" Insulin Therapy of Diabetes

    NASA Astrophysics Data System (ADS)

    Chu, Michael Kok Loon

    Diabetes mellitus is a chronic illness manifested by improper blood glucose management, affecting over 350 million worldwide. As a result, all type 1 patients and roughly 20% of type 2 patients require exogenous insulin therapy to survive. Typically, daily multiple injections are taken to maintain normal glucose levels in response glucose spikes from meals. However, patient compliance and dosing accuracy can fluctuate with variation in meals, exercise, glucose metabolism or stress, leading to poor clinical outcomes. A 'smart', closed-loop insulin delivery system providing on-demand release kinetics responding to circulating glucose levels would be a boon for diabetes patients, replacing constant self monitoring and insulin. This thesis focuses on the development of a novel, 'smart' insulin microdevice that can provide on-demand insulin release in response to blood glucose levels. In the early stage, the feasibility of integrating a composite membrane with pH-responsive nanoparticles embedded in ethylcellulose membrane to provide pH-responsive in vitro release was examined and confirmed using a model drug, vitamin B12. In the second microdevice, glucose oxidase for generating pH signals from glucose oxidation, catalase and manganese dioxide nanoparticles, as peroxide scavengers, were used in a bioinorganic, albumin-based membrane cross-linked with a polydimethylsiloxane (PDMS) grid-microdevice system. This prototype device demonstrated insulin release in response to glucose levels in vitro and regulating plasma glucose in type 1 diabetic rats when implanted intraperitoneally. Advancement allowing for subcutaneous implantation and improved biocompatibility was achieved with surface modification of PDMS microdevices grafted with activated 20 kDa polyethylene glycol (PEG) chains, dramatically reducing immune response and local inflammation. When implanted subcutaneously in diabetic rats, glucose-responsive insulin delivery microdevices showed short and long

  17. Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery

    PubMed Central

    Song, Lei; Zhi, Zheng-liang; Pickup, John C

    2014-01-01

    Current oral insulin formulations reported in the literature are often associated with an unpredictable burst release of insulin in the intestine, which may increase the risk for problematic hypoglycemia. The aim of the study was to develop a solution based on a nanolayer encapsulation of insulin-chitosan complexes to afford sustained release after oral administration. Chitosan/heparin multilayer coatings were deposited onto insulin-chitosan microparticulate cores in the presence of poly(ethylene) glycol (PEG) in the precipitating and coating solutions. The addition of PEG improved insulin loading and minimized an undesirable loss of the protein resulting from redissolution. Nanolayer encapsulation and the formation of complexes enabled a superior loading capacity of insulin (>90%), as well as enhanced stability and 74% decreased solubility at acid pH in vitro, compared with nonencapsulated insulin. The capsulated insulin administered by oral gavage lowered fasting blood glucose levels by up to 50% in a sustained and dose-dependent manner and reduced postprandial glycemia in streptozotocin-induced diabetic mice without causing hypoglycemia. Nanolayer encapsulation reduced the possibility of rapid and erratic falls of blood glucose levels in animals. This technique represents a promising strategy to promote the intestinal absorption efficiency and release behavior of the hormone, potentially enabling an efficient and safe route for oral insulin delivery of insulin in diabetes management. PMID:24833901

  18. Nonparallel changes of growth hormone (GH) and insulin-like growth factor-I, insulin-like growth factor binding protein-3, and GH-binding protein, after craniospinal irradiation and chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nivot, S.; Adan, L.; Souberbielle, J.

    1994-03-01

    The authors studied the GH-insulin-like growth factor-I (IGF-I) axis serially over 24-36 months in six patients with medulloblastoma who underwent surgical removal of the tumor followed by craniospinal irradiation therapy for 6 weeks and then chemotherapy for 42 weeks. Eighteen and 24 months after beginning irradiation there was a decline in the peak GH secretory response to acute stimulation with arginine/insulin hypoglycemia. Six months after irradiation and during chemotherapy there was a transient decline in IGF-I, IGF binding protein-3 (IGFBP-3), and GH-BP values (respective mean values of 56.1 {+-} 9.0 ng/mL, 1.1 {+-} 0.2 {mu}g/mL, and 7.6 {+-} 3.3% ofmore » radioactivity as compared to time 0 values: 139 {+-} 15 ng/mL, 2.2 {+-} 0.2 {mu}g/mL, and 20.0 {+-} 4.0%, P < 0.001), although provoked GH secretion was normal at this time. The IGF-I, IGFBP-3, and GH-BP returned to pretreatment ranges by 12-36 months after initiation of the study. There was also a decline in body mass index and serum protein values at 6 months after irradiation in ligand and immunoblot analysis there was a decline in IGFBP-3 and an abnormal electrophoretic mobility of IGFBP-2 that were both normalized at 36 months. In one patient they observed a high level of IGFBP-3 proteolysis at this time. This study demonstrates that before the decrease of GH secretion in patients receiving cranial irradiation there is a transient phase of GH insensitivity that may be characteristic of the acute therapeutic phase including the chemotherapy. This partial insensitivity may explain the early growth retardation observed in these patients. 28 refs., 4 figs., 1 tab.« less

  19. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    PubMed

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  20. O-linked oligosaccharides on insulin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, E.; Gorden, P.

    1991-02-01

    The insulin receptor, an integral membrane glycoprotein, is synthesized as a single-chain precursor that is cleaved to produce two mature subunits, both of which contain N-linked oligosaccharide chains and covalently linked fatty acids. We report that the beta-subunit also contains O-linked oligosaccharides. The proreceptor, alpha-subunit, and beta-subunit were labeled with (3H)mannose and (3H)galactose in the presence or absence of an inhibitor of O-linked glycosylation. Tryptic peptides from each component were separated by reverse-phase high-performance liquid chromatography. N- and O-linked oligosaccharide chains were identified on these peptides by specific enzymatic digestions. The proreceptor and alpha-subunit contained only N-linked oligosaccharides, whereas themore » beta-subunit contained both N- and O-linked oligosaccharides. The O-linked oligosaccharide chains were attached to a single tryptic fraction of the beta-subunit, which also contained N-linked chains. This fraction was further localized to the NH2-terminal tryptic peptide of the beta-subunit by specific immunoprecipitation with an anti-peptide antibody with specificity for this region. Binding of insulin and autophosphorylation of the beta-subunit were not dependent on O-linked glycosylation, because cells grown in the presence of the inhibitor exhibited a normal dose response to insulin. Therefore, the insulin receptor contains O-linked oligosaccharides on the NH2-terminal tryptic peptide of the beta-subunit, and these O-linked oligosaccharides are not necessary to the binding or autophosphorylation function of the receptor.« less

  1. Insulins in equine urine: qualitative analysis by immunoaffinity purification and liquid chromatography/tandem mass spectrometry for doping control purposes in horse-racing.

    PubMed

    Kuuranne, Tiia; Thomas, Andreas; Leinonen, Antti; Delahaut, Philippe; Bosseloir, Alan; Schänzer, Wilhelm; Thevis, Mario

    2008-01-01

    Insulin is a peptide hormone consisting of two peptide chains (A- and B-chain) that are cross-linked by two disulfide bonds. To obtain improved pharmacokinetic onset of action profiles of insulin treatment in diabetic patients, recombinant long-, intermediate-, and rapid-acting insulin analogs are produced, in which the C-terminal end of the B-chain plays an especially important role.A review of the veterinary literature reveals the low prevalence of equine type I diabetes mellitus, which indicates that the therapeutic use of insulin in racing horses is unlikely. Although there is no unequivocal evidence of an overall performance-enhancing effect of insulin, in human sports the misuse of insulin preparations is reported among elite athletes. The desired effects of insulin include the increase of muscular glycogen prior to sports event or during the recovery phase, in addition to a chalonic action, which increases the muscle size by inhibiting protein breakdown. In the present study urinary insulin was detected in equine samples and differences between equine insulin, human insulin, as well as rapidly acting recombinant insulin variants were examined. The method was based on sample purification by solid-phase extraction (SPE) and immunoaffinity chromatography (IAC), and subsequent analysis by microbore liquid chromatography (LC) and tandem mass spectrometry (MS/MS) using top-down sequencing for the determination of various insulins. Product ion scan experiments of intact proteins and B-chains enabled the differentiation between endogenously produced equine insulin, its DesB30 metabolite, human insulin and recombinant insulin analogs, and the assay allowed the assignment of individual product ions, especially those originating from modified C-termini of B-chains. Copyright (c) 2008 John Wiley & Sons, Ltd.

  2. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  3. Re-evaluation of Sepharose-insulin as a tool for the study of insulin action.

    PubMed Central

    Kolb, H J; Renner, R; Hepp, K D; Weiss, L; Wieland, O H

    1975-01-01

    The biological activity of Sepharose-insulin in different assays in vitro, e.g., stimulation of glucose oxidation, lipogenesis, and antilipolysis and activation of pyruvate dehydrogenase (EC 1.2.4.1) activity, has been investigated. According to amino acid analysis, between 270 and 330 mug (6.9-8.2 U) of insulin were coupled per ml of packed beads. Related to the total insulin content, 0.2-0.7% of the insulin was biologically active. Comparable biological activity was observed with isolated fat cells and fat pad pieces. After incubation with tissue or cells, Sepharose-insulin particles were separated by centrifugation from the medium. The clear supernatant was assayed for biologically and immunologically reactive insulin and contained soluble insulin activity. A quantitative evaluation of the soluble biological and immunological insulin activity in the supernatant accounted for the total insulin activity of Sepharose-insulin. PMID:1054501

  4. A longitudinal study of serum insulin and insulin resistance as predictors of weight and body fat gain in African American and Caucasian children

    PubMed Central

    Sedaka, Nicole M.; Olsen, Cara H.; Yannai, Laura E.; Stutzman, William E.; Krause, Amanda J.; Sherafat-Kazemzadeh, Roya; Condarco, Tania A.; Brady, Sheila M.; Demidowich, Andrew P.; Reynolds, James C.; Yanovski, Susan Z; Hubbard, Van S; Yanovski, Jack A

    2016-01-01

    Background The influence of insulin and insulin resistance (IR) on children’s weight and fat gain is unclear. Objective To evaluate insulin and IR as predictors of weight and body fat gain in children at high-risk for adult obesity. We hypothesized that baseline IR would be positively associated with follow-up BMI and fat mass. Subjects/Methods 249 healthy African American and Caucasian children, age 6–12y, at high-risk for adult obesity because of early-onset childhood overweight and/or parental overweight, were followed for up to 15y with repeated BMI and fat mass measurements. We examined baseline serum insulin and HOMA-IR as predictors of follow-up BMI Z score and fat mass by DEXA in mixed model longitudinal analyses accounting for baseline body composition, pubertal stage, sociodemographic factors, and follow-up interval. Results At baseline, 39% were obese (BMI ≥95th percentile for age/sex). Data from 1,335 annual visits were examined. Children were followed for an average of 7.2±4.3y, with a maximum follow up of 15 years. After accounting for covariates, neither baseline insulin nor HOMA-IR was significantly associated with follow up BMI (p’s>.26), BMIz score (p’s>.22), fat mass (p’s>.78), or fat mass percentage (p’s>.71). In all models, baseline BMI (p<.0001), body fat mass (p<.0001), and percentage fat (p<.001) were strong positive predictors for change in BMI and fat mass. In models restricted to children without obesity at baseline, some but not all models had significant interaction terms between body adiposity and insulinemia/HOMA-IR that suggested less gain in mass among those with greater insulin or insulin resistance. The opposite was found in some models restricted to children with obesity at baseline. Conclusions In middle childhood, BMI and fat mass, but not insulin or IR, are strong predictors of children’s gains in BMI and fat mass during adolescence. PMID:27534840

  5. Study of prevalence and effects of insulin resistance in patients with chronic hepatitis C genotype 4.

    PubMed

    Amer, A F; Baddour, M M; Elshazly, M A; Fadally, G; Hanafi, N F; Assar, S L

    2016-02-01

    There is strong epidemiological evidence linking hepatitis C virus (HCV) infection and diabetes. Our aim was to evaluate the prevalence of insulin resistance in Egyptian patients with chronic HCV genotype 4 infection, to assess factors associated with insulin resistance and to test the impact of insulin resistance on outcomes of treatment with pegylated interferon/ribavirin. Insulin resistance [homeostasis model assessmentinsulin resistance (HOMA-IR) score > 3.0] was detected in 31 of 100 nondiabetic patients. The relationship between elevated HOMA-IR and baseline viral load and degree of fibrosis was statistically significant (r = 0.218 and r = 0.223). Follow-up of patients with complete early virological response until the end of treatment showed a statistically significant decrease in HOMA-IR score. Out of 29 liver tissue sections examined, 14 had a low level of expression of insulin receptor type 1 by immunohistochemical studies. This study confirms that insulin resistance affects treatment outcome, and thus HOMA-IR testing before initiation of therapy may be a cost-effective tool.

  6. Insulin Test

    MedlinePlus

    ... sometimes used in conjunction with the glucose tolerance test (GTT) . In this situation, blood glucose and insulin levels are measured at pre-established time intervals to evaluate insulin resistance. When ...

  7. A common variation of the PTEN gene is associated with peripheral insulin resistance.

    PubMed

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, J F P; Poulsen, P; Grunnet, L G; Vaag, A

    2016-09-01

    Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated with fasting levels of plasma insulin and glucose, influences in vivo glucose metabolism and insulin signalling. The primary outcome measure was the gene variant's association with peripheral glucose disposal rate and, secondarily, whether this association was explained by altered activities of PTEN targets PI3K and Akt. A total of 183 normoglycaemic Danes, including 158 twins and 25 singletons, were genotyped for PTEN rs11202614, which is in complete linkage disequilibrium with rs2142136 and rs10788575, which have also been reported in association with glycaemic traits and type 2 diabetes (T2D). Hepatic and peripheral insulin sensitivity was measured using tracer and euglycaemic-hyperinsulinaemic clamp techniques; insulin secretion was assessed by intravenous glucose tolerance test; and muscle biopsies were taken during insulin infusion from 150 twins for measurement of PI3K and Akt activities. The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single nucleotide polymorphism was not associated with either PI3K or Akt activities. A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling in skeletal muscle. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Insulin production rate in normal man as an estimate for calibration of continuous intravenous insulin infusion in insulin-dependent diabetic patients.

    PubMed

    Waldhäusl, W K; Bratusch-Marrain, P R; Francesconi, M; Nowotny, P; Kiss, A

    1982-01-01

    This study examines the feasibility of deriving the 24-h insulin requirement of insulin-dependent diabetic patients who were devoid of any endogenous insulin release (IDD) from the insulin-production rate (IPR) of healthy man (basal, 17 mU/min; stimulated 1.35 U/12.5 g glucose). To this end, continuous intravenous insulin infusion (CIVII) was initiated at a precalculated rate of 41.2 +/- 4.6 (SD) U/24 h in IDD (N - 12). Blood glucose profiles were compared with those obtained during intermittent subcutaneous (s.c.) insulin therapy (IIT) and those of healthy controls (N = 7). Regular insulin (Hoechst CS) was infused with an adapted Mill Hill Infuser at a basal infusion rate of 1.6 U/h (6:00 a.m. to 8:00 p.m.), and of 0.8 U/h from 8:00 p.m. to 6:00 a.m. Preprandial insulin (3.2-6.4 U) was added for breakfast, lunch, and dinner. Daily individual food intake totaled 7688 +/- 784 kJ (1836 +/- 187 kcal)/24 h including 184 +/- 37 g of glucose. Proper control of blood glucose (BG) (mean BG 105 +/- 10 mg/dl; mean amplitude of glycemic excursions 54 +/- 18 mg/dl; and 1 h postprandial BG levels not exceeding 160 mg/dl) and of plasma concentrations of beta-hydroxybutyrate and lactate was maintained by 41.4 +/- 4.4 U insulin/24 h. Although BG values only approximated the upper normal range as seen in healthy controls, they were well within the range reported by others during CIVII. Therefore, we conclude that in adult IDD completely devoid of endogenous insulin (1) the IPR of normal man can be used during CIVII as an estimate for the patient's minimal insulin requirement per 24 h, and (2) this approach allows for a blood glucose profile close to the upper range of a normal control group. Thus, deriving a patient's daily insulin dose from the insulin production rate of healthy man may add an additional experimental protocol which aids in making general calculations of a necessary insulin dose instead of using trial and error or a closed-loop insulin infusion system.

  9. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride.

    PubMed

    Yang, Chen; Zhang, Mengmeng; Li, Yagang; Wang, Yan; Mao, Weixian; Gao, Yuan; Xu, Hui

    2015-12-01

    The role of insulin in the mechanism underlying the excessive fluoride that causes skeletal lesion was studied. The in vitro bone marrow stem cells (BMSC) collected from Kunming mice were exposed to varying concentrations of fluoride with or without insulin. The cell viability and early differentiation of BMSC co-treated with fluoride and insulin were measured by using cell counting kit-8 and Gomori modified calcium-cobalt method, respectively. We further investigated the in vivo effects of varying dose of fluoride on rats co-treated with streptozotocin (STZ). Wistar rats were divided into six groups which included normal control, 10 mg fluoride/kg day group, 20 mg fluoride/kg day group, STZ control, STZ+10 mg fluoride/kg day group, and STZ+20 mg fluoride/kg day group. The rats were administered with sodium fluoride (NaF) by gavage with water at doses 10 and 20 mg fluoride/kg day for 2 months. In a period of one month, half of rats in every group were treated with streptozotocin (STZ) once through intraperitoneal injection at 52 mg/kg body weight. The serum glucose, HbA1c, and insulin were determined. Bone mineral content and insulin release were assessed. The results showed insulin combined with fluoride stimulated BMSC cell viability in vitro. The bone mineral content reduced in rats treated with higher dose of fluoride and decreased immensely in rat co-treated with fluoride and STZ. Similarly, a combination treatment of a high dose of fluoride and STZ decreased insulin sensitivity and activity. To sum up, these data indicated fluoride influenced insulin release, activity, and sensitivity. Furthermore, the insulin state in vivo interfered in the osteogenesis in turn and implied there was a close relation between insulin and bone pathogenesis in the mechanism of fluoride toxicity.

  10. Insulin resistance in dairy cows.

    PubMed

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes. PMID:27698690

  12. Future therapeutic directions; new medications and insulin delivery in a changing world for effective diabetes management.

    PubMed

    Modi, Pankaj

    2009-09-01

    Insulin remains a key to the management of diabetes. The early addition of insulin to oral therapy in type-2 patients is recognized as an effective option that can help improve glycemic control and reduces the complications and contribute to more favorable outcomes. Controlling blood glucose levels within acceptable limits is crucial to the long-term health of patients with diabetes. The benefits of patient education and chronic disease management tools cannot be underestimated as many patients will require education and help in initiation of insulin therapy to achieve glycemic targets. The wide choice of insulin formulations and the ever-expanding range of delivery methods are now available. These methods made insulin administration easier, less painful, more discreet, and more accurate than ever before thus providing important tools to overcome barriers to insulin initiation and improve achievement of glycemic goals. In addition, exciting developments in newer therapeutics have increased the potential for optimal glycemic control. This review discusses how these approaches can help patients manage their diabetes effectively by considering new insulin formulations and delivery devices and newer therapeutics.

  13. Dietary monounsaturated fat in early life regulates IGFBP2: implications for fat mass accretion and insulin sensitivity.

    PubMed

    Sabin, Matthew A; Yau, Steven W; Russo, Vincenzo C; Clarke, Iain J; Dunshea, Frank R; Chau, Jillian; Cox, Maree; Werther, George A

    2011-12-01

    The aim of this study was to investigate effects of dietary supplementation with fat or sugar on body composition (BC) and insulin sensitivity (IS) in maturing pigs. Fifty newborn pigs randomized to a control diet or 18% saturated fat (SF), 18% monounsaturated fat (MUF), 18% mixed fat (MF), or 50% sucrose (SUC), from 1 to 16 weeks of age. Outcomes included weight gain, BC (dual energy X-ray absorptiometry, DXA), IS (fasting insulin and hyperinsulinaemic-euglycaemic clamps), fasting Non-Esterified Fatty Acid (NEFA) concentrations, and mRNA expression of genes involved in lipogenesis and IS in skeletal muscle (SM), subcutaneous (SAT), and visceral adipose tissue (VAT). In vitro studies examined direct effects of fatty acids on insulin-like growth factor-binding protein 2 (IGFBP2) mRNA in C2C12 myotubes. While SUC-fed pigs gained most weight (due to larger quantities consumed; P < 0.01), those fed fat-enriched diets exhibited more weight gain per unit energy intake (P < 0.001). Total (P = 0.03) and visceral (P = 0.04) adiposity were greatest in MUF-fed pigs. Whole-body IS was decreased in those fed fat (P = 0.04), with fasting insulin increased in MUF-fed pigs (P = 0.03). SM IGFBP2 mRNA was increased in MUF-fed pigs (P = 0.009) and, in all animals, SM IGFBP2 mRNA correlated with total (P = 0.007) and visceral (P = 0.001) fat, fasting insulin (r = 0.321; P = 0.03) and change in NEFA concentrations (r = 0.285; P = 0.047). Furthermore, exposure of in vitro cultured myotubes to MUF, but not SF, reduced IGFBP2 mRNA suggesting a converse direct effect. In conclusion, diets high in fat, but not sugar, promote visceral adiposity and insulin resistance in maturing pigs, with evidence that fatty acids have direct and indirect effects on IGFBP2 mRNA expression in muscle.

  14. Effects of metformin treatment on luteal phase progesterone concentration in polycystic ovary syndrome.

    PubMed

    Meenakumari, K J; Agarwal, S; Krishna, A; Pandey, L K

    2004-11-01

    The causes of luteal phase progesterone deficiency in polycystic ovary syndrome (PCOS) are not known. To determine the possible involvement of hyperinsulinemia in luteal phase progesterone deficiency in women with PCOS, we examined the relationship between progesterone, luteinizing hormone (LH) and insulin during the luteal phase and studied the effect of metformin on luteal progesterone levels in PCOS. Patients with PCOS (19 women aged 18-35 years) were treated with metformin (500 mg three times daily) for 4 weeks prior to the test cycle and throughout the study period, and submitted to ovulation induction with clomiphene citrate. Blood samples were collected from control (N = 5, same age range as PCOS women) and PCOS women during the late follicular (one sample) and luteal (3 samples) phases and LH, insulin and progesterone concentrations were determined. Results were analyzed by one-way analysis of variance (ANOVA), Duncan's test and Karl Pearson's coefficient of correlation (r). The endocrine study showed low progesterone level (4.9 ng/ml) during luteal phase in the PCOS women as compared with control (21.6 ng/ml). A significant negative correlation was observed between insulin and progesterone (r = -0.60; P < 0.01) and between progesterone and LH (r = -0.56; P < 0.05) concentrations, and a positive correlation (r = 0.83; P < 0.001) was observed between LH and insulin. The study further demonstrated a significant enhancement in luteal progesterone concentration (16.97 ng/ml) in PCOS women treated with metformin. The results suggest that hyperinsulinemia/insulin resistance may be responsible for low progesterone levels during the luteal phase in PCOS. The luteal progesterone level may be enhanced in PCOS by decreasing insulin secretion with metformin.

  15. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  16. Appropriate insulin initiation dosage for insulin-naive type 2 diabetes outpatients receiving insulin monotherapy or in combination with metformin and/or pioglitazone.

    PubMed

    Liao, Lin; Yang, Ming; Qiu, Lu-Lu; Mou, Ya-Ru; Zhao, Jia-Jun; Dong, Jian-Jun

    2010-12-01

    Few studies have given suggestions on appropriate initiation insulin dosage when combined with oral antidiabetic drugs (OADs). This research was to investigate appropriate initiation insulin doses for insulin-naive type 2 diabetes patients with different combinations and the relationship between insulin dosage and relevant factors. This was a randomized, open-label, treat to target study. The target was 20% decrease of both fasting plasma glucose (FPG) and 2 hours post-breakfast blood glucose (P2hBG). One hundred and forty-seven insulin-naive Chinese patients recruited were randomly assigned to 3 groups: group A, patients received insulin monotherapy; group B, received insulin plus metformin (0.5 g, tid) and group C, received insulin plus metformin (0.5 g, tid) and pioglitazone (15 mg, qd). Insulin doses were initiated with a dose of 0.3 U×kg(-1)×d(-1) and titrated according to FPG and P2hBG till reached the targets. Both the time of getting 20% reduction of FPG and P2hBG showed significant differences among the three groups. The time was shortest in Group C. The insulin doses needed to achieve glucose reduction of 20% in three treatment groups were (0.40 ± 0.04) U×kg(-1)×d(-1) for Group A, (0.37 ± 0.04) U×kg(-1)×d(-1) for Group B, and (0.35 ± 0.03) U×kg(-1)×d(-1) for Group C, respectively. Multiple linear stepwise regression analysis showed that insulin doses correlated with body weight, FPG, diabetes duration, age and history of sulfonylurea treatment. The standardized regression coefficients were 0.871, 0.322, 0.089, 0.067 and 0.063 (with all P < 0.05). To achieve blood glucose's reduction of 20% within safety context, initial insulin doses were recommended as the following: 0.40 U×kg(-1)×d(-1) for insulin mono-therapy, 0.37 U×kg(-1)×d(-1) for insulin plus metformin treatment, and 0.35 U×kg(-1)×d(-1) for insulin plus metformin and pioglitazone treatment in Chinese type 2 diabetes outpatients. Body weight is found the most closely related factor

  17. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    PubMed

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  18. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    PubMed Central

    Vora, J. P.; Owens, D. R.; Dolben, J.; Atiea, J. A.; Dean, J. D.; Kang, S.; Burch, A.; Brange, J.

    1988-01-01

    OBJECTIVE--To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. DESIGN--Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. SETTING--Study in normal people at a diabetes research unit and a university department of medical physics. SUBJECTS--Seven healthy male volunteers aged 20-39 not receiving any other drugs. INTERVENTIONS--After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. END POINT--To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U

  19. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.

    2016-01-01

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  20. Inhibition of Insulin Degrading Enzyme and Insulin Degradation by UV-Killed Lactobacillus acidophilus.

    PubMed

    Neyazi, Nadia; Motevaseli, Elahe; Khorramizadeh, Mohammad Reza; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Nasli Esfahani, Ensieh; Ghahremani, Mohammad Hossein

    2018-05-11

    Probiotics have beneficial effects on management of type 2 diabetes (T2D). The major hallmarks of T2D are insulin deficiency and insulin resistance which emphasize insulin therapy in onset of disease. Lactobacilli such as Lactobacillus acidophilus ( L. acidophilus ) have well known properties on prevention of T2D and insulin resistance but not on insulin degradation. Insulin-degrading enzyme (IDE) degrades insulin in the human body. We studied the effects of cell-free supernatant (CFS) and ultraviolet (UV)-killed L. acidophilus (ATCC 314) on IDE activity and insulin degradation in vitro. Cell growth inhibition by CFS and UV-killed L. acidophilus (ATCC 314) was studied and Western blotting and a fluoregenic assay was performed to determine IDE expression and its activity, respectively. Insulin degradation was evaluated by sandwich enzyme-linked immunosorbent assay(ELISA). IDE expression and activity was reduced by CFS and UV-killed L. acidophilus (ATCC 314). Although, decreased enzyme expression and activity was not significant for CFS in contrast to MRL (MRS with same pH as CFS). Also, reduction in IDE activity was not statistically considerable when compared to IDE expression. Insulin degradation was increased by CFS but decreased by UV-killed L. acidophilus (ATCC 314).

  1. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    PubMed

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.

  2. Aging and insulin signaling differentially control normal and tumorous germline stem cells.

    PubMed

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan

    2015-02-01

    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. CB1 Cannabinoid Receptors Couple to Focal Adhesion Kinase to Control Insulin Release*

    PubMed Central

    Malenczyk, Katarzyna; Jazurek, Magdalena; Keimpema, Erik; Silvestri, Cristoforo; Janikiewicz, Justyna; Mackie, Ken; Di Marzo, Vincenzo; Redowicz, Maria J.; Harkany, Tibor; Dobrzyn, Agnieszka

    2013-01-01

    Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes. PMID:24089517

  4. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation

    PubMed Central

    Niu, Mengmeng; Lu, Yi; Hovgaard, Lars; Wu, Wei

    2011-01-01

    Background: Oral delivery of insulin is challenging and must overcome the barriers of gastric and enzymatic degradation as well as low permeation across the intestinal epithelium. The present study aimed to develop a liposomal delivery system containing glycocholate as an enzyme inhibitor and permeation enhancer for oral insulin delivery. Methods: Liposomes containing sodium glycocholate were prepared by a reversed-phase evaporation method followed by homogenization. The particle size and entrapment efficiency of recombinant human insulin (rhINS)-loaded sodium glycocholate liposomes can be easily adjusted by tuning the homogenization parameters, phospholipid:sodium glycocholate ratio, insulin:phospholipid ratio, water:ether volume ratio, interior water phase pH, and the hydration buffer pH. Results: The optimal formulation showed an insulin entrapment efficiency of 30% ± 2% and a particle size of 154 ± 18 nm. A conformational study by circular dichroism spectroscopy and a bioactivity study confirmed the preserved integrity of rhINS against preparative stress. Transmission electron micrographs revealed a nearly spherical and deformed structure with discernable lamella for sodium glycocholate liposomes. Sodium glycocholate liposomes showed better protection of insulin against enzymatic degradation by pepsin, trypsin, and α-chymotrypsin than liposomes containing the bile salt counterparts of sodium taurocholate and sodium deoxycholate. Conclusion: Sodium glycocholate liposomes showed promising in vitro characteristics and have the potential to be able to deliver insulin orally. PMID:21822379

  5. Decreased endometrial vascularity and receptivity in unexplained recurrent miscarriage patients during midluteal and early pregnancy phases.

    PubMed

    Tan, Shu-Yin; Hang, Fu; Purvarshi, Gowreesunkur; Li, Min-Qing; Meng, Da-Hua; Huang, Ling-Ling

    2015-10-01

    To evaluate the predictive value of three-dimensional (3D)-power Doppler sonography on recurrent miscarriage. The study patients were divided into a recurrent miscarriage group (30 cases) and a normal pregnancy group (21 cases). Measurement of endometrial thickness was performed using two-dimensional transvaginal ultrasound in the midluteal phase. The endometrial volume, vascularization index (VI), flow index (FI), and vascularization-flow index (VFI) in midluteal and placenta volume, as well as the VI, FI, and VFI of early pregnancy were measured using Virtual Organ Computer-aided Analysis of 3D-power Doppler ultrasound. Endometrial thickness, endometrial volume, endometrial vascular data, VI, FI, and VFI of the midluteal phase were lower in the recurrent miscarriage group compared with the normal pregnancy group (p < 0.05). Placental volume, VI, and VFI during early pregnancy were lower in the miscarriage group compared with the normal pregnancy group (p < 0.05). There was no significant change in FI between the recurrent miscarriage and control groups during early pregnancy (p > 0.05). The predictive accuracy of endometrial thickness, endometrial volume, VI, FI, and VFI in the midluteal phase, and placenta volume, VI, FI, and VFI in early pregnancy as measured by the receiver operating characteristic curve to predict miscarriage before 12 gestational weeks in participants was 0.681, 0.876, 0.770, 0.720, 0.879, 0.771, 0.907, 0.592, respectively. The 3D-power Doppler ultrasound is a more comprehensive and sensitive method for evaluating endometrial receptivity. Endometrial volume, VI, FI, and VFI in the midluteal phase, as well as VI in early pregnancy, can be considered as predictive factors for recurrent miscarriage. Copyright © 2015. Published by Elsevier B.V.

  6. Metformin and insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific /sup 125/I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific /sup 125/I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitromore » to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded.« less

  7. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND

  8. Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment

    PubMed Central

    Wang, Nasui; Chai, Weidong; Zhao, Lina; Tao, Lijian; Cao, Wenhong

    2013-01-01

    Insulin delivery and transendothelial insulin transport are two discrete steps that limit muscle insulin action. Angiotensin II type 1 receptor (AT1R) blockade recruits microvasculature and increases glucose use in muscle. Increased muscle microvascular perfusion is associated with increased muscle delivery and action of insulin. To examine the effect of acute AT1R blockade on muscle insulin uptake and action, rats were studied after an overnight fast to examine the effects of losartan on muscle insulin uptake (protocol 1), microvascular perfusion (protocol 2), and insulin's microvascular and metabolic actions in the state of insulin resistance (protocol 3). Endothelial cell insulin uptake was assessed, using 125I-insulin as tracer. Systemic lipid infusion was used to induce insulin resistance. Losartan significantly increased muscle insulin uptake (∼60%, P < 0.03), which was associated with a two- to threefold increase in muscle microvascular blood volume (MBV; P = 0.002) and flow (MBF; P = 0.002). Losartan ± angiotensin II had no effect on insulin internalization in cultured endothelial cells. Lipid infusion abolished insulin-mediated increases in muscle MBV and MBF and lowered insulin-stimulated whole body glucose disposal (P = 0.0001), which were reversed by losartan administration. Inhibition of nitric oxide synthase abolished losartan-induced muscle insulin uptake and reversal of lipid-induced metabolic insulin resistance. We conclude that AT1R blockade increases muscle insulin uptake mainly via microvascular recruitment and rescues insulin's metabolic action in the insulin-resistant state. This may contribute to the clinical findings of decreased cardiovascular events and new onset of diabetes in patients receiving AT1R blockers. PMID:23299501

  9. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.

  10. A qualitative study on healthcare professionals' perceived barriers to insulin initiation in a multi-ethnic population.

    PubMed

    Lee, Yew Kong; Lee, Ping Yein; Ng, Chirk Jenn

    2012-07-04

    Nationwide surveys have shown that the prevalence of diabetes rates in Malaysia have almost doubled in the past ten years; yet diabetes control remains poor and insulin therapy is underutilized. This study aimed to explore healthcare professionals' views on barriers to starting insulin therapy in people with type 2 diabetes. Healthcare professionals consisting of general practitioners (n = 11), family medicine specialists (n = 10), medical officers (n = 8), government policy makers (n = 4), diabetes educators (n = 3) and endocrinologists (n = 2) were interviewed. A semi-structured topic guide was used to guide the interviews by trained facilitators. The interviews were transcribed verbatim and analysed using a thematic analysis approach. Insulin initiation was found to be affected by patient, healthcare professional and system factors. Patients' barriers include culture-specific barriers such as the religious purity of insulin, preferred use of complementary medication and perceived lethality of insulin therapy. Healthcare professionals' barriers include negative attitudes towards insulin therapy and the 'legacy effect' of old insulin guidelines; whilst system barriers highlight the lack of resources, language and communication challenges. Tackling the issue of insulin initiation should not only happen during clinical consultations. It requires health education to emphasise the progressive nature of diabetes and the eventuality of insulin therapy at early stage of the illness. Healthcare professionals should be trained how to initiate insulin and communicate effectively with patients from various cultural and religious backgrounds.

  11. Insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the procedure in insulin receptors. Part B: Clinical assessment, biological responses, and comparison to the IGF-1 receptor. Topics covered include: Insulin and IGF-1 receptors, Clinical assessment of receptor functions, and Biological responses.

  12. Achieve control: a pragmatic clinical trial of insulin glargine 300 U/mL versus other basal insulins in insulin-naïve patients with type 2 diabetes.

    PubMed

    Oster, Gerry; Sullivan, Sean D; Dalal, Mehul R; Kazemi, Mahmood R; Rojeski, Maria; Wysham, Carol H; Sung, Jennifer; Johnstone, Bryan; Cali, Anna M G; Wei, L J; Traylor, Louise; Anhalt, Henry; Hull, Michelle; Van Vleet, John; Meneghini, Luigi F

    2016-11-01

    This study aims to compare the effectiveness of insulin glargine 300 U/mL (Gla-300) with its accompanying patient support program with that of other basal insulin and available patient support programs in patients with type 2 diabetes (T2D) in a real-world setting in terms of achieving HEDIS (Healthcare Effectiveness Data and Information Set) individualized glycemic targets without documented symptomatic hypoglycemia. Achieve Control is a US-based, multicenter, randomized, open-label, active-controlled, parallel group pragmatic Phase IV trial in insulin-naïve patients with T2D uncontrolled on ≥2 oral antidiabetes drugs (OAD) and/or glucagon-like peptide-1 receptor antagonists (GLP-1 RA). Inclusion criteria include a diagnosis of T2D, age ≥18 years, and glycated hemoglobin (HbA1c) between 8.0% and 11.0%. Patients will be assigned to either the Gla-300 or other basal insulin group. The primary end point is the proportion of patients achieving HEDIS HbA1c targets (<8.0% [64 mmol/mol] in patients with comorbidities or aged ≥65 years; <7.0% [58 mmol/mol] in all other patients) without occurrence of symptomatic hypoglycemia (blood glucose ≤70 mg/dL) from baseline to 6 months. Secondary end points include rates of documented symptomatic nocturnal hypoglycemia and severe hypoglycemia; change from baseline in HbA1c, fasting glucose, and body weight; treatment persistence; patient-reported outcomes; and healthcare resource utilization. Planned enrollment is 3270 patients across approximately 400 clinical sites. Pragmatic clinical trials offer the potential to assess comparative effectiveness in broadly based patient populations receiving care (with or without a corresponding educational support program) in real-world clinical settings. The results of Achieve Control should elucidate the benefits of management of T2D with Gla-300 versus other basal insulins in terms of patient outcomes, experiences, and perceptions, and its impact on healthcare resource

  13. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin

    PubMed Central

    Gorbunov, E A; Nicoll, J; Kachaeva, E V; Tarasov, S A; Epstein, O I

    2015-01-01

    It has been previously shown that Subetta (a drug containing released-active forms of antibodies to the insulin receptor β-subunit and antibodies to endothelial nitric oxide synthase) stimulated insulin-induced adiponectin production by mature human adipocytes in the absence of insulin. Therefore, it was assumed that Subetta could activate the insulin receptor. To confirm this hypothesis, the capacity of Subetta to activate the insulin receptor in mature human adipocytes in the absence or presence of the insulin was investigated. Cells were incubated either with Subetta or with vehicle, or with basal medium for 3 days. Then, adipocytes were treated with water or insulin (100 nm) for 15 min. Following treatment, lysates were prepared and phosphorylation of insulin receptor β-subunits was analyzed by western blot analysis. It was shown that Subetta significantly increased (P<0.001) the ‘phosphorylated-insulin receptor β-subunit/total insulin receptor β-subunit' ratios in both the presence and the absence of insulin. These results support previously published data and indicate that Subetta could activate the insulin receptor through the effect on its β-subunits, whose conformational state is essential for insulin receptor activation. This action might serve as one of the primary mechanisms of the drug's antidiabetic effect. PMID:26148148

  14. Treatment of severe insulin resistance in pregnancy with 500 units per milliliter of concentrated insulin.

    PubMed

    Mendez-Figueroa, Hector; Maggio, Lindsay; Dahlke, Joshua D; Daley, Julie; Lopes, Vrishali V; Coustan, Donald R; Rouse, Dwight J

    2013-07-01

    To evaluate glycemic control and pregnancy outcomes among pregnant women with severe insulin resistance treated with 500 units/mL concentrated insulin. Retrospective analysis of gravid women with severe insulin resistance (need for greater than 100 units of insulin per injection or greater than 200 units/d) treated with either 500 units/mL concentrated insulin or conventional insulin therapy. We performed a two-part analysis: 1) between gravid women treated with and without 500 units/mL concentrated insulin; and 2) among gravid women treated with 500 units/mL concentrated insulin, comparing glycemic control before and after its initiation. Seventy-three pregnant women with severe insulin resistance were treated with 500 units/mL concentrated insulin and 78 with conventional insulin regimens. Patients treated with 500 units/mL concentrated insulin were older and more likely to have type 2 diabetes mellitus. Average body mass index was comparable between both groups (38.6 compared with 40.4, P=.11) as were obstetric and perinatal outcomes and glycemic control during the last week of gestation. Within the 500 units/mL concentrated insulin cohort, after initiation of this medication, fasting and postprandial blood glucose concentrations improved. However, the rates of blood glucose values less than 60 mg/dL and less than 50 mg/dL were higher in the 500 units/mL concentrated insulin group after initiation than before, 4.8% compared with 2.0% (P<.01) and 2.0% compared with 0.7% (P<.01), respectively. The use of 500 units/mL concentrated insulin in severely obese insulin-resistant pregnant women confers similar glycemic control compared with traditional insulin regimens but may increase the risk of hypoglycemia. II.

  15. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yan-Jie; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Juan, Chi-Chang

    Endothelin-1 (ET-1) is known as potent vasoconstrictor, by virtue of its mitogenic effects, and may deteriorate the process of hypertension and atherosclerosis by aggravating hyperplasia and migration in VSMCs. Our previous study demonstrated that insulin infusion caused sequential induction of hyperinsulinemia, hyperendothelinemia, insulin resistance, and then hypertension in rats. However, the underlying mechanism of ET-1 interfere insulin signaling in VSMCs remains unclear. To characterize insulin signaling during modest insulin resistant syndrome, we established and monitored rats by feeding high fructose-diet (HFD) until high blood pressure and modest insulin resistance occurred. To explore the role of ET-1/ET{sub A}R during insulin resistance,more » ET{sub A}R expression, ET-1 binding, and insulin signaling were investigated in the HFD-fed rats and cultured A-10 VSMCs. Results showed that high blood pressure, tunica medial wall thickening, plasma ET-1 and insulin, and accompanied with modest insulin resistance without overweight and hyperglycemia occurred in early-stage HFD-fed rats. In the endothelium-denuded aorta from HFD-fed rats, ET{sub A}R expression, but not ET{sub B}R, and ET-1 binding in aorta were increased. Moreover, decreasing of insulin-induced Akt phosphorylation and increasing of insulin-induced ERK phosphorylation were observed in aorta during modest insulin resistance. Interestingly, in ET-1 pretreated VSMCs, the increment of insulin-induced Akt phosphorylation was decreased whereas the increment of insulin-induced ERK phosphorylation was increased. In addition, insulin potentiated ET-1-induced VSMCs migration and proliferation due to increasing ET-1 binding. ETAR antagonist reversed effects of ET-1 on insulin-induced signaling and VSMCs migration and proliferation. In summary, modest insulin resistance syndrome accompanied with hyperinsulinemia leading to the potentiation on ET-1-induced actions in aortic VSMCs. ET-1 via ET{sub A}R pathway

  16. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    PubMed

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration < 20 μU/mL were assigned to the insulin-sensitive group, whereas horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin < 1.0 × 10 -4 L•min -1 •mU -1 were assigned to the insulin-resistant group. All horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  17. Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation.

    PubMed

    Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao

    2014-10-01

    We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p < 0.05) compared with control offspring. Significantly higher serum and liver IL-1β, IL-6, IL-8 and TNF-α concentrations were observed in the offspring of the early-VDD group at 0, 3, 8 and 16 weeks. Expression of hepatic Iκbα (also known as Nfkbia) mRNA and nuclear factor κB inhibitor α (IκBα) protein was persistently lower in the early-VDD offspring at all time points, and their hepatic Iκbα methylation levels at the cytosine phosphate guanine site +331 were significantly higher at 0 and 16 weeks (all p < 0.01). Methylation at Iκbα first exon +331 markedly decreased the luciferase activity (p < 0.05). Maternal vitamin D deficiency during pregnancy results in insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.

  18. Effects of temperature on early-phase transmission of Yersina pestis by the flea, Xenopsylla cheopis.

    PubMed

    Schotthoefer, Anna M; Bearden, Scott W; Vetter, Sara M; Holmes, Jennifer; Montenieri, John A; Graham, Christine B; Woods, Michael E; Eisen, Rebecca J; Gage, Kenneth L

    2011-03-01

    Sharp declines in human and animal cases of plague, caused by the bacterium Yersinia pestis (Yersin), have been observed when outbreaks coincide with hot weather. Failure of biofilm production, or blockage, to occur in the flea, as temperatures reach 30 degrees C has been suggested as an explanation for these declines. Recent work demonstrating efficient flea transmission during the first few days after fleas have taken an infectious blood meal, in the absence of blockage (e.g., early-phase transmission), however, has called this hypothesis into question. To explore the potential effects of temperature on early-phase transmission, we infected colony-reared Xenopsylla cheopis (Rothchild) fleas with a wild-type strain of plague bacteria using an artificial feeding system, and held groups of fleas at 10, 23, 27, and 30 degrees C. Naive Swiss Webster mice were exposed to fleas from each of these temperatures on days 1-4 postinfection, and monitored for signs of infection for 21 d. Temperature did not significantly influence the rates of transmission observed for fleas held at 23, 27, and 30 degrees C. Estimated per flea transmission efficiencies for these higher temperatures ranged from 2.32 to 4.96% (95% confidence interval [CI]: 0.96-8.74). In contrast, no transmission was observed in mice challenged by fleas held at 10 degrees C (per flea transmission efficiency estimates, 0-1.68%). These results suggest that declines in human and animal cases during hot weather are not related to changes in the abilities of X. cheopis fleas to transmit Y. pestis infections during the early-phase period. By contrast, transmission may be delayed or inhibited at low temperatures, indicating that epizootic spread of Y. pestis by X. cheopis via early-phase transmission is unlikely during colder periods of the year.

  19. Comparison of Subcutaneous Regular Insulin and Lispro Insulin in Diabetics Receiving Continuous Nutrition

    PubMed Central

    Stull, Mamie C.; Strilka, Richard J.; Clemens, Michael S.; Armen, Scott B.

    2015-01-01

    Background: Optimal management of non–critically ill patients with diabetes maintained on continuous enteral feeding (CEN) is poorly defined. Subcutaneous (SQ) lispro and SQ regular insulin were compared in a simulated type 1 and type 2 diabetic patient receiving CEN. Method: A glucose-insulin feedback mathematical model was employed to simulate type 1 and type 2 diabetic patients on CEN. Each patient received 25 SQ injections of regular insulin or insulin lispro, ranging from 0-6 U. Primary endpoints were the change in mean glucose concentration (MGC) and change in glucose variability (GV); hypoglycemic episodes were also reported. The model was first validated against patient data. Results: Both SQ insulin preparations linearly decreased MGC, however, SQ regular insulin decreased GV whereas SQ lispro tended to increase GV. Hourly glucose concentration measurements were needed to capture the increase in GV. In the type 2 diabetic patient, “rebound hyperglycemia” occurred after SQ lispro was rapidly metabolized. Although neither SQ insulin preparation caused hypoglycemia, SQ lispro significantly lowered MGC compared to SQ regular insulin. Thus, it may be more likely to cause hypoglycemia. Analyses of the detailed glucose concentration versus time data suggest that the inferior performance of lispro resulted from its shorter duration of action. Finally, the effects of both insulin preparations persisted beyond their duration of actions in the type 2 diabetic patient. Conclusions: Subcutaneous regular insulin may be the short-acting insulin preparation of choice for this subset of diabetic patients. Clinical trial is required before a definitive recommendation can be made. PMID:26134836

  20. The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin).

    PubMed

    Cutfield, J F; Cutfield, S M; Carne, A; Emdin, S O; Falkmer, S

    1986-07-01

    Insulin from the principal islets of the teleost fish, Cottus scorpius (daddy sculpin), has been isolated and sequenced. Purification involved acid/alcohol extraction, gel filtration, and reverse-phase high-performance liquid chromatography to yield nearly 1 mg pure insulin/g wet weight islet tissue. Biological potency was estimated as 40% compared to porcine insulin. The sculpin insulin crystallised in the absence of zinc ions although zinc is known to be present in the islets in significant amounts. Two other hormones, glucagon and pancreatic polypeptide, were copurified with the insulin, and an N-terminal sequence for pancreatic polypeptide was determined. The primary structure of sculpin insulin shows a number of sequence changes unique so far amongst teleost fish. These changes occur at A14 (Arg), A15 (Val), and B2 (Asp). The B chain contains 29 amino acids and there is no N-terminal extension as seen with several other fish. Presumably as a result of the amino acid substitutions, sculpin insulin does not readily form crystals containing zinc-insulin hexamers, despite the presence of the coordinating B10 His.

  1. Insulin signaling pathways in a patient with insulin resistance of difficult management - a case report

    PubMed Central

    2009-01-01

    Insulin signalling pathways were investigated in a 33 year-old woman with immunologic insulin resistance. Her past medical history was remarkable for intermittent use of insulin and allergic reactions to several drugs, and measure of plasma anti-insulin antibodies level corroborated the clinical suspicion of immune mediated insulin resistance (8074 nU/ml - RIA - Ref value: <60). Treatment with several immunosuppressive regimens was tried, however the results were disappointing. Possible subcellular mechanisms of insulin resistance were investigated by performing analysis of insulin receptor and post receptor signaling in skeletal muscle biopsy. The expression of insulin receptor (IR), insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT-4) was evaluated in total extract from muscle tissue by Western blotting. Basal IR, IRS-1 and GLUT-4 expression was detected, however receptor autophosphorylation was not observed. A study of translocation of GLUT-4 to plasma membrane showed that tissue presented low levels of membrane-associated GLUT-4. When in vitro stimulation was undertaken, tissue was capable to be responsive to insulin. Our results suggest that even though IR expression was normally occurring, IR β-subunit tyrosine kinase activity in muscle was down-regulated leading to alterations in insulin post receptor signaling. Consistent with normal insulin receptor and post receptor signaling, our results were compatible with decreased insulin binding to IR probably due to neutralization by anti-insulin antibodies. In conclusion, this patient has immunologic insulin resistance and treatment should be based on immunosuppressive drugs as tolerated. PMID:19941665

  2. Therapeutics of diabetes mellitus: focus on insulin analogues and insulin pumps.

    PubMed

    Valla, Vasiliki

    2010-01-01

    Inadequately controlled diabetes accounts for chronic complications and increases mortality. Its therapeutic management aims in normal HbA1C, prandial and postprandial glucose levels. This review discusses diabetes management focusing on the latest insulin analogues, alternative insulin delivery systems and the artificial pancreas. Intensive insulin therapy with multiple daily injections (MDI) allows better imitation of the physiological rhythm of insulin secretion. Longer-acting, basal insulin analogues provide concomitant improvements in safety, efficacy and variability of glycaemic control, followed by low risks of hypoglycaemia. Continuous subcutaneous insulin infusion (CSII) provides long-term glycaemic control especially in type 1 diabetic patients, while reducing hypoglycaemic episodes and glycaemic variability. Continuous subcutaneous glucose monitoring (CGM) systems provide information on postprandial glucose excursions and nocturnal hypo- and/or hyperglycemias. This information enhances treatment options, provides a useful tool for self-monitoring and allows safer achievement of treatment targets. In the absence of a cure-like pancreas or islets transplants, artificial "closed-loop" systems mimicking the pancreatic activity have been also developed. Individualized treatment plans for insulin initiation and administration mode are critical in achieving target glycaemic levels. Progress in these fields is expected to facilitate and improve the quality of life of diabetic patients.

  3. Early phase drugs and biologicals clinical trials on worldwide leading causes of death: a descriptive analysis.

    PubMed

    Dal-Ré, Rafael

    2011-06-01

    To describe the global effort targeting the major causes of mortality in terms of "open" early phase clinical trials with drugs and biologicals. Sixteen of the 20 leading causes of death were chosen; 9 of these were also amongst the top 10 causes of death in low-income countries. Studies were identified from the ClinicalTrials.gov database and included phase 1 and/or 2 "interventional" "open" trials, i.e. those recruiting or about to start recruitment. Trials were considered in terms of sponsorship [industry, universities and other organisations (UNO), and US federal agencies (NIH included)], genders and age groups included, and whether they were conducted with drugs and/or biologicals. The search was performed in March 2010. A total of 2,298 (824 phase 1; 1,474 phase 2) trials were retrieved. Of these, 67% were on trachea, bronchus, and lung cancers (25%); diabetes mellitus (15%); colon and rectum cancers (14%); and HIV/AIDS (12%). In contrast, only 4% were trials on diarrhoeal disease, nephrosis and nephritis, liver cirrhosis, and prematurity and low birth weight. UNO were the first source of funding. Fifty-two percent of phase 1 non-cancer trials were on healthy volunteers. Twenty-nine percent of all trials were co-funded. There were 4.6 times as many drug trials as those with biologicals. Only 7% were conducted with a combination of drugs and biologicals, the majority (78%) on cancers. Discrimination in terms of gender or age group was not observed. Four of the 16 diseases considered represented 2/3 of early phase trials. Cancers were a top priority for all sponsors. Increasing attention should be given to conditions with current and projected global high mortality rates that had few "open" early phase trials.

  4. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin.

    PubMed

    Chono, Sumio; Togami, Kohei; Itagaki, Shirou

    2017-11-01

    We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. The present study provides the useful information for development of noninvasive treatment of diabetes. Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.

  5. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  6. Glucose-lowering effect and glycaemic variability of insulin glargine, insulin detemir and insulin lispro protamine in people with type 1 diabetes.

    PubMed

    Derosa, G; Franzetti, I; Querci, F; Romano, D; D'Angelo, A; Maffioli, P

    2015-06-01

    To compare, using a continuous glucose monitoring (CGM) system, the effect on glycaemic variability of insulin glargine, detemir and lispro protamine. A total of 49 white people with type 1 diabetes, not well controlled by three times daily insulin lispro, taken for at least 2 months before study and on a stable dose, were enrolled. The study participants were randomized to add insulin glargine, detemir or lispro protamine, once daily, in the evening. We used a CGM system, the iPro Digital Recorder (Medtronic MiniMed, Northridge, CA, USA) for 1 week. Glycaemic control was assessed according to mean blood glucose values, the area under the glucose curve above 3.9 mmol/l (AUC(>3.9)) or above 10.0 mmol/l (AUC(>10.0)), and the percentage of time spent with glucose values >3.9 or >10.0 mmol/l. Intraday glycaemic variability was assessed using standard deviation (s.d.) values, the mean amplitude of glycaemic excursions and continuous overlapping of net glycaemic action. Day-to-day glycaemic variability was assessed using the mean of daily differences. The s.d. was found to be significantly lower with insulin lispro protamine and glargine compared with insulin detemir. AUC(>3.9) was higher and AUC(>10.0) was lower with insulin lispro protamine and glargine compared with detemir. The mean amplitude of glycaemic excursions and continuous overlapping net glycaemic action values were lower with insulin lispro protamine and glargine compared with detemir. In addition, the mean of daily differences was significantly lower with insulin lispro protamine and glargine compared with detemir. Fewer hypoglycaemic events were recorded during the night-time with insulin lispro protamine compared with glargine and detemir. The results suggest that insulin lispro protamine and glargine are more effective than detemir in reducing glycaemic variability and improving glycaemic control in people with type 1 diabetes. Insulin lispro protamine seems to lead to fewer hypoglycaemic

  7. GLUCAGON PRESCRIPTION PATTERNS IN PATIENTS WITH EITHER TYPE 1 OR 2 DIABETES WITH NEWLY PRESCRIBED INSULIN.

    PubMed

    Mitchell, Beth D; He, Xuanyao; Sturdy, Ian M; Cagle, Andrew P; Settles, Julie A

    2016-02-01

    To describe glucagon prescription patterns in patients with type 1 (T1DM) or type 2 diabetes (T2DM) who received an initial insulin prescription. Retrospective analyses were conducted with data from Truven Health MarketScan databases to assess time to glucagon prescriptions: filled within 1.5 months after index date (early) or after 1.5 months postindex (nonearly). The index date was the date of first insulin prescription between January 1, 2009 and December 31, 2011; for T2DM, without an insulin prescription in the previous 6 months; for T1DM, diabetes diagnosis preindex or within 3 months postindex. Analysis included 8,814 patients with T1DM and 47,051 with T2DM (49.3% and 2.4%, respectively) who had glucagon prescriptions filled. The median times to first glucagon prescription were 196 days (T1DM) and 288 days (T2DM). The rates of filling glucagon were highest in the first 1.5 months. The times to first hypoglycemia-related emergency room (ER) visit for T1DM and T2DM cohorts were initially similar for those with early glucagon versus nonearly glucagon prescriptions. After 10.8 and 2.5 months postindex, respectively, the percentage of hypoglycemia-related ER visits was lower for those with early glucagon prescriptions. Glucagon prescriptions filled for patients with diabetes who are initiating insulin are low. Patients with T1DM who were younger and healthier filled glucagon prescriptions more often; patients with T2DM who were younger and sicker and had a higher percentage of hypoglycemia-related ER visit history filled glucagon prescriptions more often. Glucagon filled early was associated with a lower incidence of hypoglycemia-related ER visits.

  8. An Expert Opinion on Advanced Insulin Pump Use in Youth with Type 1 Diabetes.

    PubMed

    Bode, Bruce W; Kaufman, Francine R; Vint, Nan

    2017-03-01

    Among children and adolescents with type 1 diabetes mellitus, the use of insulin pump therapy has increased since its introduction in the early 1980s. Optimal management of type 1 diabetes mellitus depends on sufficient understanding by patients, their families, and healthcare providers on how to use pump technology. The goal for the use of insulin pump therapy should be to advance proficiency over time from the basics taught at the initiation of pump therapy to utilizing advanced settings to obtain optimal glycemic control. However, this goal is often not met, and appropriate understanding of the full features of pump technology can be lacking. The objective of this review is to provide an expert perspective on the advanced features and use of insulin pump therapy, including practical guidelines for the successful use of insulin pump technology, and other considerations specific to patients and healthcare providers.

  9. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  10. In vivo differential effects of fasting, re-feeding, insulin and insulin stimulation time course on insulin signaling pathway components in peripheral tissues.

    PubMed

    Agouni, Abdelali; Owen, Carl; Czopek, Alicja; Mody, Nimesh; Delibegovic, Mirela

    2010-10-08

    Components of the insulin receptor signaling pathway are probably some of the best studied ones. Even though methods for studying these components are well established, the in vivo effects of different fasting regimens, and the time course of insulin receptor phosphorylation and that of its downstream components in insulin-sensitive peripheral tissues have not been analyzed in detail. When assessing insulin signaling, it may be beneficial to drive insulin levels as low as possible by performing an overnight fast before injecting a supra-physiological dose of insulin. Recent studies have shown however that 5 or 6 h fast in mice is sufficient to assess physiological responses to insulin and/or glucose in glucose tolerance tests, insulin tolerance tests and euglycemic hyperinsulinemic clamp studies. Moreover, mice are nocturnal feeders, with ∼70% of their daily caloric intake occurring during the dark cycle, and their metabolic rate is much higher than humans. Therefore, an overnight fast in mice is closer to starvation than just food withdrawal. Thus our aim was to assess insulin signaling components from the insulin receptor to downstream targets IRS1, Akt/PKB, GSK3, Erk1/2 and ribosomal protein S6 in muscle, liver and adipose tissue in 5 h versus 16 h (overnight) fasted mice, and the time course (0-30 min) of these phosphorylation events. We also assessed whether re-feeding under 5 h and 16 h fasting conditions was a more robust stimulus than insulin alone. Our study determines that a short food withdrawal from mice, for a period of 5 h, results in a similar insulin-stimulated response in phosphorylation events as the long overnight fast, presenting a more physiological experimental set up. We also demonstrate that in vivo, insulin-stimulated phosphorylation of its signaling components is different between different peripheral tissues, and depending on the tissue(s) and protein(s) of interest, an appropriate time course should be chosen. Copyright © 2010

  11. Empagliflozin as adjunct to insulin in Japanese participants with type 1 diabetes: Results of a 4-week, double-blind, randomized, placebo-controlled phase 2 trial.

    PubMed

    Shimada, Akira; Hanafusa, Toshiaki; Yasui, Atsutaka; Lee, Ganghyuck; Taneda, Yusuke; Sarashina, Akiko; Shiki, Kosuke; George, Jyothis; Soleymanlou, Nima; Marquard, Jan

    2018-05-15

    This phase 2, double-blind, randomized, placebo-controlled trial (ClinicalTrials.gov NCT02702011) with 4 sites in Japan investigated the pharmacodynamics (PD), pharmacokinetics (PK) and safety profile of empagliflozin in Japanese participants with type 1 diabetes mellitus (T1DM) as adjunctive therapy to insulin. Participants using multiple daily injections of insulin for ≥12 months, with HbA1c of 7.5%-10.0%, entered a 2-week, open-label, placebo run-in period, followed by a 4-week, double-blind period during which participants were randomized 1:1:1:1 to receive empagliflozin 2.5 mg (n = 13), empagliflozin 10 mg (n = 12), empagliflozin 25 mg (n = 12) or placebo (n = 11). The primary objective was to assess the effect of empagliflozin vs placebo on urinary glucose excretion (UGE) after 7 days of treatment. PD: Empagliflozin resulted in a dose-dependent significant increase in 24-hour UGE compared with placebo (UGE placebo-corrected mean [95% confidence interval] change from baseline: 2.5 mg, 65.10 [43.29, 86.90] g/24 h; 10 mg, 81.19 [58.80, 103.58] g/24 h; 25 mg, 98.11 [75.91, 120.31] g/24 h). After 4 weeks of treatment, UGE increase was associated with improved glycaemic control, reduced body weight and decreased insulin needs. Empagliflozin treatment also resulted in dose-dependent increases in serum ketone bodies and free fatty acids. PK: Plasma empagliflozin levels increased in a dose-dependent manner and peaked at 1.5 hours. In this short study, empagliflozin was well tolerated, with no increase in rate of hypoglycaemia and no diabetic ketoacidosis events reported. Based on this short-duration phase 2 study, the PK/PD profile of empagliflozin in Japanese participants with T1DM is comparable to that of non-Japanese participants. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  12. Equilibrium Ensembles for Insulin Folding from Bias-Exchange Metadynamics.

    PubMed

    Singh, Richa; Bansal, Rohit; Rathore, Anurag Singh; Goel, Gaurav

    2017-04-25

    during early stages of insulin aggregation. We have also determined stability of monomeric insulin by incubation at a very low concentration to isolate protein-protein interaction effects. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  14. The T-Allele of TCF7L2 rs7903146 Associates With a Reduced Compensation of Insulin Secretion for Insulin Resistance Induced by 9 Days of Bed Rest

    PubMed Central

    Alibegovic, Amra C.; Sonne, Mette P.; Højbjerre, Lise; Hansen, Torben; Pedersen, Oluf; van Hall, Gerrit; Holst, Jens J.; Stallknecht, Bente; Dela, Flemming; Vaag, Allan

    2010-01-01

    OBJECTIVE The aim of this study was to determine whether the type 2 diabetes–associated T-allele of transcription factor 7-like 2 (TCF7L2) rs7903146 associates with impaired insulin secretion to compensate for insulin resistance induced by bed rest. RESEARCH DESIGN AND METHODS A total of 38 healthy young Caucasian men were studied before and after bed rest using the hyperinsulinemic-euglycemic clamp technique combined with indirect calorimetry preceded by an intravenous glucose tolerance test. The TCF7L2 rs7903146 was genotyped using allelic discrimination performed with an ABI 7900 system. The genetic analyses were done assuming a dominant model of inheritance. RESULTS The first-phase insulin response (FPIR) was significantly lower in carriers of the T-allele compared with carriers of the CC genotype before bed rest, with and without correction for insulin resistance. The incremental rise of FPIR in response to insulin resistance induced by bed rest was lower in carriers of the T-allele (P < 0.001). Fasting plasma glucagon levels were significantly lower in carriers of the T-allele before and after bed rest. While carriers of the CC genotype developed increased hepatic insulin resistance, the TCF7L2 rs7903146 did not influence peripheral insulin action or the rate of lipolysis before or after bed rest. CONCLUSIONS Healthy carriers of the T-allele of TCF7L2 rs7903146 exhibit a diminished increase of insulin secretion in response to intravenous glucose to compensate for insulin resistance as induced by bed rest. Reduced paracrine glucagon stimulation may contribute to the impairment of β-cell function in the carriers TCF7L2 rs7903146 T-allele associated with increased risk of type 2 diabetes. PMID:20107109

  15. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    PubMed

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P < .001) effects were detected for glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  16. Patient safety and minimizing risk with insulin administration - role of insulin degludec.

    PubMed

    Aye, Myint M; Atkin, Stephen L

    2014-01-01

    Diabetes is a lifelong condition requiring ongoing medical care and patient self-management. Exogenous insulin therapy is essential in type 1 diabetes and becomes a necessity in patients with longstanding type 2 diabetes who fail to achieve optimal control with lifestyle modification, oral agents, and glucagon-like peptide 1-based therapy. One of the risks that hinders insulin use is hypoglycemia. Optimal insulin therapy should therefore minimize the risk of hypoglycemia while improving glycemic control. Insulin degludec (IDeg) is a novel basal insulin that, following subcutaneous injection, assembles into a depot of soluble multihexamer chains. These subsequently release IDeg monomers that are absorbed at a slow and steady rate into the circulation, with the terminal half-life of IDeg being ~25 hours. Thus, it requires only once-daily dosing unlike other basal insulin preparations that often require twice-daily dosing. Despite its long half-life, once-daily IDeg does not cause accumulation of insulin in the circulation after reaching steady state. IDeg once a day will produce a steady-state profile with a lower peak:trough ratio than other basal insulins. In clinical trials, this profile translates into a lower frequency of nocturnal hypoglycemia compared with insulin glargine, as well as an ability to allow some flexibility in dose timing without compromising efficacy and safety. Indeed, a study that tested the extremes of dosing intervals of 8 and 40 hours showed no detriment in either glycemic control or hypoglycemic frequency versus insulin glargine given at the same time each day. While extreme flexibility in dose timing is not recommended, these findings are reassuring. This may be particularly beneficial to elderly patients, patients with learning difficulties, or others who have to rely on health-care professionals for their daily insulin injections. Further studies are required to confirm whether this might benefit adherence to treatment, reduce long

  17. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agentsmore » in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance

  18. Insulin, cognition, and dementia

    PubMed Central

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  19. Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1

    PubMed Central

    Maki, Chihiro; Funakoshi-Tago, Megumi; Aoyagi, Ryohei; Ueda, Fumihito; Kimura, Masaki; Kobata, Kenji; Tago, Kenji; Tamura, Hiroomi

    2017-01-01

    Although epidemiological data have indicated that a strong negative association exists between coffee consumption and the prevalence of obesity-associated diseases, the molecular mechanisms by which coffee intake prevents obesity-associated diseases has not yet been elucidated. In this study, we found that coffee intake significantly suppressed high-fat diet (HFD)-induced metabolic alternations such as increases in body weight and the accumulation of adipose tissue, and up-regulation of glucose, free fatty acid, total cholesterol and insulin levels in the blood. We also found that coffee extract significantly inhibited adipogenesis in 3T3-L1 preadipocytes. In the early phase of adipogenesis, 3T3-L1 cells treated with coffee extract displayed the retardation of cell cycle entry into the G2/M phase called as mitotic clonal expansion (MCE). Coffee extract also inhibited the activation of CCAAT/enhancer-binding protein β (C/EBPβ) by preventing its phosphorylation by ERK. Furthermore, the coffee extract suppressed the adipogenesis-related events such as MCE and C/EBPβ activation through the down-regulation of insulin receptor substrate 1 (IRS1). The stability of the IRS1 protein was markedly decreased by the treatment with coffee extract due to proteasomal degradation. These results have revealed an anti-adipogenic function for coffee intake and identified IRS1 as a novel target for coffee extract in adipogenesis. PMID:28282409

  20. Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1.

    PubMed

    Maki, Chihiro; Funakoshi-Tago, Megumi; Aoyagi, Ryohei; Ueda, Fumihito; Kimura, Masaki; Kobata, Kenji; Tago, Kenji; Tamura, Hiroomi

    2017-01-01

    Although epidemiological data have indicated that a strong negative association exists between coffee consumption and the prevalence of obesity-associated diseases, the molecular mechanisms by which coffee intake prevents obesity-associated diseases has not yet been elucidated. In this study, we found that coffee intake significantly suppressed high-fat diet (HFD)-induced metabolic alternations such as increases in body weight and the accumulation of adipose tissue, and up-regulation of glucose, free fatty acid, total cholesterol and insulin levels in the blood. We also found that coffee extract significantly inhibited adipogenesis in 3T3-L1 preadipocytes. In the early phase of adipogenesis, 3T3-L1 cells treated with coffee extract displayed the retardation of cell cycle entry into the G2/M phase called as mitotic clonal expansion (MCE). Coffee extract also inhibited the activation of CCAAT/enhancer-binding protein β (C/EBPβ) by preventing its phosphorylation by ERK. Furthermore, the coffee extract suppressed the adipogenesis-related events such as MCE and C/EBPβ activation through the down-regulation of insulin receptor substrate 1 (IRS1). The stability of the IRS1 protein was markedly decreased by the treatment with coffee extract due to proteasomal degradation. These results have revealed an anti-adipogenic function for coffee intake and identified IRS1 as a novel target for coffee extract in adipogenesis.

  1. Tight glycemic control with insulin does not affect skeletal muscle degradation during the early post-operative period following pediatric cardiac surgery

    PubMed Central

    Fisher, Jeremy G.; Sparks, Eric A.; Khan, Faraz A.; Alexander, Jamin L.; Asaro, Lisa A.; Wypij, David; Gaies, Michael; Modi, Biren P.; Duggan, Christopher; Agus, Michael S.D.; Yu, Yong-Ming; Jaksic, Tom

    2015-01-01

    Objective Critical illness is associated with significant catabolism and persistent protein loss correlates with increased morbidity and mortality. Insulin is a potent anti-catabolic hormone; high-dose insulin decreases skeletal muscle protein breakdown in critically ill pediatric surgical patients. However, insulin's effect on protein catabolism when given at clinically utilized doses has not been studied. The objective was to evaluate the effect of post-operative tight glycemic control and clinically-dosed insulin on skeletal muscle degradation in children after cardiac surgery with cardiopulmonary bypass. Design Secondary analysis of a two-center, prospective randomized trial comparing tight glycemic control with standard care. Randomization was stratified by study center. Patients Children 0-36 months who were admitted to the ICU after cardiac surgery requiring cardiopulmonary bypass. Interventions In the tight glycemic control (TGC) arm, insulin was titrated to maintain blood glucose between 80-110 mg/dL. Patients in the control arm received standard care. Skeletal muscle breakdown was quantified by a ratio of urinary 3-methylhistidine to urinary creatinine (3MH:Cr). Main Results A total of 561 patients were included: 281 in the TGC arm and 280 receiving standard care. There was no difference in 3MH:Cr between groups (TGC 249 ± 127 vs. standard care 253 ± 112, mean ± standard deviation in μmol/g, P=0.72). In analyses restricted to the TGC patients, higher 3MH:Cr correlated with younger age as well as lower weight, weight-for-age z-score, length, and body surface area (P<0.005 for each), and lower post-operative day 3 serum creatinine (r=-0.17, P=0.02). Sex, prealbumin, and albumin were not associated with 3MH:Cr. During urine collection, 245 patients (87%) received insulin. However, any insulin exposure did not impact 3MH:Cr (t-test, P=0.45), and there was no dose-dependent effect of insulin on 3MH:Cr (r=-0.03, P=0.60). Conclusion Though high-dose insulin

  2. Conventional insulin vs insulin infusion therapy in acute coronary syndrome diabetic patients

    PubMed Central

    Arvia, Caterina; Siciliano, Valeria; Chatzianagnostou, Kyriazoula; Laws, Gillian; Quinones Galvan, Alfredo; Mammini, Chiara; Berti, Sergio; Molinaro, Sabrina; Iervasi, Giorgio

    2014-01-01

    AIM: To evaluate the impact on glucose variability (GLUCV) of an nurse-implemented insulin infusion protocol when compared with a conventional insulin treatment during the day-to-day clinical activity. METHODS: We enrolled 44 type 2 diabetic patients (n = 32 males; n = 12 females) with acute coronary syndrome (ACS) and randomy assigned to standard a subcutaneous insulin treatment (n = 23) or a nurse-implemented continuous intravenous insulin infusion protocol (n = 21). We utilized some parameters of GLUCV representing well-known surrogate markers of prognosis, i.e., glucose standard deviation (SD), the mean daily δ glucose (mean of daily difference between maximum and minimum glucose), and the coefficient of variation (CV) of glucose, expressed as percent glucose (SD)/glucose (mean). RESULTS: At the admission, first fasting blood glucose, pharmacological treatments (insulin and/or anti-diabetic drugs) prior to entering the study and basal glycated hemoglobin (HbA1c) were observed in the two groups treated with subcutaneous or intravenous insulin infusion, respectively. When compared with patients submitted to standard therapy, insulin-infused patients showed both increased first 24-h (median 6.9 mmol/L vs 5.7 mmol/L P < 0.045) and overall hospitalization δ glucose (median 10.9 mmol/L vs 9.3 mmol/L, P < 0.028), with a tendency to a significant increase in first 24-h glycaemic CV (23.1% vs 19.6%, P < 0.053). Severe hypoglycaemia was rare (14.3%), and it was observed only in 3 patients receiving insulin infusion therapy. HbA1c values measured during hospitalization and 3 mo after discharge did not differ in the two groups of treatment. CONCLUSION: Our pilot data suggest that no real benefit in terms of GLUCV is observed when routinely managing blood glucose by insulin infusion therapy in type 2 diabetic ACS hospitalized patients in respect to conventional insulin treatment PMID:25126402

  3. Design and clinical pilot testing of the model-based dynamic insulin sensitivity and secretion test (DISST).

    PubMed

    Lotz, Thomas F; Chase, J Geoffrey; McAuley, Kirsten A; Shaw, Geoffrey M; Docherty, Paul D; Berkeley, Juliet E; Williams, Sheila M; Hann, Christopher E; Mann, Jim I

    2010-11-01

    Insulin resistance is a significant risk factor in the pathogenesis of type 2 diabetes. This article presents pilot study results of the dynamic insulin sensitivity and secretion test (DISST), a high-resolution, low-intensity test to diagnose insulin sensitivity (IS) and characterize pancreatic insulin secretion in response to a (small) glucose challenge. This pilot study examines the effect of glucose and insulin dose on the DISST, and tests its repeatability. DISST tests were performed on 16 subjects randomly allocated to low (5 g glucose, 0.5 U insulin), medium (10 g glucose, 1 U insulin) and high dose (20 g glucose, 2 U insulin) protocols. Two or three tests were performed on each subject a few days apart. Average variability in IS between low and medium dose was 10.3% (p=.50) and between medium and high dose 6.0% (p=.87). Geometric mean variability between tests was 6.0% (multiplicative standard deviation (MSD) 4.9%). Geometric mean variability in first phase endogenous insulin response was 6.8% (MSD 2.2%). Results were most consistent in subjects with low IS. These findings suggest that DISST may be an easily performed dynamic test to quantify IS with high resolution, especially among those with reduced IS. © 2010 Diabetes Technology Society.

  4. A longitudinal study of serum insulin and insulin resistance as predictors of weight and body fat gain in African American and Caucasian children.

    PubMed

    Sedaka, N M; Olsen, C H; Yannai, L E; Stutzman, W E; Krause, A J; Sherafat-Kazemzadeh, R; Condarco, T A; Brady, S M; Demidowich, A P; Reynolds, J C; Yanovski, S Z; Hubbard, V S; Yanovski, J A

    2017-01-01

    The influence of insulin and insulin resistance (IR) on children's weight and fat gain is unclear. To evaluate insulin and IR as predictors of weight and body fat gain in children at high risk for adult obesity. We hypothesized that baseline IR would be positively associated with follow-up body mass index (BMI) and fat mass. Two hundred and forty-nine healthy African American and Caucasian children aged 6-12 years at high risk for adult obesity because of early-onset childhood overweight and/or parental overweight were followed for up to 15 years with repeated BMI and fat mass measurements. We examined baseline serum insulin and homeostasis model of assessment-IR (HOMA-IR) as predictors of follow-up BMI Z-score and fat mass by dual-energy X-ray absorptiometry in mixed model longitudinal analyses accounting for baseline body composition, pubertal stage, sociodemographic factors and follow-up interval. At baseline, 39% were obese (BMI⩾95th percentile for age/sex). Data from 1335 annual visits were examined. Children were followed for an average of 7.2±4.3 years, with a maximum follow-up of 15 years. After accounting for covariates, neither baseline insulin nor HOMA-IR was significantly associated with follow-up BMI (Ps>0.26), BMIz score (Ps>0.22), fat mass (Ps>0.78) or fat mass percentage (Ps>0.71). In all models, baseline BMI (P<0.0001), body fat mass (P<0.0001) and percentage of fat (P<0.001) were strong positive predictors for change in BMI and fat mass. In models restricted to children without obesity at baseline, some but not all models had significant interaction terms between body adiposity and insulinemia/HOMA-IR that suggested less gain in mass among those with greater insulin or IR. The opposite was found in some models restricted to children with obesity at baseline. In middle childhood, BMI and fat mass, but not insulin or IR, are strong predictors of children's gains in BMI and fat mass during adolescence.

  5. Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats.

    PubMed

    Imai, Hisanori; Misra, Gauri P; Wu, Linfeng; Janagam, Dileep R; Gardner, Thomas W; Lowe, Tao L

    2015-12-01

    Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. The developed hydrogels have great potential to sustain release of insulin to the retina via subconjunctival

  6. Worldwide isotope ratios of the Fukushima release and early-phase external dose reconstruction

    PubMed Central

    Chaisan, Kittisak; Smith, Jim T.; Bossew, Peter; Kirchner, Gerald; Laptev, Gennady V.

    2013-01-01

    Measurements of radionuclides (RNs) in air made worldwide following the Fukushima accident are quantitatively compared with air and soil measurements made in Japan. Isotopic ratios RN:137Cs of 131I, 132Te, 134,136Cs, are correlated with distance from release. It is shown, for the first time, that both within Japan and globally, ratios RN:137Cs in air were relatively constant for primarily particle associated radionuclides (134,136Cs; 132Te) but that 131I shows much lower local (<80 km) isotope ratios in soils relative to 137Cs. Derived isotope ratios are used to reconstruct external dose rate during the early phase post-accident. Model “blind” tests show more than 95% of predictions within a factor of two of measurements from 15 sites to the north, northwest and west of the power station. It is demonstrated that generic isotope ratios provide a sound basis for reconstruction of early-phase external dose rates in these most contaminated areas. PMID:24018776

  7. Neuronal LRP1 Regulates Glucose Metabolism and Insulin Signaling in the Brain

    PubMed Central

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L.; Kanekiyo, Takahisa

    2015-01-01

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. PMID:25855193

  8. Cinnamon extract prevents the insulin resistance induced by a high-fructose diet.

    PubMed

    Qin, B; Nagasaki, M; Ren, M; Bajotto, G; Oshida, Y; Sato, Y

    2004-02-01

    The aim of this study was to determine whether cinnamon extract (CE) would improve the glucose utilization in normal male Wistar rats fed a high-fructose diet (HFD) for three weeks with or without CE added to the drinking water (300 mg/kg/day). In vivo glucose utilization was measured by the euglycemic clamp technique. Further analyses on the possible changes in insulin signaling occurring in skeletal muscle were performed afterwards by Western blotting. At 3 mU/kg/min insulin infusions, the decreased glucose infusion rate (GIR) in HFD-fed rats (60 % of controls, p < 0.01) was improved by CE administration to the same level of controls (normal chow diet) and the improving effect of CE on the GIR of HFD-fed rats was blocked by approximately 50 % by N-monometyl-L-arginine. The same tendency was found during the 30 mU/kg/min insulin infusions. There were no differences in skeletal muscle insulin receptor (IR)-beta, IR substrate (IRS)-1, or phosphatidylinositol (PI) 3-kinase protein content in any groups. However, the muscular insulin-stimulated IR-beta and IRS-1 tyrosine phosphorylation levels and IRS-1 associated with PI 3-kinase in HFD-fed rats were only 70 +/- 9 %, 76 +/- 5 %, and 72 +/- 6 % of controls (p < 0.05), respectively, and these decreases were significantly improved by CE treatment. These results suggest that early CE administration to HFD-fed rats would prevent the development of insulin resistance at least in part by enhancing insulin signaling and possibly via the NO pathway in skeletal muscle.

  9. Treatment intensification using long-acting insulin -predictors of future basal insulin supported oral therapy in the DIVE registry.

    PubMed

    Danne, Thomas; Bluhmki, Tobias; Seufert, Jochen; Kaltheuner, Matthias; Rathmann, Wolfgang; Beyersmann, Jan; Bramlage, Peter

    2015-10-07

    properties. The close monitoring of patients displaying these characteristics may help to identify individuals who might benefit from early addition of insulin therapy to their oral treatment regimen.

  10. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  11. Effect of flow rate and insulin priming on the recovery of insulin from microbore infusion tubing.

    PubMed

    Fuloria, M; Friedberg, M A; DuRant, R H; Aschner, J L

    1998-12-01

    A retrospective medical record review of 13 consecutive, hyperglycemic, extremely low birth weight (ELBW) infants treated with continuous insulin infusions revealed a 14- to 24-hour delay (mean, 19 hours) in blood glucose normalization despite stepwise increases in insulin infusion rates. This in vitro study examined the effects of flow rate and insulin priming on insulin recovery from polyvinyl chloride (PVC) tubing and polyethylene (PE)-lined PVC tubing infused with a standard insulin stock solution. Stock insulin solution (0.2 U/mL) was infused through microbore PVC or PE-lined tubing at flow rates of 0.05 and 0.2 mL/h. To determine if saturation of nonspecific binding sites would alter effluent insulin concentration, we compared insulin recovery from tubing previously flushed with the stock solution and tubing primed with 5 U/mL of insulin for 20 minutes. Effluent samples, which were collected at baseline and at six time points during a 24-hour period, were immediately frozen at -20 degreesC. Insulin concentration was measured by IMx immunoassay. Data were analyzed using general linear modeling with repeated measures. At 0.05 mL/h flow rate, insulin recovery from unprimed PVC tubing at 1, 2, 4, and 8 hours was 17%, 11%, 27%, and 55%, respectively, with 100% recovery at 24 hours. From insulin-primed tubing, insulin recovery was approximately 70% at 1, 2, and 4 hours, and close to 100% at 8 hours. At a faster flow rate of 0.2 mL/h, insulin recovery at 1, 2, 4, and 8 hours was 22%, 38%, 67%, and 75% vs 42%, 85%, 91% and 95% from unprimed and insulin-primed PVC tubing, respectively. Similar results were obtained from unprimed and insulin-primed PE-lined tubing at 0.2 mL/h flow rate. Priming of microbore tubing with 5 U/mL of insulin solution for 20 minutes to block nonspecific binding sites enhances delivery of a standard insulin stock at infusion rates typically used to treat hyperglycemic ELBW infants. We conclude that priming the tubing with a higher

  12. Insulin resistance: definition and consequences.

    PubMed

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  13. Metabolomic Profiling of Amino Acids and β-Cell Function Relative to Insulin Sensitivity in Youth

    PubMed Central

    Michaliszyn, Sara F.; Sjaarda, Lindsey A.; Mihalik, Stephanie J.; Lee, SoJung; Bacha, Fida; Chace, Donald H.; De Jesus, Victor R.; Vockley, Jerry

    2012-01-01

    Context: In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). Objective: The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired β-cell function relative to insulin sensitivity [i.e. disposition index (DI)], a predictor of T2DM development. Design, Setting, and Participants: Metabolomic analysis for fasting plasma AAs was performed by tandem mass spectrometry in 139 normal-weight and obese adolescents with and without dysglycemia. First-phase insulin secretion was evaluated by a hyperglycemic (∼225 mg/dl) clamp and insulin sensitivity by a hyperinsulinemic-euglycemic clamp. DI was calculated as the product of first-phase insulin and insulin sensitivity. Results: DI was positively associated with branched-chain AAs (leucine/isoleucine and valine; r = 0.27 and 0.29, P = 0.001), neutrally transported AAs (phenylalanine and methionine; r = 0.30 and 0.35, P < 0.001), basic AAs (histidine and arginine; r = 0.28 and 0.23, P ≤ 0.007), serine (r = 0.35, P < 0.001), glycine (r = 0.26, P = 0.002), and branched-chain AAs-derived intermediates C3, C4, and C5 acylcarnitine (range r = 0.18–0.19, P ≤ 0.04). Conclusion: In youth, increased plasma AA concentrations are not associated with a heightened metabolic risk profile for T2DM; rather, they are positively associated with β-cell function relative to insulin sensitivity. These contrasting observations between adults and youth may be a reflection of developmental differences along the lifespan dependent on the combined impact of the aging process together with the impact of progressive obesity. PMID:22977272

  14. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  15. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations.

    PubMed

    Mastrangelo, A; Martos-Moreno, G Á; García, A; Barrios, V; Rupérez, F J; Chowen, J A; Barbas, C; Argente, J

    2016-10-01

    Insulin resistance (IR) is usually the first metabolic alteration diagnosed in obese children and the key risk factor for development of comorbidities. The factors determining whether or not IR develops as a result of excess body mass index (BMI) are still not completely understood. This study aimed to elucidate the mechanisms underpinning the predisposition toward hyperinsulinemia-related complications in obese children by using a metabolomic strategy that allows a profound interpretation of metabolic profiles potentially affected by IR. Serum from 60 prepubertal obese children (30 girls/30 boys, 50% IR and 50% non-IR in each group, but with similar BMIs) were analyzed by using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry following an untargeted metabolomics approach. Validation was then performed on a group of 100 additional children with the same characteristics. When obese children with and without IR were compared, 47 metabolites out of 818 compounds (P<0.05) obtained after data pre-processing were found to be significantly different. Bile acids exhibit the greatest changes (that is, approximately a 90% increase in IR). The majority of metabolites differing between groups were lysophospholipids (15) and amino acids (17), indicating inflammation and central carbon metabolism as the most altered processes in impaired insulin signaling. Multivariate analysis (OPLS-DA models) showed subtle differences between groups that were magnified when females were analyzed alone. Inflammation and central carbon metabolism, together with the contribution of the gut microbiota, are the most altered processes in obese children with impaired insulin signaling in a sex-specific fashion despite their prepubertal status.

  16. [Historical review of insulin and its preparations in pharmacopoeia (3). Fish insulins].

    PubMed

    Suehiro, M

    1992-01-01

    Existence of encapsulated glands situated in the mesentery of certain teleosti was reported by Brockmann (1846) and Stannius (1848), respectively. Thus the gland was named stannius corpuscle or Brockmann body. Later, as results of histological study, cells of stannius corpuscle tissues were constituted with Langerhans islet cells observed in mammalian pancreas by Diammare (1899) and Laguesse (1906). Thus, before the days of discovery of insulin by Banting and Best in 1921, stannius corpuscle has been interesting from the aspects of comparative anatomy and physiology. Rennie (1906) examined a large number of specimens in various species of teleosti and gave the term "principal islet" to easily recognizable stannius corpuscle. Osawa studied comparative anatomy in Freiburg and returned to Tokyo. He continued the study of comparative anatomy of Langerhans islet aand published a report on observation of "principal islet" of flatfish, limanda yokohamae Gth. in 1912 in Japanese. His report seemed to be a milestone of studies of fish insulin in Japan. Macleod attempted to demonstrate direct evidence on secretion of insulin from Langerhans islet cells. Experiments were made on extraction of "principal islet" of teleosti, angler Lophius) and sculpin (Myoxocephalus) to obtain insulin and demonstrated activity. No insulin activity was obtained from pancreatic tissues constituted with acinar cells of these fishes. In the case of elasmobranch, Langerhans islets are not separated, but potent insulin could be extracted from the pancreas. His report published in 1922 was the first report on fish insulin. Succeeding to Macleod's report, several reports on fish insulin were contnributed from Canada, England and U.S.A. until 1929. Dr. Kkumagai, Professor of Internal Medicine, Tohoku Imperial University (Sendai) also conducted the studies on extraction of active principle of pancreas since 1920, independently. But, a Toronto group reached the goal on discovery of insulin earlier than

  17. Treat early, treat appropriately.

    PubMed

    Liebl, Andreas; Rutten, Guy; Abraira, Carlos

    2010-04-01

    The treatment of type 2 diabetes is shifting from secondary specialist centres to the primary care setting. However, for this shift to be sustainable and successful, primary care physicians (PCPs) must effectively provide aspects of diabetes care traditionally supplied by specialists. In particular, the early and appropriate use of insulin in type 2 diabetes will increasingly become the responsibility of PCPs. This review examines how patients with type 2 diabetes are currently managed across several European countries, and explores the evidence around insulin use in type 2 diabetes and the implications for primary care. 2010 Primary Care Diabetes Europe. Published by Elsevier Ltd.. All rights reserved.

  18. A qualitative study on healthcare professionals’ perceived barriers to insulin initiation in a multi-ethnic population

    PubMed Central

    2012-01-01

    Background Nationwide surveys have shown that the prevalence of diabetes rates in Malaysia have almost doubled in the past ten years; yet diabetes control remains poor and insulin therapy is underutilized. This study aimed to explore healthcare professionals’ views on barriers to starting insulin therapy in people with type 2 diabetes. Methods Healthcare professionals consisting of general practitioners (n = 11), family medicine specialists (n = 10), medical officers (n = 8), government policy makers (n = 4), diabetes educators (n = 3) and endocrinologists (n = 2) were interviewed. A semi-structured topic guide was used to guide the interviews by trained facilitators. The interviews were transcribed verbatim and analysed using a thematic analysis approach. Results Insulin initiation was found to be affected by patient, healthcare professional and system factors. Patients’ barriers include culture-specific barriers such as the religious purity of insulin, preferred use of complementary medication and perceived lethality of insulin therapy. Healthcare professionals’ barriers include negative attitudes towards insulin therapy and the ‘legacy effect’ of old insulin guidelines; whilst system barriers highlight the lack of resources, language and communication challenges. Conclusions Tackling the issue of insulin initiation should not only happen during clinical consultations. It requires health education to emphasise the progressive nature of diabetes and the eventuality of insulin therapy at early stage of the illness. Healthcare professionals should be trained how to initiate insulin and communicate effectively with patients from various cultural and religious backgrounds. PMID:22469132

  19. Relationship of Early Pregnancy Waist-to-Hip Ratio versus Body Mass Index with Gestational Diabetes Mellitus and Insulin Resistance.

    PubMed

    Basraon, Sanmaan K; Mele, Lisa; Myatt, Leslie; Roberts, James M; Hauth, John C; Leveno, Kenneth J; Varner, Michael W; Wapner, Ronald J; Thorp, John M; Peaceman, Alan M; Ramin, Susan M; Sciscione, Anthony; Tolosa, Jorge E; Sorokin, Yoram

    2016-01-01

    To determine the risk of gestational diabetes mellitus (GDM) and insulin resistance (IR) in obesity defined by body mass index (BMI), waist-to-hip ratio (WHR), or both combined. Secondary analysis of a randomized multicenter trial of antioxidant supplementation versus placebo in nulliparous low-risk women to prevent pregnancy associated hypertension. Women between 9 and 16 weeks with data for WHR and BMI were analyzed for GDM (n = 2,300). Those with fasting glucose and insulin between 22 and 26 weeks (n = 717) were analyzed for IR by homeostatic model assessment of IR (normal, ≤ 75th percentile). WHR and BMI were categorized as normal (WHR, < 0.80; BMI, < 25 kg/m(2)); overweight (WHR, 0.8-0.84; BMI, 25-29.9 kg/m(2)); and obese (WHR, ≥ 0.85; BMI ≥ 30 kg/m(2)). Receiver operating characteristic curves and logistic regression models were used. Compared with normal, the risks of GDM or IR were higher in obese by BMI or WHR. The subgroup with obesity by WHR but not by BMI had no increased risk of GDM. BMI was a better predictor of IR (area under the curve [AUC]: 0.71 [BMI], 0.65 [WHR], p = 0.03) but similar to WHR for GDM (AUC: 0.68 [BMI], 0.63 [WHR], p = 0.18). Increased WHR and BMI in early pregnancy are associated with IR and GDM. BMI is a better predictor of IR compared with WHR. Adding WHR to BMI does not improve its ability to detect GDM or IR. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Three steps to writing adaptive study protocols in the early phase clinical development of new medicines

    PubMed Central

    2014-01-01

    This article attempts to define terminology and to describe a process for writing adaptive, early phase study protocols which are transparent, self-intuitive and uniform. It provides a step by step guide, giving templates from projects which received regulatory authorisation and were successfully performed in the UK. During adaptive studies evolving data is used to modify the trial design and conduct within the protocol-defined remit. Adaptations within that remit are documented using non-substantial protocol amendments which do not require regulatory or ethical review. This concept is efficient in gathering relevant data in exploratory early phase studies, ethical and time- and cost-effective. PMID:24980283

  1. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less

  2. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    PubMed

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  4. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  5. Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial.

    PubMed

    Bretzel, Reinhard G; Nuber, Ulrike; Landgraf, Wolfgang; Owens, David R; Bradley, Clare; Linn, Thomas

    2008-03-29

    -28] events per patient per year; p<0.0001). Respective mean weight gains were 3.01 (SD 4.33) kg and 3.54 (4.48) kg. The improvement of treatment satisfaction was greater for insulin glargine than for insulin lispro (mean difference 3.13; 95% CI 2.04-4.22). A therapeutic regimen involving the addition of either basal or prandial insulin analogue is equally effective in lowering haemoglobin A(1c). We conclude that insulin glargine provides a simple and effective option that is more satisfactory to patients than is lispro for early initiation of insulin therapy, since it was associated with a lower risk of hypoglycaemia, fewer injections, less blood glucose self monitoring, and greater patient satisfaction than was insulin lispro. Sanofi-Aventis.

  6. Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study.

    PubMed

    Robinson, Michelle D; Mishra, Ina; Deodhar, Sneha; Patel, Vipulkumar; Gordon, Katrina V; Vintimilla, Raul; Brown, Kim; Johnson, Leigh; O'Bryant, Sid; Cistola, David P

    2017-12-19

    Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that characterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial characterization of an atypical new biomarker that detects these early conditions with just one measurement. Water T 2 , measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exquisitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic human subjects, the association of plasma and serum water T 2 values with over 130 blood biomarkers was analyzed using bivariate, multivariate and logistic regression. Plasma and serum water T 2 exhibited strong bivariate correlations with markers of insulin, lipids, inflammation, coagulation and electrolyte balance. After correcting for confounders, low water T 2 values were independently and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T 2 exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study population) were identified by low water T 2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T 2 values were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and

  7. [News and perspectives in insulin treatment].

    PubMed

    Haluzík, Martin

    2014-09-01

    Insulin therapy is a therapeutic cornerstone in patients with type 1 diabetes and also in numerous patients with type 2 diabetes especially with longer history of diabetes. The initiation of insulin therapy in type 2 diabetes patients is often delayed which is at least partially due to suboptimal pharmacokinetic characteristics of available insulins. The development of novel insulins with more favorable characteristics than those of current insulins is therefore still ongoing. The aim of this paper is to review current knowledge of novel insulins that have been recently introduced to the market or are getting close to routine clinical use. We will also focus on the perspectives of insulin therapy in the long-term run including the alternative routes of insulin administration beyond its classical subcutaneous injection treatment.Key words: alternative routes of insulin administration - diabetes mellitus - hypoglycemia - insulin - insulin analogues.

  8. [Continuous insulin therapy versus multiple insulin injections in the management of type 1 diabetes: a longitutinal study].

    PubMed

    Ribeiro, Maria Estela Bellini; Del Roio Liberatore Junior, Raphael; Custodio, Rodrigo; Martinelli Junior, Carlos Eduardo

    2016-01-01

    To compare multiple doses of insulin and continuous insulin infusion therapy as treatment for type 1 diabetes melito. 40 patients with type 1 diabetes melito (21 female) with ages between 10 and 20 years (mean=14.2) and mean duration of diabetes of 7 years used multiple doses of insulin for at least 6 months and after that, continuous insulin infusion therapy for at least 6 months. Each one of the patients has used multiple doses of insulin and continuous insulin infusion therapy. For analysis of HbA1c, mean glycated hemoglobin levels (mHbA1c) were obtained during each treatment period (multiple doses of insulin and continuous insulin infusion therapy period). Although mHbA1c levels were lower during continuous insulin infusion therapy the difference was not statistically significant. During multiple doses of insulin, 14.2% had mHbA1c values below 7.5% vs. 35.71% while on continuous insulin infusion therapy; demonstrating better glycemic control with the use of continuous insulin infusion therapy. During multiple doses of insulin, 15-40 patients have severe hypoglycemic events versus 5-40 continuous insulin infusion therapy. No episodes of ketoacidosis events were recorded. This is the first study with this design comparing multiple doses of insulin and continuous insulin infusion therapy in Brazil showing no significant difference in HbA1c; hypoglycemic events were less frequent during continuous insulin infusion therapy than during multiple doses of insulin and the percentage of patients who achieved a HbA1c less than 7.5% was greater during continuous insulin infusion therapy than multiple doses of insulin therapy. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways.

    PubMed Central

    Baluk, P.; Bolton, P.; Hirata, A.; Thurston, G.; McDonald, D. M.

    1998-01-01

    Exposure of sensitized individuals to antigen can induce allergic responses in the respiratory tract, manifested by early and late phases of vasodilatation, plasma leakage, leukocyte influx, and bronchoconstriction. Similar responses can occur in the skin, eye, and gastrointestinal tract. The early-phase response involves mast cell mediators and the late-phase response is leukocyte dependent, but the mechanism of leakage is not understood. We sought to identify the leaky blood vessels, to determine whether these vessels contained endothelial gaps, and to analyze the relationship of the gaps to adherent leukocytes, using biotinylated lectins or silver nitrate to stain the cells in situ and Monastral blue as a tracer to quantify plasma leakage. Most of the leakage occurred in postcapillary venules (< 40-microns diameter), whereas most of the leukocyte migration (predominantly neutrophils) occurred in collecting venules. Capillaries and arterioles did not leak. Endothelial gaps were found in the leaky venules, both by silver nitrate staining and by scanning electron microscopy, and 94% of the gaps were distinct from sites of leukocyte adhesion or migration. We conclude that endothelial gaps contribute to both early and late phases of plasma leakage induced by antigen, but most leakage occurs upstream to sites of leukocyte adhesion. Images Figure 3 Figure 5 Figure 6 Figure 7 PMID:9626051

  10. Pitfalls of Insulin Pump Clocks

    PubMed Central

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  11. Adiposity and family history of type 2 diabetes in an admixed population of adolescents: Associations with insulin sensitivity, beta-cell function, and hepatic insulin extraction in BRAMS study.

    PubMed

    Camilo, Daniella F; Vasques, Ana Carolina J; Hayashi, Keila; Tura, Andrea; da Silva, Cleliani de Cassia; Zambon, Mariana P; Antônio, Maria Ângela R de G Monteiro; Geloneze, Bruno

    2018-03-01

    Insulin resistance and beta-cell dysfunction manifest differently across racial/ethnic groups, and there is a lack of knowledge regarding the pathophysiology of type 2 diabetes mellitus (T2DM) for ethnically admixed adolescents. This study aimed to investigate the influence of adiposity and family history (FH) of T2DM on aspects of insulin sensitivity, beta-cell function, and hepatic insulin extraction in Brazilian adolescents. A total of 82 normoglycemic adolescents were assessed. The positive FH of T2DM was defined as the presence of at least one known family member with T2DM. The hyperglycemic clamp test consisted of a 120-min protocol. Insulin secretion and beta-cell function were obtained from C-peptide deconvolution. Analysis of covariance considered pubertal stage as a covariate. Both lean and overweight/obese adolescents had similar glycemic profiles and disposition indexes. Overweight/obese adolescents had about 1/3 the insulin sensitivity of lean adolescents (1.1 ± 0.2 vs. 3.4 ± 0.3 mg·kg·min·pmol ∗ 1000), which was compensated by an increase around 2.5 times in basal (130 ± 7 vs. 52 ± 10 pmol·l·min) and total insulin secretion (130,091 ± 12,230 vs. 59,010 ± 17,522 pmol·l·min), and in the first and second phases of insulin secretion; respectively (p < 0.001). This increase was accompanied by a mean reduction in hepatic insulin extraction of 35%, and a 2.7-time increase in beta-cell glucose sensitivity (p < 0.05). The positive FH of T2DM was not associated with derangements in insulin sensitivity, beta-cell function, and hepatic insulin extraction. In an admixed sample of adolescents, the hyperglycemic clamp test demonstrated that adiposity had a strong influence, and FH of T2DM had no direct influence, in different aspects of glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  13. Hyperinsulinemia, insulin resistance, vitamin D, and colorectal cancer among whites and African Americans.

    PubMed

    Tsai, Chung-Jyi; Giovannucci, Edward L

    2012-10-01

    African Americans have the highest incidence and mortality rates of colorectal cancer among all US racial and ethnic groups. Dietary factors, lifestyle factors, obesity, variability in screening rates, socioeconomic differences, barriers to screening, and differences in access to health care may be contributory factors to racial and ethnic disparities. African Americans are more likely to demonstrate microsatellite instability in their colorectal tumors leading to malignancy. However, these differences do not completely explain all the variances. Ample evidence implicates insulin resistance and its associated conditions, including elevated insulin and insulin-like growth factor-1 (IGF-1), in colorectal carcinogenesis. African Americans have a high risk for and a high prevalence of insulin resistance and subsequent overt type 2 diabetes. Recent clinical studies revealed that ethnic differences between whites and African Americans in early diabetes-related conditions including hyperinsulinemia already exist during childhood. African Americans have a much higher prevalence of vitamin D deficiency than whites throughout their life spans. Vitamin D deficiency has been associated with higher rates of diabetes and colorectal cancer, particularly in individuals with high serum insulin and IGF-1 levels. Moreover, African Americans have lower insulin sensitivity in tissues, independent of obesity, fat distribution, and inflammation. Further development of measures of biomarkers of tumor biology and host susceptibility may provide further insight on risk stratification in African Americans.

  14. Escape from self-tolerance leads to neonatal insulin-dependent diabetes mellitus.

    PubMed

    Radu, D L; Brumeanu, T D; McEvoy, R C; Bona, C A; Casares, S

    1999-01-01

    Double transgenic (dTg) mice expressing the hemagglutinin (HA) of influenza virus under the insulin promoter and the TCR specific for the immunodominant CD4 T cell epitope of HA (HA110-120) develop insulin-dependent diabetes mellitus (IDDM). In order to gain information on the breaking down of neonatal self-tolerance we studied the occurrence of IDDM after birth. Our results showed that newborn mice develop fulminant IDDM characterized by occurrence of insulitis as early as 3 days after birth, followed by hyperglycemia by 7 days, and significant hypoinsulinemia by 28 days. The neonatal breakdown of self-tolerance of T cells positively selected in the thymus is supported by the facts that: (i) peripheral HA110-120 specific T cells from neonates are fully functional and proliferated upon stimulation with the nominal peptide, and (ii) peptide-specific T cells were accumulated in the pancreas of dTg mice as early as 3 days after birth. Our results demonstrate that diabetes occurring in young dTg mice is due to early activation of self-reactive T cells immediately after birth. Accumulation of specific T cells in the target organ leads to destruction of pancreatic beta-cells and IDDM. These mice may provide a useful model to evaluate new strategies for the prevention of diabetes.

  15. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick

    PubMed Central

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank

    2012-01-01

    Purpose Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Methods Chicks were treated with either +7 D, −7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-AktThr308, and anti-phospho-Erk1/2(Thr202/Tyr204) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Results Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens–treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor

  16. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick.

    PubMed

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank; Feldkaemper, Marita P

    2012-01-01

    Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Chicks were treated with either +7 D, -7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-Akt(Thr308), and anti-phospho-Erk1/2((Thr202/Tyr204)) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens-treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor suppressed the effects of

  17. Insulin Delivery System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    When Programmable Implantable Medication System (PIMS) is implanted in human body, it delivers precise programmed amounts of insulin over long periods of time. Mini-Med Technologies has been refining the Technologies since initial development at APL. The size of a hockey puck, and encased in titanium shell, PIMS holds about 2 1/2 teaspoons of insulin at a programmed basal rate. If a change in measured blood sugar level dictates a different dose, the patient can vary the amount of insulin delivered by holding a small radio transceiver over the implanted system and dialing in a specific program held in the PIMS computer memory. Insulin refills are accomplished approximately 4 times a year by hypodermic needle.

  18. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Mumbai cohort of the A1chieve study.

    PubMed

    Talwalkar, P G; Gupta, Vishal; Kovil, Rajiv

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Mumbai, India. A total of 2112 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1561), insulin detemir (n = 313), insulin aspart (n = 144), basal insulin plus insulin aspart (n = 53) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 8.7%) and insulin user (mean HbA1c: 9.2%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: -1.4%, insulin users: -1.8%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  19. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    PubMed

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Accurate screening for insulin resistance in PCOS women using fasting insulin concentrations.

    PubMed

    Lunger, Fabian; Wildt, Ludwig; Seeber, Beata

    2013-06-01

    The aims of this cross-sectional study were to evaluate the relative agreement of both static and dynamic methods of diagnosing IR in women with polycystic ovary syndrome (PCOS) and to suggest a simple screening method for IR. All participants underwent serial blood draws for hormonal profiling and lipid assessment, a 3 h, 75 g load oral glucose tolerance test (OGTT) with every 15 min measurements of glucose and insulin, and an ACTH stimulation test. The prevalence of IR ranged from 12.2% to 60.5%, depending on the IR index used. Based on largest area under the curve on receiver operating curve (ROC) analyses, the dynamic indices outperformed the static indices with glucose to insulin ratio and fasting insulin (fInsulin) demonstrating the best diagnostic properties. Applying two cut-offs representing fInsulin extremes (<7 and >13 mIU/l, respectively) gave the diagnosis in 70% of the patients with high accuracy. Currently utilized indices for assessing IR give highly variable results in women with PCOS. The most accurate indices based on dynamic testing can be time-consuming and labor-intensive. We suggest the use of fInsulin as a simple screening test, which can reduce the number of OGTTs needed to routinely assess insulin resistance in women with PCOS.

  1. Insulin deficiency with and without glucagon: A comparative study between total pancreatectomy and type 1 diabetes.

    PubMed

    Niwano, Fumimaru; Hiromine, Yoshihisa; Noso, Shinsuke; Babaya, Naru; Ito, Hiroyuki; Yasutake, Sara; Matsumoto, Ippei; Takeyama, Yoshifumi; Kawabata, Yumiko; Ikegami, Hiroshi

    2017-12-30

    Patients with a total pancreatectomy and type 1 diabetes are similar in regard to absolute insulin deficiency, but different in regard to glucagon, providing a unique opportunity to study the contribution of glucagon to glucose metabolism in an insulin-dependent state. The aim of the present study was to investigate the contribution of glucagon to glucose homeostasis in complete insulin deficiency in vivo. A total of 38 individuals with a complete lack of endogenous insulin (fasting C-peptide <0.0066 nmol/L) and whose glycemic control was optimized with an insulin pump during hospitalization were retrospectively studied. The basal insulin requirement, time-to-time adjustment of the basal insulin infusion rate, prandial insulin requirement and fasting plasma glucagon were compared between patients with a total pancreatectomy (n = 10) and those with type 1 diabetes (n = 28) after achievement of optimal glycemic control. Total daily insulin (P = 0.03) and basal insulin (P = 0.000006), but not prandial insulin requirements, were significantly lower in total pancreatectomy patients than in type 1 diabetes patients. The basal percentage (basal insulin/total daily insulin) was also significantly lower in total pancreatectomy patients than in type 1 diabetes patients (15.8 ± 7.8 vs 32.9 ± 10.1%, P = 0.00003). An increase in the insulin infusion rate early in the morning was not necessary in most patients with a pancreatectomy. The fasting plasma glucagon concentration was significantly lower in total pancreatectomy patients than in type 1 diabetes patients (P = 0.00007), and was positively correlated with the basal insulin requirement (P = 0.038). The difference in insulin requirements between total pancreatectomy and type 1 diabetes patients suggests a contribution of glucagon to the basal insulin requirement and dawn phenomenon. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and

  2. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence?

    PubMed Central

    Stanley, Molly; Macauley, Shannon L.

    2016-01-01

    Individuals with type 2 diabetes have an increased risk for developing Alzheimer’s disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-β (Aβ) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Aβ levels and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause or consequence of AD. PMID:27432942

  3. Contribution of economic evaluation to decision making in early phases of product development: a methodological and empirical review.

    PubMed

    Hartz, Susanne; John, Jürgen

    2008-01-01

    Economic evaluation as an integral part of health technology assessment is today mostly applied to established technologies. Evaluating healthcare innovations in their early states of development has recently attracted attention. Although it offers several benefits, it also holds methodological challenges. The aim of our study was to investigate the possible contributions of economic evaluation to industry's decision making early in product development and to confront the results with the actual use of early data in economic assessments. We conducted a literature research to detect methodological contributions as well as economic evaluations that used data from early phases of product development. Economic analysis can be beneficially used in early phases of product development for various purposes including early market assessment, R&D portfolio management, and first estimations of pricing and reimbursement scenarios. Analytical tools available for these purposes have been identified. Numerous empirical works were detected, but most do not disclose any concrete decision context and could not be directly matched with the suggested applications. Industry can benefit from starting economic evaluation early in product development in several ways. Empirical evidence suggests that there is still potential left unused.

  4. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin

  5. Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis.

    PubMed

    Sadagurski, Marianna; Landeryou, Taylor; Blandino-Rosano, Manuel; Cady, Gillian; Elghazi, Lynda; Meister, Daniel; See, Lauren; Bartke, Andrzej; Bernal-Mizrachi, Ernesto; Miller, Richard A

    2014-06-01

    The action of nutrients on early postnatal growth can influence mammalian aging and longevity. Recent work has demonstrated that limiting nutrient availability in the first 3 wk of life [by increasing the number of pups in the crowded-litter (CL) model] leads to extension of mean and maximal lifespan in genetically normal mice. In this study, we aimed to characterize the impact of early-life nutrient intervention on glucose metabolism and energy homeostasis in CL mice. In our study, we used mice from litters supplemented to 12 or 15 pups and compared those to control litters limited to eight pups. At weaning and then throughout adult life, CL mice are significantly leaner and consume more oxygen relative to control mice. At 6 mo of age, CL mice had low fasting leptin concentrations, and low-dose leptin injections reduced body weight and food intake more in CL female mice than in controls. At 22 mo, CL female mice also have smaller adipocytes compared with controls. Glucose and insulin tolerance tests show an increase in insulin sensitivity in 6 mo old CL male mice, and females become more insulin sensitive later in life. Furthermore, β-cell mass was significantly reduced in the CL male mice and was associated with reduction in β-cell proliferation rate in these mice. Together, these data show that early-life nutrient intervention has a significant lifelong effect on metabolic characteristics that may contribute to the increased lifespan of CL mice.

  6. Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS

    PubMed Central

    Watanabe, Hama; Shitara, Yoshihiko; Aoki, Yoshinori; Inoue, Takanobu; Tsuchida, Shinya; Takahashi, Naoto; Taga, Gentaro

    2017-01-01

    A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants. PMID:28196885

  7. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  8. 5′AMP-activated Protein Kinase Activity is Increased in Adipose Tissue of Northern Elephant Seal Pups during Prolonged Fasting-Induced Insulin Resistance

    PubMed Central

    Viscarra, Jose A.; Champagne, Cory D.; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    Northern elephant seals endure a 2–3 month fast characterized by sustained hyperglycemia, hypoinsulinemia and increased plasma cortisol and free fatty acids, conditions often seen in insulin resistant humans. We previously showed that adipose Glut4 expression and AMP kinase (AMPK) activity increase and plasma glucose decreases in fasting seals suggesting that AMPK activity contributes to glucose regulation during insulin resistant conditions. To address the hypothesis that AMPK activity increases during fasting-induced insulin resistance, we performed glucose tolerance tests (GTT) on early (n=5) and late (n=8) fasted seal pups and compared adipose tissue expression of insulin signaling proteins, PPARγ, and AMPK, in addition to plasma adiponectin, leptin, cortisol, insulin and non-esterified fatty acids (NEFA) levels. Fasting was associated with decreased glucose clearance, plasma insulin and adiponectin, and intracellular insulin signaling, as well as increased plasma cortisol and NEFAs, supporting the suggestion that seals develop insulin resistance late in the fast. Expression of Glut4 and VAMP2 increased (52% and 63%, respectively) with fasting but did not change significantly during the GTT. PPARγ and phosphorylated AMPK did not change in early fasted seals, but increased significantly (73% and 50%, respectively) in late fasted seals during the GTT. Increased AMPK activity along with the reduction in the activity of insulin-signaling proteins supports our hypothesis that AMPK activity is increased following the onset of insulin resistance. The association between increased AMPK activity and Glut4 expression suggests that AMPK plays a greater role in regulating glucose metabolism in mammals adapted to prolonged fasting than in non-fasting mammals. PMID:21429964

  9. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    PubMed

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  10. Design and synthesis of inositolphosphoglycan putative insulin mediators.

    PubMed

    López-Prados, Javier; Cuevas, Félix; Reichardt, Niels-Christian; de Paz, José-Luis; Morales, Ezequiel Q; Martín-Lomas, Manuel

    2005-03-07

    The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.

  11. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device.

    PubMed

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron

    2017-06-01

    Injectable life-saving drugs should not be exposed to temperatures <4°C/39°F or >30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature < 29°C/84.2°F for a minimum of 12 h without external power requirement, even when constantly exposed to an outside temperature of 37.8°C/100°F. Bringing the device into an ambient temperature < 26°C/78.8°F reverses the phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  12. Insulin transport into the brain.

    PubMed

    Gray, Sarah M; Barrett, Eugene J

    2018-05-30

    While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.

  13. Impact of insulin resistance, insulin and adiponectin on kidney stones in the Japanese population.

    PubMed

    Ando, Ryosuke; Suzuki, Sadao; Nagaya, Teruo; Yamada, Tamaki; Okada, Atsushi; Yasui, Takahiro; Tozawa, Keiichi; Tokudome, Shinkan; Kohri, Kenjiro

    2011-02-01

    It has been reported that kidney stones are linked to metabolic syndrome (MetS), which is characterized by insulin resistance. The aim of the present study was to examine the association of insulin resistance, insulin and adiponectin with kidney stones in a Japanese population. From February 2007 to March 2008, 1036 (529 men and 507 women) apparently healthy Japanese subjects, aged 35-79 years, were analyzed. Weight, height, waist circumference and blood pressure were measured. Overnight fasting blood was collected to measure insulin and adiponectin levels. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated to assess insulin resistance. Logistic regression analysis was used to estimate the odds ratio (OR) and 95% confidence intervals for a self-reported history of kidney stones across tertiles of HOMA-IR, insulin and adiponectin. Of the participants, 84 men (15.6%) and 35 women (6.9%) had a history of kidney stones. Age, body mass index, waist circumference, systolic and diastolic blood pressures, HOMA-IR and insulin were significantly higher in women with than in women without kidney stones. There was no difference in adiponectin level between subjects with and without a history of kidney stones in either sex. Furthermore, a significant positive trend was observed in the age-adjusted OR for a history of kidney stones across insulin tertiles (P-value for trend = 0.04) in women. For Japanese women, HOMA-IR and insulin are associated with a history of kidney stones. The findings suggest that MetS components could increase the risk of kidney stones through subclinical hyperinsulinemia and insulin resistance. © 2010 The Japanese Urological Association.

  14. Insulin and glucose excursion following premeal insulin lispro or repaglinide in cystic fibrosis-related diabetes.

    PubMed

    Moran, A; Phillips, J; Milla, C

    2001-10-01

    Insulin and glucose levels in response to premeal insulin lispro or repaglinide were evaluated in adult patients with cystic fibrosis-related diabetes (CFRD) without fasting hyperglycemia. Seven patients with CFRD were fed 1,000-kcal liquid mixed meals. Three study conditions were administered in random order on separate mornings: 1) no premeal diabetes medication, 2) insulin lispro, 0.1 unit/kg body wt premeal and 3) repaglinide 1 mg premeal. Glucose and insulin levels were measured every 20 min for 5 h. Fasting insulin and glucose levels were normal in patients with CFRD, but the peak glucose level was elevated. Insulin lispro significantly decreased the peak glucose level (P = 0.0004) and the 2-h (P = 0.001) and 5-h (P < 0.0001) glucose area under the curve (AUC). Repaglinide significantly decreased the 5-h glucose AUC (P = 0.03). Neither drug completely normalized cystic fibrosis glucose excursion at the doses used for this study. Insulin lispro significantly increased the 5-h insulin AUC (P = 0.04). In response to subcutaneous insulin lispro, postprandial glucose excursion was significantly diminished and insulin secretion was enhanced compared with a control meal in which no medication was given to patients with CFRD. The oral agent repaglinide resulted in lesser corrections in these parameters. Neither drug completely normalized glucose or insulin levels, suggesting that the doses chosen for this study were suboptimal. Placebo-controlled longitudinal studies comparing the effectiveness of repaglinide and insulin on glucose metabolic control as well as overall nutrition and body weight are needed to help determine optimal medical treatment of CFRD.

  15. Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes.

    PubMed

    García-Casarrubios, Ester; de Moura, Carlos; Arroba, Ana I; Pescador, Nuria; Calderon-Dominguez, María; Garcia, Laura; Herrero, Laura; Serra, Dolors; Cadenas, Susana; Reis, Flavio; Carvalho, Eugenia; Obregon, Maria Jesus; Valverde, Ángela M

    2016-12-01

    New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Convergence in insulin resistance between very severely obese and lean women at the end of pregnancy.

    PubMed

    Forbes, Shareen; Barr, Sarah M; Reynolds, Rebecca M; Semple, Scott; Gray, Calum; Andrew, Ruth; Denison, Fiona C; Walker, Brian R; Norman, Jane E

    2015-11-01

    Disrupted intermediary metabolism may contribute to the adverse pregnancy outcomes in women with very severe obesity. Our aim was to study metabolism in such pregnancies. We recruited a longitudinal cohort of very severely obese (n = 190) and lean (n = 118) glucose-tolerant women for anthropometric and metabolic measurements at early, mid and late gestation and postpartum. In case-control studies of very severely obese and lean women we measured glucose and glycerol turnover during low- and high-dose hyperinsulinaemic-euglycaemic clamps (HEC) at early and late pregnancy and in non-pregnant women (each n = 6-9) and body fat distribution by MRI in late pregnancy (n = 10/group). Although greater glucose, insulin, NEFA and insulin resistance (HOMA-IR), and greater weight and % fat mass (FM) was observed in very severely obese vs lean participants, the degree of worsening was attenuated in the very severely obese individuals with advancing gestation, with no difference in triacylglycerol (TG) concentrations between very severely obese and lean women at term. Enhanced glycerol production was observed in early pregnancy only in very severely obese individuals, with similar intrahepatic FM in very severely obese vs lean women by late gestation. Offspring from obese mothers were heavier (p = 0.04). Pregnancies complicated by obesity demonstrate attenuation in weight gain and insulin resistance compared with pregnancies in lean women. Increased glycerol production is confined to obese women in early pregnancy and obese and lean individuals have similar intrahepatic FM by term. When targeting maternal metabolism to treat adverse pregnancy outcomes, therapeutic intervention may be most effective applied early in pregnancy.

  17. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    PubMed

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Inside information: Financial conflicts of interest for research subjects in early phase clinical trials.

    PubMed

    Helft, Paul R; Ratain, Mark J; Epstein, Richard A; Siegler, Mark

    2004-05-05

    In recent years, several research subjects have told us that they had bought or intended to buy stock in the companies sponsoring the clinical trials in which they were enrolled. This situation has led us to ask what, if any, are physician-investigators' scientific, ethical, and legal responsibilities concerning research subjects who choose to buy stock in the companies sponsoring the clinical trials in which they are participating. Although the scope of this problem is unknown and is likely to be small, this commentary examines the scientific, ethical, and legal concerns raised by such activities on the part of research subjects enrolled in early phase clinical trials. In addition, this commentary also outlines the basis for our opinion that research subjects involved in an early phase clinical trial should avoid the financial conflicts of interest created by trading stock in the company sponsoring the clinical trial.

  19. Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design

    NASA Technical Reports Server (NTRS)

    Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult -- in both cost and schedule -- to enact. Indeed, the current capability-based paradigm that has emerged because of the constrained economic environment calls for the infusion of knowledge acquired during later design phases into earlier design phases, i.e. bring knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture as the need for more economically viable access to space solutions are needed in today's constrained economic environment. The problem of ascent trajectory optimization is not a new one. There are several programs that are widely used in industry that allows trajectory analysts to, based on detailed vehicle and insertion orbit parameters, determine the optimal ascent trajectory. Yet, little information is known about the launch vehicle early in the design phase - information that is required of many different disciplines in order to successfully optimize the ascent trajectory. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi

  20. Divided attention can enhance early-phase memory encoding: the attentional boost effect and study trial duration.

    PubMed

    Mulligan, Neil W; Spataro, Pietro

    2015-07-01

    Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better for stimuli co-occurring with targets. The present experiments indicate that the ABE arises during an early phase of memory encoding that involves initial stimulus perception and comprehension rather than at a later phase entailing controlled, elaborative rehearsal. Experiment 1 demonstrated that the ABE was robust at a short study duration (700 ms) and did not increase with increasing study trial durations (1,500 ms and 4,000 ms). Furthermore, the target condition is boosted to the level of memory performance in a full-attention condition for the short duration but not the long duration. Both results followed from the early-phase account. This account also predicts that for very short study times (limiting the influence of late-phase controlled encoding and thus minimizing the usual negative effect of divided attention), the target condition will produce better memory than will the full-attention condition. Experiment 2 used a study time of 400 ms and found that words presented with targets lead to greater recognition accuracy than do either words presented with distractors or words in the full-attention condition. Consistent with the early-phase account, a divided attention condition actually produced superior memory than did the full-attention condition, a very unusual but theoretically predicted result. (c) 2015 APA, all rights reserved.