Sample records for early positive biomarker

  1. Biomarkers for the early diagnosis of hepatocellular carcinoma

    PubMed Central

    Tsuchiya, Nobuhiro; Sawada, Yu; Endo, Itaru; Saito, Keigo; Uemura, Yasushi; Nakatsura, Tetsuya

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer-related deaths worldwide. Although the prognosis of patients with HCC is generally poor, the 5-year survival rate is > 70% if patients are diagnosed at an early stage. However, early diagnosis of HCC is complicated by the coexistence of inflammation and cirrhosis. Thus, novel biomarkers for the early diagnosis of HCC are required. Currently, the diagnosis of HCC without pathological correlation is achieved by analyzing serum α-fetoprotein levels combined with imaging techniques. Advances in genomics and proteomics platforms and biomarker assay techniques over the last decade have resulted in the identification of numerous novel biomarkers and have improved the diagnosis of HCC. The most promising biomarkers, such as glypican-3, osteopontin, Golgi protein-73 and nucleic acids including microRNAs, are most likely to become clinically validated in the near future. These biomarkers are not only useful for early diagnosis of HCC, but also provide insight into the mechanisms driving oncogenesis. In addition, such molecular insight creates the basis for the development of potentially more effective treatment strategies. In this article, we provide an overview of the biomarkers that are currently used for the early diagnosis of HCC. PMID:26457017

  2. Empirical evaluation demonstrated importance of validating biomarkers for early detection of cancer in screening settings to limit the number of false-positive findings.

    PubMed

    Chen, Hongda; Knebel, Phillip; Brenner, Hermann

    2016-07-01

    Search for biomarkers for early detection of cancer is a very active area of research, but most studies are done in clinical rather than screening settings. We aimed to empirically evaluate the role of study setting for early detection marker identification and validation. A panel of 92 candidate cancer protein markers was measured in 35 clinically identified colorectal cancer patients and 35 colorectal cancer patients identified at screening colonoscopy. For each case group, we selected 38 controls without colorectal neoplasms at screening colonoscopy. Single-, two- and three-marker combinations discriminating cases and controls were identified in each setting and subsequently validated in the alternative setting. In all scenarios, a higher number of predictive biomarkers were initially detected in the clinical setting, but a substantially lower proportion of identified biomarkers could subsequently be confirmed in the screening setting. Confirmation rates were 50.0%, 84.5%, and 74.2% for one-, two-, and three-marker algorithms identified in the screening setting and were 42.9%, 18.6%, and 25.7% for algorithms identified in the clinical setting. Validation of early detection markers of cancer in a true screening setting is important to limit the number of false-positive findings. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.

    PubMed

    Song, Lili; Zhuang, Pengwei; Lin, Mengya; Kang, Mingqin; Liu, Hongyue; Zhang, Yuping; Yang, Zhen; Chen, Yunlong; Zhang, Yanjun

    2017-09-01

    Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.

  4. Perinatal biomarkers in prematurity: Early identification of neurologic injury

    PubMed Central

    Andrikopoulou, Maria; Almalki, Ahmad; Farzin, Azadeh; Cordeiro, Christina N.; Johnston, Michael V.; Burd, Irina

    2014-01-01

    Over the past few decades, biomarkers have become increasingly utilized as non-invasive tools in the early diagnosis and management of various clinical conditions. In perinatal medicine, the improved survival of extremely premature infants who are at high risk for adverse neurologic outcomes has increased the demand for the discovery of biomarkers in detecting and predicting the prognosis of infants with neonatal brain injury. By enabling the clinician to recognize potential brain damage early, biomarkers could allow clinicians to intervene at the early stages of disease, and to monitor the efficacy of those interventions. This review will first examine the potential perinatal biomarkers for neurologic complications of prematurity, specifically, intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL) and posthemorrhagic hydrocephalus (PHH). It will also evaluate knowledge gained from animal models regarding the pathogenesis of perinatal brain injury in prematurity. PMID:24768951

  5. Urine biomarkers in the early stages of diseases: current status and perspective.

    PubMed

    Jing, Jian; Gao, Youhe

    2018-02-01

    As a noninvasive and easily available biological fluid, the urine is becoming an important source for disease biomarker study. Change is essential for the usefulness of a biomarker. Without homeostasis mechanisms, urine can accommodate more changes, especially in the early stages of diseases. In this review, we summarize current status and discuss perspectives on the discovery of urine biomarkers in the early stages of diseases. We emphasize the advantages of urine biomarkers compared to plasma biomarkers for the diagnosis of diseases at early stages, propose a urine biomarker research roadmap, and highlight a novel membrane storage technique that enables large-scale urine sample collection and storage efficiently and economically. It is anticipated that urine biomarker studies will greatly promote early diagnosis, prevention, treatment, and prognosis of a variety of diseases, and provide strong support for translational and precision medicine.

  6. Prevalence of positive autoimmune biomarkers in the brucellosis patients.

    PubMed

    Ahmadinejad, Zahra; Abdollahi, Alireza; Ziaee, Vahid; Domiraei, Zeinab; Najafizadeh, Seyed-Reza; Jafari, Sirus; Ahmadinejad, Mahdi

    2016-10-01

    Brucellosis is a chronic infectious disease with articular involvement. Discrimination between brucellosis and rheumatologic disorders is difficult in regions endemic for brucellosis. There are few studies about the rate of positive autoantibodies as rheumatologic biomarkers in brucellosis, and the prevalence is variable. In this study, the rheumatologic tests were studied in brucellosis patients. This cross sectional study was performed in two teaching hospitals in Tehran, Iran. Forty-nine patients with brucella infection and 42 healthy participants were enrolled in this study. Brucellosis was diagnosed on the basis of the clinical symptoms and positive serology for brucellosis. Rheumatic factor (RF) and antinuclear antibodies (ANA) were evaluated in all patients. Cyclic citrullinated peptides antibody (ACPA) and anti-double strand DNA (anti-dsDNA) were checked in all patients and control groups. Out of 49 patients, 15 (30.6 %) were RF positive and 4 (8.2 %) were ANA positive. Anti-dsDNA was concurrently positive with ANA in 1 patient (2 %) but ACPA titer was positive in 8 patients (16.3 %). None of the patients with positive autoantibody biomarkers fulfilled the criteria for rheumatologic disorders. The rate of positive RF in healthy people was significantly lower than patient group (2.4 vs. 30.6 %), but the positiveness rate of other biomarkers did not have significant difference in two groups. Sixty percent of the patients with positive RF and 75 % with positive ACPA had skeletal involvement (P < 0.05). Autoantibody biomarkers can be positive in brucellosis. Rheumatologists should be aware of brucellosis in patients with musculoskeletal involvement and positive autoantibody biomarkers in endemic regions.

  7. A Biomarker Bakeoff in Early Stage Pancreatic Cancer — EDRN Public Portal

    Cancer.gov

    Previous research in EDRN laboratories and elsewhere has produced several candidate biomarker(s) for the detection of early-stage pancreatic ductal adenocarcinoma (PDAC), many of which show promise for significantly improving upon the performance of the current best marker, CA19-9. As yet, the relative performance of the markers in combination is not known because a rigorous comparison using a common sample set has not been performed. A direct comparison of the potential biomarkers in a comparative study (“biomarker bakeoff”) would enable an objective determination of which candidates should move forward for further validation, as well as an assessment of the potential value of using novel combinations of the biomarkers. The gastrointestinal collaborative group within the EDRN is in an optimal position to carry out such a study given its shared resources and interactive structure. In this project, the two pancreatic CVCs in the EDRN will provide samples to be distributed to four laboratories with promising biomarkers. The laboratories will run their own assays and perform initial analyses on the blinded PDAC and control samples. Our biostatistical collaborator, Dr. Huang at FHCRC, will perform the statistical evaluations. Biomarkers meeting the predetermined performance criteria will move forward to further validation using the EDRN reference set. In addition, we will determine whether any novel combinations of biomarkers should be further tested.

  8. Biomarkers for early detection of Alzheimer disease.

    PubMed

    Barber, Robert C

    2010-09-01

    The existence of an effective biomarker for early detection of Alzheimer disease would facilitate improved diagnosis and stimulate therapeutic trials. Multidisciplinary clinical diagnosis of Alzheimer disease is time consuming and expensive and relies on experts who are rarely available outside of specialty clinics. Thus, many patients do not receive proper diagnosis until the disease has progressed beyond stages in which treatments are maximally effective. In the clinical trial setting, rapid, cost-effective screening of patients for Alzheimer disease is of paramount importance for the development of new treatments. Neuroimaging of cortical amyloid burden and volumetric changes in the brain and assessment of protein concentrations (eg, β-amyloid 1-42, total tau, phosphorylated tau) in cerebrospinal fluid are diagnostic tools that are not widely available. Known genetic markers do not provide sufficient discriminatory power between different forms of dementia to be useful in isolation. Recent studies using panels of biomarkers for diagnosis of Alzheimer disease or mild cognitive impairment have been promising, though no such studies have been cross-validated in independent samples of subjects. The ideal biomarker enabling early detection of Alzheimer disease has not yet been identified.

  9. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    PubMed

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  10. First-trimester screening for early and late preeclampsia using maternal characteristics, biomarkers, and estimated placental volume.

    PubMed

    Sonek, Jiri; Krantz, David; Carmichael, Jon; Downing, Cathy; Jessup, Karen; Haidar, Ziad; Ho, Shannon; Hallahan, Terrence; Kliman, Harvey J; McKenna, David

    2018-01-01

    Preeclampsia is a major cause of perinatal morbidity and mortality. First-trimester screening has been shown to be effective in selecting patients at an increased risk for preeclampsia in some studies. We sought to evaluate the feasibility of screening for preeclampsia in the first trimester based on maternal characteristics, medical history, biomarkers, and placental volume. This is a prospective observational nonintervention cohort study in an unselected US population. Patients who presented for an ultrasound examination between 11-13+6 weeks' gestation were included. The following parameters were assessed and were used to calculate the risk of preeclampsia: maternal characteristics (demographic, anthropometric, and medical history), maternal biomarkers (mean arterial pressure, uterine artery pulsatility index, placental growth factor, pregnancy-associated plasma protein A, and maternal serum alpha-fetoprotein), and estimated placental volume. After delivery, medical records were searched for the diagnosis of preeclampsia. Detection rates for early-onset preeclampsia (<34 weeks' gestation) and later-onset preeclampsia (≥34 weeks' gestation) for 5% and 10% false-positive rates using various combinations of markers were calculated. We screened 1288 patients of whom 1068 (82.99%) were available for analysis. In all, 46 (4.3%) developed preeclampsia, with 13 (1.22%) having early-onset preeclampsia and 33 (3.09%) having late-onset preeclampsia. Using maternal characteristics, serum biomarkers, and uterine artery pulsatility index, the detection rate of early-onset preeclampsia for either 5% or 10% false-positive rate was 85%. With the same protocol, the detection rates for preeclampsia with delivery <37 weeks were 52% and 60% for 5% and 10% false-positive rates, respectively. Based on maternal characteristics, the detection rates for late-onset preeclampsia were 15% and 48% for 5% and 10%, while for preeclampsia at ≥37 weeks' gestation the detection rates were 24

  11. Biomarkers as tracers for life on early earth and Mars

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.

    1998-01-01

    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  12. The use of cell cycle arrest biomarkers in the early detection of acute kidney injury. Is this the new renal troponin?

    PubMed

    Ortega, Luis M; Heung, Michael

    2018-04-05

    Acute kidney injury (AKI) has a high prevalence in critical care patients. Early detection might prevent patients from developing chronic kidney disease and requirement for renal replacement therapy. If we compare AKI with acute coronary syndrome, in which an increase in cardiac troponin may trigger early diagnosis and therapeutic intervention, we could extrapolate a similar technique in patients with early AKI without changes in urinary frequency or serum creatinine. The objective is to identify biomarker-positive, creatinine-negative patients that would allow therapeutic interventions to be initiated before finding changes in serum creatinine, preventing kidney damage. Tissue inhibitor of metalloproteinase 2 and insulin-like growth factor binding protein 7 are cell cycle arrest biomarkers that have demonstrated, in recent clinical trials, to have good sensitivity and specificity for early detection of AKI. Other recent studies have shown that the joint use of these biomarkers with serum creatinine and urine production could improve the prognosis of AKI in critical patients. The application of these biomarkers in clinical practice would enable the early identification of patients at risk of AKI, establishing interventions that would improve the survival of renal function. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Blood-Based Biomarkers of Early-Onset Breast Cancer

    DTIC Science & Technology

    2015-10-01

    n=51). The women with early-onset breast cancer were disease and treatment free for at least 6 months at time of blood donation . Cases and controls...were age matched to age at blood donation . 2. KEYWORDS: biomarkers, early-onset breast cancer, expression profiling, risk-assessment, breast cancer...matched controls. This prospectively collected cohort consists of blood donated to blood banks ~15 years ago and subsequently linked to the California

  14. Screening and validation of serum protein biomarkers for early postmenopausal osteoporosis diagnosis.

    PubMed

    Wang, Long; Hu, Ya-Qian; Zhao, Zhuo-Jie; Zhang, Hong-Yang; Gao, Bo; Lu, Wei-Guang; Xu, Xiao-Long; Lin, Xi-Sheng; Wang, Jin-Peng; Jie, Qiang; Luo, Zhuo-Jing; Yang, Liu

    2017-12-01

    Postmenopausal osteoporosis is one of the most prominent worldwide public health problems and the morbidity is increasing with the aging population. It has been demonstrated that early diagnosis and intervention delay the disease progression and improve the outcome. Therefore, searching for biomarkers that are able to identify postmenopausal women at high risk for developing osteoporosis is an effective way to improve the quality of life of patients, and alleviate social and economic burdens. In the present study, a protein array was used to identify potential biomarkers. The bone mineral densities of 10 rats were dynamically measured in an ovariectomized model by micro‑computed tomography assessment, and the early stage of osteoporosis was defined. Through the protein array‑based screening, the expression levels of six serum protein biomarkers in ovariectomized rats were observed to alter at the initiation stage of the postmenopausal osteoporosis. Fractalkine, tissue inhibitor of metalloproteinases‑1 and monocyte chemotactic protein‑1 were finally demonstrated to be increased in the serum of eight enrolled postmenopausal osteoporosis patients using ELISA assay and were correlated with the severity of progressive bone loss. These biomarkers may be explored as potential early biomarkers to readily evaluate and diagnose postmenopausal osteoporosis in the clinic.

  15. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery

    PubMed Central

    Lin, Xiangmin; Shi, Min; Gunasingh Masilamoni, Jeyaraj; Dator, Romel; Movius, James; Aro, Patrick; Smith, Yoland; Zhang, Jing

    2015-01-01

    Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology. PMID:25617661

  16. Biomarker for early renal microvascular and diabetic kidney diseases.

    PubMed

    Futrakul, Narisa; Futrakul, Prasit

    2017-11-01

    Recognition of early stage of diabetic kidney disease, under common practice using biomarkers, namely microalbuminuria, serum creatinine level above 1 mg/dL and accepted definition of diabetic kidney disease associated with creatinine clearance value below 60 mL/min/1.73 m 2 , is unlikely. This would lead to delay treatment associated with therapeutic resistance to vasodilator due to a defective vascular homoeostasis. Other alternative biomarkers related to the state of microalbuminuria is not sensitive to screen for early diabetic kidney disease (stages I, II). In this regard, a better diagnostic markers to serve for this purpose are creatinine clearance, fractional excretion of magnesium (FE Mg), cystatin C. Recently, renal microvascular disease and renal ischemia have been demonstrated to correlate indirectly with the development of diabetic kidney disease and its function. Among these are angiogenic and anti-angiogenic factors, namely VEGF, VEGF receptors, angiopoietins and endostatin. With respect to therapeutic prevention, implementation of treatment at early stage of diabetic and nondiabetic kidney disease is able to restore renal perfusion and function.

  17. Difference in imaging biomarkers of neurodegeneration between early and late-onset amnestic Alzheimer's disease.

    PubMed

    Aziz, Anne-Laure; Giusiano, Bernard; Joubert, Sven; Duprat, Lauréline; Didic, Mira; Gueriot, Claude; Koric, Lejla; Boucraut, José; Felician, Olivier; Ranjeva, Jean-Philippe; Guedj, Eric; Ceccaldi, Mathieu

    2017-06-01

    Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic volumes were similar in the 2 groups. Greater extent of atrophy in EOAD, despite similar extent of hypometabolism, could reflect different underlying pathophysiological processes, different glucose-based compensatory mechanisms or distinct level of premorbid atrophic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Protein Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma: Progress and Challenges.

    PubMed

    Root, Alex; Allen, Peter; Tempst, Paul; Yu, Kenneth

    2018-03-07

    Approximately 75% of patients with pancreatic ductal adenocarcinoma are diagnosed with advanced cancer, which cannot be safely resected. The most commonly used biomarker CA19-9 has inadequate sensitivity and specificity for early detection, which we define as Stage I/II cancers. Therefore, progress in next-generation biomarkers is greatly needed. Recent reports have validated a number of biomarkers, including combination assays of proteins and DNA mutations; however, the history of translating promising biomarkers to clinical utility suggests that several major hurdles require careful consideration by the medical community. The first set of challenges involves nominating and verifying biomarkers. Candidate biomarkers need to discriminate disease from benign controls with high sensitivity and specificity for an intended use, which we describe as a two-tiered strategy of identifying and screening high-risk patients. Community-wide efforts to share samples, data, and analysis methods have been beneficial and progress meeting this challenge has been achieved. The second set of challenges is assay optimization and validating biomarkers. After initial candidate validation, assays need to be refined into accurate, cost-effective, highly reproducible, and multiplexed targeted panels and then validated in large cohorts. To move the most promising candidates forward, ideally, biomarker panels, head-to-head comparisons, meta-analysis, and assessment in independent data sets might mitigate risk of failure. Much more investment is needed to overcome these challenges. The third challenge is achieving clinical translation. To moonshot an early detection test to the clinic requires a large clinical trial and organizational, regulatory, and entrepreneurial know-how. Additional factors, such as imaging technologies, will likely need to improve concomitant with molecular biomarker development. The magnitude of the clinical translational challenge is uncertain, but interdisciplinary

  19. NCI Awards 18 Grants to Continue the Early Detection Research Network (EDRN) Biomarkers Effort | Division of Cancer Prevention

    Cancer.gov

    The NCI has awarded 18 grants to continue the Early Detection Research Network (EDRN), a national infrastructure that supports the integrated development, validation, and clinical application of biomarkers for the early detection of cancer. The awards fund 7 Biomarker Developmental Laboratories, 8 Clinical Validation Centers, 2 Biomarker Reference Laboratories, and a Data

  20. Perinatal Pitocin as an Early ADHD Biomarker: Neurodevelopmental Risk?

    ERIC Educational Resources Information Center

    Kurth, Lisa; Haussmann, Robert

    2011-01-01

    Objective: To investigate a potential relationship between coincidental increases in perinatal Pitocin usage and subsequent childhood ADHD onset in an attempt to isolate a specific risk factor as an early biomarker of this neurodevelopmental disorder. Method: Maternal labor/delivery and corresponding childbirth records of 172 regionally diverse,…

  1. Novel blood-based microRNA biomarker panel for early diagnosis of chronic pancreatitis

    PubMed Central

    Xin, Lei; Gao, Jun; Wang, Dan; Lin, Jin-Huan; Liao, Zhuan; Ji, Jun-Tao; Du, Ting-Ting; Jiang, Fei; Hu, Liang-Hao; Li, Zhao-Shen

    2017-01-01

    Chronic pancreatitis (CP) is an inflammatory disease characterized by progressive fibrosis of pancreas. Early diagnosis will improve the prognosis of patients. This study aimed to obtain serum miRNA biomarkers for early diagnosis of CP. In the current study, we analyzed the differentially expressed miRNAs (DEmiRs) of CP patients from Gene Expression Omnibus (GEO), and the DEmiRs in plasma of early CP patients (n = 10) from clinic by miRNA microarrays. Expression levels of DEmiRs were further tested in clinical samples including early CP patients (n = 20), late CP patients (n = 20) and healthy controls (n = 18). The primary endpoints were area under curve (AUC) and expression levels of DEmiRs. Four DEmiRs (hsa-miR-320a-d) were obtained from GEO CP, meanwhile two (hsa-miR-221 and hsa-miR-130a) were identified as distinct biomarkers of early CP by miRNA microarrays. When applied on clinical serum samples, hsa-miR-320a-d were accurate in predicting late CP, while hsa-miR-221 and hsa-miR-130a were accurate in predicting early CP with AUC of 100.0% and 87.5%. Our study indicates that miRNA expression profile is different in early and late CP. Hsa-miR-221 and hsa-miR-130a are biomarkers of early CP, and the panel of the above 6 serum miRNAs has the potential to be applied clinically for early diagnosis of CP. PMID:28074846

  2. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease

    PubMed Central

    Zetterberg, Henrik; Mattsson, Niklas; Johansson, Per; Minthon, Lennart; Blennow, Kaj; Olsson, Mattias

    2015-01-01

    Objective: To compare the diagnostic accuracy of CSF biomarkers and amyloid PET for diagnosing early-stage Alzheimer disease (AD). Methods: From the prospective, longitudinal BioFINDER study, we included 122 healthy elderly and 34 patients with mild cognitive impairment who developed AD dementia within 3 years (MCI-AD). β-Amyloid (Aβ) deposition in 9 brain regions was examined with [18F]-flutemetamol PET. CSF was analyzed with INNOTEST and EUROIMMUN ELISAs. The results were replicated in 146 controls and 64 patients with MCI-AD from the Alzheimer's Disease Neuroimaging Initiative study. Results: The best CSF measures for identifying MCI-AD were Aβ42/total tau (t-tau) and Aβ42/hyperphosphorylated tau (p-tau) (area under the curve [AUC] 0.93–0.94). The best PET measures performed similarly (AUC 0.92–0.93; anterior cingulate, posterior cingulate/precuneus, and global neocortical uptake). CSF Aβ42/t-tau and Aβ42/p-tau performed better than CSF Aβ42 and Aβ42/40 (AUC difference 0.03–0.12, p < 0.05). Using nonoptimized cutoffs, CSF Aβ42/t-tau had the highest accuracy of all CSF/PET biomarkers (sensitivity 97%, specificity 83%). The combination of CSF and PET was not better than using either biomarker separately. Conclusions: Amyloid PET and CSF biomarkers can identify early AD with high accuracy. There were no differences between the best CSF and PET measures and no improvement when combining them. Regional PET measures were not better than assessing the global Aβ deposition. The results were replicated in an independent cohort using another CSF assay and PET tracer. The choice between CSF and amyloid PET biomarkers for identifying early AD can be based on availability, costs, and doctor/patient preferences since both have equally high diagnostic accuracy. Classification of evidence: This study provides Class III evidence that amyloid PET and CSF biomarkers identify early-stage AD equally accurately. PMID:26354982

  3. Genetic Biomarker Prevalence Is Similar in Fecal Immunochemical Test Positive and Negative Colorectal Cancer Tissue.

    PubMed

    Levin, Theodore R; Corley, Douglas A; Jensen, Christopher D; Marks, Amy R; Zhao, Wei K; Zebrowski, Alexis M; Quinn, Virginia P; Browne, Lawrence W; Taylor, William R; Ahlquist, David A; Lidgard, Graham P; Berger, Barry M

    2017-03-01

    Fecal immunochemical test (FIT) screening detects most asymptomatic colorectal cancers. Combining FIT screening with stool-based genetic biomarkers increases sensitivity for cancer, but whether DNA biomarkers (biomarkers) differ for cancers detected versus missed by FIT screening has not been evaluated in a community-based population. To evaluate tissue biomarkers among Kaiser Permanente Northern California patients diagnosed with colorectal cancer within 2 years after FIT screening. FIT-negative and FIT-positive colorectal cancer patients 50-77 years of age were matched on age, sex, and cancer stage. Adequate DNA was isolated from paraffin-embedded specimens in 210 FIT-negative and 211 FIT-positive patients. Quantitative allele-specific real-time target and signal amplification assays were performed for 7 K-ras mutations and 10 aberrantly methylated DNA biomarkers (NDRG4, BMP3, SFMBT2_895, SFMBT2_896, SFMBT2_897, CHST2_7890, PDGFD, VAV3, DTX1, CHST2_7889). One or more biomarkers were found in 414 of 421 CRCs (98.3%). Biomarker expression was not associated with FIT status, with the exception of higher SFMBT2_897 expression in FIT-negative (194 of 210; 92.4%) than in FIT-positive cancers (180 of 211; 85.3%; p = 0.02). There were no consistent differences in biomarker expression by FIT status within age, sex, stage, and cancer location subgroups. The biomarkers of a currently in-use multi-target stool DNA test (K-ras, NDRG4, and BMP3) and eight newly characterized methylated biomarkers were commonly expressed in tumor tissue specimens, independent of FIT result. Additional study using stool-based testing with these new biomarkers will allow assessment of sensitivity, specificity, and clinical utility.

  4. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.

    PubMed

    Zhang, Fan; Kaufman, Howard L; Deng, Youping; Drabier, Renee

    2013-01-01

    Breast cancer is worldwide the second most common type of cancer after lung cancer. Traditional mammography and Tissue Microarray has been studied for early cancer detection and cancer prediction. However, there is a need for more reliable diagnostic tools for early detection of breast cancer. This can be a challenge due to a number of factors and logistics. First, obtaining tissue biopsies can be difficult. Second, mammography may not detect small tumors, and is often unsatisfactory for younger women who typically have dense breast tissue. Lastly, breast cancer is not a single homogeneous disease but consists of multiple disease states, each arising from a distinct molecular mechanism and having a distinct clinical progression path which makes the disease difficult to detect and predict in early stages. In the paper, we present a Support Vector Machine based on Recursive Feature Elimination and Cross Validation (SVM-RFE-CV) algorithm for early detection of breast cancer in peripheral blood and show how to use SVM-RFE-CV to model the classification and prediction problem of early detection of breast cancer in peripheral blood.The training set which consists of 32 health and 33 cancer samples and the testing set consisting of 31 health and 34 cancer samples were randomly separated from a dataset of peripheral blood of breast cancer that is downloaded from Gene Express Omnibus. First, we identified the 42 differentially expressed biomarkers between "normal" and "cancer". Then, with the SVM-RFE-CV we extracted 15 biomarkers that yield zero cross validation score. Lastly, we compared the classification and prediction performance of SVM-RFE-CV with that of SVM and SVM Recursive Feature Elimination (SVM-RFE). We found that 1) the SVM-RFE-CV is suitable for analyzing noisy high-throughput microarray data, 2) it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features, and 3) it can improve the prediction performance (Area Under

  5. Intestinal Integrity Biomarkers in Early Antiretroviral-Treated Perinatally HIV-1-Infected Infants.

    PubMed

    Koay, Wei Li A; Lindsey, Jane C; Uprety, Priyanka; Bwakura-Dangarembizi, Mutsa; Weinberg, Adriana; Levin, Myron J; Persaud, Deborah

    2018-05-12

    Biomarkers of intestinal integrity (intestinal fatty acid binding protein (iFABP) and zonulin), were compared in early antiretroviral-treated, HIV-1-infected (HIV+; n=56) African infants and HIV-exposed but uninfected (HEU; n=53) controls. Despite heightened inflammation and immune activation in HIV+ infants, iFABP and zonulin levels at three months of age were not different from those in HEU infants, and largely not correlated with inflammatory and immune activation biomarkers. However, zonulin levels increased, and became significantly higher in HIV+ compared to HEU infants by five months of age despite ART-suppression. These findings have implications for intestinal integrity biomarker profiling in perinatal HIV-1 infection.

  6. (Very) Early technology assessment and translation of predictive biomarkers in breast cancer.

    PubMed

    Miquel-Cases, Anna; Schouten, Philip C; Steuten, Lotte M G; Retèl, Valesca P; Linn, Sabine C; van Harten, Wim H

    2017-01-01

    Predictive biomarkers can guide treatment decisions in breast cancer. Many studies are undertaken to discover and translate these biomarkers, yet few biomarkers make it to practice. Before use in clinical decision making, predictive biomarkers need to demonstrate analytical validity, clinical validity and clinical utility. While attaining analytical and clinical validity is relatively straightforward, by following methodological recommendations, the achievement of clinical utility is extremely challenging. It requires demonstrating three associations: the biomarker with the outcome (prognostic association), the effect of treatment independent of the biomarker, and the differential treatment effect between the prognostic and the predictive biomarker (predictive association). In addition, economical, ethical, regulatory, organizational and patient/doctor-related aspects are hampering the translational process. Traditionally, these aspects do not receive much attention until formal approval or reimbursement of a biomarker test (informed by Health Technology Assessment (HTA)) is at stake, at which point the clinical utility and sometimes price of the test can hardly be influenced anymore. When HTA analyses are performed earlier, during biomarker research and development, they may prevent further development of those biomarkers unlikely to ever provide sufficient added value to society, and rather facilitate translation of the promising ones. Early HTA is particularly relevant for the predictive biomarker field, as expensive medicines are under pressure and the need for biomarkers to guide their appropriate use is huge. Closer interaction between clinical researchers and HTA experts throughout the translational research process will ensure that available data and methodologies will be used most efficiently to facilitate biomarker translation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Glycoprotein Biomarkers for the Early Detection of Aggressive Prostate Cancer — EDRN Public Portal

    Cancer.gov

    The Early Detection Research Network of the NCI is charged with the discovery, development and validation of biomarkers for early detection and prognosis related to neoplastic disease. Our laboratory is an NCI EDRN (U01CA152813) working on "Glycoprotein biomarkers for the early detection of aggressive prostate cancer". This EDRN administratiVE! supplement is a collaboration with Robert Veltri on his project to identify men with very low risk (indolent) prostate cancer (CaP) at the diagnostic biopsy at selection for active surveillance (AS). We will assess biopsy tissue using quantitative nuclear histomorphometric measurements and molecular biomarkers to predict an unexpected catastrophic CaP in such men with indolent CaP. At Johns Hopkins Hospital w1e use the Epstein criteria that includes; PSA density (PSAD) <0.15 ng/mVcm3, Gleason score SS, S2 cons involved with cancer, and ::;;SO% of any core involved with cancer to select AS. Our approach will study 140 AS men (70 with a expected outcome and 70 with a disastrous outcome) using nuclear histomorphometry and pre-qualified biomarkers quantified by digital microscopy. Previously, our laboratory combined measurements of DNA content and (-2)pPSA in the serum and (-5,-?)pPSA in biopsy tissue to identify 7/10 men that would fail surveillance based on the primary diagnostic biopsy. We now will devHiop a clinical, morphological and biomarker 'signature' for identifying severe aggressive disease from a AS diagnostic biopsy. Our approach will combine nuclear morphometry measured by digital microscopy with a unique biopsy tissue biomarker profile (DNA content, Ki67, Her2neu, CACND1 and periostin). Fc•r the molecular targets we will us•e a multiplex tissue blot (MTB) immunohistochemistry method. The Aims o'f our work include 1) to utilize retrospective archival biopsy material from 70 AS cases where the outcome was unexpected and disastrous and collect an equal number of AS cases (n=140) and perform assays for morphology

  8. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease.

    PubMed

    Coca, Steven G; Nadkarni, Girish N; Huang, Yuan; Moledina, Dennis G; Rao, Veena; Zhang, Jane; Ferket, Bart; Crowley, Susan T; Fried, Linda F; Parikh, Chirag R

    2017-09-01

    Biomarkers of diverse pathophysiologic mechanisms may improve risk stratification for incident or progressive diabetic kidney disease (DKD) in persons with type 2 diabetes. To evaluate such biomarkers, we performed a nested case-control study ( n =190 cases of incident DKD and 190 matched controls) and a prospective cohort study ( n =1156) using banked baseline plasma samples from participants of randomized, controlled trials of early (ACCORD) and advanced (VA NEPHRON-D) DKD. We assessed the association and discrimination obtained with baseline levels of plasma TNF receptor-1 (TNFR-1), TNFR-2, and kidney injury molecule-1 (KIM-1) for the outcomes of incident DKD (ACCORD) and progressive DKD (VA-NEPHRON-D). At baseline, median concentrations of TNFR-1, TNFR-2, and KIM-1 were roughly two-fold higher in the advanced DKD population (NEPHRON-D) than in the early DKD population (ACCORD). In both cohorts, patients who reached the renal outcome had higher baseline levels than those who did not reach the outcome. Associations between doubling in TNFR-1, TNFR-2, and KIM-1 levels and risk of the renal outcomes were significant for both cohorts. Inclusion of these biomarkers in clinical models increased the area under the curve (SEM) for predicting the renal outcome from 0.68 (0.02) to 0.75 (0.02) in NEPHRON-D. Systematic review of the literature illustrated high consistency in the association between these biomarkers of inflammation and renal outcomes in DKD. In conclusion, TNFR-1, TNFR-2, and KIM-1 independently associated with higher risk of eGFR decline in persons with early or advanced DKD. Moreover, addition of these biomarkers to clinical prognostic models significantly improved discrimination for the renal outcome. Copyright © 2017 by the American Society of Nephrology.

  9. Blood biomarker for Parkinson disease: peptoids

    PubMed Central

    Yazdani, Umar; Zaman, Sayed; Hynan, Linda S; Brown, L Steven; Dewey, Richard B; Karp, David; German, Dwight C

    2016-01-01

    Parkinson disease (PD) is the second most common neurodegenerative disease. Because dopaminergic neuronal loss begins years before motor symptoms appear, a biomarker for the early identification of the disease is critical for the study of putative neuroprotective therapies. Brain imaging of the nigrostriatal dopamine system has been used as a biomarker for early disease along with cerebrospinal fluid analysis of α-synuclein, but a less costly and relatively non-invasive biomarker would be optimal. We sought to identify an antibody biomarker in the blood of PD patients using a combinatorial peptoid library approach. We examined serum samples from 75 PD patients, 25 de novo PD patients, and 104 normal control subjects in the NINDS Parkinson’s Disease Biomarker Program. We identified a peptoid, PD2, which binds significantly higher levels of IgG3 antibody in PD versus control subjects (P<0.0001) and is 68% accurate in identifying PD. The PD2 peptoid is 84% accurate in identifying de novo PD. Also, IgG3 levels are significantly higher in PD versus control serum (P<0.001). Finally, PD2 levels are positively correlated with the United Parkinson’s Disease Rating Scale score (r=0.457, P<0001), a marker of disease severity. The PD2 peptoid may be useful for the early-stage identification of PD, and serve as an indicator of disease severity. Additional studies are needed to validate this PD biomarker. PMID:27812535

  10. Obstructive Sleep Apnea is Associated With Early but Possibly Modifiable Alzheimer's Disease Biomarkers Changes.

    PubMed

    Liguori, Claudio; Mercuri, Nicola Biagio; Izzi, Francesca; Romigi, Andrea; Cordella, Alberto; Sancesario, Giuseppe; Placidi, Fabio

    2017-05-01

    Obstructive sleep apnea (OSA) is a common sleep disorder. The, literature lacks studies examining sleep, cognition, and Alzheimer's Disease (AD) cerebrospinal fluid (CSF) biomarkers in OSA patients. Therefore, we first studied cognitive performances, polysomnographic sleep, and CSF β-amyloid42, tau proteins, and lactate levels in patients affected by subjective cognitive impairment (SCI) divided in three groups: OSA patients (showing an Apnea-Hypopnea Index [AHI] ≥15/hr), controls (showing an AHI < 15/hr), and patients with OSA treated by continuous positive airway pressure (CPAP). We compared results among 25 OSA, 10 OSA-CPAP, and 15 controls who underwent a protocol counting neuropsychological testing in the morning, 48-hr polysomnography followed by CSF analysis. OSA patients showed lower CSF Aβ42 concentrations, higher CSF lactate levels, and higher t-tau/Aβ42 ratio compared to controls and OSA-CPAP patients. OSA patients also showed reduced sleep quality and continuity and lower performances at memory, intelligence, and executive tests than controls and OSA-CPAP patients. We found significant relationships among higher CSF tau proteins levels, sleep impairment, and increased CSF lactate levels in the OSA group. Moreover, lower CSF Aβ42 levels correlate with memory impairment and nocturnal oxygen saturation parameters in OSA patients. We hypothesize that OSA reducing sleep quality and producing intermittent hypoxia lowers CSF Aβ42 levels, increases CSF lactate levels, and alters cognitive performances in SCI patients, thus inducing early AD clinical and neuropathological biomarkers changes. Notably, controls as well as OSA-CPAP SCI patients did not show clinical and biochemical AD markers. Therefore, OSA may induce early but possibly CPAP-modifiable AD biomarkers changes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. Biomarkers of exposure and dose: state of the art.

    PubMed

    Brooks, A L

    2001-01-01

    Biomarkers provide methods to measure changes in biological systems and to relate them to environmental insults and disease processes. Biomarkers can be classified as markers of exposure and dose, markers of sensitivity, and markers of disease. It is important that the differences and applications of the various types of biomarkers be clearly understood. The military is primarily interested in early biomarkers of exposure and dose that do not require high levels of sensitivity but can be used to rapidly triage war fighters under combat or terrorist conditions and determine which, if any, require medical attention. Biomarkers of long-term radiation risk represent the second area of interest for the military. Biomarkers of risk require high sensitivity and specificity for the disease and insult but do not require rapid data turnaround. Biomarkers will help provide information for quick command decisions in the field, characterise long-term troop risks and identify early stages of radiation-induced diseases. This information provides major positive reassurances about individual exposures and risk that will minimise the physical and psychological impact of wartime radiation exposures.

  12. Measurement of salivary metabolite biomarkers for early monitoring of oral cancer with ultra performance liquid chromatography-mass spectrometry.

    PubMed

    Wang, Qihui; Gao, Pan; Cheng, Fei; Wang, Xiaoyi; Duan, Yixiang

    2014-02-01

    This study aimed to set-up an ultra performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) method for the determination of salivary L-phenylalanine and L-leucine for early diagnosis of oral squamous cell carcinoma (OSCC). In addition, the diagnostic accuracy for both biomarkers was established by using receiver operating characteristic (ROC) analysis. Mean recoveries of l-phenylalanine and L-leucine ranged from 88.9 to 108.6% were obtained. Intra- and inter-day precision for both amino acids was less than 7%, with acceptable accuracy. Linear regression coefficients of both biomarkers were greater than 0.99. The diagnostic accuracy for both biomarkers was established by analyzing 60 samples from apparently healthy individuals and 30 samples from OSCC patients. Both potential biomarkers demonstrated significant differences in concentrations in distinguishing OSCC from control (P<0.05). As a single biomarker, L-leucine might have better predictive power in OSCC with T1-2 (early stage of OSCC including stage I and II), and L-phenylalanine might be used for screening and diagnosis of OSCC with T3-4 (advanced stage of OSCC including stage III and IV). The combination of L-phenylalanine and L-leucine will improve the sensitivity (92.3%) and specificity (91.7%) for early diagnosis of OSCC. The possibility of salivary metabolite biomarkers for OSCC diagnosis is successfully demonstrated in this study. This developed method shows advantages with non-invasive, simple, reliable, and also provides lower detection limits and excellent precision and accuracy. These non-invasive salivary biomarkers may lead to a simple clinical tool for the early diagnosis of OSCC. © 2013 Published by Elsevier B.V.

  13. Recent advances in biosensor technology in assessment of early diabetes biomarkers.

    PubMed

    Salek-Maghsoudi, Armin; Vakhshiteh, Faezeh; Torabi, Raheleh; Hassani, Shokoufeh; Ganjali, Mohammad Reza; Norouzi, Parviz; Hosseini, Morteza; Abdollahi, Mohammad

    2018-01-15

    Discovery of biosensors has acquired utmost importance in the field of healthcare. Recent advances in biological techniques and instrumentation involving nanomaterials, surface plasmon resonance, and aptasensors have developed innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive devices with wide potential applications. Type 2 diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic complications extending far beyond impaired glucose metabolism. Although there is no known cure for Type 2 diabetes, early diagnosis and interventions are critical to prevent this disease and can postpone or even prevent the serious complications that are associated with diabetes. Biomarkers for type 2 diabetes are useful for prediction and intervention of the disease at earlier stages. Proper selection of biomarkers that represent health and disease states is vital for disease diagnosis and treatment by detecting it before it manifests. In this respect, we provide an overview of different types of biosensors being used, ranging from electrochemical, fluorescence-based, nanomonitors, SPR-based, and field-effect transistor biosensors for early detection and management of diabetes with focus on prediabetes. In the future, novel non-invasive technologies combined with blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Urinary podocalyxin, the novel biomarker for detecting early renal change in obesity.

    PubMed

    Suwanpen, Chayanut; Nouanthong, Phonethipsavanh; Jaruvongvanich, Veeravich; Pongpirul, Krit; Pongpirul, Wannarat Amornnimit; Leelahavanichkul, Asada; Kanjanabuch, Talerngsak

    2016-02-01

    The prevalence of obesity is increasing during the past decade along with obesity-related glomerulopathy (ORG), glomeruli injury due to the obesity. The major pathogenesis of ORG is the shedding of podocytes from the glomerular cell barrier into urine. Podocalyxin (PCX), a main surface antigen of podocyte, correlates well with glomerulosclerosis progression and glomerular injury severity, and might be a potential biomarker for early renal alteration in obesity. In addition, vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (α-SMA) also play a role in promoting glomerulosclerosis. The aim of this study was to explore whether obese subjects without other diseases excrete more PCX-positive (PCX+) cells than non-obese individuals, in comparison with urine protein-creatinine ratio (UPCR) and glomerular filtration rate (GFR) as traditional renal markers. Moreover, the effect of body mass index (BMI) on urinary VEGF, PCX or α-SMA positive cells was also investigated. Forty-eight obese and 13 non-obese adults were included. Exfoliated cells from fresh first void morning urine were harvested, stained with PCX, VEGF, and α-SMA antibody, and quantified by flow cytometry. Correlation between interested urinary biomarkers (cells positive for PCX, VEGF plus PCX and α-SMA), UPCR and GFR with BMI and metabolic risk factors were analyzed. Obese patients had significantly higher PCX+ cells than non-obese [0.62 (0.00-13.13) vs. 0.15 (0.00-0.72) cells/ml × mg cr, p < 0.05]. There was no significant difference in GFR and UPCR between the groups. Of interest, BMI demonstrated a correlation with PCX+ cells (r = 0.343, p = 0.008) and cells positive for PCX plus VEGF (r = 0.374, p = 0.004). Obese subjects without other diseases and with normal UPCR and GFR showed evidence of renal alteration through the detection of a higher number of PCX+ cells. Increasing BMI also resulted in higher number of PCX+ cells.

  15. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment

    PubMed Central

    Hemadi, Abdullah S; Huang, Ruijie; Zhou, Yuan; Zou, Jing

    2017-01-01

    Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Oral streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevotella spp. and Lactobacillus spp., and fungus, that is, Candida albicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease. PMID:29125139

  16. Biomarker-based strategy for early discontinuation of empirical antifungal treatment in critically ill patients: a randomized controlled trial.

    PubMed

    Rouzé, Anahita; Loridant, Séverine; Poissy, Julien; Dervaux, Benoit; Sendid, Boualem; Cornu, Marjorie; Nseir, Saad

    2017-11-01

    The aim of this study was to determine the impact of a biomarker-based strategy on early discontinuation of empirical antifungal treatment. Prospective randomized controlled single-center unblinded study, performed in a mixed ICU. A total of 110 patients were randomly assigned to a strategy in which empirical antifungal treatment duration was determined by (1,3)-β-D-glucan, mannan, and anti-mannan serum assays, performed on day 0 and day 4; or to a routine care strategy, based on international guidelines, which recommend 14 days of treatment. In the biomarker group, early stop recommendation was determined using an algorithm based on the results of biomarkers. The primary outcome was the percentage of survivors discontinuing empirical antifungal treatment early, defined as a discontinuation strictly before day 7. A total of 109 patients were analyzed (one patient withdraw consent). Empirical antifungal treatment was discontinued early in 29 out of 54 patients in the biomarker strategy group, compared with one patient out of 55 in the routine strategy group [54% vs 2%, p < 0.001, OR (95% CI) 62.6 (8.1-486)]. Total duration of antifungal treatment was significantly shorter in the biomarker strategy compared with routine strategy [median (IQR) 6 (4-13) vs 13 (12-14) days, p < 0.0001). No significant difference was found in the percentage of patients with subsequent proven invasive Candida infection, mechanical ventilation-free days, length of ICU stay, cost, and ICU mortality between the two study groups. The use of a biomarker-based strategy increased the percentage of early discontinuation of empirical antifungal treatment among critically ill patients with suspected invasive Candida infection. These results confirm previous findings suggesting that early discontinuation of empirical antifungal treatment had no negative impact on outcome. However, further studies are needed to confirm the safety of this strategy. This trial was registered at Clinical

  17. N-acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis

    PubMed Central

    Conus, Philippe; Seidman, Larry J; Fournier, Margot; Xin, Lijing; Cleusix, Martine; Baumann, Philipp S; Ferrari, Carina; Cousins, Ann; Alameda, Luis; Gholam-Rezaee, Mehdi; Golay, Philippe; Jenni, Raoul; Woo, T -U Wilson; Keshavan, Matcheri S; Eap, Chin B; Wojcik, Joanne; Cuenod, Michel; Buclin, Thierry; Gruetter, Rolf

    2018-01-01

    Abstract Biomarker-guided treatments are needed in psychiatry, and previous data suggest oxidative stress may be a target in schizophrenia. A previous add-on trial with the antioxidant N-acetylcysteine (NAC) led to negative symptom reductions in chronic patients. We aim to study NAC’s impact on symptoms and neurocognition in early psychosis (EP) and to explore whether glutathione (GSH)/redox markers could represent valid biomarkers to guide treatment. In a double-blind, randomized, placebo-controlled trial in 63 EP patients, we assessed the effect of NAC supplementation (2700 mg/day, 6 months) on PANSS, neurocognition, and redox markers (brain GSH [GSHmPFC], blood cells GSH levels [GSHBC], GSH peroxidase activity [GPxBC]). No changes in negative or positive symptoms or functional outcome were observed with NAC, but significant improvements were found in favor of NAC on neurocognition (processing speed). NAC also led to increases of GSHmPFC by 23% (P = .005) and GSHBC by 19% (P = .05). In patients with high-baseline GPxBC compared to low-baseline GPxBC, subgroup explorations revealed a link between changes of positive symptoms and changes of redox status with NAC. In conclusion, NAC supplementation in a limited sample of EP patients did not improve negative symptoms, which were at modest baseline levels. However, NAC led to some neurocognitive improvements and an increase in brain GSH levels, indicating good target engagement. Blood GPx activity, a redox peripheral index associated with brain GSH levels, could help identify a subgroup of patients who improve their positive symptoms with NAC. Thus, future trials with antioxidants in EP should consider biomarker-guided treatment. PMID:29462456

  18. Urinary Biomarkers at Early ADPKD Disease Stage

    PubMed Central

    Petzold, Katja; Poster, Diane; Krauer, Fabienne; Spanaus, Katharina; Andreisek, Gustav; Nguyen-Kim, Thi Dan Linh; Pavik, Ivana; Ho, Thien Anh; Serra, Andreas L.; Rotar, Laura

    2015-01-01

    Background Autosomal dominant polycystic kidney disease (ADPKD) is characterized by a decline in renal function at late disease stage when the majority of functional renal parenchyma is replaced by cystic tissue. Thus, kidney function, assessed by estimated glomerular filtration rate (eGFR) does not well represent disease burden in early disease. Here, we investigated various urinary markers for tubular injury and their association with disease burden in ADPKD patients at early disease course. Methods ADPKD patients between 18 and 40 years with an eGFR greater or equal to 70 ml per min per 1.73m2 were eligible for this cross-sectional study. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL), Kidney Injury Molecule-1 (KIM-1), and Uromodulin (UMOD) were investigated by Enzyme-Linked Immunosorbent Assay. Clara Cell Protein 16 (CC16) was investigated by Latex Immuno Assay. Cryoscopy was performed to assess urine osmolality and Urinary Albumin-to-Creatinine Ratio (UACR) was calculated. The association and the predictive properties of the markers on eGFR and height adjusted total kidney volume (htTKV) was evaluated using multiple regression analysis, incorporating different control variables for adjustment. Internal bootstrapping validated the obtained results. Results In 139 ADPKD patients (age 31 ±7 years, mean eGFR of 93 ± 19 ml per min per 1.73 m2) the total kidney volume was negatively correlated with eGFR and UMOD and positive associated with age, UACR, KIM-1 and urine osmolality after adjustment for possible confounders. Urine osmolality and htTKV were also associated with eGFR, whereas no association of CC16, NGAL and UMOD with eGFR or htTKV was found. Conclusion UACR and urinary KIM-1 are independently associated with kidney size but not with renal function in our study population. Urine osmolality was associated with eGFR and kidney volume following adjustment for multiple confounders. Despite statistical significance, the clinical value of our

  19. Consortium for Imaging and Biomarkers (CIB) | Division of Cancer Prevention

    Cancer.gov

    Overdiagnosis and false positives present significant clinical problems in the prevention, detection and treatment of | 8 lead investigators combining imaging methods for the visualization of lesions with biomarkers to improve the accuracy of screening, early cancer detection, and the diagnosis of early stage cancers.

  20. Varying strength of cognitive markers and biomarkers to predict conversion and cognitive decline in an early-stage-enriched mild cognitive impairment sample.

    PubMed

    Egli, Simone C; Hirni, Daniela I; Taylor, Kirsten I; Berres, Manfred; Regeniter, Axel; Gass, Achim; Monsch, Andreas U; Sollberger, Marc

    2015-01-01

    Several cognitive, neuroimaging, and cerebrospinal fluid (CSF) markers predict conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) dementia. However, predictors might be more or less powerful depending on the characteristics of the MCI sample. To investigate which cognitive markers and biomarkers predict conversion to AD dementia and course of cognitive functioning in a MCI sample with a high proportion of early-stage MCI patients. Variables known to predict progression in MCI patients and hypothesized to predict progression in early-stage MCI patients were selected. Cognitive (long-delay free recall, regional primacy score), imaging (hippocampal and entorhinal cortex volumes, fornix fractional anisotropy), and CSF (Aβ1-42/t-tau, Aβ1-42) variables from 36 MCI patients were analyzed with Cox regression and mixed-effect models to determine their individual and combined abilities to predict time to conversion to AD dementia and course of global cognitive functioning, respectively. Those variables hypothesized to predict the course of early-stage MCI patients were most predictive for MCI progression. Specifically, regional primacy score (a measure of word-list position learning) most consistently predicted conversion to AD dementia and course of cognitive functioning. Both the prediction of conversion and course of cognitive functioning were maximized by including CSF Aβ1-42 and fornix integrity biomarkers, respectively, indicating the complementary information carried by cognitive variables and biomarkers. Predictors of MCI progression need to be interpreted in light of the characteristics of the respective MCI sample. Future studies should aim to compare predictive strengths of markers between early-stage and late-stage MCI patients.

  1. Positioning and early mobilisation in stroke.

    PubMed

    Keating, Moira; Penney, Maree; Russell, Petra; Bailey, Emma

    Stroke unit care, providing early rehabilitation, improves long-term outcomes for patients following a stroke. Early mobilisation and good positioning are recognised as key aspects of care in stroke units. Nurses working on stroke units have an important role because they are able to implement positioning and early mobilisation strategies 24 hours a day, reducing the risk of complications and improving functional recovery. Patients benefit if nurses work effectively with the therapy team in positioning and early mobilisation. Nurses also need appropriate training and expertise to make best use of specialist equipment.

  2. Biomarkers for Early Diagnosis of Alzheimer's Disease in the Oldest Old: Yes or No?

    PubMed

    Paolacci, Lucia; Giannandrea, David; Mecocci, Patrizia; Parnetti, Lucilla

    2017-01-01

    In recent years, many efforts have been spent to identify sensitive biomarkers able to improve the accuracy of Alzheimer's disease (AD) diagnosis. Two different workgroups (NIA-AA and IWG) included cerebrospinal fluid (CSF) and neuroimaging findings in their sets of criteria in order to improve diagnostic accuracy as well as early diagnosis. The number of subjects with cognitive impairment increases with aging but the oldest old (≥85 years of age), the fastest growing age group, is still the most unknown from a biological point of view. For this reason, the aim of our narrative mini-review is to evaluate the pertinence of the new criteria for AD diagnosis in the oldest old. Moreover, since different subgroups of oldest old have been described in scientific literature (escapers, delayers, survivors), we want to outline the clinical profile of the oldest old who could really benefit from the use of biomarkers for early diagnosis. Reviewing the literature on biomarkers included in the diagnostic criteria, we did not find a high degree of evidence for their use in the oldest old, although CSF biomarkers seem to be still the most useful for excluding AD diagnosis in the "fit" subgroup of oldest old subjects, due to the high negative predictive value maintained in this age group.

  3. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls.

    PubMed

    Mollenhauer, Brit; Caspell-Garcia, Chelsea J; Coffey, Christopher S; Taylor, Peggy; Shaw, Leslie M; Trojanowski, John Q; Singleton, Andy; Frasier, Mark; Marek, Kenneth; Galasko, Douglas

    2017-11-07

    To analyze longitudinal levels of CSF biomarkers in drug-naive patients with Parkinson disease (PD) and healthy controls (HC), examine the extent to which these biomarker changes relate to clinical measures of PD, and identify what may influence them. CSF α-synuclein (α-syn), total and phosphorylated tau (t- and p-tau), and β-amyloid 1-42 (Aβ42) were measured at baseline and 6 and 12 months in 173 patients with PD and 112 matched HC in the international multicenter Parkinson's Progression Marker Initiative. Baseline clinical and demographic variables, PD medications, neuroimaging, and genetic variables were evaluated as potential predictors of CSF biomarker changes. CSF biomarkers were stable over 6 and 12 months, and there was a small but significant increase in CSF Aβ42 in both patients with patients with PD and HC from baseline to 12 months. The t-tau remained stable. The p-tau increased marginally more in patients with PD than in HC. α-syn remained relatively stable in patients with PD and HC. Ratios of p-tau/t-tau increased, while t-tau/Aβ42 decreased over 12 months in patients with PD. CSF biomarker changes did not correlate with changes in Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale motor scores or dopamine imaging. CSF α-syn levels at 12 months were lower in patients with PD treated with dopamine replacement therapy, especially dopamine agonists. These core CSF biomarkers remained stable over 6 and 12 months in patients with early PD and HC. PD medication use may influence CSF α-syn. Novel biomarkers are needed to better profile progressive neurodegeneration in PD. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  4. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls

    PubMed Central

    Caspell-Garcia, Chelsea J.; Coffey, Christopher S.; Taylor, Peggy; Shaw, Leslie M.; Trojanowski, John Q.; Singleton, Andy; Frasier, Mark; Marek, Kenneth; Galasko, Douglas

    2017-01-01

    Objective: To analyze longitudinal levels of CSF biomarkers in drug-naive patients with Parkinson disease (PD) and healthy controls (HC), examine the extent to which these biomarker changes relate to clinical measures of PD, and identify what may influence them. Methods: CSF α-synuclein (α-syn), total and phosphorylated tau (t- and p-tau), and β-amyloid 1–42 (Aβ42) were measured at baseline and 6 and 12 months in 173 patients with PD and 112 matched HC in the international multicenter Parkinson's Progression Marker Initiative. Baseline clinical and demographic variables, PD medications, neuroimaging, and genetic variables were evaluated as potential predictors of CSF biomarker changes. Results: CSF biomarkers were stable over 6 and 12 months, and there was a small but significant increase in CSF Aβ42 in both patients with patients with PD and HC from baseline to 12 months. The t-tau remained stable. The p-tau increased marginally more in patients with PD than in HC. α-syn remained relatively stable in patients with PD and HC. Ratios of p-tau/t-tau increased, while t-tau/Aβ42 decreased over 12 months in patients with PD. CSF biomarker changes did not correlate with changes in Movement Disorder Society–sponsored revision of the Unified Parkinson’s Disease Rating Scale motor scores or dopamine imaging. CSF α-syn levels at 12 months were lower in patients with PD treated with dopamine replacement therapy, especially dopamine agonists. Conclusions: These core CSF biomarkers remained stable over 6 and 12 months in patients with early PD and HC. PD medication use may influence CSF α-syn. Novel biomarkers are needed to better profile progressive neurodegeneration in PD. PMID:29030452

  5. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction.

    PubMed

    Nassar, Farah J; Nasr, Rihab; Talhouk, Rabih

    2017-04-01

    Breast cancer is a major health problem that affects one in eight women worldwide. As such, detecting breast cancer at an early stage anticipates better disease outcome and prolonged patient survival. Extensive research has shown that microRNA (miRNA) are dysregulated at all stages of breast cancer. miRNA are a class of small noncoding RNA molecules that can modulate gene expression and are easily accessible and quantifiable. This review highlights miRNA as diagnostic, prognostic and therapy predictive biomarkers for early breast cancer with an emphasis on the latter. It also examines the challenges that lie ahead in their use as biomarkers. Noteworthy, this review addresses miRNAs reported in patients with early breast cancer prior to chemotherapy, radiotherapy, surgical procedures or distant metastasis (unless indicated otherwise). In this context, miRNA that are mentioned in this review were significantly modulated using more than one statistical test and/or validated by at least two studies. A standardized protocol for miRNA assessment is proposed starting from sample collection to data analysis that ensures comparative analysis of data and reproducibility of results. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A prospective evaluation of early detection biomarkers for ovarian cancer in the European EPIC cohort

    PubMed Central

    Terry, Kathryn L.; Schock, Helena; Fortner, Renée T.; Hüsing, Anika; Fichorova, Raina N.; Yamamoto, Hidemi S.; Vitonis, Allison F.; Johnson, Theron; Overvad, Kim; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Mesrine, Sylvie; Severi, Gianluca; Dossus, Laure; Rinaldi, Sabina; Boeing, Heiner; Benetou, Vassiliki; Lagiou, Pagona; Trichopoulou, Antonia; Krogh, Vittorio; Kuhn, Elisabetta; Panico, Salvatore; Bueno-de-Mesquita, H. Bas; Onland-Moret, N. Charlotte; Peeters, Petra H.; Gram, Inger Torhild; Weiderpass, Elisabete; Duell, Eric J.; Sanchez, Maria-Jose; Ardanaz, Eva; Etxezarreta, Nerea; Navarro, Carmen; Idahl, Annika; Lundin, Eva; Jirström, Karin; Manjer, Jonas; Wareham, Nicholas J.; Khaw, Kay-Tee; Byrne, Karl Smith; Travis, Ruth C.; Gunter, Marc J.; Merritt, Melissa A.; Riboli, Elio; Cramer, Daniel W.; Kaaks, Rudolf

    2016-01-01

    Purpose About 60% of ovarian cancers are diagnosed at late stage, when 5-year survival is less than 30% in contrast to 90% for local disease. This has prompted search for early detection biomarkers. For initial testing, specimens taken months or years before ovarian cancer diagnosis are the best source of information to evaluate early detection biomarkers. Here we evaluate the most promising ovarian cancer screening biomarkers in prospectively collected samples from the European Prospective Investigation into Cancer and Nutrition study. Experimental Design We measured CA125, HE4, CA72.4 and CA15.3 in 810 invasive epithelial ovarian cancer cases and 1,939 controls. We calculated the sensitivity at 95% and 98% specificity as well as Area under the Receiver Operator Curve (C-statistic) for each marker individually and in combination. Additionally, we evaluated marker performance by stage at diagnosis and time between blood draw and diagnosis. Results We observed the best discrimination between cases and controls within six months of diagnosis for CA125 (C-statistic=0.92), then HE4 (0.84), CA72.4 (0.77), and CA15.3 (0.73). Marker performance declined with longer time between blood draw and diagnosis and for earlier staged disease. However, assessment of discriminatory ability at early stage was limited by small numbers. Combinations of markers performed modestly, but significantly better than any single marker. Conclusions CA125 remains the single best marker for the early detection of invasive epithelial ovarian cancer, but can be slightly improved by combining with other markers. Identifying novel markers for ovarian cancer will require studies including larger numbers of early stage cases. PMID:27060155

  7. Preclinical Alterations in the Serum of COL(IV)A3(-)/(-) Mice as Early Biomarkers of Alport Syndrome.

    PubMed

    Muckova, Petra; Wendler, Sindy; Rubel, Diana; Büchler, Rita; Alert, Mandy; Gross, Oliver; Rhode, Heidrun

    2015-12-04

    The efficiency of the inhibition of the angiotensin converting enzyme, the most widely used therapy for the Alport syndrome, depends on the onset of the therapy-the earlier the better. Hence, early progressive biomarkers are urgently required to allow for preclinical diagnosis, an early start of possible therapy as well as the monitoring of this therapy. In the present study, an improved comprehensive and precise proteomic approach has been applied to the serum of juvenile Alport-mice, nontreated and treated, and wild-type controls of various ages to search for biomarkers. With a total of 2542 stringently altered proteins, the serum composition clearly shows a dependency on age, that is, stage, and therapy. Initially, the serum constituents indicate an enhanced extracellular matrix remodeling, cell damage, and the production of particular acute phase proteins. A panel of 15 potential biomarker candidates has been identified. In later stages, renal filtration failure and systemic acute phase reaction determine the composition of the serum; an effect that is well-known for manifested human Alport syndrome. With a small number of mouse urine samples, for example, the proteomic results for gelsolin could be verified using ELISA. Once verified in man, these early biomarkers would allow for a sensitive and specific diagnosis of the Alport syndrome in children as well as facilitate the monitoring of a possible therapy.

  8. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer

    NASA Astrophysics Data System (ADS)

    Xie, Yao; Zhi, Xiao; Su, Haichuan; Wang, Kan; Yan, Zhen; He, Nongyue; Zhang, Jingpu; Chen, Di; Cui, Daxiang

    2015-12-01

    Early diagnosis is very important to improve the survival rate of patients with gastric cancer and to understand the biology of cancer. In order to meet the clinical demands for early diagnosis of gastric cancer, we developed a disposable easy-to-use electrochemical microfluidic chip combined with multiple antibodies against six kinds of biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), Helicobacter pylori CagA protein (H.P.), P53oncoprotein (P53), pepsinogen I (PG I), and PG-II). The six kinds of biomarkers related to gastric cancer can be detected sensitively and synchronously in a short time. The specially designed three electrodes system enables cross-contamination to be avoided effectively. The linear ranges of detection of the electrochemical microfluidic chip were as follows: 0.37-90 ng mL-1 for CEA, 10.75-172 U mL-1 for CA19-9, 10-160 U L-1 for H.P., 35-560 ng mL-1 for P53, 37.5-600 ng mL-1 for PG I, and 2.5-80 ng mL-1for PG II. This method owns better sensitivity compared with enzyme-linked immunosorbent assay (ELISA) results of 394 specimens of gastric cancer sera. Furthermore, we established a multi-index prediction model based on the six kinds of biomarkers for predicting risk of gastric cancer. In conclusion, the electrochemical microfluidic chip for detecting multiple biomarkers has great potential in applications such as early screening of gastric cancer patients, and therapeutic evaluation, and real-time dynamic monitoring the progress of gastric cancer in near future.

  9. Serum MicroRNAs as Potential Biomarkers for Early Diagnosis of Hepatitis C Virus-Related Hepatocellular Carcinoma in Egyptian Patients

    PubMed Central

    Motawi, Tarek K.; Shaker, Olfat G.; El-Maraghy, Shohda A.; Senousy, Mahmoud A.

    2015-01-01

    Circulating microRNAs are deregulated in liver fibrosis and hepatocellular carcinoma (HCC) and are candidate biomarkers. This study investigated the potential of serum microRNAs; miR-19a, miR-296, miR-130a, miR-195, miR-192, miR-34a, and miR-146a as early diagnostic biomarkers for hepatitis C virus (HCV)-related HCC. As how these microRNAs change during liver fibrosis progression is not clear, we explored their serum levels during fibrosis progression in HCV-associated chronic liver disease (CLD) and if they could serve as non-invasive biomarkers for fibrosis progression to HCC. 112 Egyptian HCV-HCC patients, 125 non-malignant HCV-CLD patients, and 42 healthy controls were included. CLD patients were subdivided according to Metavir fibrosis-scoring. Serum microRNAs were measured by qRT-PCR custom array. Serum microRNAs were deregulated in HCC versus controls, and except miR-130a, they were differentially expressed between HCC and CLD or late fibrosis (F3-F4) subgroup. Serum microRNAs were not significantly different between individual fibrosis-stages or between F1-F2 (early/moderate fibrosis) and F3-F4. Only miR-19a was significantly downregulated from liver fibrosis (F1-F3) to cirrhosis (F4) to HCC. Individual microRNAs discriminated HCC from controls, and except miR-130a, they distinguished HCC from CLD or F3-F4 patients by receiver-operating-characteristic analysis. Multivariate logistic analysis revealed a panel of four microRNAs (miR-19a, miR-195, miR-192, and miR-146a) with high diagnostic accuracy for HCC (AUC = 0.946). The microRNA panel also discriminated HCC from controls (AUC = 0.949), CLD (AUC = 0.945), and F3-F4 (AUC = 0.955). Studied microRNAs were positively correlated in HCC group. miR-19a and miR-34a were correlated with portal vein thrombosis and HCC staging scores, respectively. In conclusion, studied microRNAs, but not miR-130a, could serve as potential early biomarkers for HCC in high-risk groups, with miR-19a as a biomarker for liver fibrosis

  10. Assessment of DNA Damage and Telomerase Activity in Exfoliated Urinary Cells as Sensitive and Noninvasive Biomarkers for Early Diagnosis of Bladder Cancer in Ex-Workers of a Rubber Tyres Industry

    PubMed Central

    Pira, Enrico; Romano, Canzio; Fresegna, Anna Maria; Ciervo, Aureliano; Buresti, Giuliana; Zoli, Wainer; Calistri, Daniele

    2014-01-01

    The aim of the present study was to identify sensitive and noninvasive biomarkers of early carcinogenic effect at target organ to use in biomonitoring studies of workers at risk for previous occupational exposure to potential carcinogens. Standard urine cytology (Papanicolaou staining test), comet assay, and quantitative telomerase repeat amplification protocol (TRAP) assay were performed in 159 ex-rubber workers employed in tyres production and 97 unexposed subjects. In TRAP positive cases, a second level analysis using FISH (Urovysion) was done. Cystoscopy results were available for 11 individuals whose 6 FISH/TRAP/comet positive showed in 3 cases a dysplastic condition confirmed by biopsy, 1 comet positive resulted in infiltrating UBC to the biopsy and with hyperplasia and slight dysplasia to the urinary cytology, 1 comet positive resulted in papillary superficial UBC to the biopsy, 1 FISH/TRAP positive showed a normal condition, and 2 TRAP positive showed in one case a phlogosis condition. The results evidenced good concordance of TRAP, comet, and FISH assays as early biomarkers of procarcinogenic effect confirmed by the dysplastic condition and UBC found by cystoscopy-biopsy analysis. The analysis of these markers in urine cells could be potentially more accurate than conventional cytology in monitoring workers exposed to mixture of bladder potential carcinogens. PMID:24877087

  11. Assessment of DNA damage and telomerase activity in exfoliated urinary cells as sensitive and noninvasive biomarkers for early diagnosis of bladder cancer in ex-workers of a rubber tyres industry.

    PubMed

    Cavallo, Delia; Casadio, Valentina; Bravaccini, Sara; Iavicoli, Sergio; Pira, Enrico; Romano, Canzio; Fresegna, Anna Maria; Maiello, Raffaele; Ciervo, Aureliano; Buresti, Giuliana; Zoli, Wainer; Calistri, Daniele

    2014-01-01

    The aim of the present study was to identify sensitive and noninvasive biomarkers of early carcinogenic effect at target organ to use in biomonitoring studies of workers at risk for previous occupational exposure to potential carcinogens. Standard urine cytology (Papanicolaou staining test), comet assay, and quantitative telomerase repeat amplification protocol (TRAP) assay were performed in 159 ex-rubber workers employed in tyres production and 97 unexposed subjects. In TRAP positive cases, a second level analysis using FISH (Urovysion) was done. Cystoscopy results were available for 11 individuals whose 6 FISH/TRAP/comet positive showed in 3 cases a dysplastic condition confirmed by biopsy, 1 comet positive resulted in infiltrating UBC to the biopsy and with hyperplasia and slight dysplasia to the urinary cytology, 1 comet positive resulted in papillary superficial UBC to the biopsy, 1 FISH/TRAP positive showed a normal condition, and 2 TRAP positive showed in one case a phlogosis condition. The results evidenced good concordance of TRAP, comet, and FISH assays as early biomarkers of procarcinogenic effect confirmed by the dysplastic condition and UBC found by cystoscopy-biopsy analysis. The analysis of these markers in urine cells could be potentially more accurate than conventional cytology in monitoring workers exposed to mixture of bladder potential carcinogens.

  12. Optimizing the early phase development of new analgesics by human pain biomarkers.

    PubMed

    Arendt-Nielsen, Lars; Hoeck, Hans Christian

    2011-11-01

    Human pain biomarkers are based on standardized acute activation of pain pathways/mechanisms and quantitative assessment of the evoked responses. This approach can be applied to healthy volunteers, to pain patients, and before and after pharmacological interventions to help understanding and profile the mode of action (proof-of-concept) of new and existing analgesic compounds. Standardized stimuli of different modalities can be applied to different tissues (multimodal and multi-tissue) for profiling analgesic compounds with respect to modulation of pain transduction, transmission, specific mechanisms and processing. This approach substantiates which specific compounds may work in particular clinical pain conditions. Human pain biomarkers can be translational and may bridge animal findings in clinical pain conditions, which in turn can provide new possibilities for designing more successful clinical trials. Biomarker based proof-of-concept drug studies in either volunteers or selected patient populations provide inexpensive, fast and reliable mechanism-based information about dose-efficacy relationships. This is important information in the early drug development phase and for designing large expensive clinical trials.

  13. Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma.

    PubMed

    Wang, Qihui; Gao, Pan; Wang, Xiaoyi; Duan, Yixiang

    2014-01-01

    Oral cancer is 1 of the 6 most common human cancers, with an annual incidence of >300,000 cases worldwide. This study aimed to investigate potential biomarkers in human saliva to facilitate the early diagnosis of oral squamous cell carcinoma (OSCC). Unstimulated whole saliva obtained from OSCC patients (n=30) and apparently healthy individuals (n=30) were assayed with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) in hydrophilic interaction chromatography mode. The data were analyzed using a nonparametric Mann-Whitney U test, logistic regression, and the receiver operating characteristic (ROC) to evaluate the predictive power of each of 4 biomarkers, or combinations of biomarkers, for OSCC screening. Four potential salivary biomarkers demonstrated significant differences (P<0.05) in concentrations between patients at stages I-II and the healthy individuals. The area under the curve (AUC) values in control vs OSCC I-II mode based on choline, betaine, pipecolinic acid, and l-carnitine were 0.926, 0.759, 0.994, and 0.708, respectively. Four salivary biomarkers in combination yielded satisfactory accuracy (0.997), sensitivity (100%), and specificity (96.7%) in distinguishing OSCC I-II from control. Salivary metabolite biomarkers for the early diagnosis of OSCC were verified in this study. The proposed approach is expected to be applied as a potential technique of preclinical screening of OSCC. © 2013.

  14. Potential early biomarkers of sarcopenia among independent older adults.

    PubMed

    Coto Montes, Ana; Boga, José Antonio; Bermejo Millo, Carlos; Rubio González, Adrián; Potes Ochoa, Yaiza; Vega Naredo, Ignacio; Martínez Reig, Marta; Romero Rizos, Luis; Sánchez Jurado, Pedro Manuel; Solano, Juan Jose; Abizanda, Pedro; Caballero, Beatriz

    2017-10-01

    There are no tools or biomarkers for a quantitative analysis of sarcopenia. Cross-sectional study of the diagnosis of sarcopenia in 200 independent adults aged 70 years or over. Sarcopenia was defined as loss of muscle mass together with low strength and/or loss of physical performance. We considered different clinical parameters and assayed potential blood biomarkers (cell energetic metabolism, muscle performance, inflammation, infection and oxidative stress). The prevalence of sarcopenia was 35.3% in women and 13.1% in men, and it was significantly associated with advanced age, a low functional performance in the lower extremities, deficient weekly consumption of kilocalories, risk of malnutrition, and drug use for the digestive system. A close relationship was found between sarcopenia, pre-frailty and depressed mood. With these confounding variables, we observed that products of lipid peroxidation were closely associated with sarcopenia in independent older adults (frail participants and those with severe dependence had been excluded from the sample). The best multivariate model proposed was able to predict 67.6% of the variance in sarcopenia, with a power of discrimination of 93.5%. Additional analyses considering lipid levels, fat mass, dyslipidemia, use of lipid-lowering drugs and hypertension confirmed this close association between lipid peroxidation and sarcopenia. Given the difficulty in the diagnosis of sarcopenia in clinical practice, we suggest the use of blood circulating products of lipid peroxidation as potential biomarkers for an early diagnosis of sarcopenia in independent older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    PubMed

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  16. EVALUATION OF SYMMETRIC DIMETHYLARGININE AS AN EARLY BIOMARKER OF CHRONIC KIDNEY DISEASE IN CAPTIVE CHEETAHS (ACINONYX JUBATUS).

    PubMed

    Lamglait, Benjamin; Vandenbunder-Beltrame, Marielle

    2017-09-01

    Symmetric dimethylarginine (SDMA) has been shown to be a valuable biomarker for early detection of chronic kidney disease (CKD) in canine and feline patients. Recognition of early (subclinical) kidney disease would be of value in cheetahs (Acinonyx jubatus) as prevalence of CKD is relatively high in this species in captivity. Fifty-eight banked serum and plasma samples from seven adult cheetahs that died of CKD were analyzed for creatinine, urea, and SDMA. A marked increase in SDMA was noted on five of the tested cheetahs earlier than the rise of serum creatinine and urea (estimated 8-35 mo; mean 21.4 mo; median 22 mo). SDMA appears as an early biomarker to evaluate renal function for the diagnosis of CKD in cheetahs regardless of the cause of this disease.

  17. A Prospective Evaluation of Early Detection Biomarkers for Ovarian Cancer in the European EPIC Cohort.

    PubMed

    Terry, Kathryn L; Schock, Helena; Fortner, Renée T; Hüsing, Anika; Fichorova, Raina N; Yamamoto, Hidemi S; Vitonis, Allison F; Johnson, Theron; Overvad, Kim; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Mesrine, Sylvie; Severi, Gianluca; Dossus, Laure; Rinaldi, Sabina; Boeing, Heiner; Benetou, Vassiliki; Lagiou, Pagona; Trichopoulou, Antonia; Krogh, Vittorio; Kuhn, Elisabetta; Panico, Salvatore; Bueno-de-Mesquita, H Bas; Onland-Moret, N Charlotte; Peeters, Petra H; Gram, Inger Torhild; Weiderpass, Elisabete; Duell, Eric J; Sanchez, Maria-Jose; Ardanaz, Eva; Etxezarreta, Nerea; Navarro, Carmen; Idahl, Annika; Lundin, Eva; Jirström, Karin; Manjer, Jonas; Wareham, Nicholas J; Khaw, Kay-Tee; Byrne, Karl Smith; Travis, Ruth C; Gunter, Marc J; Merritt, Melissa A; Riboli, Elio; Cramer, Daniel W; Kaaks, Rudolf

    2016-09-15

    About 60% of ovarian cancers are diagnosed at late stage, when 5-year survival is less than 30% in contrast to 90% for local disease. This has prompted search for early detection biomarkers. For initial testing, specimens taken months or years before ovarian cancer diagnosis are the best source of information to evaluate early detection biomarkers. Here we evaluate the most promising ovarian cancer screening biomarkers in prospectively collected samples from the European Prospective Investigation into Cancer and Nutrition study. We measured CA125, HE4, CA72.4, and CA15.3 in 810 invasive epithelial ovarian cancer cases and 1,939 controls. We calculated the sensitivity at 95% and 98% specificity as well as area under the receiver operator curve (C-statistic) for each marker individually and in combination. In addition, we evaluated marker performance by stage at diagnosis and time between blood draw and diagnosis. We observed the best discrimination between cases and controls within 6 months of diagnosis for CA125 (C-statistic = 0.92), then HE4 (0.84), CA72.4 (0.77), and CA15.3 (0.73). Marker performance declined with longer time between blood draw and diagnosis and for earlier staged disease. However, assessment of discriminatory ability at early stage was limited by small numbers. Combinations of markers performed modestly, but significantly better than any single marker. CA125 remains the single best marker for the early detection of invasive epithelial ovarian cancer, but can be slightly improved by combining with other markers. Identifying novel markers for ovarian cancer will require studies including larger numbers of early-stage cases. Clin Cancer Res; 22(18); 4664-75. ©2016 AACRSee related commentary by Skates, p. 4542. ©2016 American Association for Cancer Research.

  18. High Mobility Group Box 1 Protein as an Auxiliary Biomarker for Dengue Diagnosis

    PubMed Central

    Allonso, Diego; Vázquez, Susana; Guzmán, Maria G.; Mohana-Borges, Ronaldo

    2013-01-01

    Despite the availability of many methods for rapid and early diagnosis of dengue, there is still a need to develop new approaches that not only combine low cost, specificity, and sensitivity, but also are capable of accurately detecting secondary infection in the early stages of the disease. We report the potential of the high mobility group box 1 protein as an auxiliary biomarker for early dengue diagnosis. We tested a 205-sample serum panel that included negative and positive samples from primary and secondary dengue cases, as well as samples from patients with dengue-like symptoms. We observed that high mobility group box 1 protein was generally detected only in dengue-positive samples for persons with primary and secondary infections. These results highlight the possibility of using this endogenous molecule as an auxiliary biomarker to aid in dengue detection and improve current methods for early diagnosis of dengue. PMID:23269659

  19. A comparison of early diagnostic utility of Alzheimer disease biomarkers in brain magnetic resonance and cerebrospinal fluid.

    PubMed

    Monge Argilés, J A; Blanco Cantó, M A; Leiva Salinas, C; Flors, L; Muñoz Ruiz, C; Sánchez Payá, J; Gasparini Berenguer, R; Leiva Santana, C

    2014-09-01

    The goals of this study were to compare the early diagnostic utility of Alzheimer disease biomarkers in the CSF with those in brain MRI in conditions found in our clinical practice, and to ascertain the diagnostic accuracy of both techniques used together. Between 2008 and 2009, we included 30 patients with mild cognitive impairment (MCI) who were examined using 1.5 Tesla brain MRI and AD biomarker analysis in CSF. MRI studies were evaluated by 2 radiologists according to the Korf́s visual scale. CSF biomarkers were analysed using INNOTEST reagents for Aβ1-42, total-tau and phospho-tau181p. We evaluated clinical changes 2 years after inclusion. By 2 years after inclusion, 15 of the original 30 patients (50%) had developed AD (NINCDS-ADRA criteria). The predictive utility of AD biomarkers in CSF (RR 2.7; 95% CI, 1.1-6.7; P<.01) was greater than that of MRI (RR 1.5; 95% CI 95%, 0.7-3.4; P<.2); using both techniques together yielded a sensitivity and a negative predictive value of 100%. Normal results on both complementary tests ruled out progression to AD (100%) within 2 years of inclusion. Our results show that the diagnostic accuracy of biomarkers in CSF is higher than that of biomarkers in MRI. Combined use of both techniques is highly accurate for either early diagnosis or exclusion of AD in patients with MCI. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  20. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma

    PubMed Central

    Radon, Tomasz P; Massat, Nathalie J; Jones, Richard; Alrawashdeh, Wasfi; Dumartin, Laurent; Ennis, Darren; Duffy, Stephen W; Kocher, Hemant M; Pereira, Stephen P; Nascimento, Cristiane M; Real, Francisco X; Malats, Núria; Neoptolemos, John; Costello, Eithne; Greenhalf, William; Lemoine, Nick R; Crnogorac-Jurcevic, Tatjana

    2015-01-01

    Purpose Non-invasive biomarkers for early detection of pancreatic ductal adenocarcinoma (PDAC) are currently not available. Here, we aimed to identify a set of urine proteins able to distinguish patients with early stage PDAC from healthy individuals (H). Experimental design Proteomes of 18 urine samples from healthy controls, chronic pancreatitis and PDAC patients (six/group) were assayed using GeLC/MS/MS analysis. The selected biomarkers were subsequently validated using ELISA assays using multiple logistic regression applied to a training dataset in a multicentre cohort comprising 488 urine samples. Results LYVE-1, REG1A and TFF1 were selected as candidate biomarkers. When comparing PDAC (n=192) to healthy (n=87) urines, the resulting areas under the receiver operating characteristic curves (AUCs) of the panel were 0.89 (95%CI 0.84-0.94) in the training (70% of the data), and 0.92 (95%CI 0.86-0.98) in the validation (30% of the data) datasets. When comparing PDAC stage I-II (n=71) to healthy urines, the panel achieved AUCs of 0.90 (95%CI 0.84-0.96) and 0.93 (95%CI 0.84-1.00) in the training and validation datasets, respectively. In PDAC stage I-II and healthy samples with matching plasma CA19.9 the panel achieved a higher AUC of 0.97 (95%CI 0.94-0.99) than CA19.9 (AUC=0.88, 95%CI 0.81-0.95, p=0.005). Adding plasma CA19.9 to the panel increased the AUC from 0.97 (95%CI 0.94-0.99) to 0.99 (95%CI 0.97-1.00, p=0.04) but did not improve the comparison of stage I-IIA PDAC (n=17) to healthy urine. Conclusion We have established a novel, three-protein biomarker panel that is able to detect patients with early stage pancreatic cancer in urine specimens. PMID:26240291

  1. The early economic evaluation of novel biomarkers to accelerate their translation into clinical applications.

    PubMed

    de Graaf, Gimon; Postmus, Douwe; Westerink, Jan; Buskens, Erik

    2018-01-01

    Translating prognostic and diagnostic biomarker candidates into clinical applications takes time, is very costly, and many candidates fail. It is therefore crucial to be able to select those biomarker candidates that have the highest chance of successfully being adopted in the clinic. This requires an early estimate of the potential clinical impact and commercial value. In this paper, we aim to demonstratively evaluate a set of novel biomarkers in terms of clinical impact and commercial value, using occurrence of cardiovascular disease (CVD) in type-2 diabetes (DM2) patients as a case study. We defined a clinical application for the novel biomarkers, and subsequently used data from a large cohort study in The Netherlands in a modeling exercise to assess the potential clinical impact and headroom for the biomarkers. The most likely application of the biomarkers would be to identify DM2 patients with a low CVD risk and subsequently withhold statin treatment. As a result, one additional CVD event in every 75 patients may be expected. The expected downstream savings resulted in a headroom for a point-of-care device ranging from €119.09 at a willingness to accept of €0 for one additional CVD event, to €0 at a willingness to accept of €15,614 or more. It is feasible to evaluate novel biomarkers on outcomes directly relevant to technological development and clinical adoption. Importantly, this may be attained at the same point in time and using the same data as used for the evaluation of association with disease and predictive power.

  2. A Prospective Open-label Pilot Study of Fluvastatin on Pro-inflammatory and Pro-thrombotic Biomarkers in Antiphospholipid Antibody Positive Patients

    PubMed Central

    Erkan, Doruk; Willis, Rohan; Murthy, Vijaya L.; Basra, Gurjot; Vega, JoAnn; Ruiz Limón, Patricia; Carrera, Ana Laura; Papalardo, Elizabeth; Martínez-Martínez, Laura Aline; González, Emilio B.; Pierangeli, Silvia S.

    2014-01-01

    Objective: To determine if pro-inflammatory and pro-thrombotic biomarkers are differentially upregulated in persistently antiphospholipid antibody (aPL)-positive patients, and to examine the effects of fluvastatin on these biomarkers. Methods: Four groups of patients (age 18-65) were recruited: a) Primary Antiphospholipid Syndrome (PAPS); b) Systemic Lupus Erythematosus (SLE) with APS (SLE/APS); c) Persistent aPL positivity without SLE or APS (Primary aPL); and d) Persistent aPL positivity with SLE but no APS (SLE/aPL). The frequency-matched control group, used for baseline data comparison, was identified from a databank of healthy persons. Patients received fluvastatin 40 mg daily for three months. At three months, patients stopped the study medication and they were followed for another three months. Blood samples for 12 pro-inflammatory and pro-thrombotic biomarkers were collected monthly for six months. Results: Based on the comparison of the baseline samples of 41 aPL-positive patients with 30 healthy controls, 9/12 (75%) biomarkers (interleukin [IL]-6, IL1β, vascular endothelial growth factor [VEGF], tumor necrosis factor [TNF]-□α, interferon [IFN]-α, inducible protein-10 [IP10], soluble CD40 ligand [sCD40L], soluble tissue factor [sTF], and intracellular cellular adhesion molecule [ICAM]-1) were significantly elevated. Twenty-four patients completed the study; fluvastatin significantly and reversibly reduced the levels of 6/12 (50%) biomarkers (IL1β, VEGF, TNFα, IP10, sCD40L, and sTF). Conclusion: Our prospective mechanistic study demonstrates that pro-inflammatory and pro-thrombotic biomarkers, which are differentially upregulated in persistently aPL-positive patients, can be reversibly reduced by fluvastatin. Thus, statin-induced modulation of the aPL effects on target cells can be a valuable future approach in the management of aPL-positive patients. PMID:23933625

  3. SA19. N-Acetyl-Cysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis

    PubMed Central

    Do, Kim; Seidman, Larry J.; Fournier, Margot; Xin, Lijing; Cleusix, Martine; Baumann, Philipp S.; Ferrari, Carina; Cousins, Ann; Alameda, Luis; Gholam-Rezaee, Mehdi; Golay, Philippe; Jenni, Raoul; Woo, T-U Wilson; Keshavan, Matcheri S.; Eap, Chin B.; Wojcik, Joanne; Cuenod, Michel; Buclin, Thierry; Gruetter, Rolf; Conus, Philippe

    2017-01-01

    Abstract Background: Biomarker-guided treatments are needed in psychiatry and previous data suggest redox dysregulation / oxidative stress may be a target in schizophrenia (1,2). A previous add-on trial with the antioxidant N-Acetyl-Cysteine (NAC) led to negative symptoms reductions in chronic patients (3). We aim to study NAC impact on symptoms and neurocognition in early psychosis (EP) and to explore whether glutathione (GSH)/redox markers could represent valid biomarkers to guide treatment. Methods: In a double-blind, randomized, placebo-controlled trial in 63 EP patients, we assessed the effect of NAC supplementation (2700 mg/day, 6 months) on PANSS, neurocognition (MATRICS Consensus Cognitive Battery [MCCB]), and redox markers (brain GSH [GSH-mPFC], blood cells GSH [GSH-BC] levels, and GSH peroxidase activity [GPx-BC]). Results: No changes in negative, positive symptoms, or functional outcome were observed with NAC, but significant improvements were found in favor of NAC on the MCCB Processing Speed factor and two of its components: Trail Making and Verbal Fluency. NAC leads to increases in GSH-mPFC by 23% (P = .005) and GSH-BC by 19% (P = .05). In patients with high-baseline GPx-BC (>22.3U/gHb), subgroup explorations revealed an improvement with NAC of positive symptoms when compared to patients with low-baseline GPx (P = .02), with an improvement of positive symptoms in parallel with that of the redox status. Conclusion: In conclusion, NAC supplementation in a limited sample of EP patients did not improve negative symptoms, which were at modest levels at baseline. However, NAC leads to neurocognition improvement as well as to brain GSH levels increases, pointing to good target engagement. Blood GPx activity, a redox peripheral index associated with brain GSH levels, could help to identify a subgroup of patients who improve their positive symptoms with NAC. Future trials with antioxidant in EP should consider biomarker-guided treatment. References 1

  4. Development of Diagnostic Biomarkers for Detecting Diabetic Retinopathy at Early Stages Using Quantitative Proteomics

    PubMed Central

    Min, Hophil; Kim, Sang Jin; Oh, Sohee; Kim, Kyunggon; Yu, Hyeong Gon; Park, Taesung; Kim, Youngsoo

    2016-01-01

    Diabetic retinopathy (DR) is a common microvascular complication caused by diabetes mellitus (DM) and is a leading cause of vision impairment and loss among adults. Here, we performed a comprehensive proteomic analysis to discover biomarkers for DR. First, to identify biomarker candidates that are specifically expressed in human vitreous, we performed data-mining on both previously published DR-related studies and our experimental data; 96 proteins were then selected. To confirm and validate the selected biomarker candidates, candidates were selected, confirmed, and validated using plasma from diabetic patients without DR (No DR) and diabetics with mild or moderate nonproliferative diabetic retinopathy (Mi or Mo NPDR) using semiquantitative multiple reaction monitoring (SQ-MRM) and stable-isotope dilution multiple reaction monitoring (SID-MRM). Additionally, we performed a multiplex assay using 15 biomarker candidates identified in the SID-MRM analysis, which resulted in merged AUC values of 0.99 (No DR versus Mo NPDR) and 0.93 (No DR versus Mi and Mo NPDR). Although further validation with a larger sample size is needed, the 4-protein marker panel (APO4, C7, CLU, and ITIH2) could represent a useful multibiomarker model for detecting the early stages of DR. PMID:26665153

  5. Biomarkers for diagnosis of neonatal sepsis: a literature review.

    PubMed

    Sharma, Deepak; Farahbakhsh, Nazanin; Shastri, Sweta; Sharma, Pradeep

    2018-06-01

    Sepsis is an important cause of mortality and morbidity in neonatal populations. There has been constant search of an ideal sepsis biomarker that have high sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), so that both the diagnosis and exclusion of neonatal sepsis can be made at the earliest possible and appropriate antibiotics can be started to neonate. Ideal sepsis biomarker will help in guiding us when not to start antibiotics in case of suspect sepsis and total duration of antibiotics course in case of proven sepsis. There are numerous sepsis biomarkers that have been evaluated for early detection of neonatal sepsis but till date there is no single ideal biomarker that fulfills all essential criteria's for being an ideal biomarker. The most commonly used biomarkers are C-reactive protein (CRP) and procalcitonin (PCT), but both have shown varied sensitivity, specificity, PPV and NPV in different studies. We conducted literature search for various neonatal sepsis biomarkers and this review article will cover briefly all the markers with current available evidence.

  6. Prospective evaluation of 64 serum autoantibodies as biomarkers for early detection of colorectal cancer in a true screening setting.

    PubMed

    Chen, Hongda; Werner, Simone; Butt, Julia; Zörnig, Inka; Knebel, Phillip; Michel, Angelika; Eichmüller, Stefan B; Jäger, Dirk; Waterboer, Tim; Pawlita, Michael; Brenner, Hermann

    2016-03-29

    Novel blood-based screening tests are strongly desirable for early detection of colorectal cancer (CRC). We aimed to identify and evaluate autoantibodies against tumor-associated antigens as biomarkers for early detection of CRC. 380 clinically identified CRC patients and samples of participants with selected findings from a cohort of screening colonoscopy participants in 2005-2013 (N=6826) were included in this analysis. Sixty-four serum autoantibody markers were measured by multiplex bead-based serological assays. A two-step approach with selection of biomarkers in a training set, and validation of findings in a validation set, the latter exclusively including participants from the screening setting, was applied. Anti-MAGEA4 exhibited the highest sensitivity for detecting early stage CRC and advanced adenoma. Multi-marker combinations substantially increased sensitivity at the price of a moderate loss of specificity. Anti-TP53, anti-IMPDH2, anti-MDM2 and anti-MAGEA4 were consistently included in the best-performing 4-, 5-, and 6-marker combinations. This four-marker panel yielded a sensitivity of 26% (95% CI, 13-45%) for early stage CRC at a specificity of 90% (95% CI, 83-94%) in the validation set. Notably, it also detected 20% (95% CI, 13-29%) of advanced adenomas. Taken together, the identified biomarkers could contribute to the development of a useful multi-marker blood-based test for CRC early detection.

  7. Thrombopoietin as Early Biomarker of Disease Severity in Patients With Acute Pancreatitis.

    PubMed

    Lupia, Enrico; Pigozzi, Luca; Pivetta, Emanuele; Bosco, Ornella; Vizio, Barbara; Loiacono, Maria; Lucchiari, Manuela; Battista, Stefania; Morello, Fulvio; Moiraghi, Corrado; Mengozzi, Giulio; Montrucchio, Giuseppe

    2017-02-01

    To study the concentrations of thrombopoietin (TPO), a growth factor recently involved in the pathogenesis of experimental acute pancreatitis (AP), and its potential role as an early diagnostic and prognostic biomarker in patients with AP. Thrombopoietin was measured in 44 AP patients, 18 patients with nonpancreatic acute abdominal pain, and 18 healthy volunteers. Acute pancreatitis severity was classified on the basis of the 2012 International Atlanta Symposium on Acute Pancreatitis criteria. Thrombopoietin levels did not differ between AP patients and control subjects, whereas these were higher in patients with moderately severe or severe AP compared with those with mild AP. Receiver operating characteristic curve analysis of TPO for severe AP diagnosis showed an area under the curve of 0.80. A cutoff value of 31.48 pg/mL showed the highest sensitivity, allowing to rule out severe AP when TPO was lower, whereas TPO higher than 98.23 pg/mL was associated with severe AP with high specificity (93.5%). Furthermore, TPO levels were greater in AP patients developing organ dysfunction or sepsis and in nonsurvivors compared with survivors. Our data provide the first evidence for TPO as potential early prognostic biomarker in AP patients. High TPO levels at hospital admission may predict organ dysfunction, sepsis, and fatal outcome in AP patients.

  8. Blood biomarkers in Alzheimer's disease.

    PubMed

    Altuna-Azkargorta, M; Mendioroz-Iriarte, M

    2018-05-08

    The early diagnosis of Alzheimer's disease (AD) via the use of biomarkers could facilitate the implementation and monitoring of early therapeutic interventions with the potential capacity to significantly modify the course of the disease. Classic cerebrospinal fluid biomarkers and approved structural and functional neuroimaging have a limited clinical application given their invasive nature and/or high cost. The identification of more accessible and less costly biomarkers, such as blood biomarkers, would facilitate application in clinical practice. We present a literature review of the main blood biochemical biomarkers with potential use for diagnosing Alzheimer's disease. Blood biomarkers are cost and time effective with regard to cerebrospinal fluid biomarkers. However, the immediate applicability of blood biochemical biomarkers in clinical practice is not very likely. The main limitations come from the difficulties in measuring and standardising thresholds between different laboratories and in failures to replicate results. Among all the molecules studied, apoptosis and neurodegeneration biomarkers and the biomarker panels obtained through omics approaches, such as isolated or combined metabolomics, offer the most promising results. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    NASA Astrophysics Data System (ADS)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  10. Exploratory Investigation of Early Biomarkers for Chronic Fatigue in Prostate Cancer Patients Following Radiation Therapy

    PubMed Central

    Feng, Li Rebekah; Wolff, Brian S.; Lukkahatai, Nada; Espina, Alexandra; Saligan, Leorey N.

    2016-01-01

    Background Fatigue is one of the most debilitating side effects of cancer therapy. Identifying biomarkers early during cancer therapy may help us understand the biologic underpinnings of the persistence of fatigue following therapy. Objective We aimed to identify early biomarkers of fatigue by examining correlations of levels of cytokines during external beam radiation therapy (EBRT) with persistence of fatigue one year following treatment completion in men with non-metastatic prostate cancer (NM-PC). Methods A sample of 34 men with NM-PC scheduled to receive EBRT were followed at baseline (T1), midpoint of EBRT (T2), and one year following EBRT (T3). Demographic and clinical data were obtained by chart review. The Functional Assessment of Cancer Therapy-Fatigue (FACT-F) was administered to measure fatigue levels. Plasma cytokine levels were determined at T1 and T2 using the Bio-Rad Bio-Plex Cytokine Assay Kits. Results Significant correlations were observed between levels of IL-3, IL-8, IL-9, IL-10, IL-16, IP10, IFNα2, IFNγ, and SDF1α at T2 with worsening of fatigue from T1 to T3. Conclusions Immunological changes prior to chronic fatigue development may reflect the long term response to radiation therapy-induced damage. Implications for Practice Early biomarkers for chronic fatigue related to cancer therapy will help advance our understanding of the etiology of this distressing symptom and will help nurses identify patients at risk for developing chronic fatigue after cancer treatment. This information will also aide in patient education, as well as symptom management. PMID:27105468

  11. Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis.

    PubMed

    Ishijima, Muneaki; Watari, Taiji; Naito, Kiyohito; Kaneko, Haruka; Futami, Ippei; Yoshimura-Ishida, Kaori; Tomonaga, Akihito; Yamaguchi, Hideyo; Yamamoto, Tetsuro; Nagaoka, Isao; Kurosawa, Hisashi; Poole, Robin A; Kaneko, Kazuo

    2011-02-14

    We tested the hypothesis that there exist relationships between the onset of early stage radiographically defined knee osteoarthritis (OA), pain and changes in biomarkers of joint metabolism. Using Kellgren-Lawrence (K/L) grading early radiographic knee OA (K/L 2) was detected in 16 of 46 patients. These grades (K/L 1 is no OA and K/L 2 is early OA) were divided into two groups according to the presence or absence of persistent knee pain. Sera (s) and urines (u) were analysed with biomarkers for cartilage collagen cleavage (sC2C and uCTX-II) and synthesis (sCPII), bone resorption (uNTx) and synovitis (hyaluronic acid: sHA). sCPII decreased and sC2C/sCPII, uCTX-II/sCPII and sHA increased with onset of OA (K/L 2 versus K/L 1) irrespective of joint pain. In contrast, sC2C and uCTX-II remained unchanged in early OA patients. Of the patients with K/L grades 1 and 2 sC2C, sCPII, sHA, uNTX and uCTX-II were all significantly increased in patients with knee pain independent of grade. Among the K/L grade 2 subjects, only uCTX-II and uCTX-II/sCPII were increased in those with knee pain. In grade 1 patients both sC2C and sCPII were increased in those with knee pain. No such grade specific changes were seen for the other biomarkers including sHA. These results suggest that changes in cartilage matrix turnover detected by molecular biomarkers may reflect early changes in cartilage structure that account directly or indirectly for knee pain. Also K/L grade 1 patients with knee pain exhibit biomarker features of early OA.

  12. Nestin: A biomarker of aggressive uterine cancers.

    PubMed

    Hope, Erica R; Mhawech-Fauceglia, Paulette; Pejovic, Tanja; Zahn, Christopher M; Wang, Guisong; Conrads, Thomas P; Larry Maxwell, G; Hamilton, Chad A; Darcy, Kathleen M; Syed, Viqar

    2016-03-01

    Evidence of potential prognostic and predictive value for nestin was investigated in well-annotated uterine cancers (UCs). Nestin expression and previously-published biomarkers were evaluated by immunohistochemistry (IHC) in UC tissue microarrays. Biomarkers were categorized as low vs. high, and nestin was cut at 10% positive staining. Relationship between nestin and clinicopathologic factors, biomarkers and outcome were evaluated using exact/log-rank testing or logistic/Cox modeling. There were 323 eligible cases, 34% had advanced stage disease, 37% had type II disease, and 5% were carcinosarcomas. High nestin, observed in 19% of cases, was more common in advanced vs. early stage disease, type II cancers or uterine carcinosarcoma vs. type I cancers, grade 3 disease, positive lymphovascular space invasion (LVSI) and tumors >6cm (p<0.05). Nestin was inversely correlated with ER, PR and TFF3, and correlated with p53 and IMP3. Women with high vs. low nestin had worse progression-free survival (PFS) and cancer-specific survival overall, and worse PFS in the subset who received no adjuvant therapy or radiation, or had early stage, type I disease or tumors with both low and high ER, PR, TFF3, PTEN, p53 or IMP3. The relationship between nestin and PFS was independent of stage, LVSI and risk categorization but not type of UC. High nestin was more common in UCs with aggressive features and poor outcome. Nestin may represent a predictive biomarker for treatment selection for patients previously considered to be lower risk and a candidate for no or radiation-based adjuvant therapy, and compliment ER/PR testing. Published by Elsevier Inc.

  13. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    NASA Astrophysics Data System (ADS)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  14. Early-life metal exposure and schizophrenia: A proof-of-concept study using novel tooth-matrix biomarkers.

    PubMed

    Modabbernia, A; Velthorst, E; Gennings, C; De Haan, L; Austin, C; Sutterland, A; Mollon, J; Frangou, S; Wright, R; Arora, M; Reichenberg, A

    2016-08-01

    Despite evidence for the effects of metals on neurodevelopment, the long-term effects on mental health remain unclear due to methodological limitations. Our objective was to determine the feasibility of studying metal exposure during critical neurodevelopmental periods and to explore the association between early-life metal exposure and adult schizophrenia. We analyzed childhood-shed teeth from nine individuals with schizophrenia and five healthy controls. We investigated the association between exposure to lead (Pb(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), copper (Cu(2+)), magnesium (Mg(2+)), and zinc (Zn(2+)), and schizophrenia, psychotic experiences, and intelligence quotient (IQ). We reconstructed the dose and timing of early-life metal exposures using laser ablation inductively coupled plasma mass spectrometry. We found higher early-life Pb(2+) exposure among patients with schizophrenia than controls. The differences in log Mn(2+) and log Cu(2+) changed relatively linearly over time to postnatal negative values. There was a positive correlation between early-life Pb(2+) levels and psychotic experiences in adulthood. Moreover, we found a negative correlation between Pb(2+) levels and adult IQ. In our proof-of-concept study, using tooth-matrix biomarker that provides direct measurement of exposure in the fetus and newborn, we provide support for the role of metal exposure during critical neurodevelopmental periods in psychosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Biomarker Reference Sets for Cancers in Women — EDRN Public Portal

    Cancer.gov

    The purpose of this study is to develop a standard reference set of specimens for use by investigators participating in the National Cancer Institutes Early Detection Research Network (EDRN) in defining false positive rates for new cancer biomarkers in women.

  16. Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson's Disease.

    PubMed

    San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B; Lipton, Richard B; Pullman, Seth; Saunders-Pullman, Rachel

    2016-01-01

    Pre-clinical markers of Parkinson's Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD.

  17. Identification of Predictive Early Biomarkers for Sterile-SIRS after Cardiovascular Surgery.

    PubMed

    Stoppelkamp, Sandra; Veseli, Kujtim; Stang, Katharina; Schlensak, Christian; Wendel, Hans Peter; Walker, Tobias

    2015-01-01

    Systemic inflammatory response syndrome (SIRS) is a common complication after cardiovascular surgery that in severe cases can lead to multiple organ dysfunction syndrome and even death. We therefore set out to identify reliable early biomarkers for SIRS in a prospective small patient study for timely intervention. 21 Patients scheduled for planned cardiovascular surgery were recruited in the study, monitored for signs of SIRS and blood samples were taken to investigate biomarkers at pre-assigned time points: day of admission, start of surgery, end of surgery, days 1, 2, 3, 5 and 8 post surgery. Stored plasma and cryopreserved blood samples were analyzed for cytokine expression (IL1β, IL2, IL6, IL8, IL10, TNFα, IFNγ), other pro-inflammatory markers (sCD163, sTREM-1, ESM-1) and response to endotoxin. Acute phase proteins CRP, PCT and pro-inflammatory cytokines IL6 and IL8 were significantly increased (p<0.001) at the end of surgery in all patients but could not distinguish between groups. Normalization of samples revealed significant increases in IL1β changes (p<0.05) and decreased responses to endotoxin (p<0.01) in the SIRS group at the end of surgery. Soluble TREM-1 plasma concentrations were significantly increased in patients with SIRS (p<0.01). This small scale patient study could show that common sepsis markers PCT, CRP, IL6 and TNFα had low predictive value for early diagnosis of SIRS after cardiovascular surgery. A combination of normalized IL1β plasma levels, responses to endotoxin and soluble TREM-1 plasma concentrations at the end of surgery are predictive markers of SIRS development in this small scale study and could act as an indicator for starting early therapeutic interventions.

  18. Prospective evaluation of 64 serum autoantibodies as biomarkers for early detection of colorectal cancer in a true screening setting

    PubMed Central

    Chen, Hongda; Werner, Simone; Butt, Julia; Zörnig, Inka; Knebel, Phillip; Michel, Angelika; Eichmüller, Stefan B.; Jäger, Dirk; Waterboer, Tim; Pawlita, Michael; Brenner, Hermann

    2016-01-01

    Novel blood-based screening tests are strongly desirable for early detection of colorectal cancer (CRC). We aimed to identify and evaluate autoantibodies against tumor-associated antigens as biomarkers for early detection of CRC. 380 clinically identified CRC patients and samples of participants with selected findings from a cohort of screening colonoscopy participants in 2005–2013 (N=6826) were included in this analysis. Sixty-four serum autoantibody markers were measured by multiplex bead-based serological assays. A two-step approach with selection of biomarkers in a training set, and validation of findings in a validation set, the latter exclusively including participants from the screening setting, was applied. Anti-MAGEA4 exhibited the highest sensitivity for detecting early stage CRC and advanced adenoma. Multi-marker combinations substantially increased sensitivity at the price of a moderate loss of specificity. Anti-TP53, anti-IMPDH2, anti-MDM2 and anti-MAGEA4 were consistently included in the best-performing 4-, 5-, and 6-marker combinations. This four-marker panel yielded a sensitivity of 26% (95% CI, 13–45%) for early stage CRC at a specificity of 90% (95% CI, 83–94%) in the validation set. Notably, it also detected 20% (95% CI, 13–29%) of advanced adenomas. Taken together, the identified biomarkers could contribute to the development of a useful multi-marker blood-based test for CRC early detection. PMID:26909861

  19. Copper to Zinc Ratio as Disease Biomarker in Neonates with Early-Onset Congenital Infections

    PubMed Central

    Wisniewska, Monika; Cremer, Malte; Wiehe, Lennart; Becker, Niels-Peter; Rijntjes, Eddy; Martitz, Janine; Renko, Kostja; Bührer, Christoph; Schomburg, Lutz

    2017-01-01

    Copper (Cu) and zinc (Zn) are essential trace elements for regular development. Acute infections alter their metabolism, while deficiencies increase infection risks. A prospective observational case-control study was conducted with infected (n = 21) and control (n = 23) term and preterm newborns. We analyzed trace element concentrations by X-ray fluorescence, and ceruloplasmin (CP) by Western blot. Median concentration of Cu at birth (day 1) was 522.8 [387.1–679.7] μg/L, and Zn was 1642.4 ± 438.1 μg/L. Cu and Zn correlated positively with gestational age in control newborns. Cu increased in infected newborns from day 1 to day 3. CP correlated positively to Cu levels at birth in both groups and on day 3 in the group of infected neonates. The Cu/Zn ratio was relatively high in infected newborns. Interleukin (IL)-6 concentrations on day 1 were unrelated to Cu, Zn, or the Cu/Zn ratio, whereas C-reactive protein (CRP) levels on day 3 correlated positively to the Cu/Zn -ratio at both day 1 and day 3. We conclude that infections affect the trace element homeostasis in newborns: serum Zn is reduced, while Cu and CP are increased. The Cu/Zn ratio combines both alterations, independent of gestational age. It may, thus, constitute a meaningful diagnostic biomarker for early-onset infections. PMID:28358335

  20. Accounting for Life-Course Exposures in Epigenetic Biomarker Association Studies: Early Life Socioeconomic Position, Candidate Gene DNA Methylation, and Adult Cardiometabolic Risk

    PubMed Central

    Huang, Jonathan Y.; Gavin, Amelia R.; Richardson, Thomas S.; Rowhani-Rahbar, Ali; Siscovick, David S.; Hochner, Hagit; Friedlander, Yechiel; Enquobahrie, Daniel A.

    2016-01-01

    Abstract Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007–2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes ( ABCA1 , INS-IGF2 , LEP , HSD11B2 , and NR3C1 ). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9–12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations. PMID:27651384

  1. Detection of urinary biomarkers for early diagnosis of acute renal allograft rejection by proteomic analysis.

    PubMed

    Jia, Xiongfei; Gan, Chengjun; Xiao, Ke; He, Weifeng; Zhang, Tao; Huang, Cibing; Wu, Xiongfei; Luo, Gaoxing; Wang, Xiaojuan; Hu, Jie; Tan, Jiangling; Zhang, Xiaorong; Larsen, Peter Mose; Wu, Jun

    2009-06-01

    Acute allograft rejection has been recognized as a major impediment to improved success in renal transplantation. Timely detection and control of rejection are very important for the improvement in long-term renal allograft survival. Thus, biomarkers for early diagnosis of acute rejection are required urgently to clinical medication. This study seeks to search for such biomarker candidates by comparing patients' pre-treatment urinary protein profiling with their post-treatment urinary protein profiling. A total of 15 significantly and consistently down-regulated protein candidates were identified. Among them, alpha-1-antichymotrypsin precursor (AACT), tumor rejection antigen gp96 (GP96) and Zn-Alpha-2-Glycoprotein (ZAG) were selected for further analysis. The results indicated that Western Blot assay of AACT, GP96 and ZAG had advanced the diagnosis time of acute renal rejection by 3 days, compared with current standard clinical observation and laboratory examination. Furthermore, the double-blind detection revealed that the accuracy, sensitivity and specificity of the diagnosis of acute renal rejection of AACT, GP96 and ZAG were 66.67%/100%/60%, 83.33%/100%/80% and 66.67%/100%/60%, respectively, and 100%/100%/100% in combination. In conclusion, urinary protein AACT, GP96 and ZAG could be a set of potential biomarkers for early non-invasive diagnosis of the acute rejection after renal transplantation. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Using bacterial biomarkers to identify early indicators of cystic fibrosis pulmonary exacerbation onset

    PubMed Central

    Rogers, Geraint B; Hoffman, Lucas R; Johnson, Matt W; Mayer-Hamblett, Nicole; Schwarze, Jürgen; Carroll, Mary P; Bruce, Kenneth D

    2011-01-01

    Acute periods of pulmonary exacerbation are the single most important cause of morbidity in cystic fibrosis patients, and may be associated with a loss of lung function. Intervening prior to the onset of a substantially increased inflammatory response may limit the associated damage to the airways. While a number of biomarker assays based on inflammatory markers have been developed, providing useful and important measures of disease during these periods, such factors are typically only elevated once the process of exacerbation has been initiated. Identifying biomarkers that can predict the onset of pulmonary exacerbation at an early stage would provide an opportunity to intervene before the establishment of a substantial immune response, with major implications for the advancement of cystic fibrosis care. The precise triggers of pulmonary exacerbation remain to be determined; however, the majority of models relate to the activity of microbes present in the patient's lower airways of cystic fibrosis. Advances in diagnostic microbiology now allow for the examination of these complex systems at a level likely to identify factors on which biomarker assays can be based. In this article, we discuss key considerations in the design and testing of assays that could predict pulmonary exacerbations. PMID:21405970

  3. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease

    PubMed Central

    Arshad, Ahmad R.; Sulaiman, Siti A.; Saperi, Amalia A.; Jamal, Rahman; Mohamed Ibrahim, Norlinah; Abdul Murad, Nor Azian

    2017-01-01

    Among the neurodegenerative disorders, Parkinson's disease (PD) ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD). Despite similarities between the characteristics of EOPD and late onset PD (LODP), EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis. PMID:29163029

  4. Metabolomics discloses donor liver biomarkers associated with early allograft dysfunction.

    PubMed

    Cortes, Miriam; Pareja, Eugenia; García-Cañaveras, Juan C; Donato, M Teresa; Montero, Sandra; Mir, Jose; Castell, José V; Lahoz, Agustín

    2014-09-01

    Early allograft dysfunction (EAD) dramatically influences graft and patient outcome after orthotopic liver transplantation and its incidence is strongly determined by donor liver quality. Nevertheless, objective biomarkers, which can assess graft quality and anticipate organ function, are still lacking. This study aims to investigate whether there is a preoperative donor liver metabolomic biosignature associated with EAD. A comprehensive metabolomic profiling of 124 donor liver biopsies collected before transplantation was performed by mass spectrometry coupled to liquid chromatography. Donor liver grafts were classified into two groups: showing EAD and immediate graft function (IGF). Multivariate data analysis was used to search for the relationship between the metabolomic profiles present in donor livers before transplantation and their function in recipients. A set of liver graft dysfunction-associated biomarkers was identified. Key changes include significantly increased levels of bile acids, lysophospholipids, phospholipids, sphingomyelins and histidine metabolism products, all suggestive of disrupted lipid homeostasis and altered histidine pathway. Based on these biomarkers, a predictive EAD model was built and further evaluated by assessing 24 independent donor livers, yielding 91% sensitivity and 82% specificity. The model was also successfully challenged by evaluating donor livers showing primary non-function (n=4). A metabolomic biosignature that accurately differentiates donor livers, which later showed EAD or IGF, has been deciphered. The remarkable metabolomic differences between donor livers before transplant can relate to their different quality. The proposed metabolomic approach may become a clinical tool for donor liver quality assessment and for anticipating graft function before transplant. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Evaluation of KIM-1 as an early biomarker of snakebite-induced AKI in mice.

    PubMed

    Dantas, Rodrigo Tavares; Sampaio, Tiago Lima; Lima, Dânya Bandeira; Bezerra de Menezes, Ramon Róseo Paula Pessoa; Canuto, Jader Almeida; Toyama, Marcos Hikari; Evangelista, Janaína Serra Azul Monteiro; Martins, Alice Maria Costa

    2018-06-14

    Acute kidney injury (AKI) is one of the most important complications of bothropic poisoning and its early identification remains challenging. The nephrotoxicity of Bothrops insularis venom (BinsV) was previously described by our research group. In this study, we continued to evaluate the effect of BinsV on kidney function in mice and LLC-MK2 proximal tubule cells, evaluating KIM-1 protein as an early AKI biomarker. Male Swiss mice were inoculated with BinsV intramuscularly and observed for 24 h in a metabolic cage model. Urine and blood were collected for biochemical analyses and the kidneys were examined for oxide-reducing balance and submitted to histological analysis. LLC-MK2 cells incubated with BinsV were assessed for cell viability and cell death mechanism by flow cytometry. Histological analysis of the kidneys indicated AKI and the oxide-reducing analyses demonstrated a decreasing in reduced glutathione (GSH) levels and an increasing on Malondialdehyde (MDA) levels. BinsV was cytotoxic to LLC-MK2 and the cytometry analyses suggested necrosis. Within 24 h after the envenomation, urinary creatinine did not increase, but the urinary levels of KIM-1 increased. In conclusion, we found AKI evidence in the kidney tissue and the increase in the KIM-1 levels suggest it can be used as an early AKI biomarker. Copyright © 2018. Published by Elsevier Ltd.

  6. Mass spectrometry for biomarker development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  7. Accounting for Life-Course Exposures in Epigenetic Biomarker Association Studies: Early Life Socioeconomic Position, Candidate Gene DNA Methylation, and Adult Cardiometabolic Risk.

    PubMed

    Huang, Jonathan Y; Gavin, Amelia R; Richardson, Thomas S; Rowhani-Rahbar, Ali; Siscovick, David S; Hochner, Hagit; Friedlander, Yechiel; Enquobahrie, Daniel A

    2016-10-01

    Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007-2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes (ABCA1, INS-IGF2, LEP, HSD11B2, and NR3C1). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9-12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

    PubMed

    García-Blanco, Ana; Peña-Bautista, Carmen; Oger, Camille; Vigor, Claire; Galano, Jean-Marie; Durand, Thierry; Martín-Ibáñez, Nuria; Baquero, Miguel; Vento, Máximo; Cháfer-Pericás, Consuelo

    2018-07-01

    Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L -1 , which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (intra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis of spiked urine samples obtaining recoveries between 70% and 120% for most of the analytes. The utility of the described method was tested by analyzing urine samples from patients early diagnosed with mild cognitive impairment or mild dementia Alzheimer Disease following the clinical standard criteria. As preliminary results, some analytes (17(RS)-10-epi-SC-Δ 15 -11-dihomo-IsoF, PGE 2 ) and total parameters (Neuroprostanes, Isoprostanes, Isofurans) show differences between the control and the clinical groups. So, these analytes could be potential early Alzheimer Disease biomarkers assessing the patients' pro-oxidant condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A multiplexable, microfluidic platform for the rapid quantitation of a biomarker panel for early ovarian cancer detection at the point-of-care

    PubMed Central

    Shadfan, Basil H.; Simmons, Archana R.; Simmons, Glennon W.; Ho, Andy; Wong, Jorge; Lu, Karen H.; Bast, Robert C.; McDevitt, John T.

    2015-01-01

    Point-of-care (POC) diagnostic platforms have the potential to enable low-cost, large-scale screening. As no single biomarker is shed by all ovarian cancers, multiplexed biomarker panels promise improved sensitivity and specificity to address the unmet need for early detection of ovarian cancer. We have configured the programmable bio-nano-chip (p-BNC) - a multiplexable, microfluidic, modular platform - to quantify a novel multimarker panel comprising CA125, HE4, MMP-7 and CA72-4. The p-BNC is a bead-based immunoanalyzer system with a credit-card-sized footprint that integrates automated sample metering, bubble and debris removal, reagent storage and waste disposal, permitting POC analysis. Multiplexed p-BNC immunoassays demonstrated high specificity, low cross-reactivity, low limits of detection suitable for early detection, and a short analysis time of 43 minutes. Day-to-day variability, a critical factor for longitudinally monitoring biomarkers, ranged between 5.4–10.5%, well below the biological variation for all four markers. Biomarker concentrations for 31 late-stage sera correlated well (R2 = 0.71 to 0.93 for various biomarkers) with values obtained on the Luminex® platform. In a 31 patient cohort encompassing early- and late-stage ovarian cancers along with benign and healthy controls, the multiplexed p-BNC panel was able to distinguish cases from controls with 68.7% sensitivity at 80% specificity. Utility for longitudinal biomarker monitoring was demonstrated with pre-diagnostic sera from 2 cases and 4 controls. Taken together, the p-BNC shows strong promise as a diagnostic tool for large-scale screening that takes advantage of faster results and lower costs while leveraging possible improvement in sensitivity and specificity from biomarker panels. PMID:25388014

  10. Biomarkers in localized prostate cancer

    PubMed Central

    Ferro, Matteo; Buonerba, Carlo; Terracciano, Daniela; Lucarelli, Giuseppe; Cosimato, Vincenzo; Bottero, Danilo; Deliu, Victor M; Ditonno, Pasquale; Perdonà, Sisto; Autorino, Riccardo; Coman, Ioman; De Placido, Sabino; Di Lorenzo, Giuseppe; De Cobelli, Ottavio

    2016-01-01

    Biomarkers can improve prostate cancer diagnosis and treatment. Accuracy of prostate-specific antigen (PSA) for early diagnosis of prostate cancer is not satisfactory, as it is an organ- but not cancer-specific biomarker, and it can be improved by using models that incorporate PSA along with other test results, such as prostate cancer antigen 3, the molecular forms of PSA (proPSA, benign PSA and intact PSA), as well as kallikreins. Recent reports suggest that new tools may be provided by metabolomic studies as shown by preliminary data on sarcosine. Additional molecular biomarkers have been identified by the use of genomics, proteomics and metabolomics. We review the most relevant biomarkers for early diagnosis and management of localized prostate cancer. PMID:26768791

  11. Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults.

    PubMed

    Domingues, Inês; Oliveira, Rhaul; Lourenço, Joana; Grisolia, Cesar Koppe; Mendo, Sónia; Soares, A M V M

    2010-09-01

    The present work aims to compare the sensitivity of embryos and adult zebrafish to chromium (VI) (as potassium dichromate) focusing on biomarkers (cholinesterase, glutathione S-transferase and lactate dehydrogenase) as endpoints. Zebrafish eggs showed less sensitivity to Cr (VI) (96 h-LC50=145.7 mg/L) than adults (96 h-LC50=39.4 mg/L) probably due to the protective action of the chorion. However, biomarkers were much more responsive in larvae than in adults and gave clear indications about Cr (VI) mode of action: it seems to be neurotoxic (inhibited cholinesterase), to inhibit glutathione S-transferase activity and to interfere with cellular metabolic activity (changes in lactate dehydrogenase activity) in larvae. In adults, only glutathione S-transferase was responsive, showing a clear inhibition. The responsiveness of the analyzed biomarkers in larvae reinforces the idea of the usefulness of early life stage assays in the assessment of chemicals effects. Moreover, early life stage assays also contributed with relevant information regarding anomalies in larvae development and behavior. Further research should focus on the use of biomarkers to assess long term effects which are ecologically more relevant. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Biomarker Discovery for Early Detection of Hepatocellular Carcinoma in Hepatitis C–infected Patients*

    PubMed Central

    Mustafa, Mehnaz G.; Petersen, John R.; Ju, Hyunsu; Cicalese, Luca; Snyder, Ned; Haidacher, Sigmund J.; Denner, Larry; Elferink, Cornelis

    2013-01-01

    Chronic hepatic disease damages the liver, and the resulting wound-healing process leads to liver fibrosis and the subsequent development of cirrhosis. The leading cause of hepatic fibrosis and cirrhosis is infection with hepatitis C virus (HCV), and of the patients with HCV-induced cirrhosis, 2% to 5% develop hepatocellular carcinoma (HCC), with a survival rate of 7%. HCC is one of the leading causes of cancer-related death worldwide, and the poor survival rate is largely due to late-stage diagnosis, which makes successful intervention difficult, if not impossible. The lack of sensitive and specific diagnostic tools and the urgent need for early-stage diagnosis prompted us to discover new candidate biomarkers for HCV and HCC. We used aptamer-based fractionation technology to reduce serum complexity, differentially labeled samples (six HCV and six HCC) with fluorescent dyes, and resolved proteins in pairwise two-dimensional difference gel electrophoresis. DeCyder software was used to identify differentially expressed proteins and spots picked, and MALDI-MS/MS was used to determine that ApoA1 was down-regulated by 22% (p < 0.004) in HCC relative to HCV. Differential expression quantified via two-dimensional difference gel electrophoresis was confirmed by means of 18O/16O stable isotope differential labeling with LC-MS/MS zoom scans. Technically independent confirmation was demonstrated by triple quadrupole LC-MS/MS selected reaction monitoring (SRM) assays with three peptides specific to human ApoA1 (DLATVYVDVLK, WQEEMELYR, and VSFLSALEEYTK) using 18O/16O-labeled samples and further verified with AQUA peptides as internal standards for quantification. In 50 patient samples (24 HCV and 26 HCC), all three SRM assays yielded highly similar differential expression of ApoA1 in HCC and HCV patients. These results validated the SRM assays, which were independently confirmed by Western blotting. Thus, ApoA1 is a candidate member of an SRM biomarker panel for early diagnosis

  13. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection

    PubMed Central

    2012-01-01

    Background Pulmonary tuberculosis (TB) is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary TB infection. Methods Using TaqMan Low-Density Array (TLDA) analysis followed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) validation, expression levels of miRNAs in serum samples from 30 patients with active tuberculosis and 60 patients with Bordetella pertussis (BP), varicella-zoster virus (VZV) and enterovirus (EV) were analyzed. Results The Low-Density Array data showed that 97 miRNAs were differentially expressed in pulmonary TB patient sera compared with healthy controls (90 up-regulated and 7 down-regulated). Following qRT-PCR confirmation and receiver operational curve (ROC) analysis, three miRNAs (miR-361-5p, miR-889 and miR-576-3p) were shown to distinguish TB infected patients from healthy controls and other microbial infections with moderate sensitivity and specificity (area under curve (AUC) value range, 0.711-0.848). Multiple logistic regression analysis of a combination of these three miRNAs showed an enhanced ability to discriminate between these two groups with an AUC value of 0.863. Conclusions Our study suggests that altered levels of serum miRNAs have great potential to serve as non-invasive biomarkers for early detection of pulmonary TB infection. PMID:23272999

  14. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease

    PubMed Central

    Blennow, Kaj; Dubois, Bruno; Fagan, Anne M.; Lewczuk, Piotr; de Leon, Mony J.; Hampel, Harald

    2015-01-01

    Several potential disease-modifying drugs for Alzheimer’s disease (AD) have failed to show any effect on disease progression in clinical trials, conceivably because the AD subjects are already too advanced to derive clinical benefit from treatment and because diagnosis based on clinical criteria alone introduces a high misdiagnosis rate. Thus, well-validated biomarkers for early detection and accurate diagnosis are crucial. Low cerebrospinal fluid (CSF) concentrations of the amyloid-β (Aβ1-42) peptide, in combination with high total tau and phosphorylated tau, are sensitive and specific biomarkers highly predictive of progression to AD dementia in patients with mild cognitive impairment. However, interlaboratory variations in the results seen with currently available immunoassays are of concern. Recent worldwide standardization efforts and quality control programs include standard operating procedures for both preanalytical (e.g., lumbar puncture and sample handling) and analytical (e.g., preparation of calibration curve) procedures. Efforts are also ongoing to develop highly reproducible assays on fully automated instruments. These global standardization and harmonization measures will provide the basis for the generalized international application of CSF bio-markers for both clinical trials and routine clinical diagnosis of AD. PMID:24795085

  15. Heart-type fatty acid-binding protein (H-FABP) as an early diagnostic biomarker in patients with acute chest pain.

    PubMed

    Vupputuri, Anjith; Sekhar, Saritha; Krishnan, Sajitha; Venugopal, K; Natarajan, K U

    2015-01-01

    Heart-type fatty acid-binding protein (H-FABP) is an emerging biomarker, which was found to be sensitive for the early diagnosis of acute myocardial infarction (AMI). We prospectively investigated the usefulness of H-FABP determination for the evaluation of acute chest pain in patients arriving at the emergency department. Fifty-four patients presenting with acute ischemic chest pain were evaluated. H-FABP was estimated at admission using latex-enhanced immunoturbidimetric assay. Serial cardiac troponin I (cTnI), creatinine kinase-MB (CK-MB) determination, ischemia workup with stress testing, and/or coronary angiogram (CAG) were performed according to standard protocols. The sensitivity and specificity of H-FABP was 89.7% and 68%, for cTnI it was 62.1% and 100%, and for CK-MB it was 44.8% and 92%, respectively for diagnosis of AMI. The sensitivity of H-FABP was found to be far superior to initial cTnI and CK-MB, for those seen within 6h (100% vs. 46.1%, 33% respectively). On further evaluation of patients with positive H-FABP and negative cTnI, 71.4% of the patients had significant lesion on CAG, indicating ischemic cause of H-FABP elevation. Six patients with normal cTnI and CK-MB with high H-FABP had ST elevation on subsequent ECGs and were taken for primary angioplasty. H-FABP is a highly sensitive biomarker for the early diagnosis of AMI. H-FABP as early marker and cTnI as late marker would be the ideal combination to cover the complete diagnostic window for AMI. Detection of myocardial injury by H-FABP may also be applied in patients with unstable angina. H-FABP can also be used as a marker for early detection of STEMI before the ECG changes become apparent. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  16. The sitting position during neurosurgical procedures does not influence serum biomarkers of pulmonary parenchymal injury.

    PubMed

    Duda, Izabela; Grzybowska, Konstancja; Jędrzejowska-Szypułka, Halina; Lewin-Kowalik, Joanna

    2012-12-05

    The sitting position during neurosurgical operations predisposes to air penetration through veins and the movement of the air through the pulmonary circulation. Contact of an air bubble with the endothelium can lead to acute lung injury. The presence of specific pulmonary proteins in the plasma such as surfactant protein D (SP-D) and Clara cell protein (CC16) is a biomarker of damaging processes at the air-blood barrier. The aim of our study was to examine the hypothesis that the level of investigated pulmonary biomarkers in plasma is higher in patients operated on in the sitting position. The study included patients undergoing planned neurosurgical operations, who were divided into two groups: the sitting group (40 patients, operated on in the sitting position) and the supine group (24 patients, operated in the supine position). After the operation blood samples were drawn, centrifuged, frozen and stored until analyses were conducted. The determination of the SP-D and CC16 levels was performed using an ELISA test. Air embolism (VAE) was defined as a sudden drop in etCO2 of more than 2 mmHg and the presence of air bubbles in the aspirated blood from the central cannula. In all patients, the number of hospitalization days in the postoperative period was calculated. There were no differences in the average levels of SP-D between the groups (the mean in the sitting group was 95.56 ng/mL and the mean in the supine group was 101.21 ng/mL). The average levels of CC16 were similar in both groups as well (6.56 ng/mL in the sitting group and 6.79 ng/mL in the supine group). There was a statistically significant positive correlation between SP-D and CC16 values in both groups. VAE was diagnosed clinically in 12.5% of cases in the sitting group without a significant increase in SP-D and CC16 levels. On average, patients in both groups were discharged from the hospital within 9 days of surgery. The sitting position and intraoperative VAE during neurosurgical procedures do not

  17. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivas-Calderón, Edgar, E-mail: edgar_olivascalderon@hotmail.com; School of Medicine, University Juarez of Durango, Gomez Palacio, Durango; Recio-Vega, Rogelio, E-mail: rrecio@yahoo.com

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatorymore » biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As

  18. Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson’s Disease

    PubMed Central

    San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A.; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B.; Lipton, Richard B.; Pullman, Seth; Saunders-Pullman, Rachel

    2016-01-01

    Introduction Pre-clinical markers of Parkinson’s Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. Methods 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. Results All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Conclusion Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD. PMID:27732597

  19. Magnetic resonance imaging retinal oximetry: a quantitative physiological biomarker for early diabetic retinopathy?

    PubMed

    Yang, Y; Zhu, X R; Xu, Q G; Metcalfe, H; Wang, Z C; Yang, J K

    2012-04-01

    To assess the efficacy of using magnetic resonance imaging measurements of retinal oxygenation response to detect early diabetic retinopathy in patients with Type 2 diabetes. Magnetic resonance imaging was conducted during 100% oxygen inhalation in patients with Type 2 diabetes with either no diabetic retinopathy (n = 12) or mild to moderate background diabetic retinopathy (n = 12), as well as in healthy control subjects (n = 12). Meanwhile, changes in retinal oxygenation response were measured. In the healthy control group, levels of retinal oxygenation response increased slowly during 100% oxygen inhalation. In contrast, they increased more quickly and attained homeostasis much earlier in the groups with background diabetic retinopathy (at the 20-min time point) and with no diabetic retinopathy (at the 25-min time point) than in the healthy control group (at the 42-min time point). Furthermore, levels of retinal oxygenation response in the group with background diabetic retinopathy increased more than that of the group with no diabetic retinopathy, which in turn increased more than that of the healthy control group. There are statistically significant differences between the group with background diabetic retinopathy and the healthy control group at 6-, 8-, 10-, 15-, 20- and 25-min time points (P < 0.05). According to the normal range of the healthy control group by setting fundus photography results as 'gold standard' in our research, the sensitivity, specificity, positive predictive value, negative predictive value and receiver operating characteristic area for reporting the early indications of utility of diabetic retinopathy were 83.33%, 58.33%, 50%, 87.5% and 0.774, respectively. The results indicate that magnetic resonance imaging is a potential screening method and probably a quantitative physiological biomarker to find early diabetic retinopathy in patients with Type 2 diabetes. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  20. Novel cardiovascular biomarkers in women with a history of early preeclampsia.

    PubMed

    Drost, José T; Maas, Angela H E M; Holewijn, Suzanne; Joosten, Leo A B; van Eyck, Jim; van der Schouw, Yvonne T; de Graaf, Jacqueline

    2014-11-01

    Women with a history of preeclampsia are at increased risk for future cardiovascular disease. Determination of cardiovascular biomarkers may be useful to understand the pathophysiological mechanism of cardiovascular disease development in these women. We performed an analysis in the Preeclampsia Risk EValuation in FEMales study, a retrospective cohort consisting of 339 women with a history of early preeclampsia and 332 women after normotensive pregnancy. Women attended a follow-up visit ten years after the index pregnancy. A subset of 8 different cardiovascular biomarkers was investigated, reflecting inflammatory, metabolic, thrombotic and endothelial function markers. Associations between PE and these novel biomarkers were analyzed by linear regression analysis and adjusted for traditional cardiovascular risk factors. Mean age of 671 women of the PREVFEM cohort was 39 years and women were on average 10 years post index pregnancy. Women post preeclampsia had significantly higher levels of SE-selectin (adjusted difference 4.55, 99%CI 0.37; 8.74) and PAPPA (adjusted difference 19.08; 99%CI 13.18; 24.99), whereas ApoB (adjusted difference -0.23 99%CI -0.32; -0.14) was inversely associated with preeclampsia, compared to women with a previous normotensive pregnancy. Adiponectin, leptin, sICAM-1, sVCAM-1 and PAI-1 were not different between both groups. We demonstrated an independent association of preeclampsia with SE-selectin and PAPPA (markers of vascular dysfunction), which may contribute to future cardiovascular events in women post preeclampsia. However, ApoB (an apolipoprotein) was significantly lower and could point at a protective mechanism in our PE study women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Prediagnostic Serum Biomarkers as Early Detection Tools for Pancreatic Cancer in a Large Prospective Cohort Study

    PubMed Central

    Nolen, Brian M.; Brand, Randall E.; Prosser, Denise; Velikokhatnaya, Liudmila; Allen, Peter J.; Zeh, Herbert J.; Grizzle, William E.; Lomakin, Aleksey; Lokshin, Anna E.

    2014-01-01

    Background The clinical management of pancreatic cancer is severely hampered by the absence of effective screening tools. Methods Sixty-seven biomarkers were evaluated in prediagnostic sera obtained from cases of pancreatic cancer enrolled in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). Results The panel of CA 19-9, OPN, and OPG, identified in a prior retrospective study, was not effective. CA 19-9, CEA, NSE, bHCG, CEACAM1 and PRL were significantly altered in sera obtained from cases greater than 1 year prior to diagnosis. Levels of CA 19-9, CA 125, CEA, PRL, and IL-8 were negatively associated with time to diagnosis. A training/validation study using alternate halves of the PLCO set failed to identify a biomarker panel with significantly improved performance over CA 19-9 alone. When the entire PLCO set was used for training at a specificity (SP) of 95%, a panel of CA 19-9, CEA, and Cyfra 21-1 provided significantly elevated sensitivity (SN) levels of 32.4% and 29.7% in samples collected <1 and >1 year prior to diagnosis, respectively, compared to SN levels of 25.7% and 17.2% for CA 19-9 alone. Conclusions Most biomarkers identified in previously conducted case/control studies are ineffective in prediagnostic samples, however several biomarkers were identified as significantly altered up to 35 months prior to diagnosis. Two newly derived biomarker combinations offered advantage over CA 19-9 alone in terms of SN, particularly in samples collected >1 year prior to diagnosis. However, the efficacy of biomarker-based tools remains limited at present. Several biomarkers demonstrated significant velocity related to time to diagnosis, an observation which may offer considerable potential for enhancements in early detection. PMID:24747429

  2. Biomarkers for early diagnosis of Alzheimer disease: 'ALZheimer ASsociated gene'--a new blood biomarker?

    PubMed

    Jellinger, Kurt A; Janetzky, Bernd; Attems, Johannes; Kienzl, Elisabeth

    2008-08-01

    Simple, non-invasive tests for an early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers (plasma/serum, platelets, urine, connective tissue) for the early diagnosis of Alzheimer disease (AD) are available. In disease stages with evident cognitive disturbances, the clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. Diagnostic sensitivity and specificity even in early disease stages are improved by CSF markers, in particular combined tau and amyloid beta peptides (Abeta) and plasma markers (eg, Abeta-42/Abeta-40 ratio). Recently, a novel gene/protein--ALZAS (Alzheimer Associated Protein)--with a 79 amino acid sequence, containing the amyloid beta-42 fragment (Abeta-42), the amyloid precursor protein (APP) transmembrane signal and a 12 amino acid C-terminal, not present in any other known APP alleles, has been discovered on chromosome 21 within the APP region. Reverse transcriptase-PCR revealed the expression of the transcript of this protein in the cortex and hippocampal regions as well as in lymphocytes of human AD patients. The expression of ALZAS is mirrored by a specific autoimmune response in AD patients, directed against the ct-12 end of the ALZAS-peptide but not against the Abeta-sequence. ELISA studies of plasma detected highest titers of ALZAS in patients with mild cognitive impairment (presymptomatic AD), but only moderately increased titers in autopsy-confirmed AD, whereas low or undetectable ct-12 titers were found in cognitively intact age-matched subjects and young controls. The antigen, ALZAS protein, was detected in plasma in later clinical stages of AD. It is suggested that ALZAS represents an indicator in a dynamic equilibrium between both peripheral and brain degenerative changes in AD and may become a useful "non-invasive" diagnostic marker via a simple blood test.

  3. CEACAM6 is upregulated by Helicobacter pylori CagA and is a biomarker for early gastric cancer

    PubMed Central

    Srivastava, Supriya; Samanta, Animesh; Sharma, Neel; Tan, Kar Tong; Yang, Henry; Voon, Dominic C.; Pang, Brendan; Teh, Ming; Murata-Kamiya, Naoko; Hatakeyama, Masanori; Chang, Young-Tae; Yong, Wei Peng; Ito, Yoshiaki; Ho, Khek Yu; Tan, Patrick; Soong, Richie; Koeffler, Phillip H.; Yeoh, Khay Guan; Jeyasekharan, Anand D.

    2016-01-01

    Early detection of gastric cancers saves lives, but remains a diagnostic challenge. In this study, we aimed to identify cell-surface biomarkers of early gastric cancer. We hypothesized that a subset of plasma membrane proteins induced by the Helicobacter pylori oncoprotein CagA will be retained in early gastric cancers through non-oncogene addiction. An inducible system for expression of CagA was used to identify differentially upregulated membrane protein transcripts in vitro. The top hits were then analyzed in gene expression datasets comparing transcriptome of gastric cancer with normal tissue, to focus on markers retained in cancer. Among the transcripts enriched upon CagA induction in vitro, a significant elevation of CEACAM6 was noted in gene expression datasets of gastric cancer. We used quantitative digital immunohistochemistry to measure CEACAM6 protein levels in tissue microarrays of gastric cancer. We demonstrate an increase in CEACAM6 in early gastric cancers, when compared to matched normal tissue, with an AUC of 0.83 for diagnostic validity. Finally, we show that a fluorescently conjugated CEACAM6 antibody binds avidly to freshly resected gastric cancer xenograft samples and can be detected by endoscopy in real time. Together, these results suggest that CEACAM6 upregulation is a cell surface response to H. pylori CagA, and is retained in early gastric cancers. They highlight a novel link between CEACAM6 expression and CagA in gastric cancer, and suggest CEACAM6 to be a promising biomarker to aid with the fluorescent endoscopic diagnosis of early neoplastic lesions in the stomach. PMID:27421133

  4. Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers.

    PubMed

    Beard, John D; Erdely, Aaron; Dahm, Matthew M; de Perio, Marie A; Birch, M Eileen; Evans, Douglas E; Fernback, Joseph E; Eye, Tracy; Kodali, Vamsi; Mercer, Robert R; Bertke, Stephen J; Schubauer-Berigan, Mary K

    2018-07-01

    Carbon nanotubes and nanofibers (CNT/F) are increasingly used for diverse applications. Although animal studies suggest CNT/F exposure may cause deleterious health effects, human epidemiological studies have typically been small, confined to single workplaces, and limited in exposure assessment. We conducted an industrywide cross-sectional epidemiological study of 108 workers from 12 U.S. sites to evaluate associations between occupational CNT/F exposure and sputum and blood biomarkers of early effect. We assessed CNT/F exposure via personal breathing zone, filter-based air sampling to measure background-corrected elemental carbon (EC) (a CNT/F marker) mass and microscopy-based CNT/F structure count concentrations. We measured 36 sputum and 37 blood biomarkers. We used factor analyses with varimax rotation to derive factors among sputum and blood biomarkers separately. We used linear, Tobit, and unconditional logistic regression models to adjust for potential confounders and evaluate associations between CNT/F exposure and individual biomarkers and derived factors. We derived three sputum and nine blood biomarker factors that explained 78% and 67%, respectively, of the variation. After adjusting for potential confounders, inhalable EC and total inhalable CNT/F structures were associated with the most sputum and blood biomarkers, respectively. Biomarkers associated with at least three CNT/F metrics were 72 kDa type IV collagenase/matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2'-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood, although directions of associations were not always as expected. Inhalable rather than respirable CNT/F was more

  5. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    DTIC Science & Technology

    2014-09-01

    Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy ( SABR ) for Early Lung Cancer PRINCIPAL INVESTIGATOR: Billy W...CONTRACT NUMBER Response to Stereotactic Ablative Radiotherapy ( SABR ) for Early Lung Cancer 5b. GRANT NUMBER W81XWH-12-1-0236 5c...NOTES 14. ABSTRACT Purpose and scope: Stereotactic ablative radiotherapy ( SABR ) has become a new standard of care for early stage lung

  6. Discovery and Validation of Prognostic Biomarker Models to Guide Triage among Adult Dengue Patients at Early Infection

    PubMed Central

    Tolfvenstam, Thomas; Thein, Tun-Linn; Naim, Ahmad Nazri Mohamed; Ling, Ling; Chow, Angelia; Chen, Mark I-Cheng; Ooi, Eng Eong; Leo, Yee Sin; Hibberd, Martin L.

    2016-01-01

    Background Dengue results in a significant public health burden in endemic regions. The World Health Organization (WHO) recommended the use of warning signs (WS) to stratify patients at risk of severe dengue disease in 2009. However, WS is limited in stratifying adult dengue patients at early infection (Day 1–3 post fever), who require close monitoring in hospitals to prevent severe dengue. The aim of this study is to identify and validate prognostic models, built with differentially expressed biomarkers, that enable the early identification of those with early dengue infection that require close clinical monitoring. Methods RNA microarray and protein assays were performed to identify differentially expressed biomarkers of severity among 92 adult dengue patients recruited at early infection from years 2005–2008. This comprised 47 cases who developed WS after first presentation and required hospitalization (WS+Hosp), as well as 45 controls who did not develop WS after first presentation and did not require hospitalization (Non-WS+Non-Hosp). Independent validation was conducted with 80 adult dengue patients recruited from years 2009–2012. Prognostic models were developed based on forward stepwise and backward elimination estimation, using multiple logistic regressions. Prognostic power was estimated by the area under the receiver operating characteristic curve (AUC). Results The WS+Hosp group had significantly higher viral load (P<0.001), lower platelet (P<0.001) and lymphocytes counts (P = 0.004) at early infection compared to the Non-WS+Non-Hosp group. From the RNA microarray and protein assays, the top single RNA and protein prognostic models at early infection were CCL8 RNA (AUC:0.73) and IP-10 protein (AUC:0.74), respectively. The model with CCL8, VPS13C RNA, uPAR protein, and with CCL8, VPS13C RNA and platelets were the best biomarker models for stratifying adult dengue patients at early infection, with sensitivity and specificity up to 83% and 84

  7. DNA Methylation Biomarkers: Cancer and Beyond

    PubMed Central

    Mikeska, Thomas; Craig, Jeffrey M.

    2014-01-01

    Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease. PMID:25229548

  8. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis.

    PubMed

    Kataoka, Hiroyuki; Saito, Keita; Kato, Hisato; Masuda, Kazufumi

    2013-06-01

    Early disease diagnosis is crucial for human healthcare and successful therapy. Since any changes in homeostatic balance can alter human emanations, the components of breath exhalations and skin emissions may be diagnostic biomarkers for various diseases and metabolic disorders. Since hundreds of endogenous and exogenous volatile organic compounds (VOCs) are released from the human body, analysis of these VOCs may be a noninvasive, painless, and easy diagnostic tool. Sampling and preconcentration by sorbent tubes/traps and solid-phase microextraction, in combination with GC or GC-MS, are usually used to analyze VOCs. In addition, GC-MS-olfactometry is useful for simultaneous analysis of odorants and odor quality. Direct MS techniques are also useful for the online real-time detection of VOCs. This review focuses on recent developments in sampling and analysis of volatile biomarkers in human odors and/or emanations, and discusses future use of VOC analysis.

  9. Identification of urine protein biomarkers with the potential for early detection of lung cancer.

    PubMed

    Zhang, Hongjuan; Cao, Jing; Li, Lin; Liu, Yanbin; Zhao, Hong; Li, Nan; Li, Bo; Zhang, Aiqun; Huang, Huanwei; Chen, She; Dong, Mengqiu; Yu, Lei; Zhang, Jian; Chen, Liang

    2015-07-02

    Lung cancer is the leading cause of cancer-related deaths and has an overall 5-year survival rate lower than 15%. Large-scale clinical trials have demonstrated a significant relative reduction in mortality in high-risk individuals with low-dose computed tomography screening. However, biomarkers capable of identifying the most at-risk population and detecting lung cancer before it becomes clinically apparent are urgently needed in the clinic. Here, we report the identification of urine biomarkers capable of detecting lung cancer. Using the well-characterized inducible Kras (G12D) mouse model of lung cancer, we identified alterations in the urine proteome in tumor-bearing mice compared with sibling controls. Marked differences at the proteomic level were also detected between the urine of patients and that of healthy population controls. Importantly, we identified 7 proteins commonly found to be significantly up-regulated in both tumor-bearing mice and patients. In an independent cohort, we showed that 2 of the 7 proteins were up-regulated in urine samples from lung cancer patients but not in those from controls. The kinetics of these proteins correlated with the disease state in the mouse model. These tumor biomarkers could potentially aid in the early detection of lung cancer.

  10. Early serum biomarker networks in infants with distinct retinochoroidal lesion status of congenital toxoplasmosis.

    PubMed

    de Araújo, Thádia Evelyn; Coelho-Dos-Reis, Jordana Grazziela; Béla, Samantha Ribeiro; Carneiro, Ana Carolina Aguiar Vasconcelos; Machado, Anderson Silva; Cardoso, Ludmila Melo; Ribeiro, Ágata Lopes; Dias, Michelle Hallais França; Queiroz Andrade, Gláucia Manzan; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Ferro, Eloisa Amália Vieira; Martins-Filho, Olindo Assis

    2017-07-01

    The present study characterized the early changes in the serum chemokines/cytokine signatures and networks in infants with congenital-toxoplasmosis/(TOXO) as compared to non-infected-controls/(NI). TOXO were subgrouped according to the retinochoroidal lesion status as no-lesion/(NL), active-lesion/(ARL), active/cicatricial-lesion/(ACRL) and cicatricial-lesion/(CRL). The results showed that TOXO display prominent chemokine production mediated by IL-8/CXCL8, MIG/CXCL9, IP-10/CXCL10 and RANTES/CCL5. Additionally, TOXO is accompanied by mixed proinflammatory/regulatory cytokine pattern mediated by IL-6, IFN-γ, IL-4, IL-5 and IL-10. While TNF appears as a putative biomarker for NL and IFN-γ/IL-5 as immunological features for ARL, IL-10 emerges as a relevant mediator in ACRL/CRL. IL-8/CXCL8 and IP-10/CXCL10 are broad-spectrum indicators of ocular disease, whereas TNF is a NL biomarker, IFN-γ and MIG/CXCL9 point out to ARL; and IL-10 is highlighted as a genuine serum biomarker of ACRL/CRL. The network analysis demonstrated a broad chemokine/cytokine crosstalk with divergences in the molecular signatures in patients with different ocular lesions during congenital toxoplasmosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Serum Metabolite Biomarkers Discriminate Healthy Smokers from COPD Smokers

    PubMed Central

    Chen, Qiuying; Deeb, Ruba S.; Ma, Yuliang; Staudt, Michelle R.; Crystal, Ronald G.; Gross, Steven S.

    2015-01-01

    COPD (chronic obstructive pulmonary disease) is defined by a fixed expiratory airflow obstruction associated with disordered airways and alveolar destruction. COPD is caused by cigarette smoking and is the third greatest cause of mortality in the US. Forced expiratory volume in 1 second (FEV1) is the only validated clinical marker of COPD, but it correlates poorly with clinical features and is not sensitive enough to predict the early onset of disease. Using LC/MS global untargeted metabolite profiling of serum samples from a well-defined cohort of healthy smokers (n = 37), COPD smokers (n = 41) and non-smokers (n = 37), we sought to discover serum metabolic markers with known and/or unknown molecular identities that are associated with early-onset COPD. A total of 1,181 distinct molecular ions were detected in 95% of sera from all study subjects and 23 were found to be differentially-expressed in COPD-smokers vs. healthy-smokers. These 23 putative biomarkers were differentially-correlated with lung function parameters and used to generate a COPD prediction model possessing 87.8% sensitivity and 86.5% specificity. In an independent validation set, this model correctly predicted COPD in 8/10 individuals. These serum biomarkers included myoinositol, glycerophopshoinositol, fumarate, cysteinesulfonic acid, a modified version of fibrinogen peptide B (mFBP), and three doubly-charged peptides with undefined sequence that significantly and positively correlate with mFBP levels. Together, elevated levels of serum mFBP and additional disease-associated biomarkers point to a role for chronic inflammation, thrombosis, and oxidative stress in remodeling of the COPD airways. Serum metabolite biomarkers offer a promising and accessible window for recognition of early-stage COPD. PMID:26674646

  12. Effects of Positive Psychology Interventions on Risk Biomarkers in Coronary Patients: A Randomized, Wait-List Controlled Pilot Trial.

    PubMed

    Nikrahan, Gholam Reza; Laferton, Johannes A C; Asgari, Karim; Kalantari, Mehrdad; Abedi, Mohammad Reza; Etesampour, Ali; Rezaei, Abbas; Suarez, Laura; Huffman, Jeff C

    2016-01-01

    Among cardiac patients, positive psychologic factors are consistently linked with superior clinical outcomes and improvement in key markers of inflammation and hypothalamic-pituitary-adrenal axis functioning. Further, positive psychology interventions (PPI) have effectively increased psychologic well-being in a wide variety of populations. However, there has been minimal study of PPIs in cardiac patients, and no prior study has evaluated their effect on key prognostic biomarkers of cardiac outcome. Accordingly, we investigated the effect of 3 distinct PPIs on risk biomarkers in cardiac patients. In an exploratory trial, 69 patients with recent coronary artery bypass graft surgery or percutaneous intervention were randomized to (1) one of three 6-week in-person PPIs (based on the work of Seligman, Lyubomirsky, or Fordyce) or (2) a wait-list control group. Risk biomarkers were assessed at baseline, postintervention (7 weeks), and at 15-week follow-up. Between-group differences in change from baseline biomarker levels were examined via random effects models. Compared with the control group, participants randomized to the Seligman (B = -2.06; p = 0.02) and Fordyce PPI (B = -1.54; p = 0.04) had significantly lower high-sensitivity C-reactive protein levels at 7 weeks. Further, the Lyubomirsky PPI (B = -245.86; p = 0.04) was associated with a significantly lower cortisol awakening response at 7 weeks when compared with control participants. There were no other significant between-group differences. Despite being an exploratory pilot study with multiple between-group comparisons, this initial trial offers the first suggestion that PPIs might be effective in reducing risk biomarkers in high-risk cardiac patients. Copyright © 2016 The Academy of Psychosomatic Medicine. All rights reserved.

  13. Effects of positive psychology interventions on risk biomarkers in coronary patients: A randomized, wait-list controlled pilot trial

    PubMed Central

    Nikrahan, Gholam Reza; Laferton, Johannes A. C.; Asgari, Karim; Kalantari, Mehrdad; Abedi, Mohammad Reza; Etesampour, Ali; Rezaei, Abbas; Suarez, Laura; Huffman, Jeff C.

    2016-01-01

    Background Among cardiac patients, positive psychological factors are consistently linked with superior clinical outcomes and improvement in key markers of inflammation and hypothalamic-pituitary-adrenal axis functioning. Further, positive psychology interventions (PPI) have effectively increased psychological well-being in a wide variety of populations. However, there has been minimal study of PPIs in cardiac patients, and no prior study has evaluated their effect on key prognostic biomarkers of cardiac outcome. Accordingly, we investigated the effect of three distinct PPIs on risk biomarkers in cardiac patients. Methods In an exploratory trial, 69 patients with recent coronary artery bypass graft surgery or percutaneous intervention were randomized to a) one of three 6-week in-person PPIs (based on the work of Seligman, Lyubomirsky, or Fordyce) or b) a wait-list control group. Risk biomarkers were assessed at baseline, post-intervention (7 weeks), and at 15 week follow-up. Between-group differences in change from baseline biomarker levels were examined via random effects models. Results Compared to the control group, participants randomized to the Seligman (B= −2.06; p= .02) and Fordyce PPI (B= −1.54; p= .04) had significantly lower high-sensitivity C-reactive protein (hs-CRP) levels at 7 weeks. Further, the Lyubomirsky PPI (B= −245.86; p= .04) was associated with a significantly lower cortisol awakening response (CARg) at 7 weeks compared to control participants. There were no other significant between-group differences. Conclusion Despite being an exploratory pilot study with multiple between-group comparisons, this initial trial offers the first suggestion that PPIs might be effective in reducing risk biomarkers in high-risk cardiac patients. PMID:27129358

  14. Blood cell transcriptomic-based early biomarkers of adverse programming effects of gestational calorie restriction and their reversibility by leptin supplementation

    PubMed Central

    Konieczna, Jadwiga; Sánchez, Juana; Palou, Mariona; Picó, Catalina; Palou, Andreu

    2015-01-01

    The challenge of preventing major chronic diseases requires reliable, early biomarkers. Gestational mild undernutrition in rats is enough to program the offspring to develop later pathologies; the intake of leptin, a breastmilk component, during lactation may reverse these programming effects. We used these models to identify, in peripheral blood mononuclear cells (PBMCs), transcriptomic-based early biomarkers of programmed susceptibility to later disorders, and explored their response to neonatal leptin intake. Microarray analysis was performed in PBMCs from the offspring of control and 20% gestational calorie-restricted dams (CR), and CR-rats supplemented with physiological doses of leptin throughout lactation. Notably, leptin supplementation normalised 218 of the 224 mRNA-levels identified in PBMCs associated to undernutrition during pregnancy. These markers may be useful for early identification and subsequent monitoring of individuals who are at risk of later diseases and would specifically benefit from the intake of appropriate amounts of leptin during lactation. PMID:25766068

  15. Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats.

    PubMed

    Quesada, Andrés; Vargas, Félix; Montoro-Molina, Sebastián; O'Valle, Francisco; Rodríguez-Martínez, María Dolores; Osuna, Antonio; Prieto, Isabel; Ramírez, Manuel; Wangensteen, Rosemary

    2012-01-01

    This study analyzes the fluorimetric determination of alanyl- (Ala), glutamyl- (Glu), leucyl-cystinyl- (Cys) and aspartyl-aminopeptidase (AspAp) urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group) received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG), albumin, and neutrophil gelatinase-associated lipocalin (NGAL). Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p<0.011; r(2)>0.259) with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.

  16. Proteomics as a Tool for Biomarker Discovery

    PubMed Central

    Kohn, Elise C.; Azad, Nilofer; Annunziata, Christina; Dhamoon, Amit S.; Whiteley, Gordon

    2007-01-01

    Novel technologies are now being advanced for the purpose of identification and validation of new disease biomarkers. A reliable and useful clinical biomarker must a) come from a readily attainable source, such as blood or urine, b) have sufficient sensitivity to correctly identify affected individuals, c) have sufficient specificity to avoid incorrect labeling of unaffected persons, and d) result in a notable benefit for the patient through intervention, such as survival or life quality improvement. Despite these critical descriptors, the few available FDA-approved biomarkers for cancer do not completely fit this definition and their benefits are limited to a small number of cancers. Ovarian cancer exemplifies the need for a diagnostic biomarker of early stage disease. Symptoms are present but not specific to the disease, delaying diagnosis until an advanced and generally incurable stage in over 70% of affected women. As such, diagnostic intervention in the form of oopherectomy can be performed in the appropriate at-risk population if identified such as with a new accurate, sensitive, and specific biomarker. If early stage disease is identified, the requirement for survival and life quality improvement will be met. One of the new technologies applied to biomarker discovery is tour-de-force analysis of serum peptides and proteins. Optimization of mass spectrometry techniques coupled with advanced bioinformatics approaches has yielded informative biomarker signatures discriminating presence of cancer from unaffected in multiple studies from different groups. Validation and randomized outcome studies are needed to determine the true value of these new biomarkers in early diagnosis, and improved survival and quality of life. PMID:18057524

  17. Role of EEG as Biomarker in the Early Detection and Classification of Dementia

    PubMed Central

    Al-Qazzaz, Noor Kamal; Ali, Sawal Hamid Bin MD.; Ahmad, Siti Anom; Chellappan, Kalaivani; Islam, Md. Shabiul; Escudero, Javier

    2014-01-01

    The early detection and classification of dementia are important clinical support tasks for medical practitioners in customizing patient treatment programs to better manage the development and progression of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early stages. Indeed, early diagnosis helps patients to obtain the maximum treatment benefit before significant mental decline occurs. The use of electroencephalogram as a tool for the detection of changes in brain activities and clinical diagnosis is becoming increasingly popular for its capabilities in quantifying changes in brain degeneration in dementia. This paper reviews the role of electroencephalogram as a biomarker based on signal processing to detect dementia in early stages and classify its severity. The review starts with a discussion of dementia types and cognitive spectrum followed by the presentation of the effective preprocessing denoising to eliminate possible artifacts. It continues with a description of feature extraction by using linear and nonlinear techniques, and it ends with a brief explanation of vast variety of separation techniques to classify EEG signals. This paper also provides an idea from the most popular studies that may help in diagnosing dementia in early stages and classifying through electroencephalogram signal processing and analysis. PMID:25093211

  18. Role of EEG as biomarker in the early detection and classification of dementia.

    PubMed

    Al-Qazzaz, Noor Kamal; Ali, Sawal Hamid Bin Md; Ahmad, Siti Anom; Chellappan, Kalaivani; Islam, Md Shabiul; Escudero, Javier

    2014-01-01

    The early detection and classification of dementia are important clinical support tasks for medical practitioners in customizing patient treatment programs to better manage the development and progression of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early stages. Indeed, early diagnosis helps patients to obtain the maximum treatment benefit before significant mental decline occurs. The use of electroencephalogram as a tool for the detection of changes in brain activities and clinical diagnosis is becoming increasingly popular for its capabilities in quantifying changes in brain degeneration in dementia. This paper reviews the role of electroencephalogram as a biomarker based on signal processing to detect dementia in early stages and classify its severity. The review starts with a discussion of dementia types and cognitive spectrum followed by the presentation of the effective preprocessing denoising to eliminate possible artifacts. It continues with a description of feature extraction by using linear and nonlinear techniques, and it ends with a brief explanation of vast variety of separation techniques to classify EEG signals. This paper also provides an idea from the most popular studies that may help in diagnosing dementia in early stages and classifying through electroencephalogram signal processing and analysis.

  19. Buccal Cell Cytokeratin 14 Correlates with Multiple Blood Biomarkers of Alzheimer's Disease Risk.

    PubMed

    Leifert, Wayne R; Nguyen, Tori; Rembach, Alan; Martins, Ralph; Rainey-Smith, Stephanie; Masters, Colin L; Ames, David; Rowe, Christopher C; Macaulay, S Lance; François, Maxime; Fenech, Michael F

    2015-01-01

    Mild cognitive impairment (MCI) may reflect early stages of neurodegenerative disorders such as Alzheimer's disease (AD). Our hypothesis was that cytokeratin 14 (CK14) expression could be used with blood-based biomarkers such as homocysteine, vitamin B12, and folate to identify individuals with MCI or AD from the Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging. Buccal cells from 54 individuals were analyzed by a newly developed method that is rapid, automated, and quantitative for buccal cell CK14 expression levels. CK14 was negatively correlated with plasma Mg²⁺ and LDL, while positively correlated with vitamin B12, red cell hematocrit/volume, and basophils in the MCI group and positively correlated with insulin and vitamin B12 in the AD group. The combined biomarker panel (CK14 expression, plasma vitamin B12, and homocysteine) was significantly lower in the MCI (p = 0.003) and AD (p = 0.0001) groups compared with controls. Receiver-operating characteristic curves yielded area under the curve (AUC) values of 0.829 for the MCI (p = 0.002) group and 0.856 for the AD (p = 0.0003) group. These complex associations of multiple related parameters highlight the differences between the MCI and AD cohorts and possibly an underlying metabolic pathology associated with the development of early memory impairment. The changes in buccal cell CK14 expression observed in this pilot study supports previous results suggesting the peripheral biomarkers and metabolic changes are not restricted to brain pathology alone in MCI and AD and could prove useful as a potential biomarker in identifying individuals with an increased risk of developing MCI and eventually AD.

  20. Biomarkers for Cystic Fibrosis Drug Development

    PubMed Central

    Muhlebach, Marianne S.; Clancy, JP; Heltshe, Sonya L.; Ziady, Assem; Kelley, Tom; Accurso, Frank; Pilewski, Joseph; Mayer-Hamblett, Nicole; Joseloff, Elizabeth; Sagel, Scott D.

    2016-01-01

    Purpose To provide a review of the status of biomarkers in cystic fibrosis drug development, including regulatory definitions and considerations, a summary of biomarkers in current use with supportive data, current gaps, and future needs. Methods Biomarkers are considered across several areas of CF drug development, including cystic fibrosis transmembrane conductance regulator modulation, infection, and inflammation. Results Sweat chloride, nasal potential difference, and intestinal current measurements have been standardized and examined in the context of multicenter trials to quantify CFTR function. Detection and quantification of pathogenic bacteria in CF respiratory cultures (e.g.: Pseudomonas aeruginosa) is commonly used in early phase antimicrobial clinical trials, and to monitor safety of therapeutic interventions. Sputum (e.g.: neutrophil elastase, myeloperoxidase, calprotectin) and blood biomarkers (e.g.: C reactive protein, calprotectin, serum amyloid A) have had variable success in detecting response to inflammatory treatments. Conclusions Biomarkers are used throughout the drug development process in CF, and many have been used in early phase clinical trials to provide proof of concept, detect drug bioactivity, and inform dosing for later-phase studies. Advances in the precision of current biomarkers, and the identification of new biomarkers with ‘omics-based technologies, are needed to accelerate CF drug development. PMID:28215711

  1. Utility of Biomarkers for Early Detection of Malignant Mesothelioma in a High-risk Population — EDRN Public Portal

    Cancer.gov

    A prospective study to evaluate the utility of various biomarkers in the context of an MM Early Detection Program. The study cohort will be composed of workers at a company with known asbestos exposure. Historically, a considerable number of workers at this company have developed MM.

  2. Alzheimer's Disease Normative Cerebrospinal Fluid Biomarkers Validated in PET Amyloid-β Characterized Subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study.

    PubMed

    Li, Qiao-Xin; Villemagne, Victor L; Doecke, James D; Rembach, Alan; Sarros, Shannon; Varghese, Shiji; McGlade, Amelia; Laughton, Katrina M; Pertile, Kelly K; Fowler, Christopher J; Rumble, Rebecca L; Trounson, Brett O; Taddei, Kevin; Rainey-Smith, Stephanie R; Laws, Simon M; Robertson, Joanne S; Evered, Lisbeth A; Silbert, Brendan; Ellis, Kathryn A; Rowe, Christopher C; Macaulay, S Lance; Darby, David; Martins, Ralph N; Ames, David; Masters, Colin L; Collins, Steven

    2015-01-01

    The cerebrospinal fluid (CSF) amyloid-β (Aβ)(1-42), total-tau (T-tau), and phosphorylated-tau (P-tau181P) profile has been established as a valuable biomarker for Alzheimer's disease (AD). The current study aimed to determine CSF biomarker cut-points using positron emission tomography (PET) Aβ imaging screened subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, as well as correlate CSF analyte cut-points across a range of PET Aβ amyloid ligands. Aβ pathology was determined by PET imaging, utilizing ¹¹C-Pittsburgh Compound B, ¹⁸F-flutemetamol, or ¹⁸F-florbetapir, in 157 AIBL participants who also underwent CSF collection. Using an INNOTEST assay, cut-points were established (Aβ(1-42) >544 ng/L, T-tau <407 ng/L, and P-tau181P <78 ng/L) employing a rank based method to define a "positive" CSF in the sub-cohort of amyloid-PET negative healthy participants (n = 97), and compared with the presence of PET demonstrated AD pathology. CSF Aβ(1-42) was the strongest individual biomarker, detecting cognitively impaired PET positive mild cognitive impairment (MCI)/AD with 85% sensitivity and 91% specificity. The ratio of P-tau181P or T-tau to Aβ(1-42) provided greater accuracy, predicting MCI/AD with Aβ pathology with ≥92% sensitivity and specificity. Cross-validated accuracy, using all three biomarkers or the ratio of P-tau or T-tau to Aβ(1-42) to predict MCI/AD, reached ≥92% sensitivity and specificity. CSF Aβ(1-42) levels and analyte combination ratios demonstrated very high correlation with PET Aβ imaging. Our study offers additional support for CSF biomarkers in the early and accurate detection of AD pathology, including enrichment of patient cohorts for treatment trials even at the pre-symptomatic stage.

  3. [Biomarkers of Alzheimer disease].

    PubMed

    Rachel, Wojciech; Grela, Agatha; Zyss, Tomasz; Zieba, Andrzej; Piekoszewski, Wojciech

    2014-01-01

    Cognitive impairment is one of the most abundant age-related psychiatric disorders. The outcome of cognitive impairment in Alzheimer's disease has both individual (the patients and their families) and socio-economic effects. The prevalence of Alzheimer's disease doubles after the age of 65 years, every 4.5 years. An etiologically heterogenic group of disorders related to aging as well as genetic and environmental interactions probably underlie the impairment in Alzheimer's disease. Those factors cause the degeneration of brain tissue which leads to significant cognitive dysfunction. There are two main hypotheses that are linked to the process of neurodegeneration: (i) amyloid cascade and (ii) the role of secretases and dysfunction of mitochondria. From the therapeutic standpoint it is crucial to get an early diagnosis and start with an adequate treatment. The undeniable progress in the field of biomarker research should lead to a better understanding of the early stages of the disorder. So far, the best recognised and described biomarkers of Alzheimer's disease, which can be detected in both cerebrospinal fluid and blood, are: beta-amyloid, tau-protein and phosphorylated tau-protein (phospho-tau). The article discusses the usefulness of the known biomarkers of Alzheimer's disease in early diagnosis.

  4. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital

    PubMed Central

    Antoine, Daniel J; Dear, James W; Lewis, Philip Starkey; Platt, Vivien; Coyle, Judy; Masson, Moyra; Thanacoody, Ruben H; Gray, Alasdair J; Webb, David J; Moggs, Jonathan G; Bateman, D Nicholas; Goldring, Christopher E; Park, B Kevin

    2013-01-01

    Acetaminophen overdose is a common reason for hospital admission and the most frequent cause of hepatotoxicity in the Western world. Early identification would facilitate patient-individualized treatment strategies. We investigated the potential of a panel of novel biomarkers (with enhanced liver expression or linked to the mechanisms of toxicity) to identify patients with acetaminophen-induced acute liver injury (ALI) at first presentation to the hospital when currently used markers are within the normal range. In the first hospital presentation plasma sample from patients (n = 129), we measured microRNA-122 (miR-122; high liver specificity), high mobility group box-1 (HMGB1; marker of necrosis), full-length and caspase-cleaved keratin-18 (K18; markers of necrosis and apoptosis), and glutamate dehydrogenase (GLDH; marker of mitochondrial dysfunction). Receiver operator characteristic curve analysis and positive/negative predictive values were used to compare sensitivity to report liver injury versus alanine transaminase (ALT) and International Normalized Ratio (INR). In all patients, biomarkers at first presentation significantly correlated with peak ALT or INR. In patients presenting with normal ALT or INR, miR-122, HMGB1, and necrosis K18 identified the development of liver injury (n = 15) or not (n = 84) with a high degree of accuracy and significantly outperformed ALT, INR, and plasma acetaminophen concentration for the prediction of subsequent ALI (n = 11) compared with no ALI (n = 52) in patients presenting within 8 hours of overdose. Conclusion: Elevations in plasma miR-122, HMGB1, and necrosis K18 identified subsequent ALI development in patients on admission to the hospital, soon after acetaminophen overdose, and in patients with ALTs in the normal range. The application of such a biomarker panel could improve the speed of clinical decision-making, both in the treatment of ALI and the design/execution of patient-individualized treatment strategies. PMID

  5. Biomarkers predicting sepsis in polytrauma patients: Current evidence.

    PubMed

    Ciriello, Vincenzo; Gudipati, Suribabu; Stavrou, Petros Z; Kanakaris, Nikolaos K; Bellamy, Mark C; Giannoudis, Peter V

    2013-12-01

    Major trauma still represents one of the leading causes of death in the first four decades of life. Septic complications represent the predominant causes of late death (45% of overall mortality) in polytrauma patients. The ability of clinicians to early differentiate between systemic inflammatory response syndrome (SIRS) and sepsis is demonstrated to improve clinical outcome and mortality. The identification of an "ideal" biomarker able to early recognize incoming septic complications in trauma patients is still a challenge for researchers. To evaluate the existing evidence regarding the role of biomarkers to predict or facilitate early diagnosis of sepsis in trauma patients, trying to compile some recommendations for the clinical setting. An Internet-based search of the MEDLINE, EMBASE and Cochrane Library databases was performed using the search terms: "Biomarkers", "Sepsis" and "Trauma" in various combinations. The methodological quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies Checklist (QUADAS). After data extraction, the level of evidence available for each bio-marker was rated and presented using the "best-evidence synthesis" method, in line with the US Agency for Healthcare Research and Quality. Thirty studies were eligible for the final analysis: 13 case-control studies and 17 cohort studies. The "strong evidence" available demonstrated the potential use of procalcitonin as an early indicator of post-traumatic septic complications and reported the inability of c-reactive protein (CRP) to specifically identify infective complications. Moderate, conflicting and limited evidence are available for the other 31 biomarkers. Several biomarkers have been evaluated for predicting or making early diagnosis of sepsis in trauma patients. Current evidence does not support the use of a single biomarker in diagnosing sepsis. However, procalcitonin trend was found to be useful in early identification of post

  6. Positioning in Relationships between Parents and Early Years Practitioners

    ERIC Educational Resources Information Center

    Sims-Schouten, Wendy

    2016-01-01

    Early years care and education have been high on British political agendas. This includes partnership working between early years practitioners and parents. Yet, more research is needed to examine how childcare staff engage with parents and vice versa. This study addresses the role of position and positioning in parent-practitioner relationships,…

  7. Biomarkers in cancer screening: a public health perspective.

    PubMed

    Srivastava, Sudhir; Gopal-Srivastava, Rashmi

    2002-08-01

    The last three decades have witnessed a rapid advancement and diffusion of technology in health services. Technological innovations have given health service providers the means to diagnose and treat an increasing number of illnesses, including cancer. In this effort, research on biomarkers for cancer detection and risk assessment has taken a center stage in our effort to reduce cancer deaths. For the first time, scientists have the technologies to decipher and understand these biomarkers and to apply them to earlier cancer detection. By identifying people at high risk of developing cancer, it would be possible to develop intervention efforts on prevention rather than treatment. Once fully developed and validated, then the regular clinical use of biomarkers in early detection and risk assessment will meet nationally recognized health care needs: detection of cancer at its earliest stage. The dramatic rise in health care costs in the past three decades is partly related to the proliferation of new technologies. More recent analysis indicates that technological change, such as new procedures, products and capabilities, is the primary explanation of the historical increase in expenditure. Biomarkers are the new entrants in this competing environment. Biomarkers are considered as a competing, halfway or add-on technology. Technology such as laboratory tests of biomarkers will cost less compared with computed tomography (CT) scans and other radiographs. However, biomarkers for earlier detection and risk assessment have not achieved the level of confidence required for clinical applications. This paper discusses some issues related to biomarker development, validation and quality assurance. Some data on the trends of diagnostic technologies, proteomics and genomics are presented and discussed in terms of the market share. Eventually, the use of biomarkers in health care could reduce cost by providing noninvasive, sensitive and reliable assays at a fraction of the cost of

  8. Genomic and Proteomic Biomarkers for Cancer: A Multitude of Opportunities

    PubMed Central

    Tainsky, Michael A.

    2009-01-01

    Biomarkers are molecular indicators of a biological status, and as biochemical species can be assayed to evaluate the presence of cancer and therapeutic interventions. Through a variety of mechanisms cancer cells provide the biomarker material for their own detection. Biomarkers may be detectable in the blood, other body fluids, or tissues. The expectation is that the level of an informative biomarker is related to the specific type of disease present in the body. Biomarkers have potential both as diagnostic indicators and monitors of the effectiveness of clinical interventions. Biomarkers are also able to stratify cancer patients to the most appropriate treatment. Effective biomarkers for the early detection of cancer should provide a patient with a better outcome which in turn will translate into more efficient delivery of healthcare. Technologies for the early detection of cancer have resulted in reductions in disease-associated mortalities from cancers that are otherwise deadly if allowed to progress. Such screening technologies have proven that early detection will decrease the morbidity and mortality from cancer. An emerging theme in biomarker research is the expectation that panels of biomarker analytes rather than single markers will be needed to have sufficient sensitivity and specificity for the presymptomatic detection of cancer. Biomarkers may provide prognostic information of disease enabling interventions using targeted therapeutic agents as well as course-corrections in cancer treatment. Novel genomic, proteomic and metabolomic technologies are being used to discover and validate tumor biomarkers individually and in panels. PMID:19406210

  9. Reduction in the urinary aflatoxin M1 biomarker as an early indicator of the efficacy of dietary interventions to reduce exposure to aflatoxins.

    PubMed

    Mitchell, Nicole J; Kumi, Justice; Johnson, Natalie M; Dotse, Eunice; Marroquin-Cardona, Alicia; Wang, Jia-Sheng; Jolly, Pauline E; Ankrah, Nii-Ayi; Phillips, Timothy D

    2013-08-01

    Aflatoxin B1 is a persistent public health issue in Ghana. Assessment of AFB1 intervention efficacy is currently dependent on long-term biomarkers. This study was designed to determine whether daily AFM1 biomarker levels could be utilized as an early detection method for intervention efficacy. Participants were treated with a refined calcium montmorillonite clay (UPSN) or a placebo (calcium carbonate) in a crossover study. Urine samples were assessed for AFM1 levels daily. UPSN treatment reduced AFM1 biomarkers by 55% compared to the placebo. This is the first study to show that daily urinary AFM1 levels can be used as a biomarker of internal aflatoxin B1 exposure in short-term intervention trials to determine efficacy.

  10. Early biomarkers of doxorubicin-induced heart injury in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Varsha G., E-mail: varsha.desai@fda.hhs.gov; Kwekel, Joshua C.; Vijay, Vikrant

    Cardiac troponins, which are used as myocardial injury markers, are released in plasma only after tissue damage has occurred. Therefore, there is a need for identification of biomarkers of earlier events in cardiac injury to limit the extent of damage. To accomplish this, expression profiling of 1179 unique microRNAs (miRNAs) was performed in a chronic cardiotoxicity mouse model developed in our laboratory. Male B6C3F{sub 1} mice were injected intravenously with 3 mg/kg doxorubicin (DOX; an anti-cancer drug), or saline once a week for 2, 3, 4, 6, and 8 weeks, resulting in cumulative DOX doses of 6, 9, 12, 18,more » and 24 mg/kg, respectively. Mice were euthanized a week after the last dose. Cardiac injury was evidenced in mice exposed to 18 mg/kg and higher cumulative DOX dose whereas examination of hearts by light microscopy revealed cardiac lesions at 24 mg/kg DOX. Also, 24 miRNAs were differentially expressed in mouse hearts, with the expression of 1, 1, 2, 8, and 21 miRNAs altered at 6, 9, 12, 18, and 24 mg/kg DOX, respectively. A pro-apoptotic miR-34a was the only miRNA that was up-regulated at all cumulative DOX doses and showed a significant dose-related response. Up-regulation of miR-34a at 6 mg/kg DOX may suggest apoptosis as an early molecular change in the hearts of DOX-treated mice. At 12 mg/kg DOX, up-regulation of miR-34a was associated with down-regulation of hypertrophy-related miR-150; changes observed before cardiac injury. These findings may lead to the development of biomarkers of earlier events in DOX-induced cardiotoxicity that occur before the release of cardiac troponins. - Highlights: • Upregulation of miR-34a before doxorubicin-induced cardiac tissue injury • Apoptosis might be an early event in mouse heart during doxorubicin treatment. • Expression of miR-150 declined before doxorubicin-induced cardiac tissue injury.« less

  11. Biomarkers in the Diagnosis and Prognosis of Alzheimer's Disease.

    PubMed

    Schaffer, Cole; Sarad, Nakia; DeCrumpe, Ashton; Goswami, Disha; Herrmann, Sara; Morales, Jose; Patel, Parth; Osborne, Jim

    2015-10-01

    Alzheimer's disease (AD) is a neurodegenerative disease that inhibits cognitive functions and has no cure. This report reviews the current diagnostic standards for AD with an emphasis on early diagnosis using the cerebrospinal fluid (CSF) biomarkers amyloid-beta, t-tau, and p-tau and fluorodeoxyglucose positron emission tomography imaging. Abnormal levels of these CSF biomarkers and decreased cerebral uptake of glucose have recently been used in the early diagnosis of AD in experimental studies. These promising biomarkers can be measured using immunoassays performed in singleplex or multiplex formats. Although presently, there are no Food and Drug Administration-approved in vitro diagnostics (IVDs) for early detection of AD, a multiplex immunoassay measuring a panel of promising AD biomarkers in CSF may be a likely IVD candidate for the clinical AD diagnostic market. Specifically, the INNO-BIA AlzBio3 immunoassay kit, performed using bead arrays on the xMAP Luminex analyzer, allows simultaneous quantification of amyloid-beta, t-tau, and p-tau biomarkers. AD biomarkers can also be screened using enzyme-linked immunosorbent assays that are offered as laboratory-developed tests. © 2014 Society for Laboratory Automation and Screening.

  12. Five common tumor biomarkers and CEA for diagnosing early gastric cancer: A protocol for a network meta-analysis of diagnostic test accuracy.

    PubMed

    Shen, Minghui; Wang, Hui; Wei, Kongyuan; Zhang, Jianling; You, Chongge

    2018-05-01

    Although surgical resection is the recommended treatment for the patients with gastric cancer, lots of patients show advanced or metastatic gastric cancer at the time of diagnosis. Detection of gastric cancer at early stages is a huge challenge because of lack of appropriate detection tests. Unfortunately, existing clinical guidelines focusing on early diagnosis of gastric cancer do not provide consistent and prudent evidence. Serum carcinoembryonic antigen was considered as a complementary test, although it is not good enough to diagnose early gastric cancer. There are no other tumor markers recommended for diagnosing early gastric cancer. This study aims to evaluate and compare the diagnostic accuracy of 5 common tumor biomarkers (CA19-9, CA125, PG, IncRNA, and DNA methylation) and CEA and their combinations for diagnosing gastric cancer through network meta-analysis method, and to rank these tests using a superiority index. PubMed, EMBASE.com, and the Cochrane Central Register of Controlled Trials (CENTRAL) will be searched from their inception to March 2018. We will include diagnostic tests which assessed the accuracy of the above-mentioned tumor biomarkers and CEA for diagnosing gastric cancer. The risk of bias for each study will be independently assessed as low, moderate, or high using criteria adapted from Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Network meta-analysis will be performed using STATA 12.0 and R 3.4.1 software. The competing diagnostic tests will be ranked by a superiority index. This study is ongoing and will be submitted to a peer-reviewed journal for publication. This study will provide systematically suggestions to select different tumor biomarkers for detecting the early gastric cancer.

  13. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock

    PubMed Central

    2010-01-01

    Background Lactate clearance, a surrogate for the magnitude and duration of global tissue hypoxia, is used diagnostically, therapeutically and prognostically. This study examined the association of early lactate clearance with selected inflammatory, coagulation, apoptosis response biomarkers and organ dysfunction scores in severe sepsis and septic shock. Methods Measurements of serum arterial lactate, biomarkers (interleukin-1 receptor antagonist, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-alpha, intercellular adhesion molecule-1, high mobility group box-1, D-Dimer and caspase-3), and organ dysfunction scores (Acute Physiology and Chronic Health Evaluation II, Simplified Acute Physiology Score II, Multiple Organ Dysfunction Score, and Sequential Organ Failure Assessment) were obtained in conjunction with a prospective, randomized study examining early goal-directed therapy in severe sepsis and septic shock patients presenting to the emergency department (ED). Lactate clearance was defined as the percent change in lactate levels after six hours from a baseline measurement in the ED. Results Two-hundred and twenty patients, age 65.0 +/- 17.1 years, were examined, with an overall lactate clearance of 35.5 +/- 43.1% and in-hospital mortality rate of 35.0%. Patients were divided into four quartiles of lactate clearance, -24.3 +/- 42.3, 30.1 +/- 7.5, 53.4 +/- 6.6, and 75.1 +/- 7.1%, respectively (p < 0.01). The mean levels of all biomarkers and organ dysfunction scores over 72 hours were significantly lower with higher lactate clearance quartiles (p < 0.01). There was a significant decreased in-hospital, 28-day, and 60-day mortality in the higher lactate clearance quartiles (p < 0.01). Conclusions Early lactate clearance as a surrogate for the resolution of global tissue hypoxia is significantly associated with decreased levels of biomarkers, improvement in organ dysfunction and outcome in severe sepsis and septic shock. PMID:20181046

  14. Creating a Biomarker Panel for Early Detection of Chemotherapy Related Cardiac Dysfunction in Breast Cancer Patients.

    PubMed

    Srikanthan, Krithika; Klug, Rebecca; Tirona, Maria; Thompson, Ellen; Visweshwar, Haresh; Puri, Nitin; Shapiro, Joseph; Sodhi, Komal

    2017-03-01

    Cardiotoxicity is an important issue for breast cancer patients receiving anthracycline-trastuzumab therapy in the adjuvant setting. Studies show that 3-36% of patients receiving anthracyclines and/or trastuzumab experience chemotherapy related cardiac dysfunction (CRCD) and approximately 17% of patients must stop chemotherapy due to the consequences of CRCD. There is currently no standardized, clinically verified way to detect CRCD early, but common practices include serial echocardiography and troponin measurements, which can be timely, costly, and not always available in areas where health care resources are scarce. Furthermore, detection of CRCD, before there is any echocardiographic evidence of dysfunction or clinical symptoms present, would allow maximal benefit of chemotherapy and minimize cardiac complications. Creating a panel of serum biomarkers would allow for more specificity and sensitivity in the early detection of CRCD, which would be easy to implement and cost effective in places with limited health care. Based on a review of the literature, we propose creating a biomarker panel consisting of topoisomerase 2β, serum troponin T/I, myeloperoxidase, NT-proBNP, miR-208b, miR-34a, and miR-150 in breast cancer patients receiving anthracyclines and/or trastuzumab to detect CRCD before any signs of overt cardiotoxicity are apparent.

  15. Single Domain Antibodies as New Biomarker Detectors

    PubMed Central

    Fischer, Katja; Leow, Chiuan Yee; Chuah, Candy; McCarthy, James

    2017-01-01

    Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described. PMID:29039819

  16. Early Detection of Pancreatic Cancer: The Role of Industry in the Development of Biomarkers.

    PubMed

    Kenner, Barbara J; Go, Vay Liang W; Chari, Suresh T; Goldberg, Ann E; Rothschild, Laura J

    A diagnosis of pancreatic cancer is devastating owing to its poor prognosis, with a 5-year survival rate of only 9%. Currently, most individuals are diagnosed at a late stage when treatment options are limited. Early detection of pancreatic cancer provides the greatest hope for making substantial improvements in survival. The Kenner Family Research Fund in partnership with the American Pancreatic Association has sponsored a series of fora to stimulate discussion and collaboration on early detection of pancreatic cancer. At the first forum in 2014, "Early Detection of Sporadic Pancreatic Cancer Summit Conference," a strategic plan was set forth by an international group of interdisciplinary scientific representatives and subsequently The Strategic Map for Innovation was generated. The current conference report is the third forum in the series, "Early Detection of Pancreatic Cancer: The Role of Industry in the Development of Biomarkers," which was held in Boston, Massachusetts, on October 27, 2016. This report provides an overview of examples of innovative initiatives by industry and confirms the critical need for collaboration among industry, government, research institutions, and advocacy groups in order to make pancreatic cancer more easily detectable in its earlier stages, when it is more treatable.

  17. Mated Progeny Production Is a Biomarker of Aging in Caenorhabditis elegans

    PubMed Central

    Pickett, Christopher L.; Dietrich, Nicholas; Chen, Junfang; Xiong, Chengjie; Kornfeld, Kerry

    2013-01-01

    The relationships between reproduction and aging are important for understanding the mechanisms of aging and evaluating evolutionary theories of aging. To investigate the effects of progeny production on reproductive and somatic aging, we conducted longitudinal studies of Caenorhabditis elegans hermaphrodites. For mated wild-type animals that were not sperm limited and survived past the end of the reproductive period, high levels of cross-progeny production were positively correlated with delayed reproductive and somatic aging. In this group of animals, individuals that generated more cross progeny also reproduced and lived longer than individuals that generated fewer cross progeny. These results indicate that progeny production does not accelerate reproductive or somatic aging. This longitudinal study demonstrated that cumulative cross progeny production through day four is an early-stage biomarker that is a positive predictor of longevity. Furthermore, in mated animals, high levels of early cross progeny production were positively correlated with high levels of late cross progeny production, indicating that early progeny production does not accelerate reproductive aging. The relationships between progeny production and aging were further evaluated by comparing self-fertile hermaphrodites that generated relatively few self progeny with mated hermaphrodites that generated many cross progeny. The timing of age-related somatic degeneration was similar in these groups, suggesting progeny production does not accelerate somatic aging. These studies rigorously define relationships between progeny production, reproductive aging, and somatic aging and identify new biomarkers of C. elegans aging. These results indicate that some mechanisms or pathways control age-related degeneration of both reproductive and somatic tissues in C. elegans. PMID:24142929

  18. Urinary microRNAs as potential biomarkers of pesticide exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith,

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasonsmore » (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests

  19. A selection of reference genes and early-warning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species.

    PubMed

    Lacroix, C; Coquillé, V; Guyomarch, J; Auffret, M; Moraga, D

    2014-09-15

    mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids

    PubMed Central

    2014-01-01

    Background Computational methods for mining of biomedical literature can be useful in augmenting manual searches of the literature using keywords for disease-specific biomarker discovery from biofluids. In this work, we develop and apply a semi-automated literature mining method to mine abstracts obtained from PubMed to discover putative biomarkers of breast and lung cancers in specific biofluids. Methodology A positive set of abstracts was defined by the terms ‘breast cancer’ and ‘lung cancer’ in conjunction with 14 separate ‘biofluids’ (bile, blood, breastmilk, cerebrospinal fluid, mucus, plasma, saliva, semen, serum, synovial fluid, stool, sweat, tears, and urine), while a negative set of abstracts was defined by the terms ‘(biofluid) NOT breast cancer’ or ‘(biofluid) NOT lung cancer.’ More than 5.3 million total abstracts were obtained from PubMed and examined for biomarker-disease-biofluid associations (34,296 positive and 2,653,396 negative for breast cancer; 28,355 positive and 2,595,034 negative for lung cancer). Biological entities such as genes and proteins were tagged using ABNER, and processed using Python scripts to produce a list of putative biomarkers. Z-scores were calculated, ranked, and used to determine significance of putative biomarkers found. Manual verification of relevant abstracts was performed to assess our method’s performance. Results Biofluid-specific markers were identified from the literature, assigned relevance scores based on frequency of occurrence, and validated using known biomarker lists and/or databases for lung and breast cancer [NCBI’s On-line Mendelian Inheritance in Man (OMIM), Cancer Gene annotation server for cancer genomics (CAGE), NCBI’s Genes & Disease, NCI’s Early Detection Research Network (EDRN), and others]. The specificity of each marker for a given biofluid was calculated, and the performance of our semi-automated literature mining method assessed for breast and lung cancer

  1. Application of a High Throughput Method of Biomarker Discovery to Improvement of the EarlyCDT®-Lung Test

    PubMed Central

    Macdonald, Isabel K.; Murray, Andrea; Healey, Graham F.; Parsy-Kowalska, Celine B.; Allen, Jared; McElveen, Jane; Robertson, Chris; Sewell, Herbert F.; Chapman, Caroline J.; Robertson, John F. R.

    2012-01-01

    Background The National Lung Screening Trial showed that CT screening for lung cancer led to a 20% reduction in mortality. However, CT screening has a number of disadvantages including low specificity. A validated autoantibody assay is available commercially (EarlyCDT®-Lung) to aid in the early detection of lung cancer and risk stratification in patients with pulmonary nodules detected by CT. Recent advances in high throughput (HTP) cloning and expression methods have been developed into a discovery pipeline to identify biomarkers that detect autoantibodies. The aim of this study was to demonstrate the successful clinical application of this strategy to add to the EarlyCDT-Lung panel in order to improve its sensitivity and specificity (and hence positive predictive value, (PPV)). Methods and Findings Serum from two matched independent cohorts of lung cancer patients were used (n = 100 and n = 165). Sixty nine proteins were initially screened on an abridged HTP version of the autoantibody ELISA using protein prepared on small scale by a HTP expression and purification screen. Promising leads were produced in shake flask culture and tested on the full assay. These results were analyzed in combination with those from the EarlyCDT-Lung panel in order to provide a set of re-optimized cut-offs. Five proteins that still displayed cancer/normal differentiation were tested for reproducibility and validation on a second batch of protein and a separate patient cohort. Addition of these proteins resulted in an improvement in the sensitivity and specificity of the test from 38% and 86% to 49% and 93% respectively (PPV improvement from 1 in 16 to 1 in 7). Conclusion This is a practical example of the value of investing resources to develop a HTP technology. Such technology may lead to improvement in the clinical utility of the EarlyCDT­-Lung test, and so further aid the early detection of lung cancer. PMID:23272083

  2. APOE effect on Alzheimer's disease biomarkers in older adults with significant memory concern

    DOE PAGES

    Risacher, Shannon L.; Kim, Sungeun; Nho, Kwangsik; ...

    2015-05-07

    This study assessed apolipoprotein E (APOE) ε4 carrier status effects on Alzheimer's disease imaging and cerebrospinal fluid (CSF) biomarkers in cognitively normal older adults with significant memory concerns (SMC). Cognitively normal, SMC, and early mild cognitive impairment participants from Alzheimer's Disease Neuroimaging Initiative were divided by APOE ε4 carrier status. Diagnostic and APOE effects were evaluated with emphasis on SMC. Additional analyses in SMC evaluated the effect of the interaction between APOE and [ 18F]Florbetapir amyloid positivity on CSF biomarkers. SMC ε4+ showed greater amyloid deposition than SMC ε4-, but no hypometabolism or medial temporal lobe (MTL) atrophy. SMC ε4+more » showed lower amyloid beta 1-42 and higher tau/p-tau than ε4-, which was most abnormal in APOE ε4+ and cerebral amyloid positive SMC. Lastly, SMC APOE ε4+ show abnormal changes in amyloid and tau biomarkers, but no hypometabolism or MTL neurodegeneration, reflecting the at-risk nature of the SMC group and the importance of APOE in mediating this risk.« less

  3. The role of biomarkers in the management of epithelial ovarian cancer.

    PubMed

    Yang, Wei-Lei; Lu, Zhen; Bast, Robert C

    2017-06-01

    Despite advances in surgery and chemotherapy for ovarian cancer, 70% of women still succumb to the disease. Biomarkers have contributed to the management of ovarian cancer by monitoring response to treatment, detecting recurrence, distinguishing benign from malignant pelvic masses and attempting to detect disease at an earlier stage. Areas covered: This review focuses on recent advances in biomarkers and imaging for management of ovarian cancer with particular emphasis on early detection. Relevant literature has been reviewed and analyzed. Expert commentary: Rising or persistent CA125 blood levels provide a highly specific biomarker for epithelial ovarian cancer, but not an optimally sensitive biomarker. Addition of HE4, CA 72.4, anti-TP53 autoantibodies and other biomarkers can increase sensitivity for detecting early stage or recurrent disease. Detecting disease recurrence will become more important as more effective therapy is developed. Early detection will require the development not only of biomarker panels, but also of more sensitive and specific imaging strategies. Effective biomarker strategies are already available for distinguishing benign from malignant pelvic masses, but their use in identifying and referring patients with probable ovarian cancer to gynecologic oncologists for cytoreductive operations must be encouraged.

  4. H-FABP: A new biomarker to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury

    PubMed Central

    Lagerstedt, Linnéa; Egea-Guerrero, Juan José; Bustamante, Alejandro; Montaner, Joan; Rodríguez-Rodríguez, Ana; El Rahal, Amir; Turck, Natacha; Quintana, Manuel; García-Armengol, Roser; Prica, Carmen Melinda; Andereggen, Elisabeth; Rinaldi, Lara; Sarrafzadeh, Asita; Schaller, Karl; Sanchez, Jean-Charles

    2017-01-01

    The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%–8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient’s risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8–10.7) for S100B and 29% (95% CI 21.4–37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom. PMID:28419114

  5. H-FABP: A new biomarker to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury.

    PubMed

    Lagerstedt, Linnéa; Egea-Guerrero, Juan José; Bustamante, Alejandro; Montaner, Joan; Rodríguez-Rodríguez, Ana; El Rahal, Amir; Turck, Natacha; Quintana, Manuel; García-Armengol, Roser; Prica, Carmen Melinda; Andereggen, Elisabeth; Rinaldi, Lara; Sarrafzadeh, Asita; Schaller, Karl; Sanchez, Jean-Charles

    2017-01-01

    The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%-8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient's risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8-10.7) for S100B and 29% (95% CI 21.4-37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom.

  6. Prognostic biomarkers in osteoarthritis

    PubMed Central

    Attur, Mukundan; Krasnokutsky-Samuels, Svetlana; Samuels, Jonathan; Abramson, Steven B.

    2013-01-01

    Purpose of review Identification of patients at risk for incident disease or disease progression in osteoarthritis remains challenging, as radiography is an insensitive reflection of molecular changes that presage cartilage and bone abnormalities. Thus there is a widely appreciated need for biochemical and imaging biomarkers. We describe recent developments with such biomarkers to identify osteoarthritis patients who are at risk for disease progression. Recent findings The biochemical markers currently under evaluation include anabolic, catabolic, and inflammatory molecules representing diverse biological pathways. A few promising cartilage and bone degradation and synthesis biomarkers are in various stages of development, awaiting further validation in larger populations. A number of studies have shown elevated expression levels of inflammatory biomarkers, both locally (synovial fluid) and systemically (serum and plasma). These chemical biomarkers are under evaluation in combination with imaging biomarkers to predict early onset and the burden of disease. Summary Prognostic biomarkers may be used in clinical knee osteoarthritis to identify subgroups in whom the disease progresses at different rates. This could facilitate our understanding of the pathogenesis and allow us to differentiate phenotypes within a heterogeneous knee osteoarthritis population. Ultimately, such findings may help facilitate the development of disease-modifying osteoarthritis drugs (DMOADs). PMID:23169101

  7. Molecular biomarkers for grass pollen immunotherapy

    PubMed Central

    Popescu, Florin-Dan

    2014-01-01

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines. PMID:25237628

  8. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients.

    PubMed

    Wu, Lan; Sun, Yazhou; Wan, Jun; Luan, Ting; Cheng, Qing; Tan, Yong

    2017-07-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.

  9. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage.

    PubMed

    Rodrigo, Ramón; Libuy, Matías; Feliú, Felipe; Hasson, Daniel

    2013-01-01

    Cardiovascular diseases are a leading cause of mortality and morbidity worldwide, with hypertension being a major risk factor. Numerous studies support the contribution of reactive oxygen and nitrogen species in the pathogenesis of hypertension, as well as other pathologies associated with ischemia/reperfusion. However, the validation of oxidative stress-related biomarkers in these settings is still lacking and novel association of these biomarkers and other biomarkers such as endothelial progenitor cells, endothelial microparticles, and ischemia modified albumin, is just emerging. Oxidative stress has been suggested as a pathogenic factor and therapeutic target in early stages of essential hypertension. Systolic and diastolic blood pressure correlated positively with plasma F2-isoprostane levels and negatively with total antioxidant capacity of plasma in hypertensive and normotensive patients. Cardiac surgery with extracorporeal circulation causes an ischemia/reperfusion event associated with increased lipid peroxidation and protein carbonylation, two biomarkers associated with oxidative damage of cardiac tissue. An enhancement of the antioxidant defense system should contribute to ameliorating functional and structural abnormalities derived from this metabolic impairment. However, data have to be validated with the analysis of the appropriate oxidative stress and/or nitrosative stress biomarkers.

  10. Quantitative imaging biomarker ontology (QIBO) for knowledge representation of biomedical imaging biomarkers.

    PubMed

    Buckler, Andrew J; Liu, Tiffany Ting; Savig, Erica; Suzek, Baris E; Ouellette, M; Danagoulian, J; Wernsing, G; Rubin, Daniel L; Paik, David

    2013-08-01

    A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker-disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data.

  11. Negotiating "Otherness": A Male Early Childhood Educator's Gender Positioning.

    ERIC Educational Resources Information Center

    Sumsion, Jennifer

    2000-01-01

    Describes the gender positioning strategies adopted by a male Australian preschool teacher-director as he faces attitudes that early childhood education is "women's work." Discusses implications of a greater male presence in early childhood education. (JPB)

  12. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population

    PubMed Central

    Srikanthan, Krithika; Feyh, Andrew; Visweshwar, Haresh; Shapiro, Joseph I.; Sodhi, Komal

    2016-01-01

    Introduction: Metabolic syndrome represents a cluster of related metabolic abnormalities, including central obesity, hypertension, dyslipidemia, hyperglycemia, and insulin resistance, with central obesity and insulin resistance in particular recognized as causative factors. These metabolic derangements present significant risk factors for cardiovascular disease, which is commonly recognized as the primary clinical outcome, although other outcomes are possible. Metabolic syndrome is a progressive condition that encompasses a wide array of disorders with specific metabolic abnormalities presenting at different times. These abnormalities can be detected and monitored via serum biomarkers. This review will compile a list of promising biomarkers that are associated with metabolic syndrome and this panel can aid in early detection and management of metabolic syndrome in high risk populations, such as in West Virginia. Methods: A literature review was conducted using PubMed, Science Direct, and Google Scholar to search for markers related to metabolic syndrome. Biomarkers searched included adipokines (leptin, adiponectin), neuropeptides (ghrelin), pro-inflammatory cytokines (IL-6, TNF-α), anti-inflammatory cytokines (IL-10), markers of antioxidant status (OxLDL, PON-1, uric acid), and prothrombic factors (PAI-1). Results: According to the literature, the concentrations of pro-inflammatory cytokines (IL-6, TNF-α), markers of pro-oxidant status (OxLDL, uric acid), and prothrombic factors (PAI-1) were elevated in metabolic syndrome. Additionally, leptin concentrations were found to be elevated in metabolic syndrome as well, likely due to leptin resistance. In contrast, concentrations of anti-inflammatory cytokines (IL-10), ghrelin, adiponectin, and antioxidant factors (PON-1) were decreased in metabolic syndrome, and these decreases also correlated with specific disorders within the cluster. Conclusion: Based on the evidence presented within the literature, the

  13. Biomarkers in DILI: One More Step Forward

    PubMed Central

    Robles-Díaz, Mercedes; Medina-Caliz, Inmaculada; Stephens, Camilla; Andrade, Raúl J.; Lucena, M. Isabel

    2016-01-01

    Despite being relatively rare, drug-induced liver injury (DILI) is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings, and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis, and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in “omics” technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (e.g., metabolites, proteins, or DNA) simultaneously enables the identification of ‘toxicity signatures,’ which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review, we summarize recent advances in the area of DILI biomarker studies. PMID:27597831

  14. Novel urinary biomarkers and the early detection of acute kidney injury after open cardiac surgeries.

    PubMed

    Elmedany, Said M; Naga, Salah S; Elsharkawy, Rania; Mahrous, Rabab S; Elnaggar, Ahmed I

    2017-08-01

    Acute kidney injury (AKI) is a common complication after cardiac surgery, recently, several biomarkers have been used to facilitate early detection of AKI, including Neutrophil-gelatinase-associated-lipocalin (NGAL) and Kidney-injury-molecule-1 (KIM-1).This study was carried out to study the efficacy of urinary KIM-1 and NGAL separately and in combination in relation to early detection and assessment of severity of AKI after cardiac surgeries. This prospective study was carried out on 45 adult patients, of both sexes, Cleveland score(CCS) (0-5) and scheduled for elective coronary artery bypass graft (CABG) surgery in Alexandria Main University Hospital, after approval of the ethical committee and having an informed written consent from every patient. Patients were screened for renal function tests before surgery and every day for 3 day after surgery. Freshly urine samples were taken from all patients and centrifuged for microscopic examination of the sediment: preoperative, 2, 12, 24, and 48 hr after cardiopulmonary bypass (CPB) and for measurement of NGAL and KIM-1; after induction, 2, 6, 12, and 24 hr after CPB. The primary end point was the incidence of AKI defined by the AKIN criteria of serum creatinine. 11 patients developed AKI. Patients with AKI had a higher AKIN stages and CCS. CPB time and cross clamp time were significantly higher in the AKI group with a mean of (90.5±16.2) and (60.9±8.1) minutes respectively. Serum creatinine started to be significantly higher in AKI group from the second postoperative day with a mean value of 1.56±0.28 mg/dl compared to a mean value of 0.85±0.14 mg/dl in non-AKI group. Urine sediment score(USS) 1 and 2 were higher in the AKI group than in the non-AKI group 2 hrs after CPB and till the end of the 2nd day with area under the curve (AUC) average of (0.865). Urinary NGAL significantly rise in AKI patients 2 and 6 hr after CPB with corresponding AUC of (0.710 and 0.700) but uKIM-1 was higher in the AKI group 12 and 24

  15. The positive cognitive impact of aerobic fitness is associated with peripheral inflammatory and brain-derived neurotrophic biomarkers in young adults.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2017-10-01

    There is ample evidence for supporting the positive impact of aerobic fitness on cognitive function, but little is known about the physiological mechanisms. The objective of this study was to investigate whether the positive cognitive impact of aerobic fitness is associated with inflammatory and neurotrophic peripheral biomarkers in young adults aged 18 to 29years (n=87). For the objective assessment of aerobic fitness, we measured maximal oxygen uptake (VO 2 max) as a parametric measure of cardiorespiratory capacity. We demonstrated that young adults with the higher levels of VO 2 max performed better on computerized cognitive tasks assessing sustained attention and working memory. This positive VO 2 max-cognitive performance association existed independently of confounders (e.g., years of education, intelligence scores) but was significantly dependent on resting peripheral blood levels of inflammatory (C-reactive protein, CRP) and neurotrophic (brain-derived neurotrophic factor, BDNF) biomarkers. Statistical models showed that CRP was a mediator of the effect of VO 2 max on working memory. Further, BDNF was a moderator of the effect of VO 2 max on working memory. These mediating and moderating effects occurred in individuals with higher levels of aerobic fitness. The results suggest that higher aerobic fitness, as measured by VO 2 max, is associated with enhanced cognitive functioning and favorable resting peripheral levels of inflammatory and brain-derived neurotrophic biomarkers in young adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Prognostic relevance of an epigenetic biomarker panel in sentinel lymph nodes from colon cancer patients.

    PubMed

    Lind, Guro E; Guriby, Marianne; Ahlquist, Terje; Hussain, Israr; Jeanmougin, Marine; Søreide, Kjetil; Kørner, Hartwig; Lothe, Ragnhild A; Nordgård, Oddmund

    2017-01-01

    Patients with early colorectal cancer (stages I-II) generally have a good prognosis, but a subgroup of 15-20% experiences relapse and eventually die of disease. Occult metastases have been suggested as a marker for increased risk of recurrence in patients with node-negative disease. Using a previously identified, highly accurate epigenetic biomarker panel for early detection of colorectal tumors, we aimed at evaluating the prognostic value of occult metastases in sentinel lymph nodes of colon cancer patients. The biomarker panel was analyzed by quantitative methylation-specific PCR in primary tumors and 783 sentinel lymph nodes from 201 patients. The panel status in sentinel lymph nodes showed a strong association with lymph node stage ( P  = 8.2E-17). Compared with routine lymph node diagnostics, the biomarker panel had a sensitivity of 79% (31/39). Interestingly, among 162 patients with negative lymph nodes from routine diagnostics, 13 (8%) were positive for the biomarker panel. Colon cancer patients with high sentinel lymph node methylation had an inferior prognosis (5-year overall survival P  = 3.0E-4; time to recurrence P  = 3.1E-4), although not significant. The same trend was observed in multivariate analyses ( P  = 1.4E-1 and P  = 6.7E-2, respectively). Occult sentinel lymph node metastases were not detected in early stage (I-II) colon cancer patients who experienced relapse. Colon cancer patients with high sentinel lymph node methylation of the analyzed epigenetic biomarker panel had an inferior prognosis, although not significant in multivariate analyses. Occult metastases in TNM stage II patients that experienced relapse were not detected.

  17. Predicting early positive change in multisystemic therapy with youth exhibiting antisocial behaviors.

    PubMed

    Tiernan, Kristine; Foster, Sharon L; Cunningham, Phillippe B; Brennan, Patricia; Whitmore, Elizabeth

    2015-03-01

    This study examined individual and family characteristics that predicted early positive change in the context of Multisystemic Therapy (MST). Families (n = 185; 65% male; average youth age 15 years) receiving MST in community settings completed assessments at the outset of treatment and 6-12 weeks into treatment. Early positive changes in youth antisocial behavior were assessed using the caregiver report on the Child Behavior Checklist Externalizing Behaviors subscale and youth report on the Self-Report Delinquency Scale. Overall, families showed significant positive changes by 6-12 weeks into treatment; these early changes were maintained into midtreatment 6-12 weeks later. Families who exhibited clinically significant gains early in treatment were more likely to terminate treatment successfully compared with those who did not show these gains. Low youth internalizing behaviors and absence of youth drug use predicted early positive changes in MST. High levels of parental monitoring and low levels of affiliation with deviant peers (mechanisms known to be associated with MST success) were also associated with early positive change. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  18. Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay

    NASA Astrophysics Data System (ADS)

    Banaei, Nariman; Foley, Anne; Houghton, Jean Marie; Sun, Yubing; Kim, Byung

    2017-11-01

    Early diagnosis of pancreatic cancer (PC) is critical to reduce the mortality rate of this disease. Current biological analysis approaches cannot robustly detect several low abundance PC biomarkers in sera, limiting the clinical application of these biomarkers. Enzyme linked immunosorbent assay and radioimmunoassay are two common platforms for detection of biomarkers; however, they suffer from some limitation. This study demonstrates a novel system for multiplex detection of pancreatic biomarkers CA19-9, MMP7 and MUC4 in sera samples with high sensitivity using surface enhanced Raman spectroscopy. Measuring the levels of these biomarkers in PC patients, pancreatitis patients, and healthy individuals reveals the unique expression pattern of these markers in PC patients, suggesting the great potential of using this approach for early diagnostics of PCs.

  19. Biomarkers of cancer cachexia.

    PubMed

    Loumaye, Audrey; Thissen, Jean-Paul

    2017-12-01

    Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Discerning the clinical relevance of biomarkers in early stage breast cancer.

    PubMed

    Ballinger, Tarah J; Kassem, Nawal; Shen, Fei; Jiang, Guanglong; Smith, Mary Lou; Railey, Elda; Howell, John; White, Carol B; Schneider, Bryan P

    2017-07-01

    Prior data suggest that breast cancer patients accept significant toxicity for small benefit. It is unclear whether personalized estimations of risk or benefit likelihood that could be provided by biomarkers alter treatment decisions in the curative setting. A choice-based conjoint (CBC) survey was conducted in 417 HER2-negative breast cancer patients who received chemotherapy in the curative setting. The survey presented pairs of treatment choices derived from common taxane- and anthracycline-based regimens, varying in degree of benefit by risk of recurrence and in toxicity profile, including peripheral neuropathy (PN) and congestive heart failure (CHF). Hypothetical biomarkers shifting benefit and toxicity risk were modeled to determine whether this knowledge alters choice. Previously identified biomarkers were evaluated using this model. Based on CBC analysis, a non-anthracycline regimen was the most preferred. Patients with prior PN had a similar preference for a taxane regimen as those who were PN naïve, but more dramatically shifted preference away from taxanes when PN was described as severe/irreversible. When modeled after hypothetical biomarkers, as the likelihood of PN increased, the preference for taxane-containing regimens decreased; similarly, as the likelihood of CHF increased, the preference for anthracycline regimens decreased. When evaluating validated biomarkers for PN and CHF, this knowledge did alter regimen preference. Patients faced with multi-faceted decisions consider personal experience and perceived risk of recurrent disease. Biomarkers providing information on likelihood of toxicity risk do influence treatment choices, and patients may accept reduced benefit when faced with higher risk of toxicity in the curative setting.

  1. Biomarkers from distinct biological pathways improve early risk stratification in medical emergency patients: the multinational, prospective, observational TRIAGE study.

    PubMed

    Schuetz, Philipp; Hausfater, Pierre; Amin, Devendra; Amin, Adina; Haubitz, Sebastian; Faessler, Lukas; Kutz, Alexander; Conca, Antoinette; Reutlinger, Barbara; Canavaggio, Pauline; Sauvin, Gabrielle; Bernard, Maguy; Huber, Andreas; Mueller, Beat

    2015-10-29

    Early risk stratification in the emergency department (ED) is vital to reduce time to effective treatment in high-risk patients and to improve patient flow. Yet, there is a lack of investigations evaluating the incremental usefulness of multiple biomarkers measured upon admission from distinct biological pathways for predicting fatal outcome and high initial treatment urgency in unselected ED patients in a multicenter and multinational setting. We included consecutive, adult, medical patients seeking ED care into this observational, cohort study in Switzerland, France and the USA. We recorded initial clinical parameters and batch-measured prognostic biomarkers of inflammation (pro-adrenomedullin [ProADM]), stress (copeptin) and infection (procalcitonin). During a 30-day follow-up, 331 of 7132 (4.6 %) participants reached the primary endpoint of death within 30 days. In logistic regression models adjusted for conventional risk factors available at ED admission, all three biomarkers strongly predicted the risk of death (AUC 0.83, 0.78 and 0.75), ICU admission (AUC 0.67, 0.69 and 0.62) and high initial triage priority (0.67, 0.66 and 0.58). For the prediction of death, ProADM significantly improved regression models including (a) clinical information available at ED admission (AUC increase from 0.79 to 0.84), (b) full clinical information at ED discharge (AUC increase from 0.85 to 0.88), and (c) triage information (AUC increase from 0.67 to 0.83) (p <0.01 for each comparison). Similarly, ProADM also improved clinical models for prediction of ICU admission and high initial treatment urgency. Results were robust in regard to predefined patient subgroups by center, main diagnosis, presenting symptoms, age and gender. Combination of clinical information with results of blood biomarkers measured upon ED admission allows early and more adequate risk stratification in individual unselected medical ED patients. A randomized trial is needed to answer the question whether

  2. Identification of a sensitive urinary biomarker, selenium-binding protein 1, for early detection of acute kidney injury.

    PubMed

    Kim, Kyeong Seok; Yang, Hun Yong; Song, Hosup; Kang, Ye Rim; Kwon, JiHoon; An, JiHye; Son, Ji Yeon; Kwack, Seung Jun; Kim, Young-Mi; Bae, Ok-Nam; Ahn, Mee-Young; Lee, Jaewon; Yoon, Sungpil; Lee, Byung Mu; Kim, Hyung Sik

    2017-01-01

    Acute kidney injury (AKI) is associated with increased mortality rate in patients but clinically available biomarkers for disease detection are currently not available. Recently, a new biomarker, selenium-binding protein 1 (SBP1), was identified for detection of nephrotoxicity using proteomic analysis. The aim of this study was to assess the sensitivity of urinary SBP1 levels as an early detection of AKI using animal models such as cisplatin or ischemia/reperfusion (I/R). Sprague-Dawley rats were injected with cisplatin (6 mg/kg, once i.p.) and sacrificed at 1, 3, or 5 days after treatment. Ischemia was achieved by bilaterally occluding both kidneys with a microvascular clamp for 45 min and verified visually by a change in tissue color. After post-reperfusion, urine samples were collected at 9, 24, and 48 hr intervals. Urinary excretion of protein-based biomarkers was measured by Western blot analysis. In cisplatin-treated rats, mild histopathologic alterations were noted at day 1 which became severe at day 3. Blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly increased at day 3. Levels of urinary excretion of SBP1, neutrophil gelatinase-associated lipocalin (NGAL), and a tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly elevated at day 3 and 5 following drug treatment. In the vehicle-treated I/R group, serum levels of BUN and SCr and AST activity were significantly increased compared to sham. Urinary excretion of SBP1 and NGAL rose markedly following I/R. The urinary levels of SBP1, NGAL, TIMP-1, and KIM-1 proteins excreted by AKI patients and normal subjects were compared. Among these proteins, a marked rise in SBP1 was observed in urine of patients with AKI compared to normal subjects. Based upon receiver-operator curves (ROC), SBP1 displayed a higher area under the curve (AUC) scores than levels of SCr, BUN, total protein, and glucose. In particular, SBP1 protein was readily detected in small amounts of urine without

  3. Neuroimaging and Other Biomarkers for Alzheimer's Disease: The Changing Landscape of Early Detection

    PubMed Central

    Risacher, Shannon L.; Saykin, Andrew J.

    2014-01-01

    The goal of this review is to provide an overview of biomarkers for Alzheimer's disease (AD), with emphasis on neuroimaging and cerebrospinal fluid (CSF) biomarkers. We first review biomarker changes in patients with late-onset AD, including findings from studies using structural and functional magnetic resonance imaging (MRI), advanced MRI techniques (diffusion tensor imaging, magnetic resonance spectroscopy, perfusion), positron emission tomography with fluorodeoxyglucose, amyloid tracers, and other neurochemical tracers, and CSF protein levels. Next, we evaluate findings from these biomarkers in preclinical and prodromal stages of AD including mild cognitive impairment (MCI) and pre-MCI conditions conferring elevated risk. We then discuss related findings in patients with dominantly inherited AD. We conclude with a discussion of the current theoretical framework for the role of biomarkers in AD and emergent directions for AD biomarker research. PMID:23297785

  4. Comparison of Plasma and Urine Biomarker Performance in Acute Kidney Injury

    PubMed Central

    Schley, Gunnar; Köberle, Carmen; Manuilova, Ekaterina; Rutz, Sandra; Forster, Christian; Weyand, Michael; Formentini, Ivan; Kientsch-Engel, Rosemarie; Eckardt, Kai-Uwe; Willam, Carsten

    2015-01-01

    Background New renal biomarkers measured in urine promise to increase specificity for risk stratification and early diagnosis of acute kidney injury (AKI) but concomitantly may be altered by urine concentration effects and chronic renal insufficiency. This study therefore directly compared the performance of AKI biomarkers in urine and plasma. Methods This single-center, prospective cohort study included 110 unselected adults undergoing cardiac surgery with cardiopulmonary bypass between 2009 and 2010. Plasma and/or urine concentrations of creatinine, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), liver fatty acid-binding protein (L-FABP), kidney injury molecule 1 (KIM1), and albumin as well as 15 additional biomarkers in plasma and urine were measured during the perioperative period. The primary outcome was AKI defined by AKIN serum creatinine criteria within 72 hours after surgery. Results Biomarkers in plasma showed markedly better discriminative performance for preoperative risk stratification and early postoperative (within 24h after surgery) detection of AKI than urine biomarkers. Discriminative power of urine biomarkers improved when concentrations were normalized to urinary creatinine, but urine biomarkers had still lower AUC values than plasma biomarkers. Best diagnostic performance 4h after surgery had plasma NGAL (AUC 0.83), cystatin C (0.76), MIG (0.74), and L-FAPB (0.73). Combinations of multiple biomarkers did not improve their diagnostic power. Preoperative clinical scoring systems (EuroSCORE and Cleveland Clinic Foundation Score) predicted the risk for AKI (AUC 0.76 and 0.71) and were not inferior to biomarkers. Preexisting chronic kidney disease limited the diagnostic performance of both plasma and urine biomarkers. Conclusions In our cohort plasma biomarkers had higher discriminative power for risk stratification and early diagnosis of AKI than urine biomarkers. For preoperative risk stratification of AKI clinical models showed

  5. Validation of biomarkers of food intake-critical assessment of candidate biomarkers.

    PubMed

    Dragsted, L O; Gao, Q; Scalbert, A; Vergères, G; Kolehmainen, M; Manach, C; Brennan, L; Afman, L A; Wishart, D S; Andres Lacueva, C; Garcia-Aloy, M; Verhagen, H; Feskens, E J M; Praticò, G

    2018-01-01

    Biomarkers of food intake (BFIs) are a promising tool for limiting misclassification in nutrition research where more subjective dietary assessment instruments are used. They may also be used to assess compliance to dietary guidelines or to a dietary intervention. Biomarkers therefore hold promise for direct and objective measurement of food intake. However, the number of comprehensively validated biomarkers of food intake is limited to just a few. Many new candidate biomarkers emerge from metabolic profiling studies and from advances in food chemistry. Furthermore, candidate food intake biomarkers may also be identified based on extensive literature reviews such as described in the guidelines for Biomarker of Food Intake Reviews (BFIRev). To systematically and critically assess the validity of candidate biomarkers of food intake, it is necessary to outline and streamline an optimal and reproducible validation process. A consensus-based procedure was used to provide and evaluate a set of the most important criteria for systematic validation of BFIs. As a result, a validation procedure was developed including eight criteria, plausibility, dose-response, time-response, robustness, reliability, stability, analytical performance, and inter-laboratory reproducibility. The validation has a dual purpose: (1) to estimate the current level of validation of candidate biomarkers of food intake based on an objective and systematic approach and (2) to pinpoint which additional studies are needed to provide full validation of each candidate biomarker of food intake. This position paper on biomarker of food intake validation outlines the second step of the BFIRev procedure but may also be used as such for validation of new candidate biomarkers identified, e.g., in food metabolomic studies.

  6. Composite biomarkers defined by multiparametric immunofluorescence analysis identify ALK-positive adenocarcinoma as a potential target for immunotherapy

    PubMed Central

    Roussel, Hélène; De Guillebon, Eléonore; Biard, Lucie; Mandavit, Marion; Gibault, Laure; Fabre, Elisabeth; Antoine, Martine; Hofman, Paul; Beau-Faller, Michèle; Blons, Hélène; Danel, Claire; Barthes, Françoise Le Pimpec; Gey, Alain; Granier, Clémence; Wislez, Marie; Laurent-Puig, Pierre; Oudard, Stéphane; Bruneval, Patrick; Badoual, Cécile; Cadranel, Jacques; Tartour, Eric

    2017-01-01

    ABSTRACT Anaplastic lymphoma kinase (ALK) inhibitors have been successfully developed for non-small cell lung carcinoma (NSCLC) displaying chromosomal rearrangements of the ALK gene, but unfortunately resistance invariably occurs. Blockade of the PD-1-PD-L1/2 inhibitory pathway constitutes a breakthrough for the treatment of NSCLC. Some predictive biomarkers of clinical response to this therapy are starting to emerge, such as PD-L1 expression by tumor/stromal cells and infiltration by CD8+ T cells expressing PD-1. To more effectively integrate all of these potential biomarkers of clinical response to immunotherapy, we have developed a multiparametric immunofluorescence technique with automated immune cell counting to comprehensively analyze the tumor microenvironment of ALK-positive adenocarcinoma (ADC). When analyzed as either a continuous or a dichotomous variable, the mean number of tumor cells expressing PD-L1 (p = 0.012) and the percentage of tumor cells expressing PD-L1 were higher in ALK-positive ADC than in EGFR-mutated ADC or WT (non-EGFR-mutated and non-KRAS-mutated) NSCLC. A very strong correlation between PD-L1 expression on tumor cells and intratumoral infiltration by CD8+ T cells was observed, suggesting that an adaptive mechanism may partly regulate this expression. A higher frequency of tumors combining positive PD-L1 expression and infiltration by intratumoral CD8+ T cells or PD-1+CD8+ T cells was also observed in ALK-positive lung cancer patients compared with EGFR-mutated (p = 0.03) or WT patients (p = 0.012). These results strongly suggest that a subgroup of ALK-positive lung cancer patients may constitute good candidates for anti-PD-1/-PD-L1 therapies. PMID:28507793

  7. Beneficial effect of bilingualism on Alzheimer's disease CSF biomarkers and cognition.

    PubMed

    Estanga, Ainara; Ecay-Torres, Mirian; Ibañez, Almudena; Izagirre, Andrea; Villanua, Jorge; Garcia-Sebastian, Maite; Iglesias Gaspar, M Teresa; Otaegui-Arrazola, Ane; Iriondo, Ane; Clerigue, Monserrat; Martinez-Lage, Pablo

    2017-02-01

    Bilingualism as a component of cognitive reserve has been claimed to delay the onset of Alzheimer's disease (AD). However, its effect on cerebrospinal fluid (CSF) AD-biomarkers has not been investigated. We assessed cognitive performance and CSF AD-biomarkers, and potential moderation effect of bilingualism on the association between age, CSF AD-biomarkers, and cognition. Cognitively healthy middle-aged participants classified as monolinguals (n = 100, n CSF  = 59), early (n = 81, n CSF  = 55) and late bilinguals (n = 97, n CSF  = 52) were evaluated. Models adjusted for confounders showed that bilinguals performed better than monolinguals on digits backwards (early-bilinguals p = 0.003), Judgment of Line Orientation (JLO) (early-bilinguals p = 0.018; late-bilinguals p = 0.004), and Trail Making Test-B (late-bilinguals p = 0.047). Early bilingualism was associated with lower CSF total-tau (p = 0.019) and lower prevalence of preclinical AD (NIA-AA classification) (p = 0.02). Bilingualism showed a moderation effect on the relationship between age and CSF AD-biomarkers and the relationship between age and executive function. We conclude that bilingualism contributes to cognitive reserve enhancing executive and visual-spatial functions. For the first time, this study reveals that early bilingualism is associated with more favorable CSF AD-biomarker profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Foamy Monocytes Are Enriched in cis-7-Hexadecenoic Fatty Acid (16:1n-9), a Possible Biomarker for Early Detection of Cardiovascular Disease.

    PubMed

    Guijas, Carlos; Meana, Clara; Astudillo, Alma M; Balboa, María A; Balsinde, Jesús

    2016-06-23

    Human monocytes respond to arachidonic acid, a secretory product of endothelial cells, by activating the de novo pathway of fatty acid biosynthesis, resulting in the acquisition of a foamy phenotype due to accumulation of cytoplasmic lipid droplets. Recruitment of foamy monocytes to endothelium is a key step in the formation of atherosclerotic plaques. Here we describe that lipid droplets of foamy monocytes are enriched in a rather uncommon fatty acid, cis-7-hexadecenoic acid (16:1n-9), a positional isomer of palmitoleic acid. 16:1n-9 was found to possess an anti-inflammatory activity both in vitro and in vivo that is comparable with that of omega-3 fatty acids and clearly distinguishable from the effects of palmitoleic acid. Selective accumulation in neutral lipids of phagocytic cells of an uncommon fatty acid reveals an early phenotypic change that may provide a biomarker of proatherogenicity, and a potential target for intervention in the early stages of cardiovascular disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Subtypes of depressive symptoms and inflammatory biomarkers: An exploratory study on a sample of HIV-positive patients

    PubMed Central

    Pala, A. Norcini; Steca, P.; Bagrodia, R.; Helpman, L.; Colangeli, V.; Viale, P.; Wainberg, M.L.

    2017-01-01

    Depressive symptoms cause major impairment and may accelerate HIV progression despite the use of antiretroviral medication. The somatic symptoms criteria for HIV infection and depression partially overlap, which can make differential diagnosis challenging. Because of chronic inflammation caused by HIV infection, HIV-positive patients may develop somatic and affective-cognitive symptoms of depression. Inflammation-related depression is primarily characterized with severe somatic symptoms such as fatigue and sleep disturbance. This study sought to explore the patterns of somatic and cognitive-affective depressive symptoms that characterize HIV-positive patients. Our specific aims were (1) to identify subtypes of depressive symptoms in a sample of HIV-positive patients; and (2) to test the subtypes’ difference on inflammatory and HIV disease progression biomarkers. HIV-positive men and women (N = 102) with and without depressive symptoms were randomly selected from an Italian HIV clinic. Depressive symptoms (PHQ-9), viral load (VL), CD4+, Il-6, TNF-α, and monocytes were assessed. The three subtypes formed using Latent Class Analysis (LCA) identified patients with (1) severe cognitive-affective and somatic depressive symptoms; (2) severe/moderate somatic symptoms; and (3) absent or low depressive symptoms. The subtype with severe/moderate somatic symptoms was characterized with elevated levels of Il-6 and monocytes. No difference on HIV progression biomarkers was found. The subtypes of depressive symptoms might help differentiating depressive symptoms from HIV- and inflammatory-related somatic symptoms. When present, cognitive-affective and/or somatic symptoms cause significant impairment to patients’ lives and thus warrant further assessment and treatment. PMID:26883521

  10. Subtypes of depressive symptoms and inflammatory biomarkers: An exploratory study on a sample of HIV-positive patients.

    PubMed

    Norcini Pala, A; Steca, P; Bagrodia, R; Helpman, L; Colangeli, V; Viale, P; Wainberg, M L

    2016-08-01

    Depressive symptoms cause major impairment and may accelerate HIV progression despite the use of antiretroviral medication. The somatic symptoms criteria for HIV infection and depression partially overlap, which can make differential diagnosis challenging. Because of chronic inflammation caused by HIV infection, HIV-positive patients may develop somatic and affective-cognitive symptoms of depression. Inflammation-related depression is primarily characterized with severe somatic symptoms such as fatigue and sleep disturbance. This study sought to explore the patterns of somatic and cognitive-affective depressive symptoms that characterize HIV-positive patients. Our specific aims were (1) to identify subtypes of depressive symptoms in a sample of HIV-positive patients; and (2) to test the subtypes' difference on inflammatory and HIV disease progression biomarkers. HIV-positive men and women (N=102) with and without depressive symptoms were randomly selected from an Italian HIV clinic. Depressive symptoms (PHQ-9), viral load (VL), CD4+, Il-6, TNF-α, and monocytes were assessed. The three subtypes formed using Latent Class Analysis (LCA) identified patients with (1) severe cognitive-affective and somatic depressive symptoms; (2) severe/moderate somatic symptoms; and (3) absent or low depressive symptoms. The subtype with severe/moderate somatic symptoms was characterized with elevated levels of Il-6 and monocytes. No difference on HIV progression biomarkers was found. The subtypes of depressive symptoms might help differentiating depressive symptoms from HIV- and inflammatory-related somatic symptoms. When present, cognitive-affective and/or somatic symptoms cause significant impairment to patients' lives and thus warrant further assessment and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma.

    PubMed

    Taoka, Masato; Morofuji, Noriaki; Yamauchi, Yoshio; Ojima, Hidenori; Kubota, Daisuke; Terukina, Goro; Nobe, Yuko; Nakayama, Hiroshi; Takahashi, Nobuhiro; Kosuge, Tomoo; Isobe, Toshiaki; Kondo, Tadashi

    2014-11-07

    This study used global protein expression profiling to search for biomarkers to predict early recurrent hepatocellular carcinoma (HCC). HCC tissues surgically resected from patients with or without recurrence within 2 years (early recurrent) after surgery were compared with adjacent nontumor tissue and with normal liver tissue. We used the PROTOMAP strategy for comparative profiling, which integrates denaturing polyacrylamide gel electrophoresis migratory rates and high-resolution, semiquantitative mass-spectrometry-based identification of in-gel-digested tryptic peptides. PROTOMAP allows examination of global changes in the size, topography, and abundance of proteins in complex tissue samples. This approach identified 8438 unique proteins from 45 708 nonredundant peptides and generated a proteome-wide map of changes in expression and proteolytic events potentially induced by intrinsic apoptotic/necrotic pathways. In the early recurrent HCC tissue, 87 proteins were differentially expressed (≥20-fold) relative to the other tissues, 46 of which were up-regulated or specifically proteolyzed and 41 of which were down-regulated. This data set consisted of proteins that fell into various functional categories, including signal transduction and cell organization and, notably, the major catalytic pathways responsible for liver function, such as the urea cycle and detoxification metabolism. We found that aberrant proteolysis appeared to occur frequently during recurrence of HCC in several key signal transducers, including STAT1 and δ-catenin. Further investigation of these proteins will facilitate the development of novel clinical applications.

  12. Sipa1l1 is an early biomarker of liver fibrosis in CCl4-treated rats

    PubMed Central

    Marfà, Santiago; Morales-Ruiz, Manuel; Oró, Denise; Ribera, Jordi; Fernández-Varo, Guillermo; Jiménez, Wladimiro

    2016-01-01

    ABSTRACT At present, several procedures are used for staging liver fibrosis. However, these methods may involve clinical complications and/or present diagnostic uncertainty mainly in the early stages of the disease. Thus, this study was designed to unveil new non-invasive biomarkers of liver fibrosis in an in vivo model of fibrosis/cirrhosis induction by CCl4 inhalation by using a label-free quantitative LC-MS/MS approach. We analyzed 94 serum samples from adult Wistar rats with different degrees of liver fibrosis and 36 control rats. Firstly, serum samples from 18 CCl4-treated rats were clustered into three different groups according to the severity of hepatic and the serum proteome was characterized by label-free LC-MS/MS. Furthermore, three different pooled serum samples obtained from 16 control Wistar rats were also analyzed. Based on the proteomic data obtained, we performed a multivariate analysis which displayed three main cell signaling pathways altered in fibrosis. In cirrhosis, more biological imbalances were detected as well as multi-organ alterations. In addition, hemopexin and signal-induced proliferation-associated 1 like 1 (SIPA1L1) were selected as potential serum markers of liver fibrogenesis among all the analyzed proteins. The results were validated by ELISA in an independent group of 76 fibrotic/cirrhotic rats and 20 controls which confirmed SIPA1L1 as a potential non-invasive biomarker of liver fibrosis. In particular, SIPA1L1 showed a clear diminution in serum samples from fibrotic/cirrhotic rats and a great accuracy at identifying early fibrotic stages. In conclusion, the proteomic analysis of serum samples from CCl4-treated rats has enabled the identification of SIPA1L1 as a non-invasive marker of early liver fibrosis. PMID:27230648

  13. Novel biomarkers of acute kidney injury: Evaluation and evidence in urologic surgery

    PubMed Central

    Schmid, Marianne; Dalela, Deepansh; Tahbaz, Rana; Langetepe, Jessica; Randazzo, Marco; Dahlem, Roland; Fisch, Margit; Trinh, Quoc-Dien; Chun, Felix K-H

    2015-01-01

    Patients undergoing urologic surgery are at risk of acute kidney injury (AKI) and consequently long-term deterioration in renal function. AKI is further associated with significantly higher odds of perioperative complications, prolonged hospital stay, higher mortality and costs. Therefore, better awareness and detection of AKI, as well as identification of AKI determinants in the urological surgery setting is warranted to pre-empt and mitigate further deterioration of renal function in patients at special risk. New consensus criteria provide precise definitions of diagnosis and description of the severity of AKI. However, they rely on serum creatinine (SCr), which is known to be an inaccurate marker of early changes in renal function. Therefore, several new urinary and serum biomarkers promise to address the gap associated with the use of SCr. Novel biomarkers may complement SCr measurement or most likely improve the diagnostic accuracy of AKI when used in combinations. However, novel biomarkers have to prove their clinical applicability, accuracy, and cost effectiveness prior to implementation into clinical practice. Most preferably, novel biomarkers should help to positively improve a patient’s long-term renal functional outcomes. The purpose of this review is to discuss currently available biomarkers and to review their clinical evidence within urologic surgery settings. PMID:25949930

  14. Biomarkers of nanomaterial exposure and effect: current status

    NASA Astrophysics Data System (ADS)

    Iavicoli, Ivo; Leso, Veruscka; Manno, Maurizio; Schulte, Paul A.

    2014-03-01

    Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from "omic" technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In

  15. Dopamine Transporter Neuroimaging as an Enrichment Biomarker in Early Parkinson's Disease Clinical Trials: A Disease Progression Modeling Analysis.

    PubMed

    Conrado, Daniela J; Nicholas, Timothy; Tsai, Kuenhi; Macha, Sreeraj; Sinha, Vikram; Stone, Julie; Corrigan, Brian; Bani, Massimo; Muglia, Pierandrea; Watson, Ian A; Kern, Volker D; Sheveleva, Elena; Marek, Kenneth; Stephenson, Diane T; Romero, Klaus

    2018-01-01

    Given the recognition that disease-modifying therapies should focus on earlier Parkinson's disease stages, trial enrollment based purely on clinical criteria poses significant challenges. The goal herein was to determine the utility of dopamine transporter neuroimaging as an enrichment biomarker in early motor Parkinson's disease clinical trials. Patient-level longitudinal data of 672 subjects with early-stage Parkinson's disease in the Parkinson's Progression Markers Initiative (PPMI) observational study and the Parkinson Research Examination of CEP-1347 Trial (PRECEPT) clinical trial were utilized in a linear mixed-effects model analysis. The rate of worsening in the motor scores between subjects with or without a scan without evidence of dopamine transporter deficit was different both statistically and clinically. The average difference in the change from baseline of motor scores at 24 months between biomarker statuses was -3.16 (90% confidence interval [CI] = -0.96 to -5.42) points. Dopamine transporter imaging could identify subjects with a steeper worsening of the motor scores, allowing trial enrichment and 24% reduction of sample size. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  16. Peripheral Synucleinopathy in Early Parkinson’s Disease: Submandibular Gland Needle Biopsy Findings

    PubMed Central

    Adler, Charles H.; Dugger, Brittany N.; Hentz, Joseph G.; Hinni, Michael L.; Lott, David G.; Driver-Dunckley, Erika; Mehta, Shyamal; Serrano, Geidy; Sue, Lucia I.; Duffy, Amy; Intorcia, Anthony; Filon, Jessica; Pullen, Joel; Walker, Douglas G.; Beach, Thomas G.

    2015-01-01

    Background Finding a peripheral tissue biopsy site to diagnose early Parkinson’s disease would be of value for clinical care, biomarker validation, and as research enrollment criteria. While autopsy and advanced Parkinson’s disease studies suggest submandibular gland is an important biopsy site, there are no studies in early Parkinson’s disease. Objectives Determine whether needle biopsy of the submandibular gland reveals Lewy type α-synucleinopathy in early Parkinson’s disease. Methods Twenty-five early Parkinson’s disease (duration < 5 years) and 10 controls underwent transcutaneous needle core biopsies of the submandibular gland. Tissue was stained for phosphorylated α-synuclein, reviewed blind to clinical diagnosis, and only nerve element staining was considered positive. Results Mean (Standard Deviation) age 69.5 (8.3) for Parkinson’s disease group, 64.8 (8.0) years for controls, and disease duration 2.6 (1.1) years. Six Parkinson’s disease and one control subject had inadequate glandular tissue. Positive staining was found in 14/19 (74%) Parkinson’s disease and 2/9 (22%) control subjects. Parkinson’s disease positive and negative cases did not differ clinically. Adverse events (mainly swelling and bruising) were common (77% of cases), but were minor and transient. Conclusions Submandibular gland needle biopsies identified phosphorylated α-synuclein staining in 74% of early Parkinson’s disease subjects. False positives may be true false positives or may represent prodromal Parkinson’s disease. If confirmed in larger studies with eventual autopsy confirmation, the potential value of submandibular gland biopsies for early Parkinson’s disease may be to aid in clinical trial inclusion/exclusion and eventually serve as a gold standard for biomarker studies short of autopsy confirmation. PMID:26799362

  17. Serum and Plasma Metabolomic Biomarkers for Lung Cancer.

    PubMed

    Kumar, Nishith; Shahjaman, Md; Mollah, Md Nurul Haque; Islam, S M Shahinul; Hoque, Md Aminul

    2017-01-01

    In drug invention and early disease prediction of lung cancer, metabolomic biomarker detection is very important. Mortality rate can be decreased, if cancer is predicted at the earlier stage. Recent diagnostic techniques for lung cancer are not prognosis diagnostic techniques. However, if we know the name of the metabolites, whose intensity levels are considerably changing between cancer subject and control subject, then it will be easy to early diagnosis the disease as well as to discover the drug. Therefore, in this paper we have identified the influential plasma and serum blood sample metabolites for lung cancer and also identified the biomarkers that will be helpful for early disease prediction as well as for drug invention. To identify the influential metabolites, we considered a parametric and a nonparametric test namely student׳s t-test as parametric and Kruskal-Wallis test as non-parametric test. We also categorized the up-regulated and down-regulated metabolites by the heatmap plot and identified the biomarkers by support vector machine (SVM) classifier and pathway analysis. From our analysis, we got 27 influential (p-value<0.05) metabolites from plasma sample and 13 influential (p-value<0.05) metabolites from serum sample. According to the importance plot through SVM classifier, pathway analysis and correlation network analysis, we declared 4 metabolites (taurine, aspertic acid, glutamine and pyruvic acid) as plasma biomarker and 3 metabolites (aspartic acid, taurine and inosine) as serum biomarker.

  18. Biomarkers of sepsis

    PubMed Central

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  19. Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study.

    PubMed

    Robinson, Michelle D; Mishra, Ina; Deodhar, Sneha; Patel, Vipulkumar; Gordon, Katrina V; Vintimilla, Raul; Brown, Kim; Johnson, Leigh; O'Bryant, Sid; Cistola, David P

    2017-12-19

    Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that characterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial characterization of an atypical new biomarker that detects these early conditions with just one measurement. Water T 2 , measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exquisitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic human subjects, the association of plasma and serum water T 2 values with over 130 blood biomarkers was analyzed using bivariate, multivariate and logistic regression. Plasma and serum water T 2 exhibited strong bivariate correlations with markers of insulin, lipids, inflammation, coagulation and electrolyte balance. After correcting for confounders, low water T 2 values were independently and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T 2 exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study population) were identified by low water T 2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T 2 values were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and

  20. The past and the future of Alzheimer's disease CSF biomarkers-a journey toward validated biochemical tests covering the whole spectrum of molecular events.

    PubMed

    Blennow, Kaj; Zetterberg, Henrik

    2015-01-01

    This paper gives a short review on cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD), from early developments to high-precision validated assays on fully automated lab analyzers. We also discuss developments on novel biomarkers, such as synaptic proteins and Aβ oligomers. Our vision for the future is that assaying a set of biomarkers in a single CSF tube can monitor the whole spectrum of AD molecular pathogenic events. CSF biomarkers will have a central position not only for clinical diagnosis, but also for the understanding of the sequence of molecular events in the pathogenic process underlying AD and as tools to monitor the effects of novel drug candidates targeting these different mechanisms.

  1. CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study

    PubMed Central

    Kang, Ju-Hee; Mollenhauer, Brit; Coffey, Christopher S.; Toledo, Jon B.; Weintraub, Daniel; Galasko, Douglas R.; Irwin, David J.; Van Deerlin, Vivianna; Chen-Plotkin, Alice S.; Caspell-Garcia, Chelsea; Waligórska, Teresa; Taylor, Peggy; Shah, Nirali; Pan, Sarah; Zero, Pawel; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Tanner, Caroline M.; Simuni, Tanya; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Trojanowski, John Q.; Shaw, Leslie M.

    2016-01-01

    The development of biomarkers to predict the progression of Parkinson’s disease (PD) from its earliest stage through its heterogeneous course is critical for research and therapeutic development. The Parkinson’s Progression Markers Initiative (PPMI) study is an ongoing international multicenter, prospective study to validate biomarkers in drug-naïve PD patients and matched healthy controls (HC). We quantified cerebrospinal fluid (CSF) alpha-synuclein (α-syn), amyloid-beta1–42 (Aβ1–42), total tau (t-tau), and tau phosphorylated at Thr181 (p-tau) in 660 PPMI subjects at baseline, and correlated these data with measures of the clinical features of these subjects. We found that CSF α-syn, t-tau and p-tau levels, but not Aβ1–42, were significantly lower in PD compared with HC, while the diagnostic value of the individual CSF biomarkers for PD diagnosis was limited due to large overlap. The level of α-syn, but not other biomarkers, was significantly lower in PD patients with non-tremor-dominant phenotype compared with tremor-dominant phenotype. In addition, in PD patients the lowest Aβ1–42, or highest t-tau/Aβ1–42 and t-tau/α-syn quintile in PD patients were associated with more severe non-motor dysfunction compared with the highest or lowest quintiles, respectively. In a multivariate regression model, lower α-syn was significantly associated with worse cognitive test performance. APOE ε4 genotype was associated with lower levels of Aβ1–42, but neither with PD diagnosis nor cognition. Our data suggest that the measurement of CSF biomarkers in early-stage PD patients may relate to disease heterogeneity seen in PD. Longitudinal observations in PPMI subjects are needed to define their prognostic performance. PMID:27021906

  2. Biomarkers of ovarian reserve as predictors of reproductive potential.

    PubMed

    Steiner, Anne Z

    2013-11-01

    The size of the oocyte pool, the ovarian reserve, can determine a woman's reproductive stage. Chronologic age, anti-Müllerian hormone (AMH) levels, early follicular phase follicle-stimulating hormone levels, and early follicular phase inhibin B levels are correlated with ovarian reserve. Therefore, these biomarkers of ovarian reserve should serve as predictors of reproductive potential. Clinical and epidemiologic studies suggest that historical and laboratory biomarkers of ovarian reserve are associated with natural and treatment-related fertility. However, controversy remains as to their ability to predict reproductive potential. For infertile women undergoing assisted reproductive technology treatment, these biomarkers tend to be highly specific but not sensitive for cycle failure (nonpregnancy). While these biomarkers are being used as "fertility tests" in the general population, their value as predictors of unassisted fertility is still uncertain. Among laboratory biomarkers, AMH appears to have the most promise; however, further studies are needed to refine cutoff values and to determine test characteristics in the prediction of natural fertility or infertility in the general population. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Noninvasive Recognition and Biomarkers of Early Allergic Asthma in Cats Using Multivariate Statistical Analysis of NMR Spectra of Exhaled Breath Condensate

    PubMed Central

    Fulcher, Yan G.; Fotso, Martial; Chang, Chee-Hoon; Rindt, Hans; Reinero, Carol R.

    2016-01-01

    Asthma is prevalent in children and cats, and needs means of noninvasive diagnosis. We sought to distinguish noninvasively the differences in 53 cats before and soon after induction of allergic asthma, using NMR spectra of exhaled breath condensate (EBC). Statistical pattern recognition was improved considerably by preprocessing the spectra with probabilistic quotient normalization and glog transformation. Classification of the 106 preprocessed spectra by principal component analysis and partial least squares with discriminant analysis (PLS-DA) appears to be impaired by variances unrelated to eosinophilic asthma. By filtering out confounding variances, orthogonal signal correction (OSC) PLS-DA greatly improved the separation of the healthy and early asthmatic states, attaining 94% specificity and 94% sensitivity in predictions. OSC enhancement of multi-level PLS-DA boosted the specificity of the prediction to 100%. OSC-PLS-DA of the normalized spectra suggest the most promising biomarkers of allergic asthma in cats to include increased acetone, metabolite(s) with overlapped NMR peaks near 5.8 ppm, and a hydroxyphenyl-containing metabolite, as well as decreased phthalate. Acetone is elevated in the EBC of 74% of the cats with early asthma. The noninvasive detection of early experimental asthma, biomarkers in EBC, and metabolic perturbation invite further investigation of the diagnostic potential in humans. PMID:27764146

  4. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    PubMed Central

    Olivas-Calderón, Edgar; Recio-Vega, Rogelio; Gandolfi, A. Jay; Lantz, R. Clark; González-Cortes, Tania; Alba, Cesar Gonzalez-De; Froines, John R.; Espinosa-Fematt, Jorge A.

    2016-01-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero is associated with an increase in respiratory symptoms and diseases in adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that exposure to arsenic during early childhood or in utero was associated with impairment in the lung function in children and suggested that this adverse effect could be due to a chronic inflammatory response to the metalloid. Therefore, a cross-sectional study was designed in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their As levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the Soluble Receptor for Advanced Glycation Endproducts (sRAGE) sputum level was significantly lower and Matrix Metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsenic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/Tissue Inhibitor of Metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. PMID:26048584

  5. Early changes in inflammatory and pro-thrombotic biomarkers in patients initiating antiretroviral therapy with abacavir or tenofovir

    PubMed Central

    2011-01-01

    Background Abacavir has been associated with an increased risk of acute myocardial infarction, but the pathogenic mechanisms remain unknown. We evaluated longitudinal changes in pro-atherosclerotic biomarkers in patients initiating abacavir or tenofovir. Methods Consecutive patients initiating antiretroviral therapy (ART) with abacavir/lamivudine or tenofovir/emtricitabine were included. Plasma levels of high sensitivity C reactive protein (hsCRP), interleukin-6 (IL-6), intercellular adhesion molecule-1, vascular cell adhesion molecule-1 (sVCAM-1) and plasminogen activator inhibitor-1 (PAI-1) were measured at baseline and at different time points throughout 48 weeks. Comparisons were adjusted for age, sex, ART status at inclusion, viral load, lipodystrophy, Framingham score and hepatitis C virus co-infection status. Results 50 patients were analyzed, 28 initiating abacavir and 22 tenofovir. The endothelial biomarker sVCAM-1 declined significantly in both treatment groups. hsCRP tended to increase soon after starting therapy with abacavir, a trend that was not seen in those initiating tenofovir. IL-6 significantly increased only at week 24 from baseline in patients on abacavir (+225%, p < 0.01) although the differences were not significant between groups. The procoagulant biomarker PAI-1 plasma levels increased from baseline at week 12 (+57%; p = 0.017), week 24 (+72%; p = 0.008), and week 48 (+149%; p < 0.001) in patients on tenofovir, but differences between groups were not statistically significant. Conclusion Changes in biomarkers of inflammation, coagulation, and endothelial function are not different in viremic patients starting ART with abacavir/lamivudine or tenofovir/emtricitabine. These changes occur in the early phases of treatment and include anti- and pro-atherosclerotic effects with both drugs. PMID:21294867

  6. Early changes in inflammatory and pro-thrombotic biomarkers in patients initiating antiretroviral therapy with abacavir or tenofovir.

    PubMed

    Padilla, Sergio; Masiá, Mar; García, Natalia; Jarrin, Inmaculada; Tormo, Consuelo; Gutiérrez, Félix

    2011-02-04

    Abacavir has been associated with an increased risk of acute myocardial infarction, but the pathogenic mechanisms remain unknown. We evaluated longitudinal changes in pro-atherosclerotic biomarkers in patients initiating abacavir or tenofovir. Consecutive patients initiating antiretroviral therapy (ART) with abacavir/lamivudine or tenofovir/emtricitabine were included. Plasma levels of high sensitivity C reactive protein (hsCRP), interleukin-6 (IL-6), intercellular adhesion molecule-1, vascular cell adhesion molecule-1 (sVCAM-1) and plasminogen activator inhibitor-1 (PAI-1) were measured at baseline and at different time points throughout 48 weeks. Comparisons were adjusted for age, sex, ART status at inclusion, viral load, lipodystrophy, Framingham score and hepatitis C virus co-infection status. 50 patients were analyzed, 28 initiating abacavir and 22 tenofovir. The endothelial biomarker sVCAM-1 declined significantly in both treatment groups. hsCRP tended to increase soon after starting therapy with abacavir, a trend that was not seen in those initiating tenofovir. IL-6 significantly increased only at week 24 from baseline in patients on abacavir (+225%, p < 0.01) although the differences were not significant between groups. The procoagulant biomarker PAI-1 plasma levels increased from baseline at week 12 (+57%; p = 0.017), week 24 (+72%; p = 0.008), and week 48 (+149%; p < 0.001) in patients on tenofovir, but differences between groups were not statistically significant. Changes in biomarkers of inflammation, coagulation, and endothelial function are not different in viremic patients starting ART with abacavir/lamivudine or tenofovir/emtricitabine. These changes occur in the early phases of treatment and include anti- and pro-atherosclerotic effects with both drugs.

  7. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis.

    PubMed

    Iskandar, Agustin; Arthamin, Maimun Z; Indriana, Kristin; Anshory, Muhammad; Hur, Mina; Di Somma, Salvatore

    2018-05-09

    Neonatal sepsis remains worldwide one of the leading causes of morbidity and mortality in both term and preterm infants. Lower mortality rates are related to timely diagnostic evaluation and prompt initiation of empiric antibiotic therapy. Blood culture, as gold standard examination for sepsis, has several limitations for early diagnosis, so that sepsis biomarkers could play an important role in this regard. This study was aimed to compare the value of the two biomarkers presepsin and procalcitonin in early diagnosis of neonatal sepsis. This was a prospective cross-sectional study performed, in Saiful Anwar General Hospital Malang, Indonesia, in 51 neonates that fulfill the criteria of systemic inflammatory response syndrome (SIRS) with blood culture as diagnostic gold standard for sepsis. At reviewer operating characteristic (ROC) curve analyses, using a presepsin cutoff of 706,5 pg/mL, the obtained area under the curve (AUCs) were: sensitivity = 85.7%, specificity = 68.8%, positive predictive value = 85.7%, negative predictive value = 68.8%, positive likelihood ratio = 2.75, negative likelihood ratio = 0.21, and accuracy = 80.4%. On the other hand, with a procalcitonin cutoff value of 161.33 pg/mL the obtained AUCs showed: sensitivity = 68.6%, specificity = 62.5%, positive predictive value = 80%, negative predictive value = 47.6%, positive likelihood ratio = 1.83, the odds ratio negative = 0.5, and accuracy = 66.7%. In early diagnosis of neonatal sepsis, compared with procalcitonin, presepsin seems to provide better early diagnostic value with consequent possible faster therapeutical decision making and possible positive impact on outcome of neonates.

  8. Connective tissue-activating peptide III: a novel blood biomarker for early lung cancer detection.

    PubMed

    Yee, John; Sadar, Marianne D; Sin, Don D; Kuzyk, Michael; Xing, Li; Kondra, Jennifer; McWilliams, Annette; Man, S F Paul; Lam, Stephen

    2009-06-10

    There are no reliable blood biomarkers to detect early lung cancer. We used a novel strategy that allows discovery of differentially present proteins against a complex and variable background. Mass spectrometry analyses of paired pulmonary venous-radial arterial blood from 16 lung cancer patients were applied to identify plasma proteins potentially derived from the tumor microenvironment. Two differentially expressed proteins were confirmed in 64 paired venous-arterial blood samples using an immunoassay. Twenty-eight pre- and postsurgical resection peripheral blood samples and two independent, blinded sets of plasma from 149 participants in a lung cancer screening study (49 lung cancers and 100 controls) and 266 participants from the National Heart Lung and Blood Institute Lung Health Study (45 lung cancer and 221 matched controls) determined the accuracy of the two protein markers to detect subclinical lung cancer. Connective tissue-activating peptide III (CTAP III)/ neutrophil activating protein-2 (NAP-2) and haptoglobin were identified to be significantly higher in venous than in arterial blood. CTAP III/NAP-2 levels decreased after tumor resection (P = .01). In two independent population cohorts, CTAP III/NAP-2 was significantly associated with lung cancer and improved the accuracy of a lung cancer risk prediction model that included age, smoking, lung function (FEV(1)), and an interaction term between FEV(1) and CTAP III/NAP-2 (area under the curve, 0.84; 95% CI, 0.77 to 0.91) compared to CAPIII/NAP-2 alone. We identified CTAP III/NAP-2 as a novel biomarker to detect preclinical lung cancer. The study underscores the importance of applying blood biomarkers as part of a multimodal lung cancer risk prediction model instead of as stand-alone tests.

  9. Biomarkers for the Diagnosis of Cholangiocarcinoma: A Systematic Review.

    PubMed

    Tshering, Gyem; Dorji, Palden Wangyel; Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2018-06-01

    Cholangiocarcinoma (CCA), a malignant tumor of the bile duct, is a major public health problem in many Southeast Asian countries, particularly Thailand. The slow progression makes it difficult for early diagnosis and most patients are detected in advanced stages. This study aimed to review all relevant articles related to the biomarkers for the diagnosis of CCA and point out potential biomarkers. A thorough search was performed in PubMed and ScienceDirect for CCA biomarker articles. Required data were extracted. A total of 46 articles that fulfilled the inclusion and had none of the exclusion criteria were included in the analysis (17, 22, 3, 4, and 1 articles on blood, tissue, bile, both blood and tissue, and urine biomarkers, respectively). Carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA), either alone or in combination with other biomarkers, are the most commonly studied biomarkers in the serum. Their sensitivity and specificity ranged from 47.2% to 98.2% and 89.7% to 100%, respectively. However, in the tissue, gene methylations and DNA-related markers were the most studied CCA biomarkers. Their sensitivity and specificity ranged from 58% to 87% and 98% to 100%, respectively. Some articles investigated biomarkers both in blood and tissues, particularly CA19-9 and CEA, with sensitivity and specificity ranging from 33% to 100% and 50% to 97.7%, respectively. Although quite a number of biomarkers with a potential role in the early detection of CCA have been established, it is difficult to single out any particular marker that could be used in the routine clinical settings.

  10. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor

    NASA Astrophysics Data System (ADS)

    Kosaka, P. M.; Pini, V.; Ruz, J. J.; da Silva, R. A.; González, M. U.; Ramos, D.; Calleja, M.; Tamayo, J.

    2014-12-01

    Blood contains a range of protein biomarkers that could be used in the early detection of disease. To achieve this, however, requires sensors capable of detecting (with high reproducibility) biomarkers at concentrations one million times lower than the concentration of the other blood proteins. Here, we show that a sandwich assay that combines mechanical and optoplasmonic transduction can detect cancer biomarkers in serum at ultralow concentrations. A biomarker is first recognized by a surface-anchored antibody and then by an antibody in solution that identifies a free region of the captured biomarker. This second antibody is tethered to a gold nanoparticle that acts as a mass and plasmonic label; the two signatures are detected by means of a silicon cantilever that serves as a mechanical resonator for ‘weighing’ the mass of the captured nanoparticles and as an optical cavity that boosts the plasmonic signal from the nanoparticles. The capabilities of the approach are illustrated with two cancer biomarkers: the carcinoembryonic antigen and the prostate specific antigen, which are currently in clinical use for the diagnosis, monitoring and prognosis of colon and prostate cancer, respectively. A detection limit of 1 × 10-16 g ml-1 in serum is achieved with both biomarkers, which is at least seven orders of magnitude lower than that achieved in routine clinical practice. Moreover, the rate of false positives and false negatives at this concentration is extremely low, ˜10-4.

  11. Urine protein profiling identified alpha-1-microglobulin and haptoglobin as biomarkers for early diagnosis of acute allograft rejection following kidney transplantation.

    PubMed

    Stubendorff, Beatrice; Finke, Stephanie; Walter, Martina; Kniemeyer, Olaf; von Eggeling, Ferdinand; Gruschwitz, Torsten; Steiner, Thomas; Ott, Undine; Wolf, Gunter; Wunderlich, Heiko; Junker, Kerstin

    2014-12-01

    Early diagnosis of acute rejection and effective immunosuppressive therapy lead to improvement in graft survival following kidney transplantation. In this study, we aimed to establish a urinary protein profile suitable to distinguish between patients with rejection and stable graft function and to predict acute rejection based on postoperatively collected urine samples. A further objective was to identify candidate proteins for the use as biomarkers in clinical practice. Urine samples of 116 kidney recipients were included. Rejection was proven by biopsy (n = 58), and stable transplant function was monitored for at least 2 years (n = 58). Postoperative urine samples were collected between 3rd and 10th day following transplantation. Urinary protein profiles were obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Protein identification and validation were performed using multiplex fluorescence 2DE, peptide mass fingerprinting and enzyme-linked immunosorbent assay. A protein profile including four mass peaks differentiated acute rejection from stable transplants at the time point of rejection and at the postoperative state with 73 % sensitivity and 88 % specificity. Alpha-1-microglobulin (A1MG) and Haptoglobin (Hp) were identified as putative rejection biomarkers. Protein levels were significantly higher in postoperative urine from patients with rejection (A1MG 29.13 vs. 22.06 μg/ml, p = 0.001; Hp 628.34 vs. 248.57 ng/ml, p = 0.003). The combination of both proteins enabled the diagnosis of early rejection with 85 % sensitivity and 80 % specificity. Protein profiling using mass spectrometry is suitable for noninvasive detection of rejection-specific changes following kidney transplantation. A specific protein profile enables the prediction of early acute allograft rejection in the immediate postoperative period. A1MG and Hp appear to be reliable rejection biomarkers.

  12. Utility of urinary biomarkers as a diagnostic tool for early diabetic nephropathy in patients with type 2 diabetes mellitus.

    PubMed

    Vijay, Soorampally; Hamide, Abdoul; Senthilkumar, Gandhipuram Periyasamy; Mehalingam, Vadivelan

    2018-04-12

    Renal tubulo-interstitial damage has an important role in the pathogenesis of early diabetic nephropathy. Urinary biomarkers can help in the detection of early nephropathy in type 2 diabetic patients. The aim of this study was to estimate the levels of urinary neutrophil gelatinase associated lipocalin (NGAL) and cystatin-C in type 2 diabetic patients with early diabetic nephropathy & to compare them with diabetic patients without nephropathy and to correlate urinary NGAL and cystatin-C levels with microalbuminuria in them. Cross-sectional comparative study. The study was conducted on 126 patients with type 2 diabetes along with 30 control subjects attending the outpatient care department of a tertiary care teaching hospital. There were 3 study groups-diabetic patients with microalbuminuria, diabetic patients without albuminuria and control subjects who were non-diabetic without any renal disease. Details on duration of diabetes and glycemic status were obtained from the patients. Urine examination was done for subjects in all the groups to look for microalbuminuria along with estimation of NGAL and cystatin-C levels. Samples were stored at -20 °C in the deep freezer. Urinary NGAL and cystatin-C levels were significantly elevated in patients with microalbuminuria (228.18 & 3.23 ng/ml) as compared to those without albuminuria (146.12 & 2.61 ng/ml) and in control subjects (26.56 & 0.30 ng/ml). Urinary NGAL and cystatin-C levels showed a linear correlation with microalbuminuria in diabetic patients. Urinary NGAL and cystatin-C levels were increased in type 2 diabetic patients with early diabetic nephropathy as compared to patients without nephropathy. Urine NGAL and cystatin-C levels also showed a positive correlation with microalbuminuria (urine albumin-creatinine ratio) in patients with type 2 diabetes mellitus. Copyright © 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  13. From differences in means between cases and controls to risk stratification: a business plan for biomarker development.

    PubMed

    Wentzensen, Nicolas; Wacholder, Sholom

    2013-02-01

    Researchers developing biomarkers for early detection can determine the potential for clinical benefit at early stages of development. We provide the theoretical background showing the quantitative connection between biomarker levels in cases and controls and clinically meaningful risk measures, as well as a spreadsheet for researchers to use in their own research. We provide researchers with tools to decide whether a test is useful, whether it needs technical improvement, whether it may work only in specific populations, or whether any further development is futile. The methods described here apply to any method that aims to estimate risk of disease based on biomarkers, clinical tests, genetics, environment, or behavior. Many efforts go into futile biomarker development and premature clinical testing. In many instances, predictions for translational success or failure can be made early, simply based on critical analysis of case–control data. Our article presents well-established theory in a form that can be appreciated by biomarker researchers. Furthermore, we provide an interactive spreadsheet that links biomarker performance with specific disease characteristics to evaluate the promise of biomarker candidates at an early stage.

  14. Head-to-Head Comparison and Evaluation of 92 Plasma Protein Biomarkers for Early Detection of Colorectal Cancer in a True Screening Setting.

    PubMed

    Chen, Hongda; Zucknick, Manuela; Werner, Simone; Knebel, Phillip; Brenner, Hermann

    2015-07-15

    Novel noninvasive blood-based screening tests are strongly desirable for early detection of colorectal cancer. We aimed to conduct a head-to-head comparison of the diagnostic performance of 92 plasma-based tumor-associated protein biomarkers for early detection of colorectal cancer in a true screening setting. Among all available 35 carriers of colorectal cancer and a representative sample of 54 men and women free of colorectal neoplasms recruited in a cohort of screening colonoscopy participants in 2005-2012 (N = 5,516), the plasma levels of 92 protein biomarkers were measured. ROC analyses were conducted to evaluate the diagnostic performance. A multimarker algorithm was developed through the Lasso logistic regression model and validated in an independent validation set. The .632+ bootstrap method was used to adjust for the potential overestimation of diagnostic performance. Seventeen protein markers were identified to show statistically significant differences in plasma levels between colorectal cancer cases and controls. The adjusted area under the ROC curves (AUC) of these 17 individual markers ranged from 0.55 to 0.70. An eight-marker classifier was constructed that increased the adjusted AUC to 0.77 [95% confidence interval (CI), 0.59-0.91]. When validating this algorithm in an independent validation set, the AUC was 0.76 (95% CI, 0.65-0.85), and sensitivities at cutoff levels yielding 80% and 90% specificities were 65% (95% CI, 41-80%) and 44% (95% CI, 24-72%), respectively. The identified profile of protein biomarkers could contribute to the development of a powerful multimarker blood-based test for early detection of colorectal cancer. ©2015 American Association for Cancer Research.

  15. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease

    PubMed Central

    Babić, Mirjana; Švob Štrac, Dubravka; Mück-Šeler, Dorotea; Pivac, Nela; Stanić, Gabrijela; Hof, Patrick R.; Šimić, Goran

    2014-01-01

    Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed. PMID:25165049

  16. Crucial considerations for pipelines to validate circulating biomarkers for breast cancer.

    PubMed

    Ewaisha, Radwa; Gawryletz, Chelsea D; Anderson, Karen S

    2016-01-01

    Despite decades of progress in breast imaging, breast cancer remains the second most common cause of cancer mortality in women. The rapidly proliferative breast cancers that are associated with high relapse rates and mortality frequently present in younger women, in unscreened individuals, or in the intervals between screening mammography. Biomarkers exist for monitoring metastatic disease, such as CEA, CA27.29 and CA15-3, but there are no circulating biomarkers clinically available for early detection, prognosis, or monitoring for clinical relapse. There has been significant progress in the discovery of potential circulating biomarkers, including proteins, autoantibodies, nucleic acids, exosomes, and circulating tumor cells, but the vast majority of these biomarkers have not progressed beyond initial research discovery, and none have yet been approved for clinical use in early stage disease. Here, the authors review the crucial considerations of developing pipelines for the rapid evaluation of circulating biomarkers for breast cancer.

  17. Recent advances in biosensor development for the detection of cancer biomarkers.

    PubMed

    Jayanthi, V S P K Sankara Aditya; Das, Asim Bikas; Saxena, Urmila

    2017-05-15

    Cancer is the second largest disease throughout the world with an increasing mortality rate over the past few years. The patient's survival rate is uncertain due to the limitations of cancer diagnosis and therapy. Early diagnosis of cancer is decisive for its successful treatment. A biomarker-based cancer diagnosis may significantly improve the early diagnosis and subsequent treatment. Biosensors play a crucial role in the detection of biomarkers as they are easy to use, portable, and can do analysis in real time. This review describes various biosensors designed for detecting nucleic acid and protein-based cancer biomarkers for cancer diagnosis. It mainly lays emphasis on different approaches to use electrochemical, optical, and mass-based transduction systems in cancer biomarker detection. It also highlights the analytical performances of various biosensor designs concerning cancer biomarkers in detail. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease.

    PubMed

    García-Blanco, Ana; Baquero, Miguel; Vento, Máximo; Gil, Esperanza; Bataller, Luis; Cháfer-Pericás, Consuelo

    2017-02-15

    The high and increasing incidence of Alzheimer Disease (AD) worldwide is a major global concern. Classical diagnosis is carried out in the dementia phase, often in the moderate stages when treatment efficacy is limited. Nowadays, early diagnosis, even in pre-dementia stages, is possible in selected cases within an appropriate clinical setting, employing cerebral spinal fluid (CSF) sample analysis and neuroimaging procedures. In spite of the accurate diagnosis achieved by novel CSF biomarkers or positron emission tomography beta-amyloid tracers, these tests are invasive and expensive. Therefore, important work is being carried out to discover reliable biomarkers in peripheral biofluids (blood, plasma, urine) to be incorporated in clinical routine for early AD diagnosis. Although the nature of AD pathogenesis is complex, it is known that oxidative stress plays a key role, for which biomarkers are easily determined in peripheral biofluids. This review summarizes recent research on oxidative stress biomarkers in mild cognitive impairment due to AD. Among them, a promising research line is the study of the relationship between lipid peroxidation biomarkers and early AD clinical features. Results show a pronounced imbalance between scientific production and clinical reality due to the lack of clinical validation. We conclude that an important field in oxidative stress biomarkers could be developed with the aim to help clinicians in early disease diagnosis, effective treatment initiation and reliable disease monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Neuropeptide Y - an early biomarker for cerebral vasospasm after aneurysmal subarachnoid hemorrhage.

    PubMed

    Schebesch, Karl-Michael; Brawanski, Alexander; Bele, Sylvia; Schödel, Petra; Herbst, Andreas; Bründl, Elisabeth; Kagerbauer, Simone Maria; Martin, Jan; Lohmeier, Anette; Stoerr, Eva-Maria; Proescholdt, Martin

    2013-12-01

    In the human brain, the potent vasoconstrictive neuropeptide Y (NPY) is abundantly expressed. Neuropeptide Y, which is stored in perivascular nerve fibers of the cerebral arteries, regulates the cerebral vascular diameter as well as cerebral blood flow. However, the role of NPY in the pathogenesis of cerebral vasospasm (CV) related to subarachnoid hemorrhage (SAH) is unclear. We prospectively analyzed and compared the release of endogenous NPY in the cerebrospinal fluid (CSF) of 66 patients with SAH to NPY release in a control group. Additionally, we correlated the levels of NPY with CV and consecutive ischemic stroke. Sixty-six consecutive patients (40 women, 26 men; mean age 53·1 years) with aneurysmal SAH were included. In the SAH group, CSF was drawn daily from day 1 to day 10 after the onset of SAH. The CSF of 29 patients undergoing spinal anesthesia for orthopedic surgery served as control samples. The NPY levels were determined in duplicate CSF samples by means of a competitive enzyme immunoassay (EIA). The levels of NPY in CSF were correlated with the development of CV over the 10-day period after the onset of SAH and to the occurrence of consecutive ischemic stroke. To evaluate CSF NPY levels as a predictive biomarker for vasospasm, we calculated the sensitivity and specificity as well as the positive and negative predictive values. The NPY levels were significantly higher in the SAH group than in the control group (p < 0·001). The treatment modality (clip versus coil) did not influence the level of NPY in CSF (p > 0·05). Patients with CV showed significantly higher NPY levels than patients without CV during the entire observation period. The NPY levels of the non-CV group dissipated over time, whereas the CV group showed continuously increasing values. The NPY levels from day 4 to 10 were significantly higher in patients with CV-related stroke than in non-stroke patients. Using 0·3 ng/ml as a cut-off value, NPY levels on day 3 predicted the occurrence

  20. Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies.

    PubMed

    Sharma, Raghava; Huang, Xianming; Brekken, Rolf A; Schroit, Alan J

    2017-08-08

    There has been increasing interest in the detection of tumour exosomes in blood for cancer diagnostics. Most studies have focussed on miRNA and protein signatures that are surrogate markers for specific tumour types. Because tumour cells and tumour-derived exosomes display phosphatidylserine (PS) in their outer membrane leaflet, we developed a highly sensitive ELISA-based system that detects picogram amounts of exosomal phospholipid in plasma as a cancer biomarker. This report describes the development of a highly specific and sensitive ELISA for the capture of PS-expressing tumour exosomes in the blood of tumour-bearing mice. To monitor the relationship between tumour burden and tumour exosome plasma concentrations, plasma from one transplantable breast cancer model (MDA-MB-231) and three genetic mouse models (MMTV-PyMT; breast and KIC and KPC; pancreatic) were screened for captured exosomal phospholipid. We show that quantitative assessment of PS-expressing tumour exosomes detected very early-stage malignancies before clinical evidence of disease in all four model systems. Tumour exosome levels showed significant increases by day 7 after tumour implantation in the MDA-MB-231 model while palpable tumours appeared only after day 27. For the MMTV-PyMT and KIC models, tumour exosome levels increased significantly by day 49 (P⩽0.0002) and day 21 (P⩽0.001) while tumours developed only after days 60 and 40, respectively. For the KPC model, a significant increase in blood exosome levels was detected by day 70 (P=0.023) when only preinvasive lesions are microscopically detectable. These data indicate that blood PS exosome levels is a specific indicator of cancer and suggest that blood PS is a biomarker for early-stage malignancies.

  1. Combining select neuropsychological assessment with blood-based biomarkers to detect mild Alzheimer's disease: a molecular neuropsychology approach.

    PubMed

    Edwards, Melissa; Balldin, Valerie Hobson; Hall, James; O'Bryant, Sid

    2014-01-01

    Current work has sought to establish a rapid and cost effective means of screening for Alzheimer's disease (AD) with the most recent findings showing utility of integrating blood-based biomarkers with cognitive measures. The current project sought to create a combined biomarker-cognitive profile to detect mild AD. Data was analyzed from 266 participants (129 AD cases [Early AD n = 93; Very Early AD n = 36]; 137 controls) enrolled in the Texas Alzheimer's Research and Care Consortium (TARCC). Non-fasting serum samples were collected from each participant and assayed via a multi-plex biomarker assay platform using electrochemiluminescence. Logistic Regression was utilized to detect early AD using two serum biomarkers (TNFα and IL7), demographic information (age), and one neuropsychological measure (Clock 4-point) as predictor variable. Disease severity was determined via Clinical Dementia Rating (CDR) scale global scores. In the total sample (all levels of CDR scores), the combination of biomarkers, cognitive test score, and demographics yielded the obtained sensitivity (SN) of 0.94, specificity (SP) of 0.90, and an overall accuracy of 0.92. When examining early AD cases (i.e.m CDR = 0.5-1), the biomarker-cognitive profile yielded SN of 0.94, SP of 0.85, and an overall accuracy of 0.91. When restricted to very early AD cases (i.e., CDR = 0.5), the biomarker-cognitive profile yielded SN of 0.97 and SP of 0.72, with an overall accuracy of 0.91. The combination of demographics, two biomarkers, and one cognitive test created a biomarker-cognitive profile that was highly accurate in detecting the presence of AD, even in the very early stages.

  2. In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: the role of vitamin D.

    PubMed

    El-Ansary, Afaf; Cannell, John J; Bjørklund, Geir; Bhat, Ramesa Shafi; Al Dbass, Abeer M; Alfawaz, Hanan A; Chirumbolo, Salvatore; Al-Ayadhi, Laila

    2018-06-01

    Autism spectrum disorder (ASD) affects about 1% of the world's population. Vitamin D is thought to be essential for normal brain development and modulation of the immune system. Worldwide about 1 billion people are affected by vitamin D deficiency. High-sensitivity C-reactive protein (hs-CRP), cytochrome P450 2E1 (CYP2E1) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) are biomarkers related to inflammation and oxidative stress. In the present study, these biomarkers were together with serum 25-hydroxyvitamin D (25(OH)D 3 ) analyzed in 28 (mean age seven years) Saudi male patients with ASD. The study was conducted to determine if there is any relationship between vitamin D levels, the tested biomarkers and the presence and severity of ASD. The hope was to identify if these biomarkers may be useful for early ASD diagnosis. The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to measure autism severity. The results of the ASD children were compared with 27 age and gender-matched neurotypical controls. The data indicated that Saudi patients with ASD have significantly lower plasma levels of 25(OH)D 3 than neurotypical controls (38 ng/ml compared to 56 ng/ml, respectively; [P = 0.001]). Surprisingly, the levels of CYP2E1 were lower in the children with ASD than the neurotypical controls (0.48 ± 0.08 vs. 69 ± 0.07 ng/ml, respectively; P = 0.001). The ASD children also had significantly higher levels of hs-CRP (0.79 ± 0.09 vs. 0.59 ± 0.09 ng/ml, respectively; P = 0.001) and 8-OH-dG (8.17 ± 1.04 vs. 4.13 ± 1.01 ng/ml, respectively; P = 0.001, compared to neurotypical age and gender-matched controls. The values for hs-CRP and 8-OH-dG did not correlate [P < 0.001] with autism severity. There was found a relationship between autism severity on the CARS scale and the levels of 25(OH)D 3 and CYP1B1. But this was not found for SRS. All four biomarkers seemed to have good sensitivity and

  3. Analysis of PI3K/mTOR Pathway Biomarkers and Their Prognostic Value in Women with Hormone Receptor–Positive, HER2-Negative Early Breast Cancer1

    PubMed Central

    Azim, Hamdy A.; Kassem, Loay; Treilleux, Isabelle; Wang, Qing; El Enein, Mona Abu; Anis, Shady E.; Bachelot, Thomas

    2016-01-01

    BACKGROUND: The PI3K/AKT/mTOR pathway alterations have been shown to play significant roles in the development, progression, and metastatic spread of breast cancer. Furthermore, they have been implicated in the process of drug resistance, especially endocrinal therapies. In this study, we aimed to define the correlation between the PI3K mutations and the expression of the phosphorylated forms of different downstream molecules in women with estrogen receptor (ER)–positive, human epidermal growth factor receptor 2–negative (luminal) early breast cancer treated at Cairo university hospitals. METHODS: Next-generation sequencing was used to detect mutations in the PIK3CA hotspots (in exons 9 and 20). Immunohistochemistry was performed on tissue microarray blocks prepared from samples of 35 Egyptian luminal breast cancer patients in the pathology department of Centre Léon Bérard (CLB). The intensity and the percentage of stained tumor cells were integrated to define high versus low biomarker expression. The cytoplasmic and nuclear stainings were graded separately. Patients were followed for a median of 4.7 years (2.1 to 6.9 years). Correlation was done between PI3K mutations and the immunohistochemistry expression of pAKT, LKB1, p4EBP1, and pS6 ribosomal protein (pS6RP) with the clinicopathologic features and disease free survival (DFS) of the patients. RESULTS: Median age at diagnosis was 51.3 years (range, 25 to 82 years). Tumors were larger than 20 mm in 79.2% of the cases, whereas 57.9% had axillary lymph node deposits. Only 12.3% of the patients had SBR grade I tumors, 50.8% had grade II, and 36.8% had grade III. ERs were negative in 6 patients (17%) after pathology review. Thirty-two cases were assessable for LKB1 and pAKT, 33 for p4EBP1 and pS6RP, and 24 for PI3K mutations. Nuclear LKB1, cytoplasmic LKB1, nuclear pAKT, cytoplasmic pAKT, nuclear p4EBP1, and cytoplasmic pS6RP expression was high in 65.6%, 62.5%, 62.5%, 68.8%, 42.4%, and 57.6%, respectively

  4. Biomarkers for early detection of pancreatic cancer — EDRN Public Portal

    Cancer.gov

    Background: The clinical management of pancreatic cancer is severely hampered by the absence of effective screening tools. Methods: Sixty-seven biomarkers were evaluated in prediagnostic sera obtained from cases of pancreatic cancer enrolled in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). Results: The panel of CA 19-9, OPN, and OPG, identified in a prior retrospective study, was not effective. CA 19-9, CEA, NSE, bHCG, CEACAM1 and PRL were significantly altered in sera obtained from cases greater than 1 year prior to diagnosis. Levels of CA 19-9, CA 125, CEA, PRL, and IL-8 were negatively correlated with time to diagnosis. A training/validation study using alternate halves of the PLCO set failed to identify a biomarker panel with significantly improved performance over CA 19-9 alone. When the entire PLCO set was used for training at a specificity (SP) of 95%, a panel of CA 19-9, CEA, and Cyfra 21-1 provided significantly elevated sensitivity (SN) levels of 32.4% and 29.7% in samples collected 1 year prior to diagnosis, respectively, compared to SN levels of 25.7% and 17.2% for CA 19-9 alone. Conclusions: Most biomarkers identified in previously conducted case/control studies are ineffective in prediagnostic samples, however several biomarkers were identified as significantly altered up to 35 months prior to diagnosis. Two newly derived biomarker combination offered some advantage of CA 19-9 alone in terms of SN, particularly in samples collected >1 year prior to diagnosis, however further study will be needed to fully define the implications of these findings.

  5. Post-treatment plasma EBV-DNA positivity predicts early relapse and poor prognosis for patients with extranodal NK/T cell lymphoma in the era of asparaginase.

    PubMed

    Wang, Liang; Wang, Hua; Wang, Jing-hua; Xia, Zhong-jun; Lu, Yue; Huang, Hui-qiang; Jiang, Wen-qi; Zhang, Yu-jing

    2015-10-06

    Circulating Epstein-Barr virus (EBV) DNA is a biomarker of EBV-associated malignancies. Its prognostic value in early stage NK/T-cell lymphoma (NKTCL) in the era of asparaginase was investigated. 68 patients were treated with a median of 4 cycles of asparaginase-based chemotherapy followed by a median of 54.6 Gy (range 50-60 Gy) radiation. The amount of EBV-DNA was prospectively measured in both pretreatment and post-treatment plasma samples by real-time quantitative PCR. At the end of treatment, complete response (CR) rate was 79.4%, and overall response rate (ORR) was 88.2%. Patients with negative pretreatment EBV-DNA had a higher CR rate (96.0% vs. 69.8%, p = 0.023). The 3-year progression-free survival (PFS) rate and overall survival (OS) rate was 71% and 83%, respectively. In multivariate survival analysis, post-treatment EBV-DNA positivity and treatment response (non-CR) were prognostic factors for both worse PFS and OS (p < 0.05). Local tumor invasion was also a prognostic factor for worse OS (p = 0.010). In patients with CR, post-treatment EBV-DNA positivity correlated with inferior PFS and OS (both p < 0.0001). In patients with positive pretreatment EBV-DNA, negative post-treatment EBV-DNA correlated with better PFS and OS (both p < 0.0001). These findings indicate that post-treatment EBV-DNA positivity can predict early relapse and poor prognosis for patients with early stage NKTCL in the era of asparaginase, and may be used as an indicator of minimal residual disease.

  6. Serial serum alkaline phosphatase as an early biomarker for osteopenia of prematurity.

    PubMed

    Abdallah, Enas A A; Said, Reem N; Mosallam, Dalia S; Moawad, Eman M I; Kamal, Naglaa M; Fathallah, Mohammed G E-D

    2016-09-01

    Metabolic bone disease of prematurity is a condition characterized by reduction in bone mineral content (osteopenia). It is a problem faced by very low birth weight (VLBW) infants because of lack of fetal mineralization during the last trimester. Our aim was to assess serum alkaline phosphatase (ALP) level as an early biomarker for osteopenia in premature infants and to estimate an optimal cutoff value of serum ALP at which osteopenia is detected radiologically in premature newborns.This prospective study was conducted on a cohort of 120 newborn infants of both sex of ≤34 weeks' gestational age and <1500 g birth weight. Two blood samples, from each infant on at least 2 consecutive weeks, were reported for calcium, phosphorus, and ALP. Evidence of osteopenia was evaluated radiologically by performing wrist/knee x-ray.Sixteen infants (13.3%) had evidence of osteopenia in x-ray, whereas 104 infants (86.7%) were nonosteopenic and all the osteopenic infants were <1000-g birth weight. Birth weight and gestational age were significantly inversely related to serum ALP levels. Both samples showed statistically significantly higher mean ALP level in osteopenic than nonosteopenics (P < 0.001, and P < 0.001 respectively). There was no constant value of serum ALP related to radiologic evidence of osteopenia. However, the optimal cutoff value of serum ALP at which osteopenia is detected is 500 IU/L with 100% sensitivity and 80.77% specificity.High levels of ALP can be considered a reliable biomarker to predict the status of bone mineralization and the need for radiological evaluation in premature infants particularly those <1000-g birth weight and <32 weeks' gestation.

  7. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis

    PubMed Central

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-01-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P<0.01), compared to normal controls. More than 80% of the VEGFR-2 in the diabetic retina was in the capillaries, compared to 47% in normal controls (P<0.01). Angiography in rabbit retinas revealed microvascular capillaries to be the location for VEGF-A-induced leakage, as expressed by significantly higher rate of fluorophore spreading with VEGF-A injection when compared to vehicle control (26±2 vs. 3±1 μm/s, P<0.05). Immunohistochemistry showed VEGFR-2 expression in capillaries of diabetic animals but not in normal controls. Macular vessels from diabetic patients (n=7) showed significantly more VEGFR-2 compared to nondiabetic controls (n=5) or peripheral retinal regions of the same retinas (P<0.01 in both cases). Here we introduce a new approach for early diagnosis of DR and VEGFR-2 as a molecular marker. VEGFR-2 could become a key diagnostic target, one that might help to prevent retinal vascular leakage and proliferation in diabetic patients.—Sun, D., Nakao, S., Xie, F., Zandi, S., Bagheri, A., Kanavi, M. R., Samiei, S., Soheili, Z.-S., Frimmel, S., Zhang, Z., Ablonczy, Z., Ahmadieh, H., Hafezi-Moghadam, A. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis. PMID:24903276

  8. CT Perfusion Imaging as an Early Biomarker of Differential Response to Stereotactic Radiosurgery in C6 Rat Gliomas

    PubMed Central

    Yeung, Timothy Pok Chi; Kurdi, Maher; Wang, Yong; Al-Khazraji, Baraa; Morrison, Laura; Hoffman, Lisa; Jackson, Dwayne; Crukley, Cathie; Lee, Ting-Yim; Bauman, Glenn; Yartsev, Slav

    2014-01-01

    Background The therapeutic efficacy of stereotactic radiosurgery for glioblastoma is not well understood, and there needs to be an effective biomarker to identify patients who might benefit from this treatment. This study investigated the efficacy of computed tomography (CT) perfusion imaging as an early imaging biomarker of response to stereotactic radiosurgery in a malignant rat glioma model. Methods Rats with orthotopic C6 glioma tumors received either mock irradiation (controls, N = 8) or stereotactic radiosurgery (N = 25, 12 Gy in one fraction) delivered by Helical Tomotherapy. Twelve irradiated animals were sacrificed four days after stereotactic radiosurgery to assess acute CT perfusion and histological changes, and 13 irradiated animals were used to study survival. Irradiated animals with survival >15 days were designated as responders while those with survival ≤15 days were non-responders. Longitudinal CT perfusion imaging was performed at baseline and regularly for eight weeks post-baseline. Results Early signs of radiation-induced injury were observed on histology. There was an overall survival benefit following stereotactic radiosurgery when compared to the controls (log-rank P<0.04). Responders to stereotactic radiosurgery showed lower relative blood volume (rBV), and permeability-surface area (PS) product on day 7 post-stereotactic radiosurgery when compared to controls and non-responders (P<0.05). rBV and PS on day 7 showed correlations with overall survival (P<0.05), and were predictive of survival with 92% accuracy. Conclusions Response to stereotactic radiosurgery was heterogeneous, and early selection of responders and non-responders was possible using CT perfusion imaging. Validation of CT perfusion indices for response assessment is necessary before clinical implementation. PMID:25329655

  9. Innovative biomarkers for predicting type 2 diabetes mellitus: relevance to dietary management of frailty in older adults.

    PubMed

    Ikwuobe, John; Bellary, Srikanth; Griffiths, Helen R

    2016-06-01

    Type 2 diabetes mellitus (T2DM) increases in prevalence in the elderly. There is evidence for significant muscle loss and accelerated cognitive impairment in older adults with T2DM; these comorbidities are critical features of frailty. In the early stages of T2DM, insulin sensitivity can be improved by a "healthy" diet. Management of insulin resistance by diet in people over 65 years of age should be carefully re-evaluated because of the risk for falling due to hypoglycaemia. To date, an optimal dietary programme for older adults with insulin resistance and T2DM has not been described. The use of biomarkers to identify those at risk for T2DM will enable clinicians to offer early dietary advice that will delay onset of disease and of frailty. Here we have used an in silico literature search for putative novel biomarkers of T2DM risk and frailty. We suggest that plasma bilirubin, plasma, urinary DPP4-positive microparticles and plasma pigment epithelium-derived factor merit further investigation as predictive biomarkers for T2DM and frailty risk in older adults. Bilirubin is screened routinely in clinical practice. Measurement of specific microparticle frequency in urine is less invasive than a blood sample so is a good choice for biomonitoring. Future studies should investigate whether early dietary changes, such as increased intake of whey protein and micronutrients that improve muscle function and insulin sensitivity, affect biomarkers and can reduce the longer term complication of frailty in people at risk for T2DM.

  10. Impact of Biomarkers on Personalized Medicine.

    PubMed

    Carrigan, Patricia; Krahn, Thomas

    2016-01-01

    The field of personalized medicine that involves the use of measuring biomarkers in clinical samples is an area of high interest and one that has tremendous impact on drug development. With the emergence of more sensitive and specific technologies that are now able to be run in clinical settings and the ability to accurately measure biomarkers, there is a need to understand how biomarkers are defined, how they are used in clinical trials, and most importantly how they are used in conjunction with drug treatment. Biomarker approaches have entered into early clinical trials and are increasingly being used to develop new diagnostics that help to differentiate or stratify the likely outcomes of therapeutic intervention. Tremendous efforts have been made to date to discover novel biomarkers for use in clinical practice. Still, the number of markers that make it into clinical practice is rather low. In the next following chapters, we will explain the various classifications of biomarkers, how they are applied, measured, and used in personalized medicine specifically focusing on how they are used in de-risking the 10 plus years drug development process and lastly how they are validated and transformed into companion diagnostic assays.

  11. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers.

    PubMed

    Borges, Álvaro H; Silverberg, Michael J; Wentworth, Deborah; Grulich, Andrew E; Fätkenheuer, Gerd; Mitsuyasu, Ronald; Tambussi, Giuseppe; Sabin, Caroline A; Neaton, James D; Lundgren, Jens D

    2013-06-01

    To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection. A prospective cohort. HIV-infected patients on continuous antiretroviral therapy (ART) in the control arms of three randomized trials (N=5023) were included in an analysis of predictors of cancer (any type, infection-related or infection-unrelated). Hazard ratios for IL-6, CRP and D-dimer levels (log2-transformed) were calculated using Cox models stratified by trial and adjusted for demographics and CD4+ cell counts and adjusted also for all biomarkers simultaneously. To assess the possibility that biomarker levels were elevated at entry due to undiagnosed cancer, analyses were repeated excluding early cancer events (i.e. diagnosed during first 2 years of follow-up). During approximately 24,000 person-years of follow-up (PYFU), 172 patients developed cancer (70 infection-related; 102 infection-unrelated). The risk of developing cancer was associated with higher levels (per doubling) of IL-6 (hazard ratio 1.38, P<0.001), CRP (hazard ratio 1.16, P=0.001) and D-dimer (hazard ratio 1.17, P=0.03). However, only IL-6 (hazard ratio 1.29, P=0.003) remained associated with cancer risk when all biomarkers were considered simultaneously. Results for infection-related and infection-unrelated cancers were similar to results for any cancer. Hazard ratios excluding 69 early cancer events were 1.31 (P=0.007), 1.14 (P=0.02) and 1.07 (P=0.49) for IL-6, CRP and D-dimer, respectively. Activated inflammation and coagulation pathways are associated with increased cancer risk during HIV infection. This association was stronger for IL-6 and persisted after excluding early cancer. Trials of interventions may be warranted to assess whether cancer risk can be reduced by lowering IL-6 levels in HIV-positive individuals.

  12. A Label-Free, Redox Biosensor for Detection of Disease Biomarkers

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle M.; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    2014-03-01

    Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We have developed a novel 3-dimensional ``nanocavity'' array for the detection of human cancer biomarkers in serum and other fluids. This all-electronic diagnostic sensor is based on a nanoscale coaxial array architecture that we have modified to enable molecular-level detection and identification. Each individual sensor in the array is a vertically-oriented coaxial capacitor, whose dielectric impedance is measurably changed when target molecules enter the coax annulus. We are designing a nanocoaxial biosensor based on electronic response to antibody recognition of a specific disease biomarker (e . g . CA-125 for early-stage ovarian cancer) on biofunctionalized metal surfaces within the nanocoax structure, thereby providing an all-electronic, ambient temperature, rapid-response, label-free redox biosensor. Our results demonstrate the feasibility of using this nanocoaxial array as an ultrasensitive device to detect a wide range of target proteins, including disease biomarkers. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  13. Salivary zinc finger protein 510 peptide as a novel biomarker for detection of oral squamous cell carcinoma in early stages.

    PubMed

    Jou, Yu-Jen; Lin, Chia-Der; Lai, Chih-Ho; Tang, Chih-Hsin; Huang, Su-Hua; Tsai, Ming-Hsui; Chen, Shih-Yin; Kao, Jung-Yie; Lin, Cheng-Wen

    2011-07-15

    Oral squamous cell carcinoma (OSCC) is one of the most frequent malignancies worldwide. Early diagnosis can mean adequate treatment and increase survival. This study uses ClinProt technique to identify salivary biomarkers for early diagnosis of OSCC. A total of 77 salivary samples from both OSCC patients (n=47) and healthy donors (n=30) were analyzed with MALDI-TOF MS technology. Salivary peptides from OSCC patients were separated, using C8-functionalized magnetic beads. Three signals (2918.57 Da, 5592.64 Da, and 4372.66 Da) distinguished OSCC patients from controls. Among them, unique peptide 2918.57 Da, identified as a 24-mer peptide of zinc finger protein 510 (ZNF510), was found in 0% of saliva from healthy individuals, versus 25.0% and 60% from OSCC patients with T1+T2 and T3+T4 stages, respectively (P<0.001). ELISA analysis with rabbit anti-ZNF510 peptide sera shows a starkly higher 24-mer ZNF510 peptide level in saliva from OSCC patients than that in controls (P<0.001). Also, in immunohistochemical analysis of oral tissues, a significantly higher level of ZNF510 was observed in OSCC tissues than in the OSCC free control tissues. Analysis of areas under receiver-operating characteristic (ROC) curves in OSCC early (T1+T2) and late stages (T3+T4) shows greater than 0.95. Identifying 24-mer ZNF510 peptide as OSCC-related salivary biomarkers via proteomic approach proved useful in adjunct diagnosis for early detection rather than specific diagnosis marker for progression of OSCC patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Positive and negative reinforcement underlying risk behavior in early adolescents.

    PubMed

    MacPherson, Laura; Reynolds, Elizabeth K; Daughters, Stacey B; Wang, Frances; Cassidy, Jude; Mayes, Linda C; Lejuez, C W

    2010-09-01

    The goal of the current study was to examine the combined influence of positive reinforcement processes using a behavioral task measuring risk taking propensity (RTP) and negative reinforcement processes using a behavioral task measuring deficits in distress tolerance (DT) on a range of risk taking behaviors among early adolescents. Participants included a community sample of 230 early adolescents (aged 9-13) who completed two behavioral tasks assessing reinforcement processes as well as reported on past year risk behavior involvement as assessed by items from the Youth Risk Behavior Surveillance System at a baseline and a 1-year follow-up assessment. Data indicated that at the Wave 2 assessment, RTP was positively related to number of risk-taking behaviors in the past year but only for those with low DT, with this finding persisting after controlling for the significant influence of male gender and higher sensation seeking. Results of the present study highlight the importance of considering both positive and negative reinforcement processes in combination when investigating vulnerability factors for early risk behavior engagement in youth.

  15. Are we ready to use biomarkers for staging, prognosis and treatment selection in early-stage non-small-cell lung cancer?

    PubMed

    Massuti, Bartomeu; Sanchez, Jose Miguel; Hernando-Trancho, Florentino; Karachaliou, Niki; Rosell, Rafael

    2013-06-01

    Lung cancer accounts for the majority of cancer-related deaths worldwide. At present, platinum-based therapy represents the standard of care in fit stage II and IIIA non-small cell lung cancer (NSCLC) patients following surgical resection. In advanced disease, personalized chemotherapy and targeted biologic therapy based on histological and molecular tumor profiling have already shown promise in terms of optimizing treatment efficacy. While disease stage is associated with outcome and is commonly used to determine adjuvant treatment eligibility, it is known that a subset of patients with early stage disease experience shorter survival than others with the same clinicopathological characteristics. Improved methods for identifying these individuals, at or near the time of initial diagnosis, may inform the decision to pursue adjuvant therapy options. Among the numerous candidate molecular biomarkers, only few gene-expression profiling signatures provide clinically relevant information, while real-time quantitative polymerase-chain reaction (RT-qPCR) strategy involving relatively small numbers of genes offers a practical alternative with high cross-platform performance. mRNA and/or protein expression levels of excision repair cross-complementation group 1 (ERCC1), ribonucleotide reductase M subunit 1 (RRM1) and breast cancer susceptibility gene 1 (BRCA1) are among the most promising potential biomarkers for early disease and their clinical utility is currently being evaluated in randomized phase II and III clinical trials. This review describes the most promising clinicopathological and molecular biomarkers with predictive and prognostic significance in lung cancer that have been identified through advanced research and which could influence adjuvant and neoadjuvant chemotherapy decisions for operable NSCLC in routine clinical practice.

  16. Combining Select Neuropsychological Assessment With Blood-Based Biomarkers to detect Mild Alzheimer’s disease: A Molecular Neuropsychology approach

    PubMed Central

    Edwards, Melissa; Balldin, Valerie Hobson; Hall, James; O’Bryant, Sid

    2015-01-01

    Background The current project sought to create combined biomarker-cognitive profile to detect mild Alzheimer’s disease. Methods Data was analyzed from 266 participants (129 AD cases [Early AD n=93; Very Early AD n=36]; 137 controls) enrolled in the Texas Alzheimer’s Research and Care Consortium (TARCC). Non-fasting serum samples were collected from each participant and assayed via a multi-plex biomarker assay platform using electrochmiluminescence (ECL). Logistic Regression was utilized to detect early AD using two serum biomarkers (TNFα and IL7), demographic information (age) and one neuropsychological measure (Clock-4 point) as predictor variable. Disease severity was determined via Clinical Dementia Rating scale global scores. Results In the total sample (all levels of CDR scores), the combination of biomarkers, cognitive test score, and demographics yielded the obtained sensitivity (SN) of 0.94, specificity (SP) of 0.90 and an overall accuracy of 0.92. When examining early AD cases (i.e. CDR=0.5-1), the biomarker-cognitive profile yielded SN of 0.94, SP of 0.85 and an overall accuracy of 0.91. When restricted to very early AD cases (i.e CDR=0.5), the biomarker-cognitive profile yielded SN of 0.97, SP of 0.72 with an overall accuracy of 0.91. Conclusions The combination of demographics + 2 biomarkers + 1 cognitive test created a biomarker-cognitive profile that was highly accurate in detecting AD presence, even in the very early stages. This work demonstrates the complementary nature of each modality (blood biomarkers + neuropsychological assessment) and supports our previously proposed concept for Molecular Neuropsychology. PMID:24916542

  17. Building a roadmap to biomarker qualification: challenges and opportunities.

    PubMed

    Amur, Shashi G; Sanyal, Sarmistha; Chakravarty, Aloka G; Noone, Marianne H; Kaiser, James; McCune, Susan; Buckman-Garner, ShaAvhree Y

    2015-01-01

    The traditional route for regulatory acceptance of biomarkers in drug development is through submission of biomarker data in drug approval submissions in the context of a single drug development program. The US FDA's Critical Path Initiative called for establishment of a biomarker qualification process to enable progress in the drug development paradigm. In response to this, the Center for Drug Evaluation and Research (CDER) established a Biomarker Qualification Program (BQP) to qualify a biomarker for a specific context of use (COU). The qualified biomarker can then be used in multiple drug development programs for this COU without re-review. Here, we describe some of the features of the BQP and two new initiatives that have the potential to aid biomarker development through early interactions with the FDA. Finally, we discuss some of the feedback the FDA has received from submitters and the BQP's actions to strengthen the program.

  18. Protein biomarkers in vernix with potential to predict the development of atopic eczema in early childhood

    PubMed Central

    Holm, T; Rutishauser, D; Kai-Larsen, Y; Lyutvinskiy, Y; Stenius, F; Zubarev, R A; Agerberth, B; Alm, J; Scheynius, A

    2014-01-01

    Background Atopic eczema (AE) is a chronic inflammatory skin disease, which has increased in prevalence. Evidence points toward lifestyle as a major risk factor. AE is often the first symptom early in life later followed by food allergy, asthma, and allergic rhinitis. Thus, there is a great need to find early, preferentially noninvasive, biomarkers to identify individuals that are predisposed to AE with the goal to prevent disease development. Objective To investigate whether the protein abundances in vernix can predict later development of AE. Methods Vernix collected at birth from 34 newborns within the Assessment of Lifestyle and Allergic Disease During INfancy (ALADDIN) birth cohort was included in the study. At 2 years of age, 18 children had developed AE. Vernix proteins were identified and quantified with liquid chromatography coupled to tandem mass spectrometry. Results We identified and quantified 203 proteins in all vernix samples. An orthogonal projections to latent structures-discriminant analysis (OPLS-DA) model was found with R2 = 0.85, Q2 = 0.39, and discrimination power between the AE and healthy group of 73.5%. Polyubiquitin-C and calmodulin-like protein 5 showed strong negative correlation to the AE group, with a correlation coefficient of 0.73 and 0.68, respectively, and a P-value of 8.2 E-7 and 1.8 E-5, respectively. For these two proteins, the OPLS-DA model showed a prediction accuracy of 91.2%. Conclusion The protein abundances in vernix, and particularly that of polyubiquitin-C and calmodulin-like protein 5, are promising candidates as biomarkers for the identification of newborns predisposed to develop AE. PMID:24205894

  19. Integrating multiple ‘omics’ analyses identifies serological protein biomarkers for preeclampsia

    PubMed Central

    2013-01-01

    Background Preeclampsia (PE) is a pregnancy-related vascular disorder which is the leading cause of maternal morbidity and mortality. We sought to identify novel serological protein markers to diagnose PE with a multi-’omics’ based discovery approach. Methods Seven previous placental expression studies were combined for a multiplex analysis, and in parallel, two-dimensional gel electrophoresis was performed to compare serum proteomes in PE and control subjects. The combined biomarker candidates were validated with available ELISA assays using gestational age-matched PE (n=32) and control (n=32) samples. With the validated biomarkers, a genetic algorithm was then used to construct and optimize biomarker panels in PE assessment. Results In addition to the previously identified biomarkers, the angiogenic and antiangiogenic factors (soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PIGF)), we found 3 up-regulated and 6 down-regulated biomakers in PE sera. Two optimal biomarker panels were developed for early and late onset PE assessment, respectively. Conclusions Both early and late onset PE diagnostic panels, constructed with our PE biomarkers, were superior over sFlt-1/PIGF ratio in PE discrimination. The functional significance of these PE biomarkers and their associated pathways were analyzed which may provide new insights into the pathogenesis of PE. PMID:24195779

  20. Biomarkers in Sleep Apnea and Heart Failure.

    PubMed

    Zhao, Ying Y; Mehra, Reena

    2017-08-01

    Sleep-disordered breathing (SDB) is highly prevalent in heart failure (HF) and may confer significant stress to the cardiovascular system and increases the risk for future cardiovascular events. The present review will provide updates on the current understanding of the relationship of SDB and common HF biomarkers and the effect of positive airway pressure therapy on these biomarkers, with particular emphasis in patients with coexisting SDB and HF. Prior studies have examined the relationship between HF biomarkers and SDB, and the effect of SDB treatment on these biomarkers, with less data available in the context of coexisting SDB and HF. Overall, however, the association of SDB and circulating biomarkers has been inconsistent. Further research is needed to elucidate the relationship between biomarkers and SDB in HF, to evaluate the clinical utility of biomarkers over standard methods in large, prospective studies and also to assess the impact of treatment of SDB on these biomarkers in HF via interventional studies.

  1. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms.

    PubMed

    Sanjay, Sharma T; Fu, Guanglei; Dou, Maowei; Xu, Feng; Liu, Rutao; Qi, Hao; Li, XiuJun

    2015-11-07

    Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.

  2. Consortium for Imaging and Biomarkers (CIB) Created: Eight Grants Awarded | Division of Cancer Prevention

    Cancer.gov

    The NCI Division of Cancer Prevention awarded eight grants to create the Consortium for Imaging and Biomarkers (CIB) on August 3, 2015. | 8 lead investigators combining imaging methods for the visualization of lesions with biomarkers to improve the accuracy of screening, early cancer detection, and the diagnosis of early stage cancers.

  3. An adaptive design for updating the threshold value of a continuous biomarker.

    PubMed

    Spencer, Amy V; Harbron, Chris; Mander, Adrian; Wason, James; Peers, Ian

    2016-11-30

    Potential predictive biomarkers are often measured on a continuous scale, but in practice, a threshold value to divide the patient population into biomarker 'positive' and 'negative' is desirable. Early phase clinical trials are increasingly using biomarkers for patient selection, but at this stage, it is likely that little will be known about the relationship between the biomarker and the treatment outcome. We describe a single-arm trial design with adaptive enrichment, which can increase power to demonstrate efficacy within a patient subpopulation, the parameters of which are also estimated. Our design enables us to learn about the biomarker and optimally adjust the threshold during the study, using a combination of generalised linear modelling and Bayesian prediction. At the final analysis, a binomial exact test is carried out, allowing the hypothesis that 'no population subset exists in which the novel treatment has a desirable response rate' to be tested. Through extensive simulations, we are able to show increased power over fixed threshold methods in many situations without increasing the type-I error rate. We also show that estimates of the threshold, which defines the population subset, are unbiased and often more precise than those from fixed threshold studies. We provide an example of the method applied (retrospectively) to publically available data from a study of the use of tamoxifen after mastectomy by the German Breast Study Group, where progesterone receptor is the biomarker of interest. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  4. Molecular biomarkers to guide precision medicine in localized prostate cancer.

    PubMed

    Smits, Minke; Mehra, Niven; Sedelaar, Michiel; Gerritsen, Winald; Schalken, Jack A

    2017-08-01

    Major advances through tumor profiling technologies, that include next-generation sequencing, epigenetic, proteomic and transcriptomic methods, have been made in primary prostate cancer, providing novel biomarkers that may guide precision medicine in the near future. Areas covered: The authors provided an overview of novel molecular biomarkers in tissue, blood and urine that may be used as clinical tools to assess prognosis, improve selection criteria for active surveillance programs, and detect disease relapse early in localized prostate cancer. Expert commentary: Active surveillance (AS) in localized prostate cancer is an accepted strategy in patients with very low-risk prostate cancer. Many more patients may benefit from watchful waiting, and include patients of higher clinical stage and grade, however selection criteria have to be optimized and early recognition of transformation from localized to lethal disease has to be improved by addition of molecular biomarkers. The role of non-invasive biomarkers is challenging the need for repeat biopsies, commonly performed at 1 and 4 years in men under AS programs.

  5. F44. AN ADD-ON TRIAL WITH N-ACETYL-CYSTEINE (NAC) IN EARLY PSYCHOSIS PATIENTS: TOWARDS BIOMARKER GUIDED TREATMENT

    PubMed Central

    Conus, Philippe; Fournier, Margot; Xin, Lijing; Cleusix, Martine; Baumann, Philipp S; Ferrari, Carina; Cousins, Ann; Alameda, Luis; Gholam-Razaee, Mehdi; Golay, Philippe; Jenni, Raoul; Woo, Tsung-Ung Wilson; Keshavan, Matcheri; Eap, Chin B; Wojcik, Joanne; Cuenod, Michel; Buclin, Thierry; Gruetter, Rolf; Seidman, Larry; Do, Kim

    2018-01-01

    Abstract Background Oxidative stress, coupled with dysregulation of inflammation, NMDAR and dopamine, is involved in schizophrenia (SZ) pathophysiology. Earlier add-on clinical trials showed in chronic SZ patients that NAC, a precursor of glutathione (GSH), an important cerebral antioxidant, improved negative symptoms, mismatch negativity and local synchronization. We hypothesized that NAC at an earlier stage of illness would have a greater impact. Methods Early psychosis patients (EP, less than 5 years of illness, N=63; NAC=32, placebo=31) were supplemented with NAC (2.7g/day, 6 months) in a double-blind randomized placebo-controlled trial. Outcome measures: PANSS and neurocognition (MATRICS Consensus Cognitive Battery; n=36); quantification of medial prefronfal cortex glutathione (GSHmPFC) by 1H-magnetic-resonance-spectroscopy, of white matter diffusion properties estimated by generalized fractional anisotropy (gFA) computed from diffusion spectrum imaging (DSI), of blood cells GSH (GSHBC) and GSH peroxidase activity (GPxBC) at start and end of trial Results While PANSS negative and positive were not affected by NAC, NAC improved Processing Speed (NAC > Placebo; F(1, 30)=5.849, p=.022), favoring 2 of 3 processing speed tasks (Trail Making A, F(1, 30)=4.279, p=.048 & Verbal Fluency, F(1, 30)=5.749, p=.023). GSHmPFC (+23%, p=0.005) and GSHBC (+19%, p=0.05) were increased following NAC treatment. In patients with high-baseline GPxBC (>22.3U/gHb), subgroup explorations revealed an improvement of PANSS positive compared to placebo (p=0.02). The change of PANSS positive correlated negatively with that of GPxBC activity, showing that the improvement paralleled the restoration of redox status. NAC group showed 11% increase in fornix white matter integrity as measured by gFA, correlating with an increase in GSHmPFC over the 6-months period. Discussion This is the first clinical trial assessing the impact of NAC treatment in a sample of EP and the potential predictive role

  6. Proteomic profiling of human plasma for cancer biomarker discovery.

    PubMed

    Huang, Zhao; Ma, Linguang; Huang, Canhua; Li, Qifu; Nice, Edouard C

    2017-03-01

    Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of many cancers because of the impressive development of novel proteomic strategies. However, it remains difficult to standardize proteomic approaches. In addition, the heterogeneity of proteins in distinct tissues results in incomplete population of the whole proteome, which inevitably limits its clinical practice. As one of the most complex proteomes in the human body, the plasma proteome contains secreted proteins originating from multiple organs and tissues, making it a favorable matrix for comprehensive biomarker discovery. Here, we will discuss the roles of plasma proteome profiling in cancer biomarker discovery and validation, and highlight both the inherent advantages and disadvantages. Although several hurdles lay ahead, further advances in this technology will greatly increase our understanding of cancer biology, reveal new biomarkers and biomarker panels, and open a new avenue for more efficient early diagnosis and surveillance of cancer, leading toward personalized medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biomarkers of early genotoxicity and oxidative stress for occupational risk assessment of exposure to styrene in the fibreglass reinforced plastic industry.

    PubMed

    Cavallo, Delia; Tranfo, Giovanna; Ursini, Cinzia Lucia; Fresegna, Anna Maria; Ciervo, Aureliano; Maiello, Raffaele; Paci, Enrico; Pigini, Daniela; Gherardi, Monica; Gatto, Maria Pia; Buresti, Giuliana; Iavicoli, Sergio

    2018-06-10

    This study aimed to identify sensitive and not-invasive biomarkers of early genotoxic/oxidative effect for exposure to styrene in the fibreglass reinforced plastic manufacture. We studied 11 workers of a plastic manufacture using open molding process (A), 16 workers of a manufacture using closed process (B) and 12 controls. We evaluated geno/cytotoxic effects on buccal cells by Buccal Micronucleus Cytome (BMCyt) assay and genotoxic/oxidative effects on lymphocytes by Fpg-comet test. On A workers we also evaluated urinary 8oxoGua, 8oxodGuo and 8oxoGuo to investigate oxidative stress. Personal inhalation exposure to styrene was monitored by passive air sampling and GC/MS. Biological monitoring included urinary metabolites mandelic acid (MA) and phenylglyoxylic acid (PGA). The findings show higher styrene exposure, urinary MA + PGA levels and micronucleus frequency in manufacture A. Higher buccal karyolytic cell frequency vs controls were found in both exposed populations. We found in exposed workers, no induction of direct DNA damage but oxidative DNA damage. Fpg-comet assay and urinary oxidized guanine seem to be sensitive biomarkers of oxidative stress and BMCyt assay a good-not invasive biomarker of cyto-genotoxicity at target organ. The study, although limited by the small number of studied subjects, shows the usefulness of used biomarkers in risk assessment of styrene-exposed workers. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A review of research on salivary biomarkers for oral cancer detection

    PubMed Central

    2014-01-01

    Using saliva for disease diagnostics and health surveillance is a promising approach as collecting saliva is relatively easy and non-invasive. Over the past two decades, using salivary biomarkers specifically for early cancer detection has attracted much research interest, especially for cancers occurring in the oral cavity and oropharynx, for which the five-year survival rate (62%) is still one of the lowest among all major human cancers. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC) and the standard method for detection is through a comprehensive clinical examination by oral healthcare professionals. Despite the fact that the oral cavity is easily accessible, most OSCCs are not diagnosed until an advanced stage, which is believed to be the major reason for the low survival rate, and points to the urgent need for clinical diagnostic aids for early detection of OSCC. Thus, much research effort has been dedicated to investigating potential salivary biomarkers for OSCC, and more than 100 such biomarkers have been reported in the literature. However, some important issues and challenges have emerged that require solutions and further research in order to find reliable OSCC salivary biomarkers for clinical use. This review article provides an up-to-date list of potential OSCC salivary biomarkers reported as of the fall of 2013, and discusses those emerging issues. By raising the awareness of these issues on the part of both researchers and clinicians, it is hoped that reliable, specific and sensitive salivary biomarkers may be found soon—and not only biomarkers for early OSCC detection but also for detecting other types of cancers or even for monitoring non-cancerous disease activity. PMID:24564868

  9. Molecular effectors in the chronic exposure to arsenic as early and sensitive biomarkers in developing Rhinella arenarum toads.

    PubMed

    Mardirosian, Mariana Noelia; Ceschin, Danilo Guillermo; Lascano, Cecilia Inés; Venturino, Andrés

    2017-05-01

    Arsenic, a natural element of ecological relevance, is one of the most toxic elements present in various regions of the world. It can be found in natural water sources throughout Argentina in concentrations between 0.01 and 15mgL -1 . The Argentinean autochthonous toad Rhinella arenarum was selected to study the molecular mechanisms involved in the effects and response to the chronic As exposure along its embryonic and larval development. We evaluated the effects on MAPK signal transduction pathway and transcription factors c-FOS and c-JUN, and the regulation of the expression at protein levels of different antioxidant enzymes. Our results indicated that As is modulating the MAPK pathway, increasing MEK and ERK levels both in the nuclear and post-nuclear fraction along the embryonic development and mainly at the beginning of the larval stage. Through this pathway, As can upregulate transcription factors like c-FOS and c-JUN, impacting the antioxidant response of the exposed embryos and larvae through antioxidant enzymes and recycling of GSH. Arsenic triggered specifically the synthesis of antioxidant enzymes in exposed R. arenarum embryo and larvae. In particular, the expression levels of SOD, CAT and GST enzymes analyzed by Western blot showed a similar behavior to their enzymatic activities in our previous work. This fact suggests that not only the synthesis of these antioxidant enzymes but also their rapid degradation after inactivation would be regulated in response to ROS levels. Antioxidant enzymes may show dual responses of induction and inactivation followed by degradation depending on the levels of oxidative stress and impact on ROS targets when the exposure is sustained in time and intensity. We also performed a probability of exceedence analysis including our previous results to visualize a progression of the response in time and also established the best early-responding biomarkers at the lowest As concentrations. As a conclusion, the molecular

  10. Gut Microbiota Dysfunction as Reliable Non-invasive Early Diagnostic Biomarkers in the Pathophysiology of Parkinson’s Disease: A Critical Review

    PubMed Central

    Nair, Arun T; Ramachandran, Vadivelan; Joghee, Nanjan M; Antony, Shanish; Ramalingam, Gopalakrishnan

    2018-01-01

    Recent investigations suggest that gut microbiota affects the brain activity through the microbiota-gut-brain axis under both physiological and pathological disease conditions like Parkinson’s disease. Further dopamine synthesis in the brain is induced by dopamine producing enzymes that are controlled by gut microbiota via the microbiota-gut-brain axis. Also alpha synuclein deposition and the associated neurodegeneration in the enteric nervous system that increase intestinal permeability, oxidative stress, and local inflammation, accounts for constipation in Parkinson’s disease patients. The trigger that causes blood brain barrier leakage, immune cell activation and inflammation, and ultimately neuroinflammation in the central nervous system is believed to be due to the chronic low-grade inflammation in the gut. The non-motor symptoms that appear years before motor symptoms could be reliable early biomarkers, if they could be correlated with the established and reliable neuroimaging techniques or behavioral indices. The future directions should therefore, focus on the exploration of newer investigational techniques to identify these reliable early biomarkers and define the specific gut microbes that contribute to the development of Parkinson’s disease. This ultimately should pave the way to safer and novel therapeutic approaches that avoid the complications of the drugs delivered today to the brain of Parkinson’s disease patients. PMID:29291606

  11. The Phenomenology and Generation of Positive Mental Imagery in Early Psychosis.

    PubMed

    Laing, Jennifer; Morland, Tristan; Fornells-Ambrojo, Miriam

    2016-11-01

    Theoretical models of depression and bipolar disorder emphasise the importance of positive mental imagery in mood and behaviour. Distressing, intrusive images are common in psychosis; however, little is known about positive imagery experiences or their association with clinical symptoms. The aim of the current study was to examine the phenomenology of positive imagery in early psychosis and the relationship between the characteristics of positive, future-oriented imagery and symptom severity. Characteristics, thematic content and appraisals of recent self-reported images were examined in 31 people with early psychosis. The vividness and perceived likelihood of deliberately generated, future-oriented images were investigated in relation to clinical symptoms. Eighty-four percent of participants reported experiencing a recent positive image. Themes included the achievement of personal goals, spending enjoyable time with peers and family, loving, intimate relationships and escape from current circumstances. The vividness and perceived likelihood of generated prospective imagery were negatively correlated with levels of depression and social anxiety. The relationship between emotional problems and the ability to imagine positive, future events may have implications for motivation, mood and goal-directed behaviour in psychosis. Everyday experiences of positive imagery may represent the simulation of future goals, attempts to cope or avoid aversive experiences or idealised fantasy. Copyright © 2015 John Wiley & Sons, Ltd. The majority of participants experienced a recent positive image with themes related to goal attainment and social relationships. Depression and social anxiety levels were correlated with the vividness of intentionally generated positive future-oriented images and their perceived likelihood. The assessment of positive imagery in early psychosis appears warranted and may provide insights regarding individual coping strategies, values and goals. Copyright

  12. About the Cancer Biomarkers Research Group | Division of Cancer Prevention

    Cancer.gov

    The Cancer Biomarkers Research Group promotes research to identify, develop, and validate biological markers for early cancer detection and cancer risk assessment. Activities include development and validation of promising cancer biomarkers, collaborative databases and informatics systems, and new technologies or the refinement of existing technologies. NCI DCP News Note

  13. Early urinary biomarkers of acute kidney injury in preterm infants.

    PubMed

    Hanna, Mina; Brophy, Patrick D; Giannone, Peter J; Joshi, Mandar S; Bauer, John A; RamachandraRao, Satish

    2016-08-01

    Acute kidney injury (AKI) in the neonatal intensive care setting is multifactorial and is associated with significant morbidity and mortality. This study evaluates the utility of novel urinary biomarkers to predict the development and/or severity AKI in preterm infants. We performed a case-control study on a prospective cohort of preterm infants (<32 wk), to compare seven urine biomarkers between 25 infants with AKI and 20 infants without AKI. Infants with AKI had significantly higher neutrophil gelatinase-associated lipocalin (NGAL) (median, control (CTRL) vs. AKI; 0.598 vs. 4.24 µg/ml; P < 0.0001). In contrast, urinary epidermal growth factor (EGF) levels were significantly lower in infants who developed AKI compared to controls (median, CTRL vs. AKI; 0.016 vs. 0.006 µg/ml; P < 0.001). The area under the curve (AUC) for NGAL for prediction of stage I AKI on the day prior to AKI diagnosis (day-1) was 0.91, and for the prediction of stage II/III, AKI was 0.92. Similarly, urine EGF was a predictor of renal injury on day -1 (AUC: 0.97 for stage I and 0.86 for stage II/III AKI). Urinary biomarkers may be useful to predict AKI development prior to changes in serum creatinine (SCr) in preterm infants.

  14. Novel VEGF signalling inhibitors: how helpful are biomarkers in their early development?

    PubMed

    Wood, Joanna; Scott, Edwina; Thomas, Anne L

    2009-11-01

    The development of vascular endothelial growth factor (VEGF) inhibitors of tumour angiogenesis can only be described as prolific. It is therefore interesting to speculate which will reach the clinic. Of course, the most effective agents will succeed, but how is effectiveness measured? When presented with a summary of competitive compounds, it can be difficult to discriminate between their potency on target, toxicity and response rates. A comparison was undertaken between new small-molecule tyrosine kinase inhibitors with vascular endothelial growth factor receptor as one of their targets. Factors considered included mode of action (targets), toxicity and usefulness of biomarker data. We carried out a systematic review using PubMed, MEDLINE and American Society of Clinical Oncologist (ASCO) databases for articles (including abstracts) presented in 2007 - 2009. Search terms included 'angiogenesis inhibitors', 'tyrosine kinase inhibitors', 'VEGF' and 'biomarkers'. Nine compounds were selected for detailed comparison. The toxicity profiles of the compounds were similar. Many exposure biomarkers have been identified that have informed the dose and scheduling of these compounds in clinical trials. Progress has also been made in identifying potential efficacy and predictive biomarkers for these new agents; however, these are yet to be validated.

  15. Considerations for a business model for the effective integration of novel biomarkers into drug development.

    PubMed

    Frueh, Felix W

    2008-11-01

    It is 10 years since the introduction of trastuzumab into the US market, and we are still waiting for a validation of the business case for biomarker-driven drug development. While many reasons for the lack of duplication of this model may exist, the need for accelerated innovation in drug development paired with the opportunity of integrating biomarker-driven research into drug development programs may lead to new and creative ways of fostering the cooperation between drug developers and test manufacturers. The rapid increase in knowledge about biomarkers and our understanding of disease and disease mechanisms open unprecedented prospects to make not only better, more informed decisions regarding patient care, but also strategic decisions during drug development. This requires that a biomarker strategy becomes an integral part of (early) drug development and that new, innovative paths are tried towards a model that combines the scientific approach with an economically feasible implementation strategy. Collaborative research, the use of new communication tools, the exploration of alternative ways to position a product in the market, and other considerations are part of such a strategy. This perspective article illustrates the current landscape and takes a look at some of these new ways for more effectively integrating biomarkers into drug development.

  16. Hypersaline Microbial Mat Lipid Biomarkers

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsegereda; Turk, Kendra A.; Summons, Roger E.

    2002-01-01

    Lipid biomarkers and compound specific isotopic abundances are powerful tools for studies of contemporary microbial ecosystems. Knowledge of the relationship of biomarkers to microbial physiology and community structure creates important links for understanding the nature of early organisms and paleoenvironments. Our recent work has focused on the hypersaline microbial mats in evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, sulfur oxidizing and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface. The delta C-13 of cyanobacterial biomarkers such as the monomethylalkanes and hopanoids are consistent with the delta C-13 measured for bulk mat (-10%o), while a GNS biomarker, wax esters (WXE), suggests a more depleted delta C-13 for GNS biomass (-16%o). This isotopic relationship is different than that observed in mats at Octopus Spring, Yellowstone National Park (YSNP) where GNS appear to grow photoheterotrophic ally. WXE abundance, while relatively low, is most pronounced in an anaerobic zone just below the cyanobacterial layer. The WXE isotope composition at GN suggests that these bacteria utilize photoautotrophy incorporating dissolved inorganic carbon (DIC) via the 3-hydroxypropionate pathway using H2S or H2.

  17. The quest for fragile X biomarkers.

    PubMed

    Westmark, Cara J

    2014-12-01

    Fragile X is the most common form of inherited intellectual disability and the leading known genetic cause of autism. There is currently no cure or approved medication for fragile X although various drugs target specific disease symptoms and a large number of therapeutics are in various stages of clinical development. Multiple recent clinical trials have failed on their primary endpoints indicating that there is a compelling need for validated biomarkers and outcome measures in fragile X. There are currently no validated blood-based biomarkers to assess disease severity or to monitor drug efficacy in fragile X syndrome. Herein, we review candidate blood protein biomarkers including extracellular-regulated kinase, phosphoinositide 3-kinase, matrix metalloproteinase 9, amyloid-beta and amyloid-beta protein precursor. Bench-to-bedside plans for fragile X syndrome are severely limited by the lack of validated outcome measures. The reviewed candidate biomarkers are at early stages of validation and deserve further investigation.

  18. Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery.

    PubMed

    Albert, Christian; Albert, Annemarie; Kube, Johanna; Bellomo, Rinaldo; Wettersten, Nicholas; Kuppe, Hermann; Westphal, Sabine; Haase, Michael; Haase-Fielitz, Anja

    2018-06-01

    This study aimed to determine the biomarker-specific outcome patterns and short-and long-term prognosis of cardiac surgery-asoociated acute kidney injury (AKI) identified by standard criteria and/or urinary kidney biomarkers. Patients enrolled (N = 200), originated a German multicenter study (NCT00672334). Standard risk injury, failure, loss, and end-stage renal disease classification (RIFLE) criteria (including serum creatinine and urine output) and urinary kidney biomarker test result (neutrophil gelatinase-associated lipocalin, midkine, interleukin 6, and proteinuria) were used for diagnosis of postoperative AKI. Primary end point was acute renal replacement therapy or in-hospital mortality. Long-term end points among others included 5-year mortality. Patients with single-biomarker-positive subclinical AKI (RIFLE negative) were identified. We controlled for systemic inflammation using C-reactive protein test. Urinary biomarkers (neutrophil gelatinase-associated lipocalin, midkine, and interleukin 6) were identified as independent predictors of the primary end point. Neutrophil gelatinase-associated lipocalin, midkine, or interleukin 6 positivity or de novo/worsening proteinuria identified 21.1%, 16.9%, 30.5%, and 48.0% more cases, respectively, with likely subclinical AKI (biomarker positive/RIFLE negative) additionally to cases with RIFLE positivity alone. Patients with likely subclinical AKI (neutrophil gelatinase-associated lipocalin or interleukin 6 positive) had increased risk of primary end point (adjusted hazard ratio, 7.18; 95% confidence interval, 1.52-33.93 [P = .013] and hazard ratio, 6.27; 95% confidence interval, 1.12-35.21 [P = .037]), respectively. Compared with biomarker-negative/RIFLE-positive patients, neutrophil gelatinase-associated lipocalin positive/RIFLE-positive or midkine-positive/RIFLE-positive patients had increased risk of primary end point (odds ratio, 9.6; 95% confidence interval, 1.4-67.3 [P = .033] and odds ratio, 14

  19. Stable Isotope Ratios as a Biomarker on Mars

    NASA Astrophysics Data System (ADS)

    van Zuilen, Mark

    2008-03-01

    As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237-244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189-214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.

  20. Comprehensive Metabolomics Study To Assess Longitudinal Biochemical Changes and Potential Early Biomarkers in Nonobese Diabetic Mice That Progress to Diabetes.

    PubMed

    Buchwald, Peter; Tamayo-Garcia, Alejandro; Ramamoorthy, Sivapriya; Garcia-Contreras, Marta; Mendez, Armando J; Ricordi, Camillo

    2017-10-06

    A global nontargeted longitudinal metabolomics study was carried out in male and female NOD mice to characterize the time-profile of the changes in the metabolic signature caused by onset of type 1 diabetes (T1D) and identify possible early biomarkers in T1D progressors. Metabolomics profiling of samples collected at five different time-points identified 676 and 706 biochemicals in blood and feces, respectively. Several metabolites were expressed at significantly different levels in progressors at all time-points, and their proportion increased strongly following onset of hyperglycemia. At the last time-point, when all progressors were diabetic, a large percentage of metabolites had significantly different levels: 57.8% in blood and 27.8% in feces. Metabolic pathways most strongly affected included the carbohydrate, lipid, branched-chain amino acid, and oxidative ones. Several biochemicals showed considerable (>4×) change. Maltose, 3-hydroxybutyric acid, and kojibiose increased, while 1,5-anhydroglucitol decreased more than 10-fold. At the earliest time-point (6-week), differences between the metabolic signatures of progressors and nonprogressors were relatively modest. Nevertheless, several compounds had significantly different levels and show promise as possible early T1D biomarkers. They include fatty acid phosphocholine derivatives from the phosphatidylcholine subpathway (elevated in both blood and feces) as well as serotonin, ribose, and arabinose (increased) in blood plus 13-HODE, tocopherol (increased), diaminopimelate, valerate, hydroxymethylpyrimidine, and dulcitol (decreased) in feces. A combined metabolic signature based on these compounds might serve as an early predictor of T1D-progressors.

  1. Aldo-Keto Reductases as Early Biomarkers of Hepatocellular Carcinoma: A Comparison Between Animal Models and Human HCC.

    PubMed

    Torres-Mena, Julia Esperanza; Salazar-Villegas, Karla Noemí; Sánchez-Rodríguez, Ricardo; López-Gabiño, Belém; Del Pozo-Yauner, Luis; Arellanes-Robledo, Jaime; Villa-Treviño, Saúl; Gutiérrez-Nava, María Angélica; Pérez-Carreón, Julio Isael

    2018-04-01

    The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC. To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis. Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4-17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat. The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues. Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.

  2. Heart fatty acid binding protein (H-FABP) as a diagnostic biomarker in patients with acute coronary syndrome.

    PubMed

    Gururajan, Priya; Gurumurthy, Prema; Nayar, Pradeep; Srinivasa Nageswara Rao, G; Babu, Sai; Cherian, K M

    2010-11-01

    Diagnosis of myocardial ischaemia at an early stage in the emergency department is often difficult. A recently proposed biomarker, heart fatty acid binding protein (H-FABP) has been found to appear in the circulation superior to that of cardiac troponins in the early hours of acute coronary syndrome. We proposed to evaluate the levels of H-FABP and ascertain its utility as an early biomarker for acute coronary syndrome (ACS). The present study was carried out in 485 subjects, of whom 297 were diagnosed as patients with ACS, 89 were diagnosed as non-cardiac chest pain (NCCP) and 99 people served as healthy controls. H-FABP levels were measured in comparison with standard markers such as troponin I and CK-MB in all subjects enrolled in the study. The levels of H-FABP were significantly raised in patients when compared to controls and NCCP (P<0.001). Receiver Operator Characteristic Curve (ROC) analysis showed H-FABP to be a good discriminator between patients with ischaemic heart disease and patients without ischaemic heart disease. The area under the curve was found to be 0.965 with 95% CI (0.945-0.979). The cut-off value above which H-FABP can be considered positive was found to be 17.7ng/ml. H-FABP is a promising biomarker for the early detection of patients with acute coronary syndrome. Copyright © 2010 Australasian Society of Cardiac and Thoracic Surgeons and the Cardiac Society of Australia and New Zealand. Published by Elsevier B.V. All rights reserved.

  3. Biomarkers for rheumatoid and psoriatic arthritis.

    PubMed

    Verheul, M K; Fearon, U; Trouw, L A; Veale, D J

    2015-11-01

    Rheumatic diseases, such as rheumatoid and psoriatic arthritis are systemic inflammatory conditions characterized by a chronic form of arthritis, often leading to irreversible joint damage. Early treatment for patients with rheumatic diseases is required to reduce or prevent joint injury. However, early diagnosis can be difficult and currently it is not possible to predict which individual patient will develop progressive erosive disease or who may benefit from a specific treatment according to their clinical features at presentation. Biomarkers are therefore required to enable earlier diagnosis and predict prognosis in both rheumatoid arthritis and psoriatic arthritis. In this review we will examine the evidence and current status of established and experimental biomarkers in rheumatoid and psoriatic arthritis for three important purposes; disease diagnosis, prognosis and prediction of response to therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Proteomic Profiling of Paraffin-Embedded Samples Identifies Metaplasia-Specific and Early-Stage Gastric Cancer Biomarkers

    PubMed Central

    Sousa, Josane F.; Ham, Amy-Joan L.; Whitwell, Corbin; Nam, Ki Taek; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Zhang, Bing; Li, Ming; LaFleur, Bonnie; Liebler, Daniel C.; Goldenring, James R.

    2013-01-01

    Early diagnosis and curative resection are the predominant factors associated with increased survival in patients with gastric cancer. However, most gastric cancer cases are still diagnosed at later stages. Since most pathologic specimens are archived as FFPE samples, the ability to use them to generate expression profiles can greatly improve cancer biomarker discovery. We sought to uncover new biomarkers for stomach preneoplastic metaplasias and neoplastic lesions by generating proteome profiles using FFPE samples. We combined peptide isoelectric focusing and liquid chromatography–tandem mass spectrometry analysis to generate proteomic profiles from FFPE samples of intestinal-type gastric cancer, metaplasia, and normal mucosa. The expression patterns of selected proteins were analyzed by immunostaining first in single tissue sections from normal stomach, metaplasia, and gastric cancer and later in larger tissue array cohorts. We detected 60 proteins up-regulated and 87 proteins down-regulated during the progression from normal mucosa to metaplasia to gastric cancer. Two of the up-regulated proteins, LTF and DMBT1, were validated as specific markers for spasmolytic polypeptide–expressing metaplasia and intestinal metaplasia, respectively. In cancers, significantly lower levels of DMBT1 or LTF correlated with more advanced disease and worse prognosis. Thus, proteomic profiling using FFPE samples has led to the identification of two novel markers for stomach metaplasias and gastric cancer prognosis. PMID:22944598

  5. Prostate Cancer Detection and Prognosis: From Prostate Specific Antigen (PSA) to Exosomal Biomarkers

    PubMed Central

    Filella, Xavier; Foj, Laura

    2016-01-01

    Prostate specific antigen (PSA) remains the most used biomarker in the management of early prostate cancer (PCa), in spite of the problems related to false positive results and overdiagnosis. New biomarkers have been proposed in recent years with the aim of increasing specificity and distinguishing aggressive from non-aggressive PCa. The emerging role of the prostate health index and the 4Kscore is reviewed in this article. Both are blood-based tests related to the aggressiveness of the tumor, which provide the risk of suffering PCa and avoiding negative biopsies. Furthermore, the use of urine has emerged as a non-invasive way to identify new biomarkers in recent years, including the PCA3 and TMPRSS2:ERG fusion gene. Available results about the PCA3 score showed its usefulness to decide the repetition of biopsy in patients with a previous negative result, although its relationship with the aggressiveness of the tumor is controversial. More recently, aberrant microRNA expression in PCa has been reported by different authors. Preliminary results suggest the utility of circulating and urinary microRNAs in the detection and prognosis of PCa. Although several of these new biomarkers have been recommended by different guidelines, large prospective and comparative studies are necessary to establish their value in PCa detection and prognosis. PMID:27792187

  6. Prostate Cancer Detection and Prognosis: From Prostate Specific Antigen (PSA) to Exosomal Biomarkers.

    PubMed

    Filella, Xavier; Foj, Laura

    2016-10-26

    Prostate specific antigen (PSA) remains the most used biomarker in the management of early prostate cancer (PCa), in spite of the problems related to false positive results and overdiagnosis. New biomarkers have been proposed in recent years with the aim of increasing specificity and distinguishing aggressive from non-aggressive PCa. The emerging role of the prostate health index and the 4Kscore is reviewed in this article. Both are blood-based tests related to the aggressiveness of the tumor, which provide the risk of suffering PCa and avoiding negative biopsies. Furthermore, the use of urine has emerged as a non-invasive way to identify new biomarkers in recent years, including the PCA3 and TMPRSS2:ERG fusion gene. Available results about the PCA3 score showed its usefulness to decide the repetition of biopsy in patients with a previous negative result, although its relationship with the aggressiveness of the tumor is controversial. More recently, aberrant microRNA expression in PCa has been reported by different authors. Preliminary results suggest the utility of circulating and urinary microRNAs in the detection and prognosis of PCa. Although several of these new biomarkers have been recommended by different guidelines, large prospective and comparative studies are necessary to establish their value in PCa detection and prognosis.

  7. Discovery of urine biomarkers for bladder cancer via global metabolomics.

    PubMed

    Shi, Hangchuan; Li, Xiang; Zhang, Qingyang; Yang, Hongmei; Zhang, Xiaoping

    2016-11-01

    Bladder cancer (BC) is latent in its early stage and lethal in its late stage. Therefore, early diagnosis and intervention are essential for successful BC treatment. Considering the limitations of current diagnostic tools, noninvasive biomarkers that are both highly sensitive and specific are needed to improve the overall survival and quality of life of patients. With the advent of systems biology, "-omics" technologies have been developed over the past few decades. As a promising member, global metabolomics has increasingly been found to have clear potential for biomarker discovery. However, urinary metabolomics studies related to BC have lagged behind those of other urinary cancers, and major findings have not been systematically reported. The objective of this review is to comprehensively list the currently identified potential urinary metabolite biomarkers for BC.

  8. Applying NGS Data to Find Evolutionary Network Biomarkers from the Early and Late Stages of Hepatocellular Carcinoma

    PubMed Central

    Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou

    2015-01-01

    Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411

  9. Biomarkers for the early detection of relapses in metastatic colorectal cancers.

    PubMed

    Chereches, Gabriela; Barbos, Otilia; Buiga, Rares; Balacescu, Ovidiu; Iancu, Dana; Todor, Nicolae; Balacescu, Loredana; Miron, Nicu; Bejinariu, Nona; Ciuleanu, Tudor-Eliade

    2017-01-01

    To assess prognostic/predictive value of carcinoembryonic antigen (CEA), transthyretin (TRT), αenolase (NNE), β2-microglobulin (β2-micro), B-cell activating factor (BAFF) and circulating tumor cells (CTCs) in metastatic colorectal cancer (mCRC) patients treated with chemotherapy with or without bevacizumab. 72 histologically confirmed mCRC patients treated at Oncology Institute Cluj were included. Biomarker levels were measured through validated methods. A manual method was used for CTCs, involving hemolysis, cytospin centrifugation and immunocytochemical staining for pan-cytokeratin. Statistical endpoints were response, progression- free survival (PFS) and overall survival (OS). Initial chemotherapy was fluoropyrimidine/oxaliplatin-based in 93.1%; bevacizumab was added in 58.3% of the patients. Median PFS and OS were 16.4 and 24.4 months. Two-year OS for CR & PR vs SD vs PD were 90% vs 48% vs 12%, respectively (p<0.01). Two-year OS for chemo/ bevacizumab vs chemotherapy: 65% vs 42% (p=0.09). Baseline CEA ≥5 ng/ml had a negative prognostic impact on OS and PFS (p<0.01). High baseline CEA was predictive of improved OS when adding bevacizumab (2-year OS chemo/bevacizumab vs chemo: 60% vs 17%, p<0.01); adding bevacizumab in patients with normal CEA did not improve OS (p=0.29). Higher than cut-off values for TRT had a positive OS prognostic value (p<0.01); higher levels for NNE, β2-microglobulin and BAFF had a negative impact (p<0.01). Two-year OS for baseline <1 CTC/ml vs ≥1 CTC/ ml was 74% vs 64% respectively (p=0.15). The evaluated biomarkers could be useful prognostic factors for survival. Baseline CEA also has predictive value, suggesting that patients with low levels do not benefit from bevacizumab. A non-statistically significant correlation was observed between the number of CTCs and outcome.

  10. Dopamine Transporter Neuroimaging as an Enrichment Biomarker in Early Parkinson's Disease Clinical Trials: A Disease Progression Modeling Analysis

    PubMed Central

    Nicholas, Timothy; Tsai, Kuenhi; Macha, Sreeraj; Sinha, Vikram; Stone, Julie; Corrigan, Brian; Bani, Massimo; Muglia, Pierandrea; Watson, Ian A.; Kern, Volker D.; Sheveleva, Elena; Marek, Kenneth; Stephenson, Diane T.; Romero, Klaus

    2017-01-01

    Abstract Given the recognition that disease‐modifying therapies should focus on earlier Parkinson's disease stages, trial enrollment based purely on clinical criteria poses significant challenges. The goal herein was to determine the utility of dopamine transporter neuroimaging as an enrichment biomarker in early motor Parkinson's disease clinical trials. Patient‐level longitudinal data of 672 subjects with early‐stage Parkinson's disease in the Parkinson's Progression Markers Initiative (PPMI) observational study and the Parkinson Research Examination of CEP‐1347 Trial (PRECEPT) clinical trial were utilized in a linear mixed‐effects model analysis. The rate of worsening in the motor scores between subjects with or without a scan without evidence of dopamine transporter deficit was different both statistically and clinically. The average difference in the change from baseline of motor scores at 24 months between biomarker statuses was –3.16 (90% confidence interval [CI] = –0.96 to –5.42) points. Dopamine transporter imaging could identify subjects with a steeper worsening of the motor scores, allowing trial enrichment and 24% reduction of sample size. PMID:28749580

  11. Serum anti-Ku86 is a potential biomarker for early detection of hepatitis C virus-related hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Fumio, E-mail: fnomura@faculty.chiba-u.jp; Sogawa, Kazuyuki; Noda, Kenta

    Highlights: Black-Right-Pointing-Pointer Overexpression of Ku86 in human liver cancer was shown by immunohistochemistry. Black-Right-Pointing-Pointer Serum anti-Ku86 was significantly elevated in early hepatocellular carcinoma. Black-Right-Pointing-Pointer Anti-Ku86 may be more sensitive than the conventional markers for early detection. Black-Right-Pointing-Pointer Serum anti-Ku86 significantly decreased after surgical resection of liver tumors. Black-Right-Pointing-Pointer Elevation of serum anti-Ku86 in other non-liver solid tumors was minimal. -- Abstract: Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is one of the most common cancers worldwide and the third most common cause of cancer-related death. Imaging studies including ultrasound and computed tomography are recommended for early detectionmore » of HCC, but they are operator dependent, costly and involve radiation. Therefore, there is a need for simple and sensitive serum markers for the early detection of hepatocellular carcinoma (HCC). In our recent proteomic studies, a number of proteins overexpressed in HCC tissues were identified. We thought if the serum autoantibodies to these overexpressed proteins were detectable in HCC patients. Of these proteins, we focused on Ku86, a nuclear protein involved in multiple biological processes and aimed to assess the diagnostic value of serum anti-Ku86 in the early detection of HCC. Serum samples were obtained prior to treatment from 58 consecutive patients with early or relatively early hepatitis C virus (HCV)-related HCC and 137 patients with HCV-related liver cirrhosis without evidence of HCC. Enzyme immunoassays were used to measure serum levels of autoantibodies. Serum levels of anti-Ku86 antibodies were significantly elevated in HCC patients compared to those in liver cirrhosis patients (0.41 {+-} 0.28 vs. 0.18 {+-} 0.08 Abs at 450 nm, P < 0001). Setting the cut-off level to give 90% specificity, anti-Ku86 was positive in 60

  12. Early Changes in Clinical, Functional, and Laboratory Biomarkers in Workers at Risk of Indium Lung Disease

    PubMed Central

    Virji, M. Abbas; Trapnell, Bruce C.; Carey, Brenna; Healey, Terrance; Kreiss, Kathleen

    2014-01-01

    Rationale: Occupational exposure to indium compounds, including indium–tin oxide, can result in potentially fatal indium lung disease. However, the early effects of exposure on the lungs are not well understood. Objectives: To determine the relationship between short-term occupational exposures to indium compounds and the development of early lung abnormalities. Methods: Among indium–tin oxide production and reclamation facility workers, we measured plasma indium, respiratory symptoms, pulmonary function, chest computed tomography, and serum biomarkers of lung disease. Relationships between plasma indium concentration and health outcome variables were evaluated using restricted cubic spline and linear regression models. Measurements and Main Results: Eighty-seven (93%) of 94 indium–tin oxide facility workers (median tenure, 2 yr; median plasma indium, 1.0 μg/l) participated in the study. Spirometric abnormalities were not increased compared with the general population, and few subjects had radiographic evidence of alveolar proteinosis (n = 0), fibrosis (n = 2), or emphysema (n = 4). However, in internal comparisons, participants with plasma indium concentrations ≥ 1.0 μg/l had more dyspnea, lower mean FEV1 and FVC, and higher median serum Krebs von den Lungen-6 and surfactant protein-D levels. Spline regression demonstrated nonlinear exposure response, with significant differences occurring at plasma indium concentrations as low as 1.0 μg/l compared with the reference. Associations between health outcomes and the natural log of plasma indium concentration were evident in linear regression models. Associations were not explained by age, smoking status, facility tenure, or prior occupational exposures. Conclusions: In indium–tin oxide facility workers with short-term, low-level exposure, plasma indium concentrations lower than previously reported were associated with lung symptoms, decreased spirometric parameters, and increased serum

  13. Biomarkers in rheumatic diseases: how can they facilitate diagnosis and assessment of disease activity?

    PubMed

    Mohan, Chandra; Assassi, Shervin

    2015-11-26

    Serological and proteomic biomarkers can help clinicians diagnose rheumatic diseases earlier and assess disease activity more accurately. These markers have been incorporated into the recently revised classification criteria of several diseases to enable early diagnosis and timely initiation of treatment. Furthermore, they also facilitate more accurate subclassification and more focused monitoring for the detection of certain disease manifestations, such as lung and renal involvement. These biomarkers can also make the assessment of disease activity and treatment response more reliable. Simultaneously, several new serological and proteomic biomarkers have become available in the routine clinical setting--for example, a protein biomarker panel for rheumatoid arthritis and a myositis antibody panel for dermatomyositis and polymyositis. This review will focus on commercially available antibody and proteomic biomarkers in rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), dermatomyositis and polymyositis, and axial spondyloarthritis (including ankylosing spondylitis). It will discuss how these markers can facilitate early diagnosis as well as more accurate subclassification and assessment of disease activity in the clinical setting. The ultimate goal of current and future biomarkers in rheumatic diseases is to enable early detection of these diseases and their clinical manifestations, and to provide effective monitoring and treatment regimens that are tailored to each patient's needs and prognosis. © BMJ Publishing Group Ltd 2015.

  14. Production and early preservation of lipid biomarkers in iron hot springs.

    PubMed

    Parenteau, Mary N; Jahnke, Linda L; Farmer, Jack D; Cady, Sherry L

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51-54°C, pH 5.5-6.0, and are very high in dissolved Fe(II) at 5.8-5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs--environmental conditions that have been previously identified as highly relevant for Mars exploration.

  15. Biomarkers in pancreatic adenocarcinoma: current perspectives.

    PubMed

    Swords, Douglas S; Firpo, Matthew A; Scaife, Courtney L; Mulvihill, Sean J

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of 7.7%. Most patients are diagnosed at an advanced stage not amenable to potentially curative resection. A substantial portion of this review is dedicated to reviewing the current literature on carbohydrate antigen (CA 19-9), which is currently the only guideline-recommended biomarker for PDAC. It provides valuable prognostic information, can predict resectability, and is useful in decision making about neoadjuvant therapy. We also discuss carcinoembryonic antigen (CEA), CA 125, serum biomarker panels, circulating tumor cells, and cell-free nucleic acids. Although many biomarkers have now been studied in relation to PDAC, significant work still needs to be done to validate their usefulness in the early detection of PDAC and management of patients with PDAC.

  16. Biomarkers in pancreatic adenocarcinoma: current perspectives

    PubMed Central

    Swords, Douglas S; Firpo, Matthew A; Scaife, Courtney L; Mulvihill, Sean J

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of 7.7%. Most patients are diagnosed at an advanced stage not amenable to potentially curative resection. A substantial portion of this review is dedicated to reviewing the current literature on carbohydrate antigen (CA 19-9), which is currently the only guideline-recommended biomarker for PDAC. It provides valuable prognostic information, can predict resectability, and is useful in decision making about neoadjuvant therapy. We also discuss carcinoembryonic antigen (CEA), CA 125, serum biomarker panels, circulating tumor cells, and cell-free nucleic acids. Although many biomarkers have now been studied in relation to PDAC, significant work still needs to be done to validate their usefulness in the early detection of PDAC and management of patients with PDAC. PMID:28003762

  17. Biomarkers of Disease and Treatment in Murine and Cynomolgus Models of Chronic Asthma

    PubMed Central

    Louten, Jennifer; Mattson, Jeanine D.; Malinao, Maria-Christina; Li, Ying; Emson, Claire; Vega, Felix; Wardle, Robert L.; Van Scott, Michael R.; Fick, Robert B.; McClanahan, Terrill K.; de Waal Malefyt, Rene; Beaumont, Maribel

    2012-01-01

    Background Biomarkers facilitate early detection of disease and measurement of therapeutic efficacy, both at clinical and experimental levels. Recent advances in analytics and disease models allow comprehensive screening for biomarkers in complex diseases, such as asthma, that was previously not feasible. Objective Using murine and nonhuman primate (NHP) models of asthma, identify biomarkers associated with early and chronic stages of asthma and responses to steroid treatment. Methods The total protein content from thymic stromal lymphopoietin transgenic (TSLP Tg) mouse BAL fluid was ascertained by shotgun proteomics analysis. A subset of these potential markers was further analyzed in BAL fluid, BAL cell mRNA, and lung tissue mRNA during the stages of asthma and following corticosteroid treatment. Validation was conducted in murine and NHP models of allergic asthma. Results Over 40 proteins were increased in the BAL fluid of TSLP Tg mice that were also detected by qRT-PCR in lung tissue and BAL cells, as well as in OVA-sensitive mice and house dust mite-sensitive NHP. Previously undescribed as asthma biomarkers, KLK1, Reg3γ, ITLN2, and LTF were modulated in asthmatic mice, and Clca3, Chi3l4 (YM2), and Ear11 were the first lung biomarkers to increase during disease and the last biomarkers to decline in response to therapy. In contrast, GP-39, LCN2, sICAM-1, YM1, Epx, Mmp12, and Klk1 were good indicators of early therapeutic intervention. In NHP, AMCase, sICAM-1, CLCA1, and GP-39 were reduced upon treatment with corticosteroids. Conclusions and clinical relevance These results significantly advance our understanding of the biomarkers present in various tissue compartments in animal models of asthma, including those induced early during asthma and modulated with therapeutic intervention, and show that BAL cells (or their surrogate, induced sputum cells) are a viable choice for biomarker examination. PMID:22837640

  18. Breast cancer and protein biomarkers

    PubMed Central

    Gam, Lay-Harn

    2012-01-01

    Breast cancer is a healthcare concern of women worldwide. Despite procedures being available for diagnosis, prognosis and treatment of breast cancer, researchers are working intensively on the disease in order to improve the life quality of breast cancer patients. At present, there is no single treatment known to bring a definite cure for breast cancer. One of the possible solutions for combating breast cancer is through identification of reliable protein biomarkers that can be effectively used for early detection, prognosis and treatments of the cancer. Therefore, the task of identification of biomarkers for breast cancer has become the focus of many researchers worldwide. PMID:24520539

  19. Early- or mid-trimester amniocentesis biomarkers for predicting preterm delivery: a meta-analysis.

    PubMed

    Liu, Yinglin; Liu, Yukun; Zhang, Rui; Zhu, Liqiong; Feng, Ziya

    2017-02-01

    To determine the value of early- or mid-trimester amniotic fluid levels of interleukin-6 (IL-6), matrix metalloproteinase-8 (MMP-8), and glucose for predicting preterm delivery. Randomized controlled trials and two-arm prospective, retrospective, cohorts, and case-controlled studies in which patients received early- or mid-trimester amniocentesis for karyotyping, and biomarker testing of the amniotic fluid was performed and delivery data were available were included in the analysis. Outcome measures were the associations of amniotic fluid IL-6, MMP-8, and glucose levels with preterm delivery. Differences in means with 95% confidence intervals (CIs) were calculated. Of 288 articles identified, 14 were included in the meta-analysis with a total of 675 patients who had preterm birth and 2518 patients who had term births. The preterm-delivery group had significantly higher amniotic fluid IL-6 and MMP-8 levels, and a significantly lower glucose level than the term delivery group (IL-6: difference in means = 0.32, 95% CI: 0.22-0.43, p < 0.001; MMP-8: difference in means = 4.47, 95% CI: 0.83-8.11), p = 0.016; glucose: difference in means = -5.22, 95% CI: -8.19 to -2.26, p = 0.001) Conclusion: Early- or mid-trimester amniotic fluid IL-6, MMP-8, and glucose levels are useful for predicting the risk of preterm delivery. KEY MESSAGES Median amniotic fluid ferritin and IL-6 levels, and mean amniotic fluid ALP levels were higher in the preterm group. The preterm-delivery group had significantly higher amniotic fluid IL-6 and MMP-8 levels, and a significantly lower glucose level than the term-delivery group.

  20. Inflammatory mediators as biomarkers in brain disorders.

    PubMed

    Nuzzo, Domenico; Picone, Pasquale; Caruana, Luca; Vasto, Sonya; Barera, Annalisa; Caruso, Calogero; Di Carlo, Marta

    2014-06-01

    Neurodegenerative diseases such as Alzheimer, Parkinson, amyotrophic lateral sclerosis, and Huntington are incurable and debilitating conditions that result in progressive death of the neurons. The definite diagnosis of a neurodegenerative disorder is disadvantaged by the difficulty in obtaining biopsies and thereby to validate the clinical diagnosis with pathological results. Biomarkers are valuable indicators for detecting different phases of a disease such as prevention, early onset, treatment, progression, and monitoring the effect of pharmacological responses to a therapeutic intervention. Inflammation occurs in neurodegenerative diseases, and identification and validation of molecules involved in this process could be a strategy for finding new biomarkers. The ideal inflammatory biomarker needs to be easily measurable, must be reproducible, not subject to wide variation in the population, and unaffected by external factors. Our review summarizes the most important inflammation biomarkers currently available, whose specificity could be utilized for identifying and monitoring distinctive phases of different neurodegenerative diseases.

  1. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2015-09-01

    for public release; distribution unlimited Autism spectrum disorder (ASD); biomarker; early brain development; intrinsic functional brain networks...three large neuroimaging/neurobehavioral datasets to identify brain-imaging based biomarkers for Autism Spectrum Disorders (ASD). At Yale, we focus...neurobehavioral!datasets!in!order!to!identify! brainFimaging!based!biomarkers!for! Autism ! Spectrum ! Disorders !(ASD),!including!1)!BrainMap,! developed!and

  2. Circulating microRNAs as novel biomarkers of ALK-positive nonsmall cell lung cancer and predictors of response to crizotinib therapy.

    PubMed

    Li, Liang-Liang; Qu, Li-Li; Fu, Han-Jiang; Zheng, Xiao-Fei; Tang, Chuan-Hao; Li, Xiao-Yan; Chen, Jian; Wang, Wei-Xia; Yang, Shao-Xing; Wang, Lin; Zhao, Guan-Hua; Lv, Pan-Pan; Zhang, Min; Lei, Yang-Yang; Qin, Hai-Feng; Wang, Hong; Gao, Hong-Jun; Liu, Xiao-Qing

    2017-07-11

    Circulating microRNAs are potential diagnostic and predictive biomarkers, but have not been investigated for patients with anaplastic lymphoma kinase (ALK)-positive lung cancer. In this exploratory study, we sought to identify potential plasma biomarkers for ALK-positive non-small cell lung cancer (NSCLC). A microRNA microarray was used to select ALK-related microRNAs in ALK-positive NSCLC (n = 3), ALK-negative NSCLC (n = 3), and healthy subjects (n = 3). Plasma levels of 21 microRNAs were differentially expressed for ALK-positive and ALK-negative NSCLC, including 14 down-regulated and 7 up-regulated microRNAs. We also identified 5s rRNA as the most stable endogenous control gene using geNorm and NormFinder algorithms. Candidate microRNAs in plasma from ALK-positive (n = 41) and ALK-negative NSCLC patients (n = 32) were quantified using real-time reverse transcriptase quantitative polymerase chain reaction. The expression levels of miR-28-5p, miR-362-5p, and miR-660-5p were all down-regulated in ALK-positive NSCLC, compared with ALK-negative NSCLC. The areas under the receiver operating characteristic curves of miR-28-5p, miR-362-5p, miR-660-5p, and 3-microRNAs panel were 0.873, 0.673, 0.760, and 0.876, respectively. The positive predictive values of miR-28-5p, miR-362-5p, and miR-660-5p were 96.43%, 80.77%, and 83.87%, respectively. Increased plasma levels of miR-660-5p after crizotinib treatment predicted good tumor response (p = 0.012). The pre-crizotinib levels of miR-362-5p were significantly associated with progression-free survival (p = 0.015). Thus, in this preliminary investigation, we identified a potential panel of 3 microRNAs for distinguishing between patients with ALK-positive and ALK-negative NSCLC. We also identified miR-660-5p and miR-362-5p as potential predictors for response to crizotinib treatment.

  3. Neratinib for the treatment of HER2-positive early stage breast cancer.

    PubMed

    Echavarria, Isabel; López-Tarruella, Sara; Márquez-Rodas, Iván; Jerez, Yolanda; Martin, Miguel

    2017-08-01

    Despite the advances in the treatment of HER2-positive breast cancer, resistance to actual chemotherapeutic regimens eventually occurs. Neratinib, an orally available pan-inhibitor of the ERBB family, represents an interesting new option for early-stage HER2-positive breast cancer. Areas covered: In this article, the development of neratinib, with a special focus on its potential value in the treatment of early-stage HER2-positive breast cancer, has been reviewed. For this purpose, a literature search was conducted, including preclinical studies, early-phase trials in advanced cancer with neratinib in monotherapy and in combination, and phase II and large phase III trials in the early setting. Management of neratinib-induced toxicity, future perspectives for the drug, and ongoing trials are also discussed in this review. Expert commentary: Neratinib is emerging as a promising oral drug for the treatment of HER2-positive breast cancer. Although FDA and EMA approval is derived from the extended adjuvant treatment, this setting may not be the ideal scenario to obtain the beneficial effects of neratinib. Confirmatory data in the neoadjuvant setting and subgroup analysis from the ExTENET trial might bring some light into the best setting for neratinib therapy. Data from confirmatory trials in the metastatic setting are also required.

  4. Colorectal cancer biomarkers: To be or not to be? Cautionary tales from a road well travelled

    PubMed Central

    Fung, Kim YC; Nice, Edouard; Priebe, Ilka; Belobrajdic, Damien; Phatak, Aloke; Purins, Leanne; Tabor, Bruce; Pompeia, Celine; Lockett, Trevor; Adams, Timothy E; Burgess, Antony; Cosgrove, Leah

    2014-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide and places a major economic burden on the global health care system. The time frame for development from premalignant to malignant disease typically spans 10-15 years, and this latent period provides an ideal opportunity for early detection and intervention to improve patient outcomes. Currently, early diagnosis of CRC is hampered by a lack of suitable non-invasive biomarkers that are clinically or economically acceptable for population-based screening. New blood-based protein biomarkers for early detection of CRC are therefore urgently required. The success of clinical biomarker discovery and validation studies is critically dependent on understanding and adjusting for potential experimental, analytical, and biological factors that can interfere with the robust interpretation of results. In this review we outline some important considerations for research groups undertaking biomarker research with exemplars from our studies. Implementation of experimental strategies to minimise the potential effects of these problems will facilitate the identification of panels of biomarkers with the sensitivity and specificity required for the development of successful tests for the early detection and surveillance of CRC. PMID:24574763

  5. Biomarker Associations with Efficacy of Abiraterone Acetate and Exemestane in Postmenopausal Patients with Estrogen Receptor-Positive Metastatic Breast Cancer.

    PubMed

    Li, Weimin; O'Shaughnessy, Joyce; Hayes, Daniel; Campone, Mario; Bondarenko, Igor; Zbarskaya, Irina; Brain, Etienne; Stenina, Marina; Ivanova, Olga; Graas, Marie-Pascale; Neven, Patrick; Ricci, Deborah; Griffin, Thomas; Kheoh, Thian; Yu, Margaret; Gormley, Michael; Martin, Jason; Schaffer, Michael; Zelinsky, Kathy; De Porre, Peter; Johnston, Stephen R D

    2016-12-15

    Abiraterone may suppress androgens that stimulate breast cancer growth. We conducted a biomarker analysis of circulating tumor cells (CTCs), formalin-fixed paraffin-embedded tissues (FFPETs), and serum samples from postmenopausal estrogen receptor (ER) + breast cancer patients to identify subgroups with differential abiraterone sensitivity. Patients (randomized 1:1:1) were treated with 1,000 mg/d abiraterone acetate + 5 mg/d prednisone (AA), AA + 25 mg/d exemestane (AAE), or exemestane. The biomarker population included treated patients (n = 293). The CTC population included patients with ≥3 baseline CTCs (n = 104). Biomarker [e.g., androgen receptor (AR), ER, Ki-67, CYP17] expression was evaluated. Cox regression stratified by prior therapies in the metastatic setting (0/1 vs. 2) and setting of letrozole/anastrozole (adjuvant vs. metastatic) was used to assess biomarker associations with progression-free survival (PFS). Serum testosterone and estrogen levels were lowered and progesterone increased with AA. Baseline AR or ER expression was not associated with PFS in CTCs or FFPETs for AAE versus exemestane, but dual positivity of AR and ER expression was associated with improved PFS [HR, 0.41; 95% confidence interval (CI), 0.16-1.07; P = 0.070]. For AR expression in FFPETs obtained <1 year prior to first dose (n = 67), a trend for improved PFS was noted for AAE versus exemestane (HR, 0.56; 95% CI, 0.24-1.33; P = 0.19). An AA pharmacodynamic effect was shown by decreased serum androgen and estrogen levels and increased progesterone. AR and ER dual expression in CTCs and newly obtained FFPETs may predict AA sensitivity. Clin Cancer Res; 22(24); 6002-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Early Diagnosis of Breast Cancer.

    PubMed

    Wang, Lulu

    2017-07-05

    Early-stage cancer detection could reduce breast cancer death rates significantly in the long-term. The most critical point for best prognosis is to identify early-stage cancer cells. Investigators have studied many breast diagnostic approaches, including mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have some limitations such as being expensive, time consuming and not suitable for young women. Developing a high-sensitive and rapid early-stage breast cancer diagnostic method is urgent. In recent years, investigators have paid their attention in the development of biosensors to detect breast cancer using different biomarkers. Apart from biosensors and biomarkers, microwave imaging techniques have also been intensely studied as a promising diagnostic tool for rapid and cost-effective early-stage breast cancer detection. This paper aims to provide an overview on recent important achievements in breast screening methods (particularly on microwave imaging) and breast biomarkers along with biosensors for rapidly diagnosing breast cancer.

  7. Renocardiovascular Biomarkers: from the Perspective of Managing Chronic Kidney Disease and Cardiovascular Disease

    PubMed Central

    Niizuma, Shinichiro; Iwanaga, Yoshitaka; Yahata, Takaharu; Miyazaki, Shunichi

    2017-01-01

    Mortality among the patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) remains high because of the very high incidence of cardiovascular disease (CVD) such as coronary artery disease, cardiac hypertrophy, and heart failure. Identifying CVD in patients with CKD/ESRD remains a significant hurdle and the early diagnosis and therapy for CVD is crucial in these patients. Therefore, it is necessary for the better management to identify and utilize cardiovascular (CV) biomarkers in profiling CVD risk and enabling stratification of early mortality. This review summarizes current evidence about renocardiovascular biomarkers: CV biomarkers in patients with CKD as well as with ESRD, emphasizing on the emerging biomarkers: B-type natriuretic peptide, cardiac troponins, copeptin, the biomarker of renal injury (neutrophil gelatinase-associated lipocalin), and the mineral and bone disorder hormone/marker (fibroblast growth factor-23). Furthermore, it discusses their potential roles especially in ESRD and in future diagnostic and therapeutic strategies for CVD in the context of managing cardiorenal syndrome. PMID:28321399

  8. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances.

    PubMed

    Lech, Gustaw; Słotwiński, Robert; Słodkowski, Maciej; Krasnodębski, Ireneusz Wojciech

    2016-02-07

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer among females and third among males worldwide. It also contributes significantly to cancer-related deaths, despite the continuous progress in diagnostic and therapeutic methods. Biomarkers currently play an important role in the detection and treatment of patients with colorectal cancer. Risk stratification for screening might be augmented by finding new biomarkers which alone or as a complement of existing tests might recognize either the predisposition or early stage of the disease. Biomarkers have also the potential to change diagnostic and treatment algorithms by selecting the proper chemotherapeutic drugs across a broad spectrum of patients. There are attempts to personalise chemotherapy based on presence or absence of specific biomarkers. In this review, we update review published last year and describe our understanding of tumour markers and biomarkers role in CRC screening, diagnosis, treatment and follow-up. Goal of future research is to identify those biomarkers that could allow a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel and define the predictive biomarkers for available treatments.

  9. Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma

    PubMed Central

    Qi, Jiahui; Wang, Jin; Katayama, Hiroshi; Sen, Subrata; Liu, Song-mei

    2013-01-01

    Incidence and mortality associated with hepatocellular carcinoma (HCC) is rising throughout the world. Accurate, noninvasive biomarkers for the early detection of HCC are urgently needed to reduce worldwide morbidity and mortality related to HCC. MicroRNAs (miRNAs), 17- to 25-nucleotide noncoding RNAs that are frequently dysregulated in HCC, have shown great promise as tissue-based markers for HCC diagnosis and prognosis. Moreover, they are stably expressed in serum and urine, and these circulating microRNAs (cmiRNAs) are emerging as novel noninvasive biomarkers for the early detection and prognosis of HCC. This article summarizes the latest findings on the role of circulating miRNAs as potential minimally invasive diagnostic and prognostic biomarkers for HCC. PMID:23259781

  10. Current Role for Biomarkers in Clinical Diagnosis of Alzheimer Disease and Frontotemporal Dementia.

    PubMed

    Sheikh-Bahaei, Nasim; Sajjadi, Seyed Ahmad; Pierce, Aimee L

    2017-11-14

    Purpose of review Alzheimer's disease (AD) and frontotemporal dementia can often be diagnosed accurately with careful clinical history, cognitive testing, neurological examination, and structural brain MRI. However, there are certain circumstances wherein detection of specific biomarkers of neurodegeneration or underlying AD pathology will impact the clinical diagnosis or treatment plan. We will review the currently available biomarkers for AD and frontotemporal dementia (FTD) and discuss their clinical importance. Recent findings With the advent of 18 F-labeled tracers that bind amyloid plaques, amyloid PET is now clinically available for the detection of amyloid pathology and to aid in a biomarker-supported diagnosis of AD or mild cognitive impairment (MCI) due to AD. It is not yet possible to test for the specific FTD pathologies (tau or TDP-43); however, a diagnosis of FTD may be "imaging supported" based upon specific MRI or FDG-PET findings. Cerebrospinal fluid measures of amyloid-beta, total-tau, and phospho-tau are clinically available and allow detection of both of the cardinal pathologies of AD: amyloid and tau pathology. Summary It is appropriate to pursue biomarker testing in cases of MCI and dementia when there remains diagnostic uncertainty and the result will impact diagnosis or treatment. Practically speaking, due to the rising prevalence of amyloid positivity with advancing age, measurement of biomarkers in cases of MCI and dementia is most helpful in early-onset patients, patients with atypical clinical presentations, or when considering referral for AD clinical trials.

  11. Biomarkers of PTSD: military applications and considerations.

    PubMed

    Lehrner, Amy; Yehuda, Rachel

    2014-01-01

    Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  12. Blood Biomarkers for the Early Diagnosis of Stroke: The Stroke-Chip Study.

    PubMed

    Bustamante, Alejandro; López-Cancio, Elena; Pich, Sara; Penalba, Anna; Giralt, Dolors; García-Berrocoso, Teresa; Ferrer-Costa, Carles; Gasull, Teresa; Hernández-Pérez, María; Millan, Mónica; Rubiera, Marta; Cardona, Pedro; Cano, Luis; Quesada, Helena; Terceño, Mikel; Silva, Yolanda; Castellanos, Mar; Garces, Moisés; Reverté, Silvia; Ustrell, Xavier; Marés, Rafael; Baiges, Joan Josep; Serena, Joaquín; Rubio, Francisco; Salas, Eduardo; Dávalos, Antoni; Montaner, Joan

    2017-09-01

    Stroke diagnosis could be challenging in the acute phase. We aimed to develop a blood-based diagnostic tool to differentiate between real strokes and stroke mimics and between ischemic and hemorrhagic strokes in the hyperacute phase. The Stroke-Chip was a prospective, observational, multicenter study, conducted at 6 Stroke Centers in Catalonia. Consecutive patients with suspected stroke were enrolled within the first 6 hours after symptom onset, and blood samples were drawn immediately after admission. A 21-biomarker panel selected among previous results and from the literature was measured by immunoassays. Outcomes were differentiation between real strokes and stroke mimics and between ischemic and hemorrhagic strokes. Predictive models were developed by combining biomarkers and clinical variables in logistic regression models. Accuracy was evaluated with receiver operating characteristic curves. From August 2012 to December 2013, 1308 patients were included (71.9% ischemic, 14.8% stroke mimics, and 13.3% hemorrhagic). For stroke versus stroke mimics comparison, no biomarker resulted included in the logistic regression model, but it was only integrated by clinical variables, with a predictive accuracy of 80.8%. For ischemic versus hemorrhagic strokes comparison, NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) >4.9 (odds ratio, 2.40; 95% confidence interval, 1.55-3.71; P <0.0001) and endostatin >4.7 (odds ratio, 2.02; 95% confidence interval, 1.19-3.45; P =0.010), together with age, sex, blood pressure, stroke severity, atrial fibrillation, and hypertension, were included in the model. Predictive accuracy was 80.6%. The studied biomarkers were not sufficient for an accurate differential diagnosis of stroke in the hyperacute setting. Additional discovery of new biomarkers and improvement on laboratory techniques seem necessary for achieving a molecular diagnosis of stroke. © 2017 American Heart Association, Inc.

  13. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    PubMed Central

    Jahnke, Linda L.; Farmer, Jack D.; Cady, Sherry L.

    2014-01-01

    Abstract The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration. Key Words: Lipid biomarkers—Photosynthesis—Iron—Hot springs—Mars. Astrobiology 14, 502–521. PMID:24886100

  14. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parenteau, Mary N.; Jahnke, Linda L.; Farmer, Jack D.

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fattymore » acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. Finally, this study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration.« less

  15. Understanding Early Post-Mortem Biochemical Processes Underlying Meat Color and pH Decline in the Longissimus thoracis Muscle of Young Blond d'Aquitaine Bulls Using Protein Biomarkers.

    PubMed

    Gagaoua, Mohammed; Terlouw, E M Claudia; Micol, Didier; Boudjellal, Abdelghani; Hocquette, Jean-François; Picard, Brigitte

    2015-08-05

    Many studies on color biochemistry and protein biomarkers were undertaken in post-mortem beef muscles after ≥24 hours. The present study was conducted on Longissimus thoracis muscles of 21 Blond d'Aquitaine young bulls to evaluate the relationships between protein biomarkers present during the early post-mortem and known to be related to tenderness and pH decline and color development. pH values at 45 min, 3 h, and 30 h post-mortem were correlated with three, seven, and six biomarkers, respectively. L*a*b* color coordinates 24 h post-mortem were correlated with nine, five, and eight protein biomarkers, respectively. Regression models included Hsp proteins and explained between 47 and 59% of the variability between individuals in pH and between 47 and 65% of the variability in L*a*b* color coordinates. Proteins correlated with pH and/or color coordinates were involved in apoptosis or had antioxidative or chaperone activities. The main results include the negative correlations between pH45 min, pH3 h, and pHu and Prdx6, which may be explained by the antioxidative and phospholipase activities of this biomarker. Similarly, inducible Hsp70-1A/B and μ-calpain were correlated with L*a*b* coordinates, due to the protective action of Hsp70-1A/B on the proteolytic activities of μ-calpain on structural proteins. Correlations existed further between MDH1, ENO3, and LDH-B and pH decline and color stability probably due to the involvement of these enzymes in the glycolytic pathway and, thus, the energy status of the cell. The present results show that research using protein indicators may increase the understanding of early post-mortem biological mechanisms involved in pH and beef color development.

  16. Hypothesis: Induction of biomarkers for detection of colonic neoplasms

    PubMed Central

    Bordonaro, Michael; Lazarova, Darina

    2018-01-01

    The signing of the National Cancer Act of 1971 by President Nixon marked the beginning of our war on cancer. More than 45 years later, the war is still going steady, with the enemy being almost as strong as in 1971. Furthermore, the increasing rates of obesity not only among adults, but among children and adolescents, are the likely cause for the 30-year trend of colon cancer (CC) becoming a disease of the younger population in the U.S. These trends, however, have not spurred the development of novel screening approaches for CC. Considering the need for a sensitive and non-invasive detection of early stage neoplastic lesions in the colon, we propose the development of a test based on a novel concept - the concept of induced biomarkers. The proposal is based upon our findings that the food additives propolis and gamma-cyclodextrin (gCD) (a) decrease the neoplastic burden in normal weight and obese ApcMin mice, a model of early stage intestinal neoplasia, and (b) elicit significant changes in the serum proteome in ApcMin mice. We posit that gCD and propolis induce the release of neoplasm-associated biomarkers in systemic circulation (e.g., metabolites, neoplastic, apoptotic, and immune response proteins), and these markers could be used to detect early stage intestinal neoplasms. Additional dietary bioactives may also elicit a complement of induced markers. The hypothesis could be ascertained by utilizing a mouse model, the Apc+/1638Nmice, as well as through human subject studies that integrate proteomics and metabolomics analyses. The concept of detecting inducible markers of colonic neoplasms is novel, and is substantiated by the significant physiological effects of gCD and propolis on neoplastic colonic cells in culture and on early neoplastic development in ApcMinmice. The long-term objective is to develop a minimally invasive method that detects early stage neoplastic development in the human colon. PMID:29290782

  17. Early biomarkers of acute kidney failure after heart angiography or heart surgery in patients with acute coronary syndrome or acute heart failure.

    PubMed

    Torregrosa, Isidro; Montoliu, Carmina; Urios, Amparo; Elmlili, Nisrin; Puchades, María Jesús; Solís, Miguel Angel; Sanjuán, Rafael; Blasco, Maria Luisa; Ramos, Carmen; Tomás, Patricia; Ribes, José; Carratalá, Arturo; Juan, Isabel; Miguel, Alfonso

    2012-01-01

    Acute kidney injury (AKI) is a common complication in cardiac surgery and coronary angiography, which worsens patients' prognosis. The diagnosis is based on the increase in serum creatinine, which is delayed. It is necessary to identify and validate new biomarkers that allow for early and effective interventions. To assess the sensitivity and specificity of neutrophil gelatinase-associated lipocalin in urine (uNGAL), interleukin-18 (IL-18) in urine and cystatin C in serum for the early detection of AKI in patients with acute coronary syndrome or heart failure, and who underwent cardiac surgery or catheterization. The study included 135 patients admitted to the intensive care unit for acute coronary syndrome or heart failure due to coronary or valvular pathology and who underwent coronary angiography or cardiac bypass surgery or valvular replacement. The biomarkers were determined 12 hours after surgery and serum creatinine was monitored during the next six days for the diagnosis of AKI. The area under the ROC curve (AUC) for NGAL was 0.983, and for cystatin C and IL-18 the AUCs were 0.869 and 0.727, respectively. At a cut-off of 31.9 ng/ml for uNGAL the sensitivity was 100% and the specificity was 91%. uNGAL is an early marker of AKI in patients with acute coronary syndrome or heart failure and undergoing cardiac surgery and coronary angiography, with a higher predictive value than cystatin C or IL-18.

  18. Optimal two-stage enrichment design correcting for biomarker misclassification.

    PubMed

    Zang, Yong; Guo, Beibei

    2018-01-01

    The enrichment design is an important clinical trial design to detect the treatment effect of the molecularly targeted agent (MTA) in personalized medicine. Under this design, patients are stratified into marker-positive and marker-negative subgroups based on their biomarker statuses and only the marker-positive patients are enrolled into the trial and randomized to receive either the MTA or a standard treatment. As the biomarker plays a key role in determining the enrollment of the trial, a misclassification of the biomarker can induce substantial bias, undermine the integrity of the trial, and seriously affect the treatment evaluation. In this paper, we propose a two-stage optimal enrichment design that utilizes the surrogate marker to correct for the biomarker misclassification. The proposed design is optimal in the sense that it maximizes the probability of correctly classifying each patient's biomarker status based on the surrogate marker information. In addition, after analytically deriving the bias caused by the biomarker misclassification, we develop a likelihood ratio test based on the EM algorithm to correct for such bias. We conduct comprehensive simulation studies to investigate the operating characteristics of the optimal design and the results confirm the desirable performance of the proposed design.

  19. Biomarkers of (osteo)arthritis

    PubMed Central

    Mobasheri, Ali; Henrotin, Yves

    2015-01-01

    Abstract Arthritic diseases are a major cause of disability and morbidity, and cause an enormous burden for health and social care systems globally. Osteoarthritis (OA) is the most common form of arthritis. The key risk factors for the development of OA are age, obesity, joint trauma or instability. Metabolic and endocrine diseases can also contribute to the pathogenesis of OA. There is accumulating evidence to suggest that OA is a whole-organ disease that is influenced by systemic mediators, inflammaging, innate immunity and the low-grade inflammation induced by metabolic syndrome. Although all joint tissues are implicated in disease progression in OA, articular cartilage has received the most attention in the context of aging, injury and disease. There is increasing emphasis on the early detection of OA as it has the capacity to target and treat the disease more effectively. Indeed it has been suggested that this is the era of “personalized prevention” for OA. However, the development of strategies for the prevention of OA require new and sensitive biomarker tools that can detect the disease in its molecular and pre-radiographic stage, before structural and functional alterations in cartilage integrity have occurred. There is also evidence to support a role for biomarkers in OA drug discovery, specifically the development of disease modifying osteoarthritis drugs. This Special Issue of Biomarkers is dedicated to recent progress in the field of OA biomarkers. The papers in this Special Issue review the current state-of-the-art and discuss the utility of OA biomarkers as diagnostic and prognostic tools. PMID:26954784

  20. Multimodal lung cancer screening using the ITALUNG biomarker panel and low dose computed tomography. Results of the ITALUNG biomarker study.

    PubMed

    Carozzi, Francesca Maria; Bisanzi, Simonetta; Carrozzi, Laura; Falaschi, Fabio; Lopes Pegna, Andrea; Mascalchi, Mario; Picozzi, Giulia; Peluso, Marco; Sani, Cristina; Greco, Luana; Ocello, Cristina; Paci, Eugenio

    2017-07-01

    Asymptomatic high-risk subjects, randomized in the intervention arm of the ITALUNG trial (1,406 screened for lung cancer), were enrolled for the ITALUNG biomarker study (n = 1,356), in which samples of blood and sputum were analyzed for plasma DNA quantification (cut off 5 ng/ml), loss of heterozygosity and microsatellite instability. The ITALUNG biomarker panel (IBP) was considered positive if at least one of the two biomarkers included in the panel was positive. Subjects with and without lung cancer diagnosis at the end of the screening cycle with LDCT (n = 517) were evaluated. Out of 18 baseline screen detected lung cancer cases, 17 were IBP positive (94%). Repeat screen-detected lung cancer cases were 18 and 12 of them positive at baseline IBP test (66%). Interval cancer cases (2-years) and biomarker tests after a suspect Non Calcific Nodule follow-up were investigated. The single test versus multimodal screening measures of accuracy were compared in a simulation within the screened ITALUNG intervention arm, considering screen-detected and interval cancer cases. Sensitivity was 90% at baseline screening. Specificity was 71 and 61% for LDCT and IBP as baseline single test, and improved at 89% with multimodal, combined screening. The positive predictive value was 4.3% for LDCT at baseline and 10.6% for multimodal screening. Multimodal screening could improve the screening efficiency at baseline and strategies for future implementation are discussed. If IBP was used as primary screening test, the LDCT burden might decrease of about 60%. © 2017 UICC.

  1. Positive emotions in early life and longevity: findings from the nun study.

    PubMed

    Danner, D D; Snowdon, D A; Friesen, W V

    2001-05-01

    Handwritten autobiographies from 180 Catholic nuns, composed when participants were a mean age of 22 years, were scored for emotional content and related to survival during ages 75 to 95. A strong inverse association was found between positive emotional content in these writings and risk of mortality in late life (p < .001). As the quartile ranking of positive emotion in early life increased, there was a stepwise decrease in risk of mortality resulting in a 2.5-fold difference between the lowest and highest quartiles. Positive emotional content in early-life autobiographies was strongly associated with longevity 6 decades later. Underlying mechanisms of balanced emotional states are discussed.

  2. Biomarkers of adverse drug reactions.

    PubMed

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  3. Evaluating Chagas disease progression and cure through blood-derived biomarkers: a systematic review.

    PubMed

    Requena-Méndez, Ana; López, Manuel Carlos; Angheben, Andrea; Izquierdo, Luis; Ribeiro, Isabela; Pinazo, Maria-Jesús; Gascon, Joaquim; Muñoz, José

    2013-09-01

    This article reviews the usefulness of various types of blood-derived biomarkers that are currently being studied to predict the progression of Chagas disease in patients with the indeterminate form, to assess the efficacy of antiparasitic drugs and to identify early cardiac and gastrointestinal damage. The authors used a search strategy based on MEDLINE, Cochrane Library Register for systematic review, EmBase, Global Health and LILACS databases. Out of 1716 screened articles, only 166 articles were eligible for final inclusion. The authors classified the biomarkers according to their biochemical structure and primary biological activity in four groups: i) markers of inflammation and cellular injury, ii) metabolic biomakers, iii) prothrombotic biomarkers and iv) markers derived from specific antigens of the parasite. Several potential biomarkers might have clinical potential for the detection of early cardiopathy. Such capacity is imperative in order to detect high-risk patients who require intensive monitoring and earlier therapy. Prospective studies with longer follow-ups are needed for the appraisal of biomarkers assessing clinical or microbiological cure after therapy. At the same time, studies evaluating more than one biomarker are useful to compare the efficacy among them given the lack of a recognized gold standard.

  4. Impact of biomarker development on drug safety assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrer, Estelle, E-mail: estelle.marrer@novartis.co; Dieterle, Frank

    2010-03-01

    Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative andmore » 'door opening' safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the 'know how' acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.« less

  5. Molecular alterations and biomarkers in colorectal cancer

    PubMed Central

    Grady, William M.; Pritchard, Colin C.

    2013-01-01

    The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577

  6. Prostatic specific antigen. From its early days until becoming a prostate cancer biomarker.

    PubMed

    Dellavedova, T

    2016-01-01

    Prostate-specific antigen (PSA) has been since the mid 80's the most commonly used biomarker for measuring current and future risk of prostate cancer, for its early detection and to measure response to treatments and detecting recurrence in all stages of the disease. PSA's early development came along with progress in the field of immunology, which allowed detection and study of antigens from different tissues and fluids when injecting them into rabbits to promote immune response. Rubin Flocks in 1960 was the first to investigate and discover prostate-specific antigens in benign and malignant tissue. Some years later, Hara, a Japanese forensic investigator, found 'gamma seminoprotein', that he used to detect human semen in rape cases. However, his work published in Japanese did not reach the Englishspeaking scientific community. In 1970 Ablin discovered both in prostatic fluid and tissue what he called "prostate-specific antigen", but he didn't characterize or describe it. Investigators Li and Beling, and Sensabaugh, approached the current PSA, but they were limited by available technology at that time. Dr T Ming Chu led a research team on prostate cancer in New York, USA and published their results in 1979. He finally received the patent for the discovery of "human purified prostate antigen" in 1984. Due to this work, the Food and Drug Administration (FDA), in USA, approved the use of PSA for monitoring recurrence after treatment. It was later known that PSA was not prostate-specific since it was produced in other tissues and fluids, but it was recognized that it was human species-specific. Works by Papsidero and Stamey showed new indications and utilities for PSA, but it was Catalona who first used it as a marker for prostate cancer in 1991. Thanks to these advances FDA authorized in 1994 the clinical use of PSA for early detection of prostate cancer.

  7. Population-based study of blood biomarkers in prediction of sub-acute recurrent stroke

    PubMed Central

    Segal, Helen C; Burgess, Annette I; Poole, Debbie L; Mehta, Ziyah; Silver, Louise E; Rothwell, Peter M

    2017-01-01

    Background and purpose Risk of recurrent stroke is high in the first few weeks after TIA or stroke and clinic risk prediction tools have only limited accuracy, particularly after the hyper-acute phase. Previous studies of the predictive value of biomarkers have been small, been done in selected populations and have not concentrated on the acute phase or on intensively treated populations. We aimed to determine the predictive value of a panel of blood biomarkers in intensively treated patients early after TIA and stroke. Methods We studied 14 blood biomarkers related to inflammation, thrombosis, atherogenesis and cardiac or neuronal cell damage in early TIA or ischaemic stroke in a population-based study (Oxford Vascular Study). Biomarker levels were related to 90-day risk of recurrent stroke as Hazard Ratio (95%CI) per decile increase, adjusted for age and sex. Results Among 1292 eligible patients there were 53 recurrent ischaemic strokes within 90 days. There were moderate correlations (r>0.40; p<0001) between the inflammatory biomarkers and between the cell damage and thrombotic subsets. However, associations with risk of early recurrent stroke were weak, with significant associations limited to Interleukin-6 (HR=1.12, 1.01-1.24; p=0.035) and C-reactive protein (1.16, 1.02-1.30; p=0.019). When stratified by type of presenting event, P-selectin predicted stroke after TIA (1.31, 1.03-1.66; p=0.028) and C-reactive protein predicted stroke after stroke (1.16, 1.01-1.34; p=0.042). These associations remained after fully adjusting for other vascular risk factors. Conclusion In the largest study to date, we found very limited predictive utility for early recurrent stroke for a panel of inflammatory, thrombotic and cell damage biomarkers. PMID:25158774

  8. SU-F-R-24: Identifying Prognostic Imaging Biomarkers in Early Stage Lung Cancer Using Radiomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, X; Wu, J; Cui, Y

    2016-06-15

    Purpose: Patients diagnosed with early stage lung cancer have favorable outcomes when treated with surgery or stereotactic radiotherapy. However, a significant proportion (∼20%) of patients will develop metastatic disease and eventually die of the disease. The purpose of this work is to identify quantitative imaging biomarkers from CT for predicting overall survival in early stage lung cancer. Methods: In this institutional review board-approved HIPPA-compliant retrospective study, we retrospectively analyzed the diagnostic CT scans of 110 patients with early stage lung cancer. Data from 70 patients were used for training/discovery purposes, while those of remaining 40 patients were used for independentmore » validation. We extracted 191 radiomic features, including statistical, histogram, morphological, and texture features. Cox proportional hazard regression model, coupled with the least absolute shrinkage and selection operator (LASSO), was used to predict overall survival based on the radiomic features. Results: The optimal prognostic model included three image features from the Law’s feature and wavelet texture. In the discovery cohort, this model achieved a concordance index or CI=0.67, and it separated the low-risk from high-risk groups in predicting overall survival (hazard ratio=2.72, log-rank p=0.007). In the independent validation cohort, this radiomic signature achieved a CI=0.62, and significantly stratified the low-risk and high-risk groups in terms of overall survival (hazard ratio=2.20, log-rank p=0.042). Conclusion: We identified CT imaging characteristics associated with overall survival in early stage lung cancer. If prospectively validated, this could potentially help identify high-risk patients who might benefit from adjuvant systemic therapy.« less

  9. Cognitive impairment in metabolically-obese, normal-weight rats: identification of early biomarkers in peripheral blood mononuclear cells.

    PubMed

    Cifre, Margalida; Palou, Andreu; Oliver, Paula

    2018-03-22

    Metabolically-obese, normal-weight (MONW) individuals are not obese in terms of weight and height but have a number of obesity-related features (e.g. greater visceral adiposity, insulin resistance, and increased risk of cardiovascular disease). The MONW phenotype is related to the intake of unbalanced diets, such as those rich in fat. Increasing evidence shows a relationship between high-fat diet consumption and mild cognitive impairment and dementia. Thus, MONW individuals could be at a greater risk of cognitive dysfunction. We aimed to evaluate whether MONW-like animals present gene expression alterations in the hippocampus associated with an increased risk of cognitive impairment, and to identify early biomarkers of cognitive dysfunction in peripheral blood mononuclear cells (PBMC). Wistar rats were chronically fed with a 60% (HF60) or a 45% (HF45) high-fat diet administered isocalorically to control animals to mimic MONW features. Expression analysis of cognitive decline-related genes was performed using RT-qPCR, and working memory was assessed using a T-maze. High-fat diet consumption altered the pattern of gene expression in the hippocampus, clearly pointing to cognitive decline, which was accompanied by a worse performance in the T-maze in HF60 animals. Remarkably, Syn1 and Sorl1 mRNA showed the same expression pattern in both the hippocampus and the PBMC obtained at different time-points in the HF60 group, even before other pathological signs were observed. Our results demonstrate that long-term intake of high-fat diets, even in the absence of obesity, leads to cognitive disruption that is reflected in PBMC transcriptome. Therefore, PBMC are revealed as a plausible, minimally-invasive source of early biomarkers of cognitive impairment associated with increased fat intake.

  10. Early Career Teachers' Resilience and Positive Adaptive Change Capabilities

    ERIC Educational Resources Information Center

    Bowles, Terry; Arnup, Jessica L.

    2016-01-01

    This research is an investigation of the link between adaptive functioning and resilience in early career teachers (ECT). Resilience is considered an important capability of teachers and research has shown that teachers who are resourceful, demonstrate agency and develop positive management strategies overcome adversity. In this research, we aim…

  11. [Clinical Advanced in Early-stage ALK-positive Non-small Cell Lung Cancer Patients].

    PubMed

    Gao, Qiongqiong; Jiang, Xiangli; Huang, Chun

    2017-02-20

    Lung cancer is the leading cause of cancer death in China. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, with the majority of the cases diagnosed at the advanced stage. Molecular targeted therapy is becoming the focus attention for advanced NSCLC. Echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene (EML4-ALK) is among the most common molecular targets of NSCLC; its specific small-molecule tyrosine kinase inhibitors (TKIs) are approved for use in advanced NSCLC cases of ALK-positive. However, the influence of EML4-ALK fusion gene on the outcome of early-stage NSCLC cases and the necessity of application of TKIs for early-stage ALK-positive NSCLC patients are still uncertain. In this paper, we summarized the progression of testing methods for ALK-positive NSCLC patients as well as clinicopathological implication, outcome, and necessity of application of TKIs for early-stage ALK-positive NSCLC patients.

  12. Translational safety biomarkers of colonic barrier integrity in the rat.

    PubMed

    Erkens, Tim; Bueters, Ruud; van Heerden, Marjolein; Cuyckens, Filip; Vreeken, Rob; Goeminne, Nick; Lammens, Lieve

    2018-05-20

    The intestinal barrier controls intestinal permeability, and its disruption has been associated with multiple diseases. Therefore, preclinical safety biomarkers monitoring barrier integrity are essential during the development of drugs targeting the intestines, particularly if starting treatment early after onset of disease. Classical toxicology endpoints are not sensitive enough and therefore our objective was to identify non-invasive markers enabling early in vivo detection of colonic barrier perturbation. Male Sprague-Dawley rats were dosed intracolonically via the rectum, using sodium caprate or ibuprofen as tool compounds to alter barrier integrity. Several potentially translational biomarkers and probe molecules related to permeability, inflammation or tissue damage were evaluated, using various analytical platforms, including immunoassays, targeted metabolomics and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry. Several markers were identified that allow early in vivo detection of colonic barrier integrity changes, before histopathological evidence of tissue damage. The most promising permeability markers identified were plasma fluorescein isothiocyanate-dextran 4000 and a lactulose/mannitol/sucralose mixture in urine. These markers showed maximum increases over 100-fold or approximately 10-50-fold, respectively. Intracolonic administration of the above probe molecules outperformed oral administration and inflammatory or other biomarkers, such as α 2 -macroglobulin, calprotectin, cytokines, prostaglandins and a panel of metabolic molecules to identify early and subtle changes in barrier integrity. However, optimal timing of probe administration and sample collection is important for all markers evaluated. Inclusion of these probe molecules in preclinical toxicity studies might aid in risk assessment and the design of a clinical biomarker plan, as several of these markers have translational potential. Copyright © 2018 John

  13. Serum DHCR24 Auto-antibody as a new Biomarker for Progression of Hepatitis C

    PubMed Central

    Ezzikouri, Sayeh; Kimura, Kiminori; Sunagozaka, Hajime; Kaneko, Shuichi; Inoue, Kazuaki; Nishimura, Tomohiro; Hishima, Tsunekazu; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2015-01-01

    Background New biomarkers are needed to identify the stage of hepatitis C virus (HCV)-infected diseases in order to reduce the mortality rates. Herein, we investigated whether serum 3β-hydroxysterol Δ24-reductase antibody (DHCR24 Ab) may serve as a prognostic marker for hepatitis C infection progression to hepatocellular carcinoma (HCC). Methods Serum DHCR24 Abs from 395 HCV-positive patients, including 133 chronic hepatitis (CHC), 85 liver cirrhosis (LCC), and 177 HCC (HCC-C) patients; 232 hepatitis B virus (HBV)-positive patients, including 103 chronic hepatitis (CHB), 56 liver cirrhosis (LCB), and 73 HCC (HCC-B) patients; and 24 healthy controls, were measured using enzyme-linked immunosorbent assay. Results The serum DHCR24 Ab levels were significantly higher in patients with CHC than in healthy controls, in LCC than in CHC, and in LCC than in HCC-C (P < 0.0001 for all). The concentration of serum DHCR24 Ab in HCC-B patients showed no significant difference compared to CHB and LCB patients (P = 0.1247). The DHCR24 Ab levels were significantly higher in early HCC-C than CHC or LCC patients and in late HCC-C compared to early HCC-C patients. The sensitivity of the DHCR24 Ab for HCC-C detection (70.6%) was higher than that of alpha-fetoprotein (AFP; 54.8%) and protein induced by vitamin K absence or antagonist-II (PIVKA-II; 42 · 5%). Moreover, DHCR24 was up-regulated in HCV-positive, but not HBV-positive tissues or HBV-negative, HCV-negative HCC specimens. Conclusions DHCR24 auto-antibody represents a potential noninvasive biomarker for HCV-related liver disease and may facilitate the diagnosis of PIVKA-II and AFP-negative HCC. PMID:26288822

  14. Circulating microRNAs as novel biomarkers of ALK-positive non-small cell lung cancer and predictors of response to crizotinib therapy

    PubMed Central

    Fu, Han-Jiang; Zheng, Xiao-Fei; Tang, Chuan-Hao; Li, Xiao-Yan; Chen, Jian; Wang, Wei-Xia; Yang, Shao-Xing; Wang, Lin; Zhao, Guan-Hua; Lv, Pan-Pan; Zhang, Min; Lei, Yang-Yang; Qin, Hai-Feng; Wang, Hong; Gao, Hong-Jun; Liu, Xiao-Qing

    2017-01-01

    Circulating microRNAs are potential diagnostic and predictive biomarkers, but have not been investigated for patients with anaplastic lymphoma kinase (ALK)-positive lung cancer. In this exploratory study, we sought to identify potential plasma biomarkers for ALK-positive non-small cell lung cancer (NSCLC). A microRNA microarray was used to select ALK-related microRNAs in ALK-positive NSCLC (n = 3), ALK-negative NSCLC (n = 3), and healthy subjects (n = 3). Plasma levels of 21 microRNAs were differentially expressed for ALK-positive and ALK-negative NSCLC, including 14 down-regulated and 7 up-regulated microRNAs. We also identified 5s rRNA as the most stable endogenous control gene using geNorm and NormFinder algorithms. Candidate microRNAs in plasma from ALK-positive (n = 41) and ALK-negative NSCLC patients (n = 32) were quantified using real-time reverse transcriptase quantitative polymerase chain reaction. The expression levels of miR-28-5p, miR-362-5p, and miR-660-5p were all down-regulated in ALK-positive NSCLC, compared with ALK-negative NSCLC. The areas under the receiver operating characteristic curves of miR-28-5p, miR-362-5p, miR-660-5p, and 3-microRNAs panel were 0.873, 0.673, 0.760, and 0.876, respectively. The positive predictive values of miR-28-5p, miR-362-5p, and miR-660-5p were 96.43%, 80.77%, and 83.87%, respectively. Increased plasma levels of miR-660-5p after crizotinib treatment predicted good tumor response (p = 0.012). The pre-crizotinib levels of miR-362-5p were significantly associated with progression-free survival (p = 0.015). Thus, in this preliminary investigation, we identified a potential panel of 3 microRNAs for distinguishing between patients with ALK-positive and ALK-negative NSCLC. We also identified miR-660-5p and miR-362-5p as potential predictors for response to crizotinib treatment. PMID:28514730

  15. BluePen Biomarkers LLC: integrated biomarker solutions

    PubMed Central

    Blair, Ian A; Mesaros, Clementina; Lilley, Patrick; Nunez, Matthew

    2016-01-01

    BluePen Biomarkers provides a unique comprehensive multi-omics biomarker discovery and validation platform. We can quantify, integrate and analyze genomics, proteomics, metabolomics and lipidomics biomarkers, alongside clinical data, demographics and other phenotypic data. A unique bio-inspired signal processing analytic approach is used that has the proven ability to identify biomarkers in a wide variety of diseases. The resulting biomarkers can be used for diagnosis, prognosis, mechanistic studies and predicting treatment response, in contexts from core research through clinical trials. BluePen Biomarkers provides an additional groundbreaking research goal: identifying surrogate biomarkers from different modalities. This not only provides new biological insights, but enables least invasive, least-cost tests that meet or exceed the predictive quality of current tests. PMID:28031971

  16. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    PubMed

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  17. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics

    PubMed Central

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E.; Joshi, Lokesh

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques. PMID:26509158

  18. The role of toxicology to characterize biomarkers for agrochemicals with potential endocrine activities.

    PubMed

    Mantovani, Alberto; Maranghi, Francesca; La Rocca, Cinzia; Tiboni, Gian Mario; Clementi, Maurizio

    2008-09-01

    The paper discusses current knowledge and possible research priorities on biomarkers of exposure, effect and susceptibility for potential endocrine activities of agrochemicals (dicarboximides, ethylene bisdithiocarbammates, triazoles, etc.). Possible widespread, multiple-pathway exposure to agrochemicals highlights the need to assess internal exposure of animals or humans, which is the most relevant exposure measure for hazard and risk estimation; however, exposure data should be integrated by early indicators predictive of possible health effects, particularly for vulnerable groups such as mother-child pairs. Research need include: non-invasive biomarkers for children biomonitoring; novel biomarkers of total exposure to measure whole endocrine disrupter-related burden; characterization of biomarkers of susceptibility, including the role of markers of nutritional status; anchoring early molecular markers to established toxicological endpoints to support their predictivity; integrating "omics"-based approaches in a system-toxicology framework. As biomonitoring becomes increasingly important in the environment-and-health scenario, toxicologists can substantially contribute both to the characterization of new biomarkers and to the predictivity assessment and improvement of the existing ones.

  19. EEG complexity as a biomarker for autism spectrum disorder risk

    PubMed Central

    2011-01-01

    Background Complex neurodevelopmental disorders may be characterized by subtle brain function signatures early in life before behavioral symptoms are apparent. Such endophenotypes may be measurable biomarkers for later cognitive impairments. The nonlinear complexity of electroencephalography (EEG) signals is believed to contain information about the architecture of the neural networks in the brain on many scales. Early detection of abnormalities in EEG signals may be an early biomarker for developmental cognitive disorders. The goal of this paper is to demonstrate that the modified multiscale entropy (mMSE) computed on the basis of resting state EEG data can be used as a biomarker of normal brain development and distinguish typically developing children from a group of infants at high risk for autism spectrum disorder (ASD), defined on the basis of an older sibling with ASD. Methods Using mMSE as a feature vector, a multiclass support vector machine algorithm was used to classify typically developing and high-risk groups. Classification was computed separately within each age group from 6 to 24 months. Results Multiscale entropy appears to go through a different developmental trajectory in infants at high risk for autism (HRA) than it does in typically developing controls. Differences appear to be greatest at ages 9 to 12 months. Using several machine learning algorithms with mMSE as a feature vector, infants were classified with over 80% accuracy into control and HRA groups at age 9 months. Classification accuracy for boys was close to 100% at age 9 months and remains high (70% to 90%) at ages 12 and 18 months. For girls, classification accuracy was highest at age 6 months, but declines thereafter. Conclusions This proof-of-principle study suggests that mMSE computed from resting state EEG signals may be a useful biomarker for early detection of risk for ASD and abnormalities in cognitive development in infants. To our knowledge, this is the first demonstration of

  20. Biomarkers in mood disorders research: developing new and improved therapeutics

    PubMed Central

    Niciu, Mark J.; Mathews, Daniel C.; Ionescu, Dawn F.; Richards, Erica M.; Furey, Maura L.; Yuan, Peixiong; Nugent, Allison C.; Henter, Ioline D.; Machado-Vieira, Rodrigo; Zarate, Carlos A.

    2015-01-01

    Background Recently, surrogate neurobiological biomarkers that correlate with target engagement and therapeutic response have been developed and tested in early phase studies of mood disorders. Objective The identification of biomarkers could help develop personalized psychiatric treatments that may impact public health. Methods These biomarkers, which are associated with clinical response post-treatment, can be directly validated using multimodal approaches including genetic tools, proteomics/metabolomics, peripheral measures, neuroimaging, biostatistical predictors, and clinical predictors. Results To date, early phase biomarker studies have sought to identify measures that can serve as “biosignatures”, or biological patterns of clinical response. These studies have also sought to identify clinical predictors and surrogate outcomes associated with pathophysiological domains consistently described in the National Institute of Mental Health’s (NIMH) new Research Domain Criteria (RDoC). Using the N-methyl-D-aspartate (NMDA) antagonist ketamine as an example, we identified changes in several domains (clinical, cognitive, and neurophysiological) that predicted ketamine’s rapid and sustained antidepressant effects in individuals with treatment-resistant major depressive disorder (MDD) or bipolar depression. Discussion These approaches may ultimately provide clues into the neurobiology of psychiatric disorders and may have enormous impact Backon the development of novel therapeutics. PMID:26082563

  1. The dynamics of Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort.

    PubMed

    Caroli, A; Frisoni, G B

    2010-08-01

    The aim of this study was to investigate the dynamics of four of the most validated biomarkers for Alzheimer's disease (AD), cerebro-spinal fluid (CSF) Abeta 1-42, tau, hippocampal volume, and FDG-PET, in patients at different stage of AD. Two hundred twenty-nine cognitively healthy subjects, 154 mild cognitive impairment (MCI) patients converted to AD, and 193 (95 early and 98 late) AD patients were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. For each biomarker, individual values were Z-transformed and plotted against ADAS-cog scores, and sigmoid and linear fits were compared. For most biomarkers the sigmoid model fitted data significantly better than the linear model. Abeta 1-42 time course followed a steep curve, stabilizing early in the disease course. CSF tau and hippocampal volume changed later showing similar monotonous trends, reflecting disease progression. Hippocampal loss trend was steeper and occurred earlier in time in APOE epsilon4 carriers than in non-carriers. FDG-PET started changing early in time and likely followed a linear decline. In conclusion, this study provides the first evidence in favor of the dynamic biomarker model which has recently been proposed. 2010 Elsevier Inc. All rights reserved.

  2. HepPar1-Positive Circulating Microparticles Are Increased in Subjects with Hepatocellular Carcinoma and Predict Early Recurrence after Liver Resection

    PubMed Central

    Abbate, Valeria; Marcantoni, Margherita; Giuliante, Felice; Vecchio, Fabio M.; Gatto, Ilaria; Mele, Caterina; Saviano, Antonio; Arciuolo, Damiano; Gaetani, Eleonora; Ferrari, Maria C.; Giarretta, Igor; Ardito, Francesco; Riccardi, Laura; Nicoletti, Alberto; Ponziani, Francesca R.; Gasbarrini, Antonio; Pompili, Maurizio; Pola, Roberto

    2017-01-01

    Circulating microparticles (MPs) are novel potential biomarkers in cancer patients. Their role in hepatocellular carcinoma (HCC) is under intensive investigation. In this study, we tested the hypothesis that MPs expressing the antigen HepPar1 are increased in the blood of subjects with HCC and may serve as markers of early recurrence after liver resection (LR). We studied 15 patients affected by HCC undergoing LR, and used flow cytometry to assess the number of circulating HepPar1+ MPs. Ten subjects without HCC (five with liver cirrhosis and five with healthy livers) were used as controls. After LR, HCC patients underwent a follow-up to check for early recurrence, which occurred in seven cases. The number of circulating HepPar1+ MPs was significantly higher in subjects affected by HCC, compared to individuals without cancer (p < 0.01). We also found that, among HCC patients, the number of circulating HepPar1+ MPs, measured before LR, was significantly higher in those who displayed early recurrence compared to those without recurrence (p = 0.02). Of note, other types of circulating MPs, such as those derived from endothelial cells (CD144+) or those produced by the activated endothelium (CD144+/CD62+), were not associated with HCC, nor could they predict HCC recurrence. HepPar1+ MPs deserve further investigation as novel biomarkers of disease and prognosis in HCC patients. PMID:28498353

  3. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen.

    PubMed

    Liu, Rong; Guo, Cheng-Xian; Zhou, Hong-Hao

    2015-01-01

    This study aims to identify effective gene networks and prognostic biomarkers associated with estrogen receptor positive (ER+) breast cancer using human mRNA studies. Weighted gene coexpression network analysis was performed with a complex ER+ breast cancer transcriptome to investigate the function of networks and key genes in the prognosis of breast cancer. We found a significant correlation of an expression module with distant metastasis-free survival (HR = 2.25; 95% CI .21.03-4.88 in discovery set; HR = 1.78; 95% CI = 1.07-2.93 in validation set). This module contained genes enriched in the biological process of the M phase. From this module, we further identified and validated 5 hub genes (CDK1, DLGAP5, MELK, NUSAP1, and RRM2), the expression levels of which were strongly associated with poor survival. Highly expressed MELK indicated poor survival in luminal A and luminal B breast cancer molecular subtypes. This gene was also found to be associated with tamoxifen resistance. Results indicated that a network-based approach may facilitate the discovery of biomarkers for the prognosis of ER+ breast cancer and may also be used as a basis for establishing personalized therapies. Nevertheless, before the application of this approach in clinical settings, in vivo and in vitro experiments and multi-center randomized controlled clinical trials are still needed.

  4. Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection

    PubMed Central

    Cunningham, Brian T.; Zangar, Richard C.

    2013-01-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539

  5. Utility of circulating serum miRNAs as biomarkers of early cartilage degeneration in animal models of post-traumatic osteoarthritis and inflammatory arthritis.

    PubMed

    Kung, L H W; Zaki, S; Ravi, V; Rowley, L; Smith, M M; Bell, K M; Bateman, J F; Little, C B

    2017-03-01

    The purpose of this study was to determine if serum microRNA (miRNA) signatures were biomarkers of early cartilage degeneration in preclinical mouse models of post-traumatic osteoarthritis (OA) and inflammatory arthritis. Cartilage degeneration was induced in 10-12 week old male C57BL6 mice by destabilization of the medial meniscus (DMM) or intra-articular injection of methylated-bovine-serum-albumin (AIA), with sham-operated or saline-injected control animals (n = 6/treatment/time). Total serum RNA and knee joints were isolated at 1, 4 and 16 weeks post-induction. Cartilage degeneration was scored histologically. Serum miRNA expression profiling was performed using Agilent microarrays and validated by qPCR. DMM-operated and AIA mice had characteristic cartilage degeneration (proteoglycan loss, chondrocyte hypertrophy, structural damage), that increased significantly with time compared with controls, and with distinct temporal differences between arthritis models. However, expression profiling revealed no statistically significant dysregulation of serum miRNAs between AIA vs saline-injected or DMM vs sham-operated control mice at the critical early disease stages. The inability to detect DMM or AIA serum miRNA signatures compared with controls was not due to the insensitivity of the expression profiling approach since significant changes were observed in miRNA expression between the arthritis models and between time points. While distinct patterns of progressive cartilage degradation were induced in the arthritis models, we were unable to identify any serum miRNAs that were significantly dysregulated in early stages of disease compared with controls. This suggests circulating serum miRNAs may not be useful as cartilage biomarkers in distinguishing the early or progressive stages of arthritis cartilage degeneration. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Characterization and Peripheral Blood Biomarker Assessment of Jo-1 Antibody-Positive Interstitial Lung Disease

    PubMed Central

    Richards, Thomas J.; Eggebeen, Aaron; Gibson, Kevin; Yousem, Samuel; Fuhrman, Carl; Gochuico, Bernadette R.; Fertig, Noreen; Oddis, Chester V.; Kaminski, Naftali; Rosas, Ivan O.; Ascherman, Dana P.

    2009-01-01

    Objectives Combining clinical, radiographic, functional, and serum protein biomarker assessment, this study defines the prevalence and clinical characteristics of ILD in a large cohort of patients possessing anti-Jo-1 antibodies. Methods Clinical records, pulmonary function testing, and imaging studies determined the existence of ILD in anti-Jo-1 antibody positive (anti-Jo-1 Ab+) individuals accumulated in the University of Pittsburgh Myositis Database from 1982–2007. Multiplex ELISA of serum inflammatory markers, cytokines, chemokines, and matrix metalloproteinases in different patient subgroups then permitted assessment of serum proteins associated with anti-Jo-1 Ab+ ILD. Results Among 90 anti-Jo-1 Ab+ individuals with sufficient clinical, radiographic, and/or pulmonary function data, 77 (86%) met criteria for ILD. While computerized tomography scans revealed a variety of patterns suggestive of underlying UIP or NSIP, review of histopathologic abnormalities in a subset (n=22) of individuals undergoing open lung biopsy demonstrated a preponderance of UIP and DAD. Multiplex ELISA yielded statistically significant associations between Jo-1 Ab+ ILD and elevated serum levels of CRP, CXCL9, and CXCL10 that distinguished this subgroup from IPF and anti-SRP Ab+ myositis. Recursive partitioning further demonstrated that combinations of these and other serum protein biomarkers can distinguish these subgroups with high sensitivity and specificity. Conclusion In this large cohort of anti-Jo-1 Ab+ individuals, the incidence of ILD approaches 90%. Multiplex ELISA demonstrates disease-specific associations between Jo-1 Ab+ ILD and serum levels of CRP as well as the IFN-γ-inducible chemokines CXCL9 and CXCL10, highlighting the potential of this approach to define biologically active molecules contributing to the pathogenesis of myositis-associated ILD. PMID:19565490

  7. Better cancer biomarker discovery through better study design.

    PubMed

    Rundle, Andrew; Ahsan, Habibul; Vineis, Paolo

    2012-12-01

    High-throughput laboratory technologies coupled with sophisticated bioinformatics algorithms have tremendous potential for discovering novel biomarkers, or profiles of biomarkers, that could serve as predictors of disease risk, response to treatment or prognosis. We discuss methodological issues in wedding high-throughput approaches for biomarker discovery with the case-control study designs typically used in biomarker discovery studies, especially focusing on nested case-control designs. We review principles for nested case-control study design in relation to biomarker discovery studies and describe how the efficiency of biomarker discovery can be effected by study design choices. We develop a simulated prostate cancer cohort data set and a series of biomarker discovery case-control studies nested within the cohort to illustrate how study design choices can influence biomarker discovery process. Common elements of nested case-control design, incidence density sampling and matching of controls to cases are not typically factored correctly into biomarker discovery analyses, inducing bias in the discovery process. We illustrate how incidence density sampling and matching of controls to cases reduce the apparent specificity of truly valid biomarkers 'discovered' in a nested case-control study. We also propose and demonstrate a new case-control matching protocol, we call 'antimatching', that improves the efficiency of biomarker discovery studies. For a valid, but as yet undiscovered, biomarker(s) disjunctions between correctly designed epidemiologic studies and the practice of biomarker discovery reduce the likelihood that true biomarker(s) will be discovered and increases the false-positive discovery rate. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Early-life Socio-economic Status and Adult Health: The Role of Positive Affect.

    PubMed

    Murdock, Kyle W; LeRoy, Angie S; Fagundes, Christopher P

    2017-08-01

    The aim of this paper is to develop a further understanding of the relationship between early-life socio-economic status (SES) and adult health disparities. This was accomplished through evaluation of state indicators of positive and negative affect as mechanisms through which early-life SES was associated with susceptibility to a rhinovirus (i.e. the common cold). Analyses were conducted among 286 adults in a viral challenge study in which participants were exposed to a rhinovirus via nasal drops and cold symptoms were evaluated over a period of 5 days. Participant age, body mass index, sex, education, ethnicity, pre-challenge virus-specific antibody titres and subjective adult SES, along with virus type and season of participation, were included as covariates. Early-life SES was associated with cold incidence through state positive affect, but not state negative affect. In addition, contrast analysis indicated that the indirect effect through state positive affect was stronger than the indirect effect through state negative affect. Findings provide further support for early-life SES being an important variable associated with adult health, and that state self-reported positive affect may be an underlying mechanism associated with susceptibility to rhinoviruses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Association between sleep position and early motor development.

    PubMed

    Majnemer, Annette; Barr, Ronald G

    2006-11-01

    To compare motor performance in infants sleeping in prone versus supine positions. Healthy 4-month-olds (supine: n = 71, prone: n = 12) and 6-month olds (supine: n = 50, prone: n = 22) were evaluated with the Alberta Infant Motor Scale (AIMS) and Peabody Developmental Motor Scale (PDMS), and parents completed a positioning diary. Infants were reassessed at 15 months. At 4 months, motor scores were lower in the supine group and were less likely to achieve prone extension (P < .05). At 6 months, there were wide discrepancies on the AIMS (supine: 44.5 +/- 21.6, prone: 60.0 +/- 18.8, P = .005) and the gross motor PDMS (supine: 85.7 +/- 7.6, prone: 90.2 +/- 9.5, P = .03). Motor delays were documented in 22% of babies sleeping supine. Prone sleep-positioned infants were more likely to sit and roll. Daily exposure to awake prone positioning was predictive of motor performance in infants sleeping supine. At 15 months, sleep position continued to predict motor performance. Infants sleeping supine may exhibit early motor lags, associated with less time in prone while awake. This has implications for accurate interpretation of assessment of infants at risk and prevention of inappropriate referrals. Rate of infant motor development appears influenced by extrinsic factors such as positioning practices.

  10. In Vivo Cancer Biomarkers of Esophageal Neoplasia

    PubMed Central

    Lu, Shaoying; Wang, Thomas D

    2011-01-01

    Summary The emergence of in vivo cancer biomarkers is promising tool for early detection, risk stratification, and therapeutic intervention in the esophagus, where adenocarcinoma is increasing at a rate that is faster than any other in industrialized nations. Exciting advances in target identification, probe development, and optical instrumentation are creating tremendous new opportunities for advancing techniques of molecular imaging. Progress in these areas is being made with small animal models of esophageal cancer using surgical approaches to induce reflux of acid and bile, and these findings are beginning to be evaluated in the clinic. Further identification of relevant targets, characterization of specific probes, and development of endoscopic imaging technologies are needed to further this direction in the field of molecular medicine. In the future, new methods that use in vivo cancer biomarkers for the early detection of neoplastic changes in the setting of Barrett's esophagus will become available. PMID:19126962

  11. Multiplexed Electrochemical Immunosensors for Clinical Biomarkers

    PubMed Central

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.

    2017-01-01

    Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed. PMID:28448466

  12. Biomarkers Indigenous to Late Archean Rocks

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Freeman, K. H.; Summons, R. E.; Love, G. D.; Snape, C. E.

    2003-12-01

    Two new lines of evidence support the authenticity of molecular fossils in late Archean rocks of the Hamersley Province, Western Australia. Specifically, they support 1) a syngenetic relationship between the kerogen and extractable biomarkers, and 2) a indigenous relationship between extractable compounds and the host rocks. Carbon skeletons released from kerogen via high-pressure hydropyrolysis match those found in associated extracted bitumen. Biomarker ratios indicate less mature steranes and terpanes (i.e. hopanes and tricyclic terpanes) are embedded in the kerogen matrix as compared to the highly mature steranes and terpanes in the extracts, which is similar to findings in other hydropyrolysis experiments. Lithology-associated variations in biomarker distributions are noteworthy and suggest environmental settings are associated with differing biotic ecosystems. The evidence reported here confirms the 2.7 Ga antiquity of diverse biosynthetic pathways. Molecular data, together with isotopic data, indicate aerobic and anaerobic respiration pathways were fundamental to the complex microbial biogeochemistry of the late Archean. The biomarkers in these rocks support an early radiation of the three domains of life and radiation within the bacteria, such that clades of cyanobacteria, green sulfur bacteria, and proteobacteria had been established.

  13. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers).

    PubMed

    Mobasheri, A; Bay-Jensen, A-C; van Spil, W E; Larkin, J; Levesque, M C

    2017-02-01

    The aim of this "Year in Review" article is to summarize and discuss the implications of biochemical marker related articles published between the Osteoarthritis Research Society International (OARSI) 2015 Congress in Seattle and the OARSI 2016 Congress in Amsterdam. The PubMed/MEDLINE bibliographic database was searched using the combined keywords: 'biomarker' and 'osteoarthritis'. The PubMed/MEDLINE literature search was conducted using the Advanced Search Builder function (http://www.ncbi.nlm.nih.gov/pubmed/advanced). Over two hundred new biomarker-related papers were published during the literature search period. Some papers identified new biomarkers whereas others explored the biological properties and clinical utility of existing markers. There were specific references to several adipocytokines including leptin and adiponectin. ADAM Metallopeptidase with Thrombospondin Type 1 motif 4 (ADAMTS-4) and aggrecan ARGS neo-epitope fragment (ARGS) in synovial fluid (SF) and plasma chemokine (CeC motif) ligand 3 (CCL3) were reported as potential new knee biomarkers. New and refined proteomic technologies and novel assays including a fluoro-microbead guiding chip (FMGC) for measuring C-telopeptide of type II collagen (CTX-II) in serum and urine and a novel magnetic nanoparticle-based technology (termed magnetic capture) for collecting and concentrating CTX-II, were described this past year. There has been steady progress in osteoarthritis (OA) biomarker research in 2016. Several novel biomarkers were identified and new technologies have been developed for measuring existing biomarkers. However, there has been no "quantum leap" this past year and identification of novel early OA biomarkers remains challenging. During the past year, OARSI published a set of recommendations for the use of soluble biomarkers in clinical trials, which is a major step forward in the clinical use of OA biomarkers and bodes well for future OA biomarker development. Copyright © 2016 The

  14. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis

    NASA Astrophysics Data System (ADS)

    Kohnen, Math E. l.; Sinninghe Damsté, Jaap S.; Kock-van Dalen, A. c.; Jan, W. De Leeuw

    1991-05-01

    Three types of sulphur-rich high-molecular-weight material in the alkylsulphide, the polar, and the asphaltene fractions isolated from the bitumen of an immature bituminous shale from the Vena del Gesso basin (Italy) were desulphurised using Raney Ni and were treated with MeLi/MeI, a chemical degradation method which cleaves selectively and quantitatively di- or polysulphide linkages. The products formed were characterised by gas chromatography-mass spectrometry. Raney Ni desulphurisation revealed that these S-rich macromolecules are in substantial part composed of sulphur-linked biomarkers with linear, branched, isoprenoid, steroid, hopanoid, and carotenoid carbon skeletons. MeLi/Mel treatment provided evidence that a major part of the total amount of macromolecularly bound biomarkers are linked via di- or polysulphide moieties to the macromolecular network. Since the di- or polysulphide linkages are attached at specific positions of the bound biomarkers it is proposed that they are formed by intermolecular incorporation reactions of HS x- into low-molecular-weight functionalised biological lipids during early diagenesis. The different properties (solubility and molecular weight) of the sulphur-rich macromolecules in the alkylsulphide, the resin, and the asphaltene fractions can be explained simply by differences in degree of sulphur cross-linking.

  15. Dietary options and behavior suggested by plant biomarker evidence in an early human habitat

    NASA Astrophysics Data System (ADS)

    Magill, Clayton R.; Ashley, Gail M.; Domínguez-Rodrigo, Manuel; Freeman, Katherine H.

    2016-03-01

    The availability of plants and freshwater shapes the diets and social behavior of chimpanzees, our closest living relative. However, limited evidence about the spatial relationships shared between ancestral human (hominin) remains, edible resources, refuge, and freshwater leaves the influence of local resources on our species' evolution open to debate. Exceptionally well-preserved organic geochemical fossils-biomarkers-preserved in a soil horizon resolve different plant communities at meter scales across a contiguous 25,000 m2 archaeological land surface at Olduvai Gorge from about 2 Ma. Biomarkers reveal hominins had access to aquatic plants and protective woods in a patchwork landscape, which included a spring-fed wetland near a woodland that both were surrounded by open grassland. Numerous cut-marked animal bones are located within the wooded area, and within meters of wetland vegetation delineated by biomarkers for ferns and sedges. Taken together, plant biomarkers, clustered bone debris, and hominin remains define a clear spatial pattern that places animal butchery amid the refuge of an isolated forest patch and near freshwater with diverse edible resources.

  16. Clinical trial designs for testing biomarker-based personalized therapies

    PubMed Central

    Lai, Tze Leung; Lavori, Philip W; Shih, Mei-Chiung I; Sikic, Branimir I

    2014-01-01

    Background Advances in molecular therapeutics in the past decade have opened up new possibilities for treating cancer patients with personalized therapies, using biomarkers to determine which treatments are most likely to benefit them, but there are difficulties and unresolved issues in the development and validation of biomarker-based personalized therapies. We develop a new clinical trial design to address some of these issues. The goal is to capture the strengths of the frequentist and Bayesian approaches to address this problem in the recent literature and to circumvent their limitations. Methods We use generalized likelihood ratio tests of the intersection null and enriched strategy null hypotheses to derive a novel clinical trial design for the problem of advancing promising biomarker-guided strategies toward eventual validation. We also investigate the usefulness of adaptive randomization (AR) and futility stopping proposed in the recent literature. Results Simulation studies demonstrate the advantages of testing both the narrowly focused enriched strategy null hypothesis related to validating a proposed strategy and the intersection null hypothesis that can accommodate to a potentially successful strategy. AR and early termination of ineffective treatments offer increased probability of receiving the preferred treatment and better response rates for patients in the trial, at the expense of more complicated inference under small-to-moderate total sample sizes and some reduction in power. Limitations The binary response used in the development phase may not be a reliable indicator of treatment benefit on long-term clinical outcomes. In the proposed design, the biomarker-guided strategy (BGS) is not compared to ‘standard of care’, such as physician’s choice that may be informed by patient characteristics. Therefore, a positive result does not imply superiority of the BGS to ‘standard of care’. The proposed design and tests are valid asymptotically

  17. Carcinogenicity of ambient air pollution: use of biomarkers, lessons learnt and future directions

    PubMed Central

    Vineis, Paolo

    2015-01-01

    The association between ambient air pollution (AAP) exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution can cause lung cancer. Biomarkers can enhance research on the health effects of air pollution by improving exposure assessment, increasing the understanding of mechanisms, and enabling the investigation of individual susceptibility. In this review, we assess DNA adducts as biomarkers of exposure to AAP and early biological effect, and DNA methylation as biomarker of early biological change and discuss critical issues arising from their incorporation in AAP health impact evaluations, such as confounding, individual susceptibilities, timing, intensity and duration of exposure, and investigated tissue. DNA adducts and DNA methylation are treated as paradigms. However, the lessons, learned from their use in the examination of AAP carcinogenicity, can be applied to investigations of other biomarkers involved in AAP carcinogenicity. PMID:25694819

  18. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect

    NASA Astrophysics Data System (ADS)

    Teotia, Pradeep Kumar; Kaler, R. S.

    2018-01-01

    Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.

  19. Cerebrospinal Fluid proNGF: A Putative Biomarker for Early Alzheimer’s Disease

    PubMed Central

    Counts, Scott E.; He, Bin; Prout, John G.; Michalski, Bernadeta; Farotti, Lucia; Fahnestock, Margaret; Mufson, Elliott J.

    2018-01-01

    The discovery of biomarkers for the onset of Alzheimer’s disease (AD) is essential for disease modification strategies. To date, AD biomarker studies have focused on brain imaging and cerebrospinal fluid (CSF) changes in amyloid-β (Aβ) peptide and tau proteins. While reliable to an extent, this panel could be improved by the inclusion of novel biomarkers that optimize sensitivity and specificity. In this study, we determined whether CSF levels of the nerve growth factor (NGF) precursor protein, proNGF, increased during the progression of AD, mirroring its up regulation in postmortem brain samples of people who died with a clinical diagnosis of mild cognitive impairment (MCI) or AD. Immunoblot analysis was performed on ventricular CSF harvested from participants in the Rush Religious Orders Study with an antemortem clinical diagnosis of no cognitive impairment (NCI), amnestic MCI (aMCI, a putative prodromal AD stage), or mild/moderate AD. ProNGF levels were increased 55% in aMCI and 70% in AD compared to NCI. Increasing CSF proNGF levels correlated with impairment on cognitive test scores. In a complementary study, we found that proNGF was significantly increased by 30% in lumbar CSF samples derived from patients with a clinical dementia rating (CDR) of 0.5 or 1 compared to those with a CDR = 0. Notably, proNGF/Aβ1-42 levels were 50% higher in CDR 0.5 and CDR 1 compared to CDR 0 controls. By contrast, ELISA measurements of CSF brain-derived neurotrophic factor (BDNF) did not distinguish aMCI from NCI. Taken together, these results suggest that proNGF protein levels may augment the diagnostic accuracy of currently used CSF biomarker panels. PMID:26825093

  20. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting

    PubMed Central

    DeBord, D. Gayle; Burgoon, Lyle; Edwards, Stephen W.; Haber, Lynne T.; Kanitz, M. Helen; Kuempel, Eileen; Thomas, Russell S.; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments.( 1 ) This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identi-fication of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely. PMID:26132979

  1. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting.

    PubMed

    DeBord, D Gayle; Burgoon, Lyle; Edwards, Stephen W; Haber, Lynne T; Kanitz, M Helen; Kuempel, Eileen; Thomas, Russell S; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely.

  2. Antibody arrays in biomarker discovery.

    PubMed

    Wilson, Jarad J; Burgess, Rob; Mao, Ying-Qing; Luo, Shuhong; Tang, Hao; Jones, Valerie Sloane; Weisheng, Bao; Huang, Ren-Yu; Chen, Xuesong; Huang, Ruo-Pan

    2015-01-01

    All of life is regulated by complex and organized chemical reactions that help dictate when to grow, to move, to reproduce, and to die. When these processes go awry, or are interrupted by pathological agents, diseases such as cancer, autoimmunity, or infections can result. Cytokines, chemokines, growth factors, adipokines, and other chemical moieties make up a vast subset of these chemical reactions that are altered in disease states, and monitoring changes in these molecules could provide for the identification of disease biomarkers. From the first identification of carcinoembryonic antigen, to the discovery of prostate-specific antigen, to numerous others described within, biomarkers of disease are detectable in a plethora of sample types. The growing number of biomarkers for infection, autoimmunity, and cancer allow for increasingly early detection, to identification of novel drug targets, to prognostic indicators of disease outcome. However, more and more studies are finding that a single cytokine or growth factor is insufficient as a true disease biomarker and that a more global perspective is needed to understand true disease biology. Such a broad view requires a multiplexed platform for chemical detection, and antibody arrays meet and exceed this need by performing this detection in a high-throughput fashion. Herein, we will discuss how antibody arrays have evolved, and how they have helped direct new drug target design, helped identify therapeutic disease markers, and helped in earlier disease detection. From asthma to renal disease, and neurological dysfunction to immunologic disorders, antibody arrays afford a bright future for new biomarkers discovery. © 2015 Elsevier Inc. All rights reserved.

  3. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    PubMed Central

    Díaz-Rúa, Rubén; Palou, Andreu; Oliver, Paula

    2016-01-01

    Background Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases. Objective We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF) and high-protein (HP) diets. Design We administered HF and HP diets (4 months) to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW) syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a). Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as well as a marker of

  4. Multiplex Biomarker Approaches in Type 2 Diabetes Mellitus Research.

    PubMed

    Ozanne, Susan E; Rahmoune, Hassan; Guest, Paul C

    2017-01-01

    Type 2 diabetes mellitus is a multifactorial condition resulting in high fasting blood glucose levels. Although its diagnosis is straightforward, there is not one set of biomarkers or drug targets that can be used for classification or personalized treatment of individuals who suffer from this condition. Instead, the application of multiplex methods incorporating a systems biology approach is essential in order to increase our understanding of this disease. This chapter reviews the state of the art in biomarker studies of human type 2 diabetes from a proteomic and metabolomic perspective. Our main focus was on biomarkers for disease prediction as these could lead to early intervention strategies for the best possible patient outcomes.

  5. Neural Dynamics of Multiple Object Processing in Mild Cognitive Impairment and Alzheimer's Disease: Future Early Diagnostic Biomarkers?

    PubMed

    Bagattini, Chiara; Mazza, Veronica; Panizza, Laura; Ferrari, Clarissa; Bonomini, Cristina; Brignani, Debora

    2017-01-01

    The aim of this study was to investigate the behavioral and electrophysiological dynamics of multiple object processing (MOP) in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to test whether its neural signatures may represent reliable diagnostic biomarkers. Behavioral performance and event-related potentials [N2pc and contralateral delay activity (CDA)] were measured in AD, MCI, and healthy controls during a MOP task, which consisted in enumerating a variable number of targets presented among distractors. AD patients showed an overall decline in accuracy for both small and large target quantities, whereas in MCI patients, only enumeration of large quantities was impaired. N2pc, a neural marker of attentive individuation, was spared in both AD and MCI patients. In contrast, CDA, which indexes visual short term memory abilities, was altered in both groups of patients, with a non-linear pattern of amplitude modulation along the continuum of the disease: a reduction in AD and an increase in MCI. These results indicate that AD pathology shows a progressive decline in MOP, which is associated to the decay of visual short-term memory mechanisms. Crucially, CDA may be considered as a useful neural signature both to distinguish between healthy and pathological aging and to characterize the different stages along the AD continuum, possibly becoming a reliable candidate for an early diagnostic biomarker of AD pathology.

  6. Serum Cystatin C as an Early Diagnostic Biomarker of Diabetic Kidney Disease in Type 2 Diabetic Patients.

    PubMed

    Qamar, Ayesha; Hayat, Asma; Ahmad, Tariq Mahmood; Khan, Alamgir; Hasnat, Mohammad Najam Ul; Tahir, Sufyan

    2018-04-01

    To determine the diagnostic accuracy and cut-off values of serum cystatin C as early diagnostic biomarker of diabetic kidney disease. Cross-sectional analytical study. Department of Pathology, Army Medical College, Rawalpindi in collaboration with Endocrinology Department, Military Hospital (MH), Rawalpindi from November 2015 to November 2016. One hundred and nineteen diagnosed patients of type 2 diabetes mellitus were enrolled in the study from the outpatient Endocrinology Department of the MH Rawalpindi. Fifty disease-free controls were also included. Fasting blood samples of the patients and controls were analysed for creatinine by Jaffé's kinetic method and estimated GFR was calculated using MDRD-based equation for GFR. Serum cystatin C was estimated by quantitative turbidimetric method. Serum cystatin C was higher in the diabetic group (mean = 1.022 ±0.33 mg/dl) as compared to the control group (mean = 0.63 ±0.14 mg/dl). ROC curve analysis, keeping less than 60 ml/min/1.73 m2 GFR (CKD-MDRD based) as reference value of the stat variable/gold standard; revealed an area under the curve of 0.914 (95% CI 0.85-0.98) and at optimal sensitivity of 88.2% and specificity of 84.8% the established cut-off of serum cystatin C was 1.26 mg/L. Cystatin C is an accurate biomarker of diabetic kidney disease with good sensitivity and specificity.

  7. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer.

    PubMed

    O'Leary, Ben; Hrebien, Sarah; Morden, James P; Beaney, Matthew; Fribbens, Charlotte; Huang, Xin; Liu, Yuan; Bartlett, Cynthia Huang; Koehler, Maria; Cristofanilli, Massimo; Garcia-Murillas, Isaac; Bliss, Judith M; Turner, Nicholas C

    2018-03-01

    CDK4/6 inhibition substantially improves progression-free survival (PFS) for women with advanced estrogen receptor-positive breast cancer, although there are no predictive biomarkers. Early changes in circulating tumor DNA (ctDNA) level may provide early response prediction, but the impact of tumor heterogeneity is unknown. Here we use plasma samples from patients in the randomized phase III PALOMA-3 study of CDK4/6 inhibitor palbociclib and fulvestrant for women with advanced breast cancer and show that relative change in PIK3CA ctDNA level after 15 days treatment strongly predicts PFS on palbociclib and fulvestrant (hazard ratio 3.94, log-rank p = 0.0013). ESR1 mutations selected by prior hormone therapy are shown to be frequently sub clonal, with ESR1 ctDNA dynamics offering limited prediction of clinical outcome. These results suggest that early ctDNA dynamics may provide a robust biomarker for CDK4/6 inhibitors, with early ctDNA dynamics demonstrating divergent response of tumor sub clones to treatment.

  8. Vitamins and iron blood biomarkers are associated with blood pressure levels in European adolescents. The HELENA study.

    PubMed

    de Moraes, Augusto César Ferreira; Gracia-Marco, Luis; Iglesia, Iris; González-Gross, Marcela; Breidenassel, Christina; Ferrari, Marika; Molnar, Dénes; Gómez-Martínez, Sonia; Androutsos, Odysseas; Kafatos, Anthony; Cuenca-García, Magdalena; Sjöström, Michael; Gottrand, Frederic; Widhalm, Kurt; Carvalho, Heráclito Barbosa; Moreno, Luis A

    2014-01-01

    Previous research showed that low concentration of biomarkers in the blood during adolescence (i.e., iron status; retinol; and vitamins B6, B12, C, and D) may be involved in the early stages of development of many chronic diseases, such as hypertension. The aim was to evaluate if iron biomarkers and vitamins in the blood are associated with blood pressure in European adolescents. Participants from the Healthy Lifestyle in Europe by Nutrition in Adolescence cross-sectional study (N = 1089; 12.5-17.5 y; 580 girls) were selected by complex sampling. Multilevel linear regression models examined the associations between iron biomarkers and vitamins in the blood and blood pressure; the analyses were stratified by sex and adjusted for contextual and individual potential confounders. A positive association was found in girls between RBC folate concentration and systolic blood pressure (SBP) (β = 3.19; 95% confidence interval [CI], 0.61-5.77), although no association between the vitamin serum biomarkers concentrations and diastolic blood pressure (DBP) was found. In boys, retinol was positively associated with DBP (β = 3.84; 95% CI, 0.51-7.17) and vitamin B6 was positively associated with SBP (β = 3.82; 95% CI, 1.46-6.18). In contrast, holotranscobalamin was inversely associated with SBP (β = -3.74; 95% CI, -7.28 to -0.21). Levels of RBC folate and vitamin B6 in blood may affect BP in adolescents. In this context, programs aimed at avoiding high BP levels should promote healthy eating behavior by focusing on the promotion of vegetable proteins and foods rich in vitamin B12 (i.e., white meat and eggs), which may help to achieve BP blood control in adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Potential Biomarkers of Fat Loss as a Feature of Cancer Cachexia.

    PubMed

    Ebadi, Maryam; Mazurak, Vera C

    2015-01-01

    Fat loss is associated with shorter survival and reduced quality of life in cancer patients. Effective intervention for fat loss in cachexia requires identification of the condition using prognostic biomarkers for early detection and prevention of further depletion. No biomarkers of fat mass alterations have been defined for application to the neoplastic state. Several inflammatory cytokines have been implicated in mediating fat loss associated with cachexia; however, plasma levels may not relate to adipose atrophy. Zinc-α2-glycoprotein may be a local catabolic mediator within adipose tissue rather than serving as a plasma biomarker of fat loss. Plasma glycerol and leptin associate with adipose tissue atrophy and mass, respectively; however, no study has evaluated their potential as a prognostic biomarker of cachexia-associated fat loss. This review confirms the need for further studies to identify valid prognostic biomarkers to identify loss of fat based on changes in plasma levels of biomarkers.

  10. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    PubMed

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P < 0.0001) for epilepsy, while diffused pathology is associated with a lower risk. Early treatments with either isoflurane anaesthesia or losartan prevented early microvascular damage and late epilepsy. We suggest quantitative assessment of blood-brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Metabolomics, Nutrition, and Potential Biomarkers of Food Quality, Intake, and Health Status.

    PubMed

    Sébédio, Jean-Louis

    Diet, dietary patterns, and other environmental factors such as exposure to toxins are playing an important role in the prevention/development of many diseases, like obesity, type 2 diabetes, and consequently on the health status of individuals. A major challenge nowadays is to identify novel biomarkers to detect as early as possible metabolic dysfunction and to predict evolution of health status in order to refine nutritional advices to specific population groups. Omics technologies such as genomics, transcriptomics, proteomics, and metabolomics coupled with statistical and bioinformatics tools have already shown great potential in this research field even if so far only few biomarkers have been validated. For the past two decades, important analytical techniques have been developed to detect as many metabolites as possible in human biofluids such as urine, blood, and saliva. In the field of food science and nutrition, many studies have been carried out for food authenticity, quality, and safety, as well as for food processing. Furthermore, metabolomic investigations have been carried out to discover new early biomarkers of metabolic dysfunction and predictive biomarkers of developing pathologies (obesity, metabolic syndrome, type-2 diabetes, etc.). Great emphasis is also placed in the development of methodologies to identify and validate biomarkers of nutrients exposure. © 2017 Elsevier Inc. All rights reserved.

  12. Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer's disease.

    PubMed

    Kang, Ju-Hee; Vanderstichele, Hugo; Trojanowski, John Q; Shaw, Leslie M

    2012-04-01

    The xMAP-Luminex multiplex platform for measurement of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers using Innogenetics AlzBio3 immunoassay reagents that are for research use only has been shown to be an effective tool for early detection of an AD-like biomarker signature based on concentrations of CSF Aβ(1-42), t-tau and p-tau(181). Among the several advantages of the xMAP-Luminex platform for AD CSF biomarkers are: a wide dynamic range of ready-to-use calibrators, time savings for the simultaneous analyses of three biomarkers in one analytical run, reduction of human error, potential of reduced cost of reagents, and a modest reduction of sample volume as compared to conventional enzyme-linked immunosorbant assay (ELISA) methodology. Recent clinical studies support the use of CSF Aβ(1-42), t-tau and p-tau(181) measurement using the xMAP-Luminex platform for the early detection of AD pathology in cognitively normal individuals, and for prediction of progression to AD dementia in subjects with mild cognitive impairment (MCI). Studies that have shown the prediction of risk for progression to AD dementia by MCI patients provide the basis for the use of CSF Aβ(1-42), t-tau and p-tau(181) testing to assign risk for progression in patients enrolled in therapeutic trials. Furthermore emerging study data suggest that these pathologic changes occur in cognitively normal subjects 20 or more years before the onset of clinically detectable memory changes thus providing an objective measurement for use in the assessment of treatment effects in primary treatment trials. However, numerous previous ELISA and Luminex-based multiplex studies reported a wide range of absolute values of CSF Aβ(1-42), t-tau and p-tau(181) indicative of substantial inter-laboratory variability as well as varying degrees of intra-laboratory imprecision. In order to address these issues a recent inter-laboratory investigation that included a common set of CSF pool aliquots from

  13. Sepsis biomarkers.

    PubMed

    Prucha, Miroslav; Bellingan, Geoff; Zazula, Roman

    2015-02-02

    Sepsis is the most frequent cause of death in non-coronary intensive care units (ICUs). In the past 10 years, progress has been made in the early identification of septic patients and in their treatment and these improvements in support and therapy mean that the mortality is gradually decreasing but it still remains unacceptably high. Leaving clinical diagnosis aside, the laboratory diagnostics represent a complex range of investigations that can place significant demands on the system given the speed of response required. There are hundreds of biomarkers which could be potentially used for diagnosis and prognosis in septic patients. The main attributes of successful markers would be high sensitivity, specificity, possibility of bed-side monitoring, and financial accessibility. Only a fraction is used in routine clinical practice because many lack sufficient sensitivity or specificity. The following review gives a short overview of the current epidemiology of sepsis, its pathogenesis and state-of-the-art knowledge on the use of specific biochemical, hematological and immunological parameters in its diagnostics. Prospective approaches towards discovery of new diagnostic biomarkers have been shortly mentioned. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Liquid biopsy for early detection of lung cancer.

    PubMed

    Hofman, Paul

    2017-01-01

    The possibility of complete recovery for a lung cancer patient depends on very early diagnosis, as it allows total surgical resection. Screening for this cancer in a high-risk population can be performed using a radiological approach, but this holds a certain number of limitations. Liquid biopsy could become an alternative and complementary screening approach to chest imaging for early diagnosis of lung cancer. Several circulating biomarkers indicative of lung cancer can be investigated in blood, such as circulating tumor cells, circulating free nucleic acids (RNA and DNA) and proteins. However, none of these biomarkers have yet been adopted in routine clinical practice and studies are ongoing to confirm or not the usefulness and practical interest in routine early diagnosis and screening for lung cancers. Several potential circulating biomarkers for the early detection of lung cancer exist. When coupled to thoracic imaging, these biomarkers must give diagnosis of a totally resectable lung cancer and potentially provide new recommendations for surveillance by imagery of high-risk populations without a detectable nodule. Optimization of the specificity and sensitivity of the detection methods as well as standardization of the techniques is essential before considering for daily practice a liquid biopsy as an early diagnostic tool, or possibly as a predictive test, of lung cancer.

  15. Inflammatory Biomarkers of Cardiometabolic Risk in Obese Egyptian Type 2 Diabetics

    PubMed Central

    Barakat, Lamiaa A. A.; Shora, Hassan A.; El-Deen, Ibrahim M.; El-Sayed, El-Sayed Abd El-Sameeh

    2017-01-01

    Inflammatory biomarkers provide a minimally invasive means for early detection and specific treatment of metabolic syndrome and related disorders. The objective of this work was to search for inflammatory biomarkers of cardiometabolic risk in obese type 2 diabetics. The study was performed on 165 persons attending the medical outpatient clinic of Ismailia General Hospital. Their mean age was (50.69 ± 10.15) years. They were divided into three groups. The control group was composed of 55 non-obese, non-diabetic healthy volunteers, 32 males and 23 females. Two study groups were included in this study: group 2 was composed of 55 obese, non-diabetic subjects, 25 males and 30 females matched for age and gender. All patients including the control were subjected to clinical history taking, a clinical examination for the measurement of body mass index (BMI). Investigations were carried out for fasting blood glucose, fasting serum insulin, insulin resistance (IR), the lipid profile, lipoprotein band lipoprotein phospholipase A2, and non-high-density lipoprotein cholesterol (non-HDL-C). Urea, albumin and creatinine analysis and liver function tests were performed, and a complete blood count (CBC) was taken. Hemoglobin A1C (HbA1C), serum high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were tested. There were statistically significant differences among the studied groups in terms of total cholesterol, non-HDL-C, high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), lipoprotein-associated phospholipase A2 and apolipoprotein B. The inflammatory biomarkers hs-CRP, IL-6 and TNF-α were significantly statistically increased in the study groups by (1.62 ± 0.99, 2.32 ± 1.11), (1.73 ± 1.14, 2.53 ± 1.34), and (1.87 ± 1.09, 2.17 ± 0.89) respectively, where p < 0.01. Significant positive correlation was found between Homeostatic Model Assessment (HOMA)-IR, hs-CRP and

  16. MiRNAs of peripheral blood as the biomarker of schizophrenia.

    PubMed

    He, Kuanjun; Guo, Chuang; He, Lin; Shi, Yongyong

    2018-01-01

    The diagnosis of schizophrenia is currently based on the symptoms and bodily signs rather than on the pathological and physiological markers of the patient. In the search for new molecular targeted therapy medicines, and recurrence of early-warning indicators have become the major focus of contemporary research, because they improve diagnostic accuracy. Biomarkers reflect the physiological, physical and biochemical status of the body, and so have extensive applicability and practical significance. The ascertainment of schizophrenia biomarkers will help diagnose, stratify of disease, and treat of schizophrenia patients. The detection of biomarkers from blood has become a promising area of schizophrenia research. Recently, a series of studies revealed that, MiRNAs play an important role in the genesis of schizophrenia, and their abnormal expressions have the potential to be used as biomarkers of schizophrenia. This article presents and summarizes the value of peripheral blood miRNAs with abnormal expression as the biomarker of schizophrenia.

  17. Blood biomarkers of kidney transplant rejection, an endless search?

    PubMed

    Jacquemont, Lola; Soulillou, Jean-Paul; Degauque, Nicolas

    2017-07-01

    The tailoring of immunosuppressive treatment is recognized as a promising strategy to improve long-term kidney graft outcome. To guide the standard care of transplant recipients, physicians need objective biomarkers that can identify an ongoing pathology with the graft or low intensity signals that will be later evolved to accelerated transplant rejection. The early identification of 'high-risk /low-risk' patients enables the adjustment of standard of caring, including managing the frequency of clinical visits and the immunosuppression dosing. Given their ease of availability and the compatibility with a large technical array, blood-based biomarkers have been widely scrutinized for use as potential predictive and diagnostic biomarkers. Areas covered: Here, the authors report on non-invasive biomarkers, such as modification of immune cell subsets and mRNA and miRNA profiles, identified in the blood of kidney transplant recipients collected before or after transplantation. Expert commentary: Combined with functional tests, the identification of biomarkers will improve our understanding of pathological processes and will contribute to a global improvement in clinical management.

  18. Prediction of motor recovery after stroke: advances in biomarkers.

    PubMed

    Stinear, Cathy M

    2017-10-01

    Stroke remains a leading cause of adult disability, and the recovery of motor function after stroke is crucial for the patient to regain independence. However, making accurate predictions of a patient's motor recovery and outcome is difficult when based on clinical assessment alone. Clinical assessment of motor impairment within a few days of stroke can help to predict subsequent recovery, while neurophysiological and neuroimaging biomarkers of corticomotor structure and function can help to predict both motor recovery and motor outcome after stroke. The combination of biomarkers can provide clinically useful information when planning the personalised rehabilitation of a patient. These biomarkers can also be used for patient selection and stratification in trials investigating rehabilitation interventions that are initiated early after stroke. Ongoing multicentre trials that incorporate motor biomarkers could help to bring their use into routine clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biomarkers as Proxies for Life and Environment

    NASA Astrophysics Data System (ADS)

    Summons, R. E.

    2006-05-01

    Biomarkers are organic molecules that can be used to trace specific types of organisms or biological processes in contemporary ecosystems, ancient sediments and, potentially, beyond the Earth. Biomarkers offer a means to evaluate Earth's biosphere from its earliest development to the modern day. Hydrocarbons, which are the remains of lipids that once resided in the membranes of ancestral organisms, carry chemical and isotopic clues about the nature of early ecosystems. The hydrocarbon remains of fatty acids, sterols, bacterial triterpenoids and pigments are very recalcitrant substances and can be found in rocks as old as 2.8 billion years. These molecules tell us that the three domains, archaea, bacteria and eukarya that comprise all extant life appeared quite early in Earth's history as did the oxygen-producing photosynthesis that oxidized our atmosphere and made it possible for animal life to evolve and increase in complexity. Pigment-derived biomarkers are especially useful for evaluating paleo-environmental conditions. They occur in rocks from the Archean to the present day and can be especially diagnostic for euxinic conditions. The greatest known mass extinction event occurred at the end of the Permian period and extinguished about 70% of the animals and plants that existed at that time. Much controversy surrounds its cause with many different scenarios having been proposed. An international collaboration has enabled biomarker profiles to be obtained from Permian- Triassic boundary sections in China, Australia, Canada, Tibet and Greenland. These data suggest that euxinic conditions prevailed widely in the oceans for an extended period from the Late Permian and that sulfide toxicity may have been a major factor in the demise of both plant and animal life.

  20. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers

    PubMed Central

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A; Kassem, Moustapha; Zaher, Waleed; Alfayez, Musaad; Aldahmash, Abdullah; Alajez, Nehad M

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients’ response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising biomarker, given the ease with which miRNAs can be isolated and their structural stability under different conditions of sample processing and isolation. In this review, we provide current state-of-the-art of miRNA biogenesis, function and discuss the advantages, limitations, as well as pitfalls of using circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management. PMID:28880270

  1. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers.

    PubMed

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A; Kassem, Moustapha; Zaher, Waleed; Alfayez, Musaad; Aldahmash, Abdullah; Alajez, Nehad M

    2017-09-07

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising biomarker, given the ease with which miRNAs can be isolated and their structural stability under different conditions of sample processing and isolation. In this review, we provide current state-of-the-art of miRNA biogenesis, function and discuss the advantages, limitations, as well as pitfalls of using circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management.

  2. Establishment of reference intervals for osteoarthritis-related soluble biomarkers: the FNIH/OARSI OA Biomarkers Consortium.

    PubMed

    Kraus, Virginia B; Hargrove, David E; Hunter, David J; Renner, Jordan B; Jordan, Joanne M

    2017-01-01

    To establish reference intervals for osteoarthritis (OA)-related biomarkers used in the Foundation for the National Institutes of Health (FNIH) OA Biomarkers Consortium Project. A total of 129 'multijoint controls' were selected from 2722 African-American and Caucasian men and women in the Johnston County Osteoarthritis Project. The majority (79%) of those eligible (with biospecimens and baseline data) also had one or more follow-up evaluations 5-15 years later. Multijoint controls were selected to be free of radiographic hand, hip, knee and lumbar spine osteoarthritis (OA), to have no knee or hip symptoms, and minimal hand and spine symptoms at all available time points. Eighteen biomarkers were evaluated in serum (s) and/or urine (u) by ELISA. Reference intervals and partitioning by gender and race were performed with EP Evaluator software. Controls were 64% women, 33% African-Americans, mean age 59 years and mean body mass index 29 kg/m 2 . Three biomarkers were associated with age: sHyaluronan (positively), sN-terminal propeptide of collagen IIA (positively) and sCol2-3/4 C-terminal cleavage product of types I and II collagen (negatively). Exploratory analyses suggested that separate reference intervals may be warranted on the basis of gender for uC-terminal cross-linked telopeptide of type II collagen (uCTXII), sMatrix metalloproteinase-3, uNitrated type II collagen degradation fragment (uCol2-1 NO2) and sHyaluronan, and on the basis of race for uCTXII, sCartilage oligomeric matrix protein, sC-terminal cross-linked telopeptide of type I collagen and uCol2-1 NO2. To our knowledge, this represents the best and most stringent control group ever assayed for OA-related biomarkers. These well-phenotyped controls, representing a similar age demographic to that of the OA Initiative-FNIH main study sample, provide a context for interpretation of OA subject biomarker data. The freely available data set also provides a reference for future human studies. Published

  3. Biomarker analysis is used in reading soil archives, but do biomarkers survive processes as leaching and digestion?

    NASA Astrophysics Data System (ADS)

    vanmourik, Jan; Jansen, Boris; Westerveld, Joke

    2017-04-01

    In previous studies (1,2) we showed that biomarker analysis, i.e. the use of preserved molecular fingerprints indicative of e.g. past vegetation cover or soil organic matter input, is a useful additional technique to read the soils archives in combination with palynology and absolute dating techniques. In these studies we compared biomarker spectra with fossil pollen spectra, using the premise that biomarkers are always released from onsite decomposing plant species and pollen can originate from onsite as well as offsite species. However, compared with pollen analysis, biomarker analysis is a juvenile technique and before it can grow into an established method, some fundamental questions must be answered. In the study of palaeo-Podzols (1) we used firstly pollen spectra to indicate the broad suite of plant species involved in the dynamics of drift sand landscapes. Secondly, we used biomarker spectra to separate onsite from offsite plant species, in order to select the species responsible for landscape stabilization and soil organic carbon sequestration. In this study we interpreted pollen and biomarker spectra from (buried) humic horizons, but we did not explicitly address the sensitivity of biomarkers for possible selective corrosion by soil processes as leaching and transport. Therefore, we analyzed (pollen as well as biomarkers) of samples from the Ah and Bh horizon of (buried) Podzols to investigate the sensitivity of biomarkers for soil processes as podzolation. In the study of plaggic Anthrosols (2) we used biomarkers to indicate stable fillings used to produce plaggic manure. Pollen of Calluna was observed in all the spectra of the plaggic horizon, biomarkers of Calluna only in the youngest spectrum. Consequently, we concluded that only in the last phase of the development of the plaggic horizon the farmers applied sods of the Calluna heath. However, sheep grazing occurred at least since the early Middle Ages and that means that sheep droppings were always

  4. Biomarkers and Targeted Therapy in Pancreatic Cancer

    PubMed Central

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers. PMID:27147897

  5. Biomarkers and Targeted Therapy in Pancreatic Cancer.

    PubMed

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%-3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  6. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity.

    PubMed

    Amacher, David E

    2010-05-15

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in

  7. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper.

    PubMed

    Shamji, M H; Kappen, J H; Akdis, M; Jensen-Jarolim, E; Knol, E F; Kleine-Tebbe, J; Bohle, B; Chaker, A M; Till, S J; Valenta, R; Poulsen, L K; Calderon, M A; Demoly, P; Pfaar, O; Jacobsen, L; Durham, S R; Schmidt-Weber, C B

    2017-08-01

    Allergen immunotherapy (AIT) is an effective treatment for allergic rhinoconjunctivitis (AR) with or without asthma. It is important to note that due to the complex interaction between patient, allergy triggers, symptomatology and vaccines used for AIT, some patients do not respond optimally to the treatment. Furthermore, there are no validated or generally accepted candidate biomarkers that are predictive of the clinical response to AIT. Clinical management of patients receiving AIT and efficacy in randomised controlled trials for drug development could be enhanced by predictive biomarkers. The EAACI taskforce reviewed all candidate biomarkers used in clinical trials of AR patients with/without asthma in a literature review. Biomarkers were grouped into seven domains: (i) IgE (total IgE, specific IgE and sIgE/Total IgE ratio), (ii) IgG-subclasses (sIgG1, sIgG4 including SIgE/IgG4 ratio), (iii) Serum inhibitory activity for IgE (IgE-FAB and IgE-BF), (iv) Basophil activation, (v) Cytokines and Chemokines, (vi) Cellular markers (T regulatory cells, B regulatory cells and dendritic cells) and (vii) In vivo biomarkers (including provocation tests?). All biomarkers were reviewed in the light of their potential advantages as well as their respective drawbacks. Unmet needs and specific recommendations on all seven domains were addressed. It is recommended to explore the use of allergen-specific IgG4 as a biomarker for compliance. sIgE/tIgE and IgE-FAB are considered as potential surrogate candidate biomarkers. Cytokine/chemokines and cellular reponses provided insight into the mechanisms of AIT. More studies for confirmation and interpretation of the possible association with the clinical response to AIT are needed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach.

    PubMed

    Salvatore, Christian; Cerasa, Antonio; Battista, Petronilla; Gilardi, Maria C; Quattrone, Aldo; Castiglioni, Isabella

    2015-01-01

    Determination of sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop new treatments and monitor their effectiveness, as well as to lessen the time and cost of clinical trials. Magnetic Resonance (MR)-related biomarkers have been recently identified by the use of machine learning methods for the in vivo differential diagnosis of AD. However, the vast majority of neuroimaging papers investigating this topic are focused on the difference between AD and patients with mild cognitive impairment (MCI), not considering the impact of MCI patients who will (MCIc) or not convert (MCInc) to AD. Morphological T1-weighted MRIs of 137 AD, 76 MCIc, 134 MCInc, and 162 healthy controls (CN) selected from the Alzheimer's disease neuroimaging initiative (ADNI) cohort, were used by an optimized machine learning algorithm. Voxels influencing the classification between these AD-related pre-clinical phases involved hippocampus, entorhinal cortex, basal ganglia, gyrus rectus, precuneus, and cerebellum, all critical regions known to be strongly involved in the pathophysiological mechanisms of AD. Classification accuracy was 76% AD vs. CN, 72% MCIc vs. CN, 66% MCIc vs. MCInc (nested 20-fold cross validation). Our data encourage the application of computer-based diagnosis in clinical practice of AD opening new prospective in the early management of AD patients.

  9. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study.

    PubMed

    Laskowitz, Daniel T; Kasner, Scott E; Saver, Jeffrey; Remmel, Kerri S; Jauch, Edward C

    2009-01-01

    One of the significant limitations in the evaluation and management of patients with suspected acute cerebral ischemia is the absence of a widely available, rapid, and sensitive diagnostic test. The objective of the current study was to assess whether a test using a panel of biomarkers might provide useful diagnostic information in the early evaluation of stroke by differentiating patients with cerebral ischemia from other causes of acute neurological deficit. A total of 1146 patients presenting with neurological symptoms consistent with possible stroke were prospectively enrolled at 17 different sites. Timed blood samples were assayed for matrix metalloproteinase 9, brain natriuretic factor, d-dimer, and protein S100beta. A separate cohort of 343 patients was independently enrolled to validate the multiple biomarker model approach. A diagnostic tool incorporating the values of matrix metalloproteinase 9, brain natriuretic factor, d-dimer, and S-100beta into a composite score was sensitive for acute cerebral ischemia. The multivariate model demonstrated modest discriminative capabilities with an area under the receiver operating characteristic curve of 0.76 for hemorrhagic stroke and 0.69 for all stroke (likelihood test P<0.001). When the threshold for the logistic model was set at the first quartile, this resulted in a sensitivity of 86% for detecting all stroke and a sensitivity of 94% for detecting hemorrhagic stroke. Moreover, results were reproducible in a separate cohort tested on a point-of-care platform. These results suggest that a biomarker panel may add valuable and time-sensitive diagnostic information in the early evaluation of stroke. Such an approach is feasible on a point-of-care platform. The rapid identification of patients with suspected stroke would expand the availability of time-limited treatment strategies. Although the diagnostic accuracy of the current panel is clearly imperfect, this study demonstrates the feasibility of incorporating a

  10. Eggs early in complementary feeding increase choline pathway biomarkers and DHA: a randomized controlled trial in Ecuador.

    PubMed

    Iannotti, Lora L; Lutter, Chessa K; Waters, William F; Gallegos Riofrío, Carlos Andres; Malo, Carla; Reinhart, Gregory; Palacios, Ana; Karp, Celia; Chapnick, Melissa; Cox, Katherine; Aguirre, Santiago; Narvaez, Luis; López, Fernando; Sidhu, Rohini; Kell, Pamela; Jiang, Xuntian; Fujiwara, Hideji; Ory, Daniel S; Young, Rebecca; Stewart, Christine P

    2017-12-01

    Background: Choline status has been associated with stunting among young children. Findings from this study showed that an egg intervention improved linear growth by a length-for-age z score of 0.63. Objective: We aimed to test the efficacy of eggs introduced early in complementary feeding on plasma concentrations of biomarkers in choline pathways, vitamins B-12 and A, and essential fatty acids. Design: A randomized controlled trial, the Lulun ("egg" in Kichwa) Project, was conducted in a rural indigenous population of Ecuador. Infants aged 6-9 mo were randomly assigned to treatment (1 egg/d for 6 mo; n = 80) and control (no intervention; n = 83) groups. Socioeconomic data, anthropometric measures, and blood samples were collected at baseline and endline. Household visits were made weekly for morbidity surveillance. We tested vitamin B-12 plasma concentrations by using chemiluminescent competitive immunoassay and plasma concentrations of choline, betaine, dimethylglycine, retinol, essential fatty acids, methionine, dimethylamine (DMA), trimethylamine, and trimethylamine- N -oxide (TMAO) with the use of liquid chromatography-tandem mass spectrometry. Results: Socioeconomic factors and biomarker concentrations were comparable at baseline. Of infants, 11.4% were vitamin B-12 deficient and 31.7% marginally deficient at baseline. In adjusted generalized linear regression modeling, the egg intervention increased plasma concentrations compared with control by the following effect sizes: choline, 0.35 (95% CI: 0.12, 0.57); betaine, 0.29 (95% CI: 0.01, 0.58); methionine, 0.31 (95% CI: 0.03, 0.60); docosahexaenoic acid, 0.43 (95% CI: 0.13, 0.73); DMA, 0.37 (95% CI: 0.37, 0.69); and TMAO, 0.33 (95% CI: 0.08, 0.58). No significant group differences were found for vitamin B-12, retinol, linoleic acid (LA), α-linolenic acid (ALA), or ratios of betaine to choline and LA to ALA. Conclusion: The findings supported our hypothesis that early introduction of eggs significantly

  11. Eggs early in complementary feeding increase choline pathway biomarkers and DHA: a randomized controlled trial in Ecuador

    PubMed Central

    Lutter, Chessa K; Waters, William F; Gallegos Riofrío, Carlos Andres; Malo, Carla; Reinhart, Gregory; Palacios, Ana; Karp, Celia; Chapnick, Melissa; Cox, Katherine; Aguirre, Santiago; Narvaez, Luis; López, Fernando; Sidhu, Rohini; Kell, Pamela; Jiang, Xuntian; Fujiwara, Hideji; Ory, Daniel S; Young, Rebecca; Stewart, Christine P

    2017-01-01

    Background: Choline status has been associated with stunting among young children. Findings from this study showed that an egg intervention improved linear growth by a length-for-age z score of 0.63. Objective: We aimed to test the efficacy of eggs introduced early in complementary feeding on plasma concentrations of biomarkers in choline pathways, vitamins B-12 and A, and essential fatty acids. Design: A randomized controlled trial, the Lulun (“egg” in Kichwa) Project, was conducted in a rural indigenous population of Ecuador. Infants aged 6–9 mo were randomly assigned to treatment (1 egg/d for 6 mo; n = 80) and control (no intervention; n = 83) groups. Socioeconomic data, anthropometric measures, and blood samples were collected at baseline and endline. Household visits were made weekly for morbidity surveillance. We tested vitamin B-12 plasma concentrations by using chemiluminescent competitive immunoassay and plasma concentrations of choline, betaine, dimethylglycine, retinol, essential fatty acids, methionine, dimethylamine (DMA), trimethylamine, and trimethylamine-N-oxide (TMAO) with the use of liquid chromatography–tandem mass spectrometry. Results: Socioeconomic factors and biomarker concentrations were comparable at baseline. Of infants, 11.4% were vitamin B-12 deficient and 31.7% marginally deficient at baseline. In adjusted generalized linear regression modeling, the egg intervention increased plasma concentrations compared with control by the following effect sizes: choline, 0.35 (95% CI: 0.12, 0.57); betaine, 0.29 (95% CI: 0.01, 0.58); methionine, 0.31 (95% CI: 0.03, 0.60); docosahexaenoic acid, 0.43 (95% CI: 0.13, 0.73); DMA, 0.37 (95% CI: 0.37, 0.69); and TMAO, 0.33 (95% CI: 0.08, 0.58). No significant group differences were found for vitamin B-12, retinol, linoleic acid (LA), α-linolenic acid (ALA), or ratios of betaine to choline and LA to ALA. Conclusion: The findings supported our hypothesis that early introduction of eggs significantly

  12. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma

    PubMed Central

    Chauhan, Ranjit; Lahiri, Nivedita

    2016-01-01

    Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future. PMID:27398029

  13. MicroRNA Biomarkers of Toxicity in Biological Matrices ...

    EPA Pesticide Factsheets

    Biomarker measurements that reliably correlate with tissue injury and can be measured from sampling accessible biofluids offer enormous benefits in terms of cost, time, and convenience when assessing environmental and drug-induced toxicity in model systems or human cohorts. MicroRNAs (miRNAs) have emerged in recent years as a promising new type of biomarker for monitoring toxicity. Recent enthusiasm for miRNA biomarker research has been fueled by discoveries that certain miRNA species are cell-type specific and released during injury, thus raising the possibility of using biofluid-based miRNAs as a “liquid biopsy” that may be obtained by sampling extracellular fluids. As biomarkers, miRNAs demonstrate improved stability as compared to many protein markers and sequences are largely conserved across species, simplifying analytical techniques. Recent efforts have sought to identify miRNAs that are released into accessible biofluids following xenobiotic exposure, using compounds that target specific organs. While still early in the discovery phase, miRNA biomarkers will have an increasingly important role in the assessment of adverse effects of both environmental chemicals and pharmaceutical drugs. Here, we review the current findings of biofluid-based miRNAs, as well as highlight technical challenges in assessing toxicologic pathology using these biomarkers. MicroRNAs (miRNAs) are small, non-coding RNA species that selectively bind mRNA molecules and alter thei

  14. Synergistic Tailoring of Electrostatic and Hydrophobic Interactions for Rapid and Specific Recognition of Lysophosphatidic Acid, an Early-Stage Ovarian Cancer Biomarker.

    PubMed

    Wang, Ying; Pei, Hanwen; Jia, Yan; Liu, Jianhua; Li, Zelun; Ai, Kelong; Lu, Zhongyuan; Lu, Lehui

    2017-08-23

    Early detection of ovarian cancer, the most lethal type of gynecologic cancer, can dramatically improve the efficacy of available treatment strategies. However, few screening tools exist for rapidly and effectively diagnosing ovarian cancer in early stages. Here, we present a facile "lock-key" strategy, based on rapid, specific detection of plasma lysophosphatidic acid (LPA, an early stage biomarker) with polydiacetylenes (PDAs)-based probe, for the early diagnosis of ovarian cancer. This strategy relies on specifically inserting LPA "key" into the PDAs "lock" through the synergistic electrostatic and hydrophobic interactions between them, leading to conformation transition of the PDA backbone with a concomitant blue-to-red color change. The detailed mechanism underlying the high selectivity of PDAs toward LPA is revealed by comprehensive theoretical calculation and experiments. Moreover, the level of LPA can be quantified in plasma samples from both mouse xenograft tumor models and patients with ovarian cancer. Impressively, this approach can be introduced into a portable point-of-care device to successfully distinguish the blood samples of patients with ovarian cancer from those of healthy people, with 100% accuracy. This work provides a valuable portable tool for early diagnosis of ovarian cancer and thus holds a great promise to dramatically improve the overall survival.

  15. SITC/iSBTc Cancer Immunotherapy Biomarkers Resource Document: Online resources and useful tools - a compass in the land of biomarker discovery

    PubMed Central

    2011-01-01

    Recent positive clinical results in cancer immunotherapy point to the potential of immune-based strategies to provide effective treatment of a variety of cancers. In some patients, the responses to cancer immunotherapy are durable, dramatically extending survival. Extensive research efforts are being made to identify and validate biomarkers that can help identify subsets of cancer patients that will benefit most from these novel immunotherapies. In addition to the clear advantage of such predictive biomarkers, immune biomarkers are playing an important role in the development, clinical evaluation and monitoring of cancer immunotherapies. This Cancer Immunotherapy Resource Document, prepared by the Society for Immunotherapy of Cancer (SITC, formerly the International Society for Biological Therapy of Cancer, iSBTc), provides key references and online resources relevant to the discovery, evaluation and clinical application of immune biomarkers. These key resources were identified by experts in the field who are actively pursuing research in biomarker identification and validation. This organized collection of the most useful references, online resources and tools serves as a compass to guide discovery of biomarkers essential to advancing novel cancer immunotherapies. PMID:21929757

  16. Early math and reading achievement are associated with the error positivity.

    PubMed

    Kim, Matthew H; Grammer, Jennie K; Marulis, Loren M; Carrasco, Melisa; Morrison, Frederick J; Gehring, William J

    2016-12-01

    Executive functioning (EF) and motivation are associated with academic achievement and error-related ERPs. The present study explores whether early academic skills predict variability in the error-related negativity (ERN) and error positivity (Pe). Data from 113 three- to seven-year-old children in a Go/No-Go task revealed that stronger early reading and math skills predicted a larger Pe. Closer examination revealed that this relation was quadratic and significant for children performing at or near grade level, but not significant for above-average achievers. Early academics did not predict the ERN. These findings suggest that the Pe - which reflects individual differences in motivational processes as well as attention - may be associated with early academic achievement. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease.

    PubMed

    Ma, Qiu-Lan; Teng, Edmond; Zuo, Xiaohong; Jones, Mychica; Teter, Bruce; Zhao, Evan Y; Zhu, Cansheng; Bilousova, Tina; Gylys, Karen H; Apostolova, Liana G; LaDu, Mary Jo; Hossain, Mir Ahamed; Frautschy, Sally A; Cole, Gregory M

    2018-06-01

    Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4 +/+ /FAD +/- ) relative to E4FAD- (non-carrier; APOE4 +/+ /FAD -/- ) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD. Copyright © 2018. Published by Elsevier Inc.

  18. Biomarkers for Early Detection of Clinically Relevant Prostate Cancer: A Multi-Institutional Validation Trial

    DTIC Science & Technology

    2017-10-01

    mRNA and has been shown in many studies to improve predictive accuracy for cancer on initial biopsy,3,7-9 and to be correlated with more aggressive... Study (PASS). We are in the process of evaluating these three biomarker panels in tissue, blood, and urine samples with well annotated clinical and...during AS. The objective of the study is to utilize analytically validated assays that take into account tumor heterogeneity to measure biomarkers in

  19. Sepsis and identification of reliable biomarkers for postoperative period prognosis.

    PubMed

    Siloşi, Cristian Adrian; Siloşi, Isabela; Pădureanu, Vlad; Bogdan, Maria; Mogoantă, Stelian Ştefăniţă; Ciurea, Marius Eugen; Cojocaru, Manole; Boldeanu, Lidia; Avrămescu, Carmen Silvia; Boldeanu, Mihail Virgil; Popa, Dragoş George

    2018-01-01

    Sepsis is currently defined as the presence of organ dysfunction occurring as the result of a disturbed host response to a serious infection. Sepsis is one of the most common diseases, which cause mortality and a considerable absorber of healthcare resources. Despite progress in technology and improving knowledge of pathophysiology, the disease mechanism is still poorly understood. At present, diagnosis is based on non-specific physiological criteria and on the late identification of the pathogen. For these reasons, the diagnosis may be uncertain, treatment delayed or an immunomodulatory therapy cannot be established. An early and reliable diagnosis is essential to achieve better outcomes on disease progression. The host response to infection involves hundreds of many mediators of which have been proposed as biomarkers. There is a need for new diagnostic approaches for sepsis, new sepsis biomarkers that can aid in diagnosis, therapeutic decision and monitoring of the response to therapy. The differentiation of sepsis from non-infectious systemic inflammatory response syndrome is difficult, and the search for a highly accurate biomarker of sepsis has become one important objective of the medicine. The goal of our review is to summarize the recent advances on the most commonly studied serum biomarkers, evaluated in clinical and experimental studies, for early diagnosis of sepsis and their informative value in diagnosis, prognosis, or response to therapy. In this context, we have tracked the clinical utility of measuring serum biomarkers, such as procalcitonin, pro- and anti-inflammatory cytokines, C-reactive protein, leptin and their combinations. Currently, has not been identified an ideal biomarker to aid in the diagnosis of sepsis. It is hoped that the discovery of new serum markers, as well as their combinations, will serve for the diagnosis and prognosis of sepsis.

  20. Higher Order Chromatin Modulator Cohesin SA1 Is an Early Biomarker for Colon Carcinogenesis: Race-Specific Implications.

    PubMed

    Wali, Ramesh K; Momi, Navneet; Dela Cruz, Mart; Calderwood, Audrey H; Stypula-Cyrus, Yolanda; Almassalha, Luay; Chhaparia, Anuj; Weber, Christopher R; Radosevich, Andrew; Tiwari, Ashish K; Latif, Bilal; Backman, Vadim; Roy, Hemant K

    2016-11-01

    Alterations in high order chromatin, with concomitant modulation in gene expression, are one of the earliest events in the development of colorectal cancer. Cohesins are a family of proteins that modulate high-order chromatin, although the role in colorectal cancer remains incompletely understood. We, therefore, assessed the role of cohesin SA1 in colorectal cancer biology and as a biomarker focusing in particular on the increased incidence/mortality of colorectal cancer among African-Americans. Immunohistochemistry on tissue arrays revealed dramatically decreased SA1 expression in both adenomas (62%; P = 0.001) and adenocarcinomas (75%; P = 0.0001). RT-PCR performed in endoscopically normal rectal biopsies (n = 78) revealed a profound decrease in SA1 expression in adenoma-harboring patients (field carcinogenesis) compared with those who were neoplasia-free (47%; P = 0.03). From a racial perspective, colorectal cancer tissues from Caucasians had 56% higher SA1 expression than in African-Americans. This was mirrored in field carcinogenesis where healthy Caucasians expressed more SA1 at baseline compared with matched African-American subjects (73%; P = 0.003). However, as a biomarker for colorectal cancer risk, the diagnostic performance as assessed by area under ROC curve was greater in African-Americans (AUROC = 0.724) than in Caucasians (AUROC = 0.585). From a biologic perspective, SA1 modulation of high-order chromatin was demonstrated with both biophotonic (nanocytology) and chromatin accessibility [micrococcal nuclease (MNase)] assays in SA1-knockdown HT29 colorectal cancer cells. The functional consequences were underscored by increased proliferation (WST-1; P = 0.0002, colony formation; P = 0.001) in the SA1-knockdown HT29 cells. These results provide the first evidence indicating a tumor suppressor role of SA1 in early colon carcinogenesis and as a risk stratification biomarker giving potential insights into biologic basis of racial disparities in colorectal

  1. NYU Lung Cancer Biomarker Center — EDRN Public Portal

    Cancer.gov

    A. SPECIFIC AIMS 1. To develop and prospectively follow a large cohort at high-risk for lung cancer. Individuals are recruited to one of two different study groups: The Screening Cohort includes people with and without increased risk for lung cancer. The Rule-Out Lung Cancer Patient Group is recruited from patients referred for evaluation of suspicious nodules. All individuals answer a questionnaire, obtain PFTs, chest CT scan, sputum induction and phlebotomy. For patients undergoing lung resections or biopsies, tissue samples are collected and banked. Individuals are recruited for research bronchoscopy. All participants are then followed prospectively. The specimens obtained are banked and used for biomarker discovery and validation studies. 2. To identify and validate biomarkers for the early detection of lung cancer, and to describe preneoplastic cellular changes and lesions. Biomarker studies include DNA adducts, DNA methylation, protein markers, and other collaborations. Preneoplasia studies include: fluorescence and Superdimension bronchoscopies to obtain biopsies of preneoplastic lesions and biomarker studies in individuals with preneoplasias.

  2. The Present and Future of Prostate Cancer Urine Biomarkers

    PubMed Central

    Rigau, Marina; Olivan, Mireia; Garcia, Marta; Sequeiros, Tamara; Montes, Melania; Colás, Eva; Llauradó, Marta; Planas, Jacques; de Torres, Inés; Morote, Juan; Cooper, Colin; Reventós, Jaume; Clark, Jeremy; Doll, Andreas

    2013-01-01

    In order to successfully cure patients with prostate cancer (PCa), it is important to detect the disease at an early stage. The existing clinical biomarkers for PCa are not ideal, since they cannot specifically differentiate between those patients who should be treated immediately and those who should avoid over-treatment. Current screening techniques lack specificity, and a decisive diagnosis of PCa is based on prostate biopsy. Although PCa screening is widely utilized nowadays, two thirds of the biopsies performed are still unnecessary. Thus the discovery of non-invasive PCa biomarkers remains urgent. In recent years, the utilization of urine has emerged as an attractive option for the non-invasive detection of PCa. Moreover, a great improvement in high-throughput “omic” techniques has presented considerable opportunities for the identification of new biomarkers. Herein, we will review the most significant urine biomarkers described in recent years, as well as some future prospects in that field. PMID:23774836

  3. Metabolomics for Biomarker Discovery: Moving to the Clinic

    PubMed Central

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2015-01-01

    To improve the clinical course of diseases, more accurate diagnostic and assessment methods are required as early as possible. In order to achieve this, metabolomics offers new opportunities for biomarker discovery in complex diseases and may provide pathological understanding of diseases beyond traditional technologies. It is the systematic analysis of low-molecular-weight metabolites in biological samples and has become an important tool in clinical research and the diagnosis of human disease and has been applied to discovery and identification of the perturbed pathways. It provides a powerful approach to discover biomarkers in biological systems and offers a holistic approach with the promise to clinically enhance diagnostics. When carried out properly, it could provide insight into the understanding of the underlying mechanisms of diseases, help to identify patients at risk of disease, and predict the response to specific treatments. Currently, metabolomics has become an important tool in clinical research and the diagnosis of human disease and becomes a hot topic. This review will highlight the importance and benefit of metabolomics for identifying biomarkers that accurately screen potential biomarkers of diseases. PMID:26090402

  4. ANMCO/ELAS/SIBioC Consensus Document: biomarkers in heart failure

    PubMed Central

    Gulizia, Michele Massimo; Clerico, Aldo; Di Tano, Giuseppe; Emdin, Michele; Feola, Mauro; Iacoviello, Massimo; Latini, Roberto; Mortara, Andrea; Valle, Roberto; Misuraca, Gianfranco; Passino, Claudio; Masson, Serge; Aimo, Alberto; Ciaccio, Marcello; Migliardi, Marco

    2017-01-01

    Abstract Biomarkers have dramatically impacted the way heart failure (HF) patients are evaluated and managed. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological or pathogenic processes, or pharmacological responses to a therapeutic intervention. Natriuretic peptides [B-type natriuretic peptide (BNP) and N-terminal proBNP] are the gold standard biomarkers in determining the diagnosis and prognosis of HF, and a natriuretic peptide-guided HF management looks promising. In the last few years, an array of additional biomarkers has emerged, each reflecting different pathophysiological processes in the development and progression of HF: myocardial insult, inflammation, fibrosis, and remodelling, but their role in the clinical care of the patient is still partially defined and more studies are needed before to be well validated. Moreover, several new biomarkers have the potential to identify patients with early renal dysfunction and appear to have promise to help the management cardio-renal syndrome. With different biomarkers reflecting HF presence, the various pathways involved in its progression, as well as identifying unique treatment options for HF management, a closer cardiologist-laboratory link, with a multi-biomarker approach to the HF patient, is not far ahead, allowing the unique opportunity for specifically tailoring care to the individual pathological phenotype. PMID:28751838

  5. Plasma Biomarker Analysis in Pediatric ARDS: Generating Future Framework from a Pilot Randomized Control Trial of Methylprednisolone: A Framework for Identifying Plasma Biomarkers Related to Clinical Outcomes in Pediatric ARDS.

    PubMed

    Kimura, Dai; Saravia, Jordy; Rovnaghi, Cynthia R; Meduri, Gianfranco Umberto; Schwingshackl, Andreas; Cormier, Stephania A; Anand, Kanwaljeet J

    2016-01-01

    Lung injury activates multiple pro-inflammatory pathways, including neutrophils, epithelial, and endothelial injury, and coagulation factors leading to acute respiratory distress syndrome (ARDS). Low-dose methylprednisolone therapy (MPT) improved oxygenation and ventilation in early pediatric ARDS without altering duration of mechanical ventilation or mortality. We evaluated the effects of MPT on biomarkers of endothelial [Ang-2 and soluble intercellular adhesion molecule-1 (sICAM-1)] or epithelial [soluble receptor for activated glycation end products (sRAGE)] injury, neutrophil activation [matrix metalloproteinase-8 (MMP-8)], and coagulation (plasminogen activator inhibitor-1). Double-blind, placebo-controlled randomized trial. Tertiary-care pediatric intensive care unit (ICU). Mechanically ventilated children (0-18 years) with early ARDS. Blood samples were collected on days 0 (before MPT), 7, and 14 during low-dose MPT (n = 17) vs. placebo (n = 18) therapy. The MPT group received a 2-mg/kg loading dose followed by 1 mg/kg/day continuous infusions from days 1 to 7, tapered off over 7 days; placebo group received equivalent amounts of 0.9% saline. We analyzed plasma samples using a multiplex assay for five biomarkers of ARDS. Multiple regression models were constructed to predict associations between changes in biomarkers and the clinical outcomes reported earlier, including P/F ratio on days 8 and 9, plateau pressure on days 1 and 2, PaCO2 on days 2 and 3, racemic epinephrine following extubation, and supplemental oxygen at ICU discharge. No differences occurred in biomarker concentrations between the groups on day 0. On day 7, reduction in MMP-8 levels (p = 0.0016) occurred in the MPT group, whereas increases in sICAM-1 levels (p = 0.0005) occurred in the placebo group (no increases in sICAM-1 in the MPT group). sRAGE levels decreased in both MPT and placebo groups (p < 0.0001) from day 0 to day 7. On day 7, sRAGE levels were

  6. Liquid biopsy for early stage lung cancer.

    PubMed

    Liang, Wenhua; Zhao, Yi; Huang, Weizhe; Liang, Hengrui; Zeng, Haikang; He, Jianxing

    2018-04-01

    Liquid biopsy, which analyzes biological fluids especially blood specimen to detect and quantify circulating cancer biomarkers, have been rapidly introduced and represents a promising potency in clinical practice of lung cancer diagnosis and prognosis. Unlike conventional tissue biopsy, liquid biopsy is non-invasive, safe, simple in procedure, and is not influenced by manipulators' skills. Notably, some circulating cancer biomarkers are already detectable in disease with low-burden, making liquid biopsy feasible in detecting early stage lung cancer. In this review, we described a landscape of different liquid biopsy methods by highlighting the rationale and advantages, accessing the value of various circulating biomarkers and discussing their possible future development in the detection of early lung cancer.

  7. Analytical considerations for mass spectrometry profiling in serum biomarker discovery.

    PubMed

    Whiteley, Gordon R; Colantonio, Simona; Sacconi, Andrea; Saul, Richard G

    2009-03-01

    The potential of using mass spectrometry profiling as a diagnostic tool has been demonstrated for a wide variety of diseases. Various cancers and cancer-related diseases have been the focus of much of this work because of both the paucity of good diagnostic markers and the knowledge that early diagnosis is the most powerful weapon in treating cancer. The implementation of mass spectrometry as a routine diagnostic tool has proved to be difficult, however, primarily because of the stringent controls that are required for the method to be reproducible. The method is evolving as a powerful guide to the discovery of biomarkers that could, in turn, be used either individually or in an array or panel of tests for early disease detection. Using proteomic patterns to guide biomarker discovery and the possibility of deployment in the clinical laboratory environment on current instrumentation or in a hybrid technology has the possibility of being the early diagnosis tool that is needed.

  8. Harnessing Cerebrospinal Fluid Biomarkers in Clinical Trials for Treating Alzheimer's and Parkinson's Diseases: Potential and Challenges

    PubMed Central

    Kim, Dana; Kim, Young-Sam; Shin, Dong Wun; Park, Chang-Shin

    2016-01-01

    No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era. PMID:27819412

  9. Harnessing Cerebrospinal Fluid Biomarkers in Clinical Trials for Treating Alzheimer's and Parkinson's Diseases: Potential and Challenges.

    PubMed

    Kim, Dana; Kim, Young Sam; Shin, Dong Wun; Park, Chang Shin; Kang, Ju Hee

    2016-10-01

    No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era.

  10. Development of metabolic and inflammatory mediator biomarker phenotyping for early diagnosis and triage of pediatric sepsis.

    PubMed

    Mickiewicz, Beata; Thompson, Graham C; Blackwood, Jaime; Jenne, Craig N; Winston, Brent W; Vogel, Hans J; Joffe, Ari R

    2015-09-09

    The first steps in goal-directed therapy for sepsis are early diagnosis followed by appropriate triage. These steps are usually left to the physician's judgment, as there is no accepted biomarker available. We aimed to determine biomarker phenotypes that differentiate children with sepsis who require intensive care from those who do not. We conducted a prospective, observational nested cohort study at two pediatric intensive care units (PICUs) and one pediatric emergency department (ED). Children ages 2-17 years presenting to the PICU or ED with sepsis or presenting for procedural sedation to the ED were enrolled. We used the judgment of regional pediatric ED and PICU attending physicians as the standard to determine triage location (PICU or ED). We performed metabolic and inflammatory protein mediator profiling with serum and plasma samples, respectively, collected upon presentation, followed by multivariate statistical analysis. Ninety-four PICU sepsis, 81 ED sepsis, and 63 ED control patients were included. Metabolomic profiling revealed clear separation of groups, differentiating PICU sepsis from ED sepsis with accuracy of 0.89, area under the receiver operating characteristic curve (AUROC) of 0.96 (standard deviation [SD] 0.01), and predictive ability (Q(2)) of 0.60. Protein mediator profiling also showed clear separation of the groups, differentiating PICU sepsis from ED sepsis with accuracy of 0.78 and AUROC of 0.88 (SD 0.03). Combining metabolomic and protein mediator profiling improved the model (Q(2) =0.62), differentiating PICU sepsis from ED sepsis with accuracy of 0.87 and AUROC of 0.95 (SD 0.01). Separation of PICU sepsis or ED sepsis from ED controls was even more accurate. Prespecified age subgroups (2-5 years old and 6-17 years old) improved model accuracy minimally. Seventeen metabolites or protein mediators accounted for separation of PICU sepsis and ED sepsis with 95% confidence. In children ages 2-17 years, combining metabolomic and

  11. Candidate immune biomarkers for radioimmunotherapy.

    PubMed

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-08-01

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy. Copyright © 2017. Published by Elsevier B.V.

  12. Long Noncoding RNA in Digestive Tract Cancers: Function, Mechanism, and Potential Biomarker

    PubMed Central

    Zeng, Shuo; Xiao, Yu-Feng; Tang, Bo; Hu, Chang-Jiang; Xie, Rei; Yang, Shi-Ming

    2015-01-01

    Digestive tract cancers (DTCs) are a leading cause of cancer-related death worldwide. Current therapeutic tools for advanced stage DTCs have limitations, and patients with early stage DTCs frequently have a missed diagnosis due to shortage of efficient biomarkers. Consequently, it is necessary to develop novel biomarkers for early diagnosis and novel therapeutic targets for treatment of DTCs. In recent years, long noncoding RNAs (lncRNAs), a class of noncoding RNAs with >200 nucleotides, have been shown to be aberrantly expressed in DTCs and to have an important role in DTC development: the expression profiles of lncRNAs strongly correlated with poor survival of patients with DTCs, and lncRNAs acted as oncogenes or tumor suppressor genes in DTC progression. In this review, we summarized the functional lncRNAs and expounded on their regulatory mechanisms in DTCs. Implications for Practice: Digestive tract cancers (DTCs) are a leading cause of cancer-related death worldwide. It is necessary to exploit novel biomarkers for early diagnosis and novel therapeutic targets for treatment of DTCs. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with approximately 200 nucleotides to 100,000 bases, participate in the progression of a variety of diseases. This review summarizes functional lncRNAs, which were shown to serve as novel biomarkers for diagnosis and prognosis of DTCs and to act as oncogenes or tumor suppressor genes in DTC development. In addition, the potential mechanism of functional lncRNAs in DTCs is highlighted. PMID:26156325

  13. BIOMARKERS OF OPERATIONAL TOLERANCE IN SOLID ORGAN TRANSPLANTATION

    PubMed Central

    Heidt, Sebastiaan; Wood, Kathryn J.

    2012-01-01

    Introduction Long-term immunosuppressive therapy represents a huge burden on transplant recipients, but currently cannot be omitted. Improving long-term transplant outcome by immunosuppressive drug withdrawal may be achieved in patients who have developed (partial) immunological unresponsiveness towards their graft, either spontaneously or through tolerance induction. Reliable biomarkers are essential to define such immunological unresponsiveness and will facilitate controlled immunosuppressive drug weaning as well as provide surrogate end-points for tolerance induction trials. Areas covered Tolerance biomarkers have been defined for both liver and kidney transplantation and can accurately identify operationally tolerant transplant recipients retrospectively. These two tolerance fingerprints are remarkably different, indicating the involvement of distinct mechanisms. Limited data suggest that tolerance biomarkers can be detected in immunosuppressed transplant recipients. Whether these patients can safely have their immunosuppressive drugs withdrawn needs to be established. Expert opinion Mechanistic interpretation of the kidney transplant tolerance biomarker profile dominated by B cell markers remains a challenge in light of experimental evidence suggesting the pivotal involvement of regulatory T cells. Therefore, defining animal models that resemble human transplant tolerance is crucial in understanding the underlying mechanisms. Additionally, to ensure patient safety while monitoring for tolerance, it is essential to develop biomarkers to non-invasively detect early signs of rejection as well. PMID:22988481

  14. Early detection: the impact of genomics.

    PubMed

    van Lanschot, M C J; Bosch, L J W; de Wit, M; Carvalho, B; Meijer, G A

    2017-08-01

    The field of genomics has shifted our view on disease development by providing insights in the molecular and functional processes encoded in the genome. In the case of cancer, many alterations in the DNA accumulate that enable tumor growth or even metastatic dissemination. Identification of molecular signatures that define different stages of progression towards cancer can enable early tumor detection. In this review, the impact of genomics will be addressed using early detection of colorectal cancer (CRC) as an example. Increased understanding of the adenoma-to-carcinoma progression has led to the discovery of several diagnostic biomarkers. This combined with technical advancements, has facilitated the development of molecular tests for non-invasive early CRC detection in stool and blood samples. Even though several tests have already made it to clinical practice, sensitivity and specificity for the detection of precancerous lesions still need improvement. Besides the diagnostic qualities, also the accuracy of the intermediate endpoint is an important issue on how the effectiveness of a novel test is perceived. Here, progression biomarkers may provide a more precise measure than the currently used morphologically based features. Similar developments in biomarker use for early detection have taken place in other cancer types.

  15. Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis

    PubMed Central

    Craig-Schapiro, Rebecca; Kuhn, Max; Xiong, Chengjie; Pickering, Eve H.; Liu, Jingxia; Misko, Thomas P.; Perrin, Richard J.; Bales, Kelly R.; Soares, Holly; Fagan, Anne M.; Holtzman, David M.

    2011-01-01

    Background Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10–15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). Methods and Findings Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. Conclusions/Significance Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best

  16. Recent developments in biomarkers in Parkinson disease

    PubMed Central

    Schapira, Anthony H.V.

    2013-01-01

    Purpose of review Parkinson disease is the second most common neurodegenerative disease after Alzheimer disease, and current demographic trends indicate a life-time risk approaching 4% and predict a doubling of prevalence by 2030. Strategies are being developed to apply recent advances in our understanding of the cause of Parkinson disease to the development of biomarkers that will enable the identification of at-risk individuals, enable early diagnosis and reflect the progression of disease. The latter will be particularly important for the testing of disease-modifying therapies. This review summarizes recent advances in Parkinson disease biomarker development. Recent findings Recent reports continue to reflect the application of a variety of clinical, imaging or biochemical measurements, alone or in combination, to general Parkinson disease populations. Probably the most promising is the assay of alpha-synuclein in the diagnosis and evolution of Parkinson disease. At present, detection techniques are still being refined, but once accurate and reproducible assays are available, it will be important to define the relationship of these to early diagnosis and progression. Alpha-synuclein concentrations may also be modulated by certain disease-modifying agents in development and so may represent a measure of their efficacy. It has to be accepted that no single measure currently fulfils all the necessary criteria for a biomarker in Parkinson disease, but combinations of measures are more likely to deliver benefit. Summary The Parkinson disease biomarker field is approaching a stage when certain combinations of clinical, imaging and biochemical measures may identify a proportion of individuals at risk for developing the disease. However, their general applicability may be limited. Attention is now turning to stratification of Parkinson disease into certain at-risk groups defined by genotype. The application of multimodal screening to these populations may be more

  17. Circulating RNAs as new biomarkers for detecting pancreatic cancer

    PubMed Central

    Kishikawa, Takahiro; Otsuka, Motoyuki; Ohno, Motoko; Yoshikawa, Takeshi; Takata, Akemi; Koike, Kazuhiko

    2015-01-01

    Pancreatic cancer remains difficult to treat and has a high mortality rate. It is difficult to diagnose early, mainly due to the lack of screening imaging modalities and specific biomarkers. Consequently, it is important to develop biomarkers that enable the detection of early stage tumors. Emerging evidence is accumulating that tumor cells release substantial amounts of RNA into the bloodstream that strongly resist RNases in the blood and are present at sufficient levels for quantitative analyses. These circulating RNAs are upregulated in the serum and plasma of cancer patients, including those with pancreatic cancer, compared with healthy controls. The majority of RNA biomarker studies have assessed circulating microRNAs (miRs), which are often tissue-specific. There are few reports of the tumor-specific upregulation of other types of small non-coding RNAs (ncRNAs), such as small nucleolar RNAs and Piwi-interacting RNAs. Long ncRNAs (lncRNAs), such as HOTAIR and MALAT1, in the serum/plasma of pancreatic cancer patients have also been reported as diagnostic and prognostic markers. Among tissue-derived RNAs, some miRs show increased expression even in pre-cancerous tissues, and their expression profiles may allow for the discrimination between a chronic inflammatory state and carcinoma. Additionally, some miRs and lncRNAs have been reported with significant alterations in expression according to disease progression, and they may thus represent potential candidate diagnostic or prognostic biomarkers that may be used to evaluate patients once detection methods in peripheral blood are well established. Furthermore, recent innovations in high-throughput sequencing techniques have enabled the discovery of unannotated tumor-associated ncRNAs and tumor-specific alternative splicing as novel and specific biomarkers of cancers. Although much work is required to clarify the release mechanism, origin of tumor-specific circulating RNAs, and selectivity of carrier complexes

  18. Innovative methodology for the identification of soluble biomarkers in fresh tissues

    PubMed Central

    Bellahcène, Akeila; Hirano, Touko; Peulen, Olivier; Blomme, Arnaud; Hennequière, Vincent; Mutijima, Eugene; Boniver, Jacques; Meuwis, Marie-Alice; Josse, Claire; Koopmansch, Benjamin; Segers, Karin; Yokobori, Takehiko; Fahmy, Karim; Thiry, Marc; Coimbra, Carla; Garbacki, Nancy; Colige, Alain; Baiwir, Dominique; Bours, Vincent; Louis, Edouard; Detry, Olivier; Delvenne, Philippe; Nishiyama, Masahiko; Castronovo, Vincent

    2018-01-01

    The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic. PMID:29535834

  19. Cardiotrophin-1 as a new metabolic biomarker in women with PCOS.

    PubMed

    Anik Ilhan, Gokce; Kanlioglu, Cansu; Arslan, Gaye; Yildizhan, Begum; Pekin, Tanju

    2018-03-30

    The objective of this study was to investigate cardiotrophin-1 (CT-1) levels as a new metabolic biomarker in women with polycystic ovary syndrome (PCOS). One hundred consecutive women with PCOS were divided into two groups according to presence of metabolic syndrome as MetS+ and MetS-. Clinical, hormonal and metabolic parameters in addition to CT-1 levels were compared between the groups. Correlation analyses were performed between CT-1 and clinical and metabolic parameters in women with PCOS. One hundred PCOS subjects were enrolled in the study, of which 29 subjects were diagnosed with metabolic syndrome. WHR, systolic and diastolic blood pressures, triglyceride, total cholesterol, HOMA-IR, FAI, FGS and CT-1 levels were significantly higher in the MetS+ group compared with the MetS- group. HDL cholesterol was significantly higher in the MetS- group than the MetS+ one. CT-1 levels were found to be positively correlated with diastolic blood pressure, TG levels and FGS. Cardiotrophin-1 may be a promising new metabolic biomarker in women with PCOS. CT-1 may be beneficial for estimating the risk of long-term adverse health consequences and establishing early intervention and preventation strategies.

  20. Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis

    PubMed Central

    Nguyen, Lich Thi; Sharma, Ashish Ranjan; Chakraborty, Chiranjib; Saibaba, Balaji; Ahn, Moo-Eob; Lee, Sang-Soo

    2017-01-01

    Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.). PMID:28287489

  1. ELISA microarray technology as a high-throughput system for cancer biomarker validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangar, Richard C.; Daly, Don S.; White, Amanda M.

    A large gap currently exists between the ability to discover potential biomarkers and the ability to assess the real value of these proteins for cancer screening. One major challenge in biomarker validation is the inherent variability in biomarker levels. This variability stems from the diversity across the human population and the considerable molecular heterogeneity between individual tumors, even those that originate from a single tissue. Another major challenge with cancer screening is that most cancers are rare in the general population, meaning that the specificity of an assay must be very high if the number of false positive is notmore » going to be much greater than the number of true positives. Because of these challenges with biomarker validation, it is necessary to analysis of thousands of samples before a clear idea of the utility of a screening assay can be determined. Enzyme-linked immunosorbent assay (ELISA) microarray technology can simultaneously quantify levels of multiple proteins and has the potential to accelerate biomarker validation. In this review, we discuss current ELISA microarray technology and the enabling advances needed to achieve the reproducibility and throughput that are required to evaluate cancer biomarkers.« less

  2. Is 1H NMR metabolomics becoming the promising early biomarker for neonatal sepsis and for monitoring the antibiotic toxicity?

    PubMed

    Noto, Antonio; Mussap, Michele; Fanos, Vassilios

    2014-06-01

    Metabolomics, the latest of omics disciplines, has been successfully used in various fields of basic research such as pharmacology and toxicology. Recently, this new science has gained an important role in the translational research of diagnostics. In this regard, the challenge for neonatologists and medical laboratories is to diagnose neonatal sepsis, a disease with high mortality and morbidity due to the difficulty in diagnosing it. Metabolomics, through its ability to identify perturbations caused by this condition, aims at recognizing metabolites that characterize neonatal sepsis with high specificity and sensitivity. The purpose of this review is to highlight the ability of metabolomics to find early biomarkers for this condition, as well as to predict the toxic effects caused by antibiotics.

  3. Developments in the Identification of Glycan Biomarkers for the Detection of Cancer

    PubMed Central

    Ruhaak, L. Renee; Miyamoto, Suzanne; Lebrilla, Carlito B.

    2013-01-01

    Changes in glycosylation readily occur in cancer and other disease states. Thanks to recent advances in the development of analytical techniques and instrumentation, especially in mass spectrometry, it is now possible to identify blood-derived glycan-based biomarkers using glycomics strategies. This review is an overview of the developments made in the search for glycan-based cancer biomarkers and the technologies currently in use. It is anticipated that the progressing instrumental and bioinformatics developments will allow the identification of relevant glycan biomarkers for the diagnosis, early detection, and monitoring of cancer treatment with sufficient sensitivity and specificity for clinical use. PMID:23365456

  4. Biomarkers in Diabetic Retinopathy.

    PubMed

    Jenkins, Alicia J; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Keech, Anthony C; O'Neal, David N; Januszewski, Andrzej S

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  5. Positive feelings during pregnancy, early feeding practices, and infant health.

    PubMed

    McManus, Melissa A; Khalessi, Ali A; Lin, Joyce; Ashraf, Jahanzeb; Reich, Stephanie M

    2017-05-01

    Early parenting practices, such as infant feeding, can affect children's physical health. Additionally, negative prenatal maternal affect can influence feeding choices, such as breast-feeding, and can have a detrimental effect on children's health. Little is known, however, about the contribution of positive maternal affect during pregnancy on feeding practices and children's health. This study explored whether positive prenatal feelings influenced children's health during the first 18 months, and whether early feeding practices mediated the relationship between these two variables. Low-income, ethnically diverse, primiparous women (n = 114) reported their feelings of pregnancy uplifts and hassles during their third trimester. These women were interviewed again at 2, 4, 6, 9, 12, and 18 months post-partum about their feeding practices. A retrospective audit of their infants' medical charts was completed from birth to 18 months. Using structural equation modeling, having more uplifts than hassles during pregnancy was associated with longer breast-feeding duration and greater adherence to recommended schedules for introducing fruits and vegetables, solids, and baby cereal. These feeding practices were linked to better child health outcomes, including reduced risk of upper respiratory tract infections, conjunctivitis, otitis media, and thrush. Positive maternal feelings during pregnancy were associated with better feeding practices, and these better feeding practices were associated with fewer common childhood illnesses. Helping expectant women focus on the positive aspects of their pregnancy may lead to postnatal care methods that are fiscally advantageous, preventive of detrimental postnatal choices, and medically beneficial for children. © 2016 Japan Pediatric Society.

  6. Fabrication and Characterization of a Novel Nanodendrite-based Electrochemical Sensor for the Detection of Disease Biomarkers

    NASA Astrophysics Data System (ADS)

    Connolly, Timothy; Archibald, Michelle M.; Nesbitt, Nathan T.; Rossi, Matthew; Glover, Jennifer A.; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    2014-03-01

    Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We are currently developing a novel 3-dimensional nanopillar dendrite biosensor array for the detection of human cancer biomarkers (e . g . CA-125 for early-stage ovarian cancer) in serum and other fluids. Here, we describe a nanoscale 3D architecture that can afford molecular detection at room temperature. We report our efforts on the development of an all-electronic, ambient temperature, rapid-response dendritic biosensor fabricated by directed electrochemical nanowire assembly (DENA) that achieves molecular-scale sensitivity for protein biomarker based detection. Each sensor is a vertically-oriented nanodendritic array where an electrochemical signal is detected from the oxidation of the redox end-product of an enzyme-linked immunosorbent assay (ELISA). Our results demonstrate the feasibility of using the present nanodendritic array structure as a sensitive device to detect a range of proteins of interest, including disease biomarkers. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  7. Predicting and Tracking Short Term Disease Progression in Amnestic Mild Cognitive Impairment Patients with Prodromal Alzheimer's Disease: Structural Brain Biomarkers.

    PubMed

    Marizzoni, Moira; Ferrari, Clarissa; Jovicich, Jorge; Albani, Diego; Babiloni, Claudio; Cavaliere, Libera; Didic, Mira; Forloni, Gianluigi; Galluzzi, Samantha; Hoffmann, Karl-Titus; Molinuevo, José Luis; Nobili, Flavio; Parnetti, Lucilla; Payoux, Pierre; Ribaldi, Federica; Rossini, Paolo Maria; Schönknecht, Peter; Soricelli, Andrea; Hensch, Tilman; Tsolaki, Magda; Visser, Pieter Jelle; Wiltfang, Jens; Richardson, Jill C; Bordet, Régis; Blin, Olivier; Frisoni, Giovanni B

    2018-06-09

    Early Alzheimer's disease (AD) detection using cerebrospinal fluid (CSF) biomarkers has been recommended as enrichment strategy for trials involving mild cognitive impairment (MCI) patients. To model a prodromal AD trial for identifying MRI structural biomarkers to improve subject selection and to be used as surrogate outcomes of disease progression. APOE ɛ4 specific CSF Aβ42/P-tau cut-offs were used to identify MCI with prodromal AD (Aβ42/P-tau positive) in the WP5-PharmaCog (E-ADNI) cohort. Linear mixed models were performed 1) with baseline structural biomarker, time, and biomarker×time interaction as factors to predict longitudinal changes in ADAS-cog13, 2) with Aβ42/P-tau status, time, and Aβ42/P-tau status×time interaction as factors to explain the longitudinal changes in MRI measures, and 3) to compute sample size estimation for a trial implemented with the selected biomarkers. Only baseline lateral ventricle volume was able to identify a subgroup of prodromal AD patients who declined faster (interaction, p = 0.003). Lateral ventricle volume and medial temporal lobe measures were the biomarkers most sensitive to disease progression (interaction, p≤0.042). Enrichment through ventricular volume reduced the sample size that a clinical trial would require from 13 to 76%, depending on structural outcome variable. The biomarker needing the lowest sample size was the hippocampal subfield GC-ML-DG (granule cells of molecular layer of the dentate gyrus) (n = 82 per arm to demonstrate a 20% atrophy reduction). MRI structural biomarkers can enrich prodromal AD with fast progressors and significantly decrease group size in clinical trials of disease modifying drugs.

  8. Biomarker-based risk prediction in the community.

    PubMed

    AbouEzzeddine, Omar F; McKie, Paul M; Scott, Christopher G; Rodeheffer, Richard J; Chen, Horng H; Michael Felker, G; Jaffe, Allan S; Burnett, John C; Redfield, Margaret M

    2016-11-01

    Guided by predictive characteristics of cardiovascular biomarkers, we explored the clinical implications of a simulated biomarker-guided heart failure (HF) and major adverse cardiovascular events (MACE) prevention strategy in the community. In a community cohort (n = 1824), the predictive characteristics for HF and MACE of galectin-3 (Gal-3), ST2, high-sensitivity cardiac troponin I (hscTnI), high-sensitivity C-reactive protein (hsCRP), N-terminal pro-brain natriuretic peptide (NT-proBNP) and B-type natriuretic peptide (BNP) were established. We performed number needed to screen (NNS) and treat (NNT) with the intervention analyses according to biomarker screening strategy and intervention efficacy in persons with at least one cardiovascular risk factor. In the entire cohort, for both HF and MACE, the predictive characteristics of NT-proBNP and hscTnI were superior to other biomarkers; alone, in a multimarker model, and adjusting for clinical risk factors. An NT-proBNP-guided preventative intervention with an intervention effect size (4-year hazard ratio for intervention in biomarker positive cohort) of ≤0.7 would reduce the global burden of HF by ≥20% and MACE by ≥15%. From this simulation, the NNS to prevent one HF event or MACE in 4 years would be ≤100 with a NNT to prevent one HF event of ≤20 and one MACE of ≤10. The predictive characteristics of NT-proBNP and hscTnI for HF or MACE in the community are superior to other biomarkers. Biomarker-guided preventative interventions with reasonable efficacy would compare favourably to established preventative interventions. This data provides a framework for biomarker selection which may inform design of biomarker-guided preventative intervention trials. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.

  9. Simultaneous detection of circulating immunological parameters and tumor biomarkers in early stage breast cancer patients during adjuvant chemotherapy.

    PubMed

    Rovati, B; Mariucci, S; Delfanti, S; Grasso, D; Tinelli, C; Torre, C; De Amici, M; Pedrazzoli, P

    2016-06-01

    Chemotherapy-induced immune suppression has mainly been studied in patients with advanced cancer, but the influence of chemotherapy on the immune system in early stage cancer patients has so far not been studied systematically. The aim of the present study was to monitor the immune system during anthracycline- and taxane-based adjuvant chemotherapy in early stage breast cancer patients, to assess the impact of circulating tumor cells on selected immune parameters and to reveal putative angiogenic effects of circulating endothelial cells. Peripheral blood samples from 20 early stage breast cancer patients were analyzed using a flow cytometric multi-color of antibodies to enumerate lymphocyte and dendritic cell subsets, as well as endothelial and tumor cells. An enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of various serological factors. During chemotherapy, all immunological parameters and angiogenesis surrogate biomarkers showed significant decreases. The numbers of circulating tumor cells showed significant inverse correlations with the numbers of T helper cells, a lymphocyte subset directly related to effective anti-tumor responses. Reduced T helper cell numbers may contribute to systemic immunosuppression and, as such, the activation of dormant tumor cells. From our results we conclude that adjuvant chemotherapy suppresses immune function in early stage breast cancer patients. In addition, we conclude that the presence of circulating tumor cells, defined as pan-cytokeratin(+), CD326(+), CD45(-) cells, may serve as an important indicator of a patient's immune status. Further investigations are needed to firmly define circulating tumor cells as a predictor for the success of breast cancer adjuvant chemotherapy.

  10. Detection of colorectal neoplasia: Combination of eight blood-based, cancer-associated protein biomarkers.

    PubMed

    Wilhelmsen, Michael; Christensen, Ib J; Rasmussen, Louise; Jørgensen, Lars N; Madsen, Mogens R; Vilandt, Jesper; Hillig, Thore; Klaerke, Michael; Nielsen, Knud T; Laurberg, Søren; Brünner, Nils; Gawel, Susan; Yang, Xiaoqing; Davis, Gerard; Heijboer, Annemieke; Martens, Frans; Nielsen, Hans J

    2017-03-15

    Serological biomarkers may be an option for early detection of colorectal cancer (CRC). The present study assessed eight cancer-associated protein biomarkers in plasma from subjects undergoing first time ever colonoscopy due to symptoms attributable to colorectal neoplasia. Plasma AFP, CA19-9, CEA, hs-CRP, CyFra21-1, Ferritin, Galectin-3 and TIMP-1 were determined in EDTA-plasma using the Abbott ARCHITECT® automated immunoassay platform. Primary endpoints were detection of (i) CRC and high-risk adenoma and (ii) CRC. Logistic regression was performed. Final reduced models were constructed selecting the four biomarkers with the highest likelihood scores. Subjects (N = 4,698) were consecutively included during 2010-2012. Colonoscopy detected 512 CRC patients, 319 colonic cancer and 193 rectal cancer. Extra colonic malignancies were detected in 177 patients, 689 had adenomas of which 399 were high-risk, 1,342 had nonneoplastic bowell disease and 1,978 subjects had 'clean' colorectum. Univariable analysis demonstrated that all biomarkers were statistically significant. Multivariate logistic regression demonstrated that the blood-based biomarkers in combination significantly predicted the endpoints. The reduced model resulted in the selection of CEA, hs-CRP, CyFra21-1 and Ferritin for the two endpoints; AUCs were 0.76 and 0.84, respectively. The postive predictive value at 90% sensitivity was 25% for endpoint 1 and the negative predictive value was 93%. For endpoint 2, the postive predictive value was 18% and the negative predictive value was 97%. Combinations of serological protein biomarkers provided a significant identification of subjects with high risk of the presence of colorectal neoplasia. The present set of biomarkers could become important adjunct in early detection of CRC. © 2016 UICC.

  11. Novel Automated Blood Separations Validate Whole Cell Biomarkers

    PubMed Central

    Burger, Douglas E.; Wang, Limei; Ban, Liqin; Okubo, Yoshiaki; Kühtreiber, Willem M.; Leichliter, Ashley K.; Faustman, Denise L.

    2011-01-01

    Background Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs). Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs) of fresh blood samples. Methods and Findings To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes. Conclusions Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials. PMID:21799852

  12. Early Parental Positive Behavior Support and Childhood Adjustment: Addressing Enduring Questions with New Methods

    PubMed Central

    Waller, Rebecca; Gardner, Frances; Dishion, Thomas; Sitnick, Stephanie L.; Shaw, Daniel S.; Winter, Charlotte E.; Wilson, Melvin

    2016-01-01

    A large literature provides strong empirical support for the influence of parenting on child outcomes. The current study addresses enduring research questions testing the importance of early parenting behavior to children’s adjustment. Specifically, we developed and tested a novel multi-method observational measure of parental positive behavior support at age 2. Next, we tested whether early parental positive behavior support was related to child adjustment at school age, within a multi-agent and multi-method measurement approach and design. Observational and parent-reported data from mother–child dyads (N = 731; 49 percent female) were collected from a high-risk sample at age 2. Follow-up data were collected via teacher report and child assessment at age 7.5. The results supported combining three different observational methods to assess positive behavior support at age 2 within a latent factor. Further, parents’ observed positive behavior support at age 2 predicted multiple types of teacher-reported and child-assessed problem behavior and competencies at 7.5 years old. Results supported the validity and predictive capability of a multi-method observational measure of parenting and the importance of a continued focus on the early years within preventive interventions. PMID:26997757

  13. Early Parental Positive Behavior Support and Childhood Adjustment: Addressing Enduring Questions with New Methods.

    PubMed

    Waller, Rebecca; Gardner, Frances; Dishion, Thomas; Sitnick, Stephanie L; Shaw, Daniel S; Winter, Charlotte E; Wilson, Melvin

    2015-05-01

    A large literature provides strong empirical support for the influence of parenting on child outcomes. The current study addresses enduring research questions testing the importance of early parenting behavior to children's adjustment. Specifically, we developed and tested a novel multi-method observational measure of parental positive behavior support at age 2. Next, we tested whether early parental positive behavior support was related to child adjustment at school age, within a multi-agent and multi-method measurement approach and design. Observational and parent-reported data from mother-child dyads (N = 731; 49 percent female) were collected from a high-risk sample at age 2. Follow-up data were collected via teacher report and child assessment at age 7.5. The results supported combining three different observational methods to assess positive behavior support at age 2 within a latent factor. Further, parents' observed positive behavior support at age 2 predicted multiple types of teacher-reported and child-assessed problem behavior and competencies at 7.5 years old. Results supported the validity and predictive capability of a multi-method observational measure of parenting and the importance of a continued focus on the early years within preventive interventions.

  14. Biomarkers in Parkinson's disease: a venture capitalist's perspective.

    PubMed

    Eckstein, Jens W

    2010-10-01

    The emergence of biomarkers linking disease and treatment effects in a clear manner presents an opportunity to change the current drug development paradigm, which could lead to more cost-efficient and higher-quality clinical trials. This has raised the hopes of venture capital investors, who may be able to better navigate the stormy and risky sea of early-stage life science investments, to find a way out of the current funding crisis for novel, nonvalidated drugs and their clinical development. The following survey paints a snapshot of the current perception of biomarkers as a paradigm changer in the eyes of the venture capital community.

  15. Salivary Biomarkers in Cancer Detection

    PubMed Central

    Wang, Xiaoqian; Kaczor-Urbanowicz, Karolina Elżbieta; Wong, David T.W.

    2017-01-01

    Cancer is the second most common cause of death in the United States. Its symptoms are often not specific and absent, until the tumors have already metastasized. Therefore, there is an urgent demand for developing rapid, highly accurate and non-invasive tools for cancer screening, early detection, diagnostics, staging and prognostics. Saliva as a multi-constituent oral fluid, comprises secretions from the major and minor salivary glands, extensively supplied by blood. Molecules such as DNAs, RNAs, proteins, metabolites, and microbiota, present in blood, could be also found in saliva. Recently, salivary diagnostics has drawn significant attention for the detection of specific biomarkers, since the sample collection and processing are simple, cost-effective, precise and do not cause patient discomfort. Here, we review recent salivary candidate biomarkers for systemic cancers by dividing them according to their origin into: genomic, transcriptomic, proteomic, metabolomic and microbial types. PMID:27943101

  16. A New Antibody for Category 1 Biomarker Detection

    NASA Technical Reports Server (NTRS)

    Maule, J.; Steele, A.; Toporski, J.; McKay, D. S.

    2003-01-01

    At least two questions arise in developing a life-detection strategy: What do we look for and what will positive detection tell us? Unfortunately, many 'biomarkers' are not conclusive markers of biology. For example, sugars, amino acids, polycyclic aromatic hydrocarbons (PAH) and certain bacteria-like morphologies can all be produced non-biologically. Inferences of life following the detection of several inconclusive biomarkers in one sample will always be questioned. Although DNA, RNA and proteins are excellent markers of biology, and preserved on Earth for several millions of years, their survival over longer periods of time is low. Ideally, we should target biomarkers which are both stable over time and formed exclusively from biological processes, i.e. a 'category 1' biomarker under the new classification system of Mckay. We have used antibodies to detect category 1 and other biomarkers in rock samples. Extraction takes a few minutes and analysis a few hours. We have presented use of new antibodies to detect hopanes and have shown proof of operation during martian gravity.

  17. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration

    PubMed Central

    Khan, Gulafshana Hafeez; Galazis, Nicolas; Docheva, Nikolina; Layfield, Robert; Atiomo, William

    2015-01-01

    STUDY QUESTION Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). SUMMARY ANSWER Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. WHAT IS KNOWN ALREADY Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. STUDY DESIGN, SIZE, DURATION A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. MAIN RESULTS AND THE ROLE OF CHANCE Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. LIMITATIONS, REASONS FOR CAUTION The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. WIDER IMPLICATIONS OF THE FINDINGS This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin

  18. Proteomic technology for biomarker profiling in cancer: an update*

    PubMed Central

    Alaoui-Jamali, Moulay A.; Xu, Ying-jie

    2006-01-01

    The progress in the understanding of cancer progression and early detection has been slow and frustrating due to the complex multifactorial nature and heterogeneity of the cancer syndrome. To date, no effective treatment is available for advanced cancers, which remain a major cause of morbidity and mortality. Clearly, there is urgent need to unravel novel biomarkers for early detection. Most of the functional information of the cancer-associated genes resides in the proteome. The later is an exceptionally complex biological system involving several proteins that function through posttranslational modifications and dynamic intermolecular collisions with partners. These protein complexes can be regulated by signals emanating from cancer cells, their surrounding tissue microenvironment, and/or from the host. Some proteins are secreted and/or cleaved into the extracellular milieu and may represent valuable serum biomarkers for diagnosis purpose. It is estimated that the cancer proteome may include over 1.5 million proteins as a result of posttranslational processing and modifications. Such complexity clearly highlights the need for ultra-high resolution proteomic technology for robust quantitative protein measurements and data acquisition. This review is to update the current research efforts in high-resolution proteomic technology for discovery and monitoring cancer biomarkers. PMID:16625706

  19. Cerebrospinal Fluid Biomarker Candidates for Parkinsonian Disorders

    PubMed Central

    Constantinescu, Radu; Mondello, Stefania

    2013-01-01

    The Parkinsonian disorders are a large group of neurodegenerative diseases including idiopathic Parkinson’s disease (PD) and atypical Parkinsonian disorders (APD), such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The etiology of these disorders is not known although it is considered to be a combination of genetic and environmental factors. One of the greatest obstacles for developing efficacious disease-modifying treatment strategies is the lack of biomarkers. Reliable biomarkers are needed for early and accurate diagnosis, to measure disease progression, and response to therapy. In this review several of the most promising cerebrospinal biomarker candidates are discussed. Alpha-synuclein seems to be intimately involved in the pathogenesis of synucleinopathies and its levels can be measured in the cerebrospinal fluid and in plasma. In a similar way, tau protein accumulation seems to be involved in the pathogenesis of tauopathies. Urate, a potent antioxidant, seems to be associated to the risk of developing PD and with its progression. Neurofilament light chain levels are increased in APD compared with PD and healthy controls. The new “omics” techniques are potent tools offering new insights in the patho-etiology of these disorders. Some of the difficulties encountered in developing biomarkers are discussed together with future perspectives. PMID:23346074

  20. Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count?

    PubMed Central

    Ghiglione, Yanina; Hormanstorfer, Macarena; Coloccini, Romina; Salido, Jimena; Trifone, César; Ruiz, María Julia; Falivene, Juliana; Caruso, María Paula; Figueroa, María Inés; Salomón, Horacio; Giavedoni, Luis D.; Pando, María de los Ángeles; Gherardi, María Magdalena; Rabinovich, Roberto Daniel; Sued, Omar

    2018-01-01

    Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4+ T-cell activation (p < 0.05). However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied. PMID:29342870

  1. Potential serum biomarkers from a metabolomics study of autism

    PubMed Central

    Wang, Han; Liang, Shuang; Wang, Maoqing; Gao, Jingquan; Sun, Caihong; Wang, Jia; Xia, Wei; Wu, Shiying; Sumner, Susan J.; Zhang, Fengyu; Sun, Changhao; Wu, Lijie

    2016-01-01

    Background Early detection and diagnosis are very important for autism. Current diagnosis of autism relies mainly on some observational questionnaires and interview tools that may involve a great variability. We performed a metabolomics analysis of serum to identify potential biomarkers for the early diagnosis and clinical evaluation of autism. Methods We analyzed a discovery cohort of patients with autism and participants without autism in the Chinese Han population using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS) to detect metabolic changes in serum associated with autism. The potential metabolite candidates for biomarkers were individually validated in an additional independent cohort of cases and controls. We built a multiple logistic regression model to evaluate the validated biomarkers. Results We included 73 patients and 63 controls in the discovery cohort and 100 cases and 100 controls in the validation cohort. Metabolomic analysis of serum in the discovery stage identified 17 metabolites, 11 of which were validated in an independent cohort. A multiple logistic regression model built on the 11 validated metabolites fit well in both cohorts. The model consistently showed that autism was associated with 2 particular metabolites: sphingosine 1-phosphate and docosahexaenoic acid. Limitations While autism is diagnosed predominantly in boys, we were unable to perform the analysis by sex owing to difficulty recruiting enough female patients. Other limitations include the need to perform test–retest assessment within the same individual and the relatively small sample size. Conclusion Two metabolites have potential as biomarkers for the clinical diagnosis and evaluation of autism. PMID:26395811

  2. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis

    PubMed Central

    Chen, Yu-Cheng; Tan, Xiaotian; Sun, Qihan; Chen, Qiushu; Wang, Wenjie; Fan, Xudong

    2017-01-01

    Detection of nuclear biomarkers such as nucleic acids and nuclear proteins is critical for early-stage cancer diagnosis and prognosis. Conventional methods relying on morphological assessment of cell nuclei in histopathology slides may be subjective, whereas colorimetric immunohistochemical and fluorescence-based imaging are limited by strong light absorption, broad-emission bands and low contrast. Here, we describe the development and use of a scanning laser-emission-based microscope that maps lasing emissions from nuclear biomarkers in human tissues. 41 tissue samples from 35 patients labelled with site-specific and biomarker-specific antibody-conjugated dyes were sandwiched in a Fabry-Pérot microcavity while an excitation laser beam built a laser-emission image. We observed multiple sub-cellular lasing emissions from cancer cell nuclei, with a threshold of tens of μJ/mm2, sub-micron resolution (<700 nm), and a lasing band in the few-nanometre range. Different lasing thresholds of nuclei in cancer and normal tissues enabled the identification and multiplexed detection of nuclear proteomic biomarkers, with a high sensitivity for early-stage cancer diagnosis. Laser-emission-based cancer screening and immunodiagnosis might find use in precision medicine and facilitate research in cell biology. PMID:29204310

  3. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.

    PubMed

    Borrebaeck, Carl A K

    2017-03-01

    Interest in precision diagnostics has been fuelled by the concept that early detection of cancer would benefit patients; that is, if detected early, more tumours should be resectable and treatment more efficacious. Serum contains massive amounts of potentially diagnostic information, and affinity proteomics has risen as an accurate approach to decipher this, to generate actionable information that should result in more precise and evidence-based options to manage cancer. To achieve this, we need to move from single to multiplex biomarkers, a so-called signature, that can provide significantly increased diagnostic accuracy. This Opinion article focuses on the progress being made in identifying protein biomarker signatures of clinical utility, using blood-based proteomics.

  4. Serum biomarkers for the early diagnosis of TIA: The MIND-TIA study protocol.

    PubMed

    Dolmans, L Servaas; Rutten, Frans H; El Bartelink, Marie-Louise; Seppenwoolde, Gerdien; van Delft, Sanne; Kappelle, L Jaap; Hoes, Arno W

    2015-07-28

    A Transient Ischaemic Attack (TIA) bears a high risk of a subsequent ischaemic stroke. Adequate diagnosis of a TIA should be followed immediately by the start of appropriate preventive therapy, including antiplatelets. The diagnosis of a TIA based on symptoms and signs only is notoriously difficult and biomarkers of brain ischaemia might improve the recognition, and target management and prognosis of TIA patients. Our aim is to quantify the added diagnostic value of serum biomarkers of brain ischaemia in patients suspected of TIA. a cross-sectional diagnostic accuracy study with an additional six month follow-up period. 350 patients suspected of TIA in the primary care setting. Patients suspected of a TIA will be recruited by at least 200 general practitioners (GPs) in the catchment area of seven TIA outpatient clinics willing to participate in the study. In all patients a blood sample will be drawn as soon as possible after the patient has contacted the GP, but at least within 72 h after onset of symptoms. Participants will be referred by the GP to the regional TIA outpatient clinic for additional investigations, including brain imaging. The 'definite' diagnosis (reference standard) will be made by a panel consisting of three experienced neurologists who will use all available diagnostic information and the clinical information obtained during the outpatient clinic assessment, and a six month follow-up period. The diagnostic accuracy, and value in addition to signs and symptoms of candidate serum biomarkers will be assessed in terms of discrimination with C statistics, and calibration with plots. We aim to include 350 suspected cases, with 250 patients with indeed definite TIA (or minor stroke) according to the panel. We hope to find novel biomarkers that will enable a rapid and accurate diagnosis of TIA. This would largely improve the management and prognosis of such patients. ClinicalTrials.gov Identifier NCT01954329.

  5. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications

    PubMed Central

    Vaishya, Suniti; Sarwade, Rucha D.; Seshadri, Vasudevan

    2018-01-01

    Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. It has emerged as a major health problem worldwide including developing countries. However, how diabetes could be detected at an early stage (prediabetes) to prevent the progression of disease is still unclear. Currently used biomarkers like glycated hemoglobin and assessment of blood glucose level have their own limitations. These classical markers can be detected when the disease is already established. Prognosis of disease at early stages and prediction of population at a higher risk require identification of specific markers that are sensitive enough to be detected at early stages of disease. Biomarkers which could predict the risk of disease in people will be useful for developing preventive/proactive therapies to those individuals who are at a higher risk of developing the disease. Recent studies suggested that the expression of biomolecules including microRNAs, proteins, and metabolites specifically change during the progression of T2DM and related complications, suggestive of disease pathology. Owing to their omnipresence in body fluids and their association with onset, progression, and pathogenesis of T2DM, these biomolecules can be potential biomarker for prognosis, diagnosis, and management of disease. In this article, we summarize biomolecules that could be potential biomarkers and their signature changes associated with T2DM and related complications during disease pathogenesis. PMID:29740397

  6. Urinary Netrin-1: A New Biomarker for the Early Diagnosis of Renal Damage in Obese Children.

    PubMed

    Övünç Hacıhamdioğlu, Duygu; Hacıhamdioğlu, Bülent; Altun, Demet; Müftüoğlu, Tuba; Karademir, Ferhan; Süleymanoğlu, Selami

    2016-09-01

    Urinary netrin-1 is a new marker to demonstrate early tubular damage. The aim of this study was to determine whether urinary netrin-1 is increased in obese children. A total of 68 normoalbuminuric and normotensive obese patients and 65 controls were included in the study. Urine samples were collected for assessment of urinary phosphorus, sodium, potassium, creatinine, albumin, and netrin-1. Blood samples were collected for measurements of fasting glucose, insulin, lipid, phosphorus, sodium, potassium, and creatinine levels. Homeostatic model assessment insulin resistance index was calculated. Gender and age were similar between obese and control groups (12.01±3.03 vs. 11.7±3.2 years, p=0.568 and 33 vs. 35 girls, p=0.543, respectively). Obese patients had significantly higher netrin-1 excretion than the controls (841.68±673.17 vs. 228.94±137.25 pg/mg creatinine, p=0.000). Urinary netrin-1 level was significantly higher in obese subjects with insulin resistance compared to those without insulin resistance (1142±1181 vs. 604.9±589.91 pg/mg creatinine, p=0.001). In normotensive and normoalbuminuric obese children, urinary netrin-1 level can increase before onset of albuminuria. Urinary netrin-1 excretion appears to be affected predominantly by insulin resistance and hyperinsulinemia. Urinary netrin-1 may be a new biomarker for determining early tubular injury in obese children.

  7. Gene-Expression Biomarkers for Application to High-Throughput Radiation Biodosimetry

    DTIC Science & Technology

    2005-01-01

    nuclear disaster . Even with the delayed onset of symptoms, sometimes several days after exposure, gene-expression biomarkers can identify these exposed individuals very early after exposure, allowing for prompt medical intervention. This early assessment of a radiation dose after exposure would enhance the operational commander’s situational awareness of the radiation exposure status of deployed units and increase the prospect of reduced morbidity and mortality through early medical intervention. Candidate gene targets were selected from microarray studies of ex

  8. A novel immune function biomarker identifies patients at risk of clinical events early following liver transplantation.

    PubMed

    Sood, Siddharth; Haifer, Craig; Yu, Lijia; Pavlovic, Julie; Churilov, Leonid; Gow, Paul J; Jones, Robert M; Angus, Peter W; Visvanathan, Kumar; Testro, Adam G

    2017-04-01

    Balancing immunosuppression after liver transplant is difficult, with clinical events common. We investigate whether a novel immune biomarker based on a laboratory platform with widespread availability that measures interferon γ (IFNγ) after stimulation with a lyophilized ball containing an adaptive and innate immune stimulant can predict events following transplantation. A total of 75 adult transplant recipients were prospectively monitored in a blinded, observational study; 55/75 (73.3%) patients experienced a total of 89 clinical events. Most events occurred within the first month. Low week 1 results were significantly associated with risk of early infection (area under the receiver operating characteristic curve [AUROC], 0.74; P = 0.008). IFNγ ≤ 1.30 IU/mL (likelihood ratio positive, 1.93; sensitivity, 71.4%; specificity, 63.0%) was associated with the highest risk for infection with minimal rejection risk. Nearly half the cohort (27/60, 45.0%) expressed IFNγ ≤ 1.30 IU/mL. Moreover, an elevated week 1 result was significantly associated with the risk of rejection within the first month after transplant (AUROC, 0.77; P = 0.002), but no episodes of infection. On multivariate logistic regression, IFNγ ≥ 4.49 IU/mL (odds ratio, 4.75) may be an independent predictor of rejection (P = 0.05). In conclusion, low IFNγ suggesting oversuppression is associated with infections, whereas high IFNγ indicating undersuppression is associated with rejection. This assay offers the potential to allow individualization and optimization of immunosuppression that could fundamentally alter the way patients are managed following transplantation. Liver Transplantation 23 487-497 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  9. The development of biomarkers for degenerative musculoskeletal conditions.

    PubMed

    Jayabalan, Prakash; Sowa, Gwendolyn A

    2014-02-01

    With an aging population, degenerative musculoskeletal conditions will become more prevalent with significantly increasing costs to society over the next several decades. The majority of these conditions are diagnosed radiographically, at which point the disease process is often more advanced and challenging to treat. The commonly available radiographic studies also do not adequately provide information as to the exact pain generator and findings often do not correlate either to patient symptoms or function. Personalized medicine involves formulating treatments based on a patient's own biology. The development of biological markers (biomarkers) pertaining to disease is a rapidly growing area within this field of medicine. For degenerative musculoskeletal conditions, biomarkers have the potential to provide an early non-invasive method of assessing the location and severity of tissue damage and presence of inflammation. By outlining mechanisms of disease they could allow the formulation of further treatment targets and through sub-categorizing patients into different groups based on their biomarker profile, one could provide more efficacious treatments for patients. The present article is a review of the development of biomarkers for these purposes specifically as they pertain to degenerative musculoskeletal conditions.

  10. Dental panoramic image analysis for enhancement biomarker of mandibular condyle for osteoporosis early detection

    NASA Astrophysics Data System (ADS)

    Suprijanto; Azhari; Juliastuti, E.; Septyvergy, A.; Setyagar, N. P. P.

    2016-03-01

    Osteoporosis is a degenerative disease characterized by low Bone Mineral Density (BMD). Currently, a BMD level is determined by Dual Energy X-ray Absorptiometry (DXA) at the lumbar vertebrae and femur. Previous studies reported that dental panoramic radiography image has potential information for early osteoporosis detection. This work reported alternative scheme, that consists of the determination of the Region of Interest (ROI) the condyle mandibular in the image as biomarker and feature extraction from ROI and classification of bone conditions. The minimum value of intensity in the cavity area is used to compensate an offset on the ROI. For feature extraction, the fraction of intensity values in the ROI that represent high bone density and the ROI total area is perfomed. The classification will be evaluated from the ability of each feature and its combinations for the BMD detection in 2 classes (normal and abnormal), with the artificial neural network method. The evaluation system used 105 panoramic image data from menopause women which consist of 36 training data and 69 test data that were divided into 2 classes. The 2 classes of classification obtained 88.0% accuracy rate and 88.0% sensitivity rate.

  11. Newborn screening for autism: in search of candidate biomarkers

    PubMed Central

    Mizejewski, Gerald J; Lindau-Shepard, Barbara; Pass, Kenneth A

    2013-01-01

    Background Autism spectrum disorder (ASD) represents a wide range of neurodevelopmental disorders characterized by impairments in social interaction, language, communication and range of interests. Autism is usually diagnosed in children 3–5 years of age using behavioral characteristics; thus, diagnosis shortly after birth would be beneficial for early initiation of treatment. Aim This retrospective study sought to identify newborns at risk for ASD utilizing bloodspot specimens in an immunoassay. Materials & methods The present study utilized stored frozen specimens from ASD children already diagnosed at 15–36 months of age. The newborn specimens and controls were analyzed by immunoassay in a multiplex system that included 90 serum biomarkers and subjected to statisical analysis. Results Three sets of five biomarkers associated with ASD were found that differed from control groups. The 15 candidate biomarkers were then discussed regarding their association with ASD. Conclusion This study determined that a statistically selected panel of 15 biomarkers successfully discriminated presumptive newborns at risk for ASD from those of nonaffected controls. PMID:23547820

  12. Can milk cell or skim milk miRNAs be used as biomarkers for early pregnancy detection in cattle?

    PubMed Central

    Schanzenbach, Corina I.; Kirchner, Benedikt; Ulbrich, Susanne E.; Pfaffl, Michael W.

    2017-01-01

    The most critical phase of pregnancy is the first three weeks following insemination. During this period about 50% of high yielding lactating cows suffer embryonic loss prior to implantation, which poses a high economic burden on dairy farmers. Early diagnosis of pregnancy in cattle is therefore essential for monitoring breeding outcome and efficient production intervals. Regulated microRNAs (miRNAs) that reach easily accessible body fluids via a ‘liquid biopsy’ could be a new class of pregnancy predicting biomarkers. As milk is obtained regularly twice daily and non-invasively from the animal, it represents an ideal sample material. Our aim was to establish a pregnancy test system based on the discovery of small RNA biomarkers derived from the bovine milk cellular fraction and skim milk of cows. Milk samples were taken on days 4, 12 and 18 of cyclic cows and after artificial insemination, respectively, of the same animals (n = 6). miRNAs were analysed using small RNA sequencing (small RNA Seq). The miRNA profiles of milk cells and skim milk displayed similar profiles despite the presence of immune cell related miRNAs in milk cells. Trends in regulation of miRNAs between the oestrous cycle and pregnancy were found in miR-cluster 25~106b and its paralog cluster 17~92, miR-125 family, miR-200 family, miR-29 family, miR-15a, miR-21, miR-26b, miR-100, miR-140, 193a-5p, miR-221, miR-223, miR-320a, miR-652, miR-2898 and let-7i. A separation of cyclic and pregnant animals was achieved in a principal component analysis. Bta-miRs-29b, -221, -125b and -200b were successfully technically validated using quantitative real-time PCR, however biological validation failed. Therefore we cannot recommend the diagnostic use of these miRNAs in milk as biomarkers for detection of bovine pregnancy for now. PMID:28234939

  13. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum.

    PubMed

    Chambers, Andrew G; Percy, Andrew J; Simon, Romain; Borchers, Christoph H

    2014-04-01

    Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.

  14. Ptau-Aβ42 ratio as a continuous trait for biomarker discovery for early stage Alzheimer’s disease in multiplex immunoassay panels of Cerebrospinal fluid

    PubMed Central

    Harari, Oscar; Cruchaga, Carlos; Kauwe, John S.K.; Ainscough, Benjamin J.; Bales, Kelly; Pickering, Eve H.; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Goate, Alison M.

    2014-01-01

    Background Identification of the physiological changes that occur during the early stages of Alzheimer’s disease (AD) may provide critical insights for the diagnosis, prognosis and treatment of disease. Cerebrospinal fluid (CSF) biomarkers are a rich source of information that reflect the brain proteome. Methods We applied a novel approach to screen a panel of ~190 CSF analytes quantified by multiplex immunoassay and detected common associations in the Knight- Alzheimer’s Disease Research Center (ADRC;N=311) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI;N=293) cohorts. CSF ptau181-Aβ42 ratio was used as a continuous trait, rather than case control status in these analyses. Results We demonstrate the ptau181-Aβ42 ratio has more statistical power than traditional modeling approaches and that the levels of CSF Fatty Acid Binding Protein (H-FABP) and 12 other correlated analytes increase as the disease progresses. These results were validated using the traditional case control status model. Stratification of our dataset demonstrated that increases in these analytes occur very early in the disease course and were apparent even in non-demented individuals with AD pathology (low ptau181, low Aβ42) compared to pathology-negative elderly control subjects (low ptau181, high Aβ42). FABP-Aβ42 ratio demonstrates a similar hazard ratio for disease conversion to ptau181-Aβ42 even though the overlap in classification is incomplete suggesting that FABP contributes independent information as a predictor Conclusions Our results clearly indicate that the approach presented here can be employed to correctly identify novel biomarkers for AD, and that CSF H-FABP levels start to increase at very early stages of the disease. PMID:24548642

  15. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status.

    PubMed

    Bergamo, Paolo; Volpe, Maria Grazia; Lorenzetti, Stefano; Mantovani, Alberto; Notari, Tiziana; Cocca, Ennio; Cerullo, Stefano; Di Stasio, Michele; Cerino, Pellegrino; Montano, Luigi

    2016-12-01

    The Campania region in Italy is facing an environmental crisis due to the illegal disposal of toxic waste. Herein, a pilot study (EcoFoodFertility initiative) was conducted to investigate the use of human semen as an early biomarker of pollution on 110 healthy males living in various areas of Campania with either high or low environmental impact. The semen from the "high impact" group showed higher zinc, copper, chromium and reduced iron levels, as well as reduced sperm motility and higher sperm DNA Fragmentation Index (DFI). Redox biomarkers (total antioxidant capacity, TAC, and glutathione, GSH) and the activity of antioxidant enzymes in semen were lower in the "high impact" group. The percentage of immotile spermatozoa showed a significant inverse correlation with TAC and GSH. Overall, several semen parameters (reduced sperm quality and antioxidant defenses, altered chemical element pattern), which were associated with residence in a high polluted environment, could be used in a further larger scale study, as early biomarkers of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review.

    PubMed

    Hoza, David; Vlasák, Aleš; Hořínek, Daniel; Sameš, Martin; Alfieri, Alex

    2015-04-01

    Normal pressure hydrocephalus (NPH) is a clinical syndrome characterized by gait disturbances, urinary incontinence and dementia. Clinical presentation overlaps with Alzheimer disease (AD). Early recognition thus early intervention (shunting) is important for successful treatment, but lack of a diagnostic test with sufficient sensitivity and specificity complicates the diagnosis. We performed literature search and composed a structured review of imaging biomarkers of NPH. Morphometric studies are not sufficient to diagnose NPH. Hydrocephalus is a common finding in elderly people due to the symmetric brain atrophy and is even more pronounced in patients with AD. The key MRI biomarker seems to be diffusion tensor imaging (DTI). According to recent studies, the DTI analysis of the splenium corporis callosi, posterior limb of internal capsule, hippocampus and fornix combined with measurement of Evans index is a promising MRI biomarker of NPH and could be used for NPH diagnostics and in the differential diagnosis from AD and other dementias.

  17. Shapes of the Trajectories of Five Major Biomarkers of Alzheimer’s Disease

    PubMed Central

    Jack, Clifford R.; Vemuri, Prashanthi; Wiste, Heather J.; Weigand, Stephen D.; Lesnick, Timothy G.; Lowe, Val; Kantarci, Kejal; Bernstein, Matt A.; Senjem, Matthew L.; Gunter, Jeffrey L.; Boeve, Bradley F.; Trojanowski, John Q.; Shaw, Leslie M.; Aisen, Paul S.; Weiner, Michael W.; Petersen, Ronald C.; Knopman, David S.

    2013-01-01

    Objective To characterize the shape of the trajectories of Alzheimer’s Disease (AD) biomarkers as a function of MMSE. Design Longitudinal registries from the Mayo Clinic and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Patients Two different samples (n=343 and n=598) were created that spanned the cognitive spectrum from normal to AD dementia. Subgroup analyses were performed in members of both cohorts (n=243 and n=328) who were amyloid positive at baseline. Main Outcome Measures The shape of biomarker trajectories as a function of MMSE, adjusted for age, was modeled and described as baseline (cross-sectional) and within-subject longitudinal effects. Biomarkers evaluated were cerebro spinal fluid (CSF) Aβ42 and tau; amyloid and fluoro deoxyglucose position emission tomography (PET) imaging, and structural magnetic resonance imaging (MRI). Results Baseline biomarker values generally worsened (i.e., non-zero slope) with lower baseline MMSE. Baseline hippocampal volume, amyloid PET and FDG PET values plateaued (i.e., non-linear slope) with lower MMSE in one or more analyses. Longitudinally, within-subject rates of biomarker change were associated with worsening MMSE. Non-constant within-subject rates (deceleration) of biomarker change were found in only one model. Conclusions Biomarker trajectory shapes by MMSE were complex and were affected by interactions with age and APOE status. Non-linearity was found in several baseline effects models. Non-constant within-subject rates of biomarker change were found in only one model, likely due to limited within-subject longitudinal follow up. Creating reliable models that describe the full trajectories of AD biomarkers will require significant additional longitudinal data in individual participants. PMID:22409939

  18. Eye-tracking Reveals Abnormal Visual Preference for Geometric Images as an Early Biomarker of an ASD Subtype Associated with Increased Symptom Severity

    PubMed Central

    Pierce, Karen; Marinero, Steven; Hazin, Roxana; McKenna, Benjamin; Barnes, Cynthia Carter; Malige, Ajith

    2015-01-01

    Background Clinically and biologically, ASD is heterogeneous. Unusual patterns of visual preference as indexed by eye-tracking are hallmarks, yet whether they can be used to define an early biomarker of ASD as a whole, or leveraged to define a subtype is unclear. To begin to examine this issue, large cohorts are required. Methods A sample of 334 toddlers from 6 distinct groups (115 ASD, 20 ASD-Features, 57 DD, 53 Other, 64 TD, and 25 Typ SIB) participated. Toddlers watched a movie containing both geometric and social images. Fixation duration and number of saccades within each AOI and validation statistics for this independent sample computed. Next, to maximize power, data from our previous study (N=110) was added totaling 444 subjects. A subset of toddlers repeated the eye-tracking procedure. Results As in the original study, a subset of toddlers with ASD fixated on geometric images greater than 69%. Using this cutoff, sensitivity for ASD was 21%, specificity 98%, and PPV 86%. Toddlers with ASD who strongly preferred geometric images had (a) worse cognitive, language, and social skills relative to toddlers with ASD who strongly preferred social images and (b) fewer saccades when viewing geometric images. Unaffected siblings of ASD probands did not show evidence of heightened preference for geometric images. Test-retest reliability was good. Examination of age effects suggest that this test may not be appropriate with children > 4 years. Conclusions Enhanced visual preference for geometric repetition may be an early developmental biomarker of an ASD subtype with more severe symptoms. PMID:25981170

  19. DcR3, a new biomarker for sepsis, correlates with infection severity and procalcitonin.

    PubMed

    Gao, Liqin; Yang, Bin; Zhang, Hairong; Ou, Qishui; Lin, Yulan; Zhang, Mei; Zhang, Zhenhuan; Kim, Sunghee; Wu, Bing; Wang, Zeng; Fu, Lengxi; Lin, Jingan; Chen, Ruiqing; Lan, Ruilong; Chen, Junying; Chen, Wei; Chen, Long; Zhang, Hengshan; Han, Deping; Chen, Jingrong; Okunieff, Paul; Lin, Jianhua; Zhang, Lurong

    2018-02-16

    Early diagnosis of sepsis is critical for successful treatment. The clinical value of DcR3 in early diagnosis of sepsis was determined in a dynamic follow-up study. Alterations in plasma levels of DcR3, PCT, CRP, and IL-6 were measured by ELISA and compared among patients with sepsis ( n = 134), SIRS ( n = 60) and normal adults ( n = 50). Correlations and dynamic patterns among the biomarkers, APACHE II scores, clinical outcomes, and pathogens were also examined. Plasma DcR3 was significantly increased in sepsis compared to SIRS and normal adults (median 3.87 vs. 1.28 and 0.17 ng/ml). The elevated DcR3 could be detected in 97.60% sepsis patients 1-2 days prior to the result of blood culture reported. For diagnosis of sepsis, the sensitivity was 97.69% and specificity 98.04%; and for differential diagnosis of sepsis from SIRS, the sensitivity was 90.77% and specificity 98.40%. DcR3 level was positively correlated with severity of sepsis ( r s = 0.82). In 41 patients who died of sepsis, DcR3 elevated as early as 1-2 days before blood culture and peaked on day 3 after blood culture performed. In 90% of sepsis patients, the dynamic alteration pattern of DcR3 was identical to that of PCT, while pattern of 10% patients differed in which clinical data was consistent with DcR3. In 13% sepsis patients, while PCT remained normal, DcR3 levels were at a high level. DcR3 levels had no difference among various pathogens infected. DcR3, a new biomarker, will aid in early diagnosis of sepsis and monitoring its outcome, especially when sepsis patients were PCT negative.

  20. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline.

    PubMed

    Harris, Lyndsay N; Ismaila, Nofisat; McShane, Lisa M; Andre, Fabrice; Collyar, Deborah E; Gonzalez-Angulo, Ana M; Hammond, Elizabeth H; Kuderer, Nicole M; Liu, Minetta C; Mennel, Robert G; Van Poznak, Catherine; Bast, Robert C; Hayes, Daniel F

    2016-04-01

    To provide recommendations on appropriate use of breast tumor biomarker assay results to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer. A literature search and prospectively defined study selection sought systematic reviews, meta-analyses, randomized controlled trials, prospective-retrospective studies, and prospective comparative observational studies published from 2006 through 2014. Outcomes of interest included overall survival and disease-free or recurrence-free survival. Expert panel members used informal consensus to develop evidence-based guideline recommendations. The literature search identified 50 relevant studies. One randomized clinical trial and 18 prospective-retrospective studies were found to have evaluated the clinical utility, as defined by the guideline, of specific biomarkers for guiding decisions on the need for adjuvant systemic therapy. No studies that met guideline criteria for clinical utility were found to guide choice of specific treatments or regimens. In addition to estrogen and progesterone receptors and human epidermal growth factor receptor 2, the panel found sufficient evidence of clinical utility for the biomarker assays Oncotype DX, EndoPredict, PAM50, Breast Cancer Index, and urokinase plasminogen activator and plasminogen activator inhibitor type 1 in specific subgroups of breast cancer. No biomarker except for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 was found to guide choices of specific treatment regimens. Treatment decisions should also consider disease stage, comorbidities, and patient preferences. © 2016 by American Society of Clinical Oncology.

  1. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline

    PubMed Central

    Harris, Lyndsay N.; McShane, Lisa M.; Andre, Fabrice; Collyar, Deborah E.; Gonzalez-Angulo, Ana M.; Hammond, Elizabeth H.; Kuderer, Nicole M.; Liu, Minetta C.; Mennel, Robert G.; Van Poznak, Catherine; Bast, Robert C.; Hayes, Daniel F.

    2016-01-01

    Purpose To provide recommendations on appropriate use of breast tumor biomarker assay results to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer. Methods A literature search and prospectively defined study selection sought systematic reviews, meta-analyses, randomized controlled trials, prospective-retrospective studies, and prospective comparative observational studies published from 2006 through 2014. Outcomes of interest included overall survival and disease-free or recurrence-free survival. Expert panel members used informal consensus to develop evidence-based guideline recommendations. Results The literature search identified 50 relevant studies. One randomized clinical trial and 18 prospective-retrospective studies were found to have evaluated the clinical utility, as defined by the guideline, of specific biomarkers for guiding decisions on the need for adjuvant systemic therapy. No studies that met guideline criteria for clinical utility were found to guide choice of specific treatments or regimens. Recommendations In addition to estrogen and progesterone receptors and human epidermal growth factor receptor 2, the panel found sufficient evidence of clinical utility for the biomarker assays Oncotype DX, EndoPredict, PAM50, Breast Cancer Index, and urokinase plasminogen activator and plasminogen activator inhibitor type 1 in specific subgroups of breast cancer. No biomarker except for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 was found to guide choices of specific treatment regimens. Treatment decisions should also consider disease stage, comorbidities, and patient preferences. PMID:26858339

  2. mRNA transcripts as molecular biomarkers in medicine and nutrition

    PubMed Central

    Sunde, Roger A.

    2010-01-01

    In medicine, mRNA transcripts are being developed as molecular biomarkers for the diagnosis and treatment of a number of diseases. These biomarkers offer early and more accurate prediction and diagnosis of disease and disease progression, and ability to identify individuals at risk. Use of microarrays also offers opportunity to identify orthogonal (uncorrelated) biomarkers not known to be linked with conventional biomarkers. Investigators are increasingly using blood as a surrogate tissue for biopsy and analysis; total RNA isolated from whole blood is predominantly from erythroid cells, and whole blood mRNA share more than 80% of the transcriptome with major tissues. Thus blood mRNA biomarkers for individualized disease prediction and diagnosis are an exciting area in medicine; mRNA biomarkers in nutrition have potential application that parallel these opportunities. Assessment of selenium (Se) status and requirements is one area where tissue mRNA levels have been used successfully. Selenoprotein-H and selenoprotein-W as well as glutathione peroxidase-1 (Gpx1) mRNAs are highly down-regulated in Se deficiency in rat liver, and the minimum dietary Se requirement is 0.06–0.07 μg Se/g based on these biomarkers, similar to requirements determined using conventional biomarkers. Blood Gpx1 mRNA can also be used to determine Se requirements in rats, showing that blood mRNA has potential for assessment of nutrient status. Future research is needed to develop mRNA biomarker panels for all nutrients that will discriminate between deficient, marginal, adequate, and supernutritional individuals and populations, and differentiate between individuals that will benefit versus be adversely affected by nutrient supplementation. PMID:20303730

  3. Circulating AST, H-FABP, and NGAL are early and accurate biomarkers of graft injury and dysfunction in a preclinical model of kidney transplantation.

    PubMed

    Jochmans, Ina; Lerut, Evelyne; van Pelt, Jos; Monbaliu, Diethard; Pirenne, Jacques

    2011-11-01

    To investigate circulating biomarkers of initial graft injury in a porcine kidney autotransplant model. Injury endured by kidney grafts early posttransplant determines their outcome. However, creatinine (clearance) is a poor surrogate of tissue injury and urinary biomarkers are limited by graft anuria or persistent native kidney diuresis. No validated circulating biomarkers quantifying initial graft injury exist. Minimally injured porcine kidney grafts (n = 6) were cold stored (18 hours) and autotransplanted. Moderately (n = 6) and severely injured grafts (n = 7) were exposed to 30 or 60 minutes warm ischemia before storage and autotransplantation. Four biomarkers [aspartate transaminase (AST), heart-type fatty acid-binding protein (H-FABP), neutrophil gelatinase-associated lipocalin (NGAL), and N-acetyl-β-glucosaminidase (NAG)] were measured posttransplant and compared with creatinine (clearance) and histology. Diuresis was delayed in moderately [2.5 days (2-3)] and severely [4 days (4-5)] versus minimally injured grafts (P < 0.001). Creatinine peaked later than AST, H-FABP, and NGAL [4 days (3-5) vs 3 hours (3-6), 6 hours (6-24), 2 days (1-3), respectively] and only differentiated minimally from severely injured grafts. Peak AST and H-FABP distinguished all injury grades. Neutrophil gelatinase-associated lipocalin discriminated initial graft injury 2 days posttransplant. Peak AST, H-FABP, and NGAL correlated with peak creatinine [Pearson coefficients: 0.70 (P = 0.001), 0.85 (P < 0.0001), 0.80 (P < 0.0001)]. N-acetyl-β-glucosaminidase was not different. Decreased clearance accounted for a small percentage of H-FABP and NGAL increase. Histology was not different among transplanted groups. Plasma AST, H-FABP, and NGAL reflect the severity of initial kidney graft injury and predict graft dysfunction earlier and more accurately than creatinine (clearance) and histology. They represent promising tools to improve patient care after kidney transplantation.

  4. Parkinson's disease biomarker: a patent evaluation of WO2013153386.

    PubMed

    Geldenhuys, Werner J; Abdelmagid, Samir M; Gallegos, Patrick J; Safadi, Fayez F

    2014-08-01

    Parkinson's disease (PD) is a neurodegenerative movement disorder resultant from the loss of dopaminergic neurons in the brain. There is an urgent need for effective biomarkers that can be used in the early diagnosis of PD. Mitochondrial dysfunction plays a significant role in PD pathology, which has led to the evaluation of mitophagy markers, PTEN-induced putative kinase 1 (PINK1), and PARKIN as possible biomarkers for the early diagnosis of PD. The current patent describes the use of phosphorylation of PINK1 and PARKIN as a diagnostic measure. Specifically, Ser65 on PARKIN, which is phosphorylated by PINK1, and the autophosphorylation of PINK1 at Thr257 are described. This patent describes a much needed methodology that can easily be adapted in the clinical setting by which a biological sample, such as serum or cerebrospinal fluid, is collected and analyzed for the phosphorylation markers. Here, the phosphorylation activity seen in PINK1 and PARKIN can differentiate between age-matched controls and PD patients. This patent presents a novel diagnostic measure in early PD, as well as determines which medications would have a beneficial effect on a patient's disease progression.

  5. Early Change in Stroke Size Performs Best in Predicting Response to Therapy.

    PubMed

    Simpkins, Alexis Nétis; Dias, Christian; Norato, Gina; Kim, Eunhee; Leigh, Richard

    2017-01-01

    Reliable imaging biomarkers of response to therapy in acute stroke are needed. The final infarct volume and percent of early reperfusion have been used for this purpose. Early fluctuation in stroke size is a recognized phenomenon, but its utility as a biomarker for response to therapy has not been established. This study examined the clinical relevance of early change in stroke volume and compared it with the final infarct volume and percent of early reperfusion in identifying early neurologic improvement (ENI). Acute stroke patients, enrolled between 2013 and 2014 with serial magnetic resonance imaging (MRI) scans (pretreatment baseline, 2 h post, and 24 h post), who received thrombolysis were included in the analysis. Early change in stroke volume, infarct volume at 24 h on diffusion, and percent of early reperfusion were calculated from the baseline and 2 h MRI scans were compared. ENI was defined as ≥4 point decrease in National Institutes of Health Stroke Scales within 24 h. Logistic regression models and receiver operator characteristics analysis were used to compare the efficacy of 3 imaging biomarkers. Serial MRIs of 58 acute stroke patients were analyzed. Early change in stroke volume was significantly associated with ENI by logistic regression analysis (OR 0.93, p = 0.048) and remained significant after controlling for stroke size and severity (OR 0.90, p = 0.032). Thus, for every 1 mL increase in stroke volume, there was a 10% decrease in the odds of ENI, while for every 1 mL decrease in stroke volume, there was a 10% increase in the odds of ENI. Neither infarct volume at 24 h nor percent of early reperfusion were significantly associated with ENI by logistic regression. Receiver-operator characteristic analysis identified early change in stroke volume as the only biomarker of the 3 that performed significantly different than chance (p = 0.03). Early fluctuations in stroke size may represent a more reliable biomarker for response to therapy than the

  6. Early Detection Of Breast Cancer using Post-Translationally Modified Biomarkers

    DTIC Science & Technology

    2012-03-01

    methods are widely used to screen many potential diseases based on changes in blood proteins. Changes in proteins identified by proteomic studies are...suggest that circulating PTM levels can be used as a biomarker for endothelial cell dysfunction, which is of concern in several human diseases . We have...plasmid expressing the wild type PTENP1 3’UTR (pGLU/ψ3’UTR) or the 3’UTR in which the seed matches of the 5 PTEN-targeting microRNAs have been

  7. Use of Pharmacogenomics and Biomarkers in the Development of New Drugs for Alzheimer Disease in Japan.

    PubMed

    Otsubo, Yasuto

    2015-08-01

    Pharmacogenomics (PGx) and biomarkers have been utilized for improving the benefit/risk ratios of drugs and the efficiency of drug development. In the development of drugs for Alzheimer disease (AD), a number of clinical trials have failed to demonstrate clinical efficacy. To overcome this circumstance, the importance of using PGx/biomarkers for enhancing recruitment into clinical trials and for evaluating the efficacy of treatments has been increasingly recognized. In this article, the current status and examples of the use of PGx/biomarkers in Japan for drug development are explained. Guidelines, notifications, and administrative notices related to PGx/biomarkers were downloaded from the Web sites of the Pharmaceuticals and Medical Devices Agency (PMDA), the US Food and Drug Administration, and the European Medicines Agency. Data from clinical studies of AD drugs were obtained from the review reports of the PMDA. To analyze the current status of the use of PGx/biomarkers in Japan, "Issues to Consider in the Clinical Evaluation and Development of Drugs for Alzheimer's Disease (Interim Summary)" was also downloaded from PMDA Web site. There are 2 major measures of utilizing PGx/biomarkers for drug development: (1) biomarker qualification and (2) companion diagnostics. Recently, the PMDA issued a number of guidelines and notifications for their practical use. Although examples of qualified PGx/biomarkers and approved companion diagnostics are limited at present, it is expected that the use of PGx/biomarkers for the development of drugs against AD would increase. For promoting the use of PGx/biomarkers in the development of drugs against AD, PGx/biomarkers should be qualified as early as possible. To that end, accumulating data on PGx/biomarkers from nonclinical or clinical trials and the concurrent development of reliable diagnostics in the early stage of the development process are indispensable. It is important to strengthen collaboration among the academia

  8. Kidney injury molecule-1 and microalbuminuria levels in Zambian population: biomarkers of kidney injury.

    PubMed

    Zulu, Mildred; Kaile, Trevor; Kantenga, Timothy; Chileshe, Chisanga; Nkhoma, Panji; Sinkala, Musalula

    2016-01-01

    Kidney injury affects renal excretion of plasma analytes and metabolic waste products with grave pathologic consequences. Early detection, thus of kidney injury is essential for injury specific intervention that may avert permanent renal damage and delay progression of kidney injury. We aimed to evaluate Kidney Injury Molecule-1 (KIM-1) and Microalbuminuria (MAU), as biomarkers of kidney injury, in comparison with creatinine. We compared the levels of urine MAU, urine KIM-1 and other plasma biochemical tests in specimens from 80 individuals with and without kidney disease. We found no difference in KIM-1 levels between the kidney disease group (2.82± 1.36ng/mL) and controls (3.29 ± 1.14ng/mL), p = 0.122. MAU was higher in participants with kidney disease (130.809± 84.744 µg/mL) than the controls (15.983± 20.442µg/mL), p ?0.001. KIM-1 showed a weak negative correlation with creatinine (r = -0.279, p = 0.09), whereas MAU was positively correlated with creatinine in participants with kidney disease with statistical significance (r = 0.556, p = 0.001). The study demonstrated that in Zambian setting MAU and creatinine are sensitive biomarkers in the diagnosis of kidney damage. We moreover propose further evaluation of KIM-1 as a biomarker of kidney injury.

  9. Kidney injury molecule-1 and microalbuminuria levels in Zambian population: biomarkers of kidney injury

    PubMed Central

    Zulu, Mildred; Kaile, Trevor; Kantenga, Timothy; Chileshe, Chisanga; Nkhoma, Panji; Sinkala, Musalula

    2016-01-01

    Introduction Kidney injury affects renal excretion of plasma analytes and metabolic waste products with grave pathologic consequences. Early detection, thus of kidney injury is essential for injury specific intervention that may avert permanent renal damage and delay progression of kidney injury. We aimed to evaluate Kidney Injury Molecule-1 (KIM-1) and Microalbuminuria (MAU), as biomarkers of kidney injury, in comparison with creatinine. Methods We compared the levels of urine MAU, urine KIM-1 and other plasma biochemical tests in specimens from 80 individuals with and without kidney disease. Results We found no difference in KIM-1 levels between the kidney disease group (2.82± 1.36ng/mL) and controls (3.29 ± 1.14ng/mL), p = 0.122. MAU was higher in participants with kidney disease (130.809± 84.744 µg/mL) than the controls (15.983± 20.442µg/mL), p ?0.001. KIM-1 showed a weak negative correlation with creatinine (r = -0.279, p = 0.09), whereas MAU was positively correlated with creatinine in participants with kidney disease with statistical significance (r = 0.556, p = 0.001). Conclusion The study demonstrated that in Zambian setting MAU and creatinine are sensitive biomarkers in the diagnosis of kidney damage. We moreover propose further evaluation of KIM-1 as a biomarker of kidney injury. PMID:27642395

  10. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar

    2010-06-15

    In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Linking Archaeal Molecular Diversity and Lipid Biomarker Composition in a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Turk, Kendra; Embaye, Tsegereda; Kubo, Mike; Summons, Roger

    2005-01-01

    Lipid biomarkers for discrete microbial groups are a valuable tool for establishing links to ancient microbial ecosystems. Lipid biomarkers can establish organism source and function in contemporary microbial ecosystems (membrane lipids) and by analogy, potential relevance to the fossilized carbon skeletons (geolipids) extracted from ancient sedimentary rock. The Mars Exploration Rovers have provided clear evidence for an early wet Mars and the presence of hypersaline evaporitic basins. Ongoing work on an early Earth analog, the hypersaline benthic mats in Guerrero Negro, Baja California Sur, may provide clues to what may have evolved and flourished on an early wet Mars, if only for a short period. Cyanobacterial mats are a pertinent early Earth analog for consideration of evolutionary and microbial processes within the aerobic photosynthetic and adjacent anoxic layers. Fluctuations in physio-chemical parameters associated with spatial and temporal scales are expressed through vast microbial metabolic diversity. Our recent work hopes to establish the dynamic of archaeal diversity, particularly as it relates to methane production in this high sulfate environment, through the use of lipid biomarker and phylogenetic analyses. Archaeal 16s rRNA and mcrA gene assemblages, demonstrated distinct spatial separation over the 130 mm core of at least three distinct genera within the order Methanosarcinales, as well as an abundance of uncultured members of the Thermoplasmales and Crenarchaeota. Ether-bound lipid analysis identified abundant 0-alkyl and 0-isopranyl chains throughout the core, and the presence of sn-2 hydroxyarchaeol, a biomarker for methylotrophic methanogens. A unique ether isoprenoid chain, a C30:1 , possibly related to the geolipid squalane, a paleobiomarker associated with hypersaline environments, was most abundant within the oxic-anoxic transition zone.

  12. Ambient Air Pollution and Biomarkers of Health Effect.

    PubMed

    Yang, Di; Yang, Xuan; Deng, Furong; Guo, Xinbiao

    2017-01-01

    Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.

  13. Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin.

    PubMed

    Carro, Eva; Bartolomé, Fernando; Bermejo-Pareja, Félix; Villarejo-Galende, Alberto; Molina, José Antonio; Ortiz, Pablo; Calero, Miguel; Rabano, Alberto; Cantero, José Luis; Orive, Gorka

    2017-01-01

    The Alzheimer's disease (AD) process is likely initiated many years before clinical onset. Biomarkers of preclinical disease are critical for the development of disease-modifying or even preventative therapies. Current biomarkers for early disease, including cerebrospinal fluid tau and amyloid β (Aβ) levels, structural and functional magnetic resonance imaging, and the use of brain amyloid imaging, are limited because they are very invasive or expensive. Noninvasive biomarkers may be a more accessible alternative, but none can currently detect preclinical AD with the required sensitivity and specificity. Here, we show a novel, straight-forward, and noninvasive approach for assessment of early stages of cognitive decline. Salivary samples from cases of amnestic mild cognitive impairment (aMCI) and AD, and neurology controls were analyzed. We have discovered and validated a new single saliva biomarker, lactoferrin, which in our cross-sectional investigation perfectly discriminates clinically diagnosed aMCI and AD patients from a cognitively healthy control group. The accuracy for AD diagnosis shown by salivary lactoferrin was greater than that obtained from core cerebrospinal fluid (CSF) biomarkers, including total tau and CSF Aβ 42 . Furthermore, salivary lactoferrin can be used for population screening and for identifying those underdiagnosed subjects with very early stages of mild cognitive impairment and AD. This biomarker may offer new insights in the early diagnostics for AD.

  14. A Biomarker Combining Imaging and Neuropsychological Assessment for Tracking Early Alzheimer's Disease in Clinical Trials.

    PubMed

    Verma, Nishant; Beretvas, S Natasha; Pascual, Belen; Masdeu, Joseph C; Markey, Mia K

    2018-03-14

    Combining optimized cognitive (Alzheimer's Disease Assessment Scale- Cognitive subscale, ADAS-Cog) and atrophy markers of Alzheimer's disease for tracking progression in clinical trials may provide greater sensitivity than currently used methods, which have yielded negative results in multiple recent trials. Furthermore, it is critical to clarify the relationship among the subcomponents yielded by cognitive and imaging testing, to address the symptomatic and anatomical variability of Alzheimer's disease. Using latent variable analysis, we thoroughly investigated the relationship between cognitive impairment, as assessed on the ADAS-Cog, and cerebral atrophy. A biomarker was developed for Alzheimer's clinical trials that combines cognitive and atrophy markers. Atrophy within specific brain regions was found to be closely related with impairment in cognitive domains of memory, language, and praxis. The proposed biomarker showed significantly better sensitivity in tracking progression of cognitive impairment than the ADAS-Cog in simulated trials and a real world problem. The biomarker also improved the selection of MCI patients (78.8±4.9% specificity at 80% sensitivity) that will evolve to Alzheimer's disease for clinical trials. The proposed biomarker provides a boost to the efficacy of clinical trials focused in the mild cognitive impairment (MCI) stage by significantly improving the sensitivity to detect treatment effects and improving the selection of MCI patients that will evolve to Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. (Re)Positioning the Child in the Policy/Politics of Early Childhood

    ERIC Educational Resources Information Center

    Woodrow, Christine; Press, Frances

    2007-01-01

    How a community constructs the notion of childhood and the child is fundamentally implicated in the practices and policies of that community. This article explores the positioning of the child in historical, contemporary and emerging trends in the provision and practices of Australian early childhood education and care. It argues that if left…

  16. New insights into adipokines as potential biomarkers for type-2 diabetes mellitus.

    PubMed

    Olivera Santa-Catalina, Marta; Redondo, Pedro C; Cantonero, C; Granados, Maria P; Sanchez-Collado, Jose; Albarran, Letizia; Lopez, Jose Javier

    2017-12-05

    A large number of studies have been focused on investigating serum biomarkers associated with risk or diagnosis of type-2 diabetes mellitus. In the last decade, promising studies have shown that circulating levels of adipokines could be used as a relevant biomarker for diabetes mellitus progression as well as therapeutic future targets. Here we discuss the possible use of recent described adipokines, including apelin, omentin-1, resistin, FGF-21, neuregulin-4 and visfatin, as early biomarkers for diabetes. In addition, we also include recent findings of other well know adipokines such as leptin and adiponectin. In conclusion, further studies are needed to clarify the pathophysiological significance and clinical value of these biological factors as potential biomarkers in type-2 diabetes and related dysfunctions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Global DNA hypomethylation in peripheral blood mononuclear cells as a biomarker of cancer risk

    USDA-ARS?s Scientific Manuscript database

    Global DNA hypomethylation is an early molecular event in carcinogenesis. Whether methylation measured in peripheral blood mononuclear cells (PBMCs) DNA is a clinically reliable biomarker for early detection or cancer risk assessment is to be established. From an original sample-set of 753 male and...

  18. Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays.

    PubMed

    Parker, Carol E; Borchers, Christoph H

    2014-06-01

    In its early years, mass spectrometry (MS)-based proteomics focused on the cataloging of proteins found in different species or different tissues. By 2005, proteomics was being used for protein quantitation, typically based on "proteotypic" peptides which act as surrogates for the parent proteins. Biomarker discovery is usually done by non-targeted "shotgun" proteomics, using relative quantitation methods to determine protein expression changes that correlate with disease (output given as "up-or-down regulation" or "fold-increases"). MS-based techniques can also perform "absolute" quantitation which is required for clinical applications (output given as protein concentrations). Here we describe the differences between these methods, factors that affect the precision and accuracy of the results, and some examples of recent studies using MS-based proteomics to verify cancer-related biomarkers. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer.

    PubMed

    Clarke, Charlotte H; Yip, Christine; Badgwell, Donna; Fung, Eric T; Coombes, Kevin R; Zhang, Zhen; Lu, Karen H; Bast, Robert C

    2011-09-01

    The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P=0.015, McNemar's test). Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer. Copyright © 2011. Published by Elsevier Inc.

  20. Proteomic Biomarkers Apolipoprotein A1, Truncated Transthyretin and Connective Tissue Activating Protein III Enhance the Sensitivity of CA125 for Detecting Early Stage Epithelial Ovarian Cancer

    PubMed Central

    Clarke, Charlotte H.; Yip, Christine; Badgwell, Donna; Fung, Eric T.; Coombes, Kevin R.; Zhang, Zhen; Lu, Karen H.; Bast, Robert C.

    2011-01-01

    Objective The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Methods Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. Results In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P= 0.015, McNemar's test). Conclusion Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer. PMID:21708402

  1. Prioritization of biomarker targets in human umbilical cord blood: identification of proteins in infant blood serving as validated biomarkers in adults.

    PubMed

    Hansmeier, Nicole; Chao, Tzu-Chiao; Goldman, Lynn R; Witter, Frank R; Halden, Rolf U

    2012-05-01

    Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped. Our goal was to accelerate biomarker research on UCB by exploring its detectable protein content and providing a priority list of potential biomarkers based on known proteins involved in disease pathways. We explored cord blood serum proteins by profiling a UCB pool of 12 neonates with different backgrounds using a combination of isoelectric focusing and liquid chromatography coupled with matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) and by comparing results with information contained in metabolic and disease databases available for adult blood. A total of 1,210 UCB proteins were identified with a protein-level false discovery rate of ~ 5% as estimated by naïve target-decoy and MAYU approaches, signifying a 6-fold increase in the number of UCB proteins described to date. Identified proteins correspond to 138 different metabolic and disease pathways and provide a platform of mechanistically linked biomarker candidates for tracking disruptions in cellular processes. Moreover, among the identified proteins, 38 were found to be approved biomarkers for adult blood. The results of this study advance current knowledge of the human cord blood serum proteome. They showcase the potential of UCB as a diagnostic medium for assessing infant health by detection and identification of candidate biomarkers for known disease pathways using a global, nontargeted approach. These biomarkers may inform about mechanisms of exposure-disease relationships. Furthermore, biomarkers approved by the U.S. Food and Drug Administration for screening in adult blood were detected in UCB and represent high-priority targets for

  2. Peptidome Analysis Reveals Novel Serum Biomarkers for Children with Autism Spectrum Disorder in China.

    PubMed

    Yang, Juan; Chen, Yanni; Xiong, Xiaofan; Zhou, Xiaobo; Han, Lin; Ni, Ei; Wang, Wenjing; Wang, Xiaofei; Zhao, Lingyu; Shao, Dongdong; Huang, Chen

    2018-05-13

    Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout one's life. Early diagnosis is essential for ASD since early treatment can enable children with ASD to make significant gains in language and social skills, but remains challenging since there are currently no specific biomarkers of ASD. The study aimed to identify serum biomarkers for ASD. Serum of Han Chinese children with ASD (n = 68) and age-matched healthy controls (n = 80) was analyzed using magnetic bead-based separation combined with mass spectrum. Eight potential ASD serum biomarker peaks (m/z: 3886.69, 7775.12, 2381.71, 6638.63, 3319.17, 894.34, 4968.59, and 5910.53) with higher expression in ASD group were further identified as peptide regions of Plasma Serine Protease Inhibitor Precursor (SERPINA5), Platelet Factor 4 (PF4), Fatty Acid Binding Protein 1(FABP1), Apolipoprotein C-I Precursor (APOC1), Alpha-fetoprotein Precursor (AFP), Carboxypeptidase B2 (CPB2), Trace Amine-associated Receptor 6 (TAAR6) and Isoform1 of Fibrinogen Alpha Chain Precursor (FGA). The expression of identified proteins was validated by enzyme-linked immunosorbent assay (ELISA). Our findings reveal the exceptional disease etiology of ASD from a serum proteomic perspective, and the identified proteins might be potential biomarkers for ASD diagnosis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Biomarkers in Diabetic Retinopathy

    PubMed Central

    Jenkins, Alicia J.; Joglekar, Mugdha V.; Hardikar, Anandwardhan A.; Keech, Anthony C.; O'Neal, David N.; Januszewski, Andrzej S.

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  4. Toward early safety alert endpoints: exploring biomarkers suggestive of microbicide failure.

    PubMed

    Mauck, Christine K; Lai, Jaim Jou; Weiner, Debra H; Chandra, Neelima; Fichorova, Raina N; Dezzutti, Charlene S; Hillier, Sharon L; Archer, David F; Creinin, Mitchell D; Schwartz, Jill L; Callahan, Marianne M; Doncel, Gustavo F

    2013-11-01

    Several microbicides, including nonoxynol-9 (N-9) and cellulose sulfate (CS), looked promising during early trials but failed in efficacy trials. We aimed to identify Phase I mucosal safety endpoints that might explain that failure. In a blinded, randomized, parallel trial, 60 healthy premenopausal sexually abstinent women applied Universal HEC placebo, 6% CS or 4% N-9 gel twice daily for 13½ days. Endpoints included immune biomarkers in cervicovaginal lavage (CVL) and endocervical cytobrushes, inflammatory infiltrates in vaginal biopsies, epithelial integrity by naked eye, colposcopy, and histology, CVL anti-HIV activity, vaginal microflora, pH, and adverse events. Twenty women enrolled per group. Soluble/cellular markers were similar with CS and placebo, except secretory leukocyte protease inhibitor (SLPI) levels decreased in CVL, and CD3(+) and CD45(+) cells increased in biopsies after CS use. Increases in interleukin (IL)-8, IL-1, IL-1RA, and myeloperoxidase (MPO) and decreases in SLPI were significant with N-9. CVL anti-HIV activity was significantly higher during CS use compared to N-9 or placebo. CS users tended to have a higher prevalence of intermediate Nugent score, Escherichia coli, and Enterococcus and fewer gram-negative rods. Most Nugent scores diagnostic for bacterial vaginosis were in N-9 users. All cases of histological inflammation or deep epithelial disruption occurred in N-9 users. While the surfactant N-9 showed obvious biochemical and histological signs of inflammation, more subtle changes, including depression of SLPI, tissue influx of CD45(+) and CD3(+) cells, and subclinical microflora shifts were associated with CS use and may help to explain the clinical failure of nonsurfactant microbicides.

  5. Sensitivity, Specificity, PPV, and NPV for Predictive Biomarkers

    PubMed Central

    2015-01-01

    Molecularly targeted cancer drugs are often developed with companion diagnostics that attempt to identify which patients will have better outcome on the new drug than the control regimen. Such predictive biomarkers are playing an increasingly important role in precision oncology. For diagnostic tests, sensitivity, specificity, positive predictive value, and negative predictive are usually used as performance measures. This paper discusses these indices for predictive biomarkers, provides methods for their calculation with survival or response endpoints, and describes assumptions involved in their use. PMID:26109105

  6. A Developmental Neuroscience Approach to the Search for Biomarkers in Autism Spectrum Disorder

    PubMed Central

    Varcin, Kandice J.; Nelson, Charles A.

    2016-01-01

    Purpose of review The delineation of biomarkers in autism spectrum disorder (ASD) offers a promising approach to inform precision-medicine based approaches to ASD diagnosis and treatment and to move toward a mechanistic description of the disorder. However, biomarkers with sufficient sensitivity or specificity for clinical application in ASD are yet to be realized. Here, we review recent evidence for early, low-level alterations in brain and behavior development that may offer promising avenues for biomarker development in ASD. Recent findings Accumulating evidence suggests that signs associated with ASD may unfold in a manner that maps onto the hierarchical organization of brain development. Genetic and neuroimaging evidence points towards perturbations in brain development early in life, and emerging evidence indicates that sensorimotor development may be amongst the earliest emerging signs associated with ASD, preceding social and cognitive impairment. Summary The search for biomarkers of risk, prediction and stratification in ASD may be advanced through a developmental neuroscience approach that looks outside of the core signs of ASD and considers the bottom-up nature of brain development alongside the dynamic nature of development over time. We provide examples of assays that could be incorporated in studies to target low-level circuits. PMID:26953849

  7. Aneuploidy: a common and early evidence-based biomarker for carcinogens and reproductive toxicants.

    PubMed

    Mandrioli, Daniele; Belpoggi, Fiorella; Silbergeld, Ellen K; Perry, Melissa J

    2016-10-12

    Aneuploidy, defined as structural and numerical aberrations of chromosomes, continues to draw attention as an informative effect biomarker for carcinogens and male reproductive toxicants. It has been well documented that aneuploidy is a hallmark of cancer. Aneuploidies in oocytes and spermatozoa contribute to infertility, pregnancy loss and a number of congenital abnormalities, and sperm aneuploidy is associated with testicular cancer. It is striking that several carcinogens induce aneuploidy in somatic cells, and also adversely affect the chromosome compliment of germ cells. In this paper we review 1) the contributions of aneuploidy to cancer, infertility, and developmental abnormalities; 2) techniques for assessing aneuploidy in precancerous and malignant lesions and in sperm; and 3) the utility of aneuploidy as a biomarker for integrated chemical assessments of carcinogenicity, and reproductive and developmental toxicity.

  8. Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers

    PubMed Central

    Chen, Hao; Zhu, Zhitu; Zhu, Yichun; Wang, Jian; Mei, Yunqing; Cheng, Yunfeng

    2015-01-01

    It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a complex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs) represent new types of biomarkers with protein–protein or gene–gene interactions that can be monitored and evaluated at different stages and time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehensively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed. PMID:25560835

  9. The search for biomarkers of hepatocellular carcinoma and the impact on patient outcome.

    PubMed

    Black, Alyson P; Mehta, Anand S

    2018-05-14

    Hepatocellular carcinoma (HCC) is the 5th most common cancer, but the 3rd leading cause of cancer death globally with approximately 700,000 fatalities annually. The severity of this cancer arises from its difficulty to detect and treat. The major etiologies of HCC are liver fibrosis or cirrhosis from chronic viral infections, as well as metabolic conditions. Since most cases arise from prior pathologies, biomarker surveillance in high-risk individuals is an essential approach for early detection and improved patient outcome. While many molecular biomarkers have been associated with HCC, there are few that have made clinical impact for this disease. Here we review some major approaches used for HCC biomarker discovery-proteomics and glycomics-and describe new methodologies being tested for biomarker development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Biomarker candidates for the detection of an infectious etiology of febrile neutropenia.

    PubMed

    Richter, Martin E; Neugebauer, Sophie; Engelmann, Falco; Hagel, Stefan; Ludewig, Katrin; La Rosée, Paul; Sayer, Herbert G; Hochhaus, Andreas; von Lilienfeld-Toal, Marie; Bretschneider, Tom; Pausch, Christine; Engel, Christoph; Brunkhorst, Frank M; Kiehntopf, Michael

    2016-04-01

    Infections and subsequent septicemia are major complications in neutropenic patients with hematological malignancies. Here, we identify biomarker candidates for the early detection of an infectious origin, and monitoring of febrile neutropenia (FN). Proteome, metabolome, and conventional biomarkers from 20 patients with febrile neutropenia without proven infection (FNPI) were compared to 28 patients with proven infection, including 17 patients with bacteremia. Three peptides (mass to charge ratio 1017.4-1057.3; p-values 0.011-0.024), six proteins (mass to charge ratio 6881-17,215; p-values 0.002-0.004), and six phosphatidylcholines (p-values 0.007-0.037) were identified that differed in FNPI patients compared to patients with infection or bacteremia. Seven of these marker candidates discriminated FNPI from infection at fever onset with higher sensitivity and specificity (ROC-AUC 0.688-0.824) than conventional biomarkers i.e., procalcitonin, C-reactive protein, or interleukin-6 (ROC-AUC 0.535-0.672). In a post hoc analysis, monitoring the time course of four lysophosphatidylcholines, threonine, and tryptophan allowed for discrimination of patients with or without resolution of FN (ROC-AUC 0.648-0.919) with higher accuracy compared to conventional markers (ROC-AUC 0.514-0.871). Twenty-one promising biomarker candidates for the early detection of an infectious origin or for monitoring the course of FN were found which might overcome known shortcomings of conventional markers.

  11. Computational analysis identifies putative prognostic biomarkers of pathological scarring in skin wounds.

    PubMed

    Nagaraja, Sridevi; Chen, Lin; DiPietro, Luisa A; Reifman, Jaques; Mitrophanov, Alexander Y

    2018-02-20

    Pathological scarring in wounds is a prevalent clinical outcome with limited prognostic options. The objective of this study was to investigate whether cellular signaling proteins could be used as prognostic biomarkers of pathological scarring in traumatic skin wounds. We used our previously developed and validated computational model of injury-initiated wound healing to simulate the time courses for platelets, 6 cell types, and 21 proteins involved in the inflammatory and proliferative phases of wound healing. Next, we analysed thousands of simulated wound-healing scenarios to identify those that resulted in pathological (i.e., excessive) scarring. Then, we identified candidate proteins that were elevated (or decreased) at the early stages of wound healing in those simulations and could therefore serve as predictive biomarkers of pathological scarring outcomes. Finally, we performed logistic regression analysis and calculated the area under the receiver operating characteristic curve to quantitatively assess the predictive accuracy of the model-identified putative biomarkers. We identified three proteins (interleukin-10, tissue inhibitor of matrix metalloproteinase-1, and fibronectin) whose levels were elevated in pathological scars as early as 2 weeks post-wounding and could predict a pathological scarring outcome occurring 40 days after wounding with 80% accuracy. Our method for predicting putative prognostic wound-outcome biomarkers may serve as an effective means to guide the identification of proteins predictive of pathological scarring.

  12. Identification of IGFBP2 and IGFBP3 As Compensatory Biomarkers for CA19-9 in Early-Stage Pancreatic Cancer Using a Combination of Antibody-Based and LC-MS/MS-Based Proteomics

    PubMed Central

    Yoneyama, Toshihiro; Ohtsuki, Sumio; Honda, Kazufumi; Kobayashi, Makoto; Iwasaki, Motoki; Uchida, Yasuo; Okusaka, Takuji; Nakamori, Shoji; Shimahara, Masashi; Ueno, Takaaki; Tsuchida, Akihiko; Sata, Naohiro; Ioka, Tatsuya; Yasunami, Yohichi; Kosuge, Tomoo; Kaneda, Takashi; Kato, Takao; Yagihara, Kazuhiro; Fujita, Shigeyuki; Huang, Wilber; Yamada, Tesshi; Tachikawa, Masanori; Terasaki, Tetsuya

    2016-01-01

    Pancreatic cancer is one of the most lethal tumors, and reliable detection of early-stage pancreatic cancer and risk diseases for pancreatic cancer is essential to improve the prognosis. As 260 genes were previously reported to be upregulated in invasive ductal adenocarcinoma of pancreas (IDACP) cells, quantification of the corresponding proteins in plasma might be useful for IDACP diagnosis. Therefore, the purpose of the present study was to identify plasma biomarkers for early detection of IDACP by using two proteomics strategies: antibody-based proteomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics. Among the 260 genes, we focused on 130 encoded proteins with known function for which antibodies were available. Twenty-three proteins showed values of the area under the curve (AUC) of more than 0.8 in receiver operating characteristic (ROC) analysis of reverse-phase protein array (RPPA) data of IDACP patients compared with healthy controls, and these proteins were selected as biomarker candidates. We then used our high-throughput selected reaction monitoring or multiple reaction monitoring (SRM/MRM) methodology, together with an automated sample preparation system, micro LC and auto analysis system, to quantify these candidate proteins in plasma from healthy controls and IDACP patients on a large scale. The results revealed that insulin-like growth factor-binding protein (IGFBP)2 and IGFBP3 have the ability to discriminate IDACP patients at an early stage from healthy controls, and IGFBP2 appeared to be increased in risk diseases of pancreatic malignancy, such as intraductal papillary mucinous neoplasms (IPMNs). Furthermore, diagnosis of IDACP using the combination of carbohydrate antigen 19–9 (CA19-9), IGFBP2 and IGFBP3 is significantly more effective than CA19-9 alone. This suggests that IGFBP2 and IGFBP3 may serve as compensatory biomarkers for CA19-9. Early diagnosis with this marker combination may improve the prognosis of

  13. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer.

    PubMed

    Yu, Jun; Feng, Qiang; Wong, Sunny Hei; Zhang, Dongya; Liang, Qiao Yi; Qin, Youwen; Tang, Longqing; Zhao, Hui; Stenvang, Jan; Li, Yanli; Wang, Xiaokai; Xu, Xiaoqiang; Chen, Ning; Wu, William Ka Kei; Al-Aama, Jumana; Nielsen, Hans Jørgen; Kiilerich, Pia; Jensen, Benjamin Anderschou Holbech; Yau, Tung On; Lan, Zhou; Jia, Huijue; Li, Junhua; Xiao, Liang; Lam, Thomas Yuen Tung; Ng, Siew Chien; Cheng, Alfred Sze-Lok; Wong, Vincent Wai-Sun; Chan, Francis Ka Leung; Xu, Xun; Yang, Huanming; Madsen, Lise; Datz, Christian; Tilg, Herbert; Wang, Jian; Brünner, Nils; Kristiansen, Karsten; Arumugam, Manimozhiyan; Sung, Joseph Jao-Yiu; Wang, Jun

    2017-01-01

    To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes. We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls. Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I-II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Biomarkers in sarcoidosis.

    PubMed

    Chopra, Amit; Kalkanis, Alexandros; Judson, Marc A

    2016-11-01

    Numerous biomarkers have been evaluated for the diagnosis, assessment of disease activity, prognosis, and response to treatment in sarcoidosis. In this report, we discuss the clinical and research utility of several biomarkers used to evaluate sarcoidosis. Areas covered: The sarcoidosis biomarkers discussed include serologic tests, imaging studies, identification of inflammatory cells and genetic analyses. Literature was obtained from medical databases including PubMed and Web of Science. Expert commentary: Most of the biomarkers examined in sarcoidosis are not adequately specific or sensitive to be used in isolation to make clinical decisions. However, several sarcoidosis biomarkers have an important role in the clinical management of sarcoidosis when they are coupled with clinical data including the results of other biomarkers.

  15. The association between obesity, cardiometabolic disease biomarkers, and innate immunity-related inflammation in Canadian adults

    PubMed Central

    Da Costa, Laura A; Arora, Paul; García-Bailo, Bibiana; Karmali, Mohamed; El-Sohemy, Ahmed; Badawi, Alaa

    2012-01-01

    Introduction Obesity is associated with a state of chronic inflammation, and increased cardiometabolic disease risk. The present study examined the relationship between body mass index (BMI) and cardiometabolic and inflammatory biomarkers among normal weight, overweight, and obese Canadian adults. Methods Subjects (n = 1805, aged 18 to 79 years) from the Canadian Health Measures Survey (CHMS) were examined for associations between BMI, cardiometabolic markers (apolipoprotein [Apo] A1, ApoB, low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], total cholesterol, total cholesterol/HDL ratio [total:HDL-C ratio], triglycerides, and glycosylated hemoglobin [HbA1c]), inflammatory factors (C-reactive protein [CRP], fibrinogen, and homocysteine), and 25-hydroxyvitamin D [25(OH)D]. Bootstrap weights for variance and sampling weights for point estimates were applied to account for the complex survey design. Linear regression models adjusted for age, sex, physical activity, smoking status, and ethnicity (in addition to season of clinic visit, for vitamin D analyses only) were used to examine the association between cardiometabolic markers, inflammatory factors, and BMI in Canadian adults. Results All biomarkers were significantly associated with BMI (P ≤ 0.001). ApoA1 (β = −0.31, P < 0.0001), HDL-C (β = −0.61, P < 0.0001), and 25(OH)D (β = −0.25, P < 0.0001) were inversely associated with BMI, while all other biomarkers showed positive linear associations. Distinct patterns of association were noted among normal weight, overweight, and obese groups, excluding CRP which showed a significant positive association with BMI in the overall population (β = 2.80, P < 0.0001) and in the normal weight (β = 3.20, P = 0.02), overweight (β = 3.53, P = 0.002), and obese (β = 2.22, P = 0.0002) groups. Conclusions There is an apparent profile of cardiometabolic and inflammatory biomarkers that emerges as BMI increases from normal weight to

  16. Identification of potential biomarkers for post-traumatic complications released after trauma-hemorrhage from murine Kupffer cells and its investigation in lung and liver.

    PubMed

    Schultze, Cornelia; Hildebrand, Frank; Noack, Sandra; Krettek, Christian; Zeckey, Christian; Neunaber, Claudia

    2016-11-01

    Early diagnosis of complications after severe trauma by specific biomarkers remains difficult. Identify potential new biomarkers for early diagnosis of post-traumatic complications. Mice underwent pressure-controlled hemorrhage or sham procedure. Four hours later, genome-wide expression of isolated Kupffer cells was compared with controls using Affymetrix-Genechip-Expression-Analysis and real-time-PCR. Expression analysis and real-time-PCR revealed a significant increase of gene expression of Cxcl10, Il4ra, Csf2rb2, Lcn2, and Gbp5. Cxcl10, Il4ra, Csf2rb2, Lcn2, and Gbp5 might represent new biomarkers for early diagnosis of post-traumatic complications, if they are linked to the development of post-traumatic complications.

  17. Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics

    PubMed Central

    Kocevar, Nina; Komel, Radovan

    2014-01-01

    Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies. PMID:24550697

  18. The use of mineral crystals as bio-markers in the search for life on Mars

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E. S.

    1992-01-01

    It is proposed that minerals resulting from biologically controlled mineralization processes be utilized as biomarkers because of their favorable qualities. Universal signatures of life (biomarkers) are discussed in terms of their terrestrial forms and hypothetical Martian counterparts including organics, suites of specific inorganic and organic compounds, and isotopic ratios. It is emphasized that minerals produced under biologic control have morphological and isotopic compositions that are not found in their abiotic counterparts. Other biomarkers are not necessarily indicative of biological origin and are therefore unreliable resources for scientific study. Mineral crystals are also stable over long geological periods, and the minerals from Martian fluvial features can therefore be employed to search for fossils and biomarkers of early biological activity.

  19. Huntingtin-Interacting Protein-1 Is an Early-Stage Prognostic Biomarker of Lung Adenocarcinoma and Suppresses Metastasis via Akt-mediated Epithelial-Mesenchymal Transition.

    PubMed

    Hsu, Che-Yu; Lin, Cheng-Han; Jan, Yi-Hua; Su, Chia-Yi; Yao, Yun-Chin; Cheng, Hui-Chuan; Hsu, Tai-I; Wang, Po-Shun; Su, Wen-Pin; Yang, Chih-Jen; Huang, Ming-Shyan; Calkins, Marcus J; Hsiao, Michael; Lu, Pei-Jung

    2016-04-15

    Non-small cell lung cancer (NSCLC) carries a poor survival rate mainly because of metastasis. However, the molecular mechanisms that govern NSCLC metastasis have not been described. Because huntingtin-interacting protein-1 (HIP1) is known to play a role in tumorigenesis, we tested the involvement of HIP1 in NSCLC progression and metastasis. HIP1 expression was measured in human NSCLC tumors, and correlation with survival outcome was evaluated. Furthermore, we investigated the ability of HIP1 to suppress metastasis. The molecular mechanism by which HIP1 contributes to suppress metastasis was investigated. We used tissue arrays containing samples from 121 patients with NSCLC to analyze HIP1 expression by immunohistochemistry. To investigate the role of HIP1 expression on metastasis, we evaluated cellular mobility, migration, and invasion using lung adenocarcinoma (AdCA) cells with modified HIP1 expression levels. The human disease mouse models with the same cells were applied to evaluate the HIP1 suppressing metastasis and its mechanism in vivo. HIP1 expression in AdCA progression was found to be an early-stage prognostic biomarker, with low expression correlated to poor prognosis. We also found HIP1 to be a metastatic suppressor in AdCA. HIP1 significantly repressed the mobility of lung cancer cells in vitro and in vivo and regulated the epithelial-mesenchymal transition by repressing AKT/glycogen synthase kinase-3β/β-catenin signaling. HIP1 serves as an early-stage prognostic biomarker and a metastatic suppressor. Reduced expression during AdCA progression can relieve HIP1 suppression of Akt-mediated epithelial-mesenchymal transition and thereby lead to development of late metastases and poor prognosis.

  20. Learning and Teaching Positive Guidance Skills: Lessons from Early Childhood Practicum Students

    ERIC Educational Resources Information Center

    McFarland, Laura; Saunders, Rachel; Allen, Sydnye

    2008-01-01

    Empirical studies of early childhood educators' experiences with learning and implementing positive guidance skills are absent from the extant literature. This study explored this topic with 63 junior and senior level university students who were involved in concurrent instructional lecture and practicum experiences. Participants defined…

  1. Evaluation of predictive capacities of biomarkers based on research synthesis.

    PubMed

    Hattori, Satoshi; Zhou, Xiao-Hua

    2016-11-10

    The objective of diagnostic studies or prognostic studies is to evaluate and compare predictive capacities of biomarkers. Suppose we are interested in evaluation and comparison of predictive capacities of continuous biomarkers for a binary outcome based on research synthesis. In analysis of each study, subjects are often classified into two groups of the high-expression and low-expression groups according to a cut-off value, and statistical analysis is based on a 2 × 2 table defined by the response and the high expression or low expression of the biomarker. Because the cut-off is study specific, it is difficult to interpret a combined summary measure such as an odds ratio based on the standard meta-analysis techniques. The summary receiver operating characteristic curve is a useful method for meta-analysis of diagnostic studies in the presence of heterogeneity of cut-off values to examine discriminative capacities of biomarkers. We develop a method to estimate positive or negative predictive curves, which are alternative to the receiver operating characteristic curve based on information reported in published papers of each study. These predictive curves provide a useful graphical presentation of pairs of positive and negative predictive values and allow us to compare predictive capacities of biomarkers of different scales in the presence of heterogeneity in cut-off values among studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Relationship between inflammatory biomarkers and depressive symptoms during late pregnancy and the early postpartum period: a longitudinal study.

    PubMed

    Simpson, William; Steiner, Meir; Coote, Marg; Frey, Benicio N

    2016-01-01

    Perinatal depressive symptoms often co-occur with other inflammatory morbidities of pregnancy. The goals of our study were 1) to examine whether changes in inflammatory markers from the third trimester of pregnancy to 12 weeks postpartum were associated with changes in depressive symptoms; 2) to examine whether third trimester inflammatory markers alone were predictive of postpartum depressive symptoms; and 3) to examine the relationship between inflammatory markers and depressive symptoms during the third trimester of pregnancy and at 12 weeks postpartum. Thirty-three healthy pregnant women were recruited from the Women's Health Concerns Clinic at St. Joseph's Healthcare in Hamilton, Canada. The impact of depressive symptoms on the levels of interleukin (IL)-6, IL-10, tumor necrosis factor alpha (TNF-α), and C-reactive protein (CRP) at the third trimester of pregnancy, at 12 weeks postpartum, and across time was assessed using linear and mixed-model regression. Regression analysis revealed no significant association between depressive symptoms and any of the candidate biomarkers during pregnancy, at 12 weeks postpartum, or over time. Pregnancy depressive symptoms (p > 0.001), IL-6 (p = 0.025), and IL-10 (p = 0.006) were significant predictors of postpartum Edinburgh Perinatal Depression Scale (EPDS) score. Our study supports previous reports from the literature showing no relationship between inflammatory biomarkers and depressive symptoms during late pregnancy, early postpartum, or across time. Our study is the first to observe an association between late pregnancy levels of IL-6 and IL-10 and postpartum depressive symptoms. Further studies with larger samples are required to confirm these findings.

  3. A protocol for identifying suitable biomarkers to assess fish health: A systematic review

    PubMed Central

    2017-01-01

    Background Biomarkers have been used extensively to provide the connection between external levels of contaminant exposure, internal levels of tissue contamination, and early adverse effects in organisms. Objectives To present a three-step protocol for identifying suitable biomarkers to assess fish health in coastal and marine ecosystems, using Gladstone Harbour (Australia) as a case study. Methods Prior to applying our protocol, clear working definitions for biomarkers were developed to ensure consistency with the global literature on fish health assessment. First, contaminants of concern were identified based on the presence of point and diffuse sources of pollution and available monitoring data for the ecosystem of interest. Second, suitable fish species were identified using fisheries dependent and independent data, and prioritised based on potential pathways of exposure to the contaminants of concern. Finally, a systematic and critical literature review was conducted on the use of biomarkers to assess the health of fish exposed to the contaminants of concern. Results/Discussion We present clear working definitions for bioaccumulation markers, biomarkers of exposure, biomarkers of effect and biomarkers of susceptibility. Based on emission and concentration information, seven metals were identified as contaminants of concern for Gladstone Harbour. Twenty out of 232 fish species were abundant enough to be potentially suitable for biomarker studies; five of these were prioritised based on potential pathways of exposure and susceptibility to metals. The literature search on biomarkers yielded 5,035 articles, of which 151met the inclusion criteria. Based on our review, the most suitable biomarkers include bioaccumulation markers, biomarkers of exposure (CYP1A, EROD, SOD, LPOX, HSP, MT, DNA strand breaks, micronuclei, apoptosis), and biomarkers of effect (histopathology, TAG:ST). Conclusion Our protocol outlines a clear pathway to identify suitable biomarkers to

  4. Proteomics of gliomas: Initial biomarker discovery and evolution of technology

    PubMed Central

    Kalinina, Juliya; Peng, Junmin; Ritchie, James C.; Van Meir, Erwin G.

    2011-01-01

    Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers. PMID:21852429

  5. Analysis of 320 gastroenteropancreatic neuroendocrine tumors identifies TS expression as independent biomarker for survival.

    PubMed

    Lee, Hye Seung; Chen, Min; Kim, Ji Hun; Kim, Woo Ho; Ahn, Soyeon; Maeng, Kyungah; Allegra, Carmen J; Kaye, Frederic J; Hochwald, Steven N; Zajac-Kaye, Maria

    2014-07-01

    Thymidylate synthase (TS), a critical enzyme for DNA synthesis and repair, is both a potential tumor prognostic biomarker as well as a tumorigenic oncogene in animal models. We have now studied the clinical implications of TS expression in gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) and compared these results to other cell cycle biomarker genes. Protein tissue arrays were used to study TS, Ki-67, Rb, pRb, E2F1, p18, p21, p27 and menin expression in 320 human GEP-NETs samples. Immunohistochemical expression was correlated with univariate and multivariate predictors of survival utilizing Kaplan Meier and Cox proportional hazards models. Real time RT-PCR was used to validate these findings. We found that 78 of 320 GEP-NETs (24.4%) expressed TS. NETs arising in the colon, stomach and pancreas showed the highest expression of TS (47.4%, 42.6% and 37.3%, respectively), whereas NETs of the appendix, rectum and duodenum displayed low TS expression (3.3%, 12.9% and 15.4%, respectively). TS expression in GEP-NETs was associated with poorly differentiated endocrine carcinoma, angiolymphatic invasion, lymph node metastasis and distant metastasis (p < 0.05). Patients with TS-positive NETs had markedly worse outcomes than TS-negative NETs as shown by univariate (p < 0.001) and multivariate (p = 0.01) survival analyses. Expression of p18 predicted survival in TS-positive patients that received chemotherapy (p = 0.015). In conclusion, TS protein expression was an independent prognostic biomarker for GEP-NETs. The strong association of increased TS expression with aggressive disease and early death supports the role of TS as a cancer promoting agent in these tumors. © 2013 UICC.

  6. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  7. An early-biomarker algorithm predicts lethal graft-versus-host disease and survival

    PubMed Central

    Hartwell, Matthew J.; Özbek, Umut; Holler, Ernst; Major-Monfried, Hannah; Reddy, Pavan; Aziz, Mina; Hogan, William J.; Ayuk, Francis; Efebera, Yvonne A.; Hexner, Elizabeth O.; Bunworasate, Udomsak; Qayed, Muna; Ordemann, Rainer; Wölfl, Matthias; Mielke, Stephan; Chen, Yi-Bin; Devine, Steven; Jagasia, Madan; Kitko, Carrie L.; Litzow, Mark R.; Kröger, Nicolaus; Locatelli, Franco; Morales, George; Nakamura, Ryotaro; Reshef, Ran; Rösler, Wolf; Weber, Daniela; Yanik, Gregory A.; Levine, John E.; Ferrara, James L.M.

    2017-01-01

    BACKGROUND. No laboratory test can predict the risk of nonrelapse mortality (NRM) or severe graft-versus-host disease (GVHD) after hematopoietic cellular transplantation (HCT) prior to the onset of GVHD symptoms. METHODS. Patient blood samples on day 7 after HCT were obtained from a multicenter set of 1,287 patients, and 620 samples were assigned to a training set. We measured the concentrations of 4 GVHD biomarkers (ST2, REG3α, TNFR1, and IL-2Rα) and used them to model 6-month NRM using rigorous cross-validation strategies to identify the best algorithm that defined 2 distinct risk groups. We then applied the final algorithm in an independent test set (n = 309) and validation set (n = 358). RESULTS. A 2-biomarker model using ST2 and REG3α concentrations identified patients with a cumulative incidence of 6-month NRM of 28% in the high-risk group and 7% in the low-risk group (P < 0.001). The algorithm performed equally well in the test set (33% vs. 7%, P < 0.001) and the multicenter validation set (26% vs. 10%, P < 0.001). Sixteen percent, 17%, and 20% of patients were at high risk in the training, test, and validation sets, respectively. GVHD-related mortality was greater in high-risk patients (18% vs. 4%, P < 0.001), as was severe gastrointestinal GVHD (17% vs. 8%, P < 0.001). The same algorithm can be successfully adapted to define 3 distinct risk groups at GVHD onset. CONCLUSION. A biomarker algorithm based on a blood sample taken 7 days after HCT can consistently identify a group of patients at high risk for lethal GVHD and NRM. FUNDING. The National Cancer Institute, American Cancer Society, and the Doris Duke Charitable Foundation. PMID:28194439

  8. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    NASA Astrophysics Data System (ADS)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  9. Risk stratification of chronic heart failure patients by multiple biomarkers: implications of BNP, H-FABP, and PTX3.

    PubMed

    Ishino, Mitsunori; Takeishi, Yasuchika; Niizeki, Takeshi; Watanabe, Tetsu; Nitobe, Joji; Miyamoto, Takuya; Miyashita, Takehiko; Kitahara, Tatsuro; Suzuki, Satoshi; Sasaki, Toshiki; Bilim, Olga; Kubota, Isao

    2008-11-01

    B-type natriuretic peptide (BNP), heart-type fatty acid-binding protein (H-FABP), and pentraxin 3 (PTX3) each predict adverse cardiac events in chronic heart failure (CHF) patients. For prognostic evaluation from different aspects, the utility of combined measurement of the 3 biomarkers in patients with CHF was examined in the present study. Levels of BNP (associated with left ventricular dysfunction, positive if >200 pg/ml), H-FABP (marker of myocardial damage, positive if >4.1 ng/ml), and PTX3 (marker of inflammation, positive if >4.0 ng/ml) were measured in 164 consecutive CHF patients, and patients were prospectively followed with endpoints of cardiac death or rehospitalization. When patients were categorized on the basis of the number of elevated biomarkers, patients with 1, 2, and 3 elevated biomarkers had a 5.4-fold (not significant), 11.2-old (p<0.05), and 34.6-fold increase (p<0.01), respectively, in the risk of adverse cardiac events compared with those without elevated biomarkers. Kaplan-Meier analysis revealed that patients with 3 elevated biomarkers had a significantly higher cardiac event rate than patients with a lower number of elevated biomarkers. The combination of these 3 biomarkers could reliably risk-stratify CHF patients for prediction of cardiac events.

  10. Mass spectrometry-assisted gel-based proteomics in cancer biomarker discovery: approaches and application

    PubMed Central

    Huang, Rongrong; Chen, Zhongsi; He, Lei; He, Nongyue; Xi, Zhijiang; Li, Zhiyang; Deng, Yan; Zeng, Xin

    2017-01-01

    There is a critical need for the discovery of novel biomarkers for early detection and targeted therapy of cancer, a major cause of deaths worldwide. In this respect, proteomic technologies, such as mass spectrometry (MS), enable the identification of pathologically significant proteins in various types of samples. MS is capable of high-throughput profiling of complex biological samples including blood, tissues, urine, milk, and cells. MS-assisted proteomics has contributed to the development of cancer biomarkers that may form the foundation for new clinical tests. It can also aid in elucidating the molecular mechanisms underlying cancer. In this review, we discuss MS principles and instrumentation as well as approaches in MS-based proteomics, which have been employed in the development of potential biomarkers. Furthermore, the challenges in validation of MS biomarkers for their use in clinical practice are also reviewed. PMID:28912895

  11. Transcriptional signature associated with early rheumatoid arthritis and healthy individuals at high risk to develop the disease

    PubMed Central

    Macías-Segura, N.; Bastian, Y.; Santiago-Algarra, D.; Castillo-Ortiz, J. D.; Alemán-Navarro, A. L.; Jaime-Sánchez, E.; Gomez-Moreno, M.; Saucedo-Toral, C. A.; Lara-Ramírez, Edgar E.; Zapata-Zuñiga, M.; Enciso-Moreno, L.; González-Amaro, R.; Ramos-Remus, C.; Enciso-Moreno, J. A.

    2018-01-01

    Background Little is known regarding the mechanisms underlying the loss of tolerance in the early and preclinical stages of autoimmune diseases. The aim of this work was to identify the transcriptional profile and signaling pathways associated to non-treated early rheumatoid arthritis (RA) and subjects at high risk. Several biomarker candidates for early RA are proposed. Methods Whole blood total RNA was obtained from non-treated early RA patients with <1 year of evolution as well as from healthy first-degree relatives of patients with RA (FDR) classified as ACCP+ and ACCP- according to their antibodies serum levels against cyclic citrullinated peptides. Complementary RNA (cRNA) was synthetized and hybridized to high-density microarrays. Data was analyzed in Genespring Software and functional categories were assigned to a specific transcriptome identified in subjects with RA and FDR ACCP positive. Specific signaling pathways for genes associated to RA were identified. Gene expression was evaluated by qPCR. Receiver operating characteristic (ROC) analysis was used to evaluate these genes as biomarkers. Results A characteristic transcriptome of 551 induced genes and 4,402 repressed genes were identified in early RA patients. Bioinformatics analysis of the data identified a specific transcriptome in RA patients. Moreover, some overlapped transcriptional profiles between patients with RA and ACCP+ were identified, suggesting an up-regulated distinctive transcriptome from the preclinical stages up to progression to an early RA state. A total of 203 pathways have up-regulated genes that are shared between RA and ACCP+. Some of these genes show potential to be used as progression biomarkers for early RA with area under the curve of ROC > 0.92. These genes come from several functional categories associated to inflammation, Wnt signaling and type I interferon pathways. Conclusion The presence of a specific transcriptome in whole blood of RA patients suggests the activation

  12. Translating airway biomarker information into practice: from theoretical science to applied medicine.

    PubMed

    Ameredes, Bill T

    2011-04-01

    Biomarkers ranging from simple to sophisticated have been used by man for many years of his existence. The main use for biomarkers over that time has been to assess relative states health and well-being, including the presence of functional limitations that presage debilitation and even death. In recent years, there has been intense interest in the development of non-invasive biomarkers to accurately predict disease state and progression, as well as potential drug therapy to assist in early mitigation of morbidity and possibly, forestall premature mortality. The development of biomarkers of airway status has followed a similar pattern, and in recent years, several biomarkers have followed the progression from basic and pre-clinical development, to clinical/translational application, and finally to potential clinical therapeutic application. Inherent in this progression is the refinement of technology that has allowed measurement of these biomarkers in a fast, convenient, and reliable fashion, such that they can be obtainable within a clinical practice setting, to allow the physician to make treatment decisions for diseases such as asthma and COPD. While the clinical therapeutic application of airway biomarkers such as exhaled nitric oxide and β(2)-adrenoreceptor Arg-16 polymorphism are still in their infancy, they have followed this common pathway of development, and now will require some years of application to demonstrate their true utility as predictive biomarkers of airway status and treatment response. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. A multicenter, prospective study to evaluate the use of contrast stress echocardiography in early menopausal women at risk for coronary artery disease: trial design and baseline findings.

    PubMed

    Abdelmoneim, Sahar S; Bernier, Mathieu; Hagen, Mary E; Eifert-Rain, Susan; Bott-Kitslaar, Dalene; Wilansky, Susan; Castello, Ramon; Bhat, Gajanan; Pellikka, Patricia A; Best, Patricia J M; Hayes, Sharonne N; Mulvagh, Sharon L

    2013-02-01

    This multisite prospective trial, Stress Echocardiography in Menopausal Women At Risk for Coronary Artery Disease (SMART), aimed to evaluate the prognostic value of contrast stress echocardiography (CSE), coronary artery calcification (CAC), and cardiac biomarkers for prediction of cardiovascular events after 2 and 5 years in early menopausal women experiencing chest pain symptoms or risk factors. This report describes the study design, population, and initial test results at study entry. From January 2004 through September 2007, 366 early menopausal women (age 54±5 years, Framingham risk score 6.51%±4.4 %, range 1%-27%) referred for stress echocardiography were prospectively enrolled. Image quality was enhanced with an ultrasound contrast agent. Tests for cardiac biomarkers [high-sensitivity C-reactive protein (hsCRP), atrial natriuretic protein (ANP), brain natriuretic protein (BNP), endothelin (ET-1)] and cardiac computed tomography (CT) for CAC were performed. CSE (76% exercise, 24% dobutamine) was abnormal in 42 women (11.5%), and stress electrocardiogram (ECG) was positive in 22 women (6%). Rest BNP correlated weakly with stress wall motion score index (WMSI) (r=0.189, p<0.001). Neither hsCRP, ANP, endothelin, nor CAC correlated with stress WMSI. Predictors of abnormal CSE were body mass index (BMI), diabetes mellitus, family history of premature coronary artery disease (CAD), and positive stress ECG. Twenty-four women underwent clinically indicated coronary angiography (CA); 5 had obstructive (≥50%), 15 had nonobstructive (10%-49%), and 4 had no epicardial CAD. The SMART trial is designed to assess the prognostic value of CSE in early menopausal women. Independent predictors of positive CSE were BMI, diabetes mellitus, family history of premature CAD, and positive stress ECG. CAC scores and biomarkers (with the exception of rest BNP) were not correlated with CSE results. We await the follow-up data.

  14. A Multicenter, Prospective Study to Evaluate the Use of Contrast Stress Echocardiography in Early Menopausal Women at Risk for Coronary Artery Disease: Trial Design and Baseline Findings

    PubMed Central

    Abdelmoneim, Sahar S.; Bernier, Mathieu; Hagen, Mary E.; Eifert-Rain, Susan; Bott-Kitslaar, Dalene; Wilansky, Susan; Castello, Ramon; Bhat, Gajanan; Pellikka, Patricia A.; Best, Patricia J. M.; Hayes, Sharonne N.

    2013-01-01

    Abstract Aims This multisite prospective trial, Stress Echocardiography in Menopausal Women At Risk for Coronary Artery Disease (SMART), aimed to evaluate the prognostic value of contrast stress echocardiography (CSE), coronary artery calcification (CAC), and cardiac biomarkers for prediction of cardiovascular events after 2 and 5 years in early menopausal women experiencing chest pain symptoms or risk factors. This report describes the study design, population, and initial test results at study entry. Methods From January 2004 through September 2007, 366 early menopausal women (age 54±5 years, Framingham risk score 6.51%±4.4 %, range 1%–27%) referred for stress echocardiography were prospectively enrolled. Image quality was enhanced with an ultrasound contrast agent. Tests for cardiac biomarkers [high-sensitivity C-reactive protein (hsCRP), atrial natriuretic protein (ANP), brain natriuretic protein (BNP), endothelin (ET-1)] and cardiac computed tomography (CT) for CAC were performed. Results CSE (76% exercise, 24% dobutamine) was abnormal in 42 women (11.5%), and stress electrocardiogram (ECG) was positive in 22 women (6%). Rest BNP correlated weakly with stress wall motion score index (WMSI) (r=0.189, p<0.001). Neither hsCRP, ANP, endothelin, nor CAC correlated with stress WMSI. Predictors of abnormal CSE were body mass index (BMI), diabetes mellitus, family history of premature coronary artery disease (CAD), and positive stress ECG. Twenty-four women underwent clinically indicated coronary angiography (CA); 5 had obstructive (≥50%), 15 had nonobstructive (10%–49%), and 4 had no epicardial CAD. Conclusions The SMART trial is designed to assess the prognostic value of CSE in early menopausal women. Independent predictors of positive CSE were BMI, diabetes mellitus, family history of premature CAD, and positive stress ECG. CAC scores and biomarkers (with the exception of rest BNP) were not correlated with CSE results. We await the follow-up data. PMID

  15. Hypermethylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for oral dysplasia and oral cancer detection.

    PubMed

    Cheng, Shih-Jung; Chang, Chi-Feng; Ko, Hui-Hsin; Lee, Jang-Jaer; Chen, Hsin-Ming; Wang, Huei-Jen; Lin, Hsiao-Shan; Chiang, Chun-Pin

    2018-02-01

    Effective biomarkers for oral cancer screening are important for early diagnosis and treatment of oral cancer. Oral epithelial cell samples collected by mouth rinse were obtained from 65 normal control subjects, 108 patients with oral potentially malignant disorders, and 94 patients with oral squamous cell carcinoma (OSCC). Methylation levels of zinc-finger protein 582 (ZNF582) and paired-box 1 (PAX1) genes were quantified by real-time methylation-specific polymerase chain reaction after bisulfite conversion. An abrupt increase in methylated ZNF582 (ZNF582 m ) and PAX1 (PAX1 m ) levels and positive rates from mild dysplasia to moderate/severe dysplasia, indicating that both ZNF582 m and PAX1 m are effective biomarkers for differentiating moderate dysplasia or worse (MODY+) oral lesions. When ZNF582 m /PAX1 m tests were used for identifying MODY+ oral lesions, the sensitivity, specificity, and odds ratio (OR) were 0.65/0.64, 0.75/0.82, and 5.6/8.0, respectively. Hypermethylated ZNF582 and PAX1 genes in oral epithelial cells collected by mouth rinse are effective biomarkers for the detection of oral dysplasia and oral cancer. © 2017 Wiley Periodicals, Inc.

  16. Useful biomarkers for assessing the adverse health effects of PCBs in allergic children: pediatric molecular epidemiology.

    PubMed

    Tsuji, Mayumi

    2015-01-01

    The incidences of childhood allergies have been increasing in recent years in many parts of the world. The development of allergic disorders is attributed to a complex series of interactions between individuals' genetic backgrounds and their immune and psychoneurotic responses to environmental factors. Among the various possible environmental causes of childhood allergies, the early exposure of developing infants to air pollutants and the presence of persistent chemical pollutants such as pesticides have been suggested most frequently. Therefore, it is very important to obtain epidemiological evidence of direct associations between clearly defined adverse health effects and exposure to low levels of pollutants. However, there are no useful biomarkers for assessing such associations. Thus, we planned to establish reliable health-related biomarkers that could be used to investigate these relationships in children. The serum concentrations of several sub-types of polychlorinated biphenyl (PCB) congeners were found to be significantly correlated with interleukin (IL)-8 mRNA expression among asthmatic children. In addition, IL-22 mRNA expression was found to be particularly useful for detecting the effects of environmental pollutants, especially PCB congeners, in a sub-population of vulnerable children who exhibited positive immunoglobulin E (IgE) responses to milk or egg. Furthermore, we detected significant differences in IL-22 mRNA expression between the IgE-negative non-asthmatic subjects and the asthmatic children who exhibited positive IgE reactions toward egg or milk. In conclusion, IL-8 and IL-22 mRNA expressions could be useful biomarkers for detecting sub-populations of children who are particularly vulnerable to the adverse health effects of environmental pollutants, especially PCBs.

  17. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers

    PubMed Central

    Smolsky, Joseph; Kaur, Sukhwinder; Hayashi, Chihiro; Batra, Surinder K.; Krasnoslobodtsev, Alexey V.

    2017-01-01

    Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS. PMID:28085088

  18. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms

    PubMed Central

    Kierny, Michael R.; Cunningham, Thomas D.; Kay, Brian K.

    2012-01-01

    The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of ‘Surface Enhanced Raman Scattering’ (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market. PMID:22833780

  19. Biomarkers of glomerular dysfunction in pre-eclampsia - A systematic review.

    PubMed

    Kerley, Robert N; McCarthy, Cathal

    2018-03-10

    Early detection of pre-eclampsia remains one of the major focuses of antenatal obstetric care. There is often a delay in the diagnosis, mainly due to the non-specific nature of the condition. Podocytes which play a pivotal role in glomerular function become injured in pre-eclampsia leading to subsequent proteinuria. Our aim was to review available studies to determine the clinical utility of biomarkers of podocyte injury in pre-eclampsia. We used QUADAS (Quality Assessment of Diagnostic Accuracy Studies) criteria to perform a systematic review of the literature to determine the clinical utility of podocyte injury biomarkers in predicting pre-eclampsia. This study identified five potential renal biomarkers including podocytes, nephrin, synaptopodin, podocin and podocalyxin. The pooled sensitivity of all biomarkers was 0.78 (95% CI 0.74-0.82) with a specificity of 0.82 (95% CI 0.79-0.85). The area under the Summary of Receiver Operating Characteristics Curve (SROC) was 0.926 (SE 0.30). Urinary nephrin achieved the highest diagnostic values with a sensitivity of 0.81 (95% CI 0.72-0.88) and specificity of 0.84 (95% CI 0.79-0.84). Biomarkers of glomerular injury show promise as diagnostic aids in pre-eclampsia. A large-scale prospective cohort study is warranted before these biomarkers can be recommended for routine clinical care. Copyright © 2018 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  20. Neonatal Biomarkers of Inflammation: Correlates of Early Neurodevelopment and Gait in Very-Low-Birth-Weight Preterm Children.

    PubMed

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Hintz, Susan R; Stevenson, David K

    2016-01-01

    Neonatal biomarkers of inflammation were examined in relation to early neurodevelopment and gait in very-low-birth-weight (VLBW) preterm children. We hypothesized that preterm infants exposed to higher levels of neonatal inflammation would demonstrate lower scores on Bayley Scales of Infant Toddler Development, 3rd ed. (BSID-III) and slower gait velocity at 18 to 22 months adjusted age. A total of 102 VLBW preterm infants (birthweight [BW] ≤ 1,500 g, gestational age [GA] ≤ 32 weeks) admitted to neonatal intensive care unit [NICU] were recruited. Neonatal risk factors examined were GA at birth, BW, bronchopulmonary dysplasia, necrotizing enterocolitis, retinopathy of prematurity, sepsis, and serum C-reactive protein (CRP), albumin, and total bilirubin over first 2 postnatal weeks. At 18 to 22 months, neurodevelopment was assessed with BSID-III and gait was assessed with an instrumented mat. Children with neonatal CRP ≥ 0.20 mg/dL (n = 52) versus < 0.20 mg/dL (n = 37) had significantly lower BSID-III composite cognitive (92.0 ± 13.1 vs. 100.1 ± 9.6, p = 0.002), language (83.9 ± 16.0 vs. 95.8 ± 14.2, p < 0.001), and motor scores (90.0 ± 13.2 vs. 98.8 ± 10.1, p = 0.002), and slower gait velocity (84.9 ± 19.0 vs. 98.0 ± 22.4 cm/s, p = 0.004). Higher neonatal CRP correlated with lower cognitive (rho =  - 0.327, p = 0.002), language (rho =  - 0.285, p = 0.007), and motor scores (rho =  - 0.257, p = 0.015), and slower gait (rho =  - 0.298, p = 0.008). Multivariate analysis demonstrated neonatal CRP ≥ 0.20 mg/dL significantly predicted BSID-III cognitive (adjusted R(2) = 0.104, p = 0.008), language (adjusted R(2) = 0.124, p = 0.001), and motor scores (adjusted R(2) = 0.122, p = 0.004). Associations between low-level neonatal inflammation and neurodevelopment suggest early biomarkers that may inform neuroprotective

  1. Consensus Paper: Radiological Biomarkers of Cerebellar Diseases

    PubMed Central

    Baldarçara, Leonardo; Currie, Stuart; Hadjivassiliou, M.; Hoggard, Nigel; Jack, Allison; Jackowski, Andrea P.; Mascalchi, Mario; Parazzini, Cecilia; Reetz, Kathrin; Righini, Andrea; Schulz, Jörg B.; Vella, Alessandra; Webb, Sara Jane; Habas, Christophe

    2016-01-01

    Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine. PMID:25382714

  2. Does biomarker information impact breast cancer patients' preferences and physician recommendation for adjuvant chemotherapy?

    PubMed

    Partridge, Ann H; Sepucha, Karen; O'Neill, Anne; Miller, Kathy D; Baker, Emily; Dang, Chau T; Northfelt, Donald W; Sledge, George W; Schneider, Bryan P

    2017-10-01

    This study aimed to examine how biomarker information would impact patients' preferences and physicians' recommendations for adjuvant breast cancer therapy. At the 18-month follow-up, participants in a large, double-blind randomized controlled trial of adjuvant chemotherapy with bevacizumab or placebo (E5103) were surveyed about their preferred treatment (either chemotherapy A alone or chemotherapy A+B) in two hypothetical scenarios: (1) without biomarker information; and (2) after learning that they tested positive for a "B-receptor" which modestly increased both the benefit and toxicity expected with chemotherapy A+B. We performed a cross-sectional analysis of the prospectively collected survey data and used the McNemar's test to examine changes in treatment preferences. A one-time survey of clinical investigators who enrolled patients on the trial evaluated physician recommendations in response to the same biomarker information. 439 patients completed both scenarios on 18-month survey. Most participants preferred A+B in both scenario 1 and 2 (77 and 76% respectively). The increase in benefit and toxicity associated with the positive biomarker information in scenario 2 led 60/439 (14%) of patients to switch their treatment preference. The corresponding physician survey revealed that most physicians chose regimen A+B in scenario 1 (77%), and moreso after the biomarker information was available in scenario 2 (84%). Information about a positive biomarker indicating increased benefit and toxicity from additional chemotherapy did not change many participants' preferred treatment. The majority preferred the most effective course in both scenarios. Similarly, most investigators discounted increased toxicity and valued increased benefit. Parent Trial Registration: NCT00433511.

  3. Developing Biomarkers in Mood Disorders Research Through the Use of Rapid-Acting Antidepressants

    PubMed Central

    Niciu, Mark J.; Mathews, Daniel C.; Nugent, Allison C.; Ionescu, Dawn F.; Furey, Maura L.; Richards, Erica M.; Machado-Vieira, Rodrigo; Zarate, Carlos A.

    2014-01-01

    An impediment to progress in mood disorders research is the lack of analytically valid and qualified diagnostic and treatment biomarkers. Consistent with the National Institute of Mental Health (NIMH)’s Research Domain Criteria (RDoC) initiative, the lack of diagnostic biomarkers has precluded us from moving away from a purely subjective (symptom-based) towards a more objective diagnostic system. In addition, treatment response biomarkers in mood disorders would facilitate drug development and move beyond trial-and-error towards more personalized treatments. As such, biomarkers identified early in the pathophysiological process are proximal biomarkers (target engagement), while those occurring later in the disease process are distal (disease pathway components). One strategy to achieve this goal in biomarker development is to increase efforts at the initial phases of biomarker development (i.e., exploration and validation) at single sites with the capability of integrating multimodal approaches across a biological systems level. Subsequently, resultant putative biomarkers could then undergo characterization and surrogacy as these latter phases require multisite collaborative efforts. We have used multimodal approaches – genetics, proteomics/metabolomics, peripheral measures, multimodal neuroimaging, neuropsychopharmacological challenge paradigms and clinical predictors – to explore potential predictor and mediator/moderator biomarkers of the rapid-acting antidepressants ketamine and scopolamine. These exploratory biomarkers may then be used for a priori stratification in larger multisite controlled studies during the validation and characterization phases with the ultimate goal of surrogacy. In sum, the combination of target engagement and well-qualified disease-related measures are crucial to improve our pathophysiological understanding, personalize treatment selection and expand our armamentarium of novel therapeutics. PMID:24353110

  4. Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants.

    PubMed

    Niciu, Mark J; Mathews, Daniel C; Nugent, Allison C; Ionescu, Dawn F; Furey, Maura L; Richards, Erica M; Machado-Vieira, Rodrigo; Zarate, Carlos A

    2014-04-01

    An impediment to progress in mood disorders research is the lack of analytically valid and qualified diagnostic and treatment biomarkers. Consistent with the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC) initiative, the lack of diagnostic biomarkers has precluded us from moving away from a purely subjective (symptom-based) toward a more objective diagnostic system. In addition, treatment response biomarkers in mood disorders would facilitate drug development and move beyond trial-and-error toward more personalized treatments. As such, biomarkers identified early in the pathophysiological process are proximal biomarkers (target engagement), while those occurring later in the disease process are distal (disease pathway components). One strategy to achieve this goal in biomarker development is to increase efforts at the initial phases of biomarker development (i.e. exploration and validation) at single sites with the capability of integrating multimodal approaches across a biological systems level. Subsequently, resultant putative biomarkers could then undergo characterization and surrogacy as these latter phases require multisite collaborative efforts. We have used multimodal approaches - genetics, proteomics/metabolomics, peripheral measures, multimodal neuroimaging, neuropsychopharmacological challenge paradigms and clinical predictors - to explore potential predictor and mediator/moderator biomarkers of the rapid-acting antidepressants ketamine and scopolamine. These exploratory biomarkers may then be used for a priori stratification in larger multisite controlled studies during the validation and characterization phases with the ultimate goal of surrogacy. In sum, the combination of target engagement and well-qualified disease-related measures are crucial to improve our pathophysiological understanding, personalize treatment selection, and expand our armamentarium of novel therapeutics. © 2013 Wiley Periodicals, Inc.

  5. Medical students, early general practice placements and positive supervisor experiences.

    PubMed

    Henderson, Margaret; Upham, Susan; King, David; Dick, Marie-Louise; van Driel, Mieke

    2018-03-01

    Introduction Community-based longitudinal clinical placements for medical students are becoming more common globally. The perspective of supervising clinicians about their experiences and processes involved in maximising these training experiences has received less attention than that of students. Aims This paper explores the general practitioner (GP) supervisor perspective of positive training experiences with medical students undertaking urban community-based, longitudinal clinical placements in the early years of medical training. Methods Year 2 medical students spent a half-day per week in general practice for either 13 or 26 weeks. Transcribed semi-structured interviews from a convenience sample of participating GPs were thematically analysed by two researchers, using a general inductive approach. Results Identified themes related to the attributes of participating persons and organisations: GPs, students, patients, practices and their supporting institution; GPs' perceptions of student development; and triggers enhancing the experience. A model was developed to reflect these themes. Conclusions Training experiences were enhanced for GPs supervising medical students in early longitudinal clinical placements by the synergy of motivated students and keen teachers with support from patients, practice staff and academic institutions. We developed an explanatory model to better understand the mechanism of positive experiences. Understanding the interaction of factors enhancing teaching satisfaction is important for clinical disciplines wishing to maintain sustainable, high quality teaching.

  6. GM2-activator protein: a new biomarker for lung cancer.

    PubMed

    Potprommanee, Laddawan; Ma, Haou-Tzong; Shank, Lalida; Juan, Yi-Hsiu; Liao, Wei-Yu; Chen, Shui-Tein; Yu, Chong-Jen

    2015-01-01

    Effective biomarkers for early diagnosis of lung cancer are needed. A recent study demonstrated that urinary GM2-activator protein (GM2AP) level was increased in lung cancer patients. This study aims to validate the potential application of GM2AP as a biomarker for diagnosis of lung cancer. Serum and urine samples were obtained from 189 participants (133 patients for treatment naive lung cancer, 26 healthy volunteers for urine, and 30 healthy volunteers for serum). GM2AP level was detected by Western blotting and quantified using enzyme-linked immunosorbent assay (ELISA). The GM2AP expression in tumors and nontumor parts of lung tissues from 143 nonsmall cell lung cancers was detected by immunohistochemical stains. There was an 8.11 ± 1.36 folds increase in urine and a 5.41 ± 0.73 folds increase in serum level of GM2AP in lung cancer patients compared with healthy volunteers (p < 0.0001), achieving a 0.89 AUC value in urine and 0.90 AUC value in serum for the receiver-operating characteristic curves. Both serum and urine levels of GM2AP correlated significantly with pathology stages (urine, p = 0.009; serum, p < 0.0001). Using immunohistochemical, positive expression of GM2AP was found at 83.9% of nonsmall cell lung cancers patients and none in normal tissue. The GM2AP expression was significantly correlated with pathology stage (p = 0.0001). Patients with higher GM2AP expression had shorter overall survival (p = 0.045) and disease-free survival (p = 0.049) than lower GM2AP expression. Moreover, the multivariate analysis suggested GM2AP as an independent predictors of disease-free survival and overall survival. Our study demonstrates that GM2AP might serve as potential diagnostic and prognostic biomarkers in patients with lung cancer.

  7. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers.

    PubMed

    Jin, H; Wu, Y; Tan, X

    2017-08-01

    Pancreatic cancer is one of the most deadly cancers, with dismal prognosis due to its poor early detection rate and high metastatic rate. Thus, elucidation of the molecular mechanisms accounting for its metastasis and discovery of competent biomarkers is required. Exosomes are multivesicular body-derived small extracellular vesicles released by various cell types that serve as important message carriers during intercellular communication. They are also known to play critical roles during cancer-genesis, cancer-related immune reactions, and metastasis. They also possess promising potential as novel biomarkers for cancer early detection. Therefore, extensive studies on pancreatic cancer-derived exosomes are currently being performed because they hold the promising potential of elevating the overall survival rate of patients with pancreatic cancer. In the present review, we focus on the role of exosomes in pancreatic cancer-related immune reactions, metastasis, and complications, and on their potential application as pancreatic cancer biomarkers.

  8. Novel urinary biomarkers and their association with urinary heavy metals in chronic kidney disease of unknown aetiology in Sri Lanka: a pilot study

    PubMed

    Wanigasuriya, K; Jayawardene, I; Amarasiriwardena, C; Wickremasinghe, R

    2017-12-26

    Chronic kidney disease of unknown etiology (CKDu) has emerged as a significant public health problem in Sri Lanka. The role of environmental exposure to cadmium and arsenic in the aetiology of CKDu is still unclear. Identification of a panel of novel urinary biomarkers would be invaluable in the study of toxin mediated damage postulated to be the aetiology of CKDu. The aims of this study were to evaluate the profile of novel urinary biomarkers in CKDu patients and identify any association with environmental exposure to heavy metals. Thirty seven randomly selected CKDu patients attending a renal clinic in the North Central Province and two control groups namely a farmer group (n=39) and a non-farmer group (n=40) from a non-endemic area were included in this comparative cross sectional study. Urine samples were analyzed for heavy metals and five urinary biomarkers. CKDu patients had significantly elevated urinary levels of fibrinogen (198.2 ng/mg creatinine p<0.001), clusterin (3479 ng/mg creatinine p<0.001), cystatin-C (5124.8 ng/mg creatinine p<0.001) and β2-microglobulin (9913.4 ng/mg creatinine p<0.001) compared to the control groups. Fibrinogen and β2-microglobulin were the best to discriminate CKDu patients from normal individuals with the receiver operator areas under the curve being 0.867 and 0.853, respectively. Urinary fibrinogen and KIM-1 levels correlated positively with urinary arsenic levels. KIM-1 levels correlated positively with urinary mercury and lead levels but no correlation was seen with urinary cadmium levels. Fibrinogen and β2-microglobulin have the potential of being a screening tool for detection of CKDu and may aid the early diagnosis of toxin mediated tubular injury in CKDu. Their usefulness need to be further validated in a larger epidemiological study of patients with early stages of CKDu.

  9. A Systematic Review of Serum Biomarkers Anti-Cyclic Citrullinated Peptide and Rheumatoid Factor as Tests for Rheumatoid Arthritis

    PubMed Central

    Taylor, Peter; Gartemann, Juliane; Hsieh, Jeanie; Creeden, James

    2011-01-01

    This systematic review assesses the current status of anti-cyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF) tests in the diagnosis and prognosis of rheumatoid arthritis (RA). We reviewed publications on tests and biomarkers for early diagnosis of RA from English-language MEDLINE-indexed journals and non-MEDLINE-indexed sources. 85 publications were identified and reviewed, including 68 studies from MEDLINE and 17 non-MEDLINE sources. Anti-CCP2 assays provide improved sensitivity over anti-CCP assays and RF, but anti-CCP2 and RF assays in combination demonstrate a positive predictive value (PPV) nearing 100%, greater than the PPV of either of the tests alone. The combination also appears to be able to distinguish between patients whose disease course is expected to be more severe and both tests are incorporated in the 2010 ACR Rheumatoid Arthritis Classification Criteria. While the clinical value of anti-CCP tests has been established, differences in cut-off values, sensitivities and specificities exist between first-, second- and third-generation tests and harmonization efforts are under way. Anti-CCP and RF are clinically valuable biomarkers for the diagnosis and prognosis of RA patients. The combination of the two biomarkers in conjunction with other clinical measures is an important tool for the diagnosis and management of RA patients. PMID:21915375

  10. HIV-positive mothers with late adolescent/early adult children: "empty nest" concerns.

    PubMed

    Murphy, Debra A; Roberts, Kathleen Johnston; Herbeck, Diane M

    2012-01-01

    In-depth interviews about the "empty nest" were conducted with 57 HIV-positive mothers of late adolescent/early adult children. Empty nest worries included the following: (a) identity loss, (b) loss of social support, (c) financial insecurity, (d) worsening of physical health, and (e) death/dying. Hopes included the following: (a) self-improvement, (a) change of life focus, (c) travel, (d) romantic partners, and (e) familial ties. Respondents' HIV/AIDS status colored their thoughts/feelings about the empty nest; some worries were specific to being HIV positive and would not occur for nonill mothers. Midlife HIV-positive women need health care/social service resources as they navigate health and social-psychological challenges to successful aging.

  11. Multidisciplinary Biomarkers of Early Mammary Carcinogenesis

    DTIC Science & Technology

    2009-04-01

    ABSTRACT The purpose of the proposed research is to develop novel optical technologies to identify high-risk premalignant changes in the breast ...Our proposed research will first test specific optical parameters in breast cancer cell lines and models of early mammary carcinogenesis, and then...develop methods to test the optical parameters in random periareolar fine needle aspirate (RPFNA) samples from women at high-risk for developing breast

  12. Inflammatory biomarker C-reactive protein and radiotherapy-induced early adverse skin reactions in patients with breast cancer.

    PubMed

    Rodriguez-Gil, Jorge L; Takita, Cristiane; Wright, Jean; Reis, Isildinha M; Zhao, Wei; Lally, Brian E; Hu, Jennifer J

    2014-09-01

    Breast cancer is the most frequently diagnosed cancer and the second leading cause of cancer death in American women. Postsurgery adjuvant radiotherapy (RT) significantly reduced the local recurrence rate. However, many patients develop early adverse skin reactions (EASR) that impact quality of life and treatment outcomes. We evaluated an inflammatory biomarker, C-reactive protein (CRP), in predicting RT-induced EASRs in 159 patients with breast cancer undergoing RT. In each patient, we measured pre- and post-RT plasma CRP levels using a highly sensitive ELISA CRP assay. RT-induced EASRs were assessed at weeks 3 and 6 using the National Cancer Institute Common Toxicity Criteria (v3.0). Associations between EASRs and CRP levels were assessed using logistic regression models after adjusting for potential confounders. RT-induced grade 2+ EASRs were observed in 8 (5%) and 80 (50%) patients at weeks 3 and 6 (end of RT), respectively. At the end of RT, a significantly higher proportion of African Americans developed grade 3 EASRs (13.8% vs. 2.3% in others); grade 2+ EASRs were significantly associated with: change of CRP > 1 mg/L [odds ratio (OR), 2.51; 95% confidence interval (CI), 1.06-5.95; P = 0.04], obesity (OR, 2.08; 95% CI, 1.03-4.21; P = 0.04), or combined both factors (OR, 5.21; 95% CI, 1.77-15.38; P = 0.003). This is the first study to demonstrate that an inflammatory biomarker CRP is associated with RT-induced EASRs, particularly combined with obesity. Future larger studies are warranted to validate our findings and facilitate the discovery and development of anti-inflammatory agents to protect normal tissue from RT-induced adverse effects and improve quality of life in patients with breast cancer undergoing RT. ©2014 American Association for Cancer Research.

  13. Cry, Baby, Cry: Expression of Distress As a Biomarker and Modulator in Autism Spectrum Disorder

    PubMed Central

    Hiroi, Noboru; Scattoni, Maria Luisa

    2017-01-01

    Abstract Background: Early diagnosis of autism spectrum disorder is critical, because early intensive treatment greatly improves its prognosis. Methods: We review studies that examined vocalizations of infants with autism spectrum disorder and mouse models of autism spectrum disorder as a potential means to identify autism spectrum disorder before the symptomatic elements of autism spectrum disorder emerge. We further discuss clinical implications and future research priorities in the field. Results: Atypical early vocal calls (i.e., cry) may represent an early biomarker for autism spectrum disorder (or at least for a subgroup of children with autism spectrum disorder), and thus can assist with early detection. Moreover, cry is likely more than an early biomarker of autism spectrum disorder; it is also an early causative factor in the development of the disorder. Specifically, atypical crying, as recently suggested, might induce a “self-generated environmental factor” that in turn, influences the prognosis of the disorder. Because atypical crying in autism spectrum disorder is difficult to understand, it may have a negative impact on the quality of care by the caregiver (see graphical abstract). Conclusions: Evidence supports the hypothesis that atypical vocalization is an early, functionally integral component of autism spectrum disorder. PMID:28204487

  14. Prioritization of Biomarker Targets in Human Umbilical Cord Blood: Identification of Proteins in Infant Blood Serving as Validated Biomarkers in Adults

    PubMed Central

    Hansmeier, Nicole; Chao, Tzu-Chiao; Goldman, Lynn R.; Witter, Frank R.

    2012-01-01

    Background: Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped. Objectives: Our goal was to accelerate biomarker research on UCB by exploring its detectable protein content and providing a priority list of potential biomarkers based on known proteins involved in disease pathways. Methods: We explored cord blood serum proteins by profiling a UCB pool of 12 neonates with different backgrounds using a combination of isoelectric focusing and liquid chromatography coupled with matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) and by comparing results with information contained in metabolic and disease databases available for adult blood. Results: A total of 1,210 UCB proteins were identified with a protein-level false discovery rate of ~ 5% as estimated by naïve target-decoy and MAYU approaches, signifying a 6-fold increase in the number of UCB proteins described to date. Identified proteins correspond to 138 different metabolic and disease pathways and provide a platform of mechanistically linked biomarker candidates for tracking disruptions in cellular processes. Moreover, among the identified proteins, 38 were found to be approved biomarkers for adult blood. Conclusions: The results of this study advance current knowledge of the human cord blood serum proteome. They showcase the potential of UCB as a diagnostic medium for assessing infant health by detection and identification of candidate biomarkers for known disease pathways using a global, nontargeted approach. These biomarkers may inform about mechanisms of exposure–disease relationships. Furthermore, biomarkers approved by the U.S. Food and Drug Administration for screening in adult blood were

  15. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaobing; Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730; Ma, Ben

    As kidney is a major target organ affected by drug toxicity, early detection of renal injury is critical in preclinical drug development. In past decades, a series of novel biomarkers of drug-induced nephrotoxicity were discovered and verified in rats. However, limited data regarding the performance of novel biomarkers in non-rodent species are publicly available. To increase the applicability of these biomarkers, we evaluated the performance of 4 urinary biomarkers including neutrophil gelatinase-associated lipocalin (NGAL), clusterin, total protein, and N-acetyl-β-D-glucosaminidase (NAG), relative to histopathology and traditional clinical chemistry in beagle dogs with acute kidney injury (AKI) induced by gentamicin. The resultsmore » showed that urinary NGAL and clusterin levels were significantly elevated in dogs on days 1 and 3 after administration of gentamicin, respectively. Gene expression analysis further provided mechanistic evidence to support that NGAL and clusterin are potential biomarkers for the early assessment of drug-induced renal damage. Furthermore, the high area (both AUCs = 1.000) under receiver operator characteristics (ROC) curve also indicated that NGAL and clusterin were the most sensitive biomarkers for detection of gentamicin-induced renal proximal tubular toxicity. Our results also suggested that NAG may be used in routine toxicity testing due to its sensitivity and robustness for detection of tissue injury. The present data will provide insights into the preclinical use of these biomarkers for detection of drug-induced AKI in non-rodent species. - Highlights: • Urinary NGAL, clusterin and NAG levels were significantly elevated in canine AKI. • NGAL and clusterin gene expression were increased following treatment with gentamicin. • NGAL and clusterin have high specificity and sensitivity for detection of AKI.« less

  16. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinhumpatch, Pantip; Navasumrit, Panida; Chulabhorn Graduate Institute, Laksi, Bangkok

    The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations withmore » other biomarkers of arsenic exposure, including arsenic accumulation in nails (r = 0.56, P < 0.001) and arsenic concentration in urine (r = 0.50, P < 0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (∼ 4-fold, P < 0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (∼ 3-fold, P < 0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. - Highlights: • The effects of arsenic exposure in utero and through early childhood were studied. • Arsenic-exposed children had a reduction in arsenic methylation capacity. • Exposed children had more DNA damage, observed as elevated salivary 8-OHdG. • Lower salivary hOGG1 in exposed children indicated impairment of 8-OHdG repair. • Salivary and urinary 8-OHdG levels were discordant.« less

  17. Impact of elevated cardiac biomarkers on mortality after vascular surgery procedures.

    PubMed

    Buckley, Ryan; Stevens, Scott L

    2014-12-01

    Concurrent cardiac disease is an important cause of morbidity and mortality in vascular surgical patients. Increasingly, cardiac biomarkers are used to identify cardiac injury in these high-risk patients. This review provides data demonstrating that perioperative troponin elevation correlates with poor short- and long-term outcomes for vascular surgical patients. In addition, the data demonstrate that patients with high circulating troponin levels fair worse than those with lower levels. Early identification of patients with cardiac injury using biomarkers allows timely diagnosis, risk stratification, and aggressive medical therapy for vascular surgical patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. HE4 as a biomarker for ovarian and endometrial cancer management

    PubMed Central

    Li, Jinping; Dowdy, Sean; Tipton, Tracy; Podratz, Karl; Lu, Wei-Guo; Xie, Xing; Jiang, Shi-Wen

    2012-01-01

    Ovarian and endometrial cancer will be diagnosed in over 63,000 women in 2009, resulting in 22,000 deaths in the USA. Histologic screening, such as pap smears for detection of cervical cancer, is not feasible for these diseases given difficulty with access to the tissue. Thus, a serum-screening test using a biomarker or panel of biomarkers would be useful to aid in cancer diagnosis, detection of recurrence and as a means to monitor response to therapy. In this review, we focus on the human epididymis protein (HE)4 gene, which appears to have potential as a biomarker for both of these diseases. The structure and methods of detection of HE4 are discussed. Preliminary data show that HE4 may have more potential than cancer antigen 125 in discriminating benign from cancerous ovarian masses, and has the strongest correlation with endometrial cancer of all markers tested to date. Utilizing risk stratification, a panel of biomarkers including HE4 may ultimately be useful for detecting ovarian and endometrial cancer at an early stage in patients at high risk. PMID:19732003

  19. Age and diagnostic performance of Alzheimer disease CSF biomarkers.

    PubMed

    Mattsson, N; Rosén, E; Hansson, O; Andreasen, N; Parnetti, L; Jonsson, M; Herukka, S-K; van der Flier, W M; Blankenstein, M A; Ewers, M; Rich, K; Kaiser, E; Verbeek, M M; Olde Rikkert, M; Tsolaki, M; Mulugeta, E; Aarsland, D; Visser, P J; Schröder, J; Marcusson, J; de Leon, M; Hampel, H; Scheltens, P; Wallin, A; Eriksdotter-Jönhagen, M; Minthon, L; Winblad, B; Blennow, K; Zetterberg, H

    2012-02-14

    Core CSF changes in Alzheimer disease (AD) are decreased amyloid β(1-42), increased total tau, and increased phospho-tau, probably indicating amyloid plaque accumulation, axonal degeneration, and tangle pathology, respectively. These biomarkers identify AD already at the predementia stage, but their diagnostic performance might be affected by age-dependent increase of AD-type brain pathology in cognitively unaffected elderly. We investigated effects of age on the diagnostic performance of CSF biomarkers in a uniquely large multicenter study population, including a cross-sectional cohort of 529 patients with AD dementia (median age 71, range 43-89 years) and 304 controls (67, 44-91 years), and a longitudinal cohort of 750 subjects without dementia with mild cognitive impairment (69, 43-89 years) followed for at least 2 years, or until dementia diagnosis. The specificities for subjects without AD and the areas under the receiver operating characteristics curves decreased with age. However, the positive predictive value for a combination of biomarkers remained stable, while the negative predictive value decreased only slightly in old subjects, as an effect of the high AD prevalence in older ages. Although the diagnostic accuracies for AD decreased with age, the predictive values for a combination of biomarkers remained essentially stable. The findings highlight biomarker variability across ages, but support the use of CSF biomarkers for AD even in older populations.

  20. Biomarkers of nutrition and stress in pregnant women with a history of eating disorders in relation to head circumference and neurocognitive function of the offspring.

    PubMed

    Koubaa, Saloua; Hällström, Tore; Brismar, Kerstin; Hellström, Per M; Hirschberg, Angelica Lindén

    2015-11-27

    Eating disorders during pregnancy can affect fetal growth and the child's early development, but the underlying mechanisms have not been elucidated. The aim of the present study was to investigate serum biomarkers of nutrition and stress in pregnant women with previous eating disorders compared to controls and in relation to head circumference and early neurocognitive development of the offspring. In a longitudinal cohort study, pregnant nulliparous non-smoking women with a history of anorexia nervosa (n = 20), bulimia nervosa (n = 17) and controls (n = 59) were followed during pregnancy and their children's growth and neurocognitive development were followed up to five years of age. We investigated maternal serum biomarkers of nutrition and stress (ferritin, cortisol, thyroid-stimulating hormone, free thyroxine, insulin, insulin-like growth factor I (IGF-I) and IGF binding protein 1) in blood samples collected during early pregnancy and compared between groups (ANOVA, LSD post-hoc test). The results were related to previous data on head circumference at birth and neurocognitive development at five years of age of the offspring (Spearman rank correlation or Pearson correlation test). Serum levels of ferritin in the women with previous anorexia nervosa, but not in those with a history of bulimia nervosa, were significantly lower than in the controls (p < 0.01), and correlated strongly to impaired memory function in their children (rs = -0.70, p < 0.001). Maternal serum levels of free thyroxine were similar between groups but correlated positively to reduced head circumference at birth of the children in the bulimia nervosa group (r = 0.48, p < 0.05), and with the same tendency in the anorexia nervosa group (r = 0.42, p = 0.07), but not in the controls (r = 0.006). There were no significant differences in cortisol or the other biomarkers between groups. Low maternal serum ferritin in women with previous anorexia nervosa may be of importance for impaired memory