Sample records for early planetesimals evidence

  1. ROCKY PLANETESIMAL FORMATION VIA FLUFFY AGGREGATES OF NANOGRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Sota; Nakamoto, Taishi, E-mail: arakawa.s.ac@m.titech.ac.jp

    2016-12-01

    Several pieces of evidence suggest that silicate grains in primitive meteorites are not interstellar grains but condensates formed in the early solar system. Moreover, the size distribution of matrix grains in chondrites implies that these condensates might be formed as nanometer-sized grains. Therefore, we propose a novel scenario for rocky planetesimal formation in which nanometer-sized silicate grains are produced by evaporation and recondensation events in early solar nebula, and rocky planetesimals are formed via aggregation of these nanograins. We reveal that silicate nanograins can grow into rocky planetesimals via direct aggregation without catastrophic fragmentation and serious radial drift, and ourmore » results provide a suitable condition for protoplanet formation in our solar system.« less

  2. Evidence for Universality in the Initial Planetesimal Mass Function

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin

    2017-10-01

    Planetesimals may form from the gravitational collapse of dense particle clumps initiated by the streaming instability. We use simulations of aerodynamically coupled gas-particle mixtures to investigate whether the properties of planetesimals formed in this way depend upon the sizes of the particles that participate in the instability. Based on three high-resolution simulations that span a range of dimensionless stopping times 6× {10}-3≤slant τ ≤slant 2, no statistically significant differences in the initial planetesimal mass function are found. The mass functions are fit by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p = 1.5-1.7 and errors of {{Δ }}p≈ 0.1. Comparing the particle density fields prior to collapse, we find that the high-wavenumber power spectra are similarly indistinguishable, though the large-scale geometry of structures induced via the streaming instability is significantly different between all three cases. We interpret the results as evidence for a near-universal slope to the mass function, arising from the small-scale structure of streaming-induced turbulence.

  3. JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turrini, D.; Coradini, A.; Magni, G., E-mail: diego.turrini@ifsi-roma.inaf.it

    The asteroid belt is an open window on the history of the solar system, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions (SFDs). In this work, we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of themore » primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depends on the SFD of the primordial planetesimals. If the asteroid belt was dominated by planetesimals less than 100 km in diameter, the primordial bombardment would have caused the erosion of bodies smaller than 200 km in diameter. If the asteroid belt was instead dominated by larger planetesimals, the bombardment would have resulted in the destruction of bodies as big as 500 km.« less

  4. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishin, Evgeni; Perets, Hagai B.

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded inmore » a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.« less

  5. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin

    NASA Astrophysics Data System (ADS)

    Libourel, Guy; Krot, Alexander N.

    2007-02-01

    Chondrules are the major high-temperature components of chondritic meteorites, which are conventionally viewed as the samples from the very first generation of undifferentiated planetesimals. Growing evidences from long- and short-lived radionuclide chronologies indicate however that chondrite parent asteroids accreted after or contemporaneously with igneous activities on differentiated asteroids, questioning the pristine nature of chondrites. Here we report a discovery of metal-bearing olivine aggregates with granoblastic textures inside magnesian porphyritic (Type I) chondrules from the CV carbonaceous chondrite Vigarano. Formation of the granoblastic textures requires sintering and prolonged, high-temperature (> 1000 °C) annealing - conditions which are not expected in the solar nebula during chondrule formation, but could have been achieved on parent bodies of olivine-rich differentiated or thermally metamorphosed meteorites. The mineralogy and petrography of the metal-olivine aggregates thus indicate that they are relict, dunite-like lithic fragments which resulted from fragmentation of such bodies. The very old Pb-Pb absolute ages and Al-Mg relative model ages of bulk CV chondrules suggest that such planetesimals may have formed as early as the currently accepted age of the Solar System (4567.2 ± 0.6 Ma).

  6. Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.

    2017-04-10

    Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60–130 M {sub ⊕}) planetesimal belts beyond 100 au and up to ∼20 M {sub ⊕} of planetesimals in the middle regions (3–100 au). Our most comprehensive model forms 8more » M {sub ⊕} of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet-forming regions of protoplanetary disks.« less

  7. Chronology of Planetesimal Differentiation Based on the Timing of Achondrite Formation in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Dunlap, D. R.; Wadhwa, M.

    2018-05-01

    Chronology of achondrites provide critical insights into accretion and differentiation timescales in the early solar system. A diverse suite of achondrites are presented here to constrain the thermal histories of a number of distinct planetesimals.

  8. Planetesimal formation during protoplanetary disk buildup

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Dullemond, C. P.

    2018-06-01

    Context. Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. Aims: In this paper we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. Methods: We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. Results: We find that under most conditions planetesimals only form after the buildup stage, when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv 10-3-10-2) while the turbulent mixing of the dust is reduced compared to that (αt ≲ 10-4), and with the assumption that the water vapor is vertically well-mixed with the gas. Such a αt ≪ αv scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent. Conclusions: In the standard picture where protoplanetary disk accretion is driven by global turbulence, we find that no planetesimals form during the disk buildup stage. Planetesimal formation during the buildup stage is only possible in scenarios in which pebbles reside in a quiescent midplane while the gas and water vapor are diffused at a higher rate.

  9. Pebble pile-up and planetesimal formation at the snow line

    NASA Astrophysics Data System (ADS)

    Drazkowska, J.

    2017-09-01

    The planetesimal formation stage represents a major gap in our understanding of planet formation process. Because of this, the late-stage planet accretion models typically make arbitrary assumptions about planetesimals and pebbles distribution, while the state-of-the-art dust evolution models predict no or little planetesimal formation. With this contribution, I present a step toward bridging the gap between the early and late stages of planet formation by models that connect dust coagulation and planetesimal formation. With the aid of evaporation, outward diffusion, and re-condensation of water vapor, pile-up of large pebbles is formed outside of the snow line that facilitates planetesimal formation by streaming instability.

  10. Impact splash chondrule formation during planetesimal recycling

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Golabek, Gregor J.; Dullemond, Cornelis P.; Schönbächler, Maria; Gerya, Taras V.; Meyer, Michael R.

    2018-03-01

    Chondrules, mm-sized igneous-textured spherules, are the dominant bulk silicate constituent of chondritic meteorites and originate from highly energetic, local processes during the first million years after the birth of the Sun. So far, an astrophysically consistent chondrule formation scenario explaining major chemical, isotopic and textural features, in particular Fe,Ni metal abundances, bulk Fe/Mg ratios and intra-chondrite chemical and isotopic diversity, remains elusive. Here, we examine the prospect of forming chondrules from impact splashes among planetesimals heated by radioactive decay of short-lived radionuclides using thermomechanical models of their interior evolution. We show that intensely melted planetesimals with interior magma oceans became rapidly chemically equilibrated and physically differentiated. Therefore, collisional interactions among such bodies would have resulted in chondrule-like but basaltic spherules, which are not observed in the meteoritic record. This inconsistency with the expected dynamical interactions hints at an incomplete understanding of the planetary growth regime during the lifetime of the solar protoplanetary disk. To resolve this conundrum, we examine how the observed chemical and isotopic features of chondrules constrain the dynamical environment of accreting chondrite parent bodies by interpreting the meteoritic record as an impact-generated proxy of early solar system planetesimals that underwent repeated collision and reaccretion cycles. Using a coupled evolution-collision model we demonstrate that the vast majority of collisional debris feeding the asteroid main belt must be derived from planetesimals which were partially molten at maximum. Therefore, the precursors of chondrite parent bodies either formed primarily small, from sub-canonical aluminum-26 reservoirs, or collisional destruction mechanisms were efficient enough to shatter planetesimals before they reached the magma ocean phase. Finally, we outline the

  11. Onset of a planetesimal dynamo

    NASA Astrophysics Data System (ADS)

    Wang, H.; Weiss, B. P.; Wang, J.; Chen-Wiegart, Y. C. K.; Downey, B. G.; Suavet, C. R.; Andrade Lima, E.; Zucolotto, M. E.

    2014-12-01

    The paleomagnetism of achondritic meteorites provides evidence for advecting metallic core dynamos and large-scale differentiation on their parent planetesimals. The small sizes of these bodies (~102 km) enable a new opportunity to understand the physics of dynamo generation in a size regime with distinct thermal evolution parameters that are more accessible to model than planets. One key unknown about planetesimal dynamos is their onset time. Theoretical studies have suggested that it might occur instantaneously after large-scale melting (Weiss et al. 2008, Elkins-Tanton et al. 2011) while others have argued that a dynamo could be delayed by ~6 My (Sterenborg and Crowley 2013) or longer. Here we present the first paleomagnetic study that has constrained the onset time of a planetesimal dynamo, which has key implications for the physics of core formation, planetary thermal evolution and dynamo generation mechanisms. Our study focused on angrites, a group of ancient basaltic achondrites from near the surface of an early differentiated planetesimal. With unshocked, unbrecciated textures and Pb/Pb ages ranging from only ~3-10 My younger than the formation of calcium aluminum inclusions (CAIs), they are among the oldest known and best preserved planetary igneous rocks. We used a new CO2 + H2 gas mixture system (Suavet et al. 2014) for controlled oxygen fugacity thermal paleointensity experiments on two of the oldest angrites (D'Orbigny and SAH 99555; 4564.4 Ma) and a younger angrite (Angra dos Reis; 4557.7 Ma). For D'Orbigny and SAH 99555, we found that the natural remanence (NRM) demagnetizes at much lower temperatures than lab-applied thermoremanence (TRM), indicating that their NRMs are dominantly overprints from the Earth's field and hand magnets. In contrast, the NRM of Angra dos Reis behaves similarly to a TRM, confirming its thermal origin. We estimate the paleointensities to be < 0.2 µT for D'Orbigny and SAH 99555 and ~10 µT for Angra dos Reis. This indicates

  12. From Stardust to Planetesimals: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Kress, M. E. (Editor); Tielens, A. G. G. M. (Editor); Pendleton, Y. J. (Editor)

    1996-01-01

    On June 24 through 26, 1996, a scientific conference entitled From Stardust to Planetesimals was held at the Westin Hotel, Santa Clara, California, as part of the 108th annual meeting of the Astronomical Society of the Pacific. Over the last decade, our understanding of the formation and early evolution of the solar system has advanced considerably due to progress that has been made simultaneously on many fronts. Stardust has been isolated in meteorites and interplanetary dust particles (IDP's), providing us with sample materials which predate the solar system and which offer clues to the processing that has occurred. At the same time, infrared studies have led to a better characterization of the composition of interstellar dust, which is now readily accepted as an important component of the interstellar medium infrared observations have also provided a much better view of the star-formation process and the role of dust therein. Recently, the presence of Kuiper Belt planetesimals has been confirmed and spectroscopy of these rather pristine objects may soon become available. Analysis of spacecraft data from the Comet Halley flybys has yielded a wealth of information on the composition of this comet. These observational advances have changed our understanding of planetesimal processing. The launch of the Infrared Space Observatory, the opening of 10-meter class telescopes, and, in the longer term, the Rosetta mission, promise to continue to broaden and deepen our understanding of the evolution from stardust to planetesimals. For these reasons we considered it timely to organize a meeting focused on the processes that connect stardust and planetesimals. The goal of this meeting was, therefore, to bring together astronomers interested in star- and planet-formation, planetary scientists studying early solar system relics, laboratory scientists studying the processing of analogs, and scientists analyzing meteorites and interplanetary dust particles, grain by grain. As a

  13. Planetesimal Collisions as a Chondrule Forming Event

    NASA Astrophysics Data System (ADS)

    Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi; Hasegawa, Yasuhiro

    2017-01-01

    Chondritic meteorites contain unique spherical materials named chondrules: sub-mm sized silicate grains once melted in a high temperature condition in the solar nebula. We numerically explore one of the chondrule forming processes—planetesimal collisions. Previous studies have found that impact jetting via protoplanet-planetesimal collisions can make chondrules with 1% of the impactors’ mass, when the impact velocity exceeds 2.5 km s-1. Based on the mineralogical data of chondrules, undifferentiated planetesimals would be more suitable for chondrule-forming collisions than potentially differentiated protoplanets. We examine planetesimal-planetesimal collisions using a shock physics code and find two things: one is that planetesimal-planetesimal collisions produce nearly the same amount of chondrules as protoplanet-planetesimal collisions (˜1%). The other is that the amount of produced chondrules becomes larger as the impact velocity increases when two planetesimals collide with each other. We also find that progenitors of chondrules can originate from deeper regions of large targets (planetesimals or protoplanets) than small impactors (planetesimals). The composition of targets is therefore important, to fully account for the mineralogical data of currently sampled chondrules.

  14. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Golabek, Gregor J.; Gerya, Taras V.; Meyer, Michael R.

    2016-08-01

    The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as 26Al and 60Fe, as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family I2ELVIS/I3ELVIS we have run numerous 2D and 3D numerical finite-difference fluid dynamic models with varying planetesimal radius, formation time and initial porosity. Our results indicate that powdery materials lowered the threshold for melting and convection in planetesimals, depending on the amount of SLRs present. A subset of planetesimals retained a powdery surface layer which lowered the thermal conductivity and hindered cooling. The effect of initial porosity was small, however, compared to those of planetesimal size and formation time, which dominated the thermo-mechanical evolution and were the primary factors for the onset of melting and differentiation. We comment on the implications of this work concerning the structure and evolution of these planetesimals, as well as their behavior as possible building blocks of terrestrial planets.

  15. Tidal disruption of inviscid planetesimals

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Cameron, A. G. W.; Benz, W.

    1991-01-01

    In view of previous efforts' demonstration that strongly dissipative planetesimals are immune to tidal disruption, an examination is presently conducted of the complementary case of inviscid planetesimals arising from collisions that are sufficiently energetic to entirely melt the resulting planetesimal and debris. The tidal disruption is numerically simulated by means of the smoothed particle hydrodynamics (SPH) code of Cameron and Benz (1991), concentrating on the tidal disruption of 0.01 earth-mass planetesimals passing by the earth with variations in the impact parameter at perigee and velocity at infinity. The SPH models show that tidal forces during a close encounter can efficiently convert orbital angular momentum into spin angular momentum, thereby initiating equatorial mass-shedding to inviscid planetesimals that have been spun up beyond the limit of rotational stability.

  16. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region.

    PubMed

    Bottke, William F; Nesvorný, David; Grimm, Robert E; Morbidelli, Alessandro; O'Brien, David P

    2006-02-16

    Iron meteorites are core fragments from differentiated and subsequently disrupted planetesimals. The parent bodies are usually assumed to have formed in the main asteroid belt, which is the source of most meteorites. Observational evidence, however, does not indicate that differentiated bodies or their fragments were ever common there. This view is also difficult to reconcile with the fact that the parent bodies of iron meteorites were as small as 20 km in diameter and that they formed 1-2 Myr earlier than the parent bodies of the ordinary chondrites. Here we show that the iron-meteorite parent bodies most probably formed in the terrestrial planet region. Fast accretion times there allowed small planetesimals to melt early in Solar System history by the decay of short-lived radionuclides (such as 26Al, 60Fe). The protoplanets emerging from this population not only induced collisional evolution among the remaining planetesimals but also scattered some of the survivors into the main belt, where they stayed for billions of years before escaping via a combination of collisions, Yarkovsky thermal forces, and resonances. We predict that some asteroids are main-belt interlopers (such as (4) Vesta). A select few may even be remnants of the long-lost precursor material that formed the Earth.

  17. Thermal evolution and differentiation of planetesimals and planetary embryos

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Milelli, Laura; Ricard, Yanick; Labrosse, Stéphane

    2012-01-01

    In early Solar System during the runaway growth stage of planetary formation, the distribution of planetary bodies progressively evolved from a large number of planetesimals to a smaller number of objects with a few dominant embryos. Here, we study the possible thermal and compositional evolution of these planetesimals and planetary embryos in a series of models with increasing complexities. We show that the heating stages of planetesimals by the radioactive decay of now extinct isotopes (in particular 26Al) and by impact heating can occur in two stages or simultaneously. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. We discuss the regime domains of these situations and show that the exponent β that controls the planetary growth rate R˙∝Rβ of planetesimals plays a crucial role. For a given terminal radius and accretion duration, the increase of β maintains the planetesimals very small until the end of accretion, and therefore allows radioactive heating to be radiated away before a large mass can be accreted. To melt the center of ˜500 km planetesimal during its runaway growth stage, with the value β = 2 predicted by astrophysicists, it needs to be formed within a couple of million years after condensation of the first solids. We then develop a multiphase model where the phase changes and phase separations by compaction are taken into account in 1-D spherical geometry. Our model handles simultaneously metal and silicates in both solid and liquid states. The segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained.

  18. Simulations of small solid accretion on to planetesimals in the presence of gas

    NASA Astrophysics Data System (ADS)

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  19. Thermal evolution and core formation of planetesimals

    NASA Astrophysics Data System (ADS)

    Suwa, Taichi; Nagahara, Hiroko

    2017-04-01

    Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent

  20. Scattering of Planetesimals by a Planet

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2004-05-01

    We investigate the scattering process of planetesimals by a planet by numerical orbital integration, aiming at construction of theory for the comet (Oort) cloud formation. The standard scenario of the formation of the Oort cloud can be divided into three dynamical stages:(1)The eccentricity and the aphelion distance of planetesimals are increased by planetary perturbation. (2)The eccentricity is reduced and the perihelion distance is increased by the external forces such as the galactic tide. (3)The inclination is randomized also by the external forces. We model the first stage of this scenario as the restricted three-body problem and calculate the orbital evolution of planetesimals scattered by a planet. There are 4 kinds of outcomes for scattering of planetesimals by a planet: to collide with the planet, to fall onto the central star, to escape from the planetary system, and to remain in bound orbits. Here we consider the escape efficiency as the efficiency of formation of highly eccentric planetesimals, which are candidates for the members of the comet cloud. We obtain the dependence of the escape/collision probability on orbital parameters of the planetesimals and the planet. Using these results, we calculate the efficiencies of escaping from the planetary system and collision with the planet. For example, for the minimum-mass disk model, the inner and massive planet is more efficient to eject planetesimals and increase their eccentricities. Planetesimals with high eccentricities and low inclinations are easier to be ejected from the planetary system. We preset the empirical fitting formulae of these efficiencies as a function of the orbital parameters of the planetesimals and the planets. We apply the results to the solar system and discuss the efficiency of the outer giant planets.

  1. EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu

    2013-02-20

    We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owingmore » to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.« less

  2. Planetesimal formation starts at the snow line

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Alibert, Y.

    2017-12-01

    Context. The formation stage of planetesimals represents a major gap in our understanding of the planet formation process. Late-stage planet accretion models typically make arbitrary assumptions about planetesimal and pebble distribution, while dust evolution models predict that planetesimal formation is only possible at some orbital distances. Aims: We wish to test the importance of the water snow line in triggering the formation of the first planetesimals during the gas-rich phase of a protoplanetary disk, when cores of giant planets have to form. Methods: We connected prescriptions for gas disk evolution, dust growth and fragmentation, water ice evaporation and recondensation, the transport of both solids and water vapor, and planetesimal formation via streaming instability into a single one-dimensional model for protoplanetary disk evolution. Results: We find that processes taking place around the snow line facilitate planetesimal formation in two ways. First, because the sticking properties between wet and dry aggregates change, a "traffic jam" inside of the snow line slows the fall of solids onto the star. Second, ice evaporation and outward diffusion of water followed by its recondensation increases the abundance of icy pebbles that trigger planetesimal formation via streaming instability just outside of the snow line. Conclusions: Planetesimal formation is hindered by growth barriers and radial drift and thus requires particular conditions to take place. The snow line is a favorable location where planetesimal formation is possible for a wide range of conditions, but not in every protoplanetary disk model, however. This process is particularly promoted in large cool disks with low intrinsic turbulence and an increased initial dust-to-gas ratio. The movie attached to Fig. 3 is only available at http://www.aanda.org

  3. Using asteroid families to test planetesimal differentiation hypotheses

    NASA Astrophysics Data System (ADS)

    Jacobson, S.; Campins, H.; Delbo', M.; Michel, P.; Tanga, P.; Hanuš, J.; Morbidelli, A.

    2014-07-01

    There have been a series of papers (e.g., Weiss et al. 2008, 2010, 2012; Carporzen et al. 2011; Elkins-Tanton et al. 2011) suggesting that large planetesimals should have metamorphic grading within their crusts and possibly fully-differentiated interiors with mantles and cores. This is a very attractive hypothesis consistent with ideas that planetesimals form as large bodies (Johansen et al. 2007, Cuzzi et al. 2008, Morbidelli et al. 2009) and form early in Solar System history when radioactive heating is still important. It is natural to look to the asteroid belt, our prime reservoir of terrestrial planet building blocks (i.e., left-over planetesimals), for confirmation of this idea. Asteroid families, long known to be the debris from catastrophic disruptions (Hirayama 1918, Michel et al. 2003) conveniently expose the interiors of these left-overs. From simulations of the catastrophic disruption process, we know that not all material is ejected equally. Material near the surface is given higher expulsion velocities and divided into smaller pieces (Michel et al. 2004). Furthermore, while catastrophic disruptions appear to be a messy process, the largest remnants, including those formed by re-accumulation of smaller fragments, come from coherent sections of the progenitor body, although the extent and depth of these sections within the progenitor depend on its internal structure (Michel et al. 2014). This suggests that the ejected material should also maintain a coherent compositional structure (Michel et al., 2004). Therefore, compositional gradients within planetesimals should expose themselves within asteroid families. While all asteroid families share a number of common features, there is a large diversity of membership numbers, progenitor masses, collision energy, formation times, and spectroscopic type and sub-type both between and within families (Zappala et al. 1995, Nesvorny 2012). This compositional diversity allows for a thorough exploration of the

  4. Simulations of planet migration driven by planetesimal scattering

    NASA Astrophysics Data System (ADS)

    Kirsh, David R.; Duncan, Martin; Brasser, Ramon; Levison, Harold F.

    2009-01-01

    Evidence has mounted for some time that planet migration is an important part of the formation of planetary systems, both in the Solar System [Malhotra, R., 1993. Nature 365, 819-821] and in extrasolar systems [Mayor, M., Queloz, D., 1995. Nature 378, 355-359; Lin, D.N.C., Bodenheimer, P., Richardson, D.C., 1996. Nature 380, 606-607]. One mechanism that produces migration (the change in a planet's semi-major axis a over time) is the scattering of comet- and asteroid-size bodies called planetesimals [Fernandez, J.A., Ip, W.-H., 1984. Icarus 58, 109-120]. Significant angular momentum exchange can occur between the planets and the planetesimals during local scattering, enough to cause a rapid, self-sustained migration of the planet [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445]. This migration has been studied for the particular case of the four outer planets of the Solar System (as in Gomes et al. [Gomes, R.S., Morbidelli, A., Levison, H.F., 2004. Icarus 170, 492-507]), but is not well understood in general. We have used the Miranda [McNeil, D., Duncan, M., Levison, H.F., 2005. Astron. J. 130, 2884-2899] computer simulation code to perform a broad parameter-space survey of the physical variables that determine the migration of a single planet in a planetesimal disk. Migration is found to be predominantly inwards, and the migration rate is found to be independent of planet mass for low-mass planets in relatively high-mass disks. Indeed, a simple scaling relation from Ida et al. [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445] matches well with the dependencies of the migration rate: |{da}/{dt}|=aT{4πΣa/M; with T the orbital period of the planet and Σ the surface density of the planetesimal disk. When the planet's mass exceeds that of the planetesimals within a few Hill radii (the unit of the planet's gravitational reach), the migration rate decreases strongly with planet mass. Other trends are

  5. Fluffy dust forms icy planetesimals by static compression

    NASA Astrophysics Data System (ADS)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  6. Debris disc constraints on planetesimal formation

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  7. Resolving the planetesimal belt of HR 8799 with ALMA

    NASA Astrophysics Data System (ADS)

    Booth, Mark; Jordán, Andrés; Casassus, Simon; Hales, Antonio S.; Dent, William R. F.; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge

    2016-07-01

    The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fitted by a broad ring between 145^{+12}_{-12} au and 429^{+37}_{-32} au at an inclination of 40^{+5}_{-6}° and a position angle of 51^{+8}_{-8}°. A disc edge at ˜145 au is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orbit of planet b.

  8. Self-Stirring of Debris Discs by Planetesimals Formed by Pebble Concentration

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander V.; Booth, Mark

    2018-06-01

    When a protoplanetary disc looses gas, it leaves behind planets and one or more planetesimal belts. The belts get dynamically excited, either by planets ("planet stirring") or by embedded big planetesimals ("self-stirring"). Collisions between planetesimals become destructive and start to produce dust, creating an observable debris disc. Following Kenyon & Bromley (2008), it is often assumed that self-stirring starts to operate as soon as the first ˜1000 km-sized embedded "Plutos" have formed. However, state-of-the-art pebble concentration models robustly predict planetesimals between a few km and ˜200 km in size to form in protoplanetary discs rapidly, before then slowly growing into Pluto-sized bodies. We show that the timescale, on which these planetesimals excite the disc sufficiently for fragmentation, is shorter than the formation timescale of Plutos. Using an analytic model based on the Ida & Makino (1993) theory, we find the excitation timescale to be T_excite ≈ 100 x_m^{-1} M_\\star ^{-3/2} a^3 Myr, where xm is the total mass of a protoplanetary disc progenitor in the units of the Minimum-Mass Solar Nebula, a its radius in the units of 100 AU, and M⋆ is the stellar mass in solar masses. These results are applied to a set of 23 debris discs that have been well resolved with ALMA or SMA. We find that the majority of these discs are consistent with being self-stirred. However, three large discs around young early-type stars do require planets as stirrers. These are 49 Cet, HD 95086, and HR 8799, of which the latter two are already known to have planets.

  9. Capture of Planetesimals into a Circumterrestrial Swarm

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1985-01-01

    The lunar origin model considered in this report involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. The first stage of formation of a geocentric swarm by capture of planetesimals from initially heliocentric orbits is examined. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. The dissipation of energy in inelastic collisions or accretion events changes the value of the Jacobi parameter, allowing capture into bound geocentric orbits. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space.

  10. Elemental Compositions of Extrasolar Planetesimals

    NASA Astrophysics Data System (ADS)

    Xu, Siyi; Jura, M.

    2014-01-01

    The composition of extrasolar rocky planets is essential for understanding the formation and evolution of these alien worlds. Studying externally-polluted white dwarfs provides the only method to directly measure the elemental compositions of extrasolar planetesimals, the building blocks of planets. The standard model is that some planetesimals can survive to the white dwarf phase, get perturbed, enter into the tidal radius of the white dwarf and get accreted, polluting its pure hydrogen or helium atmosphere. We have been performing high-resolution spectroscopic observations on a number of polluted white dwarfs to measure the bulk compositions of the accreted objects. To have a full picture of the abundance pattern, we gathered data from both Keck/HIRES and HST/COS. I will present the analysis for one of the most interesting objects -- G29-38. It is the first white dwarf identified with an infrared excess from debris of pulverized planetesimals and among the very first identified polluted hydrogen atmosphere white dwarfs. Our analysis indicates that the accreted extrasolar planetesimal is enhanced in refractory elements and depleted in volatile elements. A detailed comparison with solar system objects show that the observed composition can be best interpreted as a blend of chondritic object with some refractory-rich material, a result from post-nebular processing. When all polluted white dwarfs are viewed as an ensemble, we find that the elemental compositions of accreted extrasolar planetesimals resemble to those of solar system objects to zeroth order. (i) The big four elements, O, Fe, Mg and Si are also dominant. Objects with exotic compositions, e.g. diamond planets and refractory-dominated planets, are yet to be found. (ii) Volatiles, such as carbon and water, are only trace constituents. In terms of bulk composition, solar system objects are essentially normal.

  11. Core solidification and dynamo evolution in a mantle-stripped planetesimal

    NASA Astrophysics Data System (ADS)

    Scheinberg, A.; Elkins-Tanton, L. T.; Schubert, G.; Bercovici, D.

    2016-01-01

    The physical processes active during the crystallization of a low-pressure, low-gravity planetesimal core are poorly understood but have implications for asteroidal magnetic fields and large-scale asteroidal structure. We consider a core with only a thin silicate shell, which could be analogous to some M-type asteroids including Psyche, and use a parameterized thermal model to predict a solidification timeline and the resulting chemical profile upon complete solidification. We then explore the potential strength and longevity of a dynamo in the planetesimal's early history. We find that cumulate inner core solidification would be capable of sustaining a dynamo during solidification, but less power would be available for a dynamo in an inward dendritic solidification scenario. We also model and suggest limits on crystal settling and compaction of a possible cumulate inner core.

  12. Capture of planetesimals into a circumterrestrial swarm

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1984-01-01

    The lunar origin model considered involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. Examined is the first stage of formation of a geocentric swarm by capture of planetesimals from initialy heliocentric orbits. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space. Results agree that the systematic contribution of angular momentum is insufficient to maintain an orbiting swarm under heavy bombardment. Thus, a circumterrestrial swarm can be formed rather easily, but is hard to sustain because the mean net angular momentum of a many body swarm is small.

  13. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  14. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  15. Sublimating icy planetesimals as the source of nucleation seeds for grain condensation in classical novae

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, D. P.; Reynolds, R. T.

    1989-01-01

    The problem of grain nucleation during novae outbursts is a major obstacle to our understanding of dust formation in these systems. How nucleation seeds can form in the hostile post-outburst environment remains an unresolved matter. It is suggested that the material for seeding the condensation of ejecta outflow is stored in a primordial disk of icy planetesimals surrounding the system. Evidence is presented that the requisite number of nucleation seeds can be released by sublimation of the planetesimals during outbursts.

  16. The formation of protoplanets in the planetesimal disk

    NASA Astrophysics Data System (ADS)

    Kominami, Junko; Tanaka, Hidekazu; Ida, Shigeru

    We have performed N-body simulations on the stage of protoplanet formation from planetesimals. Generally accepted planet formation theory suggests that protoplanets are formed through accretion of ~km sized planetesimals. The formation process proceeds in the nebular disk. Hence the bodies in the disk suffer gas drag and interact tidally with the nebula. Such interaction triggers the type I migration. We found that the runaway protoplanet forms a gap in the planetesimal disk. It results in the slow down of the migration by factor of ~0.7, and the accretion rate. However, the shepherding does not last so long. Hence the overall migration time scale can not be changed by the formation of the gap in the planetesimal disk. However, if the depletion of the gas occurs from the inner region of the disk, the planets may survive from migration.

  17. Microgravity collisions of dust aggregates as an analogue to early planetesimal formation

    NASA Astrophysics Data System (ADS)

    Whizin, Akbar; Blum, Jürgen; Colwell, Joshua

    2014-11-01

    During the early stages of planet formation the dusty progenitors of planetesimals collided with each other continuously to form the seeds of planets. These collisions could result in growth or disruption depending on the individual impact velocities. Based on input from solar nebula models a laboratory-based microgravity dust collision experiment was developed for a drop tower at the Technische Universität Braunschweig, Germany. We collided 1.0 - 1.6 mm SiO2 dust aggregates with clusters of these aggregates at a range of velocities and mass ratios to determine the thresholds between bouncing, sticking, and fragmentation. Presented here are the results of 264 microgravity collisions occurring at velocities of 1 - 160 cm/s with target-impactor mass ratios of 5:1 to 400:1. We also present the coefficient of restitutions for low-velocity collisions and we find the specific collision energy of fragmentation Q* for aggregates of this size. We find sticking occurs at mass ratios larger than 40:1, but only for low velocities ≤ 3 cm/s, clear boundaries exist for bouncing up to 30 cm/s, and fragmentation at ~50 cm/s and up, with total disruption occurring above 1 m/s.

  18. Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals. What Have We Learned from Laboratory Experiments?

    NASA Astrophysics Data System (ADS)

    Blum, Jürgen

    2018-03-01

    After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that μm-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-μm-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust "pebbles" seems the most likely.

  19. Formation of planetesimals

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    1991-01-01

    Formation of planetesimals is discussed. The following subject areas are covered: (1) nebular structure; (2) aerodynamics of the solid bodies in the nebula; (3) problems with gravitational instability; (4) particle growth by coagulation; properties of fractal aggregates; and (5) coagulation and settling of fractal aggregates.

  20. Multizone accretional evolution of planetesimal swarms

    NASA Technical Reports Server (NTRS)

    Spaute, D.; Davis, D. R.; Weidenschilling, S. J.

    1990-01-01

    The general features of a new numerical simulation of planetesimal accretion which models multiple heliocentric distance zones, together with a detailed model for the planetesimal size and orbital distribution in each zone, are described. A restricted version of this model which allows only a single heliocentric distance zone has been used to test the validity of the code by comparing with results from earlier authors when the same physical phenomena are included. Generally, very good agreement is found.

  1. Dust production by collisional grinding during Planetesimal-Driven Migration

    NASA Astrophysics Data System (ADS)

    Salmon, Julien; Walsh, Kevin J.; Levison, Harold F.

    2017-10-01

    Many main-sequence stars are surrounded by optically thin disks of dust in the absence of any detectable gas (e.g. Su et al. 2006, Meyer et al. 2008). IR and sub-millimeter observations suggest that most of the observed emission comes from grains with sizes between 1-100 microns. Since radiation forces are expected to remove these grains on timescales much shorter than the age of the parent stars (Backman & Parsce 1993, Wyatt 2008), it implies that some process is replenishing the dust, such as collisional grinding. The latter requires large impact velocities between planetesimals, which can be achieved if large objects are dynamically exciting a disk of 1-10km planetesimals. Such debris disks could be hosting ongoing planet formation, and present a powerful tool to test planet formation theories.If a planet is embedded in a gas-free planetesimal disk, the mutual gravitational interactions will force the planet to migrate (e.g. Fernandez & Ip 1984). Planetesimals situated along the direction of migration can be trapped in mean motion resonances (MMRs) with the planet (Malhotra 1993, 1995, Hahn & Malholtra 1999). Planetesimals trapped in such resonances will have their eccentricities pumped to large values as the planet continues to migrate, thereby leading to energetic collisions and dust production (Wyatt 2003, Reche et al. 2008, Mustill & Wyatt 2011).We have performed an extensive suite of simulations in which we explore the likelihood that a given set of disk parameters (mass, surface density slope, number of planetesimals) can sustain planetesimal-driven migration (PDM). We confirm the strong dependence on resolution found in previous works (e.g. Kirsch et al 2009), and find that an embryo to planetesimal mass ratio of 400 is necessary to mitigate the effects of stochasticity, which may cause migration to stall and/or reverse. After having identified disks suitable for sustained PDM, we model their evolution using LIPAD (Levison et al. 2012) taking into account

  2. Implications of the interstellar object 1I/'Oumuamua for planetary dynamics and planetesimal formation

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Veras, Dimitri; Quintana, Elisa V.; Barclay, Thomas

    2018-05-01

    'Oumuamua, the first bona fide interstellar planetesimal, was discovered passing through our Solar system on a hyperbolic orbit. This object was likely dynamically ejected from an extrasolar planetary system after a series of close encounters with gas giant planets. To account for 'Oumuamua's detection, simple arguments suggest that ˜1 M⊕ of planetesimals are ejected per solar mass of Galactic stars. However, that value assumes mono-sized planetesimals. If the planetesimal mass distribution is instead top-heavy, the inferred mass in interstellar planetesimals increases to an implausibly high value. The tension between theoretical expectations for the planetesimal mass function and the observation of 'Oumuamua can be relieved if a small fraction ({˜ } 0.1-1 {per cent}) of planetesimals are tidally disrupted on the pathway to ejection into 'Oumuamua-sized fragments. Using a large suite of simulations of giant planet dynamics including planetesimals, we confirm that 0.1-1 per cent of planetesimals pass within the tidal disruption radius of a gas giant on their pathway to ejection. 'Oumuamua may thus represent a surviving fragment of a disrupted planetesimal. Finally, we argue that an asteroidal composition is dynamically disfavoured for 'Oumuamua, as asteroidal planetesimals are both less abundant and ejected at a lower efficiency than cometary planetesimals.

  3. Evolution of planetesimal discs and planetary migration

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Yeşilyurt, S.; Ercan, E. N.

    2003-02-01

    In this paper, we further develop the model for the migration of planets introduced by Del Popolo, Gambera & Ercan and extended to time-dependent planetesimal accretion discs by Del Popolo & Ekşi. More precisely, the assumption of Del Popolo & Ekşi that the surface density in planetesimals is proportional to that of the gas was released. Indeed, the evolution of the radial distribution of solids is governed by many processes: gas-solid coupling, coagulation, sedimentation, evaporation/condensation, so that the distribution of planetesimals emerging from a turbulent disc does not necessarily reflect that of the gas. In order to describe this evolution we use a method developed by Stepinski & Valageas, which, using a series of simplifying assumptions, is able to simultaneously follow the evolution of gas and solid particles for up to 107 yr. This model is based on the premise that the transformation of solids from dust to planetesimals occurs through hierarchical coagulation. Then, the distribution of planetesimals obtained after 107 yr is used to study the migration rate of a giant planet through the migration model introduced by Del Popolo, Gambera & Ercan. This allows us to investigate the dependence of the migration rate on the disc mass, on its time evolution and on the value of the dimensionless viscosity parameter α. We find that in the case of discs having a total mass of 10-3-10-1 Msolar, and 10-4 < α < 10-1, planets can migrate inward over a large distance while if Md < 10-3, Msolar the planets remain almost at their initial position for α > 10-3 and only in the case where α < 10-3 do the planets move to a minimum value of orbital radius of ~=2 au. Moreover, the observed distribution of planets in the period range 0-20 d can be easily obtained from our model. Therefore, dynamical friction between planets and the planetesimal disc provides a good mechanism to explain the properties of observed extrasolar giant planets.

  4. Tidal disruption of dissipative planetesimals

    NASA Technical Reports Server (NTRS)

    Mizuno, H.; Boss, A. P.

    1985-01-01

    A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.

  5. Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru K.; Morbidelli, Alessandro

    2018-05-01

    Context. No planets exist inside the orbit of Mercury and the terrestrial planets of the solar system exhibit a localized configuration. According to thermal structure calculation of protoplanetary disks, a silicate condensation line ( 1300 K) is located around 0.1 au from the Sun except for the early phase of disk evolution, and planetesimals could have formed inside the orbit of Mercury. A recent study of disk evolution that includes magnetically driven disk winds showed that the gas disk obtains a positive surface density slope inside 1 au from the central star. In a region with positive midplane pressure gradient, planetesimals undergo outward radial drift. Aims: We investigate the radial drift of planetesimals and type I migration of planetary embryos in a disk that viscously evolves with magnetically driven disk winds. We show a case in which no planets remain in the close-in region. Methods: Radial drifts of planetesimals are simulated using a recent disk evolution model that includes effects of disk winds. The late stage of planet formation is also examined by performing N-body simulations of planetary embryos. Results: We demonstrate that in the middle stage of disk evolution, planetesimals can undergo convergent radial drift in a magnetorotational instability (MRI)-inactive disk, in which the pressure maximum is created, and accumulate in a narrow ring-like region with an inner edge at 0.7 au from the Sun. We also show that planetary embryos that may grow from the narrow planetesimal ring do not exhibit significant type I migration in the late stage of disk evolution. Conclusions: The origin of the localized configuration of the terrestrial planets of the solar system, in particular the deficit of close-in planets, can be explained by the convergent radial drift of planetesimals in disks with a positive pressure gradient in the close-in region.

  6. Impact Vaporization of Planetesimal Cores

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Root, S.; Lemke, R. W.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2013-12-01

    The degree of mixing and chemical equilibration between the iron cores of planetesimals and the mantle of the growing Earth has important consequences for understanding the end stages of Earth's formation and planet formation in general. At the Sandia Z machine, we developed a new shock-and-release technique to determine the density on the liquid-vapor dome of iron, the entropy on the iron shock Hugoniot, and the criteria for shock-induced vaporization of iron. We find that the critical shock pressure to vaporize iron is 507(+65,-85) GPa and show that decompression from a 15 km/s impact will initiate vaporization of iron cores, which is a velocity that is readily achieved at the end stages of planet formation. Vaporization of the iron cores increases dispersal of planetesimal cores, enables more complete chemical equilibration of the planetesimal cores with Earth's mantle, and reduces the highly siderophile element abundance on the Moon relative to Earth due to the expanding iron vapor exceeding the Moon's escape velocity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  7. Dust to planetesimals - Settling and coagulation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1980-01-01

    The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is discussed. The gravitational instability in a dust layer and collisional accretion are examined as possible mechanisms of planetesimal formation. The shear between the gas and a dust layer is considered along with the differences in the planetesimal formation mechanisms between the inner and outer nebula. A numerical model for computing simultaneous coagulation and settling is described.

  8. Planetesimals Born Big by Clustering Instability?

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.

    2017-01-01

    Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability.

  9. Planetesimals Born Big by Clustering Instability?

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.

    2017-01-01

    Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability

  10. Planetesimal Formation through the Streaming Instability

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Johansen, Anders; Schäfer, Urs

    2015-12-01

    The streaming instability is a promising mechanism to circumvent the barriers in direct dust growth and lead to the formation of planetesimals, as demonstrated by many previous studies. In order to resolve the thin layer of solids, however, most of these studies were focused on a local region of a protoplanetary disk with a limited simulation domain. It remains uncertain how the streaming instability is affected by the disk gas on large scales, and models that have sufficient dynamical range to capture both the thin particle layer and the large-scale disk dynamics are required.We hereby systematically push the limits of the computational domain up to more than the gas scale height, and study the particle-gas interaction on large scales in the saturated state of the streaming instability and the initial mass function of the resulting planetesimals. To overcome the numerical challenges posed by this kind of models, we have developed a new technique to simultaneously relieve the stringent time step constraints due to small-sized particles and strong local solid concentrations. Using these models, we demonstrate that the streaming instability can drive multiple radial, filamentary concentrations of solids, implying that planetesimals are born in well separated belt-like structures. We also find that the initial mass function of planetesimals via the streaming instability has a characteristic exponential form, which is robust against computational domain as well as resolution. These findings will help us further constrain the cosmochemical history of the Solar system as well as the planet formation theory in general.

  11. Accretion of Planetesimals and the Formation of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Chambers, John E.; O'Brien, David P.; Davis, Andrew M.

    2010-02-01

    Here we describe the formation of rocky planets and asteroids in the context of the planetesimal hypothesis. Small dust grains in protoplanetary disks readily stick together forming mm-to-cm-sized aggregates, many of which experience brief heating episodes causing melting. Growth to km-sized planetesimals might proceed via continued pairwise sticking, turbulent concentration, or gravitational instability of a thin particle layer. Gravitational interactions between planetesimals lead to rapid runaway and oligarchic growth forming lunar-to-Mars-sized protoplanets in 10^5 to 10^6 years. Giant impacts between protoplanets form Earth-mass planets in 10^7 to 10^8 years, and occasionally lead to the formation of large satellites. Protoplanets may migrate far from their formation locations due to tidal interactions with the surrounding disk. Radioactive decay and impact heating cause melting and differentiation of planetesimals and protoplanets, forming iron-rich cores and silicate mantles, and leading to some loss of volatiles. Dynamical perturbations from giant planets eject most planetesimals and protoplanets from regions near orbital resonances, leading to asteroid-belt formation. Some of this scattered material will collide with growing terrestrial planets, altering their composition as a result. Numerical simulations and radioisotope dating indicate that the terrestrial planets of the Solar System were essentially fully formed in 100-200 million years.

  12. Initial mass function of planetesimals formed by the streaming instability

    NASA Astrophysics Data System (ADS)

    Schäfer, Urs; Yang, Chao-Chin; Johansen, Anders

    2017-01-01

    The streaming instability is a mechanism to concentrate solid particles into overdense filaments that undergo gravitational collapse and form planetesimals. However, it remains unclear how the initial mass function of these planetesimals depends on the box dimensions of numerical simulations. To resolve this, we perform simulations of planetesimal formation with the largest box dimensions to date, allowing planetesimals to form simultaneously in multiple filaments that can only emerge within such large simulation boxes. In our simulations, planetesimals with sizes between 80 km and several hundred kilometers form. We find that a power law with a rather shallow exponential cutoff at the high-mass end represents the cumulative birth mass function better than an integrated power law. The steepness of the exponential cutoff is largely independent of box dimensions and resolution, while the exponent of the power law is not constrained at the resolutions we employ. Moreover, we find that the characteristic mass scale of the exponential cutoff correlates with the mass budget in each filament. Together with previous studies of high-resolution simulations with small box domains, our results therefore imply that the cumulative birth mass function of planetesimals is consistent with an exponentially tapered power law with a power-law exponent of approximately -1.6 and a steepness of the exponential cutoff in the range of 0.3-0.4.

  13. Planetesimal-driven planet migration in the presence of a gas disk

    NASA Astrophysics Data System (ADS)

    Capobianco, Christopher C.; Duncan, Martin; Levison, Harold F.

    2011-01-01

    We report here on an extension of a previous study by Kirsh et al. (Kirsh, D.R., Duncan, M., Brasser, R., Levison, H.F. [2009]. Icarus 199, 197-209) of planetesimal-driven migration using our N-body code SyMBA (Duncan, M.J., Levison, H.F., Lee, M.H. [1998]. Astron. J. 116, 2067-2077). The previous work focused on the case of a single planet of mass Mem, immersed in a planetesimal disk with a power-law surface density distribution and Rayleigh distributed eccentricities and inclinations. Typically 10 4-10 5 equal-mass planetesimals were used, where the gravitational force (and the back-reaction) on each planetesimal by the Sun and planet were included, while planetesimal-planetesimal interactions were neglected. The runs reported on here incorporate the dynamical effects of a gas disk, where the Adachi et al. (Adachi, I., Hayashi, C., Nakazawa, K. [1976]. Prog. Theor. Phys. 56, 1756-1771) prescription of aerodynamic gas drag is implemented for all bodies. In some cases the Papaloizou and Larwood (Papaloizou, J.C.B., Larwood, J.D. [2000]. Mon. Not. R. Astron. Soc. 315, 823-833) prescription of Type-I migration for the planet are implemented, as well as a mass distribution. In the gas-free cases, rapid planet migration was observed - at a rate independent of the planet's mass - provided the planet's mass was not large compared to the mass in planetesimals capable of entering its Hill sphere. In such cases, both inward and outward migrations can be self-sustaining, but there is a strong propensity for inward migration. When a gas disk is present, aerodynamic drag can substantially modify the dynamics of scattered planetesimals. For sufficiently large or small mono-dispersed planetesimals, the planet typically migrates inward. However, for a range of plausible planetesimal sizes (i.e. 0.5-5.0 km at 5.0 AU in a minimum mass Hayashi disk) outward migration is usually triggered, often accompanied by substantial planetary mass accretion. The origins of this behaviour are

  14. Erosion and the limits to planetesimal growth

    NASA Astrophysics Data System (ADS)

    Krijt, S.; Ormel, C. W.; Dominik, C.; Tielens, A. G. G. M.

    2015-02-01

    Context. The coagulation of microscopic dust into planetesimals is the first step towards the formation of planets. The composition, size, and shape of the growing aggregates determine the efficiency of this early growth. In particular, it has been proposed that fluffy ice aggregates can grow very efficiently in protoplanetary disks, suffering less from the bouncing and radial drift barriers. Aims: While the collision velocity between icy aggregates of similar size is thought to stay below the fragmentation threshold, they may nonetheless lose mass from collisions with much smaller projectiles. As a result, erosive collisions have the potential to terminate the growth of pre-planetesimal bodies. We investigate the effect of these erosive collisions on the ability of porous ice aggregates to cross the radial drift barrier. Methods: We develop a Monte Carlo code that calculates the evolution of the masses and porosities of growing aggregates, while resolving the entire mass distribution at all times. The aggregate's porosity is treated independently of its mass, and is determined by collisional compaction, gas compaction, and eventually self-gravity compaction. We include erosive collisions and study the effect of the erosion threshold velocity on aggregate growth. Results: For erosion threshold velocities of 20-40 m s-1, high-velocity collisions with small projectiles prevent the largest aggregates from growing when they start to drift. In these cases, our local simulations result in a steady-state distribution, with most of the dust mass in particles with Stokes numbers close to unity. Only for the highest erosion threshold considered (60 m s-1) do porous aggregates manage to cross the radial drift barrier in the inner 10 AU of MMSN-like disks. Conclusions: Erosive collisions are more effective in limiting the growth than fragmentary collisions between similar-size particles. Conceivably, erosion limits the growth before the radial drift barrier, although the

  15. Period Ratio Distribution of Near-Resonant Planets Indicates Planetesimal Scattering

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Krantzler, Seth O.; Ford, Eric B.

    2016-10-01

    An intriguing trend among it Kepler's multi-planet systems is an overabundance of planet pairs with period ratios just wide of mean motion resonances (MMR) and a dearth of systems just narrow of them. In a recently published paper Chatterjee & Ford (2015; henceforth CF15) has proposed that gas-disk migration traps planets in a MMR. After gas dispersal, orbits of these trapped planets are altered through interaction with a residual planetesimal disk. They found that for massive enough disks planet-planetesimal disk interactions can break resonances and naturally create moderate to large positive offsets from the initial period ratio for large ranges of planetesimal disk and planet properties. Divergence from resonance only happens if the mass of planetesimals that interact with the planets is at least a few percent of the total planet mass. This threshold, above which resonances are broken and the offset from resonances can grow, naturally explains why the asymmetric large offsets were not seen in more massive planet pairs found via past radial velocity surveys. In this article we will highlight some of the key findings of CF15. In addition, we report preliminary results from an extension of this study, that investigates the effects of planet-planetesimal disk interactions on initially non-resonant planet pairs. We find that planetesimal scattering typically increases period ratios of non-resonant planets. If the initial period ratios are below and in proximity of a resonance, under certain conditions, this increment in period ratios can create a deficit of systems with period ratios just below the exact integer corresponding to the MMR and an excess just above. From an initially uniform distribution of period ratios just below a 2:1 MMR, planetesimal interactions can create an asymmetric distribution across this MMR similar to what is observed for the kepler planet pairs.

  16. Accretional evolution of a planetesimal swarm. I - A new simulation

    NASA Technical Reports Server (NTRS)

    Spaute, Dominique; Weidenschilling, Stuart J.; Davis, Donald R.; Marzari, Francesco

    1991-01-01

    This novel simulation of planetary accretion simultaneously treats many interacting heliocentric distance zones and characterizes planetesimals via Keplerian elements. The numerical code employed, in addition to following the size distribution and the orbit-element distribution of a planetesimal swarm from arbitrary size and orbit distributions, treats a small number of the largest bodies as discrete objects with individual orbits. The accretion algorithm used yields good agreement with the analytic solutions; agreement is also obtained with the results of Weatherill and Stewart (1989) for gravitational accretion of planetesimals having equivalent initial conditions.

  17. Evolution of the Uranus-neptune Planetesimal Swarm: Consequences for the Earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Wolfe, R. F.

    1984-01-01

    The evolution of planetesimals in the outer Solar System were evaluated, both stellar and planetary encounters. About 20% of the Uranus-Neptune planetesimals (UNP's) enter the comet cloud and are stored primarily in the region inside the observational limits of the Oort cloud. Half of the comets have suruived to the present time; the cloud now has a mass of the order of Jupiter's mass. Most UNP's are ejected from the Solar system, and about half of the planetesimal swarm is passed to the control of Jupiter prior to ejection. Jupiter's perturbations drive a large flux of these planetesimals into Earth-crossing orbits, and it now appears highly probable that UNP's account for most of the heavy bombardment of the Moon and Earth.

  18. Planetesimal Growth through the Accretion of Small Solids: Hydrodynamics Simulations with Gas-Particle Coupling

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron C.

    2016-10-01

    The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.

  19. Accretion rates of protoplanets. II - Gaussian distributions of planetesimal velocities

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1992-01-01

    In the present growth-rate calculations for a protoplanet that is embedded in a disk of planetesimals with triaxial Gaussian velocity dispersion and uniform surface density, the protoplanet is on a circular orbit. The accretion rate in the two-body approximation is found to be enhanced by a factor of about 3 relative to the case where all planetesimals' eccentricities and inclinations are equal to the rms values of those disk variables having locally Gaussian velocity dispersion. This accretion-rate enhancement should be incorporated by all models that assume a single random velocity for all planetesimals in lieu of a Gaussian distribution.

  20. Elemental compositions of two extrasolar rocky planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Klein, B.

    2014-03-10

    We report Keck/HIRES and Hubble Space Telescope/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, eight elements are detected, including C, O, Mg, Si, Ca, Ti, Cr, and Fe while in GD 133, O, Si, Ca, and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted ontomore » G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.« less

  1. Core formation conditons in planetesimals: constraints from isotope fractionation experiments.

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Quitté, G.; Toplis, M. J.; Poitrasson, F.

    2016-12-01

    Planetesimals are small objects (10 to 1000 km) early accreted in the history of the solar system which show a wide variety of thermal history due to the initial amount of radiogenic elements [1] (26Al and 60Fe), from a simple metamorphism to a complete metal-silicate differentiation. Moreover, isotope compositions of siderophile element, e.g. Fe, Ni, and W in meteorites spread on a range that can be attributed to the process of core-mantle segregation. We therefore performed isotope fractionation experiments of nickel and tungsten between metal and silicate in a gas-mixing (CO-CO2) vertical furnace, at different temperatures (from 1270°C to 1600°C), oxygen fugacity (from IW+2 to IW-6) and annealing times (from 20 minutes to 48 hours). The starting silicate is an anorthite-diopside eutectic composition glass, synthesize from the respective oxides. The starting metal is either a nickel or tungsten wire according to the element to study. After each experiment, metal and silicate are mechanically separated and digested in acids. Nickel and Tungsten separation have been made according to the methods developed by [2] and [3] and isotopes measurements have been made using a high resolution MC-ICP-MS (Neptune; Thermofisher©). Results show evidence for a strong kinetic isotope fractionation during the first annealing times with a faster diffusion of lightest isotopes than heaviest. Similar mechanism has been already highlighted for iron isotope fractionation between silicate and metal [4]. Chemical and isotopic equilibrium is also reached in our experiments but the time required dependent on the conditions of temperature and oxygen fugacity. Therefore, at equilibrium, metal-silicate isotope fractionation has also been quantified as well its temperature dependence. These experimental data can be used in order to bring new constraints on the metal silicate segregation in the planetesimals early accreted. [1] Lee T., et al., GRL, 3, 41-44 (1976) [2] Quitté G., and Oberli

  2. Planetesimal dissolution in the envelopes of the forming, giant planets

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Podolak, M.; Bodenheimer, P.; Christofferson, B.

    1986-01-01

    An evaluation is made of the capacity of planetesimals to penetrate the envelopes of giant planets during their growth phase, by means of a core instability mechanism in which the growing core becomes gradually more adept in the gravitational concentration of gas from its solar nebula environment, until a runaway gas accretion occurs. If most of the accreted mass is contained in planetesimals larger that about 1 km, the critical core mass for runaway accretion will not significantly change when planetesimal dissolution is taken into account; it is accordingly suggested that giant planet envelopes should contain above-solar proportions of virtually all elements, relative to hydrogen.

  3. Distribution of Captured Planetesimals in Circumplanetary Gas Disks and Implications for Accretion of Regular Satellites

    NASA Astrophysics Data System (ADS)

    Suetsugu, Ryo; Ohtsuki, Keiji

    2017-04-01

    Regular satellites of giant planets are formed by accretion of solid bodies in circumplanetary disks. Planetesimals that are moving on heliocentric orbits and are sufficiently large to be decoupled from the flow of the protoplanetary gas disk can be captured by gas drag from the circumplanetary disk. In the present work, we examine the distribution of captured planetesimals in circumplanetary disks using orbital integrations. We find that the number of captured planetesimals reaches an equilibrium state as a balance between continuous capture and orbital decay into the planet. The number of planetesimals captured into retrograde orbits is much smaller than that into prograde orbits, because the former experience a strong headwind and spiral into the planet rapidly. We find that the surface number density of planetesimals at the current radial location of regular satellites can be significantly enhanced by gas drag capture, depending on the velocity dispersions of the planetesimals and the width of the gap in the protoplanetary disk. Using a simple model, we examine the ratio of the surface densities of dust and captured planetesimals in the circumplanetary disk and find that solid material at the current location of regular satellites can be dominated by captured planetesimals when the velocity dispersion of those planetesimals is rather small and a wide gap is not formed in the protoplanetary disk. In this case, captured planetesimals in such a region can grow by mutual collision before spiraling into the planet and would contribute to the growth of regular satellites.

  4. Models of angular momentum input to a circumterrestrial swarm from encounters with heliocentric planetesimals

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Davis, D. R.

    1984-01-01

    Preliminary experiments show that heliocentric planetesimals passing through the Earth environment possess significant angular momentum. However it also appears that these same planetesimals impacting a circularized circumterrestrial planetesimal swarm would likely remove angular momentum (though possibly increasing mean kinetic energy), presumably promoting both swarm infall upon the Earth and escape to heliocentric space. Only a distribution of highly eccentric satellite orbits with mean tangential velocities of a few tens of percent of local circular velocity would be immune against angular momentum loss to passing heliocentric planetesimals.

  5. N-BODY SIMULATION OF PLANETESIMAL FORMATION THROUGH GRAVITATIONAL INSTABILITY AND COAGULATION. II. ACCRETION MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro, E-mail: michikoshi@cfca.j, E-mail: kokubo@th.nao.ac.j, E-mail: inutsuka@tap.scphys.kyoto-u.ac.j

    2009-10-01

    The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles ismore » replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the formation of nonaxisymmetric structures; the creation of planetesimal seeds; and their collisional growth. We investigated the dependence of the planetesimal mass on the simulation domain size. We found that the mean mass of planetesimals formed in simulations is proportional to L {sup 3/2} {sub y}, where L{sub y} is the size of the computational domain in the direction of rotation. However, the mean mass of planetesimals is independent of L{sub x} , where L{sub x} is the size of the computational domain in the radial direction if L{sub x} is sufficiently large. We presented the estimation formula of the planetesimal mass taking into account the simulation domain size.« less

  6. Processes in Early Planetesimals: Evidence from Ureilite Meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Downes, H.

    2007-01-01

    Ureilites are primitive ultramafic achondrites composed largely of olivine and pigeonite, with minor augite, carbon, sulphide and metal. They represent very early material in the history of the Solar System and form a bridge between undifferentiated chondrites and fully differentiated asteroids. They show a mixture of chemical characteristics, some of which are considered to be nebula-derived (e.g. a negative correlation between Mg/Fe and Delta O-17 that resembles that of the ordinary chondrites but at lower Delta O-17 values) whereas others have been imposed by asteroidal differentiation. Carbon isotope data show a striking negative correlation of delta C-13 values with mg# in olivine. delta C-13 also correlates positively with Delta O-17, and therefore this isotopic variation was probably also nebula-derived. Thus, oxygen and carbon isotope compositions and Fe-Mg systematics of each monomict ureilite were established before differentiation processes began. Heated by decay of short-lived radioactive isotopes, the ureilite asteroid started to melt. Metal and sulphide would have melted first, forming a Fe-S eutectic liquid, which removed chalcophile elements and incompatible siderophile elements, and basaltic melts that removed Al, Ca and the LREE. Several elements show different abundances and/or correlations with Fo content in olivine, e.g. carbon shows a positive correlation in ferroan ureilites, and a weak or even negative correlation in more magnesian compositions. HSE such as Os and Ir also show different distributions, i.e. ureilites with Fo < 82 have very scattered Os and Ir concentrations, which reach high values, whereas ureilites with Fo > 82 tend to have much less scattered and overall lower Os and Ir abundances. A similar change in elemental behaviour is shown by the Fe-Mn relations in ureilitic olivines: those with Fo contents < 85 show a good negative correlation, whereas those with Fo > 85 show much greater scatter. This suggests that a major change

  7. Effects of Planetesimal Accretion on the Structural Evolution of Sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Chen, Howard

    2018-01-01

    A remarkable discovery of NASA's Kepler mission is the wide diversity in the average densities of planets even when they are of similar mass. After gas disk dissipation, fully formed planets could accrete nearby planetesimals from a remnant planetesimal disk. We present calculations using the open-source stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) modified to include the deposition of planetesimals into the H/He envelopes of sub-Neptunes. We show that planetesimal accretion can alter the mass-radius isochrones for these planets. The additional energy deposited via planetesimal accretion puffs up the envelopes leading to enhanced gas loss during the phase of rapid accretion. As a result, the same initial planet can evolve to contain very different final envelope-mass fractions. This manifest as differences in the average planet densities long after accretion stops. Differences in the accretion history, total accreted mass, and the inherent stochasticity of the accretion process can bring wide diversity in final average densities even when the initial planets are very similar. These effects are particularly important for planets initially less massive than ~10 MEarth and with envelope mass fraction less than ~10%, thought to be the most common type of planets discovered by Kepler.

  8. Studies of Planet Formation Using a Hybrid N-Body + Planetesimal Code

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    2004-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: (1) icy planets: models for icy planet formation will demonstrate how the physical properties of debris disks - including the Kuiper Belt in our solar system - depend on initial conditions and input physics; and (2) terrestrial planets: calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment.

  9. Coupling dynamical and collisional evolution of small bodies:. an application to the early ejection of planetesimals from the Jupiter-Saturn region

    NASA Astrophysics Data System (ADS)

    Charnoz, Sébastien; Morbidelli, Alessandro

    2003-11-01

    We present a new algorithm designed to compute the collisional erosion of a population of small bodies undergoing a complex and rapid dynamical evolution induced by strong gravitational perturbations. Usual particle-in-a-box models have been extensively and successfully used to study the evolution of asteroids or KBOs. However, they cannot track the evolution of small bodies in rapid dynamical evolution, due to their oversimplified description of the dynamics. Our code is based on both (1) a direct simulation of the dynamical evolution which is used to compute local encounter rates and (2) a classical fragmentation model. Such a code may be used to track the erosional evolution of the planetesimal disk under the action of newly formed giant-planets, a passing star or a population of massive planetary-embryos. We present here an application to a problem related to the formation of the Oort cloud. The usually accepted formation scenario is that planetesimals, originally formed in the giant planet region, have been transported to the Oort cloud by gravitational scattering. However, it has been suggested that, during the initial transport phase, the mutual large encounter velocities might have induced a rapid and intense collisional evolution of the planetesimal population, potentially causing a significant reduction of the Oort cloud formation process. This mechanism is explored with our new algorithm. Because the advantages of our new approach are better highlighted for a population undergoing a violent dynamical evolution, we concentrate in this paper on the planetesimals originally in the Jupiter-Saturn region, although it is known that they are only minor contributors to the final Oort cloud population. A wide range of parameters is explored (mass of the particle disk, initial size-distribution, material strength): depending upon the assumed parameter values, we find that from 15 to 90% of the mass contained in bodies larger than 1 km survives the collisional

  10. The Formation of Giant Planets and the Collisional Evolution of Planetesimals: Lessons Learned from the Solar System

    NASA Astrophysics Data System (ADS)

    Turrini, Diego

    2013-07-01

    The formation of giant planets is one of the milestones in the history of planetary systems, as they shape the evolution of the protoplanetary disks they are embedded in. While observational facilities approach the sensitivity necessary to probe these primordial phases in disks around other stars (e.g. Quanz et al. 2013), there are still lessons we can draw from our own Solar System. Safronov (1969) was the first to recognize that the formation of Jupiter would trigger the first bombardment in the history of the Solar System by scattering of planetesimals residing near its formation region. This scenario was further explored by Weidenschilling (1975) and Weidenschilling et al. (2001), who observed that part of these planetesimals ejected from the outer Solar System would cross the asteroid belt and contribute to the catastrophic destruction of primordial asteroids. Later, Turrini et al. (2011) showed that the appearance of the orbital resonances with Jupiter in the asteroid belt would create a second but dominant population of impactors. The combination of these two populations of impactors represents the Jovian Early Bombardment (Turrini et al. 2011). The formation of Jupiter is the sole necessary condition to trigger the Jovian Early Bombardment, yet migration can play an important role in enhancing its effects due to the sweeping of the resonances through the asteroid belt (Turrini et al. 2011). Across the Jovian Early Bombardment, collisional erosion played a more important role than catastrophic impacts and could bring to the destruction of planetesimals of 200 km in diameter or even larger (Turrini et al. 2012). As pointed out by Turrini et al. (2012), the processes causing the Jovian Early Bombardment are not exclusive to the Solar Nebula: they are general to all circumstellar disks that host forming giant planets. As a consequence, all these results describe an evolutionary path that is common to planetary systems where giant planets are forming and

  11. Studies of Planet Formation using a Hybrid N-body + Planetesimal Code

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Bromley, Benjamin C.; Salamon, Michael (Technical Monitor)

    2005-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: 1) icy planets - models for icy planet formation will demonstrate how the physical properties of debris disks, including the Kuiper Belt in our solar system, depend on initial conditions and input physics; and 2) terrestrial planets - calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment. During the past year, we made progress on each issue. Papers published in 2004 are summarized. Summaries of work to be completed during the first half of 2005 and work planned for the second half of 2005 are included.

  12. Direct Large-Scale N-Body Simulations of Planetesimal Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Quinn, Thomas; Stadel, Joachim; Lake, George

    2000-01-01

    We describe a new direct numerical method for simulating planetesimal dynamics in which N˜10 6 or more bodies can be evolved simultaneously in three spatial dimensions over hundreds of dynamical times. This represents several orders of magnitude improvement in resolution over previous studies. The advance is made possible through modification of a stable and tested cosmological code optimized for massively parallel computers. However, owing to the excellent scalability and portability of the code, modest clusters of workstations can treat problems with N˜10 5 particles in a practical fashion. The code features algorithms for detection and resolution of collisions and takes into account the strong central force field and flattened Keplerian disk geometry of planetesimal systems. We demonstrate the range of problems that can be addressed by presenting simulations that illustrate oligarchic growth of protoplanets, planet formation in the presence of giant planet perturbations, the formation of the jovian moons, and orbital migration via planetesimal scattering. We also describe methods under development for increasing the timescale of the simulations by several orders of magnitude.

  13. PLANETESIMAL FORMATION IN MAGNETOROTATIONALLY DEAD ZONES: CRITICAL DEPENDENCE ON THE NET VERTICAL MAGNETIC FLUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzumi, Satoshi; Hirose, Shigenobu, E-mail: okuzumi@nagoya-u.jp

    Turbulence driven by magnetorotational instability (MRI) affects planetesimal formation by inducing diffusion and collisional fragmentation of dust particles. We examine conditions preferred for planetesimal formation in MRI-inactive 'dead zones' using an analytic dead-zone model based on our recent resistive MHD simulations. We argue that successful planetesimal formation requires not only a sufficiently large dead zone (which can be produced by tiny dust grains) but also a sufficiently small net vertical magnetic flux (NVF). Although often ignored, the latter condition is indeed important since the NVF strength determines the saturation level of turbulence in MRI-active layers. We show that direct collisionalmore » formation of icy planetesimal across the fragmentation barrier is possible when the NVF strength is lower than 10 mG (for the minimum-mass solar nebula model). Formation of rocky planetesimals via the secular gravitational instability is also possible within a similar range of the NVF strength. Our results indicate that the fate of planet formation largely depends on how the NVF is radially transported in the initial disk formation and subsequent disk accretion processes.« less

  14. Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Bonsor, Amy

    2014-07-01

    Vega has been shown to host multiple dust populations, including both hot exozodiacal dust at sub-au radii and a cold debris disc extending beyond 100 au. We use dynamical simulations to show how Vega's hot dust can be created by long-range gravitational scattering of planetesimals from its cold outer regions. Planetesimals are scattered progressively inwards by a system of 5-7 planets from 30 to 60 au to very close-in. In successful simulations, the outermost planets are typically Neptune mass. The back-reaction of planetesimal scattering causes these planets to migrate outwards and continually interact with fresh planetesimals, replenishing the source of scattered bodies. The most favourable cases for producing Vega's exozodi have negative radial mass gradients, with sub-Saturn- to Jupiter-mass inner planets at 5-10 au and outer planets of 2.5 - 20 M⊕ . The mechanism fails if a Jupiter-sized planet exists beyond ˜15 au because the planet preferentially ejects planetesimals before they can reach the inner system. Direct-imaging planet searches can therefore directly test this mechanism.

  15. Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories

    NASA Astrophysics Data System (ADS)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-07-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (∼15-20%) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If

  16. Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-01-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of

  17. Dispersion of the Himalia family of jovian irregular satellites by planetesimal encounters

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos

    2017-06-01

    Giant planets are believed to have migrated significant radial distances due to interaction with a primordial planetesimal disk (Tsiganis et al. 2005). This process profoundly sculpted the solar system, shaping the distribution of the different types of heliocentric objects: the giant planets, the Trojans, the Main Asteroid Belt and the KBOs. Meanwhile, the same migration may have influenced the distribution of objects in the local planetocentric system as well. Since migration is achieved mainly by planet-planetesimal encounters, we focus on irregular satellites far from the host, thus susceptible to planetesimal perturbations. Specifically, we aim to reproduce a puzzling feature of the jovian Himalia group of prograde satellites: a wide spread in $a$ and $e$, with all group members being $>200$ m/s from Himalia and apparently too high to be consistent with a purely collisional origin. Here we investigate the evolution of a pre-existing Himalia group during planetary migration.We do this in a two-step procedure. Firstly, we perform migration simulations and record the states of planetesimals approaching Jupiter. Secondly, a nascent, closely-packed Himalia group with velocity dispersion of a few 10 m/s is integrated under the gravitational disturbance of the planetesimal fly-bys. We find that these planetesimal encounters disperse the group dramatically, bumping $\\sim 60\\%$ of the members to $>200$ m/s with respect to Himalia. Particularly, $a$ and $e$ suffer the most variation while the change in $i$ is often limited, matching the actual values for the observed group fairly well.Current models posit extensive collisional processing of the irregular satellite population following the planet migration phase (Bottke et al. 2010). In evaluating the collisional probability between a group member and Himalia, we find that the closer they are, the more likely that collisions occur. This suggests that members adjacent to Himalia are more likely to be collisionally

  18. Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt

    NASA Astrophysics Data System (ADS)

    Eriksson, Linn E. J.; Mustill, Alexander J.; Johansen, Anders

    2018-04-01

    Unexpected clustering in the orbital elements of minor bodies beyond the Kuiper belt has led to speculations that our Solar system actually hosts nine planets, the eight established plus a hypothetical `Planet Nine'. Several recent studies have shown that a planet with a mass of about 10 Earth masses on a distant eccentric orbit with perihelion far beyond the Kuiper belt could create and maintain this clustering. The evolutionary path resulting in an orbit such as the one suggested for Planet Nine is nevertheless not easily explained. Here, we investigate whether a planet scattered away from the giant-planet region could be lifted to an orbit similar to the one suggested for Planet Nine through dynamical friction with a cold, distant planetesimal belt. Recent simulations of planetesimal formation via the streaming instability suggest that planetesimals can readily form beyond 100 au. We explore this circularisation by dynamical friction with a set of numerical simulations. We find that a planet that is scattered from the region close to Neptune on to an eccentric orbit has a 20-30 per cent chance of obtaining an orbit similar to that of Planet Nine after 4.6 Gyr. Our simulations also result in strong or partial clustering of the planetesimals; however, whether or not this clustering is observable depends on the location of the inner edge of the planetesimal belt. If the inner edge is located at 200 au, the degree of clustering amongst observable objects is significant.

  19. Long-term evolution of a planetesimal swarm in the vicinity of a protoplanet

    NASA Technical Reports Server (NTRS)

    Kary, David M.; Lissauer, Jack J.

    1991-01-01

    Many models of planet formation involve scenarios in which one or a few large protoplanets interact with a swarm of much smaller planetesimals. In such scenarios, three-body perturbations by the protoplanet as well as mutual collisions and gravitational interactions between the swarm bodies are important in determining the velocity distribution of the swarm. We are developing a model to examine the effects of these processes on the evolution of a planetesimal swarm. The model consists of a combination of numerical integrations of the gravitational influence of one (or a few) massive protoplanets on swarm bodies together with a statistical treatment of the interactions between the planetesimals. Integrating the planetesimal orbits allows us to take into account effects that are difficult to model analytically or statistically, such as three-body collision cross-sections and resonant perturbations by the protoplanet, while using a statistical treatment for the particle-particle interactions allows us to use a large enough sample to obtain meaningful results.

  20. ACS Imaging of beta Pic: Searching for the origin of rings and asymmetry in planetesimal disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2003-07-01

    The emerging picture for planetesimal disks around main sequence stars is that their radial and azimuthal symmetries are significantly deformed by the dynamical effects of either planets interior to the disk, or stellar objects exterior to the disk. The cause of these structures, such as the 50 AU cutoff of our Kuiper Belt, remains mysterious. Structure in the beta Pic planetesimal disk could be due to dynamics controlled by an extrasolar planet, or by the tidal influence of a more massive object exterior to the disk. The hypothesis of an extrasolar planet causing the vertical deformation in the disk predicts a blue color to the disk perpendicular to the disk midplane. The hypothesis that a stellar perturber deforms the disk predicts a globally uniform color and the existence of ring-like structure beyond 800 AU radius. We propose to obtain deep, multi-color images of the beta Pic disk ansae in the region 15"-220" {200-4000 AU} radius with the ACS WFC. The unparalleled stability of the HST PSF means that these data are uniquely capable of delivering the color sensitivity that can distinguish between the two theories of beta Pic's disk structure. Ascertaining the cause of such structure provide a meaningful context for understanding the dynamical history of our early solar system, as well as other planetesimal systems imaged around main sequence stars.

  1. SPIRAL PATTERNS IN PLANETESIMAL CIRCUMBINARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidova, Tatiana V.; Shevchenko, Ivan I., E-mail: iis@gao.spb.ru

    Planet formation scenarios and the observed planetary dynamics in binaries pose a number of theoretical challenges, especially concerning circumbinary planetary systems. We explore the dynamical stirring of a planetesimal circumbinary disk in the epoch when the gas component disappears. For this purpose, following theoretical approaches by Heppenheimer and Moriwaki and Nakagawa, we develop a secular theory of the dynamics of planetesimals in circumbinary disks. If a binary is eccentric and its components have unequal masses, a spiral density wave is generated, engulfing the disk on a secular timescale, which may exceed 10{sup 7} yr, depending on the problem parameters. The spiralmore » pattern is transient; thus, its observed presence may betray a system’s young age. We explore the pattern both analytically and in numerical experiments. The derived analytical spiral is a modified lituus; it matches the numerical density wave in the gas-free case perfectly. Using the smoothed particle hydrodynamics scheme, we explore the effect of residual gas on the wave propagation.« less

  2. GLOBAL HIGH-RESOLUTION N-BODY SIMULATION OF PLANET FORMATION. I. PLANETESIMAL-DRIVEN MIGRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kominami, J. D.; Daisaka, H.; Makino, J.

    2016-03-01

    We investigated whether outward planetesimal-driven migration (PDM) takes place or not in simulations when the self-gravity of planetesimals is included. We performed N-body simulations of planetesimal disks with a large width (0.7–4 au) that ranges over the ice line. The simulations consisted of two stages. The first-stage simulations were carried out to see the runaway growth phase using the planetesimals of initially the same mass. The runaway growth took place both at the inner edge of the disk and at the region just outside the ice line. This result was utilized for the initial setup of the second-stage simulations, in which themore » runaway bodies just outside the ice line were replaced by the protoplanets with about the isolation mass. In the second-stage simulations, the outward migration of the protoplanet was followed by the stopping of the migration due to the increase of the random velocity of the planetesimals. Owing to this increase of random velocities, one of the PDM criteria derived in Minton and Levison was broken. In the current simulations, the effect of the gas disk is not considered. It is likely that the gas disk plays an important role in PDM, and we plan to study its effect in future papers.« less

  3. Interstellar Object ’Oumuamua as an Extinct Fragment of an Ejected Cometary Planetesimal

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Veras, Dimitri

    2018-03-01

    ’Oumuamua was discovered passing through our solar system on a hyperbolic orbit. It presents an apparent contradiction, with colors similar to those of volatile-rich solar system bodies but with no visible outgassing or activity during its close approach to the Sun. Here, we show that this contradiction can be explained by the dynamics of planetesimal ejection by giant planets. We propose that ’Oumuamua is an extinct fragment of a comet-like planetesimal born a planet-forming disk that also formed Neptune- to Jupiter-mass giant planets. On its pathway to ejection ’Oumuamua’s parent body underwent a close encounter with a giant planet and was tidally disrupted into small pieces, similar to comet Shoemaker–Levy 9’s disruption after passing close to Jupiter. We use dynamical simulations to show that 0.1%–1% of cometary planetesimals undergo disruptive encounters prior to ejection. Rocky asteroidal planetesimals are unlikely to disrupt due to their higher densities. After disruption, the bulk of fragments undergo enough close passages to their host stars to lose their surface volatiles and become extinct. Planetesimal fragments such as ’Oumuamua contain little of the mass in the population of interstellar objects but dominate by number. Our model makes predictions that will be tested in the coming decade by the Large Synoptic Survey Telescope.

  4. Migration of icy planetesimals to forming terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Marov, Mikhail

    2016-07-01

    Our studies of migration of planetesimals from the feeding zone of Jupiter and Saturn to forming terrestrial planets were based on computer simulations of the orbital evolution of 10^4 planetesimals under the gravitational influence of planets. In series JN, all planets were considered in present orbits with present masses, and in series JS, Uranus and Neptune were excluded. Initial eccentricities and inclinations of planetesimals were 0.3 and 0.15 rad, respectively. Their initial semi-major axes were between 4.5 and 12 AU. Masses of planets moving in the orbits of the terrestrial planets were equal to present masses of the planets in series JS and JN, and were smaller by a factor of 10 in series JS_{01} and JN_{01}. The obtained results show that the ratio of the fraction of the planetesimals collided with an embryo of the Earth's embryo was about 2\\cdot10^{-6} and 4\\cdot10^{-7} for the mass of the embryo equal to the Earth mass and to 10% of the Earth mass, respectively. We concluded that during the growth of the mass of the Earth's embryo up to a half of the present mass of the Earth, the amount of water delivered to the embryo could be about 30% of all water delivered to the Earth from the feeding zone of Jupiter and Saturn. The total mass of water delivered to the Earth from the feeding zones of the giant planets and beyond these zones could be comparable with the mass of the Earth's oceans. A half of this water could come from the feeding zone of Jupiter and Saturn, and another half from more distant regions. Most of the water that was delivered from the distant regions to the Earth's embryo came when its mass was not small (e.g., was mainly greater than a half of the Earth mass). In series JS, the ratio of the mass of water delivered to a planet to the mass of the planet for the Earth was smaller by a factor of 2, 1.25, and 1.3 than for Mars, Venus and Mercury, respectively. For series JN, the above values of the factor were equal to 3.4, 0.7 i 0.8. For

  5. Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Mac Low, M.; Menou, K.

    2010-01-01

    In core accretion scenario of planet formation, kilometer-sized planetesimals are the building blocks toward planetary cores. Their dynamics, however, are strongly influenced by their natal protoplanetary gas disks. It is generally believed that these disks are turbulent, most likely due to magnetorotational instability. The resulting density perturbations in the gas render the movement of the particles a random process. Depending on its strength, this process might cause several interesting consequences in the course of planet formation, specifically the survivability of objects under rapid inward type-I migration and/or collisional destruction. Using the local-shearing-box approximation, we conduct numerical simulations of planetesimals moving in a turbulent, magnetized gas disk, either unstratified or vertically stratified. We produce a fiducial disk model with turbulent accretion of Shakura-Sunyaev alpha about 10-2 and root-mean-square density perturbation of about 10% and statistically characterize the evolution of the orbital properties of the particles moving in the disk. These measurements result in accurate calibration of the random process of particle orbital change, indicating noticeably smaller magnitudes than predicted by global simulations, although the results may depend on the size of the shearing box. We apply these results to revisit the survivability of planetesimals under collisional destruction or protoplanets under type-I migration. Planetesimals are probably secure from collisional destruction, except for kilometer-sized objects situated in the outer regions of a young protoplanetary disk. On the other hand, we confirm earlier studies of local models in that type-I migration probably dominates diffusive migration due to stochastic torques for most planetary cores and terrestrial planets. Discrepancies in the derived magnitude of turbulence between local and global simulations of magnetorotationally unstable disks remains an open issue, with

  6. Identification of a primordial asteroid family constrains the original planetesimal population.

    PubMed

    Delbo', Marco; Walsh, Kevin; Bolin, Bryce; Avdellidou, Chrysa; Morbidelli, Alessandro

    2017-09-08

    A quarter of known asteroids is associated with more than 100 distinct asteroid families, meaning that these asteroids originate as impact fragments from the family parent bodies. The determination of which asteroids of the remaining population are members of undiscovered families, or accreted as planetesimals from the protoplanetary disk, would constrain a critical phase of planetary formation by unveiling the unknown planetesimal size distribution. We discovered a 4-billion-year-old asteroid family extending across the entire inner part of the main belt whose members include most of the dark asteroids previously unlinked to families. This allows us to identify some original planetesimals, which are all larger than 35 kilometers, supporting the view of asteroids being born big. Their number matches the known distinct meteorite parent bodies. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules

    PubMed Central

    Marrocchi, Yves; Chaussidon, Marc; Piani, Laurette; Libourel, Guy

    2016-01-01

    Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system. PMID:27419237

  8. Stirring of a planetesimal swarm - The role of distant encounters

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    1989-01-01

    The viscous stirring algorithm developed by Stewart and Wetherill (1988) to treat the random velocities induced in planetesimals by their mutual gravitational perturbations encompasses only the scattering of bodies in crossing orbits by close encounters. Expressions are presently derived for the stirring rate due to distant encounters on the basis of three-body formalism, using a stirring rate that has the same mass-dependence as that for close encounters. The relative importance of both the close encounter and distant encounter mechanisms depends on the Safronov number. Perturbations by a planetary embryo in scenarios that involve explosive growth are found capable of affecting planetesimal evolution in noncrossing orbits.

  9. On the feeding zone of planetesimal formation by the streaming instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao-Chin; Johansen, Anders, E-mail: ccyang@astro.lu.se, E-mail: anders@astro.lu.se

    2014-09-10

    The streaming instability is a promising mechanism to overcome the barriers in direct dust growth and lead to the formation of planetesimals. Most previous studies of the streaming instability, however, were focused on a local region of a protoplanetary disk with a limited simulation domain such that only one filamentary concentration of solids has been observed. The characteristic separation between filaments is therefore not known. To address this, we conduct the largest-scale simulations of the streaming instability to date, with computational domains up to 1.6 gas scale heights both horizontally and vertically. The large dynamical range allows the effect ofmore » vertical gas stratification to become prominent. We observe more frequent merging and splitting of filaments in simulation boxes of high vertical extent. We find multiple filamentary concentrations of solids with an average separation of about 0.2 local gas scale heights, much higher than the most unstable wavelength from linear stability analysis. This measures the characteristic separation of planetesimal forming events driven by the streaming instability and thus the initial feeding zone of planetesimals.« less

  10. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  11. Initial 60Fe Abundance in the Solar Nebula Constrained by Delayed Onset of a Planetesimal Dynamo

    NASA Astrophysics Data System (ADS)

    Wang, H.; Weiss, B. P.; Crowley, J.

    2017-12-01

    The paleomagnetism of meteorites provides evidence for advecting metallic core dynamos and large-scale differentiation on their parent planetesimals. Their small sizes relative to planets enable new opportunities to understand the physics of dynamo generation. Wang et al. [2017] studied the paleomagnetism of three volcanic angrites (D'Orbigny, 4563.37±0.12 Ma; Sahara 99555, 4563.54±0.14 Ma; Asuka 881371, 4562.4±1.6 Ma) and one plutonic angrite (Angra dos Reis, 4556.51±0.11 Ma). Their results show that the older volcanic angrites recorded no detectable paleomagnetic field, while the younger plutonic angrite recorded a paleomagnetic field of 17 µT interpreted as evidence of a core dynamo on the angrite parent body (APB). This indicates that the initiation of the APB dynamo was delayed until sometime between 4 and 11 My after the formation of calcium aluminum-rich inclusions (CAIs) at 4567.30 ± 0.16 Ma. This late timing is consistent with recent planetesimal thermal evolution models invoking shallow magma oceans [Neumann et al. 2014], which predict that planetesimal dynamos would not initiate until the core began to crystallize. It is also consistent with thermal evolution models invoking large-scale magma oceans that considered thermal blanketing of the core by 26Al decay in the mantle [Roberts et al. 2013, Sterenborg and Crowley 2013], which would delay thermal convection dynamos until several My after accretion (occurred <0.25 My after CAIs for the APB [Schiller et al. 2015]) and differentiation. Because the presence of even a small amount of 60Fe in the core could effectively remove the thermal blanketing effect of mantle 26Al, we can use the delay in timing of the dynamo to constrain the abundance of 60Fe on the APB. Our planetesimal thermal evolution models show that if the initial solar nebula 60Fe/56Fe ratio was greater than 5×10-9, the APB core dynamo would have to start earlier than 4 My after CAIs, in contradiction to the paleomagnetic constraints

  12. Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core

    NASA Astrophysics Data System (ADS)

    Kendall, Jordan D.; Melosh, H. J.

    2016-08-01

    The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.

  13. Limits on the location of planetesimal formation in self-gravitating protostellar discs

    NASA Astrophysics Data System (ADS)

    Clarke, C. J.; Lodato, G.

    2009-09-01

    In this Letter, we show that if planetesimals form in spiral features in self-gravitating discs, as previously suggested by the idealized simulations of Rice et al., then in realistic protostellar discs, this process will be restricted to the outer regions of the disc (i.e. at radii in excess of several tens of au). This restriction relates to the requirement that dust has to be concentrated in spiral features on a time-scale that is less than the (roughly dynamical) lifetime of such features, and that such rapid accumulation requires spiral features whose fractional amplitude is not much less than unity. This in turn requires that the cooling time-scale of the gas is relatively short, which restricts the process to the outer disc. We point out that the efficient conversion of a large fraction of the primordial dust in the disc into planetesimals could rescue this material from the well-known problem of rapid inward migration at an approximate metre-size scale and that in principle the collisional evolution of these objects could help to resupply small dust to the protostellar disc. We also point out the possible implications of this scenario for the location of planetesimal belts inferred in debris discs around main sequence stars, but stress that further dynamical studies are required in order to establish whether the disc retains a memory of the initial site of planetesimal creation.

  14. Planet Formation in Binaries: Dynamics of Planetesimals Perturbed by the Eccentric Protoplanetary Disk and the Secondary

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman R.

    2015-01-01

    Detections of planets in eccentric, close (separations of ~20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (gsim 10-2 M ⊙) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.

  15. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. I. Effects of interaction with planetesimals and other protoplanets

    NASA Astrophysics Data System (ADS)

    Kominami, Junko; Tanaka, Hidekazu; Ida, Shigeru

    2005-11-01

    We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called "type-I migration," and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (10 6-10 7 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 10 5 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since

  16. An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Matrà, L.; Marino, S.; Kennedy, G. M.; Wyatt, M. C.; Öberg, K. I.; Wilner, D. J.

    2018-05-01

    Resolved observations of millimeter-sized dust, tracing larger planetesimals, have pinpointed the location of 26 Edgeworth–Kuiper Belt analogs. We report that a belt’s distance R to its host star correlates with the star’s luminosity L ⋆, following R\\propto {L}\\star 0.19 with a low intrinsic scatter of ∼17%. Remarkably, our Edgeworth–Kuiper Belt in the solar system and the two CO snow lines imaged in protoplanetary disks lie close to this R–L ⋆ relation, suggestive of an intrinsic relationship between protoplanetary disk structures and belt locations. To test the effect of bias on the relation, we use a Monte Carlo approach and simulate uncorrelated model populations of belts. We find that observational bias could produce the slope and intercept of the R–L ⋆ relation but is unable to reproduce its low scatter. We then repeat the simulation taking into account the collisional evolution of belts, following the steady-state model that fits the belt population as observed through infrared excesses. This significantly improves the fit by lowering the scatter of the simulated R–L ⋆ relation; however, this scatter remains only marginally consistent with the one observed. The inability of observational bias and collisional evolution alone to reproduce the tight relationship between belt radius and stellar luminosity could indicate that planetesimal belts form at preferential locations within protoplanetary disks. The similar trend for CO snow line locations would then indicate that the formation of planetesimals or planets in the outer regions of planetary systems is linked to the volatility of their building blocks, as postulated by planet formation models.

  17. PLANET FORMATION IN BINARIES: DYNAMICS OF PLANETESIMALS PERTURBED BY THE ECCENTRIC PROTOPLANETARY DISK AND THE SECONDARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu

    2015-01-10

    Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additionalmore » planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.« less

  18. Radial pressure in the solar nebula as affecting the motions of planetesimals. [toroidal particle concentration in planetary evolution

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1973-01-01

    Growing planetesimals and a range of drag laws depending on the Reynolds number and on the ratio of particle size to mean free path are considered. Particles spiral in the direction of positive gradient, thus being concentrated toward toroidal concentrations of gas. The effect increases with decreasing rates of particle growth, i.e., with increasing time scales of planet formation by accretion. In the outer regions, where evidence suggests that comets were formed and Uranus and Neptune were so accumulated, the effect of the pressure gradient is to clear the forming comets from those regions. The large mass of Neptune may have developed because of this effect, perhaps Neptune's solar distance was reduced from Bode's law, and perhaps no comet belt exists beyond Neptune. In the asteroid belt, on a slow time scale, the effect may have spiraled planetesimals toward Mars and Jupiter, thus contributing to the lack of planet formation in this region.

  19. TERRESTRIAL PLANET FORMATION AROUND THE CIRCUMBINARY HABITABLE ZONE: INWARD MIGRATION IN THE PLANETESIMAL SWARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Yanxiang; Zhou Jilin; Xie Jiwei, E-mail: yxgong@nju.edu.cn, E-mail: zhoujl@nju.edu.cn

    2013-01-20

    According to the core accretion theory, circumbinary embryos can form only beyond a critical semimajor axis (CSMA). However, due to the relatively high density of solid materials in the inner disk, a significant amount of small planetesimals must exist in the inner zone when embryos form outside this CSMA. Thus, embryo migration induced by the planetesimal swarm is possible after gas disk depletion. Through numerical simulations, we found that (1) the scattering-driven inward migration of embryos is robust and planets can form in the habitable zone if we adopt a mass distribution of an MMSN-like disk; (2) the total massmore » of the planetesimals in the inner region and continuous embryo-embryo scattering are two key factors that cause significant embryo migrations; and (3) the scattering-driven migration of embryos is a natural water-delivery mechanism. We propose that planet detections should focus on the close binary with its habitable zone near CSMA.« less

  20. Jumping the gap: the formation conditions and mass function of `pebble-pile' planetesimals

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-03-01

    In a turbulent proto-planetary disc, dust grains undergo large-density fluctuations and under the right circumstances, grain overdensities can collapse under self-gravity (forming a `pebble-pile' planetesimal). Using a simple model for fluctuations predicted in simulations, we estimate the rate of formation and mass function of self-gravitating planetesimal-mass bodies formed by this mechanism. This depends sensitively on the grain size, disc surface density, and turbulent Mach numbers. However, when it occurs, the resulting planetesimal mass function is broad and quasi-universal, with a slope dN/dM ∝ M-(1-2), spanning size/mass range ˜10-104 km (˜10-9-5 M⊕). Collapse to planetesimal through super-Earth masses is possible. The key condition is that grain density fluctuations reach large amplitudes on large scales, where gravitational instability proceeds most easily (collapse of small grains is suppressed by turbulence). This leads to a new criterion for `pebble-pile' formation: τs ≳ 0.05 ln (Q1/2/Zd)/ln (1 + 10 α1/4) ˜ 0.3 ψ(Q, Z, α) where τs = ts Ω is the dimensionless particle stopping time. In a minimum-mass solar nebula, this requires grains larger than a = (50, 1, 0.1) cm at r=(1, 30, 100) au}. This may easily occur beyond the ice line, but at small radii would depend on the existence of large boulders. Because density fluctuations depend strongly on τs (inversely proportional to disc surface density), lower density discs are more unstable. Conditions for pebble-pile formation also become more favourable around lower mass, cooler stars.

  1. The Delivery of Water to the Lunar Mantle by Late Planetesimal Accretion (Invited)

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Walker, R. J.; Day, J.; Nesvorny, D.; Elkins-Tanton, L. T.

    2010-12-01

    The final stages of planet formation in the inner Solar System are thought to have culminated in enormous planetary collisions, such as the hypothesized ‘giant impact’ origin for the Earth and Moon that occurred ~50-100 My after the formation of the first Solar System solids. The giant impact event probably triggered a final phase of core formation on these worlds, with global magma oceans effectively stripping the terrestrial and lunar mantles of highly siderophile elements (HSE; Re, Os, Ir, Ru, Pt, Rh, Pd, Au), which have extremely high metal-silicate partition coefficients. Studies of mantle-derived terrestrial peridotites and derivative lunar mantle melts, however, show that the terrestrial and lunar mantles have elevated absolute, and approximately chondritic relative abundances of highly siderophile elements (HSE). We argue this material was most likely delivered by continued planetesimal accretion via HSE-rich impactors within tens of My of core formation termination, with subsequently-accreted materials mixed into each mantle by convection. This process, often called the “late veneer” but here termed late accretion, delivered > 0.4% Earth masses to the terrestrial mantle and produced an Earth/Moon mass input ratio of ~1,000. Using Monte Carlo models, we found that this high ratio most likely came from planetesimal populations dominated by massive impactors. Specifically, if the late accretion population had the form dN ∝ D-q dD (i.e., dN is the number of planetesimals of diameter D within bin dD), the power law index of the projectiles was q < 2 for 200 < D < 4000 km. Interestingly, q ~ 2 populations are also found in planetesimal size distributions derived from evidence taken near 1 AU (e.g., D > 250 km asteroids in the inner/central main belt with semimajor axis < 2.8 AU, the population of non-saturated ancient martian impact basins with 700 < D < 2000 km) as well as from new planetary accretion models that allow planetesimals to be “born big

  2. THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. I. THE TURBULENT STIRRING RECIPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzumi, Satoshi; Ormel, Chris W., E-mail: okuzumi@geo.titech.ac.jp

    2013-07-01

    Turbulence in protoplanetary disks affects planet formation in many ways. While small dust particles are mainly affected by the aerodynamical coupling with turbulent gas velocity fields, planetesimals and larger bodies are more affected by gravitational interaction with gas density fluctuations. For the latter process, a number of numerical simulations have been performed in recent years, but a fully parameter-independent understanding has not been yet established. In this study, we present simple scaling relations for the planetesimal stirring rate in turbulence driven by magnetorotational instability (MRI), taking into account the stabilization of MRI due to ohmic resistivity. We begin with order-of-magnitudemore » estimates of the turbulence-induced gravitational force acting on solid bodies and associated diffusion coefficients for their orbital elements. We then test the predicted scaling relations using the results of recent ohmic-resistive MHD simulations by Gressel et al. We find that these relations successfully explain the simulation results if we properly fix order-of-unity uncertainties within the estimates. We also update the saturation predictor for the density fluctuation amplitude in MRI-driven turbulence originally proposed by Okuzumi and Hirose. Combination of the scaling relations and saturation predictor allows us to know how the turbulent stirring rate of planetesimals depends on disk parameters such as the gas column density, distance from the central star, vertical resistivity distribution, and net vertical magnetic flux. In Paper II, we apply our recipe to planetesimal accretion to discuss its viability in turbulent disks.« less

  3. Meteoritic Evidence for Injection of Trans-Neptunian Objects into the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Johnson, J.; Ziegler, K.; Chan, Q.; Kebukawa, Y.; Bottke, W.; Fries, M.; Martinez, J.; Le, L.

    2018-01-01

    There is excellent evidence that a dynamical instability in the early solar system led to gravitational interactions between the giant planets and trans-Neptunian planetesimals. Giant planetary migration triggered by the instability dispersed a disk of primordial trans-Neptunian object (TNOs) and created a number of small body reservoirs (e.g. the Kuiper Belt, scattered disk, irregular satellites, and the Jupiter/Neptune Trojan populations). It also injected numerous bodies into the main asteroid belt, where modeling shows they can successfully reproduce the observed P and D-type asteroid populations.

  4. Spectroscopic and theoretical constraints on the differentiation of planetesimals

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas A.

    The differentiation of small proto-planetary bodies into metallic cores, silicate mantles and basaltic crusts was a common occurrence in the first few million years of Solar System history. In this thesis, observational and theoretical methods are employed to investigate this process. Particular focus is given to the basaltic, crustal remnants of those differentiated parent bodies. A visible-wavelength spectroscopic survey was designed and performed to constrain the population of basaltic asteroids in the Main Belt. The results of this survey were used to provide statistical constraints on the orbital and size-frequency distributions of these objects. These distributions imply that basaltic material is rare in the Main Belt (particularly beyond the 3:1 mean motion resonance at 2.5 AU), however relic fragments of crust from multiple differentiated parent bodies are likely present. To provide insight on the mineralogical diversity of basaltic asteroids in the Main Belt, we performed a series of near-infrared spectroscopic observations. We find that V-type asteroids in the inner belt have spectroscopic properties consistent with an origin from a single parent body, most likely the asteroid Vesta. Spectroscopic differences (namely band area ratio) between these asteroids and basaltic meteorites here on Earth are best explained by space weathering of the asteroid surfaces. We also report the discovery of unusual spectral properties for asteroid 10537 (1991 RY16), a V-type asteroid in the outer Main Belt that has an ambiguous mineralogical interpretation. We conclude this thesis with a theoretical investigation of the relevant stages in the process of differentiation. We show that if partial silicate melting occurs within the interior of a planetesimal then both core and crust formation could have happened on sub-million year (Myr) time scales. However, it is shown that the high temperatures necessary to facilitate these processes may have been affected by the migration

  5. The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. I. The Role of Self-gravity

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Li, Rixin; Youdin, Andrew N.

    2016-05-01

    We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the Athena code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the Athena simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p≃ 1.6+/- 0.1, which equates to a differential size distribution of {dN}/{{dR}}p\\propto {R}p-q, with q≃ 2.8+/- 0.1. We find no significant trends with resolution from a convergence study of up to 5123 grid zones and {N}{{par}}≈ 1.5× {10}8 particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time τ =0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.

  6. Coagulation calculations of icy planet formation around 0.1-0.5 M {sub ☉} stars: Super-Earths from large planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu

    2014-01-01

    We investigate formation mechanisms for icy super-Earth-mass planets orbiting at 2-20 AU around 0.1-0.5 M {sub ☉} stars. A large ensemble of coagulation calculations demonstrates a new formation channel: disks composed of large planetesimals with radii of 30-300 km form super-Earths on timescales of ∼1 Gyr. In other gas-poor disks, a collisional cascade grinds planetesimals to dust before the largest planets reach super-Earth masses. Once icy Earth-mass planets form, they migrate through the leftover swarm of planetesimals at rates of 0.01-1 AU Myr{sup –1}. On timescales of 10 Myr to 1 Gyr, many of these planets migrate through the diskmore » of leftover planetesimals from semimajor axes of 5-10 AU to 1-2 AU. A few percent of super-Earths might migrate to semimajor axes of 0.1-0.2 AU. When the disk has an initial mass comparable with the minimum-mass solar nebula, scaled to the mass of the central star, the predicted frequency of super-Earths matches the observed frequency.« less

  7. Planetesimal formation in self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Gibbons, P. G.; Rice, W. K. M.; Mamatsashvili, G. R.

    2012-10-01

    We study particle dynamics in local two-dimensional simulations of self-gravitating accretion discs with a simple cooling law. It is well known that the structure which arises in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results using global simulations indicate that spiral density waves are highly efficient at collecting dust particles, creating significant local overdensities which may be able to undergo gravitational collapse. We expand on these findings using a range of cooling times to mimic the conditions at a large range of radii within the disc. Here we use the PENCIL code to solve the 2D local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas solely through aerodynamic drag force. We find that spiral density waves can create significant enhancements in the surface density of solids, equivalent to 1-10 cm sized particles in a disc following the profiles of Clarke around an ˜1 M⊙ star, causing it to reach concentrations several orders of magnitude larger than the particles mean surface density. We also study the velocity dispersion of the particles, finding that the spiral structure can result in the particle velocities becoming highly ordered, having a narrow velocity dispersion. This implies low relative velocities between particles, which in turn suggest that collisions are typically low energy, lessening the likelihood of grain destruction. Both these findings suggest that the density waves that arise due to gravitational instabilities in the early stages of star formation provide excellent sites for the formation of large, planetesimal-sized objects.

  8. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  9. Planetesimal formation in self-gravitating discs - the effects of particle self-gravity and back-reaction

    NASA Astrophysics Data System (ADS)

    Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.

    2014-07-01

    We study particle dynamics in self-gravitating gaseous discs with a simple cooling law prescription via two-dimensional simulations in the shearing sheet approximation. It is well known that structures arising in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results have shown that spiral density waves can be highly efficient at collecting dust particles, creating significant local overdensities of particles. The degree of such concentrations has been shown to be dependent on two parameters: the size of the dust particles and the rate of gas cooling. We expand on these findings, including the self-gravity of dust particles, to see how these particle overdensities evolve. We use the PENCIL code to solve the local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas through an aerodynamic drag force. We find that the enhancements in the surface density of particles in spiral density wave crests can reach levels high enough to allow the solid component of the disc to collapse under its own self-gravity. This produces many gravitationally bound collections of particles within the spiral structure. The total mass contained in bound structures appears nearly independent of the cooling time, suggesting that the formation of planetesimals through dust particle trapping by self-gravitating density waves may be possible at a larger range of radii within a disc than previously thought. So, density waves due to gravitational instabilities in the early stages of star formation may provide excellent sites for the rapid formation of many large, planetesimal-sized objects.

  10. Migration of giant planets in a time-dependent planetesimal accretion disc

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Ekşi, K. Y.

    2002-05-01

    In this paper we develop further the model for the migration of planets introduced in Del Popolo et al. We first model the protoplanetary nebula as a time-dependent accretion disc, and find self-similar solutions to the equations of the accretion disc that give us explicit formulae for the spatial structure and the temporal evolution of the nebula. These equations are then used to obtain the migration rate of the planet in the planetesimal disc, and to study how the migration rate depends on the disc mass, on its time evolution and on some values of the dimensionless viscosity parameter α . We find that planets that are embedded in planetesimal discs, having total mass of 10-4 -0.1Msolar , can migrate inward a large distance for low values of α (e.g., α ~=10-3 -10-2 ) and/or large disc mass, and can survive only if the inner disc is truncated or because of tidal interaction with the star. Orbits with larger a are obtained for smaller values of the disc mass and/or for larger values of α . This model may explain several orbital features of the recently discovered giant planets orbiting nearby stars.

  11. Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Izidoro, Andre

    2017-11-01

    There is a long-standing debate regarding the origin of the terrestrial planets' water as well as the hydrated C-type asteroids. Here we show that the inner Solar System's water is a simple byproduct of the giant planets' formation. Giant planet cores accrete gas slowly until the conditions are met for a rapid phase of runaway growth. As a gas giant's mass rapidly increases, the orbits of nearby planetesimals are destabilized and gravitationally scattered in all directions. Under the action of aerodynamic gas drag, a fraction of scattered planetesimals are deposited onto stable orbits interior to Jupiter's. This process is effective in populating the outer main belt with C-type asteroids that originated from a broad (5-20 AU-wide) region of the disk. As the disk starts to dissipate, scattered planetesimals reach sufficiently eccentric orbits to cross the terrestrial planet region and deliver water to the growing Earth. This mechanism does not depend strongly on the giant planets' orbital migration history and is generic: whenever a giant planet forms it invariably pollutes its inner planetary system with water-rich bodies.

  12. Accumulation of a swarm of small planetesimals

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.; Stewart, Glen R.

    1989-01-01

    The present gasdynamic study of the planetesimal-accumulation stage in which 10-km bodies in the neighborhood of 1 AU grow to 10 to the 25th-10 to the 27th g mass, or 'planetary embryo' size, attempts to identify the circumstances under which runaway growth forms a small number of massive embryos in the terrestrial-planet region on a 0.1-1.0 million year time-scale. No runaways are found, however, unless more plausible physical processes are invoked; in that case, runaways in the terrestrial planet region are probable on a 0.1 million-year time-scale, and the final stage of planetary accumulation may involve the growth of these embryos into the present planets on a 10-100 million-year time-scale.

  13. Silicon isotopes in angrites and volatile loss in planetesimals

    PubMed Central

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  14. Questionable inheritance: What Processes on Planetesimals Mean for the Bulk Composition of the Earth

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.

    2015-12-01

    Interrogating Earth's interior is limited to indirect means, such as seismic or magnetic fields, and relies heavily on modeling. A large body of literature either attempts to constrain the composition of the deep mantle by mass balancing the Earth with a chondritic composition, or to demonstrate that the Earth does not have a chondritic composition. These models provide predictions for the composition and density of the ultra-low shear wave provinces and for the D" layer, among others, and compare their results to structures resulting from seismic studies. The bulk composition of the Earth, however, remains an open question. We now know that the planets accreted from embryos that were already differentiated. The complexity of processes that occurred on planetesimals and planetary embryos are just beginning to come to light. Heating by radiogenic 26Al likely produced waves of hydration and dehydration in planetesimals. These free fluids may have carried a wide range of volatiles, moving them from the interior to the lid, or even losing them to space. Simultaneously, the first free fluids may have reacted with metals, producing oxides or sulfides. Further heating is required to reduce these to metals and made core formation possible; or perhaps the earliest cores are not fully metallic. These planetesimals and the embryos they were growing into were subjected to a series of impacts. As the work of Asphaug and his group have demonstrated, some of these are accretionary impacts, and some are hit-and-run, or destructive impacts. These destructive impacts may have reduced the thickness of Mercury's mantle, and stripped the mantle off the metal asteroid Psyche. Where, then would the shattered silicates from such collisions go? Asphuag suggests that at least in part they are added to the growing terrestrial planets. If the planetesimals and planetary embryos were compositionally heterogeneous because of interior fluid and magma movement, then the silicates blown off them

  15. X-ray photoevaporation's limited success in the formation of planetesimals by the streaming instability

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara; Jennings, Jeff; Rosotti, Giovanni; Birnstiel, Tilman

    2017-12-01

    The streaming instability is often invoked as solution to the fragmentation and drift barriers in planetesimal formation, catalysing the aggregation of dust on kyr time-scales to grow km-sized cores. However, there remains a lack of consensus on the physical mechanism(s) responsible for initiating it. One potential avenue is disc photoevaporation, wherein the preferential removal of relatively dust-free gas increases the disc metallicity. Late in the disc lifetime, photoevaporation dominates viscous accretion, creating a gradient in the depleted gas surface density near the location of the gap. This induces a local pressure maximum that collects drifting dust particles, which may then become susceptible to the streaming instability. Using a one-dimensional viscous evolution model of a disc subject to internal X-ray photoevaporation, we explore the efficacy of this process to build planetesimals. Over a range of parameters, we find that the amount of dust mass converted into planetesimals is often <1 M⊕ and at most a few M⊕ spread across tens of au. We conclude that photoevaporation may at best be relevant for the formation of debris discs, rather than a common mechanism for the formation of planetary cores. Our results are in contrast to a recent, similar investigation that considered an far-ultra-violet (FUV)-driven photoevaporation model and reported the formation of tens of M⊕ at large (>100 au) disc radii. The discrepancies are primarily a consequence of the different photoevaporation profiles assumed. Until observations more tightly constrain photoevaporation models, the relevance of this process to the formation of planets remains uncertain.

  16. The formation of jupiter, the jovian early bombardment and the delivery of water to the asteroid belt: the case of (4) vesta.

    PubMed

    Turrini, Diego; Svetsov, Vladimir

    2014-01-28

    The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1-2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement.

  17. The Formation of Jupiter, the Jovian Early Bombardment and the Delivery of Water to the Asteroid Belt: The Case of (4) Vesta

    PubMed Central

    Turrini, Diego; Svetsov, Vladimir

    2014-01-01

    The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1–2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement. PMID:25370027

  18. Redox States of Initial Atmospheres Outgassed on Rocky Planets and Planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Laura; Fegley, Bruce Jr., E-mail: lschaefer@asu.edu

    2017-07-10

    The Earth and other rocky planets and planetesimals in the solar system formed through the mixing of materials from various radial locations in the solar nebula. This primordial material likely had a range of oxidation states as well as bulk compositions and volatile abundances. We investigate the oxygen fugacity produced by the outgassing of mixtures of solid meteoritic material, which approximate the primitive nebular materials. We find that the gas composition and oxygen fugacity of binary and ternary mixtures of meteoritic materials vary depending on the proportion of reduced versus oxidized material, and also find that mixtures using differentiated materialsmore » do not show the same oxygen fugacity trends as those using similarly reduced but undifferentiated materials. We also find that simply mixing the gases produced by individual meteoritic materials together does not correctly reproduce the gas composition or oxygen fugacity of the binary and ternary mixtures. We provide tabulated fits for the oxygen fugacities of all of the individual materials and binary mixtures that we investigate. These values may be useful in planetary formation models, models of volatile transport on planetesimals or meteorite parent bodies, or models of trace element partitioning during metal-silicate fractionation.« less

  19. Evidence for a "Wet" Early Moon

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne H.; Zhang, Youxue; Neal, Clive R.

    2013-01-01

    The Moon was thought to have lost its volatiles during impact(s) of a Mars-size planetesimal with the proto Earth [1] and during degassing of an early planet-wide magma ocean [2]. This view of an anhydrous Moon, however, has been challenged by recent discoveries of water on its surface [3-5] and in lunar volcanics [6-10] and regoliths [11]. Indigenous water is suggested to be heterogeneously distributed in the lunar interior and some parts of lunar mantle may contain as much water as Earth's upper mantle [6,10]. This water is thought to have been brought in part through solar wind implantation [3-5,8,11] and meteorite/cometary impacts [3,4,8,12] after the formation of the primary crust. Here we measured water in primary products of the Lunar Magma Ocean (LMO) thereby by-passing the processes of later addition of water to the Moon through impact events or during mantle overturn as suggested by previous studies (e.g., [8,12]). So far, ferroan anorthosite (FAN) is the only available lithology that is believed to be a primary product of the LMO [2]. It is generally accepted that plagioclase, after crystallization, floated in the LMO and formed FAN as the original crust [2]. Therefore, any indigenous water preserved in FAN was partitioned from the LMO. These data can be used to estimate the water content of the magma ocean at the time of plagioclase crystallization, as well as that of the mare magma source regions.

  20. PLANETESIMAL FORMATION BY GRAVITATIONAL INSTABILITY OF A POROUS DUST DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michikos@ccs.tsukuba.ac.jp, E-mail: kokubo@th.nao.ac.jp

    2016-07-10

    It has recently been proposed that porous icy dust aggregates are formed by the pairwise accretion of dust aggregates beyond the snowline. We calculate the equilibrium random velocity of porous dust aggregates, taking into account mutual gravitational scattering, collisions, gas drag, and turbulent stirring and scattering. We find that the disk of porous dust aggregates becomes gravitationally unstable as the aggregates evolve through gravitational compression in the minimum-mass solar nebula model for a reasonable range of turbulence strength, which leads to rapid formation of planetesimals.

  1. Early metal-silicate differentiation during planetesimal formation revealed by acapulcoite and lodranite meteorites

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Corder, Christopher A.; Tait, Kim T.; Marti, Kurt; Assayag, Nelly; Cartigny, Pierre; Rumble, Doug; Taylor, Lawrence A.

    2017-11-01

    In order to establish the role and expression of silicate-metal fractionation in early planetesimal bodies, we have conducted a highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance and 187Re-187Os study of acapulcoite-lodranite meteorites. These data are reported with new petrography, mineral chemistry, bulk-rock major and trace element geochemistry, and oxygen isotopes for Acapulco, Allan Hills (ALHA) 81187, Meteorite Hills (MET) 01195, Northwest Africa (NWA) 2871, NWA 4833, NWA 4875, NWA 7474 and two examples of transitional acapulcoite-lodranites, Elephant Moraine (EET) 84302 and Graves Nunataks (GRA) 95209. These data support previous studies that indicate that these meteorites are linked to the same parent body and exhibit limited degrees (<2-7%) of silicate melt removal. New HSE and osmium isotope data demonstrate broadly chondritic relative and absolute abundances of these elements in acapulcoites, lower absolute abundances in lodranites and elevated (>2 × CI chondrite) HSE abundances in transitional acapulcoite-lodranite meteorites (EET 84302, GRA 95209). All of the meteorites have chondritic Re/Os with measured 187Os/188Os ratios of 0.1271 ± 0.0040 (2 St. Dev.). These geochemical characteristics imply that the precursor material of the acapulcoites and lodranites was broadly chondritic in composition, and were then heated and subject to melting of metal and sulfide in the Fe-Ni-S system. This resulted in metallic melt removal and accumulation to form lodranites and transitional acapulcoite-lodranites. There is considerable variation in the absolute abundances of the HSE, both among samples and between aliquots of the same sample, consistent with both inhomogeneous distribution of HSE-rich metal, and of heterogeneous melting and incomplete mixing of silicate material within the acapulcoite-lodranite parent body. Oxygen isotope data for acapulcoite-lodranites are also consistent with inhomogeneous melting and mixing of accreted components

  2. Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust

    NASA Astrophysics Data System (ADS)

    de Beule, Caroline; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard

    2017-03-01

    It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Tempering increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.

  3. Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Beule, Caroline; Landers, Joachim; Salamon, Soma

    2017-03-01

    It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Temperingmore » increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.« less

  4. What heated the parent meteorite planets?

    NASA Technical Reports Server (NTRS)

    Wood, John A.; Pellas, Paul

    1991-01-01

    The plausibility of the two most wide discussed mechanisms, decay of short-lived Al-26 and solar wind induction heating, for heating the small planetesimals in which the meteorites formed are examined and shown to have significant problems. The main problem for the Al-26 decay mechanism is the fact that eucritic lavas, melted by the mysterious heating mechanism in some early planetesimal, did not contain enough Al-26 to decay to radiogenic Mg-26 when they erupted to their planetesimal surface and cooled. It is necessary to postulate that the lavas lingered underground while their Al-26 decayed away. The solar wind induction heat concept has the problem that astrophysical evidence has made is seem increasingly unlikely that an intense solar wind flux blew past planetesimals in the early solar system. Instead, it was probably collimated in the direction of the sun's poles by the persistence of the solar nebula during the T Tauri epoch.

  5. Diffusion of Oxygen Isotopes in Thermally Evolving Planetesimals and Size Ranges of Presolar Silicate Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakita, Shigeru; Nozawa, Takaya; Hasegawa, Yasuhiro, E-mail: shigeru@cfca.jp

    Presolar grains are small particles found in meteorites through their isotopic compositions, which are considerably different from those of materials in the solar system. If some isotopes in presolar grains diffused out beyond their grain sizes when they were embedded in parent bodies of meteorites, their isotopic compositions could be washed out, and hence the grains could no longer be identified as presolar grains. We explore this possibility for the first time by self-consistently simulating the thermal evolution of planetesimals and the diffusion length of {sup 18}O in presolar silicate grains. Our results show that presolar silicate grains smaller thanmore » ∼0.03 μ m cannot keep their original isotopic compositions even if the host planetesimals experienced a maximum temperature as low as 600 °C. Since this temperature corresponds to that experienced by petrologic type 3 chondrites, isotopic diffusion can constrain the size of presolar silicate grains discovered in such chondrites to be larger than ∼0.03 μ m. We also find that the diffusion length of {sup 18}O reaches ∼0.3–2 μ m in planetesimals that were heated up to 700–800°C. This indicates that, if the original size of presolar grains spans a range from ∼0.001 μ m to ∼0.3 μ m like that in the interstellar medium, then the isotopic records of the presolar grains may be almost completely lost in such highly thermalized parent bodies. We propose that isotopic diffusion could be a key process to control the size distribution and abundance of presolar grains in some types of chondrites.« less

  6. DYNAMICS OF SOLIDS IN THE MIDPLANE OF PROTOPLANETARY DISKS: IMPLICATIONS FOR PLANETESIMAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Xuening; Stone, James M., E-mail: xbai@astro.princeton.ed, E-mail: jstone@astro.princeton.ed

    2010-10-20

    We present local two-dimensional and three-dimensional hybrid numerical simulations of particles and gas in the midplane of protoplanetary disks (PPDs) using the Athena code. The particles are coupled to gas aerodynamically, with particle-to-gas feedback included. Magnetorotational turbulence is ignored as an approximation for the dead zone of PPDs, and we ignore particle self-gravity to study the precursor of planetesimal formation. Our simulations include a wide size distribution of particles, ranging from strongly coupled particles with dimensionless stopping time {tau}{sub s} {identical_to} {Omega}t{sub stop} = 10{sup -4} (where {Omega} is the orbital frequency, t{sub stop} is the particle friction time) tomore » marginally coupled ones with {tau}{sub s} = 1, and a wide range of solid abundances. Our main results are as follows. (1) Particles with {tau}{sub s} {approx}> 10{sup -2} actively participate in the streaming instability (SI), generate turbulence, and maintain the height of the particle layer before Kelvin-Helmholtz instability is triggered. (2) Strong particle clumping as a consequence of the SI occurs when a substantial fraction of the solids are large ({tau}{sub s} {approx}> 10{sup -2}) and when height-integrated solid-to-gas mass ratio Z is super-solar. We construct a toy model to offer an explanation. (3) The radial drift velocity is reduced relative to the conventional Nakagawa-Sekiya-Hayashi (NSH) model, especially at high Z. Small particles may drift outward. We derive a generalized NSH equilibrium solution for multiple particle species which fits our results very well. (4) Collision velocity between particles with {tau}{sub s} {approx}> 10{sup -2} is dominated by differential radial drift, and is strongly reduced at larger Z. This is also captured by the multi-species NSH solution. Various implications for planetesimal formation are discussed. In particular, we show that there exist two positive feedback loops with respect to the enrichment

  7. On the observability of resonant structures in planetesimal disks due to planetary migration

    NASA Astrophysics Data System (ADS)

    Reche, R.; Beust, H.; Augereau, J.-C.; Absil, O.

    2008-03-01

    Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to

  8. The Maximum Mass Solar Nebula and the early formation of planets

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-03-01

    Current planet formation theories provide successful frameworks with which to interpret the array of new observational data in this field. However, each of the two main theories (core accretion, gravitational instability) is unable to explain some key aspects. In many planet formation calculations, it is usual to treat the initial properties of the planet forming disc (mass, radius, etc.) as free parameters. In this paper, we stress the importance of setting the formation of planet forming discs within the context of the formation of the central stars. By exploring the early stages of disc formation, we introduce the concept of the Maximum Mass Solar Nebula (MMSN), as opposed to the oft-used Minimum Mass Solar Nebula (here mmsn). It is evident that almost all protoplanetary discs start their evolution in a strongly self-gravitating state. In agreement with almost all previous work in this area, we conclude that on the scales relevant to planet formation these discs are not gravitationally unstable to gas fragmentation, but instead form strong, transient spiral arms. These spiral arms can act as efficient dust traps allowing the accumulation and subsequent fragmentation of the dust (but not the gas). This phase is likely to populate the disc with relatively large planetesimals on short timescales while the disc is still veiled by a dusty-gas envelope. Crucially, the early formation of large planetesimals overcomes the main barriers remaining within the core accretion model. A prediction of this picture is that essentially all observable protoplanetary discs are already planet hosting.

  9. The Maximum Mass Solar Nebula and the early formation of planets

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-07-01

    Current planet formation theories provide successful frameworks with which to interpret the array of new observational data in this field. However, each of the two main theories (core accretion, gravitational instability) is unable to explain some key aspects. In many planet formation calculations, it is usual to treat the initial properties of the planet-forming disc (mass, radius, etc.) as free parameters. In this paper, we stress the importance of setting the formation of planet-forming discs within the context of the formation of the central stars. By exploring the early stages of disc formation, we introduce the concept of the Maximum Mass Solar Nebula, as opposed to the oft-used minimum mass solar nebula. It is evident that almost all protoplanetary discs start their evolution in a strongly self-gravitating state. In agreement with almost all previous work in this area, we conclude that on the scales relevant to planet formation these discs are not gravitationally unstable to gas fragmentation, but instead form strong, transient spiral arms. These spiral arms can act as efficient dust traps allowing the accumulation and subsequent fragmentation of the dust (but not the gas). This phase is likely to populate the disc with relatively large planetesimals on short time-scales while the disc is still veiled by a dusty-gas envelope. Crucially, the early formation of large planetesimals overcomes the main barriers remaining within the core accretion model. A prediction of this picture is that essentially all observable protoplanetary discs are already planet hosting.

  10. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  11. Formation of planetesimals in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Guillot, T.

    2001-11-01

    We study the evolution of protoplanetary disks with gas and embedded particles using a classical alpha-disk model. Solid matter entrained in the gas is incorporated following the formalism of Stepinski and Valageas (A&A, 1996, 1997). Dust grains coagulate into larger particles until they eventually decouple from the gas. The coagulation process is modulated by the evaporation and condensation of dust in the disk. We simultaneously consider grains of ices and rock, which allows us to study the amount of different solid material available to form the different planets. In particular, we present consequences for the development of planetesimals in the Uranus and Neptune region. This is interesting in the light of interior models of these planets, which naturally tend to predict a low rock to ice ratio. We will also discuss the consequences of these results on the standard core-accretion formation scenario. Acknowledgements: This work has been supported by Programme National du Planetologie. R. Hueso acknowledges a post-doctoral fellowship from Gobierno Vasco.

  12. Paleomagnetic Evidence for Partial Differentiation of the Silicate-Bearing IIE Iron Meteorite Parent Body

    NASA Astrophysics Data System (ADS)

    Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.

    2016-12-01

    The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present

  13. Paleomagnetic Evidence for Partial Differentiation of the Silicate-Bearing IIE Iron Meteorite Parent Body

    NASA Astrophysics Data System (ADS)

    Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.

    2017-12-01

    The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present

  14. Dynamical Evolution of Planetesimals in the Outer Solar System. II. The Saturn/Uranus and Uranus/Neptune Zones

    NASA Astrophysics Data System (ADS)

    Grazier, Kevin R.; Newman, William I.; Varadi, Ferenc; Kaula, William M.; Hyman, James M.

    1999-08-01

    We report on numerical simulations exploring the dynamical stability of planetesimals in the gaps between the outer Solar System planets. We search for stable niches in the Saturn/Uranus and Uranus/Neptune zones by employing 10,000 massless particles-many more than previous studies in these two zones-using high-order optimized multistep integration schemes coupled with roundoff error minimizing methods. An additional feature of this study, differing from its predecessors, is the fact that our initial distributions contain particles on orbits which are both inclined and noncircular. These initial distributions were also Gaussian distributed such that the Gaussian peaks were at the midpoint between the neighboring perturbers. The simulations showed an initial transient phase where the bulk of the primordial planetesimal swarm was removed from the Solar System within 105 years. This is about 10 times longer than we observed in our previous Jupiter/Saturn studies. Next, there was a gravitational relaxation phase where the particles underwent a random walk in momentum space and were exponentially eliminated by random encounters with the planets. Unlike our previous Jupiter/Saturn simulation, the particles did not fully relax into a third Lagrangian niche phase where long-lived particles are at Lagrange points or stable niches. This is either because the Lagrangian niche phase never occurs or because these simulations did not have enough particles for this third phase to manifest. In these simulations, there was a general trend for the particles to migrate outward and eventually to be cleared out by the outermost planet in the zone. We confirmed that particles with higher eccentricities had shorter lifetimes and that the resonances between the jovian planets "pumped up" the eccentricities of the planetesimals with low-inclination orbits more than those with higher inclinations. We estimated the expected lifetime of particles using kinetic theory and even though the time

  15. Planetesimal formation by sweep-up coagulation

    NASA Astrophysics Data System (ADS)

    Windmark, Fredrik; Birnstiel, Til; Ormel, Chris W.; Dullemond, Cornelis P.

    2013-07-01

    The formation of planetesimals is often accredited to collisional sticking of dust grains in the protoplanetary disk. The exact process is however unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. These growth barriers tend to halt the dust growth already at millimeters or centimeters in size, which is far below the kilometer-sizes that are needed for gravity to aid in the accretion. To study how far dust coagulation can proceed, we have developed a new collision model based on the latest laboratory experiments, and have used it together with a dust-size evolution code capable of resolving all grain interactions in the protoplanetary disk. We find that for the general dust population, bouncing and fragmenting collisions prevent the growth above millimeter-sizes. However, a small number of lucky particles can grow larger than the rest by only interacting at low, sticky velocities. As they grow, they become increasingly resilient to fragmentation caused by the small grains. In this way, two populations are formed: One which remains small due to the collisional barriers, and one that continues to grow by sweeping up the smaller grains around them.

  16. Constraints on planetesimal disk mass from the cratering record and equatorial ridge on Iapetus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Valentin, E. G.; Barr, A. C.; Lopez Garcia, E. J.

    2014-09-10

    Iapetus, the outermost regular satellite of Saturn, has a drastic albedo dichotomy and an equatorial circumferential ridge that reaches heights of 20 km and widths of 70 km. This moon is thought to have formed concurrently with Saturn, and so would have experienced an intense bombardment after its formation. The ridge, which has been inferred to be one of the most ancient features on Iapetus' surface, could reasonably be expected to have been eroded by impacts; however, it has retained long continuous sections and a nearly pristine triangular shape with ridge slopes reaching ∼40°. We use these observations, along withmore » crater counts on Iapetus' surface, to constrain the total bombardment mass experienced by the satellite since its formation. The ridge morphology and the global crater population recorded on Iapetus both suggest similar bombardment masses, indicating the ridge is indeed ancient. We find that the inferred total bombardment mass incident on Iapetus is less than 20% of the bombardment predicted by the classic Nice model for early solar system evolution. Our results, though, support the recently proposed scenarios of planetesimal-driven migration of the young outer planets including more realistic disk conditions.« less

  17. Recondensation of chondritic material in the early solar system: Results of thermodynamic simulation

    NASA Technical Reports Server (NTRS)

    Dorofeyeva, V. A.; Makalkin, A. B.; Mironenko, M. V.; Vityazev, A. V.

    1993-01-01

    We have performed a thermodynamic simulation of the recondensation of evaporated meteoritic material. We suggest that evaporation and recondensation occurred in impact events during the intercollision of planetesimals during the early evolution of the solar system. The source materials adopted for our model are the chondrites CI Orgueil and H5 Richardton. These chondrites are representative examples of the two extremes regarding volatile content and oxidation state. We calculated equilibrium mineral compositions of the closed systems of the Orgueil's and Richardton's elemental composition at the P-T conditions characteristic of the explosion cloud formed at a planetesimal collision. The P-T conditions are as follows: 10(exp -4) bar, and 1500 and 2000 K. The results are presented.

  18. Formation of Non-symmetric Fractals During the First Stage of Pre-planetesimal Dust Growth

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Blum, J.; Wurm, G.

    It is a generally accepted view that the genesis of a planetary system coincide s with the formation of sun-like young stellar objects surrounded by gaseous disc s. The building blocks of the planetesimals are micron-sized solid particles (the so-called dust) embedded in the gas of the disc. The relevant process for formi ng larger aggregates is the growth due to collisional sticking. For particles to c ollide and stick, a relative velocity component between the grains must be present. In the onset of dust growth, Brownian motion dominates other relative-velocity sources . However, numerically determined time scales of the pure Brownian dust growth are much too large for explaining the formation of planets within the lifetime of a proto-planetary di sc. In order to verify the validity of the theoretical models, the Cosmic Dust Aggr egation Experiment CODAG was developed. It allows to observe the growth of micron-sized dust analogs under astrophysical realistic conditions. Surprisingly, the experi ments showed that at least in the onset of the dust growth needle-like fractal aggreg ates rather than symmetric fractals are formed. Here we discuss the implication of this experimental finding for the pre-planetesimal growth models.

  19. Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua

    NASA Astrophysics Data System (ADS)

    Bannister, Michele T.; Schwamb, Megan E.; Fraser, Wesley C.; Marsset, Michael; Fitzsimmons, Alan; Benecchi, Susan D.; Lacerda, Pedro; Pike, Rosemary E.; Kavelaars, J. J.; Smith, Adam B.; Stewart, Sunny O.; Wang, Shiang-Yu; Lehner, Matthew J.

    2017-12-01

    The recent discovery by Pan-STARRS1 of 1I/2017 U1 (‘Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars and the effect of the interstellar environment on a planetesimal surface. 1I/‘Oumuamua’s close encounter with the inner solar system in 2017 October was a unique chance to make observations matching those used to characterize the small-body populations of our own solar system. We present near-simultaneous g‧, r‧, and J photometry and colors of 1I/‘Oumuamua from the 8.1 m Frederick C. Gillett Gemini-North Telescope and gri photometry from the 4.2 m William Herschel Telescope. Our g‧r‧J observations are directly comparable to those from the high-precision Colours of the Outer Solar System Origins Survey (Col-OSSOS), which offer unique diagnostic information for distinguishing between outer solar system surfaces. The J-band data also provide the highest signal-to-noise measurements made of 1I/‘Oumuamua in the near-infrared. Substantial, correlated near-infrared and optical variability is present, with the same trend in both near-infrared and optical. Our observations are consistent with 1I/‘Oumuamua rotating with a double-peaked period of 8.10 ± 0.42 hr and being a highly elongated body with an axial ratio of at least 5.3:1, implying that it has significant internal cohesion. The color of the first interstellar planetesimal is at the neutral end of the range of solar system g ‑ r and r ‑ J solar-reflectance colors: it is like that of some dynamically excited objects in the Kuiper Belt and the less-red Jupiter Trojans.

  20. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  1. Growing into and out of the bouncing barrier in planetesimal formation

    NASA Astrophysics Data System (ADS)

    Kruss, Maximilian; Teiser, Jens; Wurm, Gerhard

    2017-04-01

    In recent laboratory studies the robustness of a bouncing barrier in planetesimal formation was studied with an ensemble of pre-formed compact mm-sized aggregates. Here we show that a bouncing barrier indeed evolves self-consistently by hit-and-stick from an ensemble of smaller dust aggregates. In addition, we feed small aggregates to an ensemble of larger bouncing aggregates. The stickiness temporarily increases, but the final number of aggregates still bouncing remains the same. However, feeding on the small particle supply, the size of the bouncing aggregates increases. This suggests that in the presence of a dust reservoir aggregates grow into but also out of a bouncing barrier at larger size.

  2. Preventing Obesity Across Generations: Evidence for Early Life Intervention.

    PubMed

    Haire-Joshu, Debra; Tabak, Rachel

    2016-01-01

    To prevent the intergenerational transfer of obesity and end the current epidemic, interventions are needed across the early life stages, from preconception to prenatal to infancy through the age of 2 years. The foundation for obesity is laid in early life by actions and interactions passed from parent to child that have long-lasting biologic and behavioral consequences. The purpose of this paper is to examine the best evidence about (a) factors in parents and offspring that promote obesity during the early life stages, (b) the social determinants and dimensions of obesity in early life, (c) promising and effective interventions for preventing obesity in early life, and (d) opportunities for future research into strategies to disrupt the intergenerational cycle of obesity that begins early in life. The pathway for halting the intergenerational obesity epidemic requires the discovery and development of evidence-based interventions that can act across multiple dimensions of influence on early life.

  3. Preventing Obesity Across Generations: Evidence for Early Life Intervention

    PubMed Central

    Haire-Joshu, Debra; Tabak, Rachel

    2017-01-01

    To prevent the intergenerational transfer of obesity and end the current epidemic, interventions are needed across the early life stages, from preconception to prenatal to infancy through the age of 2 years. The foundation for obesity is laid in early life by actions and interactions passed from parent to child that have long-lasting biologic and behavioral consequences. The purpose of this paper is to examine the best evidence about (a) factors in parents and offspring that promote obesity during the early life stages, (b) the social determinants and dimensions of obesity in early life, (c) promising and effective interventions for preventing obesity in early life, and (d) opportunities for future research into strategies to disrupt the intergenerational cycle of obesity that begins early in life. The pathway for halting the intergenerational obesity epidemic requires the discovery and development of evidence-based interventions that can act across multiple dimensions of influence on early life. PMID:26989828

  4. Thermal and collisional history of Tishomingo iron meteorite: More evidence for early disruption of differentiated planetesimals

    NASA Astrophysics Data System (ADS)

    Yang, Jijin; Goldstein, Joseph I.; Scott, Edward R. D.; Michael, Joseph R.; Kotula, Paul G.; Grimberg, Ansgar; Leya, Ingo

    2014-01-01

    Tishomingo is a chemically and structurally unique iron with 32.5 wt.% Ni that contains 20% residual taenite and 80% martensite plates, which formed on cooling to between -75 and -200 °C, probably the lowest temperature recorded by any meteorite. Our studies using transmission (TEM) and scanning electron microscopy (SEM), X-ray microanalysis (AEM) and electron backscatter diffraction (EBSD) show that martensite plates in Tishomingo formed in a single crystal of taenite and decomposed during reheating forming 10-100 nm taenite particles with ∼50 wt.% Ni, kamacite with ∼4 wt.%Ni, along with martensite or taenite with 32 wt.% Ni. EBSD data and experimental constraints show that Tishomingo was reheated to 320-400 °C for about a year transforming some martensite to kamacite and to taenite particles and some martensite directly to taenite without composition change. Fizzy-textured intergrowths of troilite, kamacite with 2.7 wt.% Ni and 2.6 wt.% Co, and taenite with 56 wt.% Ni and 0.15 wt.% Co formed by localized shock melting. A single impact probably melted the sub-mm sulfides, formed stishovite, and reheated and decomposed the martensite plates. Tishomingo and its near-twin Willow Grove, which has 28 wt.% Ni, differ from IAB-related irons like Santa Catharina and San Cristobal that contain 25-36 wt.% Ni, as they are highly depleted in moderately volatile siderophiles and enriched in Ir and other refractory elements. Tishomingo and Willow Grove therefore resemble IVB irons but are chemically distinct. The absence of cloudy taenite in these two irons shows that they cooled through 250 °C abnormally fast at >0.01 °C/yr. Thus this grouplet, like the IVA and IVB irons, suffered an early impact that disrupted their parent body when it was still hot. Our noble gas data show that Tishomingo was excavated from its parent body about 100 to 200 Myr ago and exposed to cosmic rays as a meteoroid with a radius of ∼50-85 cm.

  5. Early rehabilitation programs after laparoscopic colorectal surgery: Evidence and criticism

    PubMed Central

    Kim, Duck-Woo; Kang, Sung-Bum; Lee, Soo-Young; Oh, Heung-Kwon; In, Myung-Hoon

    2013-01-01

    During the past several decades, early rehabilitation programs for the care of patients with colorectal surgery have gained popularity. Several randomized controlled trials and meta-analyses have confirmed that the implementation of these evidence-based detailed perioperative care protocols is useful for early recovery of patients after colorectal resection. Patients cared for based on these protocols had a rapid recovery of bowel movement, shortened length of hospital stay, and fewer complications compared with traditional care programs. However, most of the previous evidence was obtained from studies of early rehabilitation programs adapted to open colonic resection. Currently, limited evidence exists on the effects of early rehabilitation after laparoscopic rectal resection, although this procedure seems to be associated with a higher morbidity than that reported with traditional care. In this article, we review previous studies and guidelines on early rehabilitation programs in patients undergoing rectal surgery. We investigated the status of early rehabilitation programs in rectal surgery and analyzed the limitations of these studies. We also summarized indications and detailed protocol components of current early rehabilitation programs after rectal surgery, focusing on laparoscopic resection. PMID:24379571

  6. Planet-Planet Scattering in Planetesimal Disks. II. Predictions for Outer Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable

  7. Starting Strong: Evidence-­Based Early Literacy Practices

    ERIC Educational Resources Information Center

    Blamey, Katrin; Beauchat, Katherine

    2016-01-01

    Four evidence-based instructional approaches create an essential resource for any early literacy teacher or coach. Improve your teaching practices in all areas of early literacy. Use four proven instructional approaches--standards based, evidenced based, assessment based, and student based--to improve their teaching practice in all areas of early…

  8. On the Origin of Banded Structure in Dusty Protoplanetary Discs: HL Tau and TW Hya

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.

    2017-10-01

    We present simulations of planet-planetesimal interactions that can reproduce major and minor banded structure in the HL Tau and TW Hya discs provided that small grains trace the dynamically cold planetesimal population. The consequences of the model and its limitations will be discussed. In particular, the model requires that planetesimals form throughout the disc at early times, that planetesimal-planetesimal collisions are predominately among the cold population, and that pebble accretion leads to mass redistribution of the small grains onto planetesimals before the grains can undergo significant radial drift. The meteortic record may suggest that a similar process occurred in the Solar System. The model implies that grain size distributions inferred from submm/mm studies may reflect early debris processes rather than grain growth.

  9. Planetesimal Formation in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Mrad, Susan (Technical Monitor)

    1998-01-01

    In this talk we will address two distinct phases of planetesimal formation, each of which is fundamentally dependent upon the coupled interactions of particles and turbulent nebula gas. It has been shown both numerically and experimentally that 3-D (three dimensional) turbulence concentrates aerodynamically size-selected particles by orders of magnitude. In a previous review chapter we illustrated the initial predictions of Turbulent Concentration (TC) as applied to the solar nebula. We predicted the particle size which will be most effectively concentrated by turbulence; it is the particle which has a gas drag stopping time equal to the overturn time of the smallest (Kolmogorov scale) eddy. The primary uncertainty is the level of nebula turbulence, or Reynolds number Re, which can be expressed in terms of the standard nebula eddy viscosity parameter alpha = Rev(sub m)/cH, where v(sub m) is molecular viscosity, c is sound speed, and H is vertical scale height. Several studies, and observed lifetimes of circumstellar disks, have suggested that the level of nebula turbulence can be described by alpha = 10(exp -2) - 10(exp -4). There is some recent concern about how energy is provided to maintain this turbulence, but the issue remains open. We adopt a canonical minimum mass nebula with a range of alpha is greater than 0. We originally showed that chondrule-sized particles are selected for concentration in the terrestrial planet region if alpha = 10(exp -3) - 10(exp -4). In addition, Paque and Cuzzi found that the size distribution of chondrules is an excellent match for theoretical predictions. One then asks by what concentration factor C these particles can be concentrated; our early numerical results indicated an increase of C with alpha, and were supported by simple scaling arguments, but the extrapolation range was quite large and the predictions (C is approximately equal to 10(exp 5) - 10(exp 6) not unlikely) uncertain. The work presented here, which makes use of

  10. Terrestrial Planet and Asteroid Formation in the Presence of Giant Planets. I. Relative Velocities of Planetesimals Subject to Jupiter and Saturn Perturbations

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Wetherill, George W.

    2000-01-01

    We investigate the orbital evolution of 10 13- to 10 25-g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities ( Venc) between bodies of similar mass. Planetesimals of identical mass have Venc ˜1 and ˜10 m s -1 (near 1 and 2.6 AU, respectively) while bodies differing by ˜10 in mass have Venc ˜10 and ˜100 m s -1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10 22 to 10 25 g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a ˜10 6-year timescale, initially by nonrunaway growth and transitioning to runaway growth after ˜10 5 years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between planetesimals. If, while subject to these conditions, the bodies become large enough for their

  11. Early evidence of the ballgame in Oaxaca, Mexico.

    PubMed

    Blomster, Jeffrey P

    2012-05-22

    As a defining characteristic of Mesoamerican civilization, the ballgame has a long and poorly understood history. Because the ballgame is associated with the rise of complex societies, understanding its origins also illuminates the evolution of socio-politically complex societies. Although initial evidence, in the form of ceramic figurines, dates to 1700 BCE, and the oldest known ballcourt dates to 1600 BCE, the ritual paraphernalia and ideology associated with the game appear around 1400 BCE, the start of the so-called Early Horizon, defined by the spread of Olmec-style symbols across Mesoamerica. Early Horizon evidence of ballgame paraphernalia both identical to and different from that of the Gulf Coast Olmec can be seen on figurines from coastal Chiapas and the central highlands of Mexico, respectively. The Mexican state of Oaxaca, however, has yielded little data on early involvement in the ballgame. The discovery of a ballplayer figurine in the Mixteca Alta region of Oaxaca demonstrates the early participation of this region in the iconography and ideology of the ballgame. In lieu of an actual ballcourt, the focus may have been on the symbolic component of ballplayers and their association with supernatural forces, as part of emerging leaders' legitimization strategies.

  12. Evidence-Based Practices: Providing Guidance for Early Childhood Practitioners

    ERIC Educational Resources Information Center

    Farley, Kristin S.; Brock, Matthew E.; Winterbottom, Christian

    2018-01-01

    Early childhood education represents a pivotal opportunity to improve the developmental trajectories of young children, and evidence-based practices (EBPs) are scientifically proven to improve these outcomes. Furthermore, federal law mandates that early childhood practitioners implement EBPs. However, because EBP has not been clearly defined in…

  13. Planetary Accretion as Informed by Meteoritic Samples of Early Solar System Planetesimals

    NASA Astrophysics Data System (ADS)

    Kring, D. A.

    2017-08-01

    Meteoritic impact melts and impact breccias contain information about the timing and sizes of collisions, which, when augmented with hints about impactor compositions, provide clues about mixing and the dynamical situation in the early solar system.

  14. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory

    PubMed Central

    Schiller, Martin; Connelly, James N.; Glad, Aslaug C.; Mikouchi, Takashi; Bizzarro, Martin

    2016-01-01

    The mechanisms and timescales of accretion of 10–1000 km sized planetesimals, the building blocks of planets, are not yet well understood. With planetesimal melting predominantly driven by the decay of the short-lived radionuclide 26Al (26Al→26Mg; t1/2 = 0.73 Ma), its initial abundance determines the permissible timeframe of planetesimal-scale melting and its subsequent cooling history. Currently, precise knowledge about the initial 26Al abundance [(26Al/27Al)0] exists only for the oldest known solids, calcium aluminum-rich inclusions (CAIs) – the so-called canonical value. We have determined the 26Al/27Al of three angrite meteorites, D’Orbigny, Sahara 99555 and NWA 1670, at their time of crystallization, which corresponds to (3.98 ± 0.15)×10−7, (3.64 ± 0.18)×10−7, and (5.92 ± 0.59)×10−7, respectively. Combined with a newly determined absolute U-corrected Pb–Pb age for NWA 1670 of 4564.39 ± 0.24 Ma and published U-corrected Pb–Pb ages for the other two angrites, this allows us to calculate an initial (26Al/27Al)0 of (1.33−0.18+0.21)×10−5 for the angrite parent body (APB) precursor material at the time of CAI formation, a value four times lower than the accepted canonical value of 5.25 × 10−5. Based on their similar 54Cr/52Cr ratios, most inner solar system materials likely accreted from material containing a similar 26Al/27Al ratio as the APB precursor at the time of CAI formation. To satisfy the abundant evidence for widespread planetesimal differentiation, the subcanonical 26Al budget requires that differentiated planetesimals, and hence protoplanets, accreted rapidly within 0.25 ± 0.15 Ma of the formation of canonical CAIs. PMID:27429474

  15. Clearing Residual Planetesimals by Sweeping Secular Resonances in Transitional Disks: A Lone-planet Scenario for the Wide Gaps in Debris Disks around Vega and Fomalhaut

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.; Mao, Shude; Zhang, Xiaojia

    2017-11-01

    Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent “lone-planet” scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. With a series of numerical simulations, we show that the gravitational potential of the natal disk induces the planet to precess. At the locations where its precession frequency matches the precession frequency the planet imposes on the residual planetesimals, their eccentricity is excited by its resonant perturbation. Due to the hydrodynamic drag by the residual disk gas, the planetesimals undergo orbital decay as their excited eccentricities are effectively damped. During the depletion of the disk gas, the planet’s secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring

  16. Isotopic homogeneity of iron in the early solar nebula.

    PubMed

    Zhu, X K; Guo, Y; O'Nions, R K; Young, E D; Ash, R D

    2001-07-19

    The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

  17. Early management of acute pancreatitis: A review of the best evidence.

    PubMed

    Stigliano, Serena; Sternby, Hanna; de Madaria, Enrique; Capurso, Gabriele; Petrov, Maxim S

    2017-06-01

    In the 20th century early management of acute pancreatitis often included surgical intervention, despite overwhelming mortality. The emergence of high-quality evidence (randomized controlled trials and meta-analyses) over the past two decades has notably shifted the treatment paradigm towards predominantly non-surgical management early in the course of acute pancreatitis. The present evidence-based review focuses on contemporary aspects of early management (which include analgesia, fluid resuscitation, antibiotics, nutrition, and endoscopic retrograde cholangiopancreatography) with a view to providing clear and succinct guidelines on early management of patients with acute pancreatitis in 2017 and beyond. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous

    PubMed Central

    Jud, Nathan A.

    2015-01-01

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. PMID:26336172

  19. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous.

    PubMed

    Jud, Nathan A

    2015-09-07

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. © 2015 The Author(s).

  20. Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y; Misawa, S.; Matsukuma, J.; Chan, Q. H. S.; Kobayashi, J.; Tachibana, S.; Zolensky, M. E.

    2017-01-01

    Amino acids are important ingredients of life that would have been delivered to Earth by extraterrestrial sources, e.g., comets and meteorites. Amino acids are found in aqueously altered carbonaceous chondrites in good part in the form of precursors that release amino acids after acid hydrolysis. Meanwhile, most of the organic carbon (greater than 70 weight %) in carbonaceous chondrites exists in the form of solvent insoluble organic matter (IOM) with complex macromolecular structures. Complex macromolecular organic matter can be produced by either photolysis of interstellar ices or aqueous chemistry in planetesimals. We focused on the synthesis of amino acids during aqueous alteration, and demonstrated one-pot synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments simulating the aqueous processing

  1. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.

    PubMed

    Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin

    2016-02-23

    The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.

  2. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    PubMed Central

    Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin

    2016-01-01

    The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438

  3. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  4. Why the Evidence-Based Paradigm in Early Childhood Education and Care Is Anything but Evident

    ERIC Educational Resources Information Center

    Vandenbroeck, Michel; Roets, Griet; Roose, Rudi

    2012-01-01

    Praxeological research is a necessary contribution to the research field in early childhood education and care, which is currently dominated by an evidence-based paradigm that tends to consider the measurement of predefined outcomes as the most valid form of research. We analyse the history of the evidence-based paradigm in the field of medicine…

  5. SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks

    NASA Technical Reports Server (NTRS)

    Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret

    2013-01-01

    We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.

  6. Planetesimal formation by an axisymmetric radial bump of the column density of the gas in a protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Onishi, Isamu K.; Sekiya, Minoru

    2017-04-01

    We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin-Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.[Figure not available: see fulltext.

  7. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan.

    PubMed

    Arnold, Elizabeth R; Hartman, Gideon; Greenfield, Haskel J; Shai, Itzhaq; Babcock, Lindsay E; Maeir, Aren M

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900-2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan.

  8. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan

    PubMed Central

    Greenfield, Haskel J.; Shai, Itzhaq; Babcock, Lindsay E.; Maeir, Aren M.

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900–2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan. PMID:27322197

  9. Plate Tectonism on Early Mars: Diverse Geological and Geophysical Evidence

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Maruyama, S.; Baker, V. R.; Anderson, R. C.; Ferris, Justin C.; Hare, Trent M.

    2002-01-01

    Mars has been modified by endogenic and exogenic processes similar in many ways to Earth. However, evidence of Mars embryonic development is preserved because of low erosion rates and stagnant lid convective conditions since the Late Noachian. Early plate tectonism can explain such evidence. Additional information is contained in the original extended abstract.

  10. Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals

    NASA Astrophysics Data System (ADS)

    Gail, Hans-Peter; Trieloff, Mario

    2017-09-01

    Context. A high fraction of carbon bound in solid carbonaceous material is observed to exist in bodies formed in the cold outskirts of the solar nebula, while bodies in the region of terrestrial planets contain only very small mass fractions of carbon. Most of the solid carbon component is lost and converted into CO during the spiral-in of matter as the Sun accretes matter from the solar nebula. Aims: We study the fate of the carbonaceous material that entered the proto-solar disc by comparing the initial carbon abundance in primitive solar system material and the abundance of residual carbon in planetesimals and planets in the asteroid belt and the terrestrial planet region. Methods: We constructed a model for the composition of the pristine carbonaceous material from observational data on the composition of the dust component in comets and of interplanetary dust particles and from published data on pyrolysis experiments. This material entered the inner parts of the solar nebula during the course of the build-up of the proto-sun by accreting matter from the proto-stellar disc. Based on a one-zone evolution model of the solar nebula, we studied the pyrolysis of the refractory and volatile organic component and the concomitant release of hydrocarbons of high molecular weight under quiescent conditions of disc evolution, while matter migrates into the central parts of the solar nebula. We also studied the decomposition and oxidation of the carbonaceous material during violent flash heating events, which are thought to be responsible for the formation of chondrules. To do this, we calculated pyrolysis and oxidation of the carbonaceous material in temperature spikes that were modeled according to cosmochemical models for the temperature history of chondrules. Results: We find that the complex hydrocarbon components of the carbonaceous material are removed from the disc matter in the temperature range between 250 and 400 K, but the amorphous carbon component survives to

  11. Evidence for early disease-modifying drugs in rheumatoid arthritis

    PubMed Central

    Scott, David L

    2004-01-01

    Some research evidence supports early aggressive treatment of rheumatoid arthritis (RA) using combination therapy with two or more disease modifying anti-rheumatic drugs (DMARDs) plus steroids, or even DMARDs plus an anti-TNF. By contrast, conservatively delayed DMARD monotherapy, given after non-steroidal anti-inflammatory drugs have failed, has been criticised. However, recent long-term studies highlight the complexities in evaluating whether to abandon pyramidal treatment in favour of early DMARDs. Although patients given early DMARD therapy show short-term benefits, longer-term results show no prolonged clinical advantages from early DMARDs. By 5 years patients receiving early DMARDs had similar disease activity and comparable health assessment questionnaire scores to patients who received DMARDs later in their disease course. X-ray progression was persistent and virtually identical in both groups. These negative findings do not invalidate the case for early DMARD therapy, as it is gives sustained reductions in disease activity in the early years of treatment without excessive risks from adverse effects. However, early DMARDs alone do not adequately control RA in the longer term. This may require starting with very aggressive therapy or treating patients more aggressively after early DMARD therapy has been initiated. PMID:14979927

  12. The Early Anthropogenic Hypothesis: Top-Down and Bottom-up Evidence

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2014-12-01

    Two complementary lines of evidence support the early anthropogenic hypothesis. Top-down evidence comes from comparing Holocene greenhouse-gas trends with those during equivalent intervals of previous interglaciations. The increases in CO2 and CH4 during the late Holocene are anomalous compared to the decreasing trends in a stacked average of previous interglaciations, thereby supporting an anthropogenic origin. During interglacial stage 19, the closest Holocene insolation analog, CO2 fell to 245 ppm by the time equivalent to the present, in contrast to the observed pre-industrial rise to 280-285 ppm. The 245-ppm level measured in stage 19 falls at the top of the natural range predicted by the original anthropogenic hypothesis of Ruddiman (2003). Bottom-up evidence comes from a growing list of archeological and other compilations showing major early anthropogenic transformations of Earth's surface. Key examples include: efforts by Dorian Fuller and colleagues mapping the spread of irrigated rice agriculture across southern Asia and its effects on CH4 emissions prior to the industrial era; an additional effort by Fuller showing the spread of methane-emitting domesticated livestock across Asia and Africa (coincident with the spread of fertile crescent livestock across Europe); historical compilations by Jed Kaplan and colleagues documenting very high early per-capita forest clearance in Europe, thus underpinning simulations of extensive pre-industrial clearance and large CO2 emissions; and wide-ranging studies by Erle Ellis and colleagues of early anthropogenic land transformations in China and elsewhere.

  13. Evidence for a genetic etiology of early-onset delinquency.

    PubMed

    Taylor, J; Iacono, W G; McGue, M

    2000-11-01

    Age at onset of antisocial behavior discriminates persistent and transitory offenders. The authors proposed that early-onset delinquency has an underlying genetic influence that manifests in problems related to inhibition, whereas late-onset delinquency is more environmentally mediated. To test these notions, they selected 36 early starters, 86 late starters, and 25 nondelinquent controls from a large sample of 11-year-old twins and compared them on several measures related to inhibition and a peer group measure. As expected, early starters had more psychological, behavioral, and emotional problems related to inhibition than late starters and controls. A longitudinal analysis indicated an increase an antisocial behavior among peers of late starters shortly before their delinquency onset. Family history data and a twin analysis provided evidence of greater genetic influence on early-onset than late-onset delinquency.

  14. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two

  15. Impact erosion model for gravity-dominated planetesimals

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Fujita, Tomoaki; Kobayashi, Hiroshi; Tanaka, Hidekazu; Suetsugu, Ryo; Abe, Yutaka

    2017-09-01

    Disruptive collisions have been regarded as an important process for planet formation, while non-disruptive, small-scale collisions (hereafter called erosive collisions) have been underestimated or neglected by many studies. However, recent studies have suggested that erosive collisions are also important to the growth of planets, because they are much more frequent than disruptive collisions. Although the thresholds of the specific impact energy for disruptive collisions (QRD*) have been investigated well, there is no reliable model for erosive collisions. In this study, we systematically carried out impact simulations of gravity-dominated planetesimals for a wide range of specific impact energy (QR) from disruptive collisions (QR ∼ QRD*) to erosive ones (QR << QRD*) using the smoothed particle hydrodynamics method. We found that the ejected mass normalized by the total mass (Mej/Mtot) depends on the numerical resolution, the target radius (Rtar) and the impact velocity (vimp), as well as on QR, but that it can be nicely scaled by QRD* for the parameter ranges investigated (Rtar = 30-300 km, vimp = 2-5 km/s). This means that Mej/Mtot depends only on QR/QRD* in these parameter ranges. We confirmed that the collision outcomes for much less erosive collisions (QR < 0.01 QRD*) converge to the results of an impact onto a planar target for various impact angles (θ) and that Mej/Mtot ∝ QR/QRD* holds. For disruptive collisions (QR ∼ QRD*), the curvature of the target has a significant effect on Mej/Mtot. We also examined the angle-averaged value of Mej/Mtot and found that the numerically obtained relation between angle-averaged Mej/Mtot and QR/QRD* is very similar to the cases for θ = 45° impacts. We proposed a new erosion model based on our numerical simulations for future research on planet formation with collisional erosion.

  16. Applying an Evidence-Based Framework to the Early Childhood Coaching Literature

    ERIC Educational Resources Information Center

    Artman-Meeker, Kathleen; Fettig, Angel; Barton, Erin E.; Penney, Ashley; Zeng, Songtian

    2015-01-01

    Professional development (PD) is a critical pathway for promoting the use of evidence-based intervention practices in early childhood (EC) settings. Coaching has been proposed as a type of PD that is especially promising for job-embedded learning. A lack of consensus exists regarding evidence-based EC coaching strategies and what types of support…

  17. Early Cambrian origin of modern food webs: evidence from predator arrow worms.

    PubMed

    Vannier, J; Steiner, M; Renvoisé, E; Hu, S-X; Casanova, J-P

    2007-03-07

    Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540-520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey-predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian-Cambrian transition, thus laying the foundations of present-day marine food chains.

  18. Early Cambrian origin of modern food webs: evidence from predator arrow worms

    PubMed Central

    Vannier, J; Steiner, M; Renvoisé, E; Hu, S.-X; Casanova, J.-P

    2006-01-01

    Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540–520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey–predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian–Cambrian transition, thus laying the foundations of present-day marine food chains. PMID:17254986

  19. Early Child Disaster Mental Health Interventions: A Review of the Empirical Evidence

    ERIC Educational Resources Information Center

    Pfefferbaum, Betty; Nitiéma, Pascal; Tucker, Phebe; Newman, Elana

    2017-01-01

    Background: The need to establish an evidence base for early child disaster interventions has been long recognized. Objective: This paper presents a descriptive analysis of the empirical research on early disaster mental health interventions delivered to children within the first 3 months post event. Methods: Characteristics and findings of the…

  20. Evidence for Early Morphological Decomposition: Combining Masked Priming with Magnetoencephalography

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Monahan, Philip J.; Poeppel, David

    2011-01-01

    Are words stored as morphologically structured representations? If so, when during word recognition are morphological pieces accessed? Recent masked priming studies support models that assume early decomposition of (potentially) morphologically complex words. The electrophysiological evidence, however, is inconsistent. We combined masked…

  1. Fossil evidence of avian crops from the Early Cretaceous of China

    PubMed Central

    Zheng, Xiaoting; Martin, Larry D.; Zhou, Zhonghe; Burnham, David A.; Zhang, Fucheng; Miao, Desui

    2011-01-01

    The crop is characteristic of seed-eating birds today, yet little is known about its early history despite remarkable discoveries of many Mesozoic seed-eating birds in the past decade. Here we report the discovery of some early fossil evidence for the presence of a crop in birds. Two Early Cretaceous birds, the basal ornithurine Hongshanornis and a basal avian Sapeornis, demonstrate that an essentially modern avian digestive system formed early in avian evolution. The discovery of a crop in two phylogenetically remote lineages of Early Cretaceous birds and its absence in most intervening forms indicates that it was independently acquired as a specialized seed-eating adaptation. Finally, the reduction or loss of teeth in the forms showing seed-filled crops suggests that granivory was possibly one of the factors that resulted in the reduction of teeth in early birds. PMID:21896733

  2. Formation and processing of organics in the early solar system.

    PubMed

    Kerridge, J F

    1999-01-01

    Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial

  3. The formation of giant planets and its effects on protoplanetary disks: the case of Jupiter and the Jovian Early Bombardment

    NASA Astrophysics Data System (ADS)

    Turrini, D.; ISSI Team "Vesta, the key to the origins of the Solar System"; EChO "Planetary Formation" Working Group

    The formation of giant planets is accompanied by a short but intense primordial bombardment \\citep{safronov69,weidenschilling75,weidenschilling01,turrini11}: the prototype for this class of events is the Jovian Early Bombardment (JEB) caused by the formation of Jupiter in the Solar System \\citep{turrini11,turrini12}. The JEB affected the collisional evolution of the minor bodies in the inner Solar System by inflicting mass loss to planetesimals \\citep{turrini12,turrini14a,turrini14b} due to cratering erosion and, at the same time, delivering water and volatile materials to the asteroid belt \\citep{turrini14b}. The JEB also resulted in a significant number of collisions between Jupiter and planetesimals formed over a wide orbital range, delivering volatile and refractory materials to the giant planet and its circumplanetary disk \\citep{turrini14c}. In this talk I'll discuss how the study of the effects of the JEB on Vesta can be used to constrain the early evolution of the Solar System \\citep{turrini14a,turrini14b} and how these constraints can, in turn, provide insight on the composition of Jupiter and of its satellites. Finally, I'll discuss the implications of the JEB model for extrasolar planets \\citep{turrini14c}.

  4. Terrestrial planet and asteroid formation in the presence of giant planets. I. Relative velocities of planetesimals subject to Jupiter and Saturn perturbations.

    PubMed

    Kortenkamp, S J; Wetherill, G W

    2000-01-01

    We investigate the orbital evolution of 10(13)- to 10(25) -g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities (Venc) between bodies of similar mass. Plantesimals of identical mass have Venc approximately 1 and approximately 10 m s-1 (near 1 and 2.6 AU, respectively) while bodies differing by approximately 10 in mass have Venc approximately 10 and approximately 100 m s-1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10(22) to 10(25) g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a approximately 10(6)-year timescale, initially by nonrunaway growth and transitioning to runaway growth after approximately 10(5) years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between

  5. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Neumann, W.; Kruijer, T. S.; Breuer, D.; Kleine, T.

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf-182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively late time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1-0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.

  6. Models of Angular Momentum Input to a Circumterrestrial Swarm from Encounters with Heliocentric Planetesimals

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Greenberg, R.; Hebert, F.

    1985-01-01

    Models of lunar origin in which the Moon accretes in orbit about the Earth from material approaching the Earth from heliocentric orbits must overcome a fundamental problem: the approach orbits of such material would be, in the simplest approximation, equally likely to be prograde or retrograde about the Earth, with the result that accretion of such material adds mass but not angular momentum to circumterrestrial satellites. Satellite orbits would then decay due to the resulting drag, ultimately impacting onto the Earth. One possibility for adding both material and angular momentum to Earth orbit is investigated: imbalance in the delivered angular momentum between pro and retrograde Earth passing orbits which arises from the three body dynamics of planetesimals approaching the Earth from heliocentric space. In order to study angular momentum delivery to circumterrestrial satellites, the near Earth velocities were numerically computed as a function of distance from the Earth for a large array of orbits systematically spanning heliocentric phase space.

  7. What has changed in the evidence for early experience? Update of a BEME systematic review.

    PubMed

    Yardley, Sarah; Littlewood, Sonia; Margolis, Stephen A; Scherpbier, Albert; Spencer, John; Ypinazar, Valmae; Dornan, Tim

    2010-01-01

    We previously reviewed evidence published from 1992 to 2001 concerning early experience for healthcare undergraduates (Dornan T, Littlewood S, Margolis S, Scherpbier A, Spencer J, Ypinazar V. 2006. How can experience in clinical and community settings contribute to early medical education? A BEME systematic review. Med Teach 28:3-18). This subsequent study reviews evidence published from 2002 to 2008. Identify changes in the evidence base; determine the value of re-reviewing; set a future research agenda. The same search strategy as in the original review was repeated. Newly identified publications were critically appraised against the same benchmarks of strength and educational importance. Twenty-four new empirical studies of early authentic experience in education of health professionals met our inclusion criteria, yielding 96 outcomes. Sixty five outcomes (from 22 studies) were both educationally important and based on strong evidence. A new significant theme was found: the use of early experience to help students understand and align themselves with patient and community perspectives on illness and healthcare. More publications were now from outside Europe and North America. In addition to supporting the findings of our original review, this update shows an expansion in research sources, and a shift in research content focus. There are still questions, however, about how early authentic experience leads to particular learning outcomes and what will make it most educationally effective.

  8. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    PubMed Central

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  9. Evidence-Based Comprehensive Treatments for Early Autism

    PubMed Central

    Rogers, Sally J.; Vismara, Laurie A.

    2010-01-01

    Early intervention for children with autism is currently a politically and scientifically complex topic. Randomized controlled trials have demonstrated positive effects in both short-term and longer term studies. The evidence suggests that early intervention programs are indeed beneficial for children with autism, often improving developmental functioning and decreasing maladaptive behaviors and symptom severity at the level of group analysis. Whether such changes lead to significant improvements in terms of greater independence and vocational and social functioning in adulthood is also unknown. Given the few randomized controlled treatment trials that have been carried out, the few models that have been tested, and the large differences in interventions that are being published, it is clear that the field is still very early in the process of determining (a) what kinds of interventions are most efficacious in early autism, (b) what variables moderate and mediate treatment gains and improved outcomes following intervention, and (c) the degree of both short-term and long-term improvements that can reasonably be expected. To examine these current research needs, the empirical studies of comprehensive treatments for young children with autism published since 1998 were reviewed. Lovaas's treatment meet Chambless and colleague's (Chambless et al., 1998; Chambless et al., 1996) criteria for “well-established” and no treatment meets the “probably efficacious” criteria, though three treatments meet criteria for “possibly efficacious” (Chambless & Hollon, 1998). Most studies were either Type 2 or 3 in terms of their methodological rigor based on Nathan and Gorman's (2002) criteria. Implications of these findings are also discussed in relation to practice guidelines as well as critical areas of research that have yet to be answered PMID:18444052

  10. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Larsen, K. K.; Schiller, M.; Bizzarro, M.

    2016-03-01

    undifferentiated chondritic crusts. In contrast, individual olivine crystals from Eagle Station pallasites record variable μ26Mg∗ excesses, suggesting that these crystals captured the 26Mg∗ evolution of a magmatic reservoir controlled by fractional crystallization processes during the lifespan of 26Al. Similar to previous suggestions based on isotopic evidence, we suggest that Eagle Station pallasites formed from precursor material similar in composition to carbonaceous chondrites from a cool outer protoplanetary disk region characterized by (26Al/27Al)0 ⩾ 2.7 × 10-5. Protracted planetesimal accretion timescales at large orbital distances, with onset of accretion 0.3-1 Myr post-CAIs, may have resulted in significant radiative heat loss and thus efficient early interior cooling of slowly accreting 'carbonaceous' planetesimals.

  11. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk

    PubMed Central

    Larsen, K.K.; Schiller, M.; Bizzarro, M.

    2016-01-01

    undifferentiated chondritic crusts. In contrast, individual olivine crystals from Eagle Station pallasites record variable μ26Mg* excesses, suggesting that these crystals captured the 26Mg* evolution of a magmatic reservoir controlled by fractional crystallization processes during the lifespan of 26Al. Similar to previous suggestions based on isotopic evidence, we suggest that Eagle Station pallasites formed from precursor material similar in composition to carbonaceous chondrites from a cool outer protoplanetary disk region characterized by (26Al/27Al)0 ≥ 2.7 × 10−5. Protracted planetesimal accretion timescales at large orbital distances, with onset of accretion 0.3–1 Myr post-CAIs, may have resulted in significant radiative heat loss and thus efficient early interior cooling of slowly accreting ‘carbonaceous’ planetesimals. PMID:27445415

  12. Early Childhood Benefits at Low Cost--Evidence from a Randomized Trail in Mexico

    ERIC Educational Resources Information Center

    Cárdenas, Sergio; Evans, David K.; Holland, Peter

    2015-01-01

    The evidence that investments in early child development can pay high, long-term dividends, is mounting, both in developed and developing countries. However, recent meta-analysis identified very few studies in developing countries. The authors report on the evaluation impact of a low-cost, community-based parent training program for early child…

  13. Evidence-Based Practice: How Did It Emerge and What Does It Mean for the Early Childhood Field?

    ERIC Educational Resources Information Center

    Buysse, Virginia; Wesley, Patricia W.

    2006-01-01

    The concept of evidence-based practice is helping early educators, special educators, early interventionists, child care professionals, mental health professionals, social workers, health care professionals, and others to transform the services provided to children and families. The authors discuss the emergence of the evidence-based…

  14. Planetesimal formation in self-gravitating discs - dust trapping by vortices

    NASA Astrophysics Data System (ADS)

    Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.

    2015-11-01

    The mechanism through which metre-sized boulders grow to km-sized planetesimals in protoplanetary discs is a subject of active research, since it is critical for planet formation. To avoid spiralling into the protostar due to aerodynamic drag, objects must rapidly grow from cm-sized pebbles, which are tightly coupled to the gas, to large boulders of 1-100 m in diameter. It is already well known that overdensities in the gaseous component of the disc provide potential sites for the collection of solids, and that significant density structures in the gaseous component of the disc (e.g. spiral density waves) can trap solids efficiently enough for the solid component of the disc to undergo further gravitational collapse due to their own self-gravity. In this work, we employ the PENCIL CODE to conduct local shearing sheet simulations of massive self-gravitating protoplanetary discs, to study the effect of anticyclonic transient vortices, or eddies, on the evolution of solids in these discs. We find that these types of structures are extremely efficient at concentrating small and intermediate-sized dust particles with friction times comparable to, or less than, the local orbital period of the disc. This can lead to significant over-densities in the solid component of the disc, with density enhancements comparable to, and even higher, than those within spiral density waves; increasing the rate of gravitational collapse of solids into bound structures.

  15. A Low Mass for Mars from Jupiter's Early Gas-Driven Migration

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.

    2011-01-01

    Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

  16. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, W.; Kruijer, T. S.; Breuer, D.

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf- 182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here in this paper, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively latemore » time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1–0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.« less

  17. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    DOE PAGES

    Neumann, W.; Kruijer, T. S.; Breuer, D.; ...

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf- 182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here in this paper, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively latemore » time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1–0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.« less

  18. Fossil evidence for the early ant evolution

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André

    2008-02-01

    Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.

  19. Are female orphans at risk for early marriage, early sexual debut, and teen pregnancy? Evidence from sub-Saharan Africa.

    PubMed

    Palermo, Tia; Peterman, Amber

    2009-06-01

    Female orphans are widely cited as being at risk for early marriage, early childbearing, and risky sexual behavior; however, to date no studies have examined these linkages using population-level data across multiple countries. This study draws from recent Demographic and Health Surveys from ten sub-Saharan African countries to examine the relationship between orphanhood status and measures of early marriage, early sexual debut, and teen pregnancy among adolescent girls aged 15 to 17. Results indicate that, overall, little association is found between orphanhood and early marriage or teen pregnancy, whereas evidence from seven countries supports associations between orphanhood and early sexual debut. Findings are sensitive to the use of multivariate models, type of orphan, and country setting. Orphanhood status alone may not be a sufficient targeting mechanism for addressing these outcomes in many countries; a broader, multidimensional targeting scheme including orphan type, schooling, and poverty measures would be more robust in identifying and aiding young women at risk.

  20. Socioeconomic gradients in early childhood health: evidence from Bangladesh and Nepal.

    PubMed

    Devkota, Satis; Panda, Bibhudutta

    2016-05-16

    A large literature has developed researching the origins of socioeconomic gradients in child health in developed countries. Particularly, this research examines the age at which these gradient effects emerge and how they change across different stages of childhood. However, similar research on developing countries is limited. This paper examines the socioeconomic gradients in early childhood health in two developing countries, Bangladesh and Nepal using the 2011 Demographic and Health Surveys. The paper separately studies two measures of household socioeconomic status: household wealth and maternal educational attainment. Two anthropometric measures of early childhood health, height-for-age and weight-for-age Z scores for 0-59 months of children, are used for our empirical exercise. The paper uses both non-parametric and multivariate ordinary least squares approaches to examine at what age socioeconomic disparities in health emerge, and investigates if these disparities increase with age in early childhood. The paper provides significant evidence of age-specific socioeconomic gradients in early childhood health in both countries. Health disparities in household wealth exist in both countries. This disparity emerges in the first 11 months of life, and is particularly severe for children from the poorest quintile. On the other hand, while the emergence of maternal education gradients during the first 11 months is sensitive to the choice of childhood health measure, the study finds the children of mothers with higher education to enjoy significantly higher health outcomes in comparison to those with lower education. However, controlling for father's education weakens the effects of maternal education on child health in both countries. Further, the paper does not find statistically significant evidence where socioeconomic gradients in health increase with age in early childhood. Our study concludes that socioeconomic disparities in health outcomes exist even in very

  1. Stereotactic radiotherapy for early lung cancer: Evidence-based approach and future directions

    PubMed Central

    Chehade, Samer; Palma, David A.

    2015-01-01

    Aim To review key studies evaluating stereotactic radiotherapy in the setting of early-stage non-small cell lung cancer (NSCLC) for inoperable or high-risk patients, and discuss areas of ongoing research and clinical trials. Background The use of stereotactic radiotherapy for the treatment of early stage non-small cell lung cancer (NSCLC) has increased rapidly over the past decade. Numerous studies have reported outcomes for patients treated with SBRT who are unfit for surgical resection, or at high risk of surgical complications. Materials and methods A narrative review. Results The preponderance of evidence suggests that SBRT is associated with excellent local control (∼90% at 3 years) and a favorable toxicity profile. In patients with higher operative risks, such as the elderly and patients with severe COPD, SBRT may provide a less-toxic treatment than surgery with similar oncologic outcomes. Ongoing studies are evaluating the use of SBRT for locally advanced or oligometastatic NSCLC. Conclusions A large body of evidence now exists to support the use of SBRT for early-stage NSCLC. Decisions regarding the optimal choice of treatment should be individualized, and made in the context of a multidisciplinary team. PMID:26696779

  2. Evidence-Based Reform: Enhancing Language and Literacy in Early Childhood Education

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Chambers, Bette

    2017-01-01

    Evidence-based reform is transforming education at all levels, both in providing effective models for use in schools and in linking policy to effective practice on a broad scale. As early education moves from a concern with effects of preschool versus no preschool to focus on creating and evaluating effective preschool models capable of improving…

  3. GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, K.; Klahr, H.; Johansen, A., E-mail: dittrich@mpia.de

    2013-02-15

    Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These zonal flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of zonal flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of zonal flows increase with the radial extent of the simulation box, but decrease withmore » the azimuthal box size. Our simulations support earlier results that zonal flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of zonal flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St {>=} 0.5 and dust-to-gas ratio 10{sup -4} to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.« less

  4. A low mass for Mars from Jupiter's early gas-driven migration.

    PubMed

    Walsh, Kevin J; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Mandell, Avi M

    2011-06-05

    Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ∼100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought. ©2011 Macmillan Publishers Limited. All rights reserved

  5. Does evidence really matter? Professionals’ opinions on the practice of early mobilization after stroke

    PubMed Central

    Sjöholm, Anna; Skarin, Monica; Linden, Thomas; Bernhardt, Julie

    2011-01-01

    Introduction: Early mobilization after stroke may be important for a good outcome and it is currently recommended in a range of international guidelines. The evidence base, however, is limited and clear definitions of what constitutes early mobilization are lacking. Aims: To explore stroke care professionals’ opinions about (1) when after stroke, first mobilization should take place, (2) whether early mobilization may affect patients’ final outcome, and (3) what level of evidence they require to be convinced that early mobilization is beneficial. Methods: A nine-item questionnaire was used to interview stroke care professionals during a conference in Sydney, Australia. Results: Among 202 professionals interviewed, 40% were in favor of mobilizing both ischemic and hemorrhagic stroke patients within 24 hours of stroke onset. There was no clear agreement about the optimal time point beyond 24 hours. Most professionals thought that patients’ final motor outcome (76%), cognitive outcome (57%), and risk of depression (75%) depends on being mobilized early. Only 19% required a large randomized controlled trial or a systematic review to be convinced of benefit. Conclusion: The spread in opinion reflects the absence of clear guidelines and knowledge in this important area of stroke recovery and rehabilitation, which suggests further research is required. PMID:22096341

  6. Early Earth differentiation [rapid communication

    NASA Astrophysics Data System (ADS)

    Walter, Michael J.; Trønnes, Reidar G.

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation ( t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal-melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10-15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally

  7. Early evolution of the Earth: Accretion, atmosphere formation, and thermal history

    NASA Astrophysics Data System (ADS)

    Abe, Yutaka; Matsui, Takafumi

    1986-03-01

    Atmospheric and thermal evolution of the earth growing by planetesimal impacts was modeled by taking into account the blanketing effect of an impact-induced H2O atmosphere and the temperature dependence of H2O degassing. When the water content of planetesimals is larger than 0.1% by weight and the accretion time of the earth is less than 5 × 107 years, the surface of the accreting earth melts and thus a “magma ocean” forms and covers the surface. The formation of a “magma ocean” will result in the initiation of core-mantle separation and mantle differentiation during accretion. Once a magma ocean is formed, the surface temperature, the degree of melting in the magma ocean, and the mass of the H2O atmosphere are nearly constant as the protoplanet grows further. The final mass of the H2O atmosphere is about 1021 kg, a value which is insensitive to variations in the model parameter values such as the accretion time and the water content of planetesimals. That the final mass of the H2O atmosphere is close to the mass of the present oceans suggests an impact origin for the earth's hydrosphere. On the other hand, most of the H2O retained in planetesimals will be deposited in the solid earth. Free water within the proto-earth may affect differentiation of the proto-mantle, in particular, the mantle FeO abundance and the incorporation of a light element in the outer core.

  8. Promoting Evidence-Based Practices: New Teaching Module for Early Childhood Teacher Educators

    ERIC Educational Resources Information Center

    Young Children, 2009

    2009-01-01

    Linda Halgunseth, head of NAEYC's Office of Applied Research (OAR), tells readers about Child Care and Early Education Research Connections, a Web site (www.researchconnections.org/teaching_modules) to help teacher educators integrate knowledge about evidence-based practices into teacher education programs. In addition, the article touts the…

  9. Evidence for persistent flow and aqueous sedimentation on early Mars.

    PubMed

    Malin, Michael C; Edgett, Kenneth S

    2003-12-12

    Landforms representative of sedimentary processes and environments that occurred early in martian history have been recognized in Mars Global Surveyor Mars Orbiter Camera and Mars Odyssey Thermal Emission Imaging System images. Evidence of distributary, channelized flow (in particular, flow that lasted long enough to foster meandering) and the resulting deposition of a fan-shaped apron of debris indicate persistent flow conditions and formation of at least some large intracrater layered sedimentary sequences within fluvial, and potentially lacustrine, environments.

  10. Procedures for Developing Evidence-Informed Performance Checklists for Improving Early Childhood Intervention Practices

    ERIC Educational Resources Information Center

    Dunst, Carl J.

    2017-01-01

    A conceptualization-operationalization-measurement framework is described for developing evidence-informed early childhood intervention performance checklists. Performance checklists include lists of practice indicators where the indicators, taken together, operationally define particular types of intervention practices that, when used as…

  11. Osmium isotope evidence for uniform distribution of s- and r-process components in the early solar system

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Rai, Vinai K.; Alexander, Conel M. O'D.; Lewis, Roy S.; Carlson, Richard W.; Shirey, Steven B.; Thiemens, Mark H.; Walker, Richard J.

    2007-07-01

    We have precisely measured Os isotopic ratios in bulk samples of five carbonaceous, two enstatite and two ordinary chondrites, as well as the acid-resistant residues of three carbonaceous chondrites. All bulk meteorite samples have uniform 186Os/ 188Os, 188Os/ 189Os and 190Os/ 189Os ratios, when decomposed by an alkaline fusion total digestion technique. These ratios are also identical to estimates for Os in the bulk silicate Earth. Despite Os isotopic homogeneity at the bulk meteorite scale, acid insoluble residues of three carbonaceous chondrites are enriched in 186Os, 188Os and 190Os, isotopes with major contributions from stellar s-process nucleosynthesis. Conversely, these isotopes are depleted in acid soluble portions of the same meteorites. The complementary enriched and depleted fractions indicate the presence of at least two types of Os-rich components in these meteorites, one enriched in Os isotopes produced by s-process nucleosynthesis, the other enriched in isotopes produced by the r-process. Presolar silicon carbide is the most probable host for the s-process-enriched Os present in the acid insoluble residues. Because the enriched and depleted components present in these meteorites are combined in proportions resulting in a uniform chondritic/terrestrial composition, it requires that disparate components were thoroughly mixed within the solar nebula at the time of the initiation of planetesimal accretion. This conclusion contrasts with evidence from the isotopic compositions of some other elements (e.g., Sm, Nd, Ru, Mo) that suggests heterogeneous distribution of matter with disparate nucleosynthetic sources within the nebula.

  12. Chondrules: The canonical and noncanonical views

    NASA Astrophysics Data System (ADS)

    Connolly, Harold C.; Jones, Rhian H.

    2016-10-01

    Millimeter-scale rock particles called chondrules are the principal components of the most common meteorites, chondrites. Hence, chondrules were arguably the most abundant components of the early solar system at the time of planetesimal accretion. Despite their fundamental importance, the existence of chondrules would not be predicted from current observations and models of young planetary systems. There are many different models for chondrule formation, but no single model satisfies the many constraints determined from their mineralogical and chemical properties and from chondrule analog experiments. Significant recent progress has shown that several models can satisfy first-order constraints and successfully reproduce chondrule thermal histories. However, second- and third-order constraints such as chondrule size ranges, open system behavior, oxidation states, reheating, and chemical diversity have not generally been addressed. Chondrule formation models include those based on processes that are known to occur in protoplanetary disk environments, including interactions with the early active Sun, impacts and collisions between planetary bodies, and radiative heating. Other models for chondrule heating mechanisms are based on hypothetical processes that are possible but have not been observed, like shock waves, planetesimal bow shocks, and lightning. We examine the evidence for the canonical view of chondrule formation, in which chondrules were free-floating particles in the protoplanetary disk, and the noncanonical view, in which chondrules were the by-products of planetesimal formation. The fundamental difference between these approaches has a bearing on the importance of chondrules during planet formation and the relevance of chondrules to interpreting the evolution of protoplanetary disks and planetary systems.

  13. Evidence for early hunters beneath the Great Lakes.

    PubMed

    O'Shea, John M; Meadows, Guy A

    2009-06-23

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000-7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron.

  14. Evidence for early hunters beneath the Great Lakes

    PubMed Central

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron. PMID:19506245

  15. Magnetic Evidence for a Partially Differentiated Carbonaceous Chondrite Parent Body and Possible Implications for Asteroid 21 Lutetia

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin; Carporzen, L.; Elkins-Tanton, L.; Shuster, D. L.; Ebel, D. S.; Gattacceca, J.; Binzel, R. P.

    2010-10-01

    The origin of remanent magnetization in the CV carbonaceous chondrite Allende has been a longstanding mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Here we report that Allende's magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a > 20 microtesla field 8-9 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been the generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos (Weiss et al. 2010), suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core (Elkins-Tanton et al. 2010). This suggests that asteroids with differentiated interiors could be present today but masked under chondritic surfaces. In fact, CV chondrites are spectrally similar to many members of the Eos asteroid family whose spectral diversity has been interpreted as evidence for a partially differentiated parent asteroid (Mothe-Diniz et al. 2008). CV chondrite spectral and polarimetric data also resemble those of asteroid 21 Lutetia (e.g., Belskaya et al. 2010), recently encountered by the Rosetta spacecraft. Ground-based measurements of Lutetia indicate a high density of 2.4-5.1 g cm-3 (Drummond et al. 2010), while radar data seem to rule out a metallic surface composition (Shepard et al. 2008). If Rosetta spacecraft measurements confirm a high density and a CV-like surface composition for Lutetia, then we propose Lutetia may be an example of a partially differentiated carbonaceous chondrite parent body. Regardless, the very existence of primitive achondrites, which contain evidence of both relict chondrules and partial melting, are prima facie evidence for the formation of partially differentiated bodies.

  16. On the possibility of life on early Mars

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Fogleman, G.

    1990-01-01

    Prebiotic reactants, liquid water, and temperatures low enough for organic compounds to be stable are requirements for the origination of life as we know it. Prebiotic reactants and sufficiently low temperatures were present on Mars before liquid water vanished. Early in this time period, however, large planetesimal impacts may have periodically sterilized Mars, pyrolyzed organic compounds, and interrupted chemical origination of life. However, the calculated time interval between such impacts on Mars was larger just before liquid water vanished 3.8 Gyr (billion years) ago than it was on earth just before life originated. Therefore, there should have been sufficient time for life to originate on Mars. Ideal sites to search for microfossils are in the heavily cratered terrain of Upper Noachian age. Craters and channels in this terrain may have been the sites of ancient lakes and streams that could have provided habitats for the first microorganisms.

  17. From Dust to Planets: Connecting the Dots

    NASA Astrophysics Data System (ADS)

    Weidenschilling, Stuart

    The principal objective is to construct a self-consistent model linking two key early stages of planetary origins: formation of planetesimals by collisional growth of aggregate bodies from grains in the solar nebula, and accretion of those planetesimals into planetary embryos. We will simulate these processes by using a series of numerical codes to model (i) particle settling and coagulation, using the latest and most comprehensive experimental data on collisional outcomes, (ii) detailed vertical structure of a particle layer in the nebular midplane subject to shear-generated turbulence, and possible streaming instability due to transverse particle motions, and (iii) accretion of planetary embryos from planetesimals that have grown large enough to decouple from the gas and experience Keplerian motion dominated by gravitational forces. The proposed work will clarify conditions necessary for planetesimal formation and the effects of turbulence on this process, and will bridge the gap between the dynamical regimes controlled by forces of gas drag and gravity. It will also determine how initial sizes of planetesimals affect the timescales and outcomes of planetary accretion.

  18. Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction

    NASA Astrophysics Data System (ADS)

    Edwards, Cole T.; Fike, David A.; Saltzman, Matthew R.; Lu, Wanyi; Lu, Zunli

    2018-01-01

    Profound changes in environmental conditions, particularly atmospheric oxygen levels, are thought to be important drivers of several major biotic events (e.g. mass extinctions and diversifications). The early Paleozoic represents a key interval in the oxygenation of the ocean-atmosphere system and evolution of the biosphere. Global proxies (e.g. carbon (δ13C) and sulfur (δ34S) isotopes) are used to diagnose potential changes in oxygenation and infer causes of environmental change and biotic turnover. The Cambrian-Ordovician contains several trilobite extinctions (some are apparently local, but others are globally correlative) that are attributed to anoxia based on coeval positive δ13C and δ34S excursions. These extinction and excursion events have yet to be coupled with more recently developed proxies thought to be more reflective of local redox conditions in the water column (e.g. I/Ca) to confirm whether these extinctions were associated with oxygen crises over a regional or global scale. Here we examine an Early Ordovician (Tremadocian Stage) extinction event previously interpreted to reflect a continuation of recurrent early Paleozoic anoxic events that expanded into nearshore environments. δ13C, δ34S, and I/Ca trends were measured from three sections in the Great Basin region to test whether I/Ca trends support the notion that anoxia was locally present in the water column along the Laurentian margin. Evidence for anoxia is based on coincident, but not always synchronous, positive δ13C and δ34S excursions (mainly from carbonate-associated sulfate and less so from pyrite data), a 30% extinction of standing generic diversity, and near-zero I/Ca values. Although evidence for local water column anoxia from the I/Ca proxy broadly agrees with intervals of global anoxia inferred from δ13C and δ34S trends, a more complex picture is evident where spatially and temporally variable local trends are superimposed on time-averaged global trends. Stratigraphic

  19. Highlighting the evidence gap: how cost-effective are interventions to improve early childhood nutrition and development?

    PubMed Central

    Batura, Neha; Hill, Zelee; Haghparast-Bidgoli, Hassan; Lingam, Raghu; Colbourn, Timothy; Kim, Sungwook; Sikander, Siham; Pulkki-Brannstrom, Anni-Maria; Rahman, Atif; Kirkwood, Betty; Skordis-Worrall, Jolene

    2015-01-01

    There is growing evidence of the effectiveness of early childhood interventions to improve the growth and development of children. Although, historically, nutrition and stimulation interventions may have been delivered separately, they are increasingly being tested as a package of early childhood interventions that synergistically improve outcomes over the life course. However, implementation at scale is seldom possible without first considering the relative cost and cost-effectiveness of these interventions. An evidence gap in this area may deter large-scale implementation, particularly in low- and middle-income countries. We conduct a literature review to establish what is known about the cost-effectiveness of early childhood nutrition and development interventions. A set of predefined search terms and exclusion criteria standardized the search across five databases. The search identified 15 relevant articles. Of these, nine were from studies set in high-income countries and six in low- and middle-income countries. The articles either calculated the cost-effectiveness of nutrition-specific interventions (n = 8) aimed at improving child growth, or parenting interventions (stimulation) to improve early childhood development (n = 7). No articles estimated the cost-effectiveness of combined interventions. Comparing results within nutrition or stimulation interventions, or between nutrition and stimulation interventions was largely prevented by the variety of outcome measures used in these analyses. This article highlights the need for further evidence relevant to low- and middle-income countries. To facilitate comparison of cost-effectiveness between studies, and between contexts where appropriate, a move towards a common outcome measure such as the cost per disability-adjusted life years averted is advocated. Finally, given the increasing number of combined nutrition and stimulation interventions being tested, there is a significant need for evidence of cost

  20. Barriers to implementing evidence-based clinical guidelines: A survey of early adopters

    PubMed Central

    Spallek, Heiko; Song, Mei; Polk, Deborah E; Bekhuis, Tanja; Frantsve-Hawley, Julie; Aravamudhan, Krishna

    2010-01-01

    Objective The purpose of this study is to identify barriers that early-adopting dentists perceive as common and challenging when implementing recommendations from evidence-based (EB) clinical guidelines. Method This is a cross-sectional study. Dentists who attended the 2008 Evidence-based Dentistry Champion Conference were eligible for inclusion. Forty-three dentists (34%) responded to a 22-item questionnaire administered online. Two investigators independently coded and categorized responses to open-ended items. Descriptive statistics were computed to assess the frequency of barriers and perceived challenges. Results The most common barriers to implementation are difficulty in changing current practice model, resistance and criticism from colleagues, and lack of trust in evidence or research. Barriers perceived as serious problems have to do with lack of up-to-date evidence, lack of clear answers to clinical questions, and contradictory information in the scientific literature. Conclusions Knowledge of barriers will help improve translation of biomedical research for dentists. Information in guidelines needs to be current, clear, and simplified for use at chairside; dentists’ fears need to be addressed. PMID:21093800

  1. High School Accountability: Early Evidence from Florida's Broward County Public Schools

    ERIC Educational Resources Information Center

    Iatarola, Patrice; Gao, Niu

    2015-01-01

    In 2009, Florida adopted the Differentiated Accountability (DA) plan, making it among the first to specifically incorporate into its existing school grading scheme college readiness targets. In this paper we use a rich panel of data on high school students in Broward County (Ft. Lauderdale) Public Schools to present early evidence of the impact of…

  2. Scoping the evidence for EarlyBird and EarlyBird Plus, two United Kingdom-developed parent education training programmes for autism spectrum disorder.

    PubMed

    Dawson-Squibb, John-Joe; Davids, Eugene Lee; de Vries, Petrus J

    2018-03-01

    EarlyBird and EarlyBird Plus are parent education and training programmes designed by the UK National Autistic Society in 1997 and 2003, having been delivered to more than 27,000 families in 14 countries. These group-based programmes aim to (1) support parents immediately after diagnosis of autism spectrum disorder, (2) empower parents, encouraging a positive perception of their child's autism spectrum disorder and (3) help parents establish good practice. In the absence of any previous comprehensive review, we performed a scoping review of all peer-reviewed publications on EarlyBird/EarlyBird Plus. A search was conducted between February and June 2016 using EbscoHost, Sabinet, SAGE Journals, Directory of Open Access Journals, BioMed Central, Scopus, ScienceDirect and grey literature. Two reviewers independently screened titles and abstracts for inclusion. In total, 18 articles were identified: 16 from the United Kingdom and 2 from New Zealand. We reviewed the context, study populations, design, outcome measures, whether focus was on parental perception, parental change or child changes and programme feasibility. Strong parental support for the acceptability but lower level evidence of efficacy of EarlyBird/EarlyBird Plus was found. Future research should consider randomised controlled trials. There is no research on EarlyBird/EarlyBird Plus in low-resource settings; therefore, we recommend broader feasibility evaluation of EarlyBird/EarlyBird Plus including accessibility, cultural appropriateness and scalability.

  3. Early Natufian remains: evidence for physical conflict from Mt. Carmel, Israel.

    PubMed

    Bocquentin, Fanny; Bar-Yosef, Ofer

    2004-01-01

    Prior to the establishment of farming communities direct physical evidence for human conflict was rarely reported from archaeological contexts. Here we present a case of an Early Natufian (14,500-13,000 cal B.P.) projectile, classified as Helwan lunate, embedded inside the seventh or eighth thoracic vertebra sequence of a mature middle age adult male. Due to calcareous concretion four vertebras were still in anatomical connection when uncovered by F. Turville-Petre, during his excavations at Kebara cave (Mt. Carmel) in 1931.

  4. Early Programming of Uterine Tissue by Bisphenol A: Critical Evaluation of Evidence from Animal Exposure Studies

    PubMed Central

    Suvorov, Alexander; Waxman, David J.

    2015-01-01

    Exposure to Bisphenol A (BPA) during the critical window of uterine development has been proposed to program the uterus for increased disease susceptibility based on well-documented effects of the potent xenoestrogen diethylstilbestrol. To investigate this proposal, we reviewed 37 studies of prenatal and/or perinatal BPA exposure in animal models and evaluated evidence for: molecular signatures of early BPA exposure; the development of adverse uterine health effects; and epigenetic changes linked to long-term dysregulation of uterine gene expression and health effects. We found substantial evidence for adult uterine effects of early BPA exposure. In contrast, experimental support for epigenetic actions of early BPA exposure is very limited, and largely consists of effects on Hoxa gene DNA methylation. Critical knowledge gaps were identified, including the need to fully characterize short-term and long-term uterine gene responses, interactions with estrogens and other endogenous hormones, and any long-lasting epigenetic signatures that impact adult disease. PMID:26028543

  5. Vestibular evidence for the evolution of aquatic behaviour in early cetaceans.

    PubMed

    Spoor, F; Bajpai, S; Hussain, S T; Kumar, K; Thewissen, J G M

    2002-05-09

    Early cetaceans evolved from terrestrial quadrupeds to obligate swimmers, a change that is traditionally studied by functional analysis of the postcranial skeleton. Here we assess the evolution of cetacean locomotor behaviour from an independent perspective by looking at the semicircular canal system, one of the main sense organs involved in neural control of locomotion. Extant cetaceans are found to be unique in that their canal arc size, corrected for body mass, is approximately three times smaller than in other mammals. This reduces the sensitivity of the canal system, most plausibly to match the fast body rotations that characterize cetacean behaviour. Eocene fossils show that the new sensory regime, incompatible with terrestrial competence, developed quickly and early in cetacean evolution, as soon as the taxa are associated with marine environments. Dedicated agile swimming of cetaceans thus appeared to have originated as a rapid and fundamental shift in locomotion rather than as the gradual transition suggested by postcranial evidence. We hypothesize that the unparalleled modification of the semicircular canal system represented a key 'point of no return' event in early cetacean evolution, leading to full independence from life on land.

  6. FE-60 and the evolution of eucrites

    NASA Technical Reports Server (NTRS)

    Shukolyukov, A.; Lugmair, G. W.

    1993-01-01

    We have recently presented evidence for the existence of live Fe-60 in the early solar system. This evidence comes from observations of 2.4 to 50 epsilon unit (1 part in 10(exp 4)) relative excesses of Ni-60 measured in samples from the eucrite Chervony Kut (CK). These isotopic excesses have been produced by the decay of the short-lived radionuclide Fe-60 (T(sub 1/2) = 1.5 Ma). Because CK originates from a planetesimal which was totally molten and its high Fe/Ni ratio is due to a planet-wide Fe-Ni fractionation during metal-silicate segregation, the presence of the Fe-60 decay product indicates the large scale abundance of Fe-60 in the early solar system and its presence during differentiation of this planetesimal. The observed variable Ni-60 excesses in different bulk samples and mineral separates from CK can only be understood if some Fe-60 was still alive at the time when basaltic magma had solidified on the eucrite parent body. The lack of a correlation between Ni-60 and the respective Fe/Ni ratios in different mineral fractions from CK indicates a metamorphic remobilization of Ni after essentially all Fe-60 has decayed. However, Ni-60 from three bulk samples from different locations within the meteorite appears to correlate reasonably well with the respective Fe/Ni ratios. If we regard this correlation as an isochron then its slope yields a Fe-60/Fe-56 ratio f (3.9 +/- 0.6) x 10(exp -9) and an initial Ni-60 of 3.2 plus or minus 0.9 epsilon units at the time of crystallization of CK. Estimates based on these values and a approximately 10 Ma time interval between CK solidification and formation of the earliest condensates in the solar system followed by rapid accretion of planetary bodies indicate that the decay of Fe-60 could produce sufficient heat to melt these planetesimals. If Al-26 was present on a planetary scale as Fe-60 and at abundances close to values observed in Allende inclusions then melting of small early formed planets is inevitable. As an

  7. Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Matrà, Luca; Wyatt, Mark C.; Kennedy, Grant M.

    2017-07-01

    This paper uses observations of dusty debris discs, including a growing number of gas detections in these systems, to test our understanding of the origin and evolution of this gaseous component. It is assumed that all debris discs with icy planetesimals create second generation CO, C and O gas at some level, and the aim of this paper is to predict that level and assess its observability. We present a new semi-analytical equivalent of the numerical model of Kral et al. allowing application to large numbers of systems. That model assumes CO is produced from volatile-rich solid bodies at a rate that can be predicted from the debris discs fractional luminosity. CO photodissociates rapidly into C and O that then evolve by viscous spreading. This model provides a good qualitative explanation of all current observations, with a few exceptional systems that likely have primordial gas. The radial location of the debris and stellar luminosity explain some non-detections, e.g. close-in debris (like HD 172555) is too warm to retain CO, while high stellar luminosities (like η Tel) result in short CO lifetimes. We list the most promising targets for gas detections, predicting >15 CO detections and >30 C I detections with ALMA, and tens of C II and O I detections with future far-IR missions. We find that CO, C I, C II and O I gas should be modelled in non-LTE for most stars, and that CO, C I and O I lines will be optically thick for the most gas-rich systems. Finally, we find that radiation pressure, which can blow out C I around early-type stars, can be suppressed by self-shielding.

  8. How to form planetesimals from mm-sized chondrules and chondrule aggregates

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.

    2015-07-01

    The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org

  9. Asteroidal Differentiation Processes Deduced from Ultramafic Achondrite Ureilite Meteorites

    NASA Technical Reports Server (NTRS)

    Downes, Hilary; Mittlefehldt, David W.; Hudson, Pierre; Romanek, Christopher S.; Franchi, Ian

    2006-01-01

    Ureilites are the second largest achondrite group. They are ultramafic achondrites that have experienced igneous processing whilst retaining some degree of nebula-derived chemical heterogeneity. They differ from other achondrites in that they contain abundant carbon and their oxygen isotope compositions are very heterogeneous and similar to those of the carbonaceous chondrite anhydrous mineral line. Their carbonaceous nature and some compositional characteristics indicative of nebular origin suggest that they are primitive materials that form a link between nebular processes and early periods of planetesimal accretion. However, despite numerous studies, the exact origin of ureilites remains unclear. Current opinion is that they represent the residual mantle of an asteroid that underwent silicate and Fe-Ni-S partial melting and melt removal. Recent studies of short-lived chronometers indicate that the parent asteroid of the ureilites differentiated very early in the history of the Solar System. Therefore, they contain important information about processes that formed small rocky planetesimals in the early Solar System. In effect, they form a bridge between nebula processes and differentiation in small planetesimals prior to accretion into larger planets and so a correct interpretation of ureilite petrogenesis is essential for understanding this critical step.

  10. Temporally selective attention modulates early perceptual processing: event-related potential evidence.

    PubMed

    Sanders, Lisa D; Astheimer, Lori B

    2008-05-01

    Some of the most important information we encounter changes so rapidly that our perceptual systems cannot process all of it in detail. Spatially selective attention is critical for perception when more information than can be processed in detail is presented simultaneously at distinct locations. When presented with complex, rapidly changing information, listeners may need to selectively attend to specific times rather than to locations. We present evidence that listeners can direct selective attention to time points that differ by as little as 500 msec, and that doing so improves target detection, affects baseline neural activity preceding stimulus presentation, and modulates auditory evoked potentials at a perceptually early stage. These data demonstrate that attentional modulation of early perceptual processing is temporally precise and that listeners can flexibly allocate temporally selective attention over short intervals, making it a viable mechanism for preferentially processing the most relevant segments in rapidly changing streams.

  11. Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India.

    PubMed

    Prasad, V; Farooqui, A; Tripathi, S K M; Garg, R; Thakur, B

    2009-11-01

    Equatorial rain forests that maintain a balance between speciation and extinction are hot-spots for studies of biodiversity. Western Ghats in southern India have gained attention due to high tropical biodiversity and endemism in their southern most area. We attempted to track the affinities of the pollen fl ora of the endemic plants of Western Ghat area within the fossil palynoflora of late Palaeocene-early Eocene (approximately 55-50 Ma) sedimentary deposits of western and northeastern Indian region. The study shows striking similarity of extant pollen with twenty eight most common fossil pollen taxa of the early Palaeogene. Widespread occurrences of coal and lignite deposits during early Palaeogene provide evidence of existence of well diversified rain forest community and swampy vegetation in the coastal low lying areas all along the western and northeastern margins of the Indian subcontinent. Prevalence of excessive humid climate during this period has been seen as a result of equatorial positioning of Indian subcontinent, superimposed by a long term global warming phase (PETM and EECO) during the early Palaeogene. The study presents clear evidence that highly diversifi ed equatorial rain forest vegetation once widespread in the Indian subcontinent during early Palaeogene times, are now restricted in a small area as a refugia in the southernmost part of the Western Ghat area. High precipitation and shorter periods of dry months seem to have provided suitable environment to sustain lineages of ancient tropical vegetation in this area of Western Ghats in spite of dramatic climatic changes subsequent to the post India-Asia collision and during the Quaternary and Recent times.

  12. Predictive information processing is a fundamental learning mechanism present in early development: evidence from infants.

    PubMed

    Trainor, Laurel J

    2012-02-01

    Evidence is presented that predictive coding is fundamental to brain function and present in early infancy. Indeed, mismatch responses to unexpected auditory stimuli are among the earliest robust cortical event-related potential responses, and have been measured in young infants in response to many types of deviation, including in pitch, timing, and melodic pattern. Furthermore, mismatch responses change quickly with specific experience, suggesting that predictive coding reflects a powerful, early-developing learning mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Spitzer IRS Spectroscopy of the 10 Myr-Old EF Cha Debris Disk: Evidence for Phyllosilicate-Rich Dust in the Terrestrial Zone

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Lisse, Carey M.; Sicillia-Aguilar, Aurora; Rieke, George H.; Su, Kate Y. L.

    2011-01-01

    We describe Spitzer IRS spectroscopic observations of the approx. 10 Myr-old star, EF Chao Compositional modeling of the spectra from 5 micron to 35 micron confirms that it is surrounded by a luminous debris disk with L(sub D)/L(sub *) approx. 10(exp -3), containing dust with temperatures between 225 K and 430 K characteristic of the terrestrial zone. The EF Cha spectrum shows evidence for many solid-state features, unlike most cold, low-luminosity debris disks but like some other 10-20 Myr-old luminous, warm debris disks (e.g. HD 113766A). The EF Cha debris disk is unusually rich in a species or combination of species whose emissivities resemble that of finely-powdered, laboratory-measured phyllosilicate species (talc, saponite, and smectite), which are likely produced by aqueous alteration of primordial anhydrous rocky materials. The dust and, by inference, the parent bodies of the debris also contain abundant amorphous silicates and metal sulfides, and possibly water ice. The dust's total olivine to pyroxene ratio of approx. 2 also provides evidence of aqueous alteration. The large mass volume of grains with sizes comparable to or below the radiation blow-out limit implies that planetesimals may be colliding at a rate high enough to yield the emitting dust but not so high as to devolatize the planetesimals via impact processing. Because phyllosilicates are produced by the interactions between anhydrous rock and warm, reactive water, EF Cha's disk is a likely signpost for water delivery to the terrestrial zone of a young planetary system.

  14. Evidence for live 247Cm in the early solar system

    USGS Publications Warehouse

    Tatsumoto, M.; Shimamura, T.

    1980-01-01

    Variations of the 238U/235U ratio in the Allende meteorite, ranging from -35% to + 19%, are interpreted as evidence of live 247Cm in the early Solar System. The amounts of these and other r-products in the Solar System indicate values of (9,000??3,000) Myr for the age of the Galaxy and ??? 8 Myr for the time between the end of nucleosynthesis and the formation of meteoritic grains. Three possible explanations are presented for the different values of the latter time period which are indicated by the decay products of 247Cm, 26Al, 244Pu and 129I. ?? 1980 Nature Publishing Group.

  15. The urgency-gating model can explain the effects of early evidence.

    PubMed

    Carland, Matthew A; Thura, David; Cisek, Paul

    2015-12-01

    In a recent report, Winkel, Keuken, van Maanen, Wagenmakers & Forstmann (Psychonomics Bulletin and Review 21(3): 777-784, 2014) show that during a random-dot motion discrimination task, early differences in motion evidence can influence reaction times (RTs) and error rates in human subjects. They use this as an argument in favor of the drift-diffusion model and against the urgency-gating model. However, their implementation of the urgency-gating model is incomplete, as it lacks the low-pass filter that is necessary to deal with noisy input such as the motion signal used in their experimental task. Furthermore, by focusing analyses solely on comparison of mean RTs they overestimate how long early information influences individual trials. Here, we show that if the urgency-gating model is correctly implemented, including a low-pass filter with a 250 ms time constant, it can successfully reproduce the results of the Winkel et al. experiment.

  16. Highlighting the evidence gap: how cost-effective are interventions to improve early childhood nutrition and development?

    PubMed

    Batura, Neha; Hill, Zelee; Haghparast-Bidgoli, Hassan; Lingam, Raghu; Colbourn, Timothy; Kim, Sungwook; Sikander, Siham; Pulkki-Brannstrom, Anni-Maria; Rahman, Atif; Kirkwood, Betty; Skordis-Worrall, Jolene

    2015-07-01

    There is growing evidence of the effectiveness of early childhood interventions to improve the growth and development of children. Although, historically, nutrition and stimulation interventions may have been delivered separately, they are increasingly being tested as a package of early childhood interventions that synergistically improve outcomes over the life course. However, implementation at scale is seldom possible without first considering the relative cost and cost-effectiveness of these interventions. An evidence gap in this area may deter large-scale implementation, particularly in low- and middle-income countries. We conduct a literature review to establish what is known about the cost-effectiveness of early childhood nutrition and development interventions. A set of predefined search terms and exclusion criteria standardized the search across five databases. The search identified 15 relevant articles. Of these, nine were from studies set in high-income countries and six in low- and middle-income countries. The articles either calculated the cost-effectiveness of nutrition-specific interventions (n = 8) aimed at improving child growth, or parenting interventions (stimulation) to improve early childhood development (n = 7). No articles estimated the cost-effectiveness of combined interventions. Comparing results within nutrition or stimulation interventions, or between nutrition and stimulation interventions was largely prevented by the variety of outcome measures used in these analyses. This article highlights the need for further evidence relevant to low- and middle-income countries. To facilitate comparison of cost-effectiveness between studies, and between contexts where appropriate, a move towards a common outcome measure such as the cost per disability-adjusted life years averted is advocated. Finally, given the increasing number of combined nutrition and stimulation interventions being tested, there is a significant need for evidence of cost

  17. U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.; Unruh, D. M.

    1974-01-01

    U, Th, and Pb concentrations and lead isotopic compositions of selected Apollo 17 soil and rock samples are presented. Concordia treatments of U-Pb whole samples of Apollo 17 mare basalts and highland rocks probably reflect several early thermal events about 4.5 b.y. old more consistently than do U-Pb ages of samples collected at other lunar sites. We propose that all lunar U-Th-Pb data reflect a multistate U-Pb evolution history most easily understood as being related to a complex planetesimal bombardment history of the moon which apparently dominated lunar events from about 4.5 to about 3.9 b.y. ago. Semi-distinct events at about 4.0, about 4.2, and 4.4-4.5 b.y. are evident on whole-rock frequency versus Pb-207/Pb-206 age histograms. Each of these events may reflect multiple cratering episodes. For mare basalts, complete resetting of the source rock U-Pb systems owing to Pb loss relative to U was apparently often approached after a major planetesimal impact.

  18. Evidence Supporting an Early as Well as Late Heavy Bombardment on the Moon

    NASA Technical Reports Server (NTRS)

    Frey, Herbert

    2015-01-01

    Evidence supporting an intense early bombardment on the Moon in addition to the traditional Late Heavy Bombardment at approx. 4 BY ago include the distribution of N(50) Crater Retention Ages (CRAs) for candidate basins, a variety of absolute age scenarios for both a "young" and an "old" Nectaris age, and the decreasing contrasts in both topographic relief and Bouguer gravity with increasing CRA.

  19. Early Solar System Alkali Fractionation Events Recorded by K-Ca Isotopes in the Yamato-74442 LL-Chondritic Breccia

    NASA Technical Reports Server (NTRS)

    Tatsunori, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2015-01-01

    Radiogenic ingrowth of Ca-40 due to decay of K-40 occurred early in the solar system history causing the Ca-40 abundance to vary within different early-former reservoirs. Marshall and DePaolo ] demonstrated that the K-40/Ca-40 decay system could be a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [3,4] determined 40K/40Ca ages of lunar granitic rock fragments and discussed the chemical characteristics of their source materials. Recently, Yokoyama et al. [5] showed the application of the K-40/Ca-40 chronometer for high K/Ca materials in ordinary chondrites (OCs). High-precision calcium isotopic data are needed to constrain mixing processes among early solar system materials and the time of planetesimal formation. To better constrain the solar system calcium isotopic compositions among astromaterials, we have determined the calcium isotopic compositions of OCs and an angrite. We further estimated a source K/Ca ratio for alkali-rich fragments in a chondritic breccia using the estimated solar system initial Ca-40/Ca-44.

  20. Physical growth and cognitive skills in early-life: evidence from a nationally representative US birth cohort.

    PubMed

    Murasko, Jason E

    2013-11-01

    This paper establishes associations between length/height and cognitive skills in infancy, toddlerhood, and school-entry. The data come from the Early Childhood Longitudinal Study--Birth Cohort (ECLS-B), a representative longitudinal sample of US children born in 2001. A positive association between length/height and cognition is found as early as 9 months and continues through school-entry. These associations are robust to controls for birthweight and economic status. Early growth is also shown to be a stronger predictor of reading and math skills in kindergarten than attained height. Girls exhibit stronger evidence of this latter result than boys. These findings have implications for the interpretation of early life as a critical period for the growth-cognition relationship. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Early-Life Nutritional Programming of Type 2 Diabetes: Experimental and Quasi-Experimental Evidence.

    PubMed

    Vaiserman, Alexander M

    2017-03-05

    Consistent evidence from both experimental and human studies suggest that inadequate nutrition in early life can contribute to risk of developing metabolic disorders including type 2 diabetes (T2D) in adult life. In human populations, most findings supporting a causative relationship between early-life malnutrition and subsequent risk of T2D were obtained from quasi-experimental studies ('natural experiments'). Prenatal and/or early postnatal exposures to famine were demonstrated to be associated with higher risk of T2D in many cohorts around the world. Recent studies have highlighted the importance of epigenetic regulation of gene expression as a possible major contributor to the link between the early-life famine exposure and T2D in adulthood. Findings from these studies suggest that prenatal exposure to the famine may result in induction of persistent epigenetic changes that have adaptive significance in postnatal development but can predispose to metabolic disorders including T2D at the late stages of life. In this review, quasi-experimental data on the developmental programming of T2D are summarized and recent research findings on changes in DNA methylation that mediate these effects are discussed.

  2. Early-Life Nutritional Programming of Type 2 Diabetes: Experimental and Quasi-Experimental Evidence

    PubMed Central

    Vaiserman, Alexander M.

    2017-01-01

    Consistent evidence from both experimental and human studies suggest that inadequate nutrition in early life can contribute to risk of developing metabolic disorders including type 2 diabetes (T2D) in adult life. In human populations, most findings supporting a causative relationship between early-life malnutrition and subsequent risk of T2D were obtained from quasi-experimental studies (‘natural experiments’). Prenatal and/or early postnatal exposures to famine were demonstrated to be associated with higher risk of T2D in many cohorts around the world. Recent studies have highlighted the importance of epigenetic regulation of gene expression as a possible major contributor to the link between the early-life famine exposure and T2D in adulthood. Findings from these studies suggest that prenatal exposure to the famine may result in induction of persistent epigenetic changes that have adaptive significance in postnatal development but can predispose to metabolic disorders including T2D at the late stages of life. In this review, quasi-experimental data on the developmental programming of T2D are summarized and recent research findings on changes in DNA methylation that mediate these effects are discussed. PMID:28273874

  3. Late veneer and late accretion to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Mojzsis, S. J.; Werner, S. C.; Matsumura, S.; Ida, S.

    2016-12-01

    It is generally accepted that silicate-metal ('rocky') planet formation relies on coagulation from a mixture of sub-Mars sized planetary embryos and (smaller) planetesimals that dynamically emerge from the evolving circum-solar disc in the first few million years of our Solar System. Once the planets have, for the most part, assembled after a giant impact phase, they continue to be bombarded by a multitude of planetesimals left over from accretion. Here we place limits on the mass and evolution of these planetesimals based on constraints from the highly siderophile element (HSE) budget of the Moon. Outcomes from a combination of N-body and Monte Carlo simulations of planet formation lead us to four key conclusions about the nature of this early epoch. First, matching the terrestrial to lunar HSE ratio requires either that the late veneer on Earth consisted of a single lunar-size impactor striking the Earth before 4.45 Ga, or that it originated from the impact that created the Moon. An added complication is that analysis of lunar samples indicates the Moon does not preserve convincing evidence for a late veneer like Earth. Second, the expected chondritic veneer component on Mars is 0.06 weight percent. Third, the flux of terrestrial impactors must have been low (≲10-6 M⊕ Myr-1) to avoid wholesale melting of Earth's crust after 4.4 Ga, and to simultaneously match the number of observed lunar basins. This conclusion leads to an Hadean eon which is more clement than assumed previously. Last, after the terrestrial planets had fully formed, the mass in remnant planetesimals was ∼10-3 M⊕, lower by at least an order of magnitude than most previous models suggest. Our dynamically and geochemically self-consistent scenario requires that future N-body simulations of rocky planet formation either directly incorporate collisional grinding or rely on pebble accretion.

  4. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans.

    PubMed

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J

    2010-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.

  5. Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yoshinori; Korenaga, Jun

    2017-11-01

    We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.

  6. Statistical Study of the Early Solar System's Instability with 4, 5 and 6 Giant Planets

    NASA Astrophysics Data System (ADS)

    Nesvorny, David; Morbidelli, A.

    2012-10-01

    Several properties of the Solar System, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early Solar System evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly ten thousand numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of least one ice giant from the Solar System. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large, but we found that a massive disk would lead to excessive dynamical damping, and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the Solar System was assumed to have five giant planets initially and one ice giant, with the mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn. The range of possible outcomes is rather broad in this case, indicating that the present Solar System is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a few percent probability. The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five planet case.

  7. After runaway: The trans-Hill stage of planetesimal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lithwick, Yoram

    2014-01-01

    When planetesimals begin to grow by coagulation, they first enter an epoch of runaway, during which the biggest bodies grow faster than all the others. The questions of how runaway ends and what comes next have not been answered satisfactorily. We show that runaway is followed by a new stage—the 'trans-Hill stage'—that commences when the bodies that dominate viscous stirring ('big bodies') become trans-Hill, i.e., when their Hill velocity matches the random speed of the small bodies they accrete. Subsequently, the small bodies' random speed grows in lockstep with the big bodies' sizes, such that the system remains in themore » trans-Hill state. Trans-Hill growth is crucial for determining the efficiency of growing big bodies, as well as their growth timescale and size spectrum. Trans-Hill growth has two sub-stages. In the earlier one, which occurs while the stirring bodies remain sufficiently small, the evolution is collisionless, i.e., collisional cooling among all bodies is irrelevant. The efficiency of forming big bodies in this collisionless sub-stage is very low, ∼10α << 1, where α ∼ 0.005(a/AU){sup –1} is the ratio between the physical size of a body and its Hill radius. Furthermore, the size spectrum is flat (equal mass per size decade, i.e., q = 4). This collisionless trans-Hill solution explains results from previous coagulation simulations for both the Kuiper Belt and the asteroid belt. The second trans-Hill sub-stage commences once the stirring bodies grow big enough (>α{sup –1} × the size of the accreted small bodies). After that time, collisional cooling among small bodies controls the evolution. The efficiency of forming big bodies rises and the size spectrum becomes more top heavy. Trans-Hill growth can terminate in one of two ways, depending on the sizes of the small bodies. First, mutual accretion of big bodies can become significant and conglomeration proceeds until half of the total mass is converted into big bodies. This mode

  8. Nanomagnetic intergrowths in Fe-Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields

    NASA Astrophysics Data System (ADS)

    Bryson, James F. J.; Church, Nathan S.; Kasama, Takeshi; Harrison, Richard J.

    2014-02-01

    Nanoscale intergrowths unique to the cloudy zones (CZs) of meteoritic metal display novel magnetic behaviour with the potential to reveal new insight into the early development of magnetic fields on protoplanetary bodies. The nanomagnetic state of the CZ within the Tazewell IIICD iron meteorite has been imaged using off-axis electron holography. The CZ is revealed to be a natural nanocomposite of magnetically hard islands of tetrataenite (ordered FeNi) embedded in a magnetically soft matrix of ordered Fe3Ni. In the remanent state, each tetrataenite island acts as a uniaxial single domain particle with its [001] magnetic easy axis oriented along one of three <100> crystallographic directions of the parent taenite phase. Micromagnetic simulations demonstrate that switching occurs via the nucleation and propagation of domain walls through individual tetrataenite particles. The switching field (Hs) varies with the length scale of the matrix phase (Lm), with Hs > 1 T for Lm ∼10 nm (approaching the intrinsic switching field for isolated single domain tetrataenite) and 0.2

  9. Saturn’s Formation and Early Evolution at the Origin of Jupiter’s Massive Moons

    NASA Astrophysics Data System (ADS)

    Ronnet, T.; Mousis, O.; Vernazza, P.; Lunine, J. I.; Crida, A.

    2018-05-01

    The four massive Galilean satellites are believed to have formed within a circumplanetary disk during the last stages of Jupiter’s formation. While the existence of a circum-Jovian disk is supported by hydrodynamic simulations, no consensus exists regarding the origin and delivery mechanisms of the building blocks of the forming satellites. The opening of a gap in the circumsolar disk would have efficiently isolated Jupiter from the main sources of solid material. However, a reservoir of planetesimals should have existed at the outer edge of Jupiter’s gap, where solids were trapped and accumulated over time. Here we show that the formation of Saturn’s core within this reservoir, or its prompt inward migration, allows planetesimals to be redistributed from this reservoir toward Jupiter and the inner Solar System, thereby providing enough material to form the Galilean satellites and to populate the Main Belt with primitive asteroids. We find that the orbit of planetesimals captured within the circum-Jovian disk are circularized through friction with gas in a compact system comparable to the current radial extent of the Galilean satellites. The decisive role of Saturn in the delivery mechanism has strong implications for the occurrence of massive moons around extrasolar giant planets as they would preferentially form around planets within multiple planet systems.

  10. No evidence of early head circumference enlargements in children later diagnosed with autism in Israel.

    PubMed

    Dinstein, Ilan; Haar, Shlomi; Atsmon, Shir; Schtaerman, Hen

    2017-01-01

    Large controversy exists regarding the potential existence and clinical significance of larger brain volumes in toddlers who later develop autism. Assessing this relationship is important for determining the clinical utility of early head circumference (HC) measures and for assessing the validity of the early overgrowth hypothesis of autism, which suggests that early accelerated brain development may be a hallmark of the disorder. We performed a retrospective comparison of HC, height, and weight measurements between 66 toddlers who were later diagnosed with autism and 66 matched controls. These toddlers represent an unbiased regional sample from a single health service provider in the southern district of Israel. On average, participating toddlers had >8 measurements between birth and the age of two, which enabled us to characterize individual HC, height, and weight development with high precision and fit a negative exponential growth model to the data of each toddler with exceptional accuracy. The analyses revealed that HC sizes and growth rates were not significantly larger in toddlers with autism even when stratifying the autism group based on verbal capabilities at the time of diagnosis. In addition, there were no significant correlations between ADOS scores at the time of diagnosis and HC at any time-point during the first 2 years of life. These negative results add to accumulating evidence, which suggest that brain volume is not necessarily larger in toddlers who develop autism. We believe that conflicting results reported in other studies are due to small sample sizes, use of misleading population norms, changes in the clinical definition of autism over time, and/or inclusion of individuals with syndromic autism. While abnormally large brains may be evident in some individuals with autism and more clearly visible in MRI scans, converging evidence from this and other studies suggests that enlarged HC is not a common etiology of the entire autism population

  11. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana).

    PubMed

    Rubinstein, C V; Gerrienne, P; de la Puente, G S; Astini, R A; Steemans, P

    2010-10-01

    • The advent of embryophytes (land plants) is among the most important evolutionary breakthroughs in Earth history. It irreversibly changed climates and biogeochemical processes on a global scale; it allowed all eukaryotic terrestrial life to evolve and to invade nearly all continental environments. Before this work, the earliest unequivocal embryophyte traces were late Darriwilian (late Middle Ordovician; c. 463-461 million yr ago (Ma)) cryptospores from Saudi Arabia and from the Czech Republic (western Gondwana). • Here, we processed Dapingian (early Middle Ordovician, c. 473-471 Ma) palynological samples from Argentina (eastern Gondwana). • We discovered a diverse cryptospore assemblage, including naked and envelope-enclosed monads and tetrads, representing five genera. • Our discovery reinforces the earlier suggestion that embryophytes first evolved in Gondwana. It indicates that the terrestrialization of plants might have begun in the eastern part of Gondwana. The diversity of the Dapingian assemblage implies an earlier, Early Ordovician or even Cambrian, origin of embryophytes. Dapingian to Aeronian (Early Silurian) cryptospore assemblages are similar, suggesting that the rate of embryophyte evolution was extremely slow during the first c. 35-45 million yr of their diversification. The Argentinean cryptospores predate other cryptospore occurrences by c. 8-12 million yr, and are currently the earliest evidence of plants on land. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  12. Mercury's surface: Preliminary description and interpretation from Mariner 10 pictures

    USGS Publications Warehouse

    Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.E.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.

    1974-01-01

    The surface morphology and optical properties of Mercury resemble those of the moon in remarkable detail and record a very similar sequence of events. Chemical and mineralogical similarity of the outer layers of Mercury and the moon is implied; Mercury is probably a differentiated planet with a large iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of landforms has been found. Large-scale scarps and ridges unlike lunar or martian features may reflect a unique period of planetary compression near the end of heavy bombardment by small planetesimals.

  13. Late Archaic–Early Formative period microbotanical evidence for potato at Jiskairumoko in the Titicaca Basin of southern Peru

    PubMed Central

    Rumold, Claudia Ursula

    2016-01-01

    The data presented in this paper provide direct microbotanical evidence concerning the early use of potato (Solanum tuberosum) within its botanical locus of origin in the high south-central Andes. The data derive from Jiskairumoko, an early village site in the western Titicaca Basin dating to the Late Archaic to Early Formative periods (∼3,400 cal y BC to 1,600 cal y BC). Because the site reflects the transition to sedentism and food production, these data may relate to potato domestication and early cultivation. Of 141 starch microremains recovered from 14 groundstone tools from Jiskairumoko, 50 are identified as consistent with cultivated or domesticated potato, based on reference to published materials and a study of wild and cultivated potato starch morphology. Along with macro- and microbotanical evidence for chenopod consumption and grinding tool data reflecting intensive use of this technology throughout site occupation, the microbotanical data reported here suggest the intensive exploitation, if not cultivation, of plant resources at Jiskairumoko. Elucidating the details of the trajectory of potato domestication is necessary for an overall understanding of the development of highland Andean agriculture, as this crop is central to the autochthonous agricultural suite. A paucity of direct botanical evidence, however, has hindered research efforts. The results of the modern and archaeological starch analyses presented here underscore the utility of this method in addressing questions related to the timing, mode, and context of potato origins. PMID:27849582

  14. Late Archaic-Early Formative period microbotanical evidence for potato at Jiskairumoko in the Titicaca Basin of southern Peru.

    PubMed

    Rumold, Claudia Ursula; Aldenderfer, Mark S

    2016-11-29

    The data presented in this paper provide direct microbotanical evidence concerning the early use of potato (Solanum tuberosum) within its botanical locus of origin in the high south-central Andes. The data derive from Jiskairumoko, an early village site in the western Titicaca Basin dating to the Late Archaic to Early Formative periods (∼3,400 cal y BC to 1,600 cal y BC). Because the site reflects the transition to sedentism and food production, these data may relate to potato domestication and early cultivation. Of 141 starch microremains recovered from 14 groundstone tools from Jiskairumoko, 50 are identified as consistent with cultivated or domesticated potato, based on reference to published materials and a study of wild and cultivated potato starch morphology. Along with macro- and microbotanical evidence for chenopod consumption and grinding tool data reflecting intensive use of this technology throughout site occupation, the microbotanical data reported here suggest the intensive exploitation, if not cultivation, of plant resources at Jiskairumoko. Elucidating the details of the trajectory of potato domestication is necessary for an overall understanding of the development of highland Andean agriculture, as this crop is central to the autochthonous agricultural suite. A paucity of direct botanical evidence, however, has hindered research efforts. The results of the modern and archaeological starch analyses presented here underscore the utility of this method in addressing questions related to the timing, mode, and context of potato origins.

  15. Orbital Modification of the Himalia Family during an Early Solar System Dynamical Instability

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos A.

    2017-11-01

    Among the irregular satellites orbiting Jupiter, the Himalia family is characterized by a high velocity dispersion δ v of several hundred {{m}} {{{s}}}-1 among its members, inconsistent with a collisional origin. Efforts to account for this through internecine gravitational interactions do not readily reproduce this feature. Here, we revisit the problem in the context of recent cosmogonical models, where the giant planets migrated significantly through interaction with a planetesimal disk and suffered encounters with planetesimals and planet-sized objects. Our starting assumption is that family formation either predated this phase or occurred soon after its onset. We simulate numerically the diffusive effect of three distinct populations of perturbers on a set of test particles representing the family: Moon-sized (MPT) and Pluto-sized (PPT) planetesimals, and planetary-mass objects (PMO) with masses typical of ice-giant planets. We find that PPT flybys are inefficient, but encounters with MPTs raise the δ v of ∼60% of our test particles to > 200 {{m}} {{{s}}}-1 with respect to Himalia, in agreement with observations. As MPTs may not have been abundant in the disk, we simulate encounters between Jupiter and PMOs. We find that too few encounters generate less dispersion than MPTs while too many essentially destroy the family. For PMO masses in the range 5{--}20 {m}\\oplus , the family orbital distribution is reproduced by a few tens of encounters.

  16. Sedimentary laminations in the Isheyevo (CH/CBb) carbonaceous chondrite formed by gentle impact-plume sweep-up

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Knauth, L. Paul; Morris, Melissa A.

    2017-08-01

    Prominent macroscopic sedimentary laminations, consisting of mm- to cm-thick alternating well-sorted but poorly mixed silicate and metal-rich layers cut by faults and downward penetrating load structures, are prevalent in the Isheyevo (CH/CBb) carbonaceous chondrite. The load structures give the up direction of this sedimentary rock that accumulated from in-falling metal- and silicate-rich grains under near vacuum conditions onto the surface of an accreting planetesimal. The Isheyevo meteorite is the end result of a combination of events and processes that we suggest was initiated by the glancing blow impact of two planetesimals. The smaller impactor was disrupted forming an impact plume downrange of the impact. The components within the plume were aerodynamically size sorted by the nebular gas and swept up by the impacted planetesimal before turbulent mixing within the plume could blur the effects of the sorting. This plume would have contained a range of materials including elementally zoned Fe-Ni metal grains that condensed in the plume to disrupted unaltered material from the crust of the impactor, such as the hydrated matrix lumps. The juxtaposition of hydrated matrix lumps, some of which have not been heated above 150 °C, together with components that formed above 1000 °C, is compelling evidence that they were swept up together. Sweep-up would have occurred as the rotating impactor moved through the plume producing layers of material: the Isheyevo sample thus represents material accumulated while that part of the rotating planetesimal moved into the plume. Vibrations from subsequent impacts helped to form the load structures and induced weak grading within the layers via kinetic sieving. Following sweep-up, the particles were compacted under low static temperatures as evidenced by the preservation of elementally zoned Fe-Ni metal grains with preserved martensite α2 cores, distinct metal-metal grain boundaries, and metal-deformation microstructures. This

  17. Water and the Interior Structure of Terrestrial Planets and Icy Bodies

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Golabek, G. J.; Rubie, D. C.; Tobie, G.; Young, E. D.

    2018-02-01

    Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

  18. Heliocentric zoning of the asteroid belt by aluminum-26 heating

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.; Mcsween, H. Y., Jr.

    1993-01-01

    Variations in petrology among meteorites attest to a strong heating event early in solar system history, but the heat source has remained unresolved. Aluminum-26 has been considered the most likely high-energy, short-lived radionuclide (half-life 0.72 million years) since the discovery of its decay product - excess Mg-26 - in Allende CAI's. Furthermore, observation of relict Mg-26 in an achondritic clast and in feldspars within ordinary chondrites (3,4) provided strong evidence for live Al-26 in meteorite parent bodies and not just in refractory nebular condensates. The inferred amount of Al-26 is consistent with constraints on the thermal evolution of both ordinary and carbonaceous chondrite parent objects up to a few hundred kilometers in diameter. Meteorites can constrain the early thermal evolution of their parent body locations, provided that a link can be established between asteroid spectrophotometric signature and meteorite class. Asteroid compositions are heliocentrically distributed: objects thought to have experienced high metamorphic or even melting temperatures are located closer to the sun, whereas apparently unaltered or mildly heated asteroids are located farther away. Heliocentric zoning could be the result of Al-26 heating if the initial amount of the radionuclide incorporated into planetesimals was controlled by accretion time, which in turn varies with semimajor axis. Analytic expressions for planetary accretion may be integrated to given the time, tau, required for a planetesimal to grow to a specified radius: tau varies as a(sup n), where n = 1.5 to 3 depending on the assumptions about variations in the surface density of the planetesimal swarm. Numerical simulations of planetesimal accretion at fixed semimajor axis demonstrate that variations in accretion time among small planetesimals can be strongly nonlinear depending on the initial conditions and model assumptions. The general relationship with semimajor axis remains valid because it

  19. High velocity collisions between large dust aggregates at the limit for growing planetesimals

    NASA Astrophysics Data System (ADS)

    Wurm, G.; Teiser, J.; Paraskov, G.

    2007-08-01

    Planetesimals are km-size bodies supposed to be formed in protoplanetary disks as planetary precursors [1]. The most widely considered mechanism for their formation is based on mutual collisions of smaller bodies, a process which starts with the aggregation of (sub)-micron size dust particles. In the absence of events that lithify the growing dust aggregates, only the surface forces between dust particles provide adhesion and internal strength of the objects. It has been assumed that this might be a disadvantage as dust aggregates are readily destroyed by rather weak collisions. In fact, experimental research on dust aggregation showed that for collisions in the m/s range (sub)-mm size dust aggregates impacting a larger body do show a transition from sticking to rebound and/or fragmentation in collisions and no growth occurs at the large velocities [2, 3]. This seemed to be incompatible with typical collision velocities of small dust aggregates with m-size bodies which are expected to be on the order 50 m/s in protoplanetary disks [4]. We recently found that the experimental results cannot be scaled from m/s to tens of m/s collisions. In contrast to the assumptions and somewhat counterintuitive, it is the fragility of dust aggregates that allows growth at higher collision velocities. In impact experiments Wurm et al. [5] showed that between 13 m/s and 25 m/s a larger compact (target) body consisting of micron-size SiO2 dust particles accreted 50 % of the mass of a 1 cm dust projectile consisting of the same dust. For slower impacts the projectile only rebounded or fragmented slightly.

  20. More evidence for a one-to-one correlation between Sprites and Early VLF perturbations

    NASA Astrophysics Data System (ADS)

    Haldoupis, C.; Amvrosiadi, N.; Cotts, B. R. T.; van der Velde, O. A.; Chanrion, O.; Neubert, T.

    2010-07-01

    Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ˜50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter-receiver VLF pairs with great circle paths (GCPs) passing near a sprite-producing thunderstorm were available. In this setup, the multiple paths act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF path that can miss several of them, a fact that was overlooked in past studies. The evidence shows that visible sprite occurrences are accompanied by early VLF perturbations in a one-to-one correspondence. This implies that the sprite generation mechanism may cause also sub-ionospheric conductivity disturbances that produce early VLF events. However, the one-to-one visible sprite to early VLF event correspondence, if viewed conversely, appears not to be always reciprocal. This is because the number of early events detected in some case studies was considerably larger than the number of visible sprites. Since the great majority of the early events not accompanied by visible sprites appeared to be caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite-watch camera detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.

  1. Early Paleozoic paleogeography of the northern Gondwana margin: new evidence for Ordovician-Silurian glaciation

    NASA Astrophysics Data System (ADS)

    Semtner, A.-K.; Klitzsch, E.

    1994-12-01

    During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana margin were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent. The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana margin to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the ice-cap. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria. The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian ice advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.

  2. Aural exostoses (surfer's ear) provide vital fossil evidence of an aquatic phase in Man's early evolution.

    PubMed

    Rhys Evans, P H; Cameron, M

    2017-11-01

    For over a century, otolaryngologists have recognised the condition of aural exostoses, but their significance and aetiology remains obscure, although they tend to be associated with frequent swimming and cold water immersion of the auditory canal. The fact that this condition is usually bilateral is predictable since both ears are immersed in water. However, why do exostoses only grow in swimmers and why do they grow in the deep bony meatus at two or three constant sites? Furthermore, from an evolutionary point of view, what is or was the purpose and function of these rather incongruous protrusions? In recent decades, paleoanthropological evidence has challenged ideas about early hominid evolution. In 1992 the senior author suggested that aural exostoses were evolved in early hominid Man for protection of the delicate tympanic membrane during swimming and diving by narrowing the ear canal in a similar fashion to other semiaquatic species. We now provide evidence for this theory and propose an aetiological explanation for the formation of exostoses.

  3. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  4. Volatile inventory and early evolution of the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Ipatov, Sergei I.

    Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.

  5. Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Yoshinori; Korenaga, Jun

    We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less

  6. A magma ocean and the Earth's internal water budget

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  7. Heterogeneous Delivery of Silicate and Metal to the Earth via Large Planetesimals

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Canup, R. M.; Walker, R. J.

    2017-12-01

    Earth's mantle abundances of at least some highly siderophile elements, (HSE; Re, Os, Ir, Ru, Pt, Rh, Pd, and Au), are much higher than would result from metal-silicate equilibration during terrestrial core formation, and can be better explained as a result of late accretion of a minimum of 0.5% Earth's masses after core formation was complete. Traditional models assume that HSEs delivered by late projectiles completely mixed and chemically equilibrated with the Earth's mantle. This appears likely for undifferentiated, well-mixed projectiles, or for relatively small, differentiated projectiles. However several arguments suggest that late projectiles may have been large (> 1500 km in diameter) and differentiated, and in this case, portions of the projectile's core may merge with the Earth's core, rather than being mixed into the Earth's mantle. We investigate projectile mixing with a suite of SPH simulations of differentiated planetesimal colliding with the Earth. A range of outcomes emerge from our simulations suggesting that for large impactors (>1500 km), the delivery of HSE to the Earth's mantle may be disproportionate with the overall delivery of mass. For impacts with impact angles < 45° , between ˜ 20% to 80% of the impactor's core may merge directly with the Earth's core; while for impact angle > 60°, most of the impactor core escapes for moderate impact speeds. An implication is that the late accreted mass inferred from terrestrial HSE abundances may be a substantial underestimate, by a factor 2-5. In addition, partial mixing of projectiles result in an enrichment in mantle vs core material delivered to the bulk silicate Earth, implying substantial compositional variations in the accreted mass. Such variations could produce initially localized domains in Earth's mantle with distinct, mass independent isotopic signatures, given the isotopic variability resulting from nucleosynthetic heterogeneities among genetically diverse meteorites. In general we find

  8. Evidence for early irrigation at Bat (Wadi Sharsah, northwestern Oman) before the advent of farming villages

    NASA Astrophysics Data System (ADS)

    Desruelles, Stéphane; Fouache, Eric; Eddargach, Wassel; Cammas, Cecilia; Wattez, Julia; Beuzen-Waller, Tara; Martin, Chloé; Tengberg, Margareta; Cable, Charlotte; Thornton, Christopher; Murray, Andrew

    2016-10-01

    Decades of archaeological research in southeastern Arabia (Oman and the UAE) have provided a good understanding of the evolution of human societies in this arid region, with the transition from mobile pastoralism to settled agricultural villages occurring at the start of the Hafit period (ca. 3100-2700 BCE). The delayed adoption of farming, ceramics, mudbrick architecture, metallurgy, and other technologies until the start of the 3rd millennium BCE has been a particularly salient feature of this region relative to its neighbours in Mesopotamia, southern Iran, and northwestern South Asia. However, recent geoarchaeological research at the World Heritage Site of Bat, situated within the Wadi Sharsah valley in northwest Oman, has provided evidence of irrigation practices that have been dated to the early-mid 4th millennium BCE. While direct evidence of farming from this early period remains elusive, the presence of irrigated fields at this time raises new questions about the supposedly mobile pastoralist groups of the Arabian Neolithic and the beginning of farming practices in the region.

  9. Late Chondritic Additions and Planet and Planetesimal Growth: Evaluation of Physical and Chemical Mechanisms

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2013-01-01

    Studies of terrestrial peridotite and martian and achondritic meteorites have led to the conclusion that addition of chondritic material to growing planets or planetesimals, after core formation, occurred on Earth, Mars, asteroid 4 Vesta, and the parent body of the angritic meteorites [1-4]. One study even proposed that this was a common process in the final stages of growth [5]. These conclusions are based almost entirely on the highly siderophile elements (HSE; Re, Au, Pt, Pd, Rh, Ru, Ir, Os). The HSE are a group of eight elements that have been used to argue for late accretion of chondritic material to the Earth after core formation was complete (e.g., [6]). This idea was originally proposed because the D(metal/silicate) values for the HSE are so high, yet their concentration in the mantle is too high to be consistent with such high Ds. The HSE also are present in chondritic relative abundances and hence require similar Ds if this is the result of core-mantle equilibration. Since the work of [6] there has been a realization that core formation at high PT conditions can explain the abundances of many siderophile elements in the mantle (e.g., [7]), but such detailed high PT partitioning data are lacking for many of the HSE to evaluate whether such ideas are viable for all four bodies. Consideration of other chemical parameters reveals larger problems that are difficult to overcome, but must be addressed in any scenario which calls on the addition of chondritic material to a reduced mantle. Yet these problems are rarely discussed or emphasized, making the late chondritic (or late veneer) addition hypothesis suspect.

  10. Decision making and action implementation: evidence for an early visually triggered motor activation specific to potential actions.

    PubMed

    Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J

    2013-07-01

    To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.

  11. Calcic micas in the Allende meteorite - Evidence for hydration reactions in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Buseck, Peter R.

    1991-01-01

    Two calcic micas, clintonite and margarite, have been identified in alteration products in a calcium- and aluminum-rich inclusion (CAI) in the Allende meteorite. Clintonite replaces grossular in alteration veins, and margarite occurs as lamellae in anorthite. Their occurrence suggests that, in addition to undergoing high-temperature alteration by a volatile and iron-rich vapor that produced the grossular and anorthite, some CAIs underwent alteration at moderate temperatures (400 K or less). Petrographic evidence suggests that the calcic micas formed before accretion but after the formation of the layered rim sequences that surround the CAI. These calcic micas provide strong evidence that, contrary to theoretical calculations, some hydration reactions occurred in the early solar nebula.

  12. A Clinical Translation of the Article Titled "Evidence for the Implementation of the Early Start Denver Model for Young Children With Autism Spectrum Disorder".

    PubMed

    Shannon, Robin Adair

    2015-01-01

    The purpose of this article is to offer a clinical translation of a literature review titled "Evidence for the Implementation of the Early Start Denver Model for Young Children With Autism Spectrum Disorder" by Ryberg (2015). The literature review was conducted to determine the strength of the research evidence regarding the effectiveness of the Early Start Denver Model in improving cognitive, language, and behavioral functioning of children with autism spectrum disorder. In an effort to narrow the gap between evidence and practice, this clinical translation will discuss the components of the literature review in terms of its rationale for and objectives, methods, results, and implications for evidence-based nursing practice. © The Author(s) 2015.

  13. Molecular genetic studies of natives on Easter Island: evidence of an early European and Amerindian contribution to the Polynesian gene pool.

    PubMed

    Lie, B A; Dupuy, B M; Spurkland, A; Fernández-Viña, M A; Hagelberg, E; Thorsby, E

    2007-01-01

    Most archaeological and linguistic evidence suggest a Polynesian origin of the population of Easter Island (Rapanui), and this view has been supported by the identification of Polynesian mitochondrial DNA (mtDNA) polymorphisms in prehistoric skeletal remains. However, some evidence of an early South American contact also exists (the sweet potato, bottle gourd etc.), but genetic studies have so far failed to show an early Amerindian contribution to the gene pool on Easter Island. To address this issue, we analyzed mtDNA and Y chromosome markers and performed high-resolution human leukocyte antigen (HLA) genotyping of DNA harvested from previously collected sera of 48 reputedly nonadmixed native Easter Islanders. All individuals carried mtDNA types and HLA alleles previously found in Polynesia, and most men carried Y chromosome markers of Polynesian origin, providing further evidence of a Polynesian origin of the population of Easter Island. A few individuals carried HLA alleles and/or Y chromosome markers of European origin. More interestingly, some individuals carried the HLA alleles A*0212 and B*3905, which are of typical Amerindian origin. The genealogy of some of the individuals carrying these non-Polynesian HLA alleles and their haplotypic backgrounds suggest an introduction into Easter Island in the early 1800s, or earlier. Thus, there may have been an early European and Amerindian contribution to the Polynesian gene pool of Easter Island.

  14. Jupiter's decisive role in the inner Solar System's early evolution.

    PubMed

    Batygin, Konstantin; Laughlin, Greg

    2015-04-07

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter's inward migration entrained s ≳ 10-100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.

  15. The Early Development of Human Mirror Mechanisms: Evidence from Electromyographic Recordings at 3 and 6 Months

    ERIC Educational Resources Information Center

    Turati, Chiara; Natale, Elena; Bolognini, Nadia; Senna, Irene; Picozzi, Marta; Longhi, Elena; Cassia, Viola Macchi

    2013-01-01

    In primates and adult humans direct understanding of others' action is provided by mirror mechanisms matching action observation and action execution (e.g. Casile, Caggiano & Ferrari, 2011). Despite the growing body of evidence detailing the existence of these mechanisms in the adult human brain, their origins and early development are…

  16. Leg Length Versus Torso Length in Pedophilia: Further Evidence of Atypical Physical Development Early in Life.

    PubMed

    Fazio, Rachel L; Dyshniku, Fiona; Lykins, Amy D; Cantor, James M

    2017-08-01

    Adult men's height results from an interaction among positive and negative influences, including genetic predisposition, conditions in utero, and influences during early development such as nutritional quality, pathogen exposure, and socioeconomic status. Decreased height, reflected specifically as a decreased leg length, is strongly associated with increased risk of poorer health outcomes. Although prior research has repeatedly shown that pedophiles are shorter than nonpedophiles, the largest study to date relied on self-reported height. In the present study, pedophiles demonstrated reduced measured height and reduced leg length as compared with teleiophiles. Given the prenatal and early childhood origins of height, these findings contribute additional evidence to a biological, developmental origin of pedophilia. In addition, the magnitude of this height difference was substantially larger than that found in children exposed to a variety of early environmental stressors, but similar to that seen in other biologically based neurodevelopmental disorders.

  17. Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Morbidelli, Alessandro

    2012-10-01

    Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 104 numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M disk >~ 50 M Earth), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e 55 <~ 0.01 compared to present e 55 = 0.044, where e 55 is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M disk ~= 20 M Earth. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a sime5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

  18. Laying a Firm Foundation: Embedding Evidence-Based Emergent Literacy Practices Into Early Intervention and Preschool Environments.

    PubMed

    Terrell, Pamela; Watson, Maggie

    2018-04-05

    As part of this clinical forum on curriculum-based intervention, the goal of this tutorial is to share research about the importance of language and literacy foundations in natural environments during emergent literacy skill development, from infancy through preschool. Following an overview of intervention models in schools by Powell (2018), best practices at home, in child care, and in preschool settings are discussed. Speech-language pathologists in these settings will be provided a toolbox of best emergent literacy practices. A review of published literature in speech-language pathology, early intervention, early childhood education, and literacy was completed. Subsequently, an overview of the impact of early home and preschool literacy experiences are described. Research-based implementation of best practice is supported with examples of shared book reading and child-led literacy embedded in play within the coaching model of early intervention. Finally, various aspects of emergent literacy skill development in the preschool years are discussed. These include phonemic awareness, print/alphabet awareness, oral language skills, and embedded/explicit literacy. Research indicates that rich home literacy environments and exposure to rich oral language provide an important foundation for the more structured literacy environments of school. Furthermore, there is a wealth of evidence to support a variety of direct and indirect intervention practices in the home, child care, and preschool contexts to support and enhance all aspects of oral and written literacy. Application of this "toolbox" of strategies should enable speech-language pathologists to address the prevention and intervention of literacy deficits within multiple environments during book and play activities. Additionally, clinicians will have techniques to share with parents, child care providers, and preschool teachers for evidence-based literacy instruction within all settings during typical daily

  19. Nucleosynthetic and Mass-Dependent Titanium Isotope Variations in Individual Chondrules of Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Schönbächler, M.; Bauer, K. K.; Fehr, M. A.; Chaumard, N.; Zanda, B.

    2017-02-01

    We present evidence for nucleosynthetic Ti isotope heterogeneity between individual chondrules of ordinary chondrites difficult to reconcile with chondrule formation from molten planetesimals. Metamorphism resulted in stable Ti isotope fractionation.

  20. New Archaeological Evidence for an Early Human Presence at Monte Verde, Chile.

    PubMed

    Dillehay, Tom D; Ocampo, Carlos; Saavedra, José; Sawakuchi, Andre Oliveira; Vega, Rodrigo M; Pino, Mario; Collins, Michael B; Scott Cummings, Linda; Arregui, Iván; Villagran, Ximena S; Hartmann, Gelvam A; Mella, Mauricio; González, Andrea; Dix, George

    2015-01-01

    Questions surrounding the chronology, place, and character of the initial human colonization of the Americas are a long-standing focus of debate. Interdisciplinary debate continues over the timing of entry, the rapidity and direction of dispersion, the variety of human responses to diverse habitats, the criteria for evaluating the validity of early sites, and the differences and similarities between colonization in North and South America. Despite recent advances in our understanding of these issues, archaeology still faces challenges in defining interdisciplinary research problems, assessing the reliability of the data, and applying new interpretative models. As the debates and challenges continue, new studies take place and previous research reexamined. Here we discuss recent exploratory excavation at and interdisciplinary data from the Monte Verde area in Chile to further our understanding of the first peopling of the Americas. New evidence of stone artifacts, faunal remains, and burned areas suggests discrete horizons of ephemeral human activity in a sandur plain setting radiocarbon and luminescence dated between at least ~18,500 and 14,500 cal BP. Based on multiple lines of evidence, including sedimentary proxies and artifact analysis, we present the probable anthropogenic origins and wider implications of this evidence. In a non-glacial cold climate environment of the south-central Andes, which is challenging for human occupation and for the preservation of hunter-gatherer sites, these horizons provide insight into an earlier context of late Pleistocene human behavior in northern Patagonia.

  1. New Archaeological Evidence for an Early Human Presence at Monte Verde, Chile

    PubMed Central

    Dillehay, Tom D.; Ocampo, Carlos; Saavedra, José; Sawakuchi, Andre Oliveira; Vega, Rodrigo M.; Pino, Mario; Collins, Michael B.; Scott Cummings, Linda; Arregui, Iván; Villagran, Ximena S.; Hartmann, Gelvam A.; Mella, Mauricio; González, Andrea; Dix, George

    2015-01-01

    Questions surrounding the chronology, place, and character of the initial human colonization of the Americas are a long-standing focus of debate. Interdisciplinary debate continues over the timing of entry, the rapidity and direction of dispersion, the variety of human responses to diverse habitats, the criteria for evaluating the validity of early sites, and the differences and similarities between colonization in North and South America. Despite recent advances in our understanding of these issues, archaeology still faces challenges in defining interdisciplinary research problems, assessing the reliability of the data, and applying new interpretative models. As the debates and challenges continue, new studies take place and previous research reexamined. Here we discuss recent exploratory excavation at and interdisciplinary data from the Monte Verde area in Chile to further our understanding of the first peopling of the Americas. New evidence of stone artifacts, faunal remains, and burned areas suggests discrete horizons of ephemeral human activity in a sandur plain setting radiocarbon and luminescence dated between at least ~18,500 and 14,500 cal BP. Based on multiple lines of evidence, including sedimentary proxies and artifact analysis, we present the probable anthropogenic origins and wider implications of this evidence. In a non-glacial cold climate environment of the south-central Andes, which is challenging for human occupation and for the preservation of hunter-gatherer sites, these horizons provide insight into an earlier context of late Pleistocene human behavior in northern Patagonia. PMID:26580202

  2. Pacopampa: Early evidence of violence at a ceremonial site in the northern Peruvian highlands.

    PubMed

    Nagaoka, Tomohito; Uzawa, Kazuhiro; Seki, Yuji; Morales Chocano, Daniel

    2017-01-01

    Pacopampa, a ceremonial complex in Peru's northern highlands, reveals early evidence of trauma in the Middle to Late Formative Period coinciding with the emergence of social stratification in the area. We examine the prevalence of trauma in human remains found at the site and present evidence of the circumstances surrounding the deaths of individuals who lived during the early stages of Andean civilization. The materials are the remains of 104 individuals (38 non-adult and 66 adult) from the Middle to Late Formative Periods. We explored trauma macroscopically and recorded patterns based on skeletons' locations, age at death, sex, social class, and chronology. We detected trauma in remains over the Middle to Late Formative Periods. While the prevalence of trauma was minimal in the Middle Formative Period, skeletons from the subsequent era exhibit more severe disturbances. However, all the skeletons show signs of healing and affected individuals experienced a low degree of trauma. Given the archaeological context (the remains were recovered from sites of ceremonial practices), as well as the equal distribution of trauma among both sexes and a lack of defensive architecture, it is plausible that rituals, rather than organized warfare or raids, caused most of the exhibited trauma. Pacopampa was home to a complex society founded on ritual activity in a ceremonial center: this is indicated by the presence of ritual violence in a society that built impressively large, ceremonial architecture and developed social stratification without any political control of surplus agricultural goods.

  3. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Dunk, Caroline E; Aplin, John D; Harris, Lynda K; Jones, Rebecca L

    2009-05-01

    Decidual artery remodeling is essential for a healthy pregnancy. This process involves loss of vascular smooth muscle cells and endothelium, which are replaced by endovascular trophoblasts (vEVTs) embedded in fibrinoid. Remodeling is impaired during pre-eclampsia, a disease of pregnancy that results in maternal and fetal mortality and morbidity. Early vascular changes occur in the absence of vEVTs, suggesting that another cell type is involved; evidence from animal models indicates that decidual leukocytes play a role. We hypothesized that leukocytes participate in remodeling through the triggering of apoptosis or extracellular matrix degradation. Decidua basalis samples (8 to 12 weeks gestation) were examined by immunohistochemistry to elucidate associations between leukocytes, vEVTs, and key remodeling events. Trophoblast-independent and -dependent phases of remodeling were identified. Based on a combination of morphological attributes, vessel profiles were classified into a putative temporal series of four stages. In early stages of remodeling, vascular smooth muscle cells showed dramatic disruption and disorganization before vEVT presence. Leukocytes (identified as uterine natural killer cells and macrophages) were apparent infiltrating vascular smooth muscle cells layers and were matrix metalloproteinase-7 and -9 immunopositive. A proportion of vascular smooth muscle cells and endothelial cells were terminal deoxynucleotidyl transferase dUTP nick-end labeling positive, suggesting remodeling involves apoptosis. We thus confirm that vascular remodeling occurs in distinct trophoblast-independent and -dependent stages and provide the first evidence of decidual leukocyte involvement in trophoblast-independent stages.

  4. A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera.

    PubMed

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L; Rasnitsyn, Alexandr P

    2012-12-01

    Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.].

  5. A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera

    PubMed Central

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L.; Rasnitsyn, Alexandr P.

    2012-01-01

    Abstract Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.] PMID:22723471

  6. The Early Universe: Searching for Evidence of Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  7. Planetary science: Iron fog of accretion

    DOE PAGES

    Anderson, William W.

    2015-03-02

    Here, pinpointing when Earth's core formed depends on the extent of metal–silicate equilibration in the mantle. Vaporization and recondensation of impacting planetesimal cores during accretion may reconcile disparate lines of evidence.

  8. Old formation ages of igneous clasts on the L chondrite parent body reflect an early generation of planetesimals or chondrule formation

    NASA Astrophysics Data System (ADS)

    Crowther, Sarah A.; Filtness, Michal J.; Jones, Rhian H.; Gilmour, Jamie D.

    2018-01-01

    The Barwell meteorite contains large, abundant clasts that are igneous in nature. We report iodine-xenon ages of five clasts and one sample of host chondrite material. The fragment of host chondrite material yielded the oldest age determined: 4567.8 ± 1.2 Ma. Two clasts produced old, well defined ages of 4564.96 ± 0.33 Ma and 4565.60 ± 0.33 Ma. These, and a third clast having a less precise old age of 4566.0 ± 3.2 Ma, are interpreted as recording the timing of crystallisation of the samples. They were incorporated into the Barwell parent body before it underwent thermal metamorphism, but the I-Xe ages survived secondary processing on the parent body and were not reset by metamorphism, metasomatism or shock. Two further clasts record younger ages of 4560.96 ± 0.45 Ma and 4554.22 ± 0.38 Ma. These samples contain a high abundance of albitic mesostasis, and the most likely explanation of the ages is that they record the timing of metasomatism on the parent body. We also analysed four host chondrite samples that do not give I-Xe ages: in these samples, the system appears to have been disturbed by shock. It has been suggested previously that the igneous clasts are derived from an early generation of partially melted asteroids. We do not have direct evidence that the clasts we examined were necessarily derived from a partially differentiated body, only that they were derived from cooling of a silicate melt; the clasts could thus be the products of any one of several proposed models for chondrule formation. Our results indicate that processes akin to chondrule formation, in that they involve rapid cooling of a silicate melt, were ongoing at the same time as CAI formation, lending support to the suggestion that Al-Mg chondrule ages indicate either heterogeneous distribution of 26Al or resetting of the Al-Mg system after chondrule formation.

  9. Saving the Inner Solar System with an Early Instability

    NASA Astrophysics Data System (ADS)

    Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.

    2018-04-01

    An orbital instability between the solar system’s giant planets (the so-called Nice Model) has been shown to greatly disturb the orbits of the young terrestrial planets. Undesirable outcomes such as over-excitated orbits, ejections and collisions can be avoided if the instability occurs before the inner planets are fully formed. Such a scenario also has the advantage of limiting the mass and formation time of Mars when it occurs within several million years (Myr) of gas disk dissipation. The dynamical effects of the instability cause many small embryos and planetesimals to scatter away from the forming Mars, and lead to heavy mass depletion in the Asteroid Belt. We present new simulations of this scenario that demonstrate its ability to accurately reproduce the eccentricity, inclination and resonant structures of the Asteroid Belt. Furthermore, we perform simulations using an integration scheme which accounts for the fragmentation of colliding bodies. The final terrestrial systems formed in these simulations provide a better match to the actual planets' compact mass distribution and dynamically cold orbits. An early instability scenario is thus very successful at simultaneously replicating the dynamical state of both the inner and outer solar system.

  10. The Long-Term Impacts of Medicaid Exposure in Early Childhood: Evidence from the Program's Origin*

    PubMed Central

    Boudreaux, Michel H.; Golberstein, Ezra; McAlpine, Donna D.

    2016-01-01

    This paper examines the long-term impact of exposure to Medicaid in early childhood on adult health and economic status. The staggered timing of Medicaid's adoption across the states created meaningful variation in cumulative exposure to Medicaid for birth cohorts that are now in adulthood. Analyses of the Panel Study of Income Dynamics suggest exposure to Medicaid in early childhood (age 0-5) is associated with statistically significant and meaningful improvements in adult health (age 25-54), and this effect is only seen in subgroups targeted by the program. Results for economic outcomes are imprecise and we are unable to come to definitive conclusions. Using separate data we find evidence of two mechanisms that could plausibly link Medicaid's introduction to long-term outcomes: contemporaneous increases in health services utilization for children and reductions in family medical debt. PMID:26763123

  11. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    PubMed Central

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-01-01

    It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965

  12. Fractionation and Accretion of Meteorite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    2005-01-01

    Senior Scientist Stuart J. Weidenschilling presents his final administrative report for the research program on which he was the Principal Investigator. The research program resulted in the following publications: 1) Particle-gas dynamics and primary accretion. J. N. Cuzzi and S. J . Weidenschilling. To appear in Meteorites and the Early Solar System 11 (D. Lauretta et a]., Eds.), Univ. Arizona Press. 2005; 2) Timescales of the solar protoplanetary disk. S. Russell, L. Hartmann, J . N. Cuzzi, A. Krot, M. Gounelle and S. J. Weidenschilling. To appear in Meteorites and the Early Solar System II (D. Lauretta et al., Eds.), Univ. Arizona Press, 2005; 3) Nebula evolution of thermally processed solids: Reconciling astrophysical models and chondritic meteorites. J. N. Cuzzi, F. J. Ciesla, M. I. Petaev, A. N. Krot, E. R. D. Scott and S . J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et a]., Eds.), ASP Conference Series, 2005; 4) Possible chondrule formation in planetesimal bow shocks: Physical processes in the near vicinity of the planetesimal. L. L. Hood, F. J. Ciesla and S. J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et al., Eds.), ASP Conference Series, 2005; 5) From icy grains to comets. In Comets II (M. Festou et al., Eds.), Univ. Arizona Press, pp. 97- 104, 2005; 6) Evaluating planetesimal bow shocks as sites for chondrule formation. F. J . Ciesla, L. L. Hood and S. J. Weidenschilling. Meteoritics & Planetary Science 39, 1809-1 821, 2004; and 7) Radial drift of particles in the solar nebula: Implications for planetesimal formation. Icarus 165, 438-442, 2003.

  13. Continuity versus discontinuity of the human settlement of Europe between the late Early Pleistocene and the early Middle Pleistocene. The mandibular evidence

    NASA Astrophysics Data System (ADS)

    Bermúdez de Castro, José María; Martinón-Torres, María; Rosell, Jordi; Blasco, Ruth; Arsuaga, Juan Luís; Carbonell, Eudald

    2016-12-01

    One of the most interesting aspects of the settlement of Europe is the possible continuity or discontinuity of the populations living in this continent during the Early and Middle Pleistocene. In this paper we present an analysis of the mandibular fossil record from four important Pleistocene European sites, Gran Dolina-TD6-2 (Sierra de Atapuerca), Mauer, Arago, and Atapuerca-Sima de los Huesos. We focus this study in the recognition of key derived mandibular features that may be useful to assess the relationship among the populations represented at these sites. In order to make an approach to the ecological scenario, we also present a short review and discussion of the archaeological and paleoenvironmental evidences at that time. Our results suggest that probably there was a demographic discontinuity between the late Early Pleistocene populations (MIS 21-MIS 19), and those dated to the MIS 15. Hybridization between residents and new settlers cannot be discarded. However, some features of the Gran Dolina-TD6 hominins point to some relationship between the population represented in this site (probably dated to the MIS 21) and the European Middle Pleistocene and early Late Pleistocene populations. A hypothetical scenario is presented in order to understand this apparent contradiction with the model of discontinuity.

  14. Inputs in the Production of Early Childhood Human Capital: Evidence from Head Start. NBER Working Paper No. 20639

    ERIC Educational Resources Information Center

    Walters, Christopher

    2014-01-01

    Studies of small-scale "model" early-childhood programs show that high-quality preschool can have transformative effects on human capital and economic outcomes. Evidence on the Head Start program is more mixed. Inputs and practices vary widely across Head Start centers, however, and little is known about variation in effectiveness within…

  15. The solar nebula and the planetesimal disk

    NASA Technical Reports Server (NTRS)

    Ward, W. R.

    1984-01-01

    Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.

  16. The solar nebula and the planetesimal disk

    NASA Astrophysics Data System (ADS)

    Ward, W. R.

    Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.

  17. Jupiter’s decisive role in the inner Solar System’s early evolution

    PubMed Central

    Batygin, Konstantin; Laughlin, Greg

    2015-01-01

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution. PMID:25831540

  18. Early-life conditions and child development: Evidence from a violent conflict.

    PubMed

    Duque, Valentina

    2017-12-01

    This paper investigates how the exposure to violent conflicts in utero and in early and late childhood affect human capital formation. I focus on a wide range of child development outcomes, including novel cognitive and non-cognitive indicators. Using monthly and municipality-level variation in the timing and severity of massacres in Colombia from 1999 to 2007, I show that children exposed to terrorist attacks in utero and in childhood achieve lower height-for-age (0.09 SD) and cognitive outcomes (PPVT falls by 0.18SD and math reasoning and general knowledge fall by 0.16SD), and that these results are robust to controlling for mother fixed-effects. The timing of these exposures matters and differs by type of skill. In terms of parental investments, I find some evidence that parents reinforce the negative effects of violence by increasing their frequency of physical aggression.

  19. Pacopampa: Early evidence of violence at a ceremonial site in the northern Peruvian highlands

    PubMed Central

    Uzawa, Kazuhiro; Seki, Yuji; Morales Chocano, Daniel

    2017-01-01

    Objectives Pacopampa, a ceremonial complex in Peru’s northern highlands, reveals early evidence of trauma in the Middle to Late Formative Period coinciding with the emergence of social stratification in the area. We examine the prevalence of trauma in human remains found at the site and present evidence of the circumstances surrounding the deaths of individuals who lived during the early stages of Andean civilization. Materials and methods The materials are the remains of 104 individuals (38 non-adult and 66 adult) from the Middle to Late Formative Periods. We explored trauma macroscopically and recorded patterns based on skeletons’ locations, age at death, sex, social class, and chronology. Results We detected trauma in remains over the Middle to Late Formative Periods. While the prevalence of trauma was minimal in the Middle Formative Period, skeletons from the subsequent era exhibit more severe disturbances. However, all the skeletons show signs of healing and affected individuals experienced a low degree of trauma. Discussion Given the archaeological context (the remains were recovered from sites of ceremonial practices), as well as the equal distribution of trauma among both sexes and a lack of defensive architecture, it is plausible that rituals, rather than organized warfare or raids, caused most of the exhibited trauma. Pacopampa was home to a complex society founded on ritual activity in a ceremonial center: this is indicated by the presence of ritual violence in a society that built impressively large, ceremonial architecture and developed social stratification without any political control of surplus agricultural goods. PMID:28957380

  20. The Nice model can explain the dispersion of the prograde Himalia family of irregular satellites at Jupiter

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos

    2017-10-01

    More than 50 irregular satellites revolve around Jupiter in which at least three distinct collisional families are identified. Among them, the Himalia family is unique in the large velocity dispersion--several hundred m/s--among its members, inconsistent with a purely collisional origin.We explore this puzzle in the context of the Nice scenario of early solar system evolution. There, the giant planets migrated significant distances due to interactions with a primordial planetesimal disk. We generate a synthetic, collisionally-produced Himalia family and follow its evolution through principal events of the Nice model. Two situations are considered: (i) The planetesimal disk is solely composed of large, moon-sized objects. In this case, the family is dramatically scattered, especially in semimajor axis and eccentricity, as the planetesimals fly by Jupiter. The velocity dispersion of $\\sim60\\%$ of family members is raised to several hundred m/s, satisfactorily explaining the observed dispersion. However, this situation is not likely as the considered planetesimals seem unphysically massive. We now consider the alternative case (ii) within the so-called ``Jumping Jupiter’’ where planetary, rather than planetesimal encounters are responsible for the observed dispersion. Here, ice giants encounter Jupiter up to a few hundred times (Nesvorn\\'{y} \\& Morbidelli 2012). We find $\\lesssim20$ such planetary encounters disperse the synthetic family to the observed degree. We also find that the family cannot survive $\\sim100$ such fly-bys as the satellites become too widely dispersed.Reference: Nesvorn\\'{y}, D., \\& Morbidelli, A. 2012, AJ, 144, 117.

  1. Measuring the Effectiveness of Knowledge Creation as a Means of Facilitating Evidence-Informed Practice in Early Years Settings in One London Borough

    ERIC Educational Resources Information Center

    Brown, Chris; Rogers, Sue

    2014-01-01

    This paper examines our use of knowledge-creation activity as a way of developing evidence-informed practice among a learning community of 36 early years practitioners in one London borough. It also seeks to illustrate how we approached the idea of measuring evidence use and our engagement with, and adapted use of, two separate measurement scales:…

  2. Minimal second language exposure, SES, and early word comprehension: New evidence from a direct assessment*

    PubMed Central

    Deanda, Stephanie; Arias-Trejo, Natalia; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret

    2015-01-01

    Although the extant literature provides robust evidence of the influence of language exposure and socioeconomic status (SES) on language acquisition, it is unknown how sensitive the early receptive vocabulary system is to these factors. The current study investigates effects of minimal second language exposure and SES on the comprehension vocabulary of 16-month-old children in the language in which they receive the greatest exposure. Study 1 revealed minimal second language exposure and SES exert significant and independent effects on a direct measure of vocabulary comprehension in English-dominant and English monolingual children (N = 72). In Study 2, we replicated the effect of minimal second language exposure in Spanish-dominant and Spanish monolingual children (N = 86), however no effect of SES on vocabulary was obtained. Our results emphasize the sensitivity of the language system to minimal changes in the environment in early development. PMID:26957947

  3. Early Modern Humans and Morphological Variation in Southeast Asia: Fossil Evidence from Tam Pa Ling, Laos

    PubMed Central

    Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José

    2015-01-01

    Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125

  4. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico

    PubMed Central

    Piperno, Dolores R.; Ranere, Anthony J.; Holst, Irene; Iriarte, Jose; Dickau, Ruth

    2009-01-01

    Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands. PMID:19307570

  5. Ordinary Chondrites Viewed as Reassembled 'Splash Ejecta'

    NASA Astrophysics Data System (ADS)

    Sanders, I. S.

    1995-09-01

    ^-5) in CAIs from different classes of meteorite [4] suggests that 26Al was uniformly distributed in the dust which eventually formed the chondrite parent bodies. This amount of 26Al translates to some 7000 J g^-1. A simple finite element calculation was made to assess the likely thermal evolution of planetesimals of different sizes, starting from 300K at different times. The proposed body of 30 km radius at 1 Ma was found to be a limit for substantial internal melting. Its interior would have remained molten for several million years. Earlier accretion, or larger planetesimals, would have generated even more melt. It seems, therefore, that molten planetesimals were abundant in the early solar system. Moreover, they evidently suffered collision and accretion. If their collision products were not chondrules, then what were they? Two further arguments favouring the proposed scenario concern the age difference of CAIs and chondrules, and the existence of macrochondrules. Cameron's Leonard Award address [2] was stimulated by the inferred time interval of several million years between the formation of CAIs and chondrules. Chondrules were interpreted as dust melted by solar flare activity, the dust having been produced by late collisions between planetesimals. If, as is argued here, the planetesimals were already internally molten, chondrules would have been produced directly, without need to invoke a solar flare heat source. A separate issue is the existence of porphyritic olivine macrochondrules up to 4 cm across [5]. Macrochondrules are not easily reconcilable with chondrule formation by radiative heating in a nebular setting. Such a mechanism predicts an inverse relationship between chondrule diameter and temperature rise, which is not observed. However, in the present scenario macrochondrules are interpreted simply as examples of large blobs of frozen melt. References: [1] Sanders I. S. (1994) Meteoritics, 29, 527. [2] Cameron A. G. W. (1995) Meteoritics, 30, 133-161. [3

  6. The origin of crustaceans: new evidence from the Early Cambrian of China.

    PubMed Central

    Chen, J. Y.; Vannier, J.; Huang, D. Y.

    2001-01-01

    One of the smallest arthropods recently discovered in the Early Cambrian Maotianshan Shale Lagerstätte is described. Ercaia gen. nov. has an untagmatized trunk bearing serially repeated biramous appendages (long and segmented endopods and flap-like exopods), a head with an acron bearing stalked lateral eyes and a sclerite and two pairs of antennae. The position of this 520 million-year-old tiny arthropod within the Crustacea is supported by several anatomical features: (i) a head with five pairs of appendages including two pairs of antennae, (ii) highly specialized antennae (large setose fans with a possible function in feeding), and (iii) specialized last trunk appendages (segmented pediform structures fringed with setae). The segmentation pattern of Ercaia (5 head and 13 trunk) is close to that of Maxillopoda but lacks the trunk tagmosis of modern representatives of the group. Ercaia is interpreted as a possible derivative of the stem group Crustacea. Ercaia is likely to have occupied an ecological niche similar to those of some Recent meiobenthic organisms (e.g. copepods living in association with sediment). This new fossil evidence supports the remote ancestry of crustaceans well before the Late Cambrian and shows, along with other fossil data (mainly Early Cambrian in China), that a variety of body plans already coexisted among the primitive crustacean stock. PMID:11674864

  7. Early evidence (ca. 12,000 B.P.) for feasting at a burial cave in Israel

    PubMed Central

    Munro, Natalie D.; Grosman, Leore

    2010-01-01

    Feasting is one of humanity's most universal and unique social behaviors. Although evidence for feasting is common in the early agricultural societies of the Neolithic, evidence in pre-Neolithic contexts is more elusive. We found clear evidence for feasting on wild cattle and tortoises at Hilazon Tachtit cave, a Late Epipaleolithic (12,000 calibrated years B.P.) burial site in Israel. This includes unusually high densities of butchered tortoise and wild cattle remains in two structures, the unique location of the feasting activity in a burial cave, and the manufacture of two structures for burial and related feasting activities. The results indicate that community members coalesced at Hilazon to engage in special rituals to commemorate the burial of the dead and that feasts were central elements in these important events. Feasts likely served important roles in the negotiation and solidification of social relationships, the integration of communities, and the mitigation of scalar stress. These and other social changes in the Natufian period mark significant changes in human social complexity that continued into the Neolithic period. Together, social and economic change signal the very beginning of the agricultural transition. PMID:20805510

  8. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean.

    PubMed

    Tejada, M L G; Ravizza, G; Suzuki, K; Paquay, F S

    2012-01-01

    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with (187)Os/(188)Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism.

  9. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean

    PubMed Central

    Tejada, M. L. G.; Ravizza, G.; Suzuki, K.; Paquay, F. S.

    2012-01-01

    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with 187Os/188Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism. PMID:22355780

  10. Early detection of schizophrenia: current evidence and future perspectives

    PubMed Central

    HÄFNER, HEINZ; MAURER, KURT

    2006-01-01

    Research into the early course of schizophrenia has identified a prepsychotic prodromal stage (mean duration: 4.8 years) and a psychotic prephase (mean duration: 1.3 years). Comparisons of individually matched samples have demonstrated prodromal symptoms common to schizophrenia and moderate to severe depression. It is not until positive symptoms emerge that psychosis and mood disorders become distinguishable from each other. In both disorders the prodromal stage early produces functional impairment and related social consequences. Hence, early intervention is of great public health relevance. This intervention is targeted at manifest symptoms and not at the underlying, still unknown disease process. Cognitive-behavioural therapy at the prepsychotic prodromal stage seems to favourably influence the short-term illness course. In the psychotic prephase, a combination with low-dose antipsychotics seems to have some efficacy. The aim of early recognition by the instruments discussed in this paper is to permit the identification of the largest possible proportion of at-risk persons as early as possible and their referral to appropriate treatment. PMID:17139339

  11. Protocol for systematic review of evidence on the determinants and influence of early glycaemic control in childhood-onset type 1 diabetes.

    PubMed

    Mazarello Paes, Veena; Charalampopoulos, Dimitrios; Khanolkar, Amal R; Taylor-Robinson, David; Viner, Russell; Edge, Julie; Stephenson, Terence; Amin, Rakesh

    2015-11-12

    Landmark studies in adult-onset type 1 diabetes (T1D) populations indicate that improved glycaemic control through use of intensive insulin therapy is strongly associated with reduced risk for the development of diabetes-related complications and mortality in later years. However, it is unclear whether these associations can be extrapolated to childhood-onset T1D, given the influence of other important biological and psychosocial determinants of glycaemic control, particularly during adolescence. The aims of the review are (1) to investigate the impact of early glycaemic control (within the first 2 years after diagnosis) on subsequent glycaemic trends and risk of complications during the life course of childhood-onset T1D and (2) to identify the predictors of early glycaemic control in children and young people (0-25 years). The methods used in this study are systematic identification, review and mapping of quantitative (intervention and observational) and qualitative literature; assessing the effect and predictors of early glycaemic control in T1D (diagnosed ≤18 years) on risk or prevalence of later complications. An iterated search strategy, with no language or period restrictions, was applied to identify studies from six electronic databases. This will be supplemented by hand-searching (reference lists and contacting authors of studies meeting the inclusion criteria). Studies assessing glycaemic control within the first 2 years of diagnosis in children (at baseline) will be quality-assessed against predefined criteria and mapped descriptively to future health outcomes. Extracted data will be analysed and synthesised using narrative and forest plots or harvest plots for quantitative evidence and thematic analyses for qualitative studies. To get a deeper understanding of the predictors of early glycaemic control in reducing complications in childhood and adult life, we will integrate qualitative and quantitative evidence using mixed methods or parallel synthesis

  12. Early Introduction of an Evidence-based Medicine Course to Preclinical Medical Students

    PubMed Central

    Srinivasan, Malathi; Weiner, Michael; Breitfeld, Philip P; Brahmi, Fran; Dickerson, Keith L; Weiner, Gary

    2002-01-01

    Evidence-based Medicine (EBM) has been increasingly integrated into medical education curricula. Using an observational research design, we evaluated the feasibility of introducing a 1-month problem-based EBM course for 139 first-year medical students at a large university center. We assessed program performance through the use of a web-based curricular component and practice exam, final examination scores, student satisfaction surveys, and a faculty questionnaire. Students demonstrated active involvement in learning EBM and ability to use EBM principles. Facilitators felt that students performed well and compared favorably with residents whom they had supervised in the past year. Both faculty and students were satisfied with the EBM course. To our knowledge, this is the first report to demonstrate that early introduction of EBM principles as a short course to preclinical medical students is feasible and practical. PMID:11903776

  13. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  14. Sources of Terrestrial Volatiles

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Dones, L.

    1998-01-01

    Atmospheres are found enveloping those planets and satellites best able to hold them. The obvious conclusion is that volatile escape must have played nearly as great a role as volatile supply. A consequence of this view is that volatile supplies were probably much greater than the atmospheres that remain. The likeliest candidates are sources associated with the main events of planetary accretion itself such as volatile-rich planetesimals, or direct gravitational capture of nebular gases. Late asteroidal or cometary volatile-rich veneers are attractive, but they present quantitative difficulties. Comets in particular are inadequate, because the associated mass of stray comets that would have been scattered to the Oort Cloud or beyond is excessive. This difficulty applies to Uranus-Neptune planetesimals as well as to a putative massive early Kuiper Belt. Another potential problem with comets is that the D/H ratio in the three comets for which this has been measured is about twice that of Earth's oceans. Objects falling from a much augmented ancient asteroid belt remain a viable option, but timing is an issue: Can the depopulation of the asteroid belt be delayed long enough that it makes sense to talk of asteroids as a late veneer? Early accretion of asteroids as objects scattered into the maw of infant Earth makes more sense. Another appealing candidate population of volatile-rich objects for the inner solar system would be scattered planetesimals associated with the accretion of Jupiter, for two reasons: (1) Before there was Jupiter, there was no object in the solar system capable of expelling comets efficiently, and (2) the cross section of the inner solar system to stray objects was Greater when there were m many planetesimals.

  15. Adjuvant chemotherapy for early female breast cancer: a systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline

    PubMed Central

    Gandhi, S.; Fletcher, G.G.; Eisen, A.; Mates, M.; Freedman, O.C.; Dent, S.F.; Trudeau, M.E.

    2015-01-01

    Background The Program in Evidence-Based Care (pebc) of Cancer Care Ontario recently created an evidence-based consensus guideline on the systemic treatment of early breast cancer. The evidence for the guideline was compiled using a systematic review to answer the question “What is the optimal systemic therapy for patients with early-stage, operable breast cancer, when patient and disease factors are considered?” The question was addressed in three parts: cytotoxic chemotherapy, endocrine treatment, and human epidermal growth factor receptor 2 (her2)–directed therapy. Methods For the systematic review, the medline and embase databases were searched for the period January 2008 to May 2014. The Standards and Guidelines Evidence directory of cancer guidelines and the Web sites of major oncology guideline organizations were also searched. The basic search terms were “breast cancer” and “systemic therapy” (chemotherapy, endocrine therapy, targeted agents, ovarian suppression), and results were limited to randomized controlled trials (rcts), guidelines, systematic reviews, and meta-analyses. Results Several hundred documents that met the inclusion criteria were retrieved. The Early Breast Cancer Trialists’ Collaborative Group meta-analyses encompassed many of the rcts found. Several additional studies that met the inclusion criteria were retained, as were other guidelines and systematic reviews. Chemotherapy was reviewed mainly in three classes: anti-metabolite–based regimens (for example, cyclophosphamide–methotrexate–5-fluorouracil), anthracyclines, and taxane-based regimens. In general, single-agent chemotherapy is not recommended for the adjuvant treatment of breast cancer in any patient population. Anthracycline–taxane-based polychemotherapy regimens are, overall, considered superior to earlier-generation regimens and have the most significant impact on patient survival outcomes. Regimens with varying anthracycline and taxane doses and

  16. Technologies for Expanding the Reach of Evidence-Based Interventions: Preliminary Results for Promoting Social-Emotional Development in Early Childhood

    ERIC Educational Resources Information Center

    Baggett, Kathleen M.; Davis, Betsy; Feil, Edward G.; Sheeber, Lisa L.; Landry, Susan H.; Carta, Judith J.; Leve, Craig

    2010-01-01

    In great demand are efficient mechanisms for delivery of evidence-based interventions for promoting social-emotional development and early positive behavior of all children, and especially for those with or at risk for disabilities. The rise of Internet use has created potentially new avenues for intervention delivery, which, when paired with the…

  17. Hip Dislocation and Dystocia in Early Medieval Times: Possible Evidence of Labor Maneuver.

    PubMed

    Malgosa, Assumpció; Carrascal, Susana; Piga, Giampaolo; Isidro, Albert

    2016-12-01

    In ancient times, maternal mortality would occur frequently, particularly during labor. Evidence of dystocia resulting in the death of a pregnant woman is very infrequent in paleopathologic literature, with only a few cases being demonstrated. In the early medieval site of Casserres, the skeleton of a young woman with a fetus in the pelvic region was found. Some abnormal findings of the maternal skeleton were evaluated, including a sacral anomaly, femoral head wound, the rare position of the lower left limb with the femoral head dislodged anteriorly and cephalad from the socket, and a fibular fracture. Examining the anomalies all together, a case of anterior hip dislocation related to a McRoberts-like maneuver performed during labor is a plausible explanation of the findings.

  18. Evidence for the Implementation of the Early Start Denver Model for Young Children With Autism Spectrum Disorder.

    PubMed

    Ryberg, Kayce H

    2015-01-01

    The Early Start Denver Model (ESDM) is a manualized comprehensive therapy for toddlers with autism spectrum disorder. It emphasizes interpersonal engagement through synchrony, rhythms, and reciprocity to decrease symptom severity and accelerate cognitive, social-emotional, and language development. To systematically review evidence regarding the use of the ESDM as an intervention for young children with autism spectrum disorder. PubMed, Scopus, Web of Science, Embase, and CINAHL were searched from 2010-2015 using predetermined inclusion criteria. Study methodology, participant characteristics, and outcomes were evaluated and quality of evidence was assigned. Eight articles met inclusion criteria and consisted of two randomized controlled trials, four controlled trials, and two observational cohort studies. Evidence quality ranged from low to high. The ESDM is an effective intervention that improves cognition, language, and adaptive behavior. ESDM strategies delivered in community group settings and in the home by parents have potential to be efficacious and feasible. © The Author(s) 2015.

  19. Effect of Crossover in Oncology Clinical Trials on Evidence Levels in Early Benefit Assessment in Germany.

    PubMed

    Isbary, Georg; Staab, Thomas R; Amelung, Volker E; Dintsios, Charalabos-Markos; Iking-Konert, Christof; Nesurini, Sonja Mariotti; Walter, Miriam; Ruof, Jörg

    2018-06-01

    In oncology clinical trials, crossover is used frequently but may lead to uncertainties regarding treatment effects. To investigate the handling of evidence from crossover trials by the European Medicines Agency (EMA) and the German Federal Joint Committee (G-BA). For oncology medicines with early benefit assessments before January 2015, presence of crossover, clinical data, EMA requests for additional data, and G-BA benefit ratings/evidence levels were analyzed from manufacturers' dossiers, G-BA appraisals, European Public Assessment Reports, and original publications. Eleven of 21 benefit assessments included crossover trials. Significant intergroup differences (P < 0.05) in overall survival (OS) were noted in 7 of 11 trials with and 7 of 10 without crossover. For 6 of 11 medicines with crossover, these were demonstrated before crossover. Treatment effects generally worsened with increasing proportions of crossover. The EMA requested additional data more frequently if crossover was performed, particularly if no OS data were available before crossover. The G-BA granted a considerable benefit to 73% of medicines with crossover and 40% of those without. Evidence levels were intermediate for 50% and 75%, respectively. None of the medicines received the highest evidence level. In G-BA appraisals, oncology medicines with crossover received better additional benefit ratings, but were assigned lower evidence levels, than those without. The five medicines with crossover after progression were assigned lower evidence levels than the six medicines with crossover after demonstration of superior OS, indicating that the way in which crossover is implemented may be one factor influencing the assignment of evidence levels by the G-BA. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  20. Evidence of Early Emergence of the Primary Dentition in a Northern Plains American Indian Population.

    PubMed

    Dawson, D V; Blanchette, D R; Douglass, J M; Tinanoff, N; Kramer, K W O; Warren, J J; Phipps, K R; Starr, D E; Marshall, T A; Mabry, T R; Pagan-Rivera, K; Banas, J A; Drake, D R

    2018-04-01

    The purposes of this study were to describe primary tooth emergence in an American Indian (AI) population during the first 36 mo of life to compare 1) patterns of emergence between male and female children and 2) tooth emergence between these AI children and other U.S. ethnic groups. Data were derived from a birth cohort of 239 AI children from a Northern Plains tribe participating in a longitudinal study of early childhood caries, with examination data at target ages of 8, 12, 16, 22, 28, and 36 mo of age (±1 mo). Patterns of emergence in AI children were characterized and sex comparisons accomplished with interval-censored survival methodology. Numbers of erupted teeth in AI children at each age were compared via Kruskal-Wallis tests against those in children of the same age, as drawn from a cross-sectional study of dental caries patterns in Arizona; these comparisons were based on the dental examinations of 547 White non-Hispanic and 677 Hispanic children. Characterization of time to achievement of various milestones-including emergence of the anterior teeth, the first molars, and the complete primary dentition-provided no evidence of sex differences among AI children. AI children had significantly more teeth present at 8 mo (median, 3) than either White non-Hispanic ( P < 0.0063) or Hispanic ( P < 0.0001) children (median, 2 each). This was also true at 12 mo ( P < 0.001; medians, 8 vs. 6 and 7, respectively) and 16 mo ( P < 0.001; medians, 12 vs. 11 each). Less pronounced differences were seen at 22 mo ( P < 0.0001). White non-Hispanic and Hispanic children did not differ at any time considered ( P > 0.05). These results provide evidence of earlier tooth emergence in AI children than in the other 2 ethnicities. Although the underlying etiology of the severity of early childhood caries in AI children is likely to be multifactorial, earlier tooth emergence may be a contributing factor. Knowledge Transfer Statement: The findings of this study have practical

  1. The effects of early institutionalization on emotional face processing: evidence for sparing via an experience-dependent mechanism.

    PubMed

    Young, Audrey; Luyster, Rhiannon J; Fox, Nathan A; Zeanah, Charles H; Nelson, Charles A

    2017-09-01

    Early psychosocial deprivation has profound adverse effects on children's brain and behavioural development, including abnormalities in physical growth, intellectual function, social cognition, and emotional development. Nevertheless, the domain of emotional face processing has appeared in previous research to be relatively spared; here, we test for possible sleeper effects emerging in early adolescence. This study employed event-related potentials (ERPs) to examine the neural correlates of facial emotion processing in 12-year-old children who took part in a randomized controlled trial of foster care as an intervention for early institutionalization. Results revealed no significant group differences in two face and emotion-sensitive ERP components (P1 and N170), nor any association with age at placement or per cent of lifetime spent in an institution. These results converged with previous evidence from this population supporting relative sparing of facial emotion processing. We hypothesize that this sparing is due to an experience-dependent mechanism in which the amount of exposure to faces and facial expressions of emotion children received was sufficient to meet the low threshold required for cortical specialization of structures critical to emotion processing. Statement of contribution What is already known on this subject? Early psychosocial deprivation leads to profoundly detrimental effects on children's brain and behavioural development. With respect to children's emotional face processing abilities, few adverse effects of institutionalized rearing have previously been reported. Recent studies suggest that 'sleeper effects' may emerge many years later, especially in the domain of face processing. What does this study add? Examining a cumulative 12 years of data, we found only minimal group differences and no evidence of a sleeper effect in this particular domain. These findings identify emotional face processing as a unique ability in which relative sparing

  2. ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighipour, Nader; Scott, Edward R. D., E-mail: nader@ifa.hawaii.edu

    2012-04-20

    In their model for the origin of the parent bodies of iron meteorites, Bottke et al. proposed differentiated planetesimals, formed in 1-2 AU during the first 1.5 Myr, as the parent bodies, and suggested that these objects and their fragments were scattered into the asteroid belt as a result of interactions with planetary embryos. Although viable, this model does not include the effect of a giant planet that might have existed or been growing in the outer regions. We present the results of a concept study where we have examined the effect of a planetary body in the orbit ofmore » Jupiter on the early scattering of planetesimals from the terrestrial region into the asteroid belt. We integrated the orbits of a large battery of planetesimals in a disk of planetary embryos and studied their evolutions for different values of the mass of the planet. Results indicate that when the mass of the planet is smaller than 10 M{sub Circled-Plus }, its effects on the interactions among planetesimals and planetary embryos are negligible. However, when the planet mass is between 10 and 50 M{sub Circled-Plus }, simulations point to a transitional regime with {approx}50 M{sub Circled-Plus} being the value for which the perturbing effect of the planet can no longer be ignored. Simulations also show that further increase of the mass of the planet strongly reduces the efficiency of the scattering of planetesimals from the terrestrial planet region into the asteroid belt. We present the results of our simulations and discuss their possible implications for the time of giant planet formation.« less

  3. New Archaeozoological Data from the Fayum “Neolithic” with a Critical Assessment of the Evidence for Early Stock Keeping in Egypt

    PubMed Central

    Linseele, Veerle; Van Neer, Wim; Thys, Sofie; Phillipps, Rebecca; Cappers, René; Wendrich, Willeke; Holdaway, Simon

    2014-01-01

    Faunal evidence from the Fayum Neolithic is often cited in the framework of early stock keeping in Egypt. However, the data suffer from a number of problems. In the present paper, large faunal datasets from new excavations at Kom K and Kom W (4850–4250 BC) are presented. They clearly show that, despite the presence of domesticates, fish predominate in the animal bone assemblages. In this sense, there is continuity with the earlier Holocene occupation from the Fayum, starting ca. 7350 BC. Domesticated plants and animals appear first from approximately 5400 BC. The earliest possible evidence for domesticates in Egypt are the very controversial domesticated cattle from the 9th/8th millennium BC in the Nabta Playa-Bir Kiseiba area. The earliest domesticates found elsewhere in Egypt date to the 6th millennium BC. The numbers of bones are generally extremely low at this point in time and only caprines are present. From the 5th millennium BC, the numbers of sites with domesticates dramatically increase, more species are also involved and they are usually represented by significant quantities of bones. The data from the Fayum reflect this two phase development, with very limited evidence for domesticates in the 6th millennium BC and more abundant and clearer indications in the 5th millennium BC. Any modelling of early food production in Egypt suffers from poor amounts of data, bias due to differential preservation and visibility of sites and archaeological remains, and a lack of direct dates for domesticates. In general, however, the evidence for early stock keeping and accompanying archaeological features shows large regional variation and seems to be mainly dependent on local environmental conditions. The large numbers of fish at Kom K and Kom W reflect the proximity of Lake Qarun. PMID:25310283

  4. On-treatment decrease of NKG2D correlates to early emergence of clinically evident hepatocellular carcinoma after interferon-free therapy for chronic hepatitis C.

    PubMed

    Chu, Po-Sung; Nakamoto, Nobuhiro; Taniki, Nobuhito; Ojiro, Keisuke; Amiya, Takeru; Makita, Yuko; Murata, Hiroko; Yamaguchi, Akihiro; Shiba, Shunsuke; Miyake, Rei; Katayama, Tadashi; Ugamura, Aya; Ikura, Akihiko; Takeda, Karin; Ebinuma, Hirotoshi; Saito, Hidetsugu; Kanai, Takanori

    2017-01-01

    Interferon (IFN)- free direct antiviral agents (DAAs) with rapid HCV eradication might evoke immunological reconstitutions, and some early recurrences of HCC after IFN-free DAAs have been reported. This study aimed to investigate whether natural killer group 2, member D (NKG2D) predicts early emergence of HCC after IFN-free DAAs. We conducted a clinical practice-based observational study of 101 patients infected with genotype 1 HCV who received IFN-free (DAAs), and stratified them into those who did or did not develop early (i.e., during the 6-month surveillance period following treatment.) recurrence or occurrence of clinically evident HCC. We also analyzed the peripheral blood mononuclear cells, both before treatment and at end of treatment (EOT), of 24 of the patients who received IFN-free DAAs, and 16 who received IFN-combined protease inhibitor. We found early emergence of clinically evident HCC after IFN-free DAAs in 12 (12%) patients. Higher pre-treatment NKG2D expression, higher FIB-4 score, previous HCC history and failure to achieve sustained viral response were significant factors correlating to early HCC emergence. After IFN-free DAAs, a rapid decrease of NKG2D at EOT correlated with early HCC emergence in the IFN-free DAA-treated patients, but not in patients treated with the IFN-combined regimen. The decrease of NKG2D until EOT was predictive of early HCC emergence at a cut-off of -52% (AUC = 0.92). On-treatment decrease of NKG2D may be a useful predictor of early emerging HCC in patients treated with IFN-free DAAs.

  5. How cores grow by pebble accretion. I. Direct core growth

    NASA Astrophysics Data System (ADS)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore < 0.23-0.39 M⊕), pebbles impact the core without significant ablation. During the second phase (Mcore < 0.5M⊕), ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest of the material either rains out to the core or instead mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can

  6. Earliest evidence for equid bit wear in the ancient Near East: The "ass" from Early Bronze Age Tell eṣ-Ṣâfi/Gath, Israel

    PubMed Central

    Shai, Itzhaq; Greenfield, Tina L.; Arnold, Elizabeth R.; Brown, Annie; Eliyahu, Adi; Maeir, Aren M.

    2018-01-01

    Analysis of a sacrificed and interred domestic donkey from an Early Bronze Age (EB) IIIB (c. 2800–2600 BCE) domestic residential neighborhood at Tell eṣ-Ṣâfi/Gath, Israel, indicate the presence of bit wear on the Lower Premolar 2 (LPM2). This is the earliest evidence for the use of a bit among early domestic equids, and in particular donkeys, in the Near East. The mesial enamel surfaces on both the right and left LPM2 of the particular donkey in question are slightly worn in a fashion that suggests that a dental bit (metal, bone, wood, etc.) was used to control the animal. Given the secure chronological context of the burial (beneath the floor of an EB IIIB house), it is suggested that this animal provides the earliest evidence for the use of a bit on an early domestic equid from the Near East. PMID:29768439

  7. Earliest evidence for equid bit wear in the ancient Near East: The "ass" from Early Bronze Age Tell eṣ-Ṣâfi/Gath, Israel.

    PubMed

    Greenfield, Haskel J; Shai, Itzhaq; Greenfield, Tina L; Arnold, Elizabeth R; Brown, Annie; Eliyahu, Adi; Maeir, Aren M

    2018-01-01

    Analysis of a sacrificed and interred domestic donkey from an Early Bronze Age (EB) IIIB (c. 2800-2600 BCE) domestic residential neighborhood at Tell eṣ-Ṣâfi/Gath, Israel, indicate the presence of bit wear on the Lower Premolar 2 (LPM2). This is the earliest evidence for the use of a bit among early domestic equids, and in particular donkeys, in the Near East. The mesial enamel surfaces on both the right and left LPM2 of the particular donkey in question are slightly worn in a fashion that suggests that a dental bit (metal, bone, wood, etc.) was used to control the animal. Given the secure chronological context of the burial (beneath the floor of an EB IIIB house), it is suggested that this animal provides the earliest evidence for the use of a bit on an early domestic equid from the Near East.

  8. Electrophysiological evidence of automatic early semantic processing.

    PubMed

    Hinojosa, José A; Martín-Loeches, Manuel; Muñoz, Francisco; Casado, Pilar; Pozo, Miguel A

    2004-01-01

    This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a lower-upper case discrimination judgement (shallow processing requirements), whereas the other half carried out a semantic task, consisting in detecting animal names (deep processing requirements). Stimuli were identical in the two tasks. Reaction time measures revealed that the physical task was easier to perform than the semantic task. However, RP effects elicited by the physical and semantic tasks did not differ in either latency, amplitude, or topographic distribution. Thus, the results from the present study suggest that early semantic processing is automatically triggered whenever a linguistic stimulus enters the language processor.

  9. Deformation and thermal histories of ordinary chondrites: Evidence for post-deformation annealing and syn-metamorphic shock

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Hugo, Richard; Hutson, Melinda

    2015-08-01

    We show that olivine microstructures in seven metamorphosed ordinary chondrites of different groups studied with optical and transmission electron microscopy can be used to evaluate the post-deformation cooling setting of the meteorites, and to discriminate between collisions affecting cold and warm parent bodies. The L6 chondrites Park (shock stage S1), Bruderheim (S4), Leedey (S4), and Morrow County (S5) were affected by variable shock deformation followed by relatively rapid cooling, and probably cooled as fragments liberated by impact in near-surface settings. In contrast, Kernouvé (H6 S1), Portales Valley (H6/7 S1), and MIL 99301 (LL6 S1) appear to have cooled slowly after shock, probably by deep burial in warm materials. In these chondrites, post-deformation annealing lowered apparent optical strain levels in olivine. Additionally, Kernouvé, Morrow County, Park, MIL 99301, and possibly Portales Valley, show evidence for having been deformed at an elevated temperature (⩾800-1000 °C). The high temperatures for Morrow County can be explained by dynamic heating during intense shock, but Kernouvé, Park, and MIL 99301 were probably shocked while the H, L and LL parent bodies were warm, during early, endogenically-driven thermal metamorphism. Thus, whereas the S4 and S5 chondrites experienced purely shock-induced heating and cooling, all the S1 chondrites examined show evidence for static heating consistent with either syn-metamorphic shock (Kernouvé, MIL 99301, Park), post-deformation burial in warm materials (Kernouvé, MIL 99301, Portales Valley), or both. The results show the pitfalls in relying on optical shock classification alone to infer an absence of shock and to construct cooling stratigraphy models for parent bodies. Moreover, they provide support for the idea that "secondary" metamorphic and "tertiary" shock processes overlapped in time shortly after the accretion of chondritic planetesimals, and that impacts into warm asteroidal bodies were

  10. Measuring the Effectiveness of Knowledge Creation Activity as a Means to Facilitate Evidence-Informed Practice: A Study of Early Years Settings in Camden, London

    ERIC Educational Resources Information Center

    Brown, Chris; Rogers, Sue

    2015-01-01

    This paper has two key aims. First, it examines the authors' attempts to use knowledge creation activity as a way of developing evidence-informed practice amongst a learning community of 36 early years practitioners in Camden, London. Second, it illustrates how the authors approached the idea of measuring evidence use and our engagement with two…

  11. Early mathematics development and later achievement: Further evidence

    NASA Astrophysics Data System (ADS)

    Aubrey, Carol; Godfrey, Ray; Dahl, Sarah

    2006-05-01

    There is a growing international recognition of the importance of the early years of schooling as well as an interest being shown in the relationship of early education to later achievement. This article focuses on a cohort of English pupils who have been tracked through primary school during the first five years of the new National Numeracy Strategy. It reports a limited longitudinal study of young children's early mathematical development, initially within three testing cycles: at the mid-point and towards the end of their reception year (at five years-of-age) and again at the mid-point of Year 1 (at six years-ofage). These cycles were located within the broader context of progress through to the end of Key Stage 1 (at seven years) and Key Stage 2 (at eleven years) on the basis of national standardised assessment tests (SATs). Results showed that children who bring into school early mathematical knowledge do appear to be advantaged in terms of their mathematical progress through primary school. Numerical attainment increases in importance across the primary years and practical problem solving remains an important element of this. This finding is significant given the current emphasis on numerical calculation in the English curriculum. It is concluded that without active intervention, it is likely that children with little mathematical knowledge at the beginning of formal schooling will remain low achievers throughout their primary years and, probably, beyond.

  12. Extreme secular excitation of eccentricity inside mean motion resonance. Small bodies driven into star-grazing orbits by planetary perturbations

    NASA Astrophysics Data System (ADS)

    Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong

    2017-09-01

    Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star

  13. Body Size at Birth, Physical Development and Cognitive Outcomes in Early Childhood: Evidence from the Longitudinal Survey of Australian Children

    ERIC Educational Resources Information Center

    Ulker, Aydogan

    2016-01-01

    Using a rich sample created from the Longitudinal Survey of Australian Children, we investigate the extent to which the relationship between body size at birth and early childhood cognitive skills is mediated by physical development indicators. Consistent with existing evidence from other countries, we find a significant relationship between body…

  14. Do adolescents support early marriage in Bangladesh? Evidence from study.

    PubMed

    Rahman, M M; Kabir, M

    2005-01-01

    Adolescence is a critical period for female adolescents as they have to make decisions regarding their marriage, education and work which would influence and determine their future course of life. Although, early marriage has negative consequences, still a proportion of female adolescents favour early marriage because of prevailing cultural norms. This paper attempts to investigate the factors influencing the adolescents' attitude towards early marriage among the married and unmarried female adolescents. This is a quantitative and qualitative study. A multistage cluster sampling technique was used to select the sample. For quantitative results, data on 3362 female adolescents from rural and urban areas irrespective of their marital status were analyzed. To supplement the results found in quantitative analysis, a series of focus group discussions were conducted among the adolescents. Analysis revealed that one fourth (25.9%) of the adolescents were in favour of early marriage. A number of societal factors influenced them towards early marriage, despite the fact that adolescents are aware of the consequences of maternal and child health. Multivariate logistic regression analysis showed that current marital status, years of schooling, work status and parental marital decision are important predictors of early marriage (p < 0.05). The study concluded that female education would be an important determinant of adolescent marriage. Therefore, opportunities and scope of education beyond secondary would helps to bring change in the attitude towards early marriage.

  15. Early Intervention in Psychosis

    PubMed Central

    McGorry, Patrick D.

    2015-01-01

    Abstract Early intervention for potentially serious disorder is a fundamental feature of healthcare across the spectrum of physical illness. It has been a major factor in the reductions in morbidity and mortality that have been achieved in some of the non-communicable diseases, notably cancer and cardiovascular disease. Over the past two decades, an international collaborative effort has been mounted to build the evidence and the capacity for early intervention in the psychotic disorders, notably schizophrenia, where for so long deep pessimism had reigned. The origins and rapid development of early intervention in psychosis are described from a personal and Australian perspective. This uniquely evidence-informed, evidence-building and cost-effective reform provides a blueprint and launch pad to radically change the wider landscape of mental health care and dissolve many of the barriers that have constrained progress for so long. PMID:25919380

  16. Facial affect processing in social anxiety disorder with early onset: evidence of an intensity amplification bias.

    PubMed

    Schwab, Daniela; Schienle, Anne

    2018-06-01

    The present event-related potential (ERP) study investigated for the first time whether children with early-onset social anxiety disorder (SAD) process affective facial expressions of varying intensities differently than non-anxious controls. Participants were 15 SAD patients and 15 non-anxious controls (mean age of 9 years). They were presented with schematic faces displaying anger and happiness at four intensity levels (25%, 50%, 75%, and 100%), as well as with neutral faces. ERPs in early and later time windows (P100, N170, late positivity [LP]), as well as affective ratings (valence and arousal) for the faces, were recorded. SAD patients rated the faces as generally more arousing, regardless of the type of emotion and intensity. Moreover, they displayed enhanced right-parietal LP (350-650 ms). Both arousal ratings and LP reflect stimulus intensity. Therefore, this study provides first evidence of an intensity amplification bias in pediatric SAD during facial affect processing.

  17. Evidence of early systemic activation and transendothelial migration of neutrophils in neonates with severe respiratory distress syndrome.

    PubMed

    Sarafidis, K; Drossou-Agakidou, V; Kanakoudi-Tsakalidou, F; Taparkou, A; Tsakalidis, C; Tsandali, C; Kremenopoulos, G

    2001-03-01

    Several observations imply that the early inflammatory response involving activated neutrophils, tissue macrophages, and cytokines plays an important role in the pathogenesis of neonatal respiratory distress syndrome (RDS) and progression to bronchopulmonary dysplasia (BPD). The aim of this study was to test the hypothesis that changes in circulating neutrophil number and function and plasma levels of cytokines, consistent with neutrophil activation and migration to the tissues, occur during the early stages of neonatal RDS. For this purpose we measured peripheral blood levels of certain immunological parameters that promote neutrophil activation and transendothelial migration. Twenty preterm neonates with severe RDS and 20 healthy infants matched for gestational age were the subjects. The absolute neutrophil count (ANC), and plasma levels of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), and sL-selectin using an enzyme-linked immunosorbent assay (ELISA), neutrophil CD11b expression, and respiratory burst activity (RBA) using flow cytometry, were measured within 24 h after birth. The two groups were comparable regarding perinatal characteristics. None of the neonates studied had any clinical or laboratory evidence of infection by the time of blood sampling. The immunological investigation showed that the RDS neonates had significantly lower ANC (P = 0.032), higher expression of the CD11b on neutrophils (P = 0.0065), and higher G-CSF and IL-6 plasma levels (P = 0.0047 and P < 0.0001, respectively) in comparison to healthy preterm neonates. The neutrophil RBA and plasma sL-selectin levels did not differ significantly between the two groups. We conclude that in neonates with severe RDS, there is evidence of a systemic neutrophil activation early in the course of the disease, supporting the view of a contributing role of activated neutrophils in the pathogenesis of RDS. Copyright 2001 Wiley-Liss, Inc.

  18. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  19. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma.

    PubMed

    Sauer, C M; Haugg, A M; Chteinberg, E; Rennspiess, D; Winnepenninckx, V; Speel, E-J; Becker, J C; Kurz, A K; Zur Hausen, A

    2017-08-01

    Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater.

    PubMed

    Sanford, Ward E; Doughten, Michael W; Coplen, Tyler B; Hunt, Andrew G; Bullen, Thomas D

    2013-11-14

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  1. Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals

    NASA Astrophysics Data System (ADS)

    Kruijer, Thomas S.; Fischer-Gödde, Mario; Kleine, Thorsten; Sprung, Peter; Leya, Ingo; Wieler, Rainer

    2013-01-01

    The short-lived 182Hf-182W isotope system can provide powerful constraints on the timescales of planetary core formation, but its application to iron meteorites is hampered by neutron capture reactions on W isotopes resulting from exposure to galactic cosmic rays. Here we show that Pt isotopes in magmatic iron meteorites are also affected by capture of (epi)thermal neutrons and that the Pt isotope variations are correlated with variations in 182W/184W. This makes Pt isotopes a sensitive neutron dosimeter for correcting cosmic ray-induced W isotope shifts. The pre-exposure 182W/184W derived from the Pt-W isotope correlations of the IID, IVA and IVB iron meteorites are higher than most previous estimates and are more radiogenic than the initial 182W/184W of Ca-Al-rich inclusions (CAI). The Hf-W model ages for core formation range from +1.6±1.0 million years (Ma; for the IVA irons) to +2.7±1.3 Ma after CAI formation (for the IID irons), indicating that there was a time gap of at least ˜1 Ma between CAI formation and metal segregation in the parent bodies of some iron meteorites. From the Hf-W ages a time limit of <1.5-2 Ma after CAI formation can be inferred for the accretion of the IID, IVA and IVB iron meteorite parent bodies, consistent with earlier conclusions that the accretion of differentiated planetesimals predated that of most chondrite parent bodies.

  2. Low velocity collisions of porous planetesimals in the early solar system

    NASA Astrophysics Data System (ADS)

    de Niem, D.; Kührt, E.; Hviid, S.; Davidsson, B.

    2018-02-01

    The ESA Rosetta mission has shown that Comet 67P/Churuymov-Gerasimenko is bi-lobed, has a high average porosity of around 70%, does not have internal cavities on size scales larger than 10 m, the lobes could have individual sets of onion shell-like layering, and the nucleus surface contains 100 m-scale cylindrical pits. It is currently debated whether these properties are consistent with high-velocity collisional evolution or if they necessarily are surviving signatures of low-velocity primordial accretion. We use an Eulerian hydrocode to study collisions between highly porous bodies of different sizes, material parameters and relative velocities with emphasis on 5-100 m/s to characterize the effects of collisions in terms of deformation, compaction, and heating. We find that accretion of 1 km cometesimals by 3 km nuclei at 13.5 m/s flattens and partially buries the cometesimal with ∼ 1% reduction of the bulk porosity. This structure locally becomes more dense but the global effect of compaction is minor, suggesting that low-velocity accretion does not lead to a 'bunch of grapes' structure with large internal cavities but a more homogeneous interior, consistent with Rosetta findings. The mild local compaction associated with accretion is potentially the origin of the observed nucleus layering. In 2D axially symmetric impacts hit-and-stick collisions of similarly-sized nuclei are possible at velocities up to 30 m/s where deformation becomes severe. The bulk porosity is reduced significantly, even at 30-50 m/s relative velocity. To avoid hit-and-run collisions the impact angle must be less than 35°-45° from the surface normal at 10 m/s, and even smaller at higher velocities. Impact heating is insignificant. We find that the small cross section of the 67P neck may require a ≤ 5 m/s impact, unless the cohesion exceeds 10 kPa. We conclude that bi-lobe nucleus formation is possible at velocities typically discussed in hierarchical growth scenarios. Impacts of a 7 m projectile at 100-500 m/s create a rimless cylindrical shaft with vertical walls, up to 50 m wide and 70 m deep. These shafts bear some resemblance with the pits on 67P, particularly if the depth-to-width ratio is reduced by nucleus erosion. Collisions between similarly-sized nuclei above 100 m/s lead to complete disintegration, and even small fragments suffer different degrees of compaction. Thus, we strongly doubt that 67P has been subjected to high-velocity collisions by projectiles larger than those that might have formed the pits, or is the fragment of a larger parent body. We suggest that the observed properties of 67P are more consistent with primordial accretion.

  3. Electrophysiological Evidence of Automatic Early Semantic Processing

    ERIC Educational Resources Information Center

    Hinojosa, Jose A.; Martin-Loeches, Manuel; Munoz, Francisco; Casado, Pilar; Pozo, Miguel A.

    2004-01-01

    This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a…

  4. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    NASA Astrophysics Data System (ADS)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  5. Evidence establishing a link between prenatal and early-life stress and asthma development.

    PubMed

    Rosa, Maria José; Lee, Alison G; Wright, Rosalind J

    2018-04-01

    The objective of this review is to provide an update on our evolving understanding of the effects of stress in pregnancy and during early development on the onset of asthma-related phenotypes across childhood, adolescence, and into early adulthood. Accumulating evidence over the past 2 decades has established that prenatal and early-life psychological stress and stress correlates (e.g., maternal anxiety or depression) increase the risk for childhood respiratory disorders. Recent systematic reviews and meta-analyses including numerous prospective epidemiological and case-control studies substantiate a significant effect of prenatal stress and stress in early childhood on the development of wheeze, asthma, and other atopic-related disorders (eczema and allergic rhinitis), with many studies showing an exposure-response relationship. Offspring of both sexes are susceptible to perinatal stress, but effects differ. The impact of stress on child wheeze/asthma can also be modified by exposure timing. Moreover, coexposure to prenatal stress can enhance the effect of chemical stressors, such as prenatal traffic-related air pollution, on childhood respiratory disease risk. Understanding complex interactions among exposure dose, timing, child sex, and concurrent environmental exposures promises to more fully characterize stress effects and identify susceptible subgroups. Although the link between perinatal stress and childhood asthma-related phenotypes is now well established, pathways by which stress predisposes children to chronic respiratory disorders are not as well delineated. Mechanisms central to the pathophysiology of wheeze/asthma and lung growth and development overlap and involve a cascade of events that include disrupted immune, neuroendocrine, and autonomic function as well as oxidative stress. Altered homeostatic functioning of these integrated systems during development can enhance vulnerability to asthma and altered lung development. Mechanistic studies that

  6. The effect of early childhood stunting on children’s cognitive achievements: Evidence from young lives Ethiopia

    PubMed Central

    Woldehanna, Tassew; Behrman, Jere R.; Araya, Mesele W.

    2017-01-01

    Background There is little empirical evidence on the effect of childhood malnutrition on children’s cognitive achievements in low income countries like Ethiopia. A longitudinal data is thus vital to understand the factors that influence cognitive development of children over time, particularly how early childhood stunting affects cognitive achievement of children up to the age of 8 years. Objective To examine the effect of early childhood stunting on cognitive achievements of children using longitudinal data that incorporate anthropometric measurements and results of cognitive achievement tests such as Peabody Picture Vocabulary Test and Cognitive Development Assessment quantitative tests. Method Defining stunted children as those having a standardized height for age z-score less than −2; we used a Propensity Score Matching (PSM) to examine the effect of early childhood stunting on measures of cognitive performance of children. The balance of the propensity score matching techniques was checked and found to be satisfied (P<0.01) Results Early childhood stunting is significantly negatively associated with cognitive performance of children. Controlled for confounding variables such as length of breastfeeding, relative size of the child at birth, health problems of early childhood such as acute respiratory illness and malaria, baseline household wealth, child gender, household size and parental education, estimates from PSM show that stunted children scored 16.1% less in the Peabody Picture Vocabulary Test and 48.8% less in the Quantitative Assessment test at the age of eight, both statistically significant at P<0.01. Conclusions It is important to realize the importance of early investment in terms of child health and nutrition until five years for the cognitive performance of children. As household wealth and parental education are particularly found to play an important role in children’s nutritional achievements, policy measures that are directed in

  7. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches

    NASA Astrophysics Data System (ADS)

    de Coster, Greet; Verhulst, Simon; Koetsier, Egbert; de Neve, Liesbeth; Briga, Michael; Lens, Luc

    2011-12-01

    Long-term effects of unfavourable conditions during development can be expected to depend on the quality of the environment experienced by the same individuals during adulthood. Yet, in the majority of studies, long-term effects of early developmental conditions have been assessed under favourable adult conditions only. The immune system might be particularly vulnerable to early environmental conditions as its development, maintenance and use are thought to be energetically costly. Here, we studied the interactive effects of favourable and unfavourable conditions during nestling and adult stages on innate immunity (lysis and agglutination scores) of captive male and female zebra finches ( Taeniopygia guttata). Nestling environmental conditions were manipulated by a brood size experiment, while a foraging cost treatment was imposed on the same individuals during adulthood. This combined treatment showed that innate immunity of adult zebra finches is affected by their early developmental conditions and varies between both sexes. Lysis scores, but not agglutination scores, were higher in individuals raised in small broods and in males. However, these effects were only present in birds that experienced low foraging costs. This study shows that the quality of the adult environment may shape the long-term consequences of early developmental conditions on innate immunity, as long-term effects of nestling environment were only evident under favourable adult conditions.

  8. A review of evidence-based early intervention for behavioural problems in children with autism spectrum disorder: the core components of effective programs, child-focused interventions and comprehensive treatment models.

    PubMed

    Tonge, Bruce J; Bull, Kerry; Brereton, Avril; Wilson, Rebecca

    2014-03-01

    This article reviews recent evidence and other earlier relevant articles regarding early intervention studies for children with autism spectrum disorder (ASD). There is a well-established body of empirical evidence for the effectiveness of Early Intensive Behavioural Intervention (EIBI) with young children with ASD. The importance of parent skills training, education and positive behaviour support is also a key factor in influencing outcomes. Drug treatment is of short-term benefit for disruptive behaviour but long-term outcome and metabolic side-effects have not been studied. Few studies have measured the long-term value and effectiveness of early intervention treatments, and currently there are no articles published on effects into adulthood of such treatments. Such research would indicate whether early intervention results in reduced reliance on health services into adulthood.

  9. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations.

    PubMed

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2016-03-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Neglected evidence in idiopathic pulmonary fibrosis and the importance of early diagnosis and treatment.

    PubMed

    Cottin, Vincent; Richeldi, Luca

    2014-03-01

    In idiopathic pulmonary fibrosis (IPF), some facts or concepts based on substantial evidence, whilst implicit for learned subspecialists, have previously been neglected and/or not explicitly formulated or made accessible to a wider audience. IPF is strongly associated with cigarette smoking and is predominantly a disease of ageing. However, its cause(s) remain elusive and, thus, it is one of the most challenging diseases for the development of novel effective and safe therapies. With the approval of pirfenidone for patients with mild-to-moderate IPF, an earlier diagnosis of IPF is a prerequisite for earlier treatment and, potentially, improvement of the long-term clinical outcome of this progressive and ultimately fatal disease. An earlier diagnosis may be achieved in IPF by promoting thin-slice chest high-resolution computed tomography screening of interstitial lung disease as a "by-product" of large-scale lung cancer screening strategies in smokers, but other techniques, which have been neglected in the past, are now available. Lung auscultation and early identification of "velcro" crackles has been proposed as a key component of early diagnosis of IPF. An ongoing study is exploring correlations between lung sounds on auscultation obtained using electronic stethoscopes and high-resolution computed tomography patterns.

  11. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets.

    PubMed

    Gomes, R; Levison, H F; Tsiganis, K; Morbidelli, A

    2005-05-26

    The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.

  12. Reading for sound with dyslexia: evidence for early orthographic and late phonological integration deficits.

    PubMed

    Savill, Nicola J; Thierry, Guillaume

    2011-04-18

    Deteriorated phonological representations are widely assumed to be the underlying cause of reading difficulties in developmental dyslexia; however, existing evidence also implicates degraded orthographic processing. Here, we used event-related potentials whilst dyslexic and control adults performed a pseudoword-word priming task requiring deep phonological analysis to examine phonological and orthographic priming, respectively. Pseudowords were manipulated to be homophonic or non-homophonic to a target word and more or less orthographically similar. Since previous ERP research with normal readers has established phonologically driven differences as early as 250 ms from word presentation, degraded phonological representations were expected to reveal reduced phonological priming in dyslexic readers from 250 ms after target word onset. However, phonological priming main effects in both the N2 and P3 ranges were indistinguishable in amplitude between groups. Critically, we found group differences in the N1 range, such that orthographic modulations observed in controls were absent in the dyslexic group. Furthermore, early group differences in phonological priming transpired as interactions with orthographic priming (in P2, N2 and P3 ranges). A group difference in phonological priming did not emerge until the P600 range, in which the dyslexic group showed significantly attenuated priming. As the P600 is classically associated with online monitoring and reanalysis, this pattern of results suggest that during deliberate phonological processing, the phonological deficit in reading may relate more to inefficient monitoring rather than deficient detection. Meanwhile, early differences in perceptual processing of phonological information may be driven by the strength of engagement with orthographic information. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time

    PubMed Central

    Robbins, Eleanora Iberall; Porter, Karen Glaus; Haberyan, Kurt A.

    1985-01-01

    Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 × 110 μm and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that represent environments analogous to those that preserve fecal pellets today. Rocks containing pellets and algal microfossils range in age from 0.53 to 1.9 gigayears (Gyr) and include Burgess Shale, Greyson and Newland Formations, Rove Formation, and Gunflint Iron-Formation. Similar rock types of Archean age, ranging from 2.68 to 3.8 Gyr, were barren of pellets. If the Proterozoic microfossils are fossilized fecal pellets, they provide evidence of metazoan life and a complex food chain at 1.9 Gyr ago. This occurrence predates macroscopic metazoan body fossils in the Ediacaran System at 0.67 Gyr, animal trace fossils from 0.9 to 1.3 Gyr, and fossils of unicellular eukaryotic plankton at 1.4 Gyr. Images PMID:16593599

  14. On the Hayashi Effect in the Early Phases of Gravitational Contraction of the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, J.; Griffiths, K.; Hoyle, F.

    1963-02-01

    Computations are made using a program for the subphotospheric layers, including opacity effects due to the negative hydrogen ion and to Rayleigh scattering. Under thermodynamic conditions completely convective models are found to occur, displaced toward late types in the H-R (Hertzsprang-Russell) diagram. The models investigated range from the late K subclasses to about M/sub 3/. Nonthermodynamic effects are considered. It appears that free electrons produced by high-energy particles are capable of modifying the results by reducing the effective temperature and luminosity, but not by completely removing the convective structure. Nor does it seem likely that opacity effects arising from solidmore » particles can destroy the convective structure. The possibility remains, however, that convective efficiency in the subphotospheric layers could be much reduced by a magnetic field at the stage where the planetary material separated from the Sun, and during the condensation of the first planetesimals and of the parent bodies of the meteorites. Only by a suppression of the highluminosity convective models during this phase does it seem possible to explain the presence of water in meteorites, and the likely presence of any icy matrix in the first planetesimals. (auth)« less

  15. Early Childhood Predictors of Low-Income Boys’ Pathways to Antisocial Behavior in Childhood, Adolescence, and Early Adulthood

    PubMed Central

    Shaw, Daniel S.; Gilliam, Mary

    2016-01-01

    Guided by a bridging model of pathways leading to low-income boys’ early-starting and persistent trajectories of antisocial behavior, the current paper reviews evidence supporting the model from early childhood through early adulthood. Using primarily a cohort of 310 low-income boys of families recruited from WIC centers in a large metropolitan area followed from infancy to early adulthood, and smaller cohorts of boys and girls followed through early childhood, we provide evidence supporting the critical role of parenting, maternal depression, and other proximal family risk factors in early childhood that are prospectively linked to trajectories of parent-reported conduct problems in early and middle childhood, youth-reported antisocial behavior during adolescence and early adulthood, as well as court-reported violent offending in adolescence. The findings are discussed in terms of the need to identify at-risk boys in early childhood and methods and platforms for engaging families in health care settings not previously used to implement preventive mental health services. PMID:28026042

  16. Isotopic evidence of early hominin diets

    NASA Astrophysics Data System (ADS)

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Kyalo Manthi, Fredrick; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-06-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  17. Isotopic evidence of early hominin diets

    PubMed Central

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Manthi, Fredrick Kyalo; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-01-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  18. Planet formation in binary systems: simulating coagulation using analytically determined collision velocities.

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman

    2017-06-01

    The existence of planets in tight binary systems presents an interesting puzzle. It is thought that cores of giant planets form via agglomeration of planetesimals in mutual collisions. However, in tight binary systems, one would naïvely expect the collision velocities between planetesimals to be so high that even 100 km bodies would be destroyed, rather than growing in mutual collisions. In these systems, planetesimals are perturbed by gravity from the companion star, and gravity and gas drag from a massive eccentric gas disk. There is a damaging secular resonance that occurs due to the combination of disk gravity and gravity from the binary companion, however the disk gravity can also create locations of low relative eccentricity between planetesimals of different sizes that would not exist if the disk gravity were ignored. Because the gas drag acts more strongly on smaller planetesimals, orbital eccentricity and apsidal angle depend on planetesimal size. Consequently, planetesimal collision velocities depend on the sizes of the collision partners. Same-size bodies collide at low velocity because their orbits are apsidally aligned. Therefore, often in a given environment some collisions will lead to planetesimal growth, and some to erosion or destruction. This variety of collisional outcomes makes it difficult to determine whether any planetesimals can grow to large sizes. We run a multi-annulus coagulation/fragmentation simulation that also includes the effect of size-dependent radial drift of planetesimals to determine the minimum size of initial planetesimal necessary for growth to large sizes in collisions. The minimum initial size of planetesimal necessary for growth depends greatly on the disk mass, eccentricity and the degree of apsidal alignment with the binary. We find that in a wide variety of situations, it is a reasonable approximation that growth occurs as long as there are no collisions capable of completely destroying a planetesimal, but erosion by

  19. A Question of Evidence

    ERIC Educational Resources Information Center

    Todd, Ross J.

    2008-01-01

    Broadly defined, evidence-based practice (EBP) is fundamentally about professional practice being informed and guided by best available evidence of what works. The EBP movement had its origins in the early 1990s in the United Kingdom in medicine and health care services. Sackett et al. defined evidence-based medicine as the "conscientious,…

  20. Experiences of early labour management from perspectives of women, labour companions and health professionals: A systematic review of qualitative evidence.

    PubMed

    Beake Rm Ma Research Associate, Sarah; Chang Ba MPhil PhD Lecturer, Yan-Shing; Cheyne Rm Rgn MSc PhD Professor Of Midwifery, Helen; Spiby MPhil Rn Rm Professor Of Midwifery, Helen; Sandall Rm MSc PhD Professor Of Social Science And Women's Health, Jane; Bick, Debra

    2018-02-01

    to examine evidence of women's, labour companions' and health professionals' experiences of management of early labour to consider how this could be enhanced to better reflect women's needs. a systematic review of qualitative evidence. women in early labour with term, low risk singleton pregnancies, not booked for a planned caesarean birth or post-dates induction of labour, their labour companions, and health professionals responsible for early labour care (e.g. midwives, nurse-midwives, obstetricians, family doctors). Studies from high and middle income country settings were considered. 21 publications were included from the UK, Ireland, Scandinavia, USA, Italy and New Zealand. Key findings included the impact of communication with health professionals (most usually midwives) on women's decision making; women wanting to be listened to by sympathetic midwives who could reassure that symptoms and signs of early labour were 'normal' and offer clear advice on what to do. Antenatal preparation which included realistic information on what to expect when labour commenced was important and appreciated by women and labour companions. Views of the optimal place for women to remain and allow early labour to progress differed and the perceived benefit of support and help offered by labour companions varied. Some were supportive and helped women to relax, while others were anxious and encouraged women to seek early admission to the planned place of birth. Web-based sources of information are increasingly used by women, with mixed views of the value of information accessed. women, labour companions and health professionals find early labour difficult to manage well, with women unsure of how decisions about admission to their planned place of birth are taken. It is unclear why women are effectively left to manage this aspect of their labour with minimal guidance or support. Tailoring management to meet individual needs, with provision of effective communication could reassure

  1. Modeling the Etiology of Individual Differences in Early Reading Development: Evidence for Strong Genetic Influences

    PubMed Central

    Christopher, Micaela E.; Hulslander, Jacqueline; Byrne, Brian; Samuelsson, Stefan; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.

    2012-01-01

    We explored the etiology of individual differences in reading development from post-kindergarten to post-4th grade by analyzing data from 487 twin pairs tested in Colorado. Data from three reading measures and one spelling measure were fit to biometric latent growth curve models, allowing us to extend previous behavioral genetic studies of the etiology of early reading development at specific time points. We found primarily genetic influences on individual differences at post-1st grade for all measures. Genetic influences on variance in growth rates were also found, with evidence of small, nonsignificant, shared environmental influences for two measures. We discuss our results, including their implications for educational policy. PMID:24489459

  2. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    USGS Publications Warehouse

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-01-01

    High salinity groundwater more than 1000 metres deep in the Atlantic Coastal Plain of the United States has been documented in several locations1,2, most recently within the 35 million-year-old Chesapeake Bay impact crater3,4,5. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution6, osmosis6, and evaporation from heating7 associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) seawater. We find that the seawater is likely 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern seawater and consistent with the nearly closed ECNA basin8. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and paleontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient seawater in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA seawater persist in deep sediments at many locations along the Atlantic margin.

  3. Early evidence (late 2nd millennium BCE) of plant-based dyeing of textiles from Timna, Israel

    PubMed Central

    Sukenik, Naama; Iluz, David; Amar, Zohar; Varvak, Alexander; Workman, Vanessa; Shamir, Orit; Ben-Yosef, Erez

    2017-01-01

    Abstract In this article, we focus on the analysis of dyed textile fragments uncovered at an early Iron Age (11th-10th centuries BCE) copper smelting site during new excavations in the Timna Valley conducted by the Central Timna Valley (CTV) Project, as well as those found by the Arabah Expedition at the Hathor Temple (Site 200), dated to the Late Bronze/early Iron Ages (13th-11th centuries BCE). Analysis by HPLC-DAD identified two organic dyestuffs, Rubia tinctorum L. and indigotin, from a plant source (probably Isatis tinctoria L.). They are among the earliest plants known in the dyeing craft and cultivated primarily for this purpose. This study provides the earliest evidence of textiles dyed utilizing a chemical dyeing process based on an industrial dyeing plant from the Levant. Moreover, our results shed new light on the society operating the copper mines at the time, suggesting the existence of an elite that was interested in these high quality textiles and invested efforts in procuring them by long-distance trade. PMID:28658314

  4. Early evidence (late 2nd millennium BCE) of plant-based dyeing of textiles from Timna, Israel.

    PubMed

    Sukenik, Naama; Iluz, David; Amar, Zohar; Varvak, Alexander; Workman, Vanessa; Shamir, Orit; Ben-Yosef, Erez

    2017-01-01

    In this article, we focus on the analysis of dyed textile fragments uncovered at an early Iron Age (11th-10th centuries BCE) copper smelting site during new excavations in the Timna Valley conducted by the Central Timna Valley (CTV) Project, as well as those found by the Arabah Expedition at the Hathor Temple (Site 200), dated to the Late Bronze/early Iron Ages (13th-11th centuries BCE). Analysis by HPLC-DAD identified two organic dyestuffs, Rubia tinctorum L. and indigotin, from a plant source (probably Isatis tinctoria L.). They are among the earliest plants known in the dyeing craft and cultivated primarily for this purpose. This study provides the earliest evidence of textiles dyed utilizing a chemical dyeing process based on an industrial dyeing plant from the Levant. Moreover, our results shed new light on the society operating the copper mines at the time, suggesting the existence of an elite that was interested in these high quality textiles and invested efforts in procuring them by long-distance trade.

  5. The search for other planets: clues from the solar system.

    PubMed

    Owen, T

    1994-01-01

    Studies of element abundances and values of D/H in the atmospheres of the outer planets and Titan support a two-step model for the formation of these bodies. This model suggests that the dimensions of Uranus provide a good index for the sensitivity required to detect planets around other stars. The high proportion of N2 on the surfaces of Pluto and Triton indicates that this gas was the dominant reservoir of nitrogen in the early solar nebula. It should also be abundant on pristine comets. There is evidence that some of these comets may well have brought a large store of volatiles to the inner planets, while others were falling into the sun. In other systems, icy planetesimals falling into stars should reveal themselves through high values of D/H.

  6. Early-Life Exposure to Non-Nutritive Sweeteners and the Developmental Origins of Childhood Obesity: Global Evidence from Human and Rodent Studies.

    PubMed

    Archibald, Alyssa J; Dolinsky, Vernon W; Azad, Meghan B

    2018-02-10

    Non-nutritive sweeteners (NNS) are increasingly consumed by children and pregnant women around the world, yet their long-term health impact is unclear. Here, we review an emerging body of evidence suggesting that early-life exposure to NNS may adversely affect body composition and cardio-metabolic health. Some observational studies suggest that children consuming NNS are at increased risk for obesity-related outcomes; however, others find no association or provide evidence of confounding. Fewer studies have examined prenatal NNS exposure, with mixed results from different analytical approaches. There is a paucity of RCTs evaluating NNS in children, yielding inconsistent results that can be difficult to interpret due to study design limitations (e.g., choice of comparator, multifaceted interventions). The majority of this research has been conducted in high-income countries. Some rodent studies demonstrate adverse metabolic effects from NNS, but most have used extreme doses that are not relevant to humans, and few have distinguished prenatal from postnatal exposure. Most studies focus on synthetic NNS in beverages, with few examining plant-derived NNS or NNS in foods. Overall, there is limited and inconsistent evidence regarding the impact of early-life NNS exposure on the developmental programming of obesity and cardio-metabolic health. Further research and mechanistic studies are needed to elucidate these effects and inform dietary recommendations for expectant mothers and children worldwide.

  7. When the healthcare does not follow the evidence: The case of the lack of early intervention programs for psychosis in Spain.

    PubMed

    Arango, Celso; Bernardo, Miguel; Bonet, Pere; Cabrera, Ana; Crespo-Facorro, Benedicto; Cuesta, Manuel J; González, Nel; Parrabera, Sílvia; Sanjuan, Julio; Serrano, Alfonso; Vieta, Eduard; Lennox, Belinda R; Melau, Marianne

    There is now sufficient evidence to support the importance of interventions in the early stages of psychosis. The delay in the detection and treatment of the first-episode psychosis is related to a lower and slower recovery, as well as a higher risk of relapse. Despite this fact, early intervention units or teams are still not regularly implemented in mental health service settings in Spain. In this opinion article, a review is presented of the main arguments for defending the need to implement these programs and strategies in order to achieve this aim. There are a number of programs for early intervention for psychosis currently working in other countries, with a therapeutic program that includes pharmacological and psychosocial interventions, together with public awareness, information dissemination, and family-professional collaboration activities. Published literature on the experience of these programs indicates that early intervention is not only effective in terms of the improvement of health status, but is also economically efficient. The main steps and recommendations needed to implement such early intervention programs in our country are described. Copyright © 2017 SEP y SEPB. All rights reserved.

  8. Biological evidence supports an early and complex emergence of the Isthmus of Panama

    PubMed Central

    Bacon, Christine D.; Silvestro, Daniele; Jaramillo, Carlos; Smith, Brian Tilston; Chakrabarty, Prosanta; Antonelli, Alexandre

    2015-01-01

    The linking of North and South America by the Isthmus of Panama had major impacts on global climate, oceanic and atmospheric currents, and biodiversity, yet the timing of this critical event remains contentious. The Isthmus is traditionally understood to have fully closed by ca. 3.5 million years ago (Ma), and this date has been used as a benchmark for oceanographic, climatic, and evolutionary research, but recent evidence suggests a more complex geological formation. Here, we analyze both molecular and fossil data to evaluate the tempo of biotic exchange across the Americas in light of geological evidence. We demonstrate significant waves of dispersal of terrestrial organisms at approximately ca. 20 and 6 Ma and corresponding events separating marine organisms in the Atlantic and Pacific oceans at ca. 23 and 7 Ma. The direction of dispersal and their rates were symmetrical until the last ca. 6 Ma, when northern migration of South American lineages increased significantly. Variability among taxa in their timing of dispersal or vicariance across the Isthmus is not explained by the ecological factors tested in these analyses, including biome type, dispersal ability, and elevation preference. Migration was therefore not generally regulated by intrinsic traits but more likely reflects the presence of emergent terrain several millions of years earlier than commonly assumed. These results indicate that the dramatic biotic turnover associated with the Great American Biotic Interchange was a long and complex process that began as early as the Oligocene–Miocene transition. PMID:25918375

  9. Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe.

    PubMed

    Martínez Cortizas, Antonio; López-Merino, Lourdes; Bindler, Richard; Mighall, Tim; Kylander, Malin E

    2016-03-01

    Although archaeological research suggests that mining/metallurgy already started in the Chalcolithic (3rd millennium BC), the earliest atmospheric metal pollution in SW Europe has thus far been dated to ~3500-3200 cal.yr. BP in paleo-environmental archives. A low intensity, non-extensive mining/metallurgy and the lack of appropriately located archives may be responsible for this mismatch. We have analysed the older section (>2100 cal.yr. BP) of a peat record from La Molina (Asturias, Spain), a mire located in the proximity (35-100 km) of mines which were exploited in the Chalcolithic/Bronze Age, with the aim of assessing evidence of this early mining/metallurgy. Analyses included the determination of C as a proxy for organic matter content, lithogenic elements (Si, Al, Ti) as markers of mineral matter, and trace metals (Cr, Cu, Zn, Pb) and stable Pb isotopes as tracers of atmospheric metal pollution. From ~8000 to ~4980 cal.yr. BP the Pb composition is similar to that of the underlying sediments (Pb 15 ± 4 μg g(-1); (206)Pb/(207)Pb 1.204 ± 0.002). A sustained period of low (206)Pb/(207)Pb ratios occurred from ~4980 to ~2470 cal.yr. BP, which can be divided into four phases: Chalcolithic (~4980-3700 cal.yr. BP), (206)Pb/(207)Pb ratios decline to 1.175 and Pb/Al ratios increase; Early Bronze Age (~3700-3500 cal.yr. BP), (206)Pb/(207)Pb increase to 1.192 and metal/Al ratios remain stable; Late Bronze Age (~3500-2800 cal.yr. BP), (206)Pb/(207)Pb decline to their lowest values (1.167) while Pb/Al and Zn/Al increase; and Early Iron Age (~2800-2470 cal.yr. BP), (206)Pb/(207)Pb increase to 1.186, most metal/Al ratios decrease but Zn/Al shows a peak. At the beginning of the Late Iron Age, (206)Pb/(207)Pb ratios and metal enrichments show a rapid return to pre-anthropogenic values. These results provide evidence of regional/local atmospheric metal pollution triggered by the earliest phases of mining/metallurgy in the area, and reconcile paleo-environmental and

  10. EARLY CHILDHOOD PREDICTORS OF LOW-INCOME BOYS' PATHWAYS TO ANTISOCIAL BEHAVIOR IN CHILDHOOD, ADOLESCENCE, AND EARLY ADULTHOOD.

    PubMed

    Shaw, Daniel S; Gilliam, Mary

    2017-01-01

    Guided by a bridging model of pathways leading to low-income boys' early starting and persistent trajectories of antisocial behavior, the current article reviews evidence supporting the model from early childhood through early adulthood. Using primarily a cohort of 310 low-income boys of families recruited from Women, Infants, and Children Nutrition Supplement centers in a large metropolitan area followed from infancy to early adulthood and a smaller cohort of boys and girls followed through early childhood, we provide evidence supporting the critical role of parenting, maternal depression, and other proximal family risk factors in early childhood that are prospectively linked to trajectories of parent-reported conduct problems in early and middle childhood, youth-reported antisocial behavior during adolescence and early adulthood, and court-reported violent offending in adolescence. The findings are discussed in terms of the need to identify at-risk boys in early childhood and methods and platforms for engaging families in healthcare settings not previously used to implement preventive mental health services. © 2016 Michigan Association for Infant Mental Health.

  11. High Resolution N-Body Simulations of Terrestrial Planet Growth

    NASA Astrophysics Data System (ADS)

    Clark Wallace, Spencer; Quinn, Thomas R.

    2018-04-01

    We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.

  12. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  13. Effect of Impacts on the Cooling Rates of Differentiated Planetesimals

    NASA Astrophysics Data System (ADS)

    Lyons, R. J.; Bowling, T. J.; Ciesla, F. J.; Davison, T. M.; Collins, G. S.

    2018-05-01

    I have modeled planetismal impacts in the early solar system, following their formation, differentiation, and cooling. I found that small collisions can expose the core, resulting in more than an order of magnitude increase in the cooling rates.

  14. Early Rehabilitation After Stroke: a Narrative Review

    PubMed Central

    Moudgal, Rohitha; Lang, Kathryn; Hyacinth, Hyacinth I.; Awosika, Oluwole O.; Kissela, Brett M.; Feng, Wuwei

    2018-01-01

    Purpose of Review Despite current rehabilitative strategies, stroke remains a leading cause of disability in the USA. There is a window of enhanced neuroplasticity early after stroke, during which the brain’s dynamic response to injury is heightened and rehabilitation might be particularly effective. This review summarizes the evidence of the existence of this plastic window, and the evidence regarding safety and efficacy of early rehabilitative strategies for several stroke domain-specific deficits. Recent Findings Overall, trials of rehabilitation in the first 2 weeks after stroke are scarce. In the realm of very early mobilization, one large and one small trial found potential harm from mobilizing patients within the first 24 h after stroke, and only one small trial found benefit in doing so. For the upper extremity, constraint-induced movement therapy appears to have benefit when started within 2 weeks of stroke. Evidence for non-invasive brain stimulation in the acute period remains scant and inconclusive. For aphasia, the evidence is mixed, but intensive early therapy might be of benefit for patients with severe aphasia. Mirror therapy begun early after stroke shows promise for the alleviation of neglect. Novel approaches to treating dysphagia early after stroke appear promising, but the high rate of spontaneous improvement makes their benefit difficult to gauge. Summary The optimal time to begin rehabilitation after a stroke remains unsettled, though the evidence is mounting that for at least some deficits, initiation of rehabilitative strategies within the first 2 weeks of stroke is beneficial. Commencing intensive therapy in the first 24 h may be harmful. PMID:29116473

  15. Early Rehabilitation After Stroke: a Narrative Review.

    PubMed

    Coleman, Elisheva R; Moudgal, Rohitha; Lang, Kathryn; Hyacinth, Hyacinth I; Awosika, Oluwole O; Kissela, Brett M; Feng, Wuwei

    2017-11-07

    Despite current rehabilitative strategies, stroke remains a leading cause of disability in the USA. There is a window of enhanced neuroplasticity early after stroke, during which the brain's dynamic response to injury is heightened and rehabilitation might be particularly effective. This review summarizes the evidence of the existence of this plastic window, and the evidence regarding safety and efficacy of early rehabilitative strategies for several stroke domain-specific deficits. Overall, trials of rehabilitation in the first 2 weeks after stroke are scarce. In the realm of very early mobilization, one large and one small trial found potential harm from mobilizing patients within the first 24 h after stroke, and only one small trial found benefit in doing so. For the upper extremity, constraint-induced movement therapy appears to have benefit when started within 2 weeks of stroke. Evidence for non-invasive brain stimulation in the acute period remains scant and inconclusive. For aphasia, the evidence is mixed, but intensive early therapy might be of benefit for patients with severe aphasia. Mirror therapy begun early after stroke shows promise for the alleviation of neglect. Novel approaches to treating dysphagia early after stroke appear promising, but the high rate of spontaneous improvement makes their benefit difficult to gauge. The optimal time to begin rehabilitation after a stroke remains unsettled, though the evidence is mounting that for at least some deficits, initiation of rehabilitative strategies within the first 2 weeks of stroke is beneficial. Commencing intensive therapy in the first 24 h may be harmful.

  16. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    PubMed

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.

  17. Fracture-induced flow and liquid metal transport during core formation

    NASA Astrophysics Data System (ADS)

    Jones, V.; Petford, N.; Rushmer, T.; Wertheim, D.

    2008-12-01

    The most important event in the early history of the earth was the separation of its iron-rich core. Core formation induced profound chemical fractionations and extracted into the core most of Earth's iron and siderophile elements (Ni, Co, Au, Pt, W, Re), leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, 'raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation

  18. Dynamical implantation of objects in the Kuiper Belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasil, P. I. O.; Nesvorný, D.; Gomes, R. S., E-mail: pedro_brasil87@hotmail.com, E-mail: davidn@boulder.swri.edu, E-mail: rodney@on.br

    Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at ≲ 35 AU to reach the orbital region now occupied by HCs. We performed three different sets of numerical simulations to illustrate this mechanism. Two of these simulations were based on modern theories for the early evolution of the solar system (the Nice and jumping-Jupiter models). The third simulation was performed with the purpose of increasing the resolutionmore » at 41-46 AU. The common aspect of these simulations is that Neptune scatters planetesimals from ≲ 35 AU to >40 AU and then undergoes a long phase of slow residual migration. Our results show that to reach an HC orbit, a scattered planetesimal needs to be captured in a mean motion resonance (MMR) with Neptune where the perihelion distance rises due to the Kozai resonance (which occurs in MMRs even for moderate inclinations). Finally, while Neptune is still migrating, the planetesimal is released from the MMR on a stable HC orbit. We show that the orbital distribution of HCs expected from this process provides a reasonable match to observations. The capture efficiency and the mass deposited into the HC region appears to be sensitive to the maximum eccentricity reached by Neptune during the planetary instability phase. Additional work will be needed to resolve this dependency in detail.« less

  19. Knowledge Creation as an Approach to Facilitating Evidence Informed Practice: Examining Ways to Measure the Success of Using This Method with Early Years Practitioners in Camden (London)

    ERIC Educational Resources Information Center

    Brown, Chris; Rogers, Sue

    2015-01-01

    This paper has three key aims. First it examines the authors' attempts to use knowledge creation activity as a way of developing evidence informed practice amongst a learning community of 36 early years practitioners in the London Borough of Camden. Second, it seeks to illustrate how the authors approached the idea of measuring evidence use and…

  20. Implementing three evidence-based program models: early lessons from the Teen Pregnancy Prevention Replication Study.

    PubMed

    Kelsey, Meredith; Layzer, Jean

    2014-03-01

    This article describes some of the early implementation challenges faced by nine grantees participating in the Teen Pregnancy Prevention Replication Study and their response to them. The article draws on information collected as part of a comprehensive implementation study. Sources include site and program documents; program officer reports; notes from site investigation, selection and negotiation; ongoing communications with grantees as part of putting the study into place; and semi-structured interviews with program staff. The issues faced by grantees in implementing evidence-based programs designed to prevent teen pregnancy varied by program model. Grantees implementing a classroom-based curriculum faced challenges in delivering the curriculum within the constraints of school schedules and calendars (program length and size of class). Grantees implementing a culturally tailored curriculum faced a series of challenges, including implementing the intervention as part of the regular school curriculum in schools with diverse populations; low attendance when delivered as an after-school program; and resistance on the part of schools to specific curriculum content. The third set of grantees, implementing a program in clinics, faced challenges in identifying and recruiting young women into the program and in retaining young women once they were in the program. The experiences of these grantees reflect some of the complexities that should be carefully considered when choosing to replicate evidence-based programs. The Teen Pregnancy Prevention replication study will provide important context for assessing the effectiveness of some of the more widely replicated evidence-based programs. Copyright © 2014 Society for Adolescent Health and Medicine. All rights reserved.

  1. Gender-specific effects of early nutritional restriction on adult obesity risk: evidence from quasi-experimental studies.

    PubMed

    Robinson, Whitney R

    2012-12-01

    In countries undergoing nutrition transition and historically poor minority groups in wealthy countries, obesity tends to be more common in women than men. A potential contributor to this female excess of obesity is a mismatch between perinatal nutritional restriction and a later calorie-rich environment. Several epidemiologic and quasi-experimental studies support a gender-differential effect of early nutritional deprivation on adult obesity. The quasi-experimental studies are of particular interest because results of quasi-experimental studies are typically less vulnerable to confounding bias than observational studies. Four quasi-experimental studies-exploiting 20th century famines that occurred in Europe, Africa, and Asia-provide evidence that perinatal nutritional restriction followed by relative caloric abundance may increase adult obesity risk to a greater extent in women than men. If the findings are accurate and generalizable to contemporary food environments, they suggest that the female offspring of poor, or otherwise nutritionally restricted, women in rapidly developing and wealthy countries may be at particularly high risk of adult obesity. Research into gender-specific effects of early life nutritional deprivation and its interactions with later environmental exposures may provide insight into global gender differences in obesity prevalence.

  2. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment

  3. Early discharge hospital at home.

    PubMed

    Gonçalves-Bradley, Daniela C; Iliffe, Steve; Doll, Helen A; Broad, Joanna; Gladman, John; Langhorne, Peter; Richards, Suzanne H; Shepperd, Sasha

    2017-06-26

    Early discharge hospital at home is a service that provides active treatment by healthcare professionals in the patient's home for a condition that otherwise would require acute hospital inpatient care. This is an update of a Cochrane review. To determine the effectiveness and cost of managing patients with early discharge hospital at home compared with inpatient hospital care. We searched the following databases to 9 January 2017: the Cochrane Effective Practice and Organisation of Care Group (EPOC) register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, and EconLit. We searched clinical trials registries. Randomised trials comparing early discharge hospital at home with acute hospital inpatient care for adults. We excluded obstetric, paediatric and mental health hospital at home schemes.   DATA COLLECTION AND ANALYSIS: We followed the standard methodological procedures expected by Cochrane and EPOC. We used the GRADE approach to assess the certainty of the body of evidence for the most important outcomes. We included 32 trials (N = 4746), six of them new for this update, mainly conducted in high-income countries. We judged most of the studies to have a low or unclear risk of bias. The intervention was delivered by hospital outreach services (17 trials), community-based services (11 trials), and was co-ordinated by a hospital-based stroke team or physician in conjunction with community-based services in four trials.Studies recruiting people recovering from strokeEarly discharge hospital at home probably makes little or no difference to mortality at three to six months (risk ratio (RR) 0.92, 95% confidence interval (CI) 0.57 to 1.48, N = 1114, 11 trials, moderate-certainty evidence) and may make little or no difference to the risk of hospital readmission (RR 1.09, 95% CI 0.71 to 1.66, N = 345, 5 trials, low-certainty evidence). Hospital at home may lower the risk of living in institutional setting at six months (RR 0.63, 96% CI

  4. Circumbinary planet formation in the Kepler-16 system. II. A toy model for in situ planet formation within a debris belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meschiari, Stefano, E-mail: stefano@astro.as.utexas.edu

    2014-07-20

    Recent simulations have shown that the formation of planets in circumbinary configurations (such as those recently discovered by Kepler) is dramatically hindered at the planetesimal accretion stage. The combined action of the binary and the protoplanetary disk acts to raise impact velocities between kilometer-sized planetesimals beyond their destruction threshold, halting planet formation within at least 10 AU from the binary. It has been proposed that a primordial population of 'large' planetesimals (100 km or more in size), as produced by turbulent concentration mechanisms, would be able to bypass this bottleneck; however, it is not clear whether these processes are viablemore » in the highly perturbed circumbinary environments. We perform two-dimensional hydrodynamical and N-body simulations to show that kilometer-sized planetesimals and collisional debris can drift and be trapped in a belt close to the central binary. Within this belt, planetesimals could initially grow by accreting debris, ultimately becoming 'indestructible' seeds that can accrete other planetesimals in situ despite the large impact speeds. We find that large, indestructible planetesimals can be formed close to the central binary within 10{sup 5} yr, therefore showing that even a primordial population of 'small' planetesimals can feasibly form a planet.« less

  5. Early Intervention in Bipolar Disorder.

    PubMed

    Vieta, Eduard; Salagre, Estela; Grande, Iria; Carvalho, André F; Fernandes, Brisa S; Berk, Michael; Birmaher, Boris; Tohen, Mauricio; Suppes, Trisha

    2018-05-01

    Bipolar disorder is a recurrent disorder that affects more than 1% of the world population and usually has its onset during youth. Its chronic course is associated with high rates of morbidity and mortality, making bipolar disorder one of the main causes of disability among young and working-age people. The implementation of early intervention strategies may help to change the outcome of the illness and avert potentially irreversible harm to patients with bipolar disorder, as early phases may be more responsive to treatment and may need less aggressive therapies. Early intervention in bipolar disorder is gaining momentum. Current evidence emerging from longitudinal studies indicates that parental early-onset bipolar disorder is the most consistent risk factor for bipolar disorder. Longitudinal studies also indicate that a full-blown manic episode is often preceded by a variety of prodromal symptoms, particularly subsyndromal manic symptoms, therefore supporting the existence of an at-risk state in bipolar disorder that could be targeted through early intervention. There are also identifiable risk factors that influence the course of bipolar disorder, some of them potentially modifiable. Valid biomarkers or diagnosis tools to help clinicians identify individuals at high risk of conversion to bipolar disorder are still lacking, although there are some promising early results. Pending more solid evidence on the best treatment strategy in early phases of bipolar disorder, physicians should carefully weigh the risks and benefits of each intervention. Further studies will provide the evidence needed to finish shaping the concept of early intervention. AJP AT 175 Remembering Our Past As We Envision Our Future April 1925: Interpretations of Manic-Depressive Phases Earl Bond and G.E. Partridge reviewed a number of patients with manic-depressive illness in search of a unifying endo-psychic conflict. They concluded that understanding either phase of illness was "elusive" and

  6. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study

    PubMed Central

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-01-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200–400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. PMID:25005037

  7. Early Proterozoic activity on Archean faults in the western Superior province - evidence from pseudotachylite

    USGS Publications Warehouse

    Peterman, Z.E.; Day, W.

    1989-01-01

    Major transcurrent faults in the Superior province developed in the Late Archean at the close of the Kenoran orogeny. Reactivation of some of these faults late in the Early Proterozoic is indicated by Rb-Sr analyses of pseudotachylite from the Rainy Lake-Seine River and Quetico faults in the Rainy Lake region of Minnesota and Ontario. Fault veins of pseudotachylite and immediately adjacent country rock at two localities yielded subparallel isochrons that are pooled for an age of 1947??23 Ma. K-Ar and Rb-Sr biotite ages register earlier regional cooling of the terrane at about 2500 Ma with no evidence of younger thermal overprinting at temperatures exceeding 300??C. Accordingly, the 1947??23 Ma age is interpreted as dating the formation of the pseudotachylite. Reactivation of existing faults at this time was caused by stresses transmitted from margins of the Superior province where compressional tectonic events were occurring. -Authors

  8. Evidence that a West-East admixed population lived in the Tarim Basin as early as the early Bronze Age

    PubMed Central

    2010-01-01

    Background The Tarim Basin, located on the ancient Silk Road, played a very important role in the history of human migration and cultural communications between the West and the East. However, both the exact period at which the relevant events occurred and the origins of the people in the area remain very obscure. In this paper, we present data from the analyses of both Y chromosomal and mitochondrial DNA (mtDNA) derived from human remains excavated from the Xiaohe cemetery, the oldest archeological site with human remains discovered in the Tarim Basin thus far. Results Mitochondrial DNA analysis showed that the Xiaohe people carried both the East Eurasian haplogroup (C) and the West Eurasian haplogroups (H and K), whereas Y chromosomal DNA analysis revealed only the West Eurasian haplogroup R1a1a in the male individuals. Conclusion Our results demonstrated that the Xiaohe people were an admixture from populations originating from both the West and the East, implying that the Tarim Basin had been occupied by an admixed population since the early Bronze Age. To our knowledge, this is the earliest genetic evidence of an admixed population settled in the Tarim Basin. PMID:20163704

  9. Cost Implications of an Evidence-Based Approach to Radiation Treatment After Lumpectomy for Early-Stage Breast Cancer

    PubMed Central

    Greenup, Rachel A.; Blitzblau, Rachel C.; Houck, Kevin L.; Sosa, Julie Ann; Horton, Janet; Peppercorn, Jeffrey M.; Taghian, Alphonse G.; Smith, Barbara L.; Hwang, E. Shelley

    2018-01-01

    Introduction Breast cancer treatment costs are rising, and identification of high-value oncology treatment strategies is increasingly needed. We sought to determine the potential cost savings associated with an evidence-based radiation treatment (RT) approach among women with early-stage breast cancer treated in the United States. Patients and Methods Using the National Cancer Database, we identified women with T1–T2 N0 invasive breast cancers treated with lumpectomy during 2011. Adjuvant RT regimens were categorized as conventionally fractionated whole-breast irradiation, hypofractionated whole-breast irradiation, and omission of RT. National RT patterns were determined, and RT costs were estimated using the Medicare Physician Fee Schedule. Results Within the 43,247 patient cohort, 64% (n = 27,697) received conventional RT, 13.3% (n = 5,724) received hypofractionated RT, 1.1% (n = 477) received accelerated partial-breast irradiation, and 21.6% (n = 9,349) received no RT. Among patients who were eligible for shorter RT or omission of RT, 57% underwent treatment with longer, more costly regimens. Estimated RT expenditures of the national cohort approximated $420.2 million during 2011, compared with $256.2 million had women been treated with the least expensive regimens for which they were safely eligible. This demonstrated a potential annual savings of $164.0 million, a 39% reduction in associated treatment costs. Conclusion Among women with early-stage breast cancer after lumpectomy, use of an evidence-based approach illustrates an example of high-value care within oncology. Identification of high-value cancer treatment strategies is critically important to maintaining excellence in cancer care while reducing health care expenditures. PMID:28291382

  10. Fostering Early Math Comprehension: Experimental Evidence from Paraguay

    ERIC Educational Resources Information Center

    Naslund-Hadley, Emma; Parker, Susan W.; Hernandez-Agramonte, Juan Manuel

    2014-01-01

    Research indicates that preschool children need to learn pre-math skills to build a foundation for primary- and secondary-level mathematics. This paper presents the results from the early stages of a pilot mathematics program implemented in Cordillera, Paraguay. In a context of significant gaps in teacher preparation and pedagogy, the program uses…

  11. Practical considerations on the introduction of sacubitril/valsartan in clinical practice: Current evidence and early experience.

    PubMed

    Farmakis, Dimitrios; Bistola, Vassiliki; Karavidas, Apostolos; Parissis, John

    2016-11-15

    The combination of neprilysin inhibitor sacubitril with the angiotensin II receptor 1 blocker valsartan is the first agent from the angiotensin receptor neprilysin inhibitors (ARNI) class authorized for clinical use in heart failure (HF) patients with reduced ejection fraction (HFrEF). Sacubitril/valsartan resulted in 20% reduction in the incidence rate of death or HF hospitalization compared to enalapril in symptomatic HFrEF patients in the seminal PARADIGM-HF trial. As a result, the recently updated European and American HF guidelines granted this agent a class IB indication for the treatment of ambulatory/chronic symptomatic HFrEF patients. However, translating the positive results of trials into true clinical benefit is often challenging. This is particularly true in the case of sacubitril/valsartan, as HF is a heterogeneous syndrome including many severely ill patients who are prone to decompensation, while this new agent comes to replace a cornerstone of current evidence-based HF therapy. In the present paper, we address a number of practical issues regarding the introduction of sacubitril/valsartan and propose an algorithm based on available evidence and early clinical experience. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Gene expression profiling for guiding adjuvant chemotherapy decisions in women with early breast cancer: an evidence-based and economic analysis.

    PubMed

    2010-01-01

    In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of published literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenomics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.THE FOLLOWING REPORTS CAN BE PUBLICLY ACCESSED AT THE MAS WEBSITE AT: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlGENE EXPRESSION PROFILING FOR GUIDING ADJUVANT CHEMOTHERAPY DECISIONS IN WOMEN WITH EARLY BREAST CANCER: An Evidence-Based and Economic AnalysisEpidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based and Ecopnomic AnalysisK-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based and Economic Analysis To review and synthesize the available evidence regarding the laboratory performance, prognostic value, and predictive value of Oncotype-DX for the target population. CONDITION AND TARGET POPULATION The target population of this review is women with newly diagnosed early stage (stage I-IIIa) invasive breast cancer that is estrogen-receptor (ER) positive and/or progesterone-receptor (PR) positive. Much of this review, however, is relevant for women with early stage (I and II) invasive breast

  13. Forgotten family members: the importance of siblings in early psychosis.

    PubMed

    Bowman, Siann; Alvarez-Jimenez, Mario; Wade, Darryl; McGorry, Patrick; Howie, Linsey

    2014-08-01

    This paper reviews the evidence on the significance of sibling inclusion in family interventions and support during early psychosis. This narrative review presents the current research related to the importance of family work during early psychosis, the needs and developmental significance of siblings during adolescence and early adulthood, the protective effects of sibling relationships, and the characteristics of early psychosis relevant to the sibling experience. It will also review the evidence of the sibling experience in chronic physical illness and disability, as well as long-term psychotic illness. Despite the evidence that working with families is important during early psychosis, siblings have been largely ignored. Siblings are an important reciprocal relationship of long duration. They play an important role in development during adolescence and early adulthood. These relationships may be an underutilized protective factor due to their inherent benefits and social support. Developmental theories imply that early psychosis could negatively impact the sibling relationship and their quality of life, effecting personality development and health outcomes. The evidence shows that adolescent physical illness or disability has a significantly negative impact on the sibling's quality of life and increases the risk for the onset of mental health issues. Long-term psychotic illness also results in negative experiences for siblings. Current evidence shows that siblings in early psychosis experience psychological distress and changes in functional performance. Further research using standard measures is required to understand the impact early psychosis has on the sibling relationship and their quality of life. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Stable isotope evidence for an amphibious phase in early proboscidean evolution

    PubMed Central

    Liu, Alexander G. S. C.; Seiffert, Erik R.; Simons, Elwyn L.

    2008-01-01

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring δ18O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low δ18O values and low δ18O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. δ13C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C3 terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors. PMID:18413605

  15. Early intervention for post-traumatic stress disorder.

    PubMed

    Bryant, Richard A

    2007-02-01

    The potentially debilitating effect of posttraumatic stress disorder (PTSD) has created much interest in early intervention strategies that can reduce PTSD. This review critiques the evidence for psychological debriefing approaches and alternate early intervention strategies. The review critiques the randomized controlled trials of psychological debriefing, and early provision of cognitive behavior therapy. The latter approach involves therapy attention on acutely traumatized individuals who are high risk for PTSD development, and particularly in people with acute stress disorder (ASD). Psychological debriefing does not prevent PTSD. Cognitive behaviour therapy strategies have proven efficacy in reducing subsequent PTSD in ASD populations. Despite the promising evidence for early provision of CBT, many people do not benefit from CBT. This review concludes with consideration of major challenges facing early intervention approaches in the context of terrorist attacks and mass disasters.

  16. Cooling of the magma ocean due to accretional disruption of the surface insulating layer

    NASA Technical Reports Server (NTRS)

    Sasaki, Sho

    1992-01-01

    Planetary accretion has been considered as a process to heat planets. Some fraction of the kinetic energy of incoming planetesimals is trapped to heat the planetary interior (Kaula, 1979; Davies, 1984). Moreover, blanketing effect of a primary atmosphere (Hayashi et al., 1979; Sasaki, 1990) or a degassed atmosphere (Abe and Matsui, 1986; Zahnle et al., 1988) would raise the surface temperature of the Earth-size planets to be higher than the melting temperature. The primordial magma ocean was likely to be formed during accretion of terrestrial planets. In the magma ocean, if crystallized fractions were heavier than melt, they would sink. But if solidified materials were lighter than the melt (like anorthosite of the lunar early crust) they would float to form a solid shell surrounding the planet. (In an icy satellite, solidified water ice should easily float on liquid water because of its small density.) The surface solid lid would prevent efficient convective heat transfer and slow the interior cooling. Consider that the accretion of planetesimals still continues in this cooling stage. Shock disruption at planetesimal impact events may destroy the solid insulating layer. Even if the layer survives impacts, the surface layer is finally overturned by Rayleigh-Taylor instability, since accreting materials containing metals are heavier than the surface solidified lid of silicates.

  17. Enhancement of the Accretion of Jupiters Core by a Voluminous Low-Mass Envelope

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; D'angelo, Gennaro; Weidenschilling, Stuart John; Bodenheimer, Peter; Hubickyj, Olenka

    2013-01-01

    We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 100 kilometers. We follow the evolution of the swarm by accounting for growth and fragmentation, viscous and gravitational stirring, and for drag-induced migration and velocity damping. Gas capture by the core substantially enhances the cross-section of the planet for accretion of small planetesimals. The dust opacity within the atmosphere surrounding the planetary core is computed self-consistently, accounting for coagulation and sedimentation of dust particles released in the envelope as passing planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and an initial solids' surface density of 10/g/cm^2 at that distance. The results give a core mass of 7 Earth masses and an envelope mass of approximately 0.1 Earth mass after 500,000 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope gives a core mass of only 4 Earth masses.

  18. BIRTH LOCATIONS OF THE KEPLER CIRCUMBINARY PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu

    2015-07-20

    The Kepler mission has discovered about a dozen circumbinary planetary systems, all containing planets on ∼1 AU orbits. We place bounds on the locations in the circumbinary protoplanetary disk, where these planets could have formed through collisional agglomeration starting from small (kilometer-sized or less) planetesimals. We first present a model of secular planetesimal dynamics that accounts for the (1) perturbation due to the eccentric precessing binary, as well as the (2) gravity and (3) gas drag from a precessing eccentric disk. Their simultaneous action leads to rich dynamics, with (multiple) secular resonances emerging in the disk. We derive analytic resultsmore » for size-dependent planetesimal eccentricity and demonstrate the key role of the disk gravity for circumbinary dynamics. We then combine these results with a simple model for collisional outcomes and find that in systems like Kepler-16, planetesimal growth starting with 10–100 m planetesimals is possible outside a few AU. The exact location exterior to which this happens is sensitive to disk eccentricity, density, and precession rate, as well as to the size of the first generation of planetesimals. Strong perturbations from the binary in the inner part of the disk, combined with a secular resonance at a few AU, inhibit the growth of kilometer-sized planetesimals within 2–4 AU of the binary. In situ planetesimal growth in the Kepler circumbinary systems is possible only starting from large initial planetesimals (few-kilometer-sized even assuming favorable disk properties, i.e., low surface density)« less

  19. Why Isn't the Earth Completely Covered in Water?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Marnocha, Cassandra L.

    2012-01-01

    If protoplanets formed from 10 to 20 kilometer diameter planetesimals in a runaway accretion process prior to their oligarchic growth into the terrestrial planets, it is only logical to ask where these planetesimals may have formed in order to assess the initial composition of the Earth. We have used Weidenschilling's model for the formation of comets (1997) to calculate an efficiency factor for the formation of planetesimals from the solar nebula, then used this factor to calculate the feeding zones that contribute to material contained within 10, 15 and 20 kilometer diameter planetesimals at 1 A.U. as a function of nebular mass. We find that for all reasonable nebular masses, these planetesimals contain a minimum of 3% water as ice by mass. The fraction of ice increases as the planetesimals increase in size and as the nebular mass decreases, since both factors increase the feeding zones from which solids in the final planetesimals are drawn. Is there really a problem with the current accretion scenario that makes the Earth too dry, or is it possible that the nascent Earth lost significant quantities of water in the final stages of accretion?

  20. Orbital Resonances in the Solar Nebula: Strengths and Weaknesses

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1993-01-01

    A planetesimal moving in the Solar Nebula experiences an aero- dynamic drag which causes its orbit to circularize and shrink. However, resonant perturbations from a protoplanet interior to the planetesimal's orbit ran counteract both the orbital decay and the damping of the eccentricity: the planetesimal can be captured into an orbital resonance and its eccentricity pumped up to a modestly high equilibrium value. Thus, orbital resonances constitute (partial) barriers to the delivery of planetesimals into the feeding zone of the protoplanet. We have established the characteristics of the phenomenon of resonance capture by gas drag in the circular restricted three-body approximation. We have determined the strengths of the equilibrium resonant orbits with respect to impulsive velocity perturbations. We conclude that planetesimals captured in orbital resonances are quite vulnerable to being dislocated from these orbits by mutual planetesimal interactions, but that the resonances are effective in slowing down the rate of orbital decay of planetesimals. Only very small bodies, less or approx. equal to 100 m, are able to reach a approx. 1 mass of the earth protoplanet without being slowed down by resonances.

  1. Analysis of Antarctic Ice-Sheet Mass Balance from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    If protoplanets formed from 10 to 20 kilometer diameter planetesimals in a runaway accretion process prior to their oligarchic growth into the terrestrial planets, it is only logical to ask where these planetesimals may have formed in order to assess the initial composition of the Earth. We have used Weidenschilling's model for the formation of comets (1997) to calculate an efficiency factor for the formation of planetesimals from the solar nebula, then used this factor to calculate the feeding zones that contribute to material contained within 10, 15 and 20 kilometer diameter planetesimals at 1 A.V. as a function of nebular mass. We find that for all reasonable nebular masses, these planetesimals contain a minimum of 3% water as ice by mass. The fraction of ice increases as the planetesimals increase in size and as the nebular mass decreases, since both factors increase the feeding zones from which solids in the final planetesimals are drawn. Is there really a problem with the current accretion scenario that makes the Earth too dry, or is it possible that the nascent Earth lost significant quantities of water in the final stages of accretion?

  2. Do mental health problems in childhood predict chronic physical conditions among males in early adulthood? Evidence from a community-based prospective study.

    PubMed

    Goodwin, R D; Sourander, A; Duarte, C S; Niemelä, S; Multimäki, P; Nikolakaros, G; Helenius, H; Piha, J; Kumpulainen, K; Moilanen, I; Tamminen, T; Almqvist, F

    2009-02-01

    Previous studies have documented associations between mental and physical health problems in cross-sectional studies, yet little is known about these relationships over time or the specificity of these associations. The aim of the current study was to examine the relationship between mental health problems in childhood at age 8 years and physical disorders in adulthood at ages 18-23 years. Multiple logistic regression analyses were used to examine the relationship between childhood mental health problems, reported by child, parent and teacher, and physical disorders diagnosed by a physician in early adulthood. Significant linkages emerged between childhood mental health problems and obesity, atopic eczema, epilepsy and asthma in early adulthood. Specifically, conduct problems in childhood were associated with a significantly increased likelihood of obesity and atopic eczema; emotional problems were associated with an increased likelihood of epilepsy and asthma; and depression symptoms at age 8 were associated with an increased risk of asthma in early adulthood. Our findings provide the first evidence of an association between mental health problems during childhood and increased risk of specific physical health problems, mainly asthma and obesity, during early adulthood, in a representative sample of males over time. These data suggest that behavioral and emotional problems in childhood may signal vulnerability to chronic physical health problems during early adulthood.

  3. Actionable Intelligence about Early Childhood Risks in Philadelphia

    ERIC Educational Resources Information Center

    LeBoeuf, Whitney A.; Barghaus, Katherine; Fantuzzo, John; Coe, Kristen; Brumley, Benjamin

    2016-01-01

    "Early childhood risks" are markers of early childhood experiences that extensive research has shown to be detrimental to later academic and behavioral outcomes. In Philadelphia, evidence indicates that seven early childhood risks tracked by public agencies have negative effects on early school outcomes. These risks include low…

  4. Electrophysiological Evidence of Altered Memory Processing in Children Experiencing Early Deprivation

    ERIC Educational Resources Information Center

    Guler, O. Evren; Hostinar, Camelia E.; Frenn, Kristin A.; Nelson, Charles A.; Gunnar, Megan R.; Thomas, Kathleen M.

    2012-01-01

    Associations between early deprivation and memory functioning were examined in 9- to 11-year-old children. Children who had experienced prolonged institutional care prior to adoption were compared to children who were adopted early from foster care and children reared in birth families. Measures included the Paired Associates Learning task from…

  5. From evidence based bioethics to evidence based social policies.

    PubMed

    Bonneux, Luc

    2007-01-01

    In this issue, Norwegian authors demonstrate that causes of early expulsion out the workforce are rooted in childhood. They reconstruct individual biographies in administrative databases linked by an unique national identification number, looking forward 15 years in early adulthood and looking back 20 years till birth with close to negligible loss to follow up. Evidence based bioethics suggest that it is better to live in a country that allows reconstructing biographies in administrative databases then in countries that forbid access by restrictive legislation based on privacy considerations. The benefits of gained knowledge from existing and accessible information are tangible, particularly for the weak and the poor, while the harms of theoretical privacy invasion have not yet materialised. The study shows once again that disadvantage runs in families. Low parental education, parental disability and unstable marital unions predict early disability pensions and premature expulsion out gainful employment. The effect of low parental education is mediated by low education of the index person. However, in a feast of descriptive studies of socio-economic causes of ill health we still face a famine of evaluative intervention studies. An evidence based social policy should be based on effective interventions that are able to break the vicious circles of disability handed down from generation to generation.

  6. Tidal disruption of viscous bodies

    NASA Technical Reports Server (NTRS)

    Sridhar, S.; Tremaine, S.

    1992-01-01

    Tidal disruptions are investigated in viscous-fluid planetesimals whose radius is small relative to the distance of closest (parabolic-orbit) approach to a planet. The planetesimal surface is in these conditions always ellipsoidal, facilitating treatment by coupled ODEs which are solvable with high accuracy. While the disrupted planetesimals evolve into needlelike ellipsoids, their density does not decrease. The validity of viscous fluid treatment holds for solid (ice or rock) planetesimals in cases where tidal stresses are greater than material strength, but integrity is maintained by self-gravity.

  7. Molluscan evidence for early middle Miocene marine glaciation in southern Alaska

    USGS Publications Warehouse

    Marincovich, L.

    1990-01-01

    Profound cooling of Miocene marine climates in southern Alaska culminated in early middle Miocene coastal marine glaciation in the northeastern Gulf of Alaska. This climatic change resulted from interaction of the Yakutat terrane with southern Alaska beginning in late Oligocene time. The ensuing extreme uplift of the coastal Chugach and St. Elias Mountains resulted in progressive regional cooling that culminated in coastal marine glaciation beginning in the early middle Miocene (15-16 Ma) and continuing to the present. The counterclockwise flow of surface water from the frigid northeastern Gulf of Alaska resulted in a cold-temperate shallow-marine environment in the western Gulf of Alaska, as it does today. Ironically, dating of Gulf of Alaska marine glaciation as early middle Miocene is strongly reinforced by the presence of a few tropical and subtropical mollusks in western Gulf of Alaska faunas. Shallow-marine waters throughout the Gulf of Alaska were cold-temperate to cold in the early middle Miocene, when the world ocean was undergoing peak Neogene warming. -Author

  8. Diabetes in pregnancy among indigenous women in Australia, Canada, New Zealand and the United States: a systematic review of the evidence for screening in early pregnancy

    PubMed Central

    Chamberlain, Catherine; McNamara, Bridgette; Williams, Emily D; Yore, Daniel; Oldenburg, Brian; Oats, Jeremy; Eades, Sandra

    2013-01-01

    Recently proposed international guidelines for screening for gestational diabetes mellitus (GDM) recommend additional screening in early pregnancy for sub-populations at a high risk of type 2 diabetes mellitus (T2DM), such as indigenous women. However, there are criteria that should be met to ensure the benefits outweigh the risks of population-based screening. This review examines the published evidence for early screening for indigenous women as related to these criteria. Any publications were included that referred to diabetes in pregnancy among indigenous women in Australia, Canada, New Zealand and the United States (n = 145). The risk of bias was appraised. There is sufficient evidence describing the epidemiology of diabetes in pregnancy, demonstrating that it imposes a significant disease burden on indigenous women and their infants at birth and across the lifecourse (n = 120 studies). Women with pre-existing T2DM have a higher risk than women who develop GDM during pregnancy. However, there was insufficient evidence to address the remaining five criteria, including the following: understanding current screening practice and rates (n = 7); acceptability of GDM screening (n = 0); efficacy and cost of screening for GDM (n = 3); availability of effective treatment after diagnosis (n = 6); and effective systems for follow-up after pregnancy (n = 5). Given the impact of diabetes in pregnancy, particularly undiagnosed T2DM, GDM screening in early pregnancy offers potential benefits for indigenous women. However, researchers, policy makers and clinicians must work together with communities to develop effective strategies for implementation and minimizing the potential risks. Evidence of effective strategies for primary prevention, GDM treatment and follow-up after pregnancy are urgently needed. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23315909

  9. Early Childhood Inclusion in the United Kingdom

    ERIC Educational Resources Information Center

    Blackburn, Carolyn

    2016-01-01

    A policy-to-practice paper is presented of early childhood inclusion in England. The article aims to report the benefits of early intervention services and early childhood inclusion for children with special educational needs and disabilities (SEND), document the chronology of policy development, and discuss research evidence about…

  10. Impact constraints on the environment for chemical evolution and the continuity of life

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Fogleman, Guy

    1990-01-01

    The moon and the earth were bombarded heavily by planetesimals and asteroids that were capable of interfering with chemical evolution and the origin of life. This paper explores the frequency of giant terrestrial impacts able to stop prebiotic chemistry in the probable regions of chemical evolution. The limited time available between impacts disruptive to prebiotic chemistry at the time of the oldest evidence of life suggests the need for a rapid process for chemical evolution of life. On the other hand, rapid chemical evolution in cloud systems and lakes or other shallow evaporating water bodies would have been possible because reactants could have been concentrated and polymerized rapidly in this environment. Thus life probably could have originated near the surface between frequent surface-sterilizing impacts. There may not have been continuity of life depending on sunlight because there is evidence that life, existing as early as 3.8 Gyr ago, may have been destroyed by giant impacts. The first such organisms on earth were probably not the ancestors of present life.

  11. THE LAST STAGES OF TERRESTRIAL PLANET FORMATION: DYNAMICAL FRICTION AND THE LATE VENEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlichting, Hilke E.; Warren, Paul H.; Yin Qingzhu, E-mail: hilke@ucla.edu

    2012-06-10

    The final stage of terrestrial planet formation consists of the clean-up of residual planetesimals after the giant impact phase. Dynamically, a residual planetesimal population is needed to damp the high eccentricities and inclinations of the terrestrial planets to circular and coplanar orbits after the giant impact stage. Geochemically, highly siderophile element (HSE) abundance patterns inferred for the terrestrial planets and the Moon suggest that a total of about 0.01 M{sub Circled-Plus} of chondritic material was delivered as 'late veneer' by planetesimals to the terrestrial planets after the end of giant impacts. Here, we combine these two independent lines of evidencemore » for a leftover population of planetesimals and show that: (1) a residual population of small planetesimals containing 0.01 M{sub Circled-Plus} is able to damp the high eccentricities and inclinations of the terrestrial planets after giant impacts to their observed values. (2) At the same time, this planetesimal population can account for the observed relative amounts of late veneer added to the Earth, Moon, and Mars provided that the majority of the accreted late veneer was delivered by small planetesimals with radii {approx}< 10 m. These small planetesimal sizes are required to ensure efficient damping of the planetesimal's velocity dispersion by mutual collisions, which in turn ensures sufficiently low relative velocities between the terrestrial planets and the planetesimals such that the planets' accretion cross sections are significantly enhanced by gravitational focusing above their geometric values. Specifically, we find that, in the limit that the relative velocity between the terrestrial planets and the planetesimals is significantly less than the terrestrial planets' escape velocities, gravitational focusing yields a mass accretion ratio of Earth/Mars {approx}({rho}{sub Circled-Plus }/{rho}{sub mars})(R{sub Circled-Plus }/R{sub mars}){sup 4} {approx} 17, which agrees well with

  12. Evidences of Wet Climate on Early Mars from Analysis of HRSC Observations

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Tirschj, Daniela; Adeli, Solmaz

    2017-04-01

    Both Geomorphological and mineralogical evidence point to the episodic availability of liquid water on the surface of early Mars. However, the distribution of water was not uniform over space and time. Considerable environmental and climate variations due to latitudinal or elevation effects combined with a diverse surface geology caused distinctively different of local conditions that influenced the planet`s water content. The history of water on Mars has been constantly revised and refined during the past years. Landforms such as widespread valley networks, fluvial deposits and associated assemblages of hydrated clay minerals support the hypothesis that the Martian climate was to some extend warm and wet during the early history of Mars [e.g.,1,2]. At the boundary between the Late Noachian and the Early Hesperian, environmental and climate conditions changed significantly and resulted in a transition towards a colder and dryer climate. The intensity of aqueous activity decreased throughout the Hesperian, including a transition from long-term and repeated precipitation-induced fluvial activity towards reduced, short-term, spatially isolated and groundwater-dominated fluvial erosion [e.g.,3,4,5,6]. At the end of the Hesperian, fluvial erosion has mostly ceased and volcanic, aeolian and glacial processes are interpreted to be dominant on Mars. The Early Amazonian was characterized most likely by a cold and dry climate that was similar to the conditions on recent Mars. However, Mars' climate and aqueous history, in particular the timing of the termination of fluvial activity and the transition from precipitation-induced toward groundwater-dominated erosion as well as the temperature with time, is still subject to debate. Modeling of flow transport processes revealed that the formation of deltas on Mars geologically requires only brief timespans [7] and, based on discharge estimates, the formation of erosional valleys also needs less than a few million years and seems

  13. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas.

    PubMed

    Vannier, J; García-Bellido, D C; Hu, S-X; Chen, A-L

    2009-07-22

    Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey. The swimming and steering of this arthropod was achieved by the beating of multiple setose exopods and a flap-like telson. The appendage morphology of Isoxys indicates possible phylogenetical relationships with the megacheirans, a widespread group of assumed predator arthropods characterized by a pre-oral 'great appendage'. Evidence from functional morphology and taphonomy suggests that Isoxys was able to migrate through the water column and was possibly exploiting hyperbenthic niches for food. Although certainly not unique, the case of Isoxys supports the idea that off-bottom animal interactions such as predation, associated with complex feeding strategies and behaviours (e.g. vertical migration and hunting) were established by the Early Cambrian. It also suggests that a prototype of a pelagic food chain had already started to build-up at least in the lower levels of the water column.

  14. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consistingmore » of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.« less

  15. Changing Bilingual Self-Perceptions from Early Adolescence to Early Adulthood: Empirical Evidence from a Mixed-Methods Case Study

    ERIC Educational Resources Information Center

    Caldas, Stephen J.

    2008-01-01

    In the emerging tradition of language socialization research, this study examines the changing bilingual self-perceptions of three children, identical twin girls and their older brother, from early adolescence through early adulthood. The children were reared in a predominantly French-speaking home in south Louisiana by French/English bilingual…

  16. AOSSM Early Sport Specialization Consensus Statement.

    PubMed

    LaPrade, Robert F; Agel, Julie; Baker, Joseph; Brenner, Joel S; Cordasco, Frank A; Côté, Jean; Engebretsen, Lars; Feeley, Brian T; Gould, Daniel; Hainline, Brian; Hewett, Timothy; Jayanthi, Neeru; Kocher, Mininder S; Myer, Gregory D; Nissen, Carl W; Philippon, Marc J; Provencher, Matthew T

    2016-04-01

    Early sport specialization is not a requirement for success at the highest levels of competition and is believed to be unhealthy physically and mentally for young athletes. It also discourages unstructured free play, which has many benefits. To review the available evidence on early sports specialization and identify areas where scientific data are lacking. Think tank, roundtable discussion. The primary outcome of this think tank was that there is no evidence that young children will benefit from early sport specialization in the majority of sports. They are subject to overuse injury and burnout from concentrated activity. Early multisport participation will not deter young athletes from long-term competitive athletic success. Youth advocates, parents, clinicians, and coaches need to work together with the sport governing bodies to ensure healthy environments for play and competition that do not create long-term health issues yet support athletic competition at the highest level desired.

  17. Biomarkers predicting sepsis in polytrauma patients: Current evidence.

    PubMed

    Ciriello, Vincenzo; Gudipati, Suribabu; Stavrou, Petros Z; Kanakaris, Nikolaos K; Bellamy, Mark C; Giannoudis, Peter V

    2013-12-01

    Major trauma still represents one of the leading causes of death in the first four decades of life. Septic complications represent the predominant causes of late death (45% of overall mortality) in polytrauma patients. The ability of clinicians to early differentiate between systemic inflammatory response syndrome (SIRS) and sepsis is demonstrated to improve clinical outcome and mortality. The identification of an "ideal" biomarker able to early recognize incoming septic complications in trauma patients is still a challenge for researchers. To evaluate the existing evidence regarding the role of biomarkers to predict or facilitate early diagnosis of sepsis in trauma patients, trying to compile some recommendations for the clinical setting. An Internet-based search of the MEDLINE, EMBASE and Cochrane Library databases was performed using the search terms: "Biomarkers", "Sepsis" and "Trauma" in various combinations. The methodological quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies Checklist (QUADAS). After data extraction, the level of evidence available for each bio-marker was rated and presented using the "best-evidence synthesis" method, in line with the US Agency for Healthcare Research and Quality. Thirty studies were eligible for the final analysis: 13 case-control studies and 17 cohort studies. The "strong evidence" available demonstrated the potential use of procalcitonin as an early indicator of post-traumatic septic complications and reported the inability of c-reactive protein (CRP) to specifically identify infective complications. Moderate, conflicting and limited evidence are available for the other 31 biomarkers. Several biomarkers have been evaluated for predicting or making early diagnosis of sepsis in trauma patients. Current evidence does not support the use of a single biomarker in diagnosing sepsis. However, procalcitonin trend was found to be useful in early identification of post

  18. Evidence-based practice: management of glottic cancer.

    PubMed

    Hartl, Dana M

    2012-10-01

    The main issue in the management of glottic squamous cell carcinoma, as for all cancers, is adequate disease control while optimizing functional outcomes and minimizing morbidity. This is true for early-stage disease as for advanced tumors. This article evaluates the current evidence for the diagnostic and pretherapeutic workup for glottic squamous cell carcinoma and the evidence concerning different treatment options for glottic carcinoma, from early-stage to advanced-stage disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Toward Primary Prevention of Asthma. Reviewing the Evidence for Early-Life Respiratory Viral Infections as Modifiable Risk Factors to Prevent Childhood Asthma

    PubMed Central

    Feldman, Amy S.; He, Yuan; Moore, Martin L.; Hershenson, Marc B.

    2015-01-01

    A first step in primary disease prevention is identifying common, modifiable risk factors that contribute to a significant proportion of disease development. Infant respiratory viral infection and childhood asthma are the most common acute and chronic diseases of childhood, respectively. Common clinical features and links between these diseases have long been recognized, with early-life respiratory syncytial virus (RSV) and rhinovirus (RV) lower respiratory tract infections (LRTIs) being strongly associated with increased asthma risk. However, there has long been debate over the role of these respiratory viruses in asthma inception. In this article, we systematically review the evidence linking early-life RSV and RV LRTIs with asthma inception and whether they could therefore be targets for primary prevention efforts. PMID:25369458

  20. A pilot project using evidence-based clinical pathways and payment reform in China's rural hospitals shows early success.

    PubMed

    Cheng, Tsung-Mei

    2013-05-01

    Reforming China's public hospitals to curb widespread overtreatment and improve the quality and affordability of care has been the most challenging aspect of that nation's ambitious health reform, which began in 2009. This article describes a pilot project under way in several of China's provinces that combines payment reform with the implementation of evidence-based clinical pathways at a few hospitals serving rural areas. Results to date include reduced length-of-stay and prescription drug use and higher patient and provider satisfaction. These early results suggest that the pilot may be achieving its goals, which may have far-reaching and positive implications for China's ongoing reform.

  1. Binaries in Transneptunian Resonances: Evidence for Slow Migration of Neptune?

    NASA Technical Reports Server (NTRS)

    Noll, Keith

    2012-01-01

    A distinguishing feature of trans neptunian objects (TNO) is the high fraction that arc binary. This is particularly true for the Cold Classicals (CC), objects in lowe and low i orbits concentrated between the 3:2 and 2: 1 mean-motion resonances. CCs have other physical markers: red colors, high albedos, and equal-mass binaries. The CCs appear to be a coherent and physically distinct population of planetesimals that has survived to the present with their physical properties relatively unaltered. Their spatial concentration between 39.4 and 47.7 AU has made identification of the CCs as a physical group possible. However, objects that started out as CCs arc almost certainly 1101 limited to this one dynamical niche. We can, therefore, use the measurable physical properties of CCs as tracers of Neptune-driven dynamical mixing in the Kuiper Belt. As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2: 1 at 47.7 AU, straddle the core repository of the physically distinct CCs, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 with low inclination 2:1s having a red, binary population mirroring that of the CC itself while the 3:2 will be less contaminated. Alternative models with rapid migration would generate a more homogeneous result.

  2. Accretion rates of protoplanets 2: Gaussian distribution of planestesimal velocities

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1991-01-01

    The growth rate of a protoplanet embedded in a uniform surface density disk of planetesimals having a triaxial Gaussian velocity distribution was calculated. The longitudes of the aspses and nodes of the planetesimals are uniformly distributed, and the protoplanet is on a circular orbit. The accretion rate in the two body approximation is enhanced by a factor of approximately 3, compared to the case where all planetesimals have eccentricity and inclination equal to the root mean square (RMS) values of those variables in the Gaussian distribution disk. Numerical three body integrations show comparable enhancements, except when the RMS initial planetesimal eccentricities are extremely small. This enhancement in accretion rate should be incorporated by all models, analytical or numerical, which assume a single random velocity for all planetesimals, in lieu of a Gaussian distribution.

  3. The (146,147)Sm-(142,143)Nd systematics of early terrestrial differentiation and the lost continents of the early Earth

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    The very early history of the Earth has been one of the great enduring puzzles in the history of geology. We report evidence which clearly can be described as a vestige of a beginning, because the evidence that we report cannot be interpreted in any other way except as a geochemical signal of processes active in the very early history of the Earth. The evidence itself is a very small anomaly in the abundance of SM-146. The primary aims of this study were to: (1) verify the existence of the 'lost continents' of the Hadean era; and (2) determine their mean age.

  4. Evidence for magma oceans on asteroids, the moon, and Earth

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Norman, Marc D.

    1992-01-01

    There are sound theoretical reasons to suspect that the terrestrial planets melted when they formed. For Earth, the reasons stem largely from the hypothesis that the moon formed as a result of the impact of a Mars-sized planetesimal with the still accreting Earth. Such a monumental event would have led to widespread heating of the Earth and the materials from which the moon was made. In addition, formation of a dense atmosphere on the Earth (and possibly the Moon) would have led to retention of accretional heat and, thus, widespread melting. In other words, contemporary theory suggests that the primitive Moon and terrestrial planets had magma oceans.

  5. Meteorological and intelligence evidence of long-distance transit of chemical weapons fallout from bombing early in the 1991 Persian Gulf War.

    PubMed

    Tuite, James J; Haley, Robert W

    2013-01-01

    Coalition bombings on the night of 18-19 January 1991, early in the Gulf War, targeted the Iraqi chemical weapons infrastructure. On 19 January 1991, nerve agent alarms sounded within Coalition positions hundreds of kilometers to the south, and the trace presence of sarin vapor was identified by multiple technologies. Considering only surface dispersion of plumes from explosions, officials concluded that the absence of casualties around bombed sites precluded long-distance transit of debris to US troop positions to explain the alarms and detections. Consequently, they were discounted as false positives, and low-level nerve agent exposure early in the air war was disregarded in epidemiologic investigations of chronic illnesses. Newly assembled evidence indicates that plumes from those nighttime bombings of Iraqi chemical facilities would have traversed the stable nocturnal boundary layer and penetrated the residual layer where they would be susceptible to rapid transit by supergeostrophic winds. This explanation is supported by plume height predictions, available weather charts, weather satellite images showing transit of a hot air mass, effects of solar mixing of atmospheric layers, and observations of a stationary weather front and thermal inversion in the region. Current evidence supports long-distance transit. Epidemiologic studies of chronic postwar illness should be reassessed using veterans' reports of hearing nerve agent alarms as the measure of exposure. Copyright © 2012 S. Karger AG, Basel.

  6. AOSSM Early Sport Specialization Consensus Statement

    PubMed Central

    LaPrade, Robert F.; Agel, Julie; Baker, Joseph; Brenner, Joel S.; Cordasco, Frank A.; Côté, Jean; Engebretsen, Lars; Feeley, Brian T.; Gould, Daniel; Hainline, Brian; Hewett, Timothy E.; Jayanthi, Neeru; Kocher, Mininder S.; Myer, Gregory D.; Nissen, Carl W.; Philippon, Marc J.; Provencher, Matthew T.

    2016-01-01

    Background: Early sport specialization is not a requirement for success at the highest levels of competition and is believed to be unhealthy physically and mentally for young athletes. It also discourages unstructured free play, which has many benefits. Purpose: To review the available evidence on early sports specialization and identify areas where scientific data are lacking. Study Design: Think tank, roundtable discussion. Results: The primary outcome of this think tank was that there is no evidence that young children will benefit from early sport specialization in the majority of sports. They are subject to overuse injury and burnout from concentrated activity. Early multisport participation will not deter young athletes from long-term competitive athletic success. Conclusion: Youth advocates, parents, clinicians, and coaches need to work together with the sport governing bodies to ensure healthy environments for play and competition that do not create long-term health issues yet support athletic competition at the highest level desired. PMID:27169132

  7. Interventions to promote cancer awareness and early presentation: systematic review

    PubMed Central

    Austoker, J; Bankhead, C; Forbes, L J L; Atkins, L; Martin, F; Robb, K; Wardle, J; Ramirez, A J

    2009-01-01

    Background: Low cancer awareness contributes to delay in presentation for cancer symptoms and may lead to delay in cancer diagnosis. The aim of this study was to review the evidence for the effectiveness of interventions to raise cancer awareness and promote early presentation in cancer to inform policy and future research. Methods: We searched bibliographic databases and reference lists for randomised controlled trials of interventions delivered to individuals, and controlled or uncontrolled studies of interventions delivered to communities. Results: We found some evidence that interventions delivered to individuals modestly increase cancer awareness in the short term and insufficient evidence that they promote early presentation. We found limited evidence that public education campaigns reduce stage at presentation of breast cancer, malignant melanoma and retinoblastoma. Conclusions: Interventions delivered to individuals may increase cancer awareness. Interventions delivered to communities may promote cancer awareness and early presentation, although the evidence is limited. PMID:19956160

  8. Early Specialization in Youth Sport: A Biomechanical Perspective

    ERIC Educational Resources Information Center

    Mattson, Jeffrey M.; Richards, Jim

    2010-01-01

    This article examines, from a biomechanical perspective, three issues related to early specialization: overuse injuries, the developmental aspects, and the performance aspects. It concludes that "there is no evidence that early specialization causes overuse injuries or hinders growth and maturation." At the same time, early specialization has…

  9. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  10. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  11. The influence of dynamical friction and mean motion resonances on terrestrial planet growth

    NASA Astrophysics Data System (ADS)

    Wallace, Spencer Clark; Quinn, Thomas R.

    2018-04-01

    We present a set of high-resolution direct N-body simulations of planetesimal coagulation at 1 AU. We follow the evolution of of 1 million planetesimals in a ring though the runaway and oligarchic growth phases. During oligarchic growth, the size frequency distribution (SFD) of planetesimals develops a bump at intermediate masses, which we argue is due to dynamical friction acting through mean motion resonances, heating the low mass planetesimals and inhibiting their growth. This feature is similar to the bump seen in the SFD of asteroid belt and Kuiper belt objects and we argue that a careful treatment of the dynamics of planetesimal interactions is required in order to adequately explain the observed SFD. Although our model does not account for fragmentation, our results show that a similar feature can be produced without it, which is in contention with previous studies.

  12. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas

    PubMed Central

    Vannier, J.; García-Bellido, D.C.; Hu, S.-X.; Chen, A.-L.

    2009-01-01

    Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey. The swimming and steering of this arthropod was achieved by the beating of multiple setose exopods and a flap-like telson. The appendage morphology of Isoxys indicates possible phylogenetical relationships with the megacheirans, a widespread group of assumed predator arthropods characterized by a pre-oral ‘great appendage’. Evidence from functional morphology and taphonomy suggests that Isoxys was able to migrate through the water column and was possibly exploiting hyperbenthic niches for food. Although certainly not unique, the case of Isoxys supports the idea that off-bottom animal interactions such as predation, associated with complex feeding strategies and behaviours (e.g. vertical migration and hunting) were established by the Early Cambrian. It also suggests that a prototype of a pelagic food chain had already started to build-up at least in the lower levels of the water column. PMID:19403536

  13. Early Intervention: Key Issues from Research.

    ERIC Educational Resources Information Center

    Fraser, Helen

    1998-01-01

    As the preschool and early years of schooling were becoming the focus of increasing attention, the Scottish Office Education and Industry Department commissioned a review of United Kingdom and international literature on the use of early intervention schemes for disadvantaged students. The resulting review presents evidence on the most appropriate…

  14. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  15. Evidence for Early Morphological Decomposition in Visual Word Recognition

    ERIC Educational Resources Information Center

    Solomyak, Olla; Marantz, Alec

    2010-01-01

    We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…

  16. Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study.

    PubMed

    Klein, Gordon L; Xie, Yixia; Qin, Yi-Xian; Lin, Liangjun; Hu, Minyi; Enkhbaatar, Perenlei; Bonewald, Lynda F

    2014-03-01

    Treatment with bisphosphonates within the first 10 days of severe burn injury completely prevents bone loss. We therefore postulated that bone resorption occurs early post burn and is the primary explanation for acute bone loss in these patients. Our objective was to assess bone for histological and biomechanical evidence of early resorption post burn. We designed a randomized controlled study utilizing a sheep model of burn injury. Three sheep received a 40 % total body surface area burn under isoflurane anesthesia, and three other sheep received cotton-smoke inhalation and served as control. Burned sheep were killed 5 days post procedure and controls were killed 2 days post procedure. Backscatter scanning electron microscopy was performed on iliac crests obtained immediately postmortem along with quantitative histomorphometry and compression testing to determine bone strength (Young's modulus). Blood ionized Ca was also determined in the first 24 h post procedure as was urinary CTx. Three of three sheep killed at 5 days had evidence of scalloping of the bone surface, an effect of bone resorption, whereas none of the three sheep killed at 2 days post procedure had scalloping. One of the three burned sheep killed at 5 days showed quantitative doubling of the eroded surface and halving of the bone volume compared to sham controls. Mean values of Young's modulus were approximately one third lower in the burned sheep killed at 5 days compared to controls, p = 0.08 by unpaired t test, suggesting weaker bone. These data suggest early post-burn bone resorption. Urine CTx normalized to creatinine did not differ between groups at 24 h post procedure because the large amounts of fluids received by the burned sheep may have diluted urine creatinine and CTx and because the urine volume produced by the burned sheep was threefold that of the controls. We calculated 24 h urinary CTx excretion, and with this calculation CTx excretion/24 h in the burned sheep was

  17. Tides Versus Collisions in the Primordial Main Belt

    NASA Astrophysics Data System (ADS)

    Asphaug, E.; Bottke, W. F., Jr.; Morbidelli, A.; Petit, J.-M.

    2000-10-01

    Recent numerical and theoretical developments (e.g. Wetherill 1992; Chambers and Wetherill 1998) suggest that hundreds or thousands of Moon- to Mars-sized planetary embryos may have resided between 0.5 and 4 AU during early solar system accretion, to be scattered by mutual encounters and resonant perturbations with Jupiter and Saturn. At the same time, we lack compelling scenarios leading to the origin of iron meteorites, believed to represent the cores from approximately 85 different primordial planetesimals (Kail et al. 1994). Are M-type asteroids such as Kleopatra the exposed cores of these parent bodies? Early solar system collisions have been called upon to excavate this iron (Haack et al. 1996), although numerical impact models (Asphaug 1997) have found this task difficult to achieve, particularly when it is required to occur many dozens of times, yet not a single time for asteroid Vesta. One possibility, consistent with the unusual shape of Kleopatra, is tidal disassembly of collisionally weakened differentiated planetesimals by close encounters with primordial planetary embryos. Differentiation enhances the efficacy of tidal disassembly, which is probably already comparable (Asphaug and Benz 1996) to the efficacy of collisional disassembly, but only for bodies of very low strength. Tidal disassembly has the further advantage of stripping all material from a given isosurface, whereas collisions partition energy into both fast and slow debris, leaving behind a rock mantle. To further explore this idea, in comparison with the efficacy of collisional breakup of differentiated planetesimals, we determine the minimal encounter distances between evolving asteroids and the embryos as modeled by Petit et al. (2000). We then directly simulate these tidal encounters using a smooth particle hydrocode (SPH; Benz and Asphaug 1995), and compare tidal encounters to collisional encounters using the same code.

  18. Early Childhood Education: Society and Culture

    ERIC Educational Resources Information Center

    Anning, Angela, Ed.; Cullen, Joy, Ed.; Fleer, Marilyn, Ed.

    2004-01-01

    This book aims to provide research-based evidence that links theory and research to practice in early childhood settings. Different ways of constructing learning in contrasting settings are explored through the analysis of research in early childhood contexts in the United Kingdom, Australia and New Zealand. The cross-national focus extends the…

  19. Pediatric Depression: Is There Evidence to Improve Evidence-Based Treatments?

    ERIC Educational Resources Information Center

    Brent, David A.; Maalouf, Fadi T.

    2009-01-01

    Although there have been advances in our ability to treat child and adolescent depression, use of evidence-based treatments still results in many patients with residual symptoms. Advances in our understanding of cognitive, emotional, and ecological aspects of early-onset depression have the potential to lead to improvements in the assessment and…

  20. Prenatal Exposure Effects on Early Adolescent Substance Use: Preliminary Evidence From a Genetically Informed Bayesian Approach.

    PubMed

    Bidwell, L Cinnamon; Marceau, Kristine; Brick, Leslie A; Karoly, Hollis C; Todorov, Alexandre A; Palmer, Rohan H; Heath, Andrew C; Knopik, Valerie S

    2017-09-01

    Given the controversy surrounding the question of whether there are direct or causal effects of exposure to maternal smoking during pregnancy (SDP) on offspring outcomes such as substance use during the adolescent years, we sought to test, on a preliminary basis, within- and between-family associations of SDP and initiation of substance use early in adolescence (by age 15 years) using a discordant sibling design. We used a sibling-comparison approach in a sample of 173 families drawn from the state of Missouri, wherein mothers were discordant for smoking behaviors between two different pregnancies, to test for associations of SDP and initiation of substance use in a younger adolescent cohort. The discordant sibling comparison approach allows for disentangling familial effects from direct effects of SDP through the purposeful collection of data from siblings within the same family with differential exposure. There were no between- or within-family effects of SDP on initiation of any type of substance use (alcohol, marijuana, smoking, and other drug classes), suggesting that SDP does not exert a direct effect on substance use in early adolescence. Preliminary findings did not support an association of SDP and initiation of substance use in this younger adolescent sample. Studies such as this one can help build a body of evidence to explain whether associations of SDP and adolescent outcomes reflect a direct effect of SPD or may instead be attributable to familial confounders that are controlled in the discordant sibling design.

  1. Conceptual and measurement issues in early parenting practices research: an epidemiologic perspective.

    PubMed

    Walker, Lorraine O; Kirby, Russell S

    2010-11-01

    Early parenting practices are significant to public health because of their linkages to child health outcomes. This paper focuses on the current state of the science regarding conceptual frameworks that incorporate early parenting practices in epidemiologic research and evidence supporting reliability and validity of self-report measures of such practices. Guided by a provisional definition of early parenting practices, literature searches were conducted using PubMed and Sociological Abstracts. Twenty-five published studies that included parent-report measures of early parenting practices met inclusion criteria. Findings on conceptual frameworks were analyzed qualitatively, whereas evidence of reliability and validity were organized into four domains (safety, feeding and oral health, development promotion, and discipline) and summarized in tabular form. Quantitative estimates of measures of reliability and validity were extracted, where available. We found two frameworks incorporating early parenting: one a program theory and the other a predictive model. We found no reported evidence of the reliability or validity of parent-report measures of safety or feeding and oral health practices. Evidence for reliability and validity were reported with greater frequency for development promotion and discipline practices, but report of the most pertinent type of reliability estimation, test-retest reliability, was rare. Failure to examine associations of early parenting practices with any child outcomes within most studies resulted in missed opportunities to indirectly estimate validity of parenting practice measures. Stronger evidence concerning specific measurement properties of early parenting practices is important to advancing maternal-child research, surveillance, and practice.

  2. 14th-16th century Danube floods and long-term water-level changes reflected in archaeological-sedimentary evidence - in comparison with documentary evidence

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea; Laszlovszky, József

    2014-05-01

    In the present paper an overview of published and unpublished results of archaeological and sedimentary investigations, predominantly reflect on 14th-16th-century changes, are provided and compared to documentary information on flood events and long-term changes. Long-term changes in flood behaviour and average water-level conditions had long-term detectable impacts on sedimentation and fluvio-morphological processes. Moreover, the available archaeological evidence might also provide information on the reaction of the society, in the form of changes in settlement organisation, building structures and processes. At present, information is mainly available concerning the 16th, and partly to the 14th-15th centuries. Medium and short term evidence mainly corresponds to the main flood peaks or even to single catastrophic flood events. Such processes may be identified in archaeological evidence concerning the second half of the 14th, early 15th centuries; while most of the cases listed above were connected to the flood peak (and/or generally increasing water-level conditions) of the late 15th and early 16th centuries. In other cases connections between sedimentary/archaeological evidence and the mid- and late 16th-century high flood-frequency period were presumed. Documentary evidence referring to the same period suggests that higher flood frequency and intensity periods occurred in the early and mid 16th century; a probably more prolonged flood rich period took place in the second half of the 16th century, with a peak in the late 1560s-early 1570s and maybe with another at the end of the 16th century. Earlier flood peaks in documentary evidence were detected on the Danube at the turn of the 14th-15th centuries and in the last decades of the 15th century, continuing in the early 16th century.

  3. Early Educational Intervention, Early Cumulative Risk, and the Early Home Environment as Predictors of Young Adult Outcomes Within a High-Risk Sample

    PubMed Central

    Pungello, Elizabeth P.; Kainz, Kirsten; Burchinal, Margaret; Wasik, Barbara H.; Sparling, Joseph J.; Ramey, Craig T.; Campbell, Frances A.

    2009-01-01

    The extent to which early educational intervention, early cumulative risk, and the early home environment were associated with young adult outcomes was investigated in a sample of 139 young adults (age 21) from high-risk families enrolled in randomized trials of early intervention. Positive effects of treatment were found for education attainment, attending college, and skilled employment; negative effects of risk were found for education attainment, graduating high school, being employed and avoiding teen parenthood. The home mediated the effects of risk for graduating high school, but not being employed or teen parenthood. Evidence for moderated mediation was found for educational attainment; the home mediated the association between risk and educational attainment for the control group, but not the treated group. PMID:20331676

  4. CT scanning analysis of Megantereon whitei (Carnivora, Machairodontinae) from Monte Argentario (Early Pleistocene, central Italy): evidence of atavistic teeth

    NASA Astrophysics Data System (ADS)

    Iurino, Dawid Adam; Sardella, Raffaele

    2014-12-01

    CT scanning analysis applied to vertebrate palaeontology is providing an increasing number of data of great interest. This method can be used in many branches of palaeontology such as the investigation of all the fossilized elements in a hard matrix and the hidden structures in the bones. A large number of pathologies are "hidden", completely or partially invisible on the external surface of the bones because their development took place within the bones. However, the study of these diseases and abnormalities plays a crucial role in our understanding of evolutionary and adaptive processes of extinct taxa. The analysis of a partial skeleton of the sabre-toothed felid Megantereon whitei from the Early Pleistocene karst filling deposits of Monte Argentario (Tuscany, Italy) has been carried out. The CT scanning analysis put in evidence the presence of supernumerary teeth (P2) and the absence of P3 in the mandible. The occurrence of P2 can be considered as an evidence of atavism. Such an archaic feature is recorded for the first time in Megantereon.

  5. Origin and Evolution of Comet Clouds

    NASA Astrophysics Data System (ADS)

    Higuchi, Arika

    2007-01-01

    The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.

  6. Evidence for reactive reduced phosphorus species in the early Archean ocean

    PubMed Central

    Pasek, Matthew A.; Harnmeijer, Jelte P.; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-01-01

    It has been hypothesized that before the emergence of modern DNA–RNA–protein life, biology evolved from an “RNA world.” However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean–Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron–nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935

  7. Guiding Principles for the New Early Childhood Professional: Building on Strength and Competence. Early Childhood Education Series

    ERIC Educational Resources Information Center

    Washington, Valora; Gadson, Brenda

    2017-01-01

    With growing evidence about the critical period of birth to age 5 for child development and learning, the imperative to professionalize the early childhood education workforce has never been greater. In this follow-up to "The New Early Childhood Professional: A Step-By-Step Guide to Overcoming Goliath", the authors share lessons learned…

  8. Meteoritic material on the moon

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Ganapathy, R.; Higuchi, H.; Anders, E.

    1974-01-01

    Micrometeorites, ancient planetesimal debris from the early intense bombardment, and debris of recent, crater-forming projectiles are discussed and their amounts and compositions have been determined from trace element studies. The micrometeorite component is uniformly distrubuted over the entire lunar surface, but is seen most clearly in mare soils whereas, the ancient component is seen in highland breccias and soils. A few properties of the basin-forming objects are inferred from the trace element data. An attempt is made to reconstruct the bombardment history of the moon from the observation that only basin-forming objects fell on the moon after crustal differentiation. The apparent half-life of basin-forming bodies is close to the calculated value for earth-crossing planetesimals. It is shown that a gap in radiometric ages is expected between the Imbrium and Nectaris impacts, because all 7 basins formed in this interval lie on the farside or east limb.

  9. Prepregnancy Nutrition and Early Pregnancy Outcomes

    PubMed Central

    Gaskins, Audrey J.; Toth, Thomas L.; Chavarro, Jorge E.

    2015-01-01

    Implantation failure and pregnancy loss are estimated to affect up to 75% of fertilized ova; however as of yet there is limited empirical evidence, particularly at the population level, for understanding the environmental determinants of these losses. The purpose of this review is to summarize the current knowledge on prepregnancy nutrition and early pregnancy outcomes with particular focus on the outcome of spontaneous abortion among pregnancies conceived naturally and early pregnancy end points among pregnancies conceived through in vitro fertilization. To date, there is limited evidence to support associations of prepregnancy vitamin D and caffeine intake with pregnancy loss. There is suggestive data supporting a link between a healthy diet and lower risk of pregnancy loss. High folate and minimal to no alcohol intake prior to conception have the most consistent evidence supporting an association with lower risk of pregnancy loss. PMID:26457232

  10. Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman R.

    2014-11-01

    Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most

  11. Cost-effectiveness analysis of early versus non-early intervention in acute migraine based on evidence from the 'Act when Mild' study.

    PubMed

    Slof, John

    2012-05-01

    In spite of the important progress made in the abortive treatment of acute migraine episodes since the introduction of triptans, reduction of pain and associated symptoms is in many cases still not as effective nor as fast as would be desirable. Recent research pays more attention to the timing of the treatment, and taking triptans early in the course of an attack when pain is still mild has been found more efficacious than the usual strategy of waiting for the attack to develop to a higher pain intensity level. To investigate the cost effectiveness of early versus non-early intervention with almotriptan in acute migraine. An economic evaluation was conducted from the perspectives of French society and the French public health system based on patient-level data collected in the AwM (Act when Mild) study, a placebo-controlled trial that compared the response to early and non-early treatment of acute migraine with almotriptan. Incremental cost-effectiveness ratios (ICERs) were determined in terms of QALYs, migraine hours and productive time lost. Costs were expressed in Euros (year 2010 values). Bootstrapping was used to derive cost-effectiveness acceptability curves. Early treatment has shown to lead to shorter attack duration, less productive time lost, better quality of life, and is, with 92% probability, overall cost saving from a societal point of view. In terms of drug costs only, however, non-early treatment is less expensive. From the public health system perspective, the (bootstrap) mean ICER of early treatment amounts to €0.38 per migraine hour avoided, €1.29 per hour of productive time lost avoided, and €14,296 per QALY gained. Considering willingness-to-pay values of approximately €1 to avoid an hour of migraine, €10 to avoid the loss of a productive hour, or €30,000 to gain one QALY, the approximate probability that early treatment is cost effective is 90%, 90% and 70%, respectively. These results remain robust in different scenarios for the

  12. Individual differences in early adolescents' latent trait cortisol (LTC): Relation to early adversity.

    PubMed

    Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A

    2016-09-01

    Substantial evidence suggests that youth who experience early adversity exhibit alterations in hypothalamic pituitary adrenal (HPA) axis functioning, thereby increasing risk for negative health outcomes. However, few studies have explored whether early adversity alters enduring trait indicators of HPA axis activity. Using objective contextual stress interviews with adolescents and their mothers to assess early adversity, we examined the cumulative impact of nine types of early adversity on early adolescents girls' latent trait cortisol (LTC). Adolescents (n = 122; M age = 12.39 years) provided salivary cortisol samples three times a day (waking, 30 min post-waking, and bedtime) over 3 days. Latent state-trait modeling indicated that the waking and 30 min post-waking samples contributed to a LTC factor. Moreover, greater early adversity was associated with a lower LTC level. Implications of LTC for future research examining the impact of early adversity on HPA axis functioning are discussed. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:700-713, 2016. © 2016 Wiley Periodicals, Inc.

  13. Evidence-Based Practice Empowers Early Childhood Professionals and Families. FPG Snapshot #33

    ERIC Educational Resources Information Center

    FPG Child Development Institute, 2006

    2006-01-01

    Evidence-based practice emerged as a result of the gap often seen between research and practice and gained momentum with the standards and accountability movement. Yet it originates in medicine. Healthcare professionals using evidence-based medicine determine a patient's treatment based on an assessment of evidence from the literature and current…

  14. Paleoenvironments and climatic changes in the Italian Peninsula during the Early Pleistocene: evidence from dental wear patterns of the ungulate community of Coste San Giacomo

    NASA Astrophysics Data System (ADS)

    Strani, Flavia; DeMiguel, Daniel; Sardella, Raffaele; Bellucci, Luca

    2015-08-01

    Quaternary glacial/interglacial alternations, influenced by orbital obliquity cycles with a 41-ka long periodicity, started in the northern hemisphere around 2.6 Ma ago. Such alternations affected the terrestrial ecosystems, especially those of the Mediterranean region, with changes in the floristic communities and the dispersal and radiation of a number of large mammal open dwellers. Analyses of tooth wear patterns of ungulates from the Early Pleistocene site of Coste San Giacomo allow for a more objective reconstruction on the paleoenvironments and the climate in the Italian Peninsula during this epoch. Our results show that this area was composed by a mosaic of biomes, in particular by steppe and woodlands/wetlands. Evidence of such heterogeneity is provided by the wide spectrum of feeding behaviours found among the numerous ungulate herbivores here recorded, with cervids (Axis cf. lyra, Croizetoceros cf. ramosus and Eucladoceros sp.) exhibiting browser diets, most of the bovids (Gazella borbonica and Leptobos sp. and Gallogoral meneghinii) being intermediate feeders and the equid Equus stenonis showing a strict grazer behaviour. These results provide new insights for a timing of changing ecosystems in Southern Europe and reveal the environmental legacy of this global climatic shift, which is essential for understanding the early occupation of Homo in Europe. Thus, our data provide new evidence that such an environmental heterogeneity and a wide spectrum of available food resources could have been the main factors favouring the settlement of early species of Homo in this area.

  15. Early-Ming Era tsunami destruction along the Northern Coast of Aceh, Indonesia: New evidence from Archeology

    NASA Astrophysics Data System (ADS)

    Sieh, K.; Daly, P.; McKinnon, E. E.; Tai, Y. S.; Feener, R. M.; Ishmail, N.

    2017-12-01

    Our colleagues and we have reconstructed partial earthquake and tsunami histories along the coast of Aceh, Sumatra. Chlieh et al (2006) documented and modeled deformation of offshore islands associated with the 2004 rupture. Meltzner et al (2010) found coral evidence of uplifts in 1394±2 and 1450±3 CE. Sieh et al. (2015) documented associated tsunami that destroyed a structure built in 1366±3 CE, 40 km east of Banda Aceh at Lamreh. Since 2015, our landscape archaeology survey of 43 coastal villages over a 40-km reach of the coast has revealed 995 archaeological sites ranging from 10th century to present and containing over 5,000 carved gravestones and 50,000 ceramic sherds. The distribution of ceramic material suggests 7 discrete areas of cultural activity before the 1394 tsunami. Six of these appear to be villages that used imported ceramics and have been populated since the 10th century. However, detailed analysis indicates a clear reduction in activity between 1360 and 1450 CE. This suggests that one or both of the 1394 and 1450 tsunami disrupted the villages. The distribution of post-1500 CE ceramic material shows a gradual repopulation of pre-tsunami sites and a significant expansion of activity starting at the end of the 16th Century, for all areas except Lamreh. Only at on the elevated Lambaro highlands, above modern Lamreh, does material conclusively date between the 1394 and 1450 CE tsunamis. This historic trading site of "Lambri" contains large quantities of ceramics ranging from the early 11th century until the early 16th century, including precisely dated early-Ming (1403-1425 CE) material, some of which is distinctive imperial trade ceramics. We suspect that after the 1394 tsunami destroyed the other coastal settlements, the relatively safe highlands of Lambri were the only areas of the coast utilized for at least 50 years. After about 1450 CE, however, these highlands were abandoned, while the low-lying coastal communities began once again to

  16. Isotopic constraints on the age and early differentiation of the Earth.

    PubMed

    McCulloch, M T

    1996-03-01

    The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionated due to sequestering of Pb into the Earth's core. The long-lived Rb-Sr isotopic system provides constraints on the time interval for the accretion of the Earth as Rb underwent significant depletion by volatile loss during accretion of the Earth or its precursor planetesimals. A primitive measured 87Sr/86Sr initial ratio of 0.700502 +/- 10 has been obtained for an early Archean (3.46 Ga) barite from the Pilbara Block of Western Australia. Using conservative models for the evolution of Rb/Sr in the early Archean mantle allows an estimate to be placed on the Earth's initial Sr ratio at approximately 4.50 Ga, of 0.69940 +/- 10. This is significantly higher than that measured for the Moon (0.69900 +/- 2) or in the achondrite, Angra dos Reis (0.69894 +/- 2) and for a Rb/Sr ratio of approximately 1/2 of chondrites corresponds to a mean age for accretion of the Earth of 4.48 + /- 0.04 Ga. The now extinct 146Sm-142Nd (T1/2(146)=103 l0(6)yrs) combined with the long-lived 147Sm-143Nd isotopic systematics can also be used to provide limits on the time of early differentiation of the Earth. High precision analyses of the oldest (3.8-3.9 Ga) Archean gneisses from Greenland (Amitsoq and Akilia gneisses), and Canada (Acasta gneiss) do not show measurable (> +/- l0ppm) variations of 142Nd, in contrast to the 33 ppm 142Nd excess reported for an Archean sample. The general lack of 142Nd variations, combined with the presence of highly positive epsilon 143 values (+4.0) at 3.9 Ga, indicates that the record of large-scale Sm/Nd fractionation events was not preserved in the early-Earth from 4

  17. Cognitive penetration of early vision in face perception.

    PubMed

    Cecchi, Ariel S

    2018-06-13

    Cognitive and affective penetration of perception refers to the influence that higher mental states such as beliefs and emotions have on perceptual systems. Psychological and neuroscientific studies appear to show that these states modulate the visual system at the visuomotor, attentional, and late levels of processing. However, empirical evidence showing that similar consequences occur in early stages of visual processing seems to be scarce. In this paper, I argue that psychological evidence does not seem to be either sufficient or necessary to argue in favour of or against the cognitive penetration of perception in either late or early vision. In order to do that we need to have recourse to brain imaging techniques. Thus, I introduce a neuroscientific study and argue that it seems to provide well-grounded evidence for the cognitive penetration of early vision in face perception. I also examine and reject alternative explanations to my conclusion. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. [Obesity associated metabolic impairment is evident at early ages: Spanish collaborative study].

    PubMed

    Martos-Moreno, Gabriel Á; Gil-Campos, Mercedes; Bueno, Gloria; Bahillo, Pilar; Bernal, Susana; Feliu, Albert; Lechuga-Sancho, Alfonso M; Palomo, Enrique; Ruiz, Rafael; Vela, Amaia

    2014-10-01

    The objectives of this study are to provide a description of the demographic, anthropometric characteristics and metabolic abnormalities in children with early-onset (< 10 years) and of very-early-onset obesity (< 5 years). We also evaluate the diagnostic ability using the definition of metabolic syndrome (MS) according to different criteria. It is a retrospective, case-control, cross-sectional, multicenter study. A total of 10 Pediatric Endocrinology Units in different Spanish hospitals were involved. A group of 469 children with early-onset obesity and another group of 30 children with very early-onset obesity were studied. The control group consisted of 224 healthy children younger than 10 years. Anthropometric and analytical determination of carbohydrates metabolism parameters and the lipid profile were performed. The presence of metabolic alterations associated with obesity in children and adolescents in Spain is remarkable, either on their own, or encompassed within the definition of MS. This prevalence increases substantially when considering the peripheral resistance to insulin action as a diagnostic criterion. It also shows how children who could not be diagnosed with MS according to the definition provided by the International Diabetes Federation (IDF) due to age below 10 years, these alterations are already present in a remarkable percentage. In fact, metabolic abnormalities are already present in the very-early-onset obese children ( <5 years). In Spanish children there are metabolic alterations associated with obesity in the infant-juvenile stages alone or encompassed within the definition of MS,and are already present at earlier ages. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Confirmatory versus explorative endpoint analysis: Decision-making on the basis of evidence available from market authorization and early benefit assessment for oncology drugs.

    PubMed

    Niehaus, Ines; Dintsios, Charalabos-Markos

    2018-06-01

    The early benefit assessment of pharmaceuticals in Germany and their preceding market authorization pursue different objectives. This is reflected by the inclusion of varying confirmatory endpoints within the evaluation of oncology drugs in early benefit assessment versus market authorization, with both relying on the same evidence. Data from assessments up to July 2015 are used to estimate the impact of explorative in comparison to confirmatory endpoints on market authorization and early benefit assessment by contrasting the benefit-risk ratio of EMA and the benefit-harm balance of the HTA jurisdiction. Agreement between market authorization and early benefit assessment is examined by Cohen's kappa (k). 21 of 41 assessments were considered in the analysis. Market authorization is more confirmatory than early benefit assessment because it includes a higher proportion of primary endpoints. The latter implies a primary endpoint to be relevant for the benefit-harm balance in only 67% of cases (0.078). Explorative mortality endpoints reached the highest agreement regarding the mutual consideration for the risk-benefit ratio and the benefit-harm balance (0.000). For explorative morbidity endpoints (-0.600), quality of life (-0.600) and side effects (-0.949) no agreement is ascertainable. To warrant a broader confirmatory basis for decisions supported by HTA, closer inter-institutional cooperation of approval authorities and HTA jurisdictions by means of reliable joint advice for manufacturers regarding endpoint definition would be favorable. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins

    PubMed Central

    Masao, Fidelis T; Ichumbaki, Elgidius B; Cherin, Marco; Barili, Angelo; Boschian, Giovanni; Iurino, Dawid A; Menconero, Sofia; Moggi-Cecchi, Jacopo; Manzi, Giorgio

    2016-01-01

    Laetoli is a well-known palaeontological locality in northern Tanzania whose outstanding record includes the earliest hominin footprints in the world (3.66 million years old), discovered in 1978 at Site G and attributed to Australopithecus afarensis. Here, we report hominin tracks unearthed in the new Site S at Laetoli and referred to two bipedal individuals (S1 and S2) moving on the same palaeosurface and in the same direction as the three hominins documented at Site G. The stature estimates for S1 greatly exceed those previously reconstructed for Au. afarensis from both skeletal material and footprint data. In combination with a comparative reappraisal of the Site G footprints, the evidence collected here embodies very important additions to the Pliocene record of hominin behaviour and morphology. Our results are consistent with considerable body size variation and, probably, degree of sexual dimorphism within a single species of bipedal hominins as early as 3.66 million years ago. DOI: http://dx.doi.org/10.7554/eLife.19568.001 PMID:27964778

  1. Religion and Early Marriage in the United States: Evidence from the Add Health Study.

    PubMed

    Uecker, Jeremy

    2014-06-01

    Early marriage has important consequences for individuals in the United States. Several studies have linked religion to early marriage but have not examined this relationship in depth. Using data from Waves 1, 3, and 4 of the National Longitudinal Study of Adolescent Health, I conduct multilevel event-history analysis to examine how religion, at both individual and contextual levels, is associated with early marriage. Further, I test mediators of the religion-early marriage relationship. I find significant variation in early marriage by religious tradition, religious service attendance, religious salience, belief in scriptural inerrancy, and religious context in high school. The individual religious effects-but not the school context effects-are explained in part by differential attitudes toward marriage and cohabitation.

  2. Religion and Early Marriage in the United States: Evidence from the Add Health Study

    PubMed Central

    Uecker, Jeremy

    2014-01-01

    Early marriage has important consequences for individuals in the United States. Several studies have linked religion to early marriage but have not examined this relationship in depth. Using data from Waves 1, 3, and 4 of the National Longitudinal Study of Adolescent Health, I conduct multilevel event-history analysis to examine how religion, at both individual and contextual levels, is associated with early marriage. Further, I test mediators of the religion-early marriage relationship. I find significant variation in early marriage by religious tradition, religious service attendance, religious salience, belief in scriptural inerrancy, and religious context in high school. The individual religious effects—but not the school context effects—are explained in part by differential attitudes toward marriage and cohabitation. PMID:25045173

  3. Reactive Attachment Disorder Following Early Maltreatment: Systematic Evidence beyond the Institution

    ERIC Educational Resources Information Center

    Kay, Catherine; Green, Jonathan

    2013-01-01

    Reactive Attachment Disorder (RAD) remains one of the least evidence-based areas of DSM and ICD nosology. Recent evidence from severely deprived institutional samples has informed review of RAD criteria for DSM-V; however, this data is not necessarily generalizable to expectable child environments in the developed world. We provide the first…

  4. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Cerantola, V.; Walte, N. P.; Rubie, D. C.

    2015-05-01

    Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.

  5. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment.

    PubMed

    Novak, Iona; Morgan, Cathy; Adde, Lars; Blackman, James; Boyd, Roslyn N; Brunstrom-Hernandez, Janice; Cioni, Giovanni; Damiano, Diane; Darrah, Johanna; Eliasson, Ann-Christin; de Vries, Linda S; Einspieler, Christa; Fahey, Michael; Fehlings, Darcy; Ferriero, Donna M; Fetters, Linda; Fiori, Simona; Forssberg, Hans; Gordon, Andrew M; Greaves, Susan; Guzzetta, Andrea; Hadders-Algra, Mijna; Harbourne, Regina; Kakooza-Mwesige, Angelina; Karlsson, Petra; Krumlinde-Sundholm, Lena; Latal, Beatrice; Loughran-Fowlds, Alison; Maitre, Nathalie; McIntyre, Sarah; Noritz, Garey; Pennington, Lindsay; Romeo, Domenico M; Shepherd, Roberta; Spittle, Alicia J; Thornton, Marelle; Valentine, Jane; Walker, Karen; White, Robert; Badawi, Nadia

    2017-09-01

    Cerebral palsy describes the most common physical disability in childhood and occurs in 1 in 500 live births. Historically, the diagnosis has been made between age 12 and 24 months but now can be made before 6 months' corrected age. To systematically review best available evidence for early, accurate diagnosis of cerebral palsy and to summarize best available evidence about cerebral palsy-specific early intervention that should follow early diagnosis to optimize neuroplasticity and function. This study systematically searched the literature about early diagnosis of cerebral palsy in MEDLINE (1956-2016), EMBASE (1980-2016), CINAHL (1983-2016), and the Cochrane Library (1988-2016) and by hand searching. Search terms included cerebral palsy, diagnosis, detection, prediction, identification, predictive validity, accuracy, sensitivity, and specificity. The study included systematic reviews with or without meta-analyses, criteria of diagnostic accuracy, and evidence-based clinical guidelines. Findings are reported according to the PRISMA statement, and recommendations are reported according to the Appraisal of Guidelines, Research and Evaluation (AGREE) II instrument. Six systematic reviews and 2 evidence-based clinical guidelines met inclusion criteria. All included articles had high methodological Quality Assessment of Diagnostic Accuracy Studies (QUADAS) ratings. In infants, clinical signs and symptoms of cerebral palsy emerge and evolve before age 2 years; therefore, a combination of standardized tools should be used to predict risk in conjunction with clinical history. Before 5 months' corrected age, the most predictive tools for detecting risk are term-age magnetic resonance imaging (86%-89% sensitivity), the Prechtl Qualitative Assessment of General Movements (98% sensitivity), and the Hammersmith Infant Neurological Examination (90% sensitivity). After 5 months' corrected age, the most predictive tools for detecting risk are magnetic resonance imaging (86

  6. Prevention and Early Intervention for Young Children at Risk for Emotional or Behavioral Disorders. Fifth CCBD Mini-Library Series: Meeting the Diverse Needs of Children and Youth with E/BD--Evidence-Based Programs and Practices.

    ERIC Educational Resources Information Center

    Conroy, Maureen A., Ed.

    This document presents discussions of current research and activities by experts in early intervention and behavior disorders. It offers a range of evidence-based strategies, procedures, and models appropriate for prevention and early intervention programs with young children at risk for emotional and/or behavioral disorders. Following an…

  7. Common Warm Dust Temperatures Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate

    2011-01-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  8. Early differential processing of material images: Evidence from ERP classification.

    PubMed

    Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R

    2014-06-24

    Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.

  9. Planet Formation in Small Separation Binaries: Not so Secularly Excited by the Companion

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2013-03-01

    The existence of planets in binaries with relatively small separations (around 20 AU), such as α Centauri or γ Cephei, poses severe challenges to standard planet formation theories. The problem lies in the vigorous secular excitation of planetesimal eccentricities at separations of several AU, where some of the planets are found, by the massive, eccentric stellar companions. High relative velocities of planetesimals preclude their growth in mutual collisions for a wide range of sizes, from below 1 km up to several hundred km, resulting in a fragmentation barrier to planet formation. Here we show that, for the case of an axisymmetric circumstellar protoplanetary disk, the rapid apsidal precession of planetesimal orbits caused by the disk gravity acts to strongly reduce the direct secular eccentricity excitation by the companion, lowering planetesimal velocities by an order of magnitude or even more at 1 AU. By examining the details of planetesimal dynamics, we demonstrate that this effect eliminates the fragmentation barrier for in situ growth of planetesimals as small as <~ 10 km even at separations as wide as 2.6 AU (the semimajor axis of the giant planet in HD 196885), provided that the circumstellar protoplanetary disk has a small eccentricity and is relatively massive, ~0.1 M ⊙.

  10. Further Evidence for the Efficacy of an Evidence-Based, Small Group, Literacy Intervention Program for Young Struggling Readers

    ERIC Educational Resources Information Center

    Wheldall, Kevin; Wheldall, Robyn; Madelaine, Alison; Reynolds, Meree; Arakelian, Sarah

    2017-01-01

    An earlier series of pilot studies and small-scale experimental studies had previously provided some evidence for the efficacy of a small group early literacy intervention program for young struggling readers. The present paper provides further evidence for efficacy based on a much larger sample of young, socially disadvantaged, at-risk readers.…

  11. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  12. Statistical Mechanics and Dynamics of the Outer Solar System.I. The Jupiter/Saturn Zone

    NASA Technical Reports Server (NTRS)

    Grazier, K. R.; Newman, W. I.; Kaula, W. M.; Hyman, J. M.

    1996-01-01

    We report on numerical simulations designed to understand how the solar system evolved through a winnowing of planetesimals accreeted from the early solar nebula. This sorting process is driven by the energy and angular momentum and continues to the present day. We reconsider the existence and importance of stable niches in the Jupiter/Saturn Zone using greatly improved numerical techniques based on high-order optimized multi-step integration schemes coupled to roundoff error minimizing methods.

  13. Early life exposure to malaria and cognition in adulthood: evidence from Mexico.

    PubMed

    Venkataramani, Atheendar S

    2012-09-01

    This study examines the impact of early life malaria exposure on cognition in sample of Mexican adults, using the nationwide introduction of malaria eradication efforts to identify causal impacts. The core findings are that birth year exposure to malaria eradication was associated with increases in Raven Progressive Matrices test scores and consumption expenditures, but not schooling. Additionally, cohorts born after eradication both entered and exited school earlier than their pre-eradication counterparts. These effects were only seen for men and explanations for this are assessed. Collectively, these findings suggest that improvements in infant health help explain secular increases in cognitive test scores, that better cognition may link early life health to adulthood earnings, and that human capital investments through childhood and young adulthood respond sensitively to market returns to early life endowment shocks. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  15. Evidence for Proterozoic and late Cretaceous-early Tertiary ore-forming events in the Coeur d'Alene district, Idaho and Montana

    USGS Publications Warehouse

    Leach, D.L.; Hofstra, A.H.; Church, S.E.; Snee, L.W.; Vaughn, R.B.; Zartman, R.E.

    1998-01-01

    New 40Ar/39Ar age spectra on sericite and lead isotope data on tetrahedrite, siderite, galena, bournonite, and stibnite, together with previously published isotopic, geochemical, and geologic studies provide evidence for two major vein-forming events in the Coeur d'Alene district and surrounding area of the Belt basin. The data suggest that the zinc- and lead-rich veins (e.g., Bunker Hill and Star-Morning mines) formed in the Proterozoic (1.0 Ga), whereas the silver-rich veins (e.g., Silver belt mines), antimony veins (e.g., US Antimony mine), and gold-bearing quartz veins (Murry subdistrict) formed in Late Cretaceous to early Tertiary time.

  16. Pediatric Bipolar Disorder: Evidence for Prodromal States and Early Markers

    ERIC Educational Resources Information Center

    Luby, Joan L.; Navsaria, Neha

    2010-01-01

    Background: Childhood bipolar disorder remains a controversial but increasingly diagnosed disorder that is associated with significant impairment, chronic course and treatment resistance. Therefore, the search for prodromes or early markers of risk for later childhood bipolar disorder may be of great importance for prevention and/or early…

  17. ERP Evidence of Visualization at Early Stages of Visual Processing

    ERIC Educational Resources Information Center

    Page, Jonathan W.; Duhamel, Paul; Crognale, Michael A.

    2011-01-01

    Recent neuroimaging research suggests that early visual processing circuits are activated similarly during visualization and perception but have not demonstrated that the cortical activity is similar in character. We found functional equivalency in cortical activity by recording evoked potentials while color and luminance patterns were viewed and…

  18. Life Detection on the Early Earth

    NASA Technical Reports Server (NTRS)

    Runnegar, B.

    2004-01-01

    Finding evidence for first the existence, and then the nature of life on the early Earth or early Mars requires both the recognition of subtle biosignatures and the elimination of false positives. The history of the search for fossils in increasingly older Precambrian strata illustrates these difficulties very clearly, and new observational and theoretical approaches are both needed and being developed. At the microscopic level of investigation, three-dimensional morphological characterization coupled with in situ chemical (isotopic, elemental, structural) analysis is the desirable first step. Geological context is paramount, as has been demonstrated by the controversies over AH84001, the Greenland graphites, and the Apex chert microfossils . At larger scales, the nature of sedimentary bedforms and the structures they display becomes crucial, and here the methods of condensed matter physics prove most useful in discriminating between biological and non-biological constructions. Ultimately, a combination of geochemical, morphological, and contextural evidence may be required for certain life detection on the early Earth or elsewhere.

  19. Evidence of resilience to past climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events

    NASA Astrophysics Data System (ADS)

    Flohr, Pascal; Fleitmann, Dominik; Matthews, Roger; Matthews, Wendy; Black, Stuart

    2016-03-01

    Climate change is often cited as a major factor in social change. The so-called 8.2 ka event was one of the most pronounced and abrupt Holocene cold and arid events. The 9.2 ka event was similar, albeit of a smaller magnitude. Both events affected the Northern Hemisphere climate and caused cooling and aridification in Southwest Asia. Yet, the impacts of the 8.2 and 9.2 ka events on early farming communities in this region are not well understood. Current hypotheses for an effect of the 8.2 ka event vary from large-scale site abandonment and migration (including the Neolithisation of Europe) to continuation of occupation and local adaptation, while impacts of the 9.2 ka have not previously been systematically studied. In this paper, we present a thorough assessment of available, quality-checked radiocarbon (14C) dates for sites from Southwest Asia covering the time interval between 9500 and 7500 cal BP, which we interpret in combination with archaeological evidence. In this way, the synchronicity between changes observed in the archaeological record and the rapid climate events is tested. It is shown that there is no evidence for a simultaneous and widespread collapse, large-scale site abandonment, or migration at the time of the events. However, there are indications for local adaptation. We conclude that early farming communities were resilient to the abrupt, severe climate changes at 9250 and 8200 cal BP.

  20. From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Blanc, Michel

    2018-03-01

    This paper is an introduction to volume 56 of the Space Science Series of ISSI, "From disks to planets—the making of planets and their proto-atmospheres", a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions. We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their

  1. Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence.

    PubMed

    Chernyshev, Boris V; Pronko, Platon K; Stroganova, Tatiana A

    2016-01-01

    Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.

  2. Molecular evidence for the early history of living amphibians.

    PubMed

    Feller, A E; Hedges, S B

    1998-06-01

    The evolutionary relationships of the three orders of living amphibians (lissamphibians) has been difficult to resolve, partly because of their specialized morphologies. Traditionally, frogs and salamanders are considered to be closest relatives, and all three orders are thought to have arisen in the Paleozoic (>250 myr). Here, we present evidence from the DNA sequences of four mitochondrial genes (2.7 kilobases) that challenges the conventional hypothesis and supports a salamander-caecilian relationship. This, in light of the fossil record and distribution of the families, suggests a more recent (Mesozoic) origin for salamanders and caecilians directly linked to the initial breakup of the supercontinent Pangaea. We propose that this single geologic event isolated salamanders and archaeobatrachian frogs on the northern continents (Laurasia) and the caecilians and neobatrachian frogs on the southern continents (Gondwana). Among the neobatrachian frog families, molecular evidence supports a South American clade and an African clade, inferred here to be the result of mid-Cretaceous vicariance. Copyright 1998 Academic Press.

  3. Evidence from coupled (Sm-147)-(Nd-143) and (Sm-146)-(Nd-142) systematics for very early (4.5-Gyr) differentiation of the earth's mantle

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    Evidence for early differentiation of the earth's mantle is presented based on measurements of Nd-143/Nd-144 and Nd-142/Nd-144 ratios in an approximately 3.8 Gyr-old supracrustal rock from Isua, West Greenland. Coupled (Sm-146,147)-(Nd-142,143) systematics suggest that the fractionation of Sm/Nd took place 4.44-4.54 Gyr ago, due to extraction of a light rare earth element-enriched primordial crust.

  4. Cool episodes in Early Tertiary Arctic climate: Evidence from Svalbard

    NASA Astrophysics Data System (ADS)

    Spielhagen, R. F.; Tripati, A.

    2009-04-01

    The Arctic is a climatically sensitive and important region. However, very little is known about the climatic and oceanographic evolution of the area, particularly prior to the Neogene. Until recently, the Arctic was assumed to be characterized by relatively warm conditions during the early Cenozoic. The Early Tertiary sedimentary sequence on Svalbard contains several layers with coal seams and broad-leaved plants which were commonly accepted as indicators of a generally temperate-warm climate. Here we report on the intermittent occurrence of certain temperature indicators in the succession, which may represent the first northern high-latitude record of near-freezing temperatures for the early Cenozoic. Besides the findings of probably ice-rafted erratic clasts in the Paleocene and Eocene sandstones and shales, we note especially the occurrence of glendonites which are pseudomorphs of calcite after ikaite (calcium carbonate hexahydrate). We measured the chemical composition of Svalbard glendonites which is almost identical to that of similar pseudomorphs from the Lower Cretaceaous of Northern Canada. Mass spectrometric analyses of the glendonite calcite gave very low carbon isotope values. These values suggest a provenance of the calcium carbonate from marine organic carbon and connect our glendonites to the precursor mineral ikaite which has similar low values. Since a variety of studies has demonstrated that ikaite is stable only at temperatures close to freezing point, we have to infer low temperatures also for the deepositional environment of which the sediments were deposited that now hold glendonites. These results imply the occurrence of cooling phases episodically during the warm background climate of the Paleocene and Eocene, suggesting that temperature variability was much greater than previously recognized.

  5. The Long-term Impact of Early Life Pain On Adult Responses to Anxiety and Stress: Historical Perspectives and Empirical Evidence

    PubMed Central

    Victoria, Nicole C.; Murphy, Anne Z.

    2016-01-01

    Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10–18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 25% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of insult, remains unclear. Work in our lab using a rodent model of early life pain suggests that inflammatory pain experienced on the day of birth blunts adult responses to stress- and pain-provoking stimuli, and dysregulates the hypothalamic pituitary adrenal (HPA) axis in part through a permanent upregulation in central endogenous opioid tone. This review focuses on the long-term impact of neonatal inflammatory pain on adult anxiety- and stress-related responses, and underlying neuroanatomical changes in the context of endogenous pain control and the HPA axis. These two systems are in a state of exaggerated developmental plasticity early in postnatal life, and work in concert to respond to noxious or aversive stimuli. We present empirical evidence from animal and clinical studies, and discuss historical perspectives underlying the lack of analgesia/anesthetic use for early life pain in the modern NICU. PMID:26210872

  6. The Outcomes Movement and Evidence Based Medicine in Plastic Surgery

    PubMed Central

    Kowalski, Evan.; Chung, Kevin C.

    2012-01-01

    Synopsis Evidence based medicine is analyzed from its inception. The authors take the reader through the early formation of ‘scientific medicine’ that has evolved into the multi-purpose tool it has become today. Early proponents and their intentions that sparked evidence base and outcomes are presented: the work of David Sackett, Brian Haynes, Peter Tugwell, and Victor Neufeld is discussed - how they perceived the need for better clinical outcomes that led to a more formalized evidence based practice. The fundamentals are discussed objectively in detail and potential flaws are presented that guide the reader to deeper comprehension. PMID:23506764

  7. Does early-life income inequality predict self-reported health in later life? Evidence from the United States.

    PubMed

    Lillard, Dean R; Burkhauser, Richard V; Hahn, Markus H; Wilkins, Roger

    2015-03-01

    We investigate the association between adult health and the income inequality they experienced as children up to 80 years earlier. Our inequality data track shares of national income held by top percentiles from 1913 to 2009. We average those data over the same early-life years and merge them to individual data from the Panel Study of Income Dynamics data for 1984-2009. Controlling for demographic and economic factors, we find both men and women are statistically more likely to report poorer health if income was more unequally distributed during the first years of their lives. The association is robust to alternative specifications of income inequality and time trends and remains significant even when we control for differences in overall childhood health. Our results constitute prima facie evidence that adults' health may be adversely affected by the income inequality they experienced as children. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. How does temporal preparation speed up response implementation in choice tasks? Evidence for an early cortical activation.

    PubMed

    Tandonnet, Christophe; Davranche, Karen; Meynier, Chloé; Burle, Borís; Vidal, Franck; Hasbroucq, Thierry

    2012-02-01

    We investigated the influence of temporal preparation on information processing. Single-pulse transcranial magnetic stimulation (TMS) of the primary motor cortex was delivered during a between-hand choice task. The time interval between the warning and the imperative stimulus varied across blocks of trials was either optimal (500 ms) or nonoptimal (2500 ms) for participants' performance. Silent period duration was shorter prior to the first evidence of response selection for the optimal condition. Amplitude of the motor evoked potential specific to the responding hand increased earlier for the optimal condition. These results revealed an early release of cortical inhibition and a faster integration of the response selection-related inputs to the corticospinal pathway when temporal preparation is better. Temporal preparation may induce cortical activation prior to response selection that speeds up the implementation of the selected response. Copyright © 2011 Society for Psychophysiological Research.

  9. Early menarche, nulliparity and the risk for premature and early natural menopause.

    PubMed

    Mishra, Gita D; Pandeya, Nirmala; Dobson, Annette J; Chung, Hsin-Fang; Anderson, Debra; Kuh, Diana; Sandin, Sven; Giles, Graham G; Bruinsma, Fiona; Hayashi, Kunihiko; Lee, Jung Su; Mizunuma, Hideki; Cade, Janet E; Burley, Victoria; Greenwood, Darren C; Goodman, Alissa; Simonsen, Mette Kildevæld; Adami, Hans-Olov; Demakakos, Panayotes; Weiderpass, Elisabete

    2017-03-01

    Are parity and the timing of menarche associated with premature and early natural menopause? Early menarche (≤11 years) is a risk factor for both premature menopause (final menstrual period, FMP <40 years) and early menopause (FMP 40-44 years), a risk that is amplified for nulliparous women. Women with either premature or early menopause face an increased risk of chronic conditions in later life and of early death. Findings from some studies suggest that early menarche and nulliparity are associated with early menopause, however overall the evidence is mixed. Much of the evidence for a direct relationship is hampered by a lack of comparability across studies, failure to adjust for confounding factors and inadequate statistical power. This pooled study comprises 51 450 postmenopausal women from nine observational studies in the UK, Scandinavia, Australia and Japan that contribute to the International collaboration for a Life course Approach to reproductive health and Chronic disease Events (InterLACE). Age at menarche (categorized as ≤11, 12, 13, 14 and 15 or more years) and parity (categorized as no children, one child and two or more children) were exposures of interest. Age at FMP was confirmed by at least 12 months of cessation of menses where this was not the result of an intervention (such as surgical menopause due to bilateral oophorectomy or hysterectomy) and categorized as premature menopause (FMP before age 40), early menopause (FMP 40-44 years), 45-49 years, 50-51 years, 52-53 years and 54 or more years. We used multivariate multinomial logistic regression models to estimate relative risk ratio (RRR) and 95% CI for associations between menarche, parity and age at FMP adjusting for within-study correlation. The median age at FMP was 50 years (interquartile range 48-53 years), with 2% of the women experiencing premature menopause and 7.6% early menopause. Women with early menarche (≤11 years, compared with 12-13 years) were at higher risk of premature

  10. When Is It Too Early for Single Sport Specialization?

    PubMed

    Feeley, Brian T; Agel, Julie; LaPrade, Robert F

    2016-01-01

    Over the past 15 years, there has been an increase in youth sports participation with a concomitant increase in early year-round training in a single sport. Many factors contribute to the desire of parents and coaches to encourage early single sport specialization, including the desire to give the young athlete an edge in competition, pursuit of scholarships, and potential professional status, and the ability to label a young athlete as elite at an early age. Despite these perceived advantages, some data suggest that early sport specialization does not lead to a competitive advantage over athletes who participate in multiple sports. Although the data are limited, there is some evidence that early sport specialization may put the young athlete at risk for overuse injuries. The focus of this review is to highlight the evidence regarding early sport specialization and risk for injury; discuss the risk factors for overuse injury in high-risk sports including ice hockey, swimming, gymnastics, and baseball; and discuss future potential research that would help define the risk of injury for young athletes who participate in early sport specialization. © 2015 The Author(s).

  11. The First Concussion Crisis: Head Injury and Evidence in Early American Football

    PubMed Central

    2014-01-01

    In the early 21st century, sports concussion has become a prominent public health problem, popularly labeled “The Concussion Crisis.” Football-related concussion contributes much of the epidemiological burden and inspires much of the public awareness. Though often cast as a recent phenomenon, the crisis in fact began more than a century ago, as concussions were identified among footballers in the game’s first decades. This early concussion crisis subsided—allowing the problem to proliferate—because work was done by football’s supporters to reshape public acceptance of risk. They appealed to an American culture that permitted violence, shifted attention to reforms addressing more visible injuries, and legitimized football within morally reputable institutions. Meanwhile, changing demands on the medical profession made practitioners reluctant to take a definitive stance. Drawing on scientific journals, public newspapers, and personal letters of players and coaches, this history of the early crisis raises critical questions about solutions being negotiated at present. PMID:24625171

  12. The first concussion crisis: head injury and evidence in early American football.

    PubMed

    Harrison, Emily A

    2014-05-01

    In the early 21st century, sports concussion has become a prominent public health problem, popularly labeled "The Concussion Crisis." Football-related concussion contributes much of the epidemiological burden and inspires much of the public awareness. Though often cast as a recent phenomenon, the crisis in fact began more than a century ago, as concussions were identified among footballers in the game's first decades. This early concussion crisis subsided-allowing the problem to proliferate-because work was done by football's supporters to reshape public acceptance of risk. They appealed to an American culture that permitted violence, shifted attention to reforms addressing more visible injuries, and legitimized football within morally reputable institutions. Meanwhile, changing demands on the medical profession made practitioners reluctant to take a definitive stance. Drawing on scientific journals, public newspapers, and personal letters of players and coaches, this history of the early crisis raises critical questions about solutions being negotiated at present.

  13. The effect of giant impactors on the magnetic field energy of an early Martian dynamo.

    NASA Astrophysics Data System (ADS)

    Drummond, McGregor; Thieulot, Cedric; Monteux, Julien

    2016-04-01

    Through the cratering record embedded on its surface, Mars is one of the key planets required for investigating the formation and impact frequency in the early history of our Solar System. This record also holds clues to the events that may have caused the observed hemispheric dichotomy and cessation of the magnetic field that was present within the first 500 Myr of the planets' formation. We investigate the influence of giant impacts on the early Martian dynamo using the numerical dynamo modelling code PARODY-JA [1]. We hypothesize that the input heat from a giant impact will decrease the total heat flux at the CMB through mantle heating which leads to a decrease in the Rayleigh number of the core. As boundary conditions for the heat flux anomaly size, we use numerical results of a 750 km diameter impactor from the Monteux and Arkani-Hamed, 2014 [2] study which investigated impact heating and core merging of giant impacts in early Mars. We also determine the decrease in Rayleigh number from the change in total heat flux at the CMB using these results, where the decrease after impact is due to shock heating at the CMB. We calculate the time-averaged total magnetic field energy for an initial homogeneous heat flux model using a range of Rayleigh numbers (5 x 103 - 1 x 10^5). The Rayleigh number is then decreased for three new models - homogeneous, north pole impact and equatorial impact - and the time-averaged energy again determined. We find that the energy decreases more in our impact models, compared with the homogeneous, along with a variation in energy between the north pole and equatorial impact models. We conclude that giant impacts in Mars' early history would have decreased the total magnetic energy of the field and the decrease in energy is also dependent on the location of the impact. The magnetic field could have been disrupted beyond recovery from a planetesimal-sized collision; such as the suggested Borealis basin forming impact, or through the

  14. Comets, impacts, and atmospheres

    NASA Astrophysics Data System (ADS)

    Owen, Tobias; Bar-Nun, Akiva

    Studies of element abundances and values of D/H in the atmospheres of the giant planets and Titan have emphasized the important role of icy planetesimals in the formation of these bodies. In these atmospheres, C/H and D/H increase as the relative masses of the 'cores' of the planets increase. N/H appears to deviate from this trend in an interesting way. In the inner solar system, the traditional approach of using carbonaceous chondrites as the source of planetary volatiles is in serious trouble because of the depletion of xenon and the unusual pattern of xenon isotopes found in the atmospheres of Earth and Mars, and because of the solar-type abundance ratios of argon, krypton and xenon and the large amounts of neon and argon on Venus. Recent studies of elemental abundances in comets, especially P/Halley, coupled with laboratory studies of the trapping of gas in ice formed at low temperatures by A. Bar-Nun et al. provide a consistent interpretation of all of these results. This interpretation emphasizes the fundamental importance of icy planetesimals (comets) and the randomness of early impacts in the formation of planetary systems. Cometary delivery by itself will not explain the noble gas abundances on the inner planets. There is good evidence for at least one additional source, which presumably consists of the rocky material making up the bulk of the planets. The existence of this rocky reservoir is manifested in the nucleogenic isotopes and in the neon which is found in all these atmospheres and is also present in the Earth's mantle. This neon may well be a relic of the planets' earliest, accretional atmospheres.

  15. Early Specialization in Youth Sport: A Requirement for Adult Expertise?.

    ERIC Educational Resources Information Center

    Baker, Joseph

    2003-01-01

    This article examines evidence both for and against early specialization in the development of sports expertise and presents the early diversification approach as another path leading to elite levels of performance. It discusses sports dropout and questions the link between early sports specialization and exceptional sports performance. (Contains…

  16. Applying Contemporary Developmental and Movement Science Theories and Evidence to Early Intervention Practice

    ERIC Educational Resources Information Center

    Hickman, Robbin; McCoy, Sarah Westcott; Long, Toby M.; Rauh, Mitchell J.

    2011-01-01

    Changes in early childhood science, theory, and best practices for improving outcomes of children with motor delay or dysfunction and their families have evolved rapidly since EI began. Changes in daily early intervention (EI) practice have been more elusive. Closing the gap between knowledge and practice requires EI providers to piece together…

  17. Early-life nutritional effects on the female reproductive system.

    PubMed

    Chan, K A; Tsoulis, M W; Sloboda, D M

    2015-02-01

    There is now considerable epidemiological and experimental evidence indicating that early-life environmental conditions, including nutrition, affect subsequent development in later life. These conditions induce highly integrated responses in endocrine-related homeostasis, resulting in persistent changes in the developmental trajectory producing an altered adult phenotype. Early-life events trigger processes that prepare the individual for particular circumstances that are anticipated in the postnatal environment. However, where the intrauterine and postnatal environments differ markedly, such modifications to the developmental trajectory may prove maladaptive in later life. Reproductive maturation and function are similarly influenced by early-life events. This should not be surprising, because the primordial follicle pool is established early in life and is thus vulnerable to early-life events. Results of clinical and experimental studies have indicated that early-life adversity is associated with a decline in ovarian follicular reserve, changes in ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms regulating the relationship between the early-life developmental environment and postnatal reproductive development and function are unclear. This review examines the evidence linking early-life nutrition and effects on the female reproductive system, bringing together clinical observations in humans and experimental data from targeted animal models. © 2015 Society for Endocrinology.

  18. Updating the Evidence for Oceans on Early Mars

    NASA Technical Reports Server (NTRS)

    Fairen, Alberto G.; Dohm, James M.; Oner, Tayfun; Ruiz, Javier; Rodriguez, Alexis P.; Schulze-Makuch, Dirk; Ormoe, Jens; McKay, Chris P.; Baker, Victor R.; Amils, Ricardo

    2004-01-01

    Different-sized bodies of water have been proposed to have occurred episodically in the lowlands of Mars throughout the planet's history, largely related to major stages of development of Tharsis and/or orbital obliquity. These water bodies range from large oceans in the Noachian-Early Hesperian, to a minor sea in the Late Hesperian, and dispersed lakes during the Amazonian. To evaluate the more recent discoveries regarding the oceanic possibility, here we perform a comprehensive analysis of the evolution of water on Mars, including: 1. Geological assessment of proposed shorelines; 2. A volumetric approximation to the plains-filing proposed oceans; 3. Geochemistry of the oceans and derived mineralogies; 4. Post-oceanic (i.e., Amazonian) evolution of the shorelines; and 5. Ultimate water evolution on Mars.

  19. The Climate of Early Mars

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin D.

    2016-06-01

    The nature of the early martian climate is one of the major unanswered questions of planetary science. Key challenges remain, but a new wave of orbital and in situ observations and improvements in climate modeling have led to significant advances over the past decade. Multiple lines of geologic evidence now point to an episodically warm surface during the late Noachian and early Hesperian periods 3-4 Ga. The low solar flux received by Mars in its first billion years and inefficiency of plausible greenhouse gases such as CO2 mean that the steady-state early martian climate was likely cold. A denser CO2 atmosphere would have caused adiabatic cooling of the surface and hence migration of water ice to the higher-altitude equatorial and southern regions of the planet. Transient warming caused melting of snow and ice deposits and a temporarily active hydrological cycle, leading to erosion of the valley networks and other fluvial features. Precise details of the warming mechanisms remain unclear, but impacts, volcanism, and orbital forcing all likely played an important role. The lack of evidence for glaciation across much of Mars's ancient terrain suggests the late Noachian surface water inventory was not sufficient to sustain a northern ocean. Though mainly inhospitable on the surface, early Mars may nonetheless have presented significant opportunities for the development of microbial life.

  20. Early evidence of Acheulean settlement in northwestern Europe--la Noira site, a 700,000 year-old occupation in the center of France.

    PubMed

    Moncel, Marie-Hélène; Despriée, Jackie; Voinchet, Pierre; Tissoux, Hélène; Moreno, Davinia; Bahain, Jean-Jacques; Courcimault, Gilles; Falguères, Christophe

    2013-01-01

    The human settlement of Europe during Pleistocene times was sporadic and several stages have been recognized, both from paleaoanthropological and archaeological records. If the first phase of hominin occupation (as early as 1.4 Ma) seems mainly restricted to the southern part of the continent, the second phase, characterized by specific lithic tools (handaxes), is linked to Acheulean settlements and to the emergence of Homo heidelbergensis, the ancestor of Neanderthals. This phase reached northwestern Europe and is documented in numerous sites in Germany, Great Britain and northern France, generally after 600 ka. At la Noira (Brinay, Central France), the Middle Pleistocene alluvial formation of the Cher River covers an archaeological level associated with a slope deposit (diamicton). The lithic assemblage from this level includes Large Cutting Tools (LCTs), flakes and cores, associated with numerous millstone slabs. The lithic series is classified as Acheulean on the basis of both technological and typological analyses. Cryoturbation features indicate that the slope deposits and associated archaeological level were strongly frozen and disturbed after hominin occupation and before fluvial deposition. Eight sediment samples were dated by the electron spin resonance (ESR) method and the weighted average age obtained for the fluvial sands overlying the slope deposits is 665±55 ka. This age is older than previous chronological data placing the first European Acheulean assemblages north of 45(th) parallel north at around 500 ka and modifies our current vision of the initial peopling of northern Europe. Acheulean settlements are older than previously assumed and the oldest evidences are not only located in southern Europe. La Noira is the oldest evidence of Acheulean presence in north-western Europe and attests to the possibility of pioneering phases of Acheulean settlement which would have taken place on a Mode 1-type substratum as early as 700 ka. The lithic assemblage