Sample records for early postnatal mice

  1. MEAL PARAMETERS AND VAGAL GASTROINTESTINAL AFFERENTS IN MICE THAT EXPERIENCED EARLY POSTNATAL OVERNUTRITION

    PubMed Central

    Biddinger, Jessica E.; Fox, Edward A.

    2010-01-01

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component - the vagus nerve - has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal-size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 hour/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. PMID:20403369

  2. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice. © 2013 Elsevier B.V. All rights reserved.

  4. Expression of glucocorticoid receptor and early growth response gene 1 during postnatal development of two inbred strains of mice exposed to early life stress.

    PubMed

    Navailles, Sylvia; Zimnisky, Ross; Schmauss, Claudia

    2010-07-01

    Early life stress can elicit profound changes in adult gene expression and behavior. One consequence of early life stress is a decreased expression of glucocorticoid receptors (GRs) in the frontal cortex and hippocampus. However, neither the time of onset nor the mechanism(s) leading to decreased GR expression during postnatal development are known. The present study used two inbred strains of mice that differ in their behavioral responsiveness to stress (Balb/c and C57Bl/6), exposed them to an established paradigm of early life stress (infant maternal separation), and measured their expression of frontal cortical and hippocampal GRs and the putative transcriptional activator of the GR gene, early growth response gene (egr)-1, at defined stages of postnatal development. In both strains, real-time RT-PCR experiments revealed that decreased expression of GR in adolescence and adulthood is, in fact, preceded by increased GR expression during early life stress exposure. Thus, the early life stress-induced disruption of the normal stress-hyporesponsive period during infancy is accompanied by increased GR expression. Moreover, chronic treatment with the antidepressant drug fluoxetine during adolescence or adulthood reversed the effect of early life stress on adult GR mRNA expression. In contrast to the strain-independent effect of early life stress on GR expression, however, changes in egr-1 expression occurred only in Balb/c mice, and unlike the biphasic developmental changes in GR mRNA expression, egr-1 mRNA was decreased throughout postnatal development. Moreover, there was no consistent overlap of anatomic regions affected by decreased GR and egr-1 protein expression. Thus, in Balb/c mice, changes in GR and egr-1 expression can independently contribute to the phenotypes resulting from early life stress exposure. These findings illustrate that the impact of early life stress on gene expression changes is modulated by the genetic background and that the persistent

  5. Glial glycine transporter 1 function is essential for early postnatal survival but dispensable in adult mice.

    PubMed

    Eulenburg, Volker; Retiounskaia, Marina; Papadopoulos, Theofilos; Gomeza, Jesús; Betz, Heinrich

    2010-07-01

    The glycine transporter 1 (GlyT1) is expressed in astrocytes and selected neurons of the mammalian CNS. In newborn mice, GlyT1 is crucial for efficient termination of glycine-mediated inhibitory neurotransmission. Furthermore, GlyT1 has been implicated in the regulation of excitatory N-methyl-D-asparate (NMDA) receptors. To evaluate whether glial and neuronal GlyT1 have distinct roles at inhibitory synapses, we inactivated the GlyT1 gene cell type-specifically using mice carrying floxed GlyT1 alleles GlyT1((+)/+)). GlyT1((+)/(+)) mice expressing Cre recombinase in glial cells developed severe neuromotor deficits during the first postnatal week, which mimicked the phenotype of conventional GlyT1 knock-out mice and are consistent with glycinergic over-inhibition. In contrast, Cre-mediated inactivation of the GlyT1 gene in neuronal cells did not result in detectable motor impairment. Notably, some animals deficient for glial GlyT1 survived the first postnatal week and did not develop neuromotor deficits throughout adulthood, although GlyT1 expression was efficiently reduced. Thus, glial GlyT1 is critical for the regulation of glycine levels at inhibitory synapses only during early postnatal life. Copyright 2010 Wiley-Liss, Inc.

  6. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    PubMed Central

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Results Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Conclusion Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth. PMID:26372012

  7. Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice.

    PubMed

    Nakanishi, S T; Whelan, P J

    2010-05-01

    During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.

  8. Effect of early postnatal exposure to valproate on neurobehavioral development and regional BDNF expression in two strains of mice.

    PubMed

    Bath, Kevin G; Pimentel, Tiare

    2017-05-01

    Valproate has been used for over 30years as a first-line treatment for epilepsy. In recent years, prenatal exposure to valproate has been associated with teratogenic effects, limiting its use in women that are pregnant or of childbearing age. However, despite its potential detrimental effects on development, valproate continues to be prescribed at high rates in pediatric populations in some countries. Animal models allow us to test hypotheses regarding the potential effects of postnatal valproate exposure on neurobehavioral development, as well as identify potential mechanisms mediating observed effects. Here, we tested the effect of early postnatal (P4-P11) valproate exposure (100mg/kg and 200mg/kg) on motor and affective development in two strains of mice, SVE129 and C57Bl/6N. We also assessed the effect of early valproate exposure on regional BDNF protein levels, a potential target of valproate, and mediator of neurodevelopmental outcomes. We found that early life valproate exposure led to significant motor impairments in both SVE129 and C57Bl/6N mice. Both lines of mice showed significant delays in weight gain, as well as impairments in the righting reflex (P7-8), wire hang (P17), open field (P12 and P21), and rotarod (P25 and P45) tasks. Interestingly, some of the early locomotor effects were strain- and dose-dependent. We observed no effects of valproate on early markers of anxiety-like behavior. Importantly, early life valproate exposure had significant effects on regional BDNF expression, leading to a near 50% decrease in BDNF levels in the cerebellum of both strains of mice, while not impacting hippocampal BDNF protein levels. These observations indicate that postnatal exposure to valproate may have significant, and region-specific effects, on neural and behavioral development, with specific consequences for cerebellar development and motor function. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Postnatal Loss of Hap1 Reduces Hippocampal Neurogenesis and Causes Adult Depressive-Like Behavior in Mice

    PubMed Central

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-01-01

    Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. PMID:25875952

  10. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice.

    PubMed

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-04-01

    Depression is a serious mental disorder that affects a person's mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression.

  11. PROLACTIN REGULATES LIVER GROWTH DURING POSTNATAL DEVELOPMENT IN MICE.

    PubMed

    Moreno-Carranza, Bibiana; Bravo-Manríquez, Marco; Baez, Arelí; Ledesma-Colunga, María G; Ruiz-Herrera, Xarubet; Reyes-Ortega, Pamela; De Los Ríos, Ericka A; Macotela, Yazmín; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2018-02-21

    The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration and its levels are high in the circulation of newborn infants, but whether PRL plays a role on neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 weeks after birth, when liver growth lags behind body growth. At postnatal week 4, the production of PRL by the liver ceases coinciding with the elevation of circulating PRL and the faster liver growth that catches up with body growth. PRL receptor null mice (Prlr-/-) show a significant decrease in the LBW at 1, 4, 6, and 10 postnatal weeks and reduced liver expression of proliferation (cyclin D1, Ccnd1) and angiogenesis (platelet/endothelial cell adhesion molecule 1, Pecam1) markers relative to Prlr+/+ mice. However, the LBW increases in Prlr-/- mice at postnatal week 2 concurring with the enhanced liver expression of Igf-1 and the liver upregulation and downregulation of suppressor of cytokine signaling 2 (Socs2) and Socs3, respectively. These findings indicate that PRL acts locally and systemically to restrict and stimulate postnatal liver growth. PRL inhibits liver and body growth by attenuating growth hormone-induced Igf-1 liver expression via Socs2 and Socs3-related mechanisms.

  12. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    PubMed

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  13. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice

    PubMed Central

    YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2017-01-01

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575

  14. Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides

    PubMed Central

    Girard, Beatrice; Peterson, Abbey; Malley, Susan; Vizzard, Margaret A.

    2016-01-01

    The mechanisms underlying the postnatal maturation of micturition from a somatovesical to a vesicovesical reflex are not known but may involve neuropeptides in the lower urinary tract. A transgenic mouse model with chronic urothelial overexpression (OE) of NGF exhibited increased voiding frequency, increased number of non-voiding contractions, altered morphology and hyperinnervation of the urinary bladder by peptidergic (e.g., Sub P and CGRP) nerve fibers in the adult. In early postnatal and adult NGF-OE mice we have now examined: (1) micturition onset using filter paper void assays and open-outlet, continuous fill, conscious cystometry; (2) innervation and neurochemical coding of the suburothelial plexus of the urinary bladder using immunohistochemistry and semi-quantitative image analyses; (3) neuropeptide protein and transcript expression in urinary bladder of postnatal and adult NGF-OE mice using Q-PCR and ELISAs and (4) the effects of intravesical instillation of a neurokinin (NK)-1 receptor antagonist on bladder function in postnatal and adult NGF-OE mice using conscious cystometry. Postnatal NGF-OE mice exhibit age-dependent (R2= 0.996–0.998; p ≤ 0.01) increases in Sub and CGRP expression in the urothelium and significantly (p ≤ 0.01) increased peptidergic hyperinnervation of the suburothelial nerve plexus. By as early as P7, NGF-OE mice exhibit a vesicovesical reflex in response to intravesical instillation of saline whereas littermate WT mice require perigenital stimulation to elicit a micturition reflex until P13 when vesicovesical reflexes are first observed. Intravesical instillation of a NK-1 receptor antagonist, netupitant (0.1 μg/ml), significantly (p ≤ 0.01) increased void volume and the interval between micturition events with no effects on bladder pressure (baseline, threshold, peak) in postnatal NGF-OE mice; effects on WT mice were few. NGF-induced pleiotropic effects on neuropeptide (e.g., Sub P) expression in the urinary bladder

  15. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice

    PubMed Central

    Bortolato, Marco; Godar, Sean C.; Tambaro, Simone; Li, Felix G.; Devoto, Paola; Coba, Marcelo P.; Chen, Kevin; Shih, Jean C.

    2013-01-01

    Monoamine oxidase (MAO) A, the major enzyme catalyzing the oxidative degradation of serotonin (5-hydroxytryptamine, 5-HT), plays a key role in emotional regulation. In humans and mice, MAO-A deficiency results in high 5-HT levels, antisocial, aggressive, and perseverative behaviors. We previously showed that the elevation in brain 5-HT levels in MAO-A knockout (KO) mice is particularly marked during the first two weeks of postnatal life. Building on this finding, we hypothesized that the reduction of 5-HT levels during these early stages may lead to enduring attenuations of the aggression and other behavioral aberrances observed in MAO-A KO mice. To test this possibility, MAO-A KO mice were treated with daily injections of a 5-HT synthesis blocker, the tryptophan hydroxylase inhibitor p-chloro-phenylalanine (pCPA, 300 mg/kg/day, IP), from postnatal day 1 through 7. As expected, this regimen significantly reduced 5-HT forebrain levels in MAO-A KO pups. These neurochemical changes persisted throughout adulthood, and resulted in significant reductions in marble-burying behavior, as well as increases in spontaneous alternations within a T-maze. Conversely, pCPA-treated MAO-A KO mice did not exhibit significant changes in anxiety-like behaviors in a novel open-field and elevated plus-maze; furthermore, this regimen did not modify their social deficits, aggressive behaviors and impairments in tactile sensitivity. Treatment with pCPA from postnatal day 8 through 14 elicited similar, yet milder, behavioral effects on marble-burying behavior. These results suggest that early developmental enhancements in 5-HT levels have long-term effects on the modulation of behavioral flexibility associated with MAO-A deficiency. PMID:23871843

  16. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome.

    PubMed

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation.

  17. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice

    USDA-ARS?s Scientific Manuscript database

    Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1...

  18. Lack of the alanine-serine-cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice.

    PubMed

    Xie, Xinmin; Dumas, Theodore; Tang, Lamont; Brennan, Thomas; Reeder, Thadd; Thomas, Winston; Klein, Robert D; Flores, Judith; O'Hara, Bruce F; Heller, H Craig; Franken, Paul

    2005-08-09

    The Na(+)-independent alanine-serine-cysteine transporter 1 (Asc-1) is exclusively expressed in neuronal structures throughout the central nervous system (CNS). Asc-1 transports small neutral amino acids with high affinity especially for D-serine and glycine (K(i): 8-12 microM), two endogenous glutamate co-agonists that activate N-methyl-D-aspartate (NMDA) receptors through interacting with the strychnine-insensitive glycine binding-site. By regulating D-serine (and possibly glycine) levels in the synaptic cleft, Asc-1 may play an important role in controlling neuronal excitability. We generated asc-1 gene knockout (asc-1(-/-)) mice to test this hypothesis. Behavioral phenotyping combined with electroencephalogram (EEG) recordings revealed that asc-1(-/-) mice developed tremors, ataxia, and seizures that resulted in early postnatal death. Both tremors and seizures were reduced by the NMDA receptor antagonist MK-801. Extracellular recordings from asc-1(-/-) brain slices indicated that the spontaneous seizure activity did not originate in the hippocampus, although, in this region, a relative increase in evoked synaptic responses was observed under nominal Mg(2+)-free conditions. Taken together with the known neurochemistry and neuronal distribution of the Asc-1 transporter, these results indicate that the mechanism underlying the behavioral hyperexcitability in mutant mice is likely due to overactivation of NMDA receptors, presumably resulting from elevated extracellular D-serine. Our study provides the first evidence to support the notion that Asc-1 transporter plays a critical role in regulating neuronal excitability, and indicate that the transporter is vital for normal CNS function and essential to postnatal survival of mice.

  19. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    PubMed

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  20. Multimethod Approach to the Early Postnatal Growth of the Mandible in Mice from a Zone of Robertsonian Polymorphism.

    PubMed

    Martínez-Vargas, Jessica; Muñoz-Muñoz, Francesc; López-Fuster, María José; Cubo, Jorge; Ventura, Jacint

    2018-04-18

    The western European house mouse (Mus musculus domesticus) shows high karyotypic diversity owing to Robertsonian translocations. Morphometric studies conducted with adult mice suggest that karyotype evolution due to these chromosomal reorganizations entails variation in the form and the patterns of morphological covariation of the mandible. However, information is much scarcer regarding the effect of these rearrangements on the growth pattern of the mouse mandible over early postnatal ontogeny. Here we compare mandible growth from the second to the eighth week of postnatal life between two ontogenetic series of mice from wild populations, with the standard karyotype and with Robertsonian translocations respectively, reared under the same conditions. A multi-method approach is used, including bone histology analyses of mandible surfaces and cross-sections, as well as geometric morphometric analyses of mandible form. The mandibles of both standard and Robertsonian mice display growth acceleration around weaning, anteroposterior direction of bone maturation, a predominance of bone deposition fields over ontogeny, and relatively greater expansion of the posterior mandible region correlated with the ontogenetic increase in mandible size. Nevertheless, differences exist between the two mouse groups regarding the timing of histological maturation of the mandible, the localization of certain bone remodeling fields, the temporospatial patterns of morphological variation, and the organization into two main modules. The dissimilarities in the process of mandible growth between the two groups of mice become more evident around sexual maturity, and could arise from alterations that Robertsonian translocations may exert on genes involved in the bone remodeling mechanism. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice.

    PubMed

    Summers, Brooke L; Rofe, Allan M; Coyle, Peter

    2009-04-01

    We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy.

  2. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice.

    PubMed

    Ornoy, Asher; Weinstein-Fudim, Liza; Tfilin, Matanel; Ergaz, Zivanit; Yanai, Joseph; Szyf, Moshe; Turgeman, Gadi

    2018-01-16

    A common animal model of ASD is the one induced by valproic acid (VPA), inducing epigenetic changes and oxidative stress. We studied the possible preventive effect of the methyl donor for epigenetic enzymatic reactions, S-adenosine methionine (SAM), on ASD like behavioral changes and on redox potential in the brain and liver in this model. ICR albino mice were injected on postnatal day 4 with one dose of 300 mg/kg of VPA, with normal saline (controls) or with VPA and SAM that was given orally for 3 days at the dose of 30 mg/kg body weight. From day 50, we carried out neurobehavioral tests and assessment of the antioxidant status of the prefrontal cerebral cortex, liver assessing SOD and CAT activity, lipid peroxidation and the expression of antioxidant genes. Mice injected with VPA exhibited neurobehavioral deficits typical of ASD that were more prominent in males. Changes in the activity of SOD and CAT increased lipid peroxidation and changes in the expression of antioxidant genes were observed in the prefrontal cortex of VPA treated mice, more prominent in females, while ASD like behavior was more prominent in males. There were no changes in the redox potential of the liver. The co-administration of VPA and SAM alleviated most ASD like neurobehavioral symptoms and normalized the redox potential in the prefrontal cortex. Early postnatal VPA administration induces ASD like behavior that is more severe in males, while the redox status changes are more severe in females; SAM corrects both. VPA-induced ASD seems to result from epigenetic changes, while the redox status changes may be secondary. Copyright © 2018. Published by Elsevier Inc.

  3. Altered gene expression in early postnatal monoamine oxidase A knockout mice.

    PubMed

    Chen, Kevin; Kardys, Abbey; Chen, Yibu; Flink, Stephen; Tabakoff, Boris; Shih, Jean C

    2017-08-15

    We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Trehalose rescues glial cell dysfunction in striatal cultures from HD R6/1 mice at early postnatal development.

    PubMed

    Perucho, Juan; Gómez, Ana; Muñoz, María Paz; de Yébenes, Justo García; Mena, María Ángeles; Casarejos, María José

    2016-07-01

    The pathological hallmark of Huntington disease (HD) is the intracellular aggregation of mutant huntingtin (mHTT) in striatal neurons and glia associated with the selective loss of striatal medium-sized spiny neurons. Up to the present, the role of glia in HD is poorly understood and has been classically considered secondary to neuronal disorder. Trehalose is a disaccharide known to possess many pharmacological properties, acting as an antioxidant, a chemical chaperone, and an inducer of autophagy. In this study, we analyzed at an early postnatal development stage the abnormalities observed in striatal glial cell cultures of postnatal R6/1 mice (HD glia), under baseline and stressing conditions and the protective effects of trehalose. Our data demonstrate that glial HD alterations already occur at early stages of postnatal development. After 20 postnatal days in vitro, striatal HD glia cultures showed more reactive astrocytes with increased expression of glial fibrillary acidic protein (GFAP) but with less replication capacity, less A2B5(+) glial progenitors and more microglia than wild-type (WT) cultures. HD glia had lower levels of intracellular glutathione (GSH) and was more susceptible to H2O2 and epoxomicin insults. The amount of expressed GDNF and secreted mature-BDNF by HD astrocytes were much lower than by WT astrocytes. In addition, HD glial cultures showed a deregulation of the major proteolytic systems, the ubiquitin-proteasomal system (UPS), and the autophagic pathway. This produces a defective protein quality control, indicated by the elevated levels of ubiquitination and p62 protein. Interestingly, we show that trehalose, through its capacity to induce autophagy, inhibited p62/SQSTM1 accumulation and facilitated the degradation of cytoplasmic aggregates from mHTT and α-synuclein proteins. Trehalose also reduced microglia activation and reversed the disrupted cytoskeleton of astrocytes accompanied with an increase in the replication capacity. In

  5. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice.

    PubMed

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I; Basselin, Mireille

    2014-05-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.p.) or saline during postnatal days P4-P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca(2+)-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. These changes might contribute to reported altered behavior following early SSRI in rodents. Published by Elsevier Ltd.

  6. Early phenotypical diagnoses in Trembler-J mice model.

    PubMed

    Rosso, Gonzalo; Cal, Karina; Canclini, Lucía; Damián, Juan Pablo; Ruiz, Paul; Rodríguez, Héctor; Sotelo, José Roberto; Vazquez, Cristina; Kun, Alejandra

    2010-06-30

    Pmp-22 mutant mice (Trembler-J: B6.D2-Pmp22/J), are used as a model to study Charcot-Marie-Tooth type 1A (CMT1A). The identification of individual genotypes is a routine in the management of the Tr(J) colony. The earliest phenotypic manifestation of the pmp-22 mutation is just about 20th postnatal days, when pups begin to tremble. In this study, a rapid and simple diagnostic method was developed by modifying the Tail Suspension Test (MTST) to determine the difference between the Tr(J) and the wild-type mice phenotype. The animal behavioral phenotypes generated during the test were consistent with the specific genotype of each animal. The MTST allowed us to infer the heterozygous genotype in early postnatal stages, at 11 days after birth. The motor impairment of Tr(J) mice was also analyzed by a Fixed Bar Test (FBT), which revealed the disease evolution according to age. The main advantages of MTST are its objectivity, simplicity, and from the viewpoint of animal welfare, it is a non-invasive technique that combined with his rapidity show its very well applicability for use from an early age in these mice. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Increased Excitatory Synaptic Transmission of Dentate Granule Neurons in Mice Lacking PSD-95-Interacting Adhesion Molecule Neph2/Kirrel3 during the Early Postnatal Period.

    PubMed

    Roh, Junyeop D; Choi, Su-Yeon; Cho, Yi Sul; Choi, Tae-Yong; Park, Jong-Sil; Cutforth, Tyler; Chung, Woosuk; Park, Hanwool; Lee, Dongsoo; Kim, Myeong-Heui; Lee, Yeunkum; Mo, Seojung; Rhee, Jeong-Seop; Kim, Hyun; Ko, Jaewon; Choi, Se-Young; Bae, Yong Chul; Shen, Kang; Kim, Eunjoon; Han, Kihoon

    2017-01-01

    Copy number variants and point mutations of NEPH2 (also called KIRREL3 ) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2 -/- mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2 -/- mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations.

  8. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu; Cooney, Craig A.; Melnyk, Stepan B.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers ofmore » oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced

  9. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice.

    PubMed

    Sunkaria, Aditya; Bhardwaj, Supriya; Yadav, Aarti; Halder, Avishek; Sandhir, Rajat

    2018-01-01

    Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Postnatal dietary fatty acid composition permanently affects the structure of hypothalamic pathways controlling energy balance in mice.

    PubMed

    Schipper, Lidewij; Bouyer, Karine; Oosting, Annemarie; Simerly, Richard B; van der Beek, Eline M

    2013-12-01

    We previously reported that dietary lipid quality during early life can have long-lasting effects on metabolic health and adiposity. Exposure to a postnatal diet with low dietary omega-6 (n-6) or high omega-3 (n-3) fatty acid (FA) content resulted in reduced body fat accumulation when challenged with a moderate Western-style diet (WSD) beginning in adolescence. We determined whether this programming effect is accompanied by changes in hypothalamic neural projections or modifications in the postnatal leptin surge, which would indicate the altered development of hypothalamic circuits that control energy balance. Neonatal mice were subjected to a control diet (CTR) or experimental diet with altered relative n-6 and n-3 FA contents [ie, a diet with a relative reduction in n-6 fatty acid (LOW n-6) or a diet with a relative increase in n-3 fatty acid (HIGH n-3) compared with the CTR from postnatal day (PN) 2 to 42]. Compared with CTR mice, mice fed a LOW n-6 or HIGH n-3 during postnatal life showed significant reductions in the density of both orexigenic and anorexigenic neural projections to the paraventricular nucleus of the hypothalamus at PN 28. These impairments persisted into adulthood and were still apparent after the WSD challenge between PNs 42 and 98. However, the neuroanatomical changes were not associated with changes in the postnatal leptin surge. Although the exact mechanism remains to be elucidated, our data indicate that the quality of dietary FA during postnatal life affects the development of the central regulatory circuits that control energy balance and may do so through a leptin-independent mechanism.

  11. Intestinal microbiota influence the early postnatal development of the enteric nervous system.

    PubMed

    Collins, J; Borojevic, R; Verdu, E F; Huizinga, J D; Ratcliffe, E M

    2014-01-01

    Normal gastrointestinal function depends on an intact and coordinated enteric nervous system (ENS). While the ENS is formed during fetal life, plasticity persists in the postnatal period during which the gastrointestinal tract is colonized by bacteria. We tested the hypothesis that colonization of the bowel by intestinal microbiota influences the postnatal development of the ENS. The development of the ENS was studied in whole mount preparations of duodenum, jejunum, and ileum of specific pathogen-free (SPF), germ-free (GF), and altered Schaedler flora (ASF) NIH Swiss mice at postnatal day 3 (P3). The frequency and amplitude of circular muscle contractions were measured in intestinal segments using spatiotemporal mapping of video recorded spontaneous contractile activity with and without exposure to lidocaine and N-nitro-L-arginine (NOLA). Immunolabeling with antibodies to PGP9.5 revealed significant abnormalities in the myenteric plexi of GF jejunum and ileum, but not duodenum, characterized by a decrease in nerve density, a decrease in the number of neurons per ganglion, and an increase in the proportion of myenteric nitrergic neurons. Frequency of amplitude of muscle contractions were significantly decreased in the jejunum and ileum of GF mice and were unaffected by exposure to lidocaine, while NOLA enhanced contractile frequency in the GF jejunum and ileum. These findings suggest that early exposure to intestinal bacteria is essential for the postnatal development of the ENS in the mid to distal small intestine. Future studies are needed to investigate the mechanisms by which enteric microbiota interact with the developing ENS. © 2013 John Wiley & Sons Ltd.

  12. Failure of post-natal ductus arteriosus closure in prostaglandin transporter-deficient mice

    PubMed Central

    Chang, Hee-Yoon; Locker, Joseph; Lu, Run; Schuster, Victor L.

    2010-01-01

    Background Prostaglandin E2 (PGE2) plays a major role both in maintaining patency of the fetal ductus arteriosus (DA) and in closure of the DA after birth. The rate- limiting step in PGE2 signal termination is PGE2 uptake by the transporter PGT. Methods and results To determine the role of PGT in DA closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained since neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT −/−) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE2 uptake. Although born in a normal Mendelian ratio, no PGT −/− mice survived past post-natal day 1, and no PGT Neo/Neo mice survived past post-natal day 2. Necropsy revealed patent DA with normal intimal thickening but with dilated cardiac chambers. Both PGT Neo/Neo and PGT −/− mice could be rescued through the post-natal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic post-mortem analysis. In accord with PGT’s known role in metabolizing PGE2, rescued adult PGT −/− mice had lower plasma PGE2 metabolite levels, and higher urinary PGE2 excretion rates, than wild type mice. Conclusions PGT plays a critical role in closure of the DA after birth by ensuring a reduction in local and/or circulating PGE2 concentrations. PMID:20083684

  13. Postnatal iron-induced motor behaviour alterations following chronic neuroleptic administration in mice.

    PubMed

    Fredriksson, A; Eriksson, P; Archer, T

    2006-02-01

    C57/BL6 mice were administered either 7.5 mg Fe(2+)/kg or vehicle (saline) postnatally on days 10-12 after birth. From 61 days of age onwards for 21 days, groups of mice were administered either clozapine (1 or 5 mg/kg, s.c.) or haloperidol (1 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Following this, each animal was removed, injected apomorphine (1 mg/kg, s.c.) and replaced in the same test chamber. It was found that postnatal administration of Fe(2+) at the 7.5 mg/kg dose level reduced activity during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hypoactivity in by postnatal Fe(2+) during the 1(st) two 20-min periods over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hyperactivity in by postnatal Fe(2+) during the 3(rd) and final 20-min period. Subchronic administration of haloperidol, without postnatal iron, increased the level of both locomotion (1(st) 20 min) and rearing (2(nd) 20 min) activity. Postnatal administration of Fe(2+) at the 7.5 mg/kg dose increased the levels of both locomotion and rearing, but not total activity, following administration of apomorphine (1 mg/kg). Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, reduced the increased locomotor activity caused by postnatal Fe(2+), whereas clozapine, 5 mg/kg, elevated further the postnatal Fe(2+)-induced increased in rearing. Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, and haloperidol, 1 mg/kg, increased the level of locomotor following administration of apomorphine (1 mg/kg) in mice treated postnatally with vehicle, whereas only

  14. Brain metabolic alterations in mice subjected to postnatal traumatic stress and in their offspring.

    PubMed

    Gapp, Katharina; Corcoba, Alberto; van Steenwyk, Gretchen; Mansuy, Isabelle M; Duarte, João Mn

    2017-07-01

    Adverse environmental and social conditions early in life have a strong impact on health. They are major risk factors for mental diseases in adulthood and, in some cases, their effects can be transmitted across generations. The consequences of detrimental stress conditions on brain metabolism across generations are not well known. Using high-field (14.1 T) magnetic resonance spectroscopy, we investigated the neurochemical profile of adult male mice exposed to traumatic stress in early postnatal life and of their offspring, and of undisturbed control mice. We found that, relative to controls, early life stress-exposed mice have metabolic alterations consistent with neuronal dysfunction, including reduced concentration of N-acetylaspartate, glutamate and γ-aminobutyrate, in the prefrontal cortex in basal conditions. Their offspring have normal neurochemical profiles in basal conditions. Remarkably, when challenged by an acute cold swim stress, the offspring has attenuated metabolic responses in the prefrontal cortex, hippocampus and striatum. In particular, the expected stress-induced reduction in the concentration of N-acetylaspartate, a putative marker of neuronal health, was prevented in the cortex and hippocampus. These findings suggest that paternal trauma can confer beneficial brain metabolism adaptations to acute stress in the offspring.

  15. Prenatal and Early Postnatal Exposure to Cigarette Smoke Decreases BDNF/TrkB Signaling and Increases Abnormal Behaviors Later in Life

    PubMed Central

    Xiao, Lan; Kish, Vincent L.; Benders, Katherine M.

    2016-01-01

    Background: Cigarette smoke exposure during prenatal and early postnatal periods increases the incidence of a variety of abnormal behaviors later in life. The purpose of this study was to identify the possible critical period of susceptibility to cigarette smoke exposure and evaluate the possibe effects of cigarette smoke during early life on brain-derived neurotrophic factor/neurotrophic tyrosine kinase receptor B signaling in the brain. Methods: Three different age of imprinting control region mice were exposed to cigarette smoke or filtered air for 10 consecutive days beginning on either gestational day 7 by maternal exposure, or postnatal days 2 or 21 by direct inhalation. A series of behavioral profiles and neurotrophins in brain were measured 24 hours after mice received acute restraint stress for 1 hour on postnatal day 59. Results: Cigarette smoke exposure in gestational day 7 and postnatal day 2 produced depression-like behaviors as evidenced by significantly increased immobility in both tail suspension and forced-swim test. Increased entry latencies, but not ambulation in the open field test, were also observed in the gestational day 7 and postnatal day 2 cigarette smoke exposure groups. Genetic analysis showed that gestational day 7 cigarette smoke exposure significantly altered mRNA level of brain-derived neurotrophic factor/tyrosine kinase receptor B in the hippocampus. However, behavioral profiles and brain-derived neurotrophic factor/tyrosine kinase receptor B signaling were not significantly changed in PND21 cigarette smoke exposure group compared with FA group. Conclusions: These results suggest that a critical period of susceptibility to cigarette smoke exposure exists in the prenatal and early postnatal period, which results a downregulation in brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in the hippocampus and enhances depression-like behaviors later in life. PMID:26503133

  16. An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism.

    PubMed

    Meziane, Hamid; Schaller, Fabienne; Bauer, Sylvian; Villard, Claude; Matarazzo, Valery; Riet, Fabrice; Guillon, Gilles; Lafitte, Daniel; Desarmenien, Michel G; Tauber, Maithé; Muscatelli, Françoise

    2015-07-15

    Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth. We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain. Magel2 inactivation induces a deficit in social recognition and social interaction and a reduced learning ability in adult male mice. In these mice, we reveal anatomical and functional modifications of the OT system and show that these defects change from birth to adulthood. Daily administration of OT in the first postnatal week was sufficient to prevent deficits in social behavior and learning abilities in adult mutant male mice. We show that this OT treatment partly restores a normal OT system. Thus, we report that an alteration of the OT system around birth has long-term consequences on behavior and on cognition. Importantly, an acute OT treatment of Magel2-deficient pups has a curative effect. Our study reveals that OT plays a crucial role in setting social behaviors during a period just after birth. An early OT treatment in this critical period could be a novel therapeutic approach for the treatment of neurodevelopmental disorders such as Prader-Willi syndrome and autism. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice.

    PubMed

    Khairinisa, Miski Aghnia; Takatsuru, Yusuke; Amano, Izuki; Kokubo, Michifumi; Haijima, Asahi; Miyazaki, Wataru; Koibuchi, Noriyuki

    2018-01-01

    Thyroid hormones (THs) play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU) treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm) in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21). First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups). As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  18. GRP78 plays an essential role in adipogenesis and postnatal growth in mice

    PubMed Central

    Zhu, Genyuan; Ye, Risheng; Jung, Dae Young; Barron, Ernesto; Friedline, Randall H.; Benoit, Vivian M.; Hinton, David R.; Kim, Jason K.; Lee, Amy S.

    2013-01-01

    To investigate the role of GRP78 in adipogenesis and metabolic homeostasis, we knocked down GRP78 in mouse embryonic fibroblasts and 3T3-L1 preadipocytes induced to undergo differentiation into adipocytes. We also created an adipose Grp78-knockout mouse utilizing the aP2 (fatty acid binding protein 4) promoter-driven Cre-recombinase. Adipogenesis was monitored by molecular markers and histology. Tissues were analyzed by micro-CT and electron microscopy. Glucose homeostasis and cytokine analysis were performed. Our results indicate that GRP78 is essential for adipocyte differentiation in vitro. aP2-cre-mediated GRP78 deletion leads to lipoatrophy with ∼90% reduction in gonadal and subcutaneous white adipose tissue and brown adipose tissue, severe growth retardation, and bone defects. Despite severe abnormality in adipose mass and function, adipose Grp78-knockout mice showed normal plasma triglyceride levels, and plasma glucose and insulin levels were reduced by 40-60% compared to wild-type mice, suggesting enhanced insulin sensitivity. The endoplasmic reticulum is grossly expanded in the residual mutant white adipose tissue. Thus, these studies establish that GRP78 is required for adipocyte differentiation, glucose homeostasis, and balanced secretion of adipokines. Unexpectedly, the phenotypes and metabolic parameters of the mutant mice, which showed early postnatal mortality, are uniquely distinct from previously characterized lipodystrophic mouse models.—Zhu, G., Ye, R., Jung, D. Y., Barron, E., Friedline, R. H., Benoit, V. M., Hinton, D. R., Kim, J. K., Lee, A. S. GRP78 plays an essential role in adipogenesis and postnatal growth in mice. PMID:23180827

  19. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice.

    PubMed

    Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James

    2018-01-01

    Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate

  20. Pre- and postnatal exposure of mice to concentrated urban PM2.5 decreases the number of alveoli and leads to altered lung function at an early stage of life.

    PubMed

    de Barros Mendes Lopes, Thais; Groth, Espen E; Veras, Mariana; Furuya, Tatiane K; de Souza Xavier Costa, Natalia; Ribeiro Júnior, Gabriel; Lopes, Fernanda Degobbi; de Almeida, Francine M; Cardoso, Wellington V; Saldiva, Paulo Hilario Nascimento; Chammas, Roger; Mauad, Thais

    2018-06-04

    Gestational exposure to air pollution is associated with negative outcomes in newborns and children. In a previous study, we demonstrated a synergistic negative effect of pre- and postnatal exposure to PM 2.5 on lung development in mice. However, the means by which air pollution affects development of the lung have not yet been identified. In this study, we exposed pregnant BALB/c mice and their offspring to concentrated urban PM 2.5 (from São Paulo, Brazil; target dose 600 μg/m 3 for 1 h daily). Exposure was started on embryonic day 5.5 (E5.5, time of placental implantation). Lung tissue of fetuses and offspring was submitted to stereological and transcriptomic analyses at E14.5 (pseudoglandular stage of lung development), E18.5 (saccular stage) and P40 (postnatal day 40, alveolarized lung). Additionally, lung function and cellularity of bronchoalveolar lavage (BAL) fluid were studied in offspring animals at P40. Compared to control animals that were exposed to filtered air throughout gestation and postnatal life, PM-exposed mice exhibited higher lung elastance and a lower alveolar number at P40 whilst the total lung volume and cellularity of BAL fluid were not affected. Glandular and saccular structures of fetal lungs were not altered upon gestational exposure; transcriptomic signatures, however, showed changes related to DNA damage and its regulation, inflammation and regulation of cell proliferation. A differential expression was validated at E14.5 for the candidates Sox8, Angptl4 and Gas1. Our data substantiate the in utero biomolecular effect of gestational exposure to air pollution and provide first-time stereological evidence that pre- and early life-postnatal exposure compromise lung development, leading to a reduced number of alveoli and an impairment of lung function in the adult mouse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development

    PubMed Central

    Cheng, Aiwu; Scott, Anna L.; Ladenheim, Bruce; Chen, Kevin; Ouyang, Xin; Lathia, Justin D.; Mughal, Mohamed; Cadet, Jean Lud; Mattson, Mark P.; Shih, Jean C.

    2010-01-01

    Monoamine neurotransmitters play major roles in regulating a range of brain functions in adults and increasing evidence suggests roles for monoamines in brain development. Here we show that mice lacking the monoamine metabolic enzymes MAO A and MAO B (MAO AB-deficient mice) exhibit diminished proliferation of neural stem cells (NSC) in the developing telencephalon beginning in late gestation [embryonic day (E) 17.5], a deficit that persists in neonatal and adult mice. These mice showed significantly increased monoamine levels and anxiety-like behaviors as adults. Assessments of markers of intermediate progenitor cells (IPC) and mitosis showed that NSC in the subventricular zone (SVZ), but not in the ventricular zone, are reduced in MAO AB-deficient mice. A developmental time course of monoamines in frontal cortical tissues revealed increased serotonin levels as early as E14.5, and a further large increase was found between E17.5 and postnatal day 2. Administration of an inhibitor of serotonin synthesis (parachlorophenylalanine) between E14.5 and E19.5 restored the IPC numbers and SVZ thickness, suggesting the role of serotonin in the suppression of IPC proliferation. Studies of neurosphere cultures prepared from the telencephalon at different embryonic and postnatal ages showed that serotonin stimulates proliferation in wild-type, but not in MAO AB-deficient, NSC. Together, these results suggest that a MAO-dependent long-lasting alteration in the proliferation capacity of NSC occurs late in embryonic development and is mediated by serotonin. Our findings reveal novel roles for MAOs and serotonin in the regulation of IPC proliferation in the developing brain. PMID:20702706

  2. Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge

    PubMed Central

    Pinsky, Mariel; Rauch, Maayan; Abbas, Atallah; Sharabi-Nov, Adi; Tamir, Snait

    2017-01-01

    We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams’ serum and breast milk, and in their pup’s stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio—suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA–eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA’s postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup’s total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA’s higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne) factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis. PMID:29190757

  3. Methamidophos Exposure During the Early Postnatal Period of Mice: Immediate and Late-Emergent Effects on the Cholinergic and Serotonergic Systems and Behavior

    PubMed Central

    Abreu-Villaça, Yael

    2013-01-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  4. Methamidophos exposure during the early postnatal period of mice: immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior.

    PubMed

    Lima, Carla S; Dutra-Tavares, Ana C; Nunes, Fernanda; Nunes-Freitas, André L; Ribeiro-Carvalho, Anderson; Filgueiras, Cláudio C; Manhães, Alex C; Meyer, Armando; Abreu-Villaça, Yael

    2013-07-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure.

  5. Postnatal light alters hypothalamic-pituitary-adrenal axis function and induces a depressive-like phenotype in adult mice.

    PubMed

    Coleman, Georgia; Gigg, John; Canal, Maria Mercè

    2016-11-01

    The postnatal light environment that a mouse experiences during the critical first three postnatal weeks has long-term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic-pituitary-adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24-h light-dark cycles (LD), constant light (LL) or constant dark (DD) during the first three postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression- and anxiety-related behaviour. Results showed that LL- and DD-raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL-raised mice showed increased corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL-raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD-raised mice. Taken together, these data suggest that altered postnatal light environments have long-term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Early detection and treatment of postnatal depression in primary care.

    PubMed

    Davies, Bronwen R; Howells, Sarah; Jenkins, Meryl

    2003-11-01

    Postnatal depression has a relatively high incidence and gives rise to considerable morbidity. There is sound evidence supporting the use of the Edinburgh Postnatal Depression Scale as a screening tool for possible postnatal depression. This paper reports on a project developed by two health visitors and a community mental health nurse working in the United Kingdom. The aim of the project was to improve the early detection and treatment of postnatal depression in the population of the general practice to which they were attached. The health visitors screened for postnatal depression in the course of routine visits on four occasions during the first postpartum year. Women identified as likely to be suffering from postnatal depression were offered 'listening visits' as a first-line intervention, with referral on to the general practitioner and/or community mental health nurse if indicated. Data collected over 3 years showed that the project succeeded in its aim of enhancing early detection and treatment of postnatal depression. These findings replicate those of other studies. The data also showed that a substantial number of women were identified for the first time as likely to be suffering from postnatal depression at 12 months postpartum. Women screened for the first time at 12 months were at greater risk than those who had been screened earlier than this. Health visitors should screen for postnatal depression throughout the period of their contact with mothers, not solely in the immediate postnatal period. It is particularly important to screen women who, for whatever reason, were not screened when their child was younger. The knowledge and skills needed to use the Edinburgh Postnatal Depression Scale and provide first-line intervention and onward referral can be developed at practitioner level through close collaborative working.

  7. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  8. Postnatally elevated levels of insulin-like growth factor (IGF)-II fail to rescue the dwarfism of IGF-I-deficient mice except kidney weight.

    PubMed

    Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard

    2007-01-01

    This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.

  9. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  10. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler.

    PubMed

    Zhu, Dexiao; Wang, Hui; Wu, Jintao; Wang, Qian; Xu, Ling; Zhao, Yue; Pang, Kunkun; Shi, Qingqing; Zhao, Wenbo; Zhang, Jing; Sun, Jinhao

    2017-12-01

    Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P < 0.05). Taken together, our results indicated that administration of MK-801 to postnatal mice induces

  11. Effect of Sustained Postnatal Systemic Inflammation on Hippocampal Volume and Function in Mice

    PubMed Central

    Malaeb, Shadi N.; Davis, Jonathan M.; Pinz, Ilka M.; Newman, Jennifer L.; Dammann, Olaf; Rios, Maribel

    2014-01-01

    Background Premature infants are at risk for persistent neurodevelopmental impairment. Children born preterm often exhibit reduced hippocampal volumes that correlate with deficits in working memory. Perinatal inflammation is associated with preterm birth and brain abnormalities. Here we examine the effects of postnatal systemic inflammation on the developing hippocampus in mice. Methods Pups received daily intraperitoneal injections of lipopolysaccharide (LPS) or saline between days 3–13. Ex-vivo magnetic resonance imaging (MRI) and microscopic analysis of brain tissue was performed on day 14. Behavioral testing was conducted at 8–9 weeks of age. Results MR and microscopic analysis revealed a 15–20% reduction in hippocampal volume in LPS-treated mice compared to controls. Behavioral testing revealed deficits in hippocampal-related tasks in LPS-treated animals. Adult mice exposed to LPS during the postnatal period were unable to select a novel environment when re-placed within a 1-minute delay, were less able to remember a familiar object after a 1-hour delay and had impaired retention of associative fear learning after 24 hours. Conclusion Systemic inflammation sustained during the postnatal period contributes to reduced hippocampal volume and deficits in hippocampus-dependent working memory. These findings support the novel and emerging concept that sustained systemic inflammation contributes to neurodevelopmental impairment among preterm infants. PMID:25003911

  12. Lower early postnatal oxygen saturation target and risk of ductus arteriosus closure failure.

    PubMed

    Inomata, Kei; Taniguchi, Shinji; Yonemoto, Hiroki; Inoue, Takeshi; Kawase, Akihiko; Kondo, Yuichi

    2016-11-01

    Early postnatal hyperoxia is a major risk factor for retinopathy of prematurity (ROP) in extremely premature infants. To reduce the occurrence of ROP, we adopted a lower early postnatal oxygen saturation (SpO 2 ) target range (85-92%) from April 2011. Lower SpO 2 target range, however, may lead to hypoxemia and an increase in the risk of ductus arteriosus (DA) closure failure. The aim of this study was therefore to determine whether a lower SpO 2 target range, during the early postnatal stage, increases the risk of DA closure failure. Infants born at <28 weeks' gestation were enrolled in this study. Oxygen saturation target range during the first postnatal 72 h was 84-100% in study period 1 and 85-92% in period 2. Eighty-two infants were included in period 1, and 61 were included in period 2. The lower oxygen saturation target range increased the occurrence of hypoxemia during the first postnatal 72 h. Prevalence of DA closure failure in period 2 (21%) was significantly higher than that in period 1 (1%). On multivariate logistic regression analysis, the lower oxygen saturation target range was an independent risk factor for DA closure failure. Lower early postnatal oxygen saturation target range increases the risk of DA closure failure. © 2016 Japan Pediatric Society.

  13. Insights from Australian parents into educational experiences in the early postnatal period.

    PubMed

    McKellar, Lois V; Pincombe, Jan I; Henderson, Ann M

    2006-12-01

    to investigate the provision of parent education during the early postnatal period in order to gain insight that, through stakeholder collaboration, will contribute to the development of innovative strategies to enhance the provision of postnatal education in a contemporary health-care environment. the study comprises the first stage of an action-research project. The first stage of research sought to explore the experiences of mothers and fathers in the early postnatal period by conducting a questionnaire within 4 weeks of the birth of their baby. The data obtained from the questionnaire is to inform an action-research group for stage two of the project. The Children, Youth and Women's Health Service, a large city maternity hospital in South Australia, covering a range of socio-economic strata. 85 parents completed and returned the questionnaire, comprising 52 mothers and 33 fathers. an anonymous self-report questionnaire was purpose designed to provide each parent with an opportunity to reflect on their own experience, with particular emphasis given to the provision of education and support during the early postnatal period. a number of themes emerged, including a window of opportunity during the postnatal hospital stay to provide education and support, despite the reduction in the length of stay; the need for a family-centred approach to maternity services; and the significance of self and social network in the early transition to parenthood. The findings from this stage of the research, combined with a review of the literature, provide insight that will contribute to stage two of the study. At this stage, an action-research group will continue planning to develop specific actions to enhance the provision of education to parents in the early postnatal period. These actions will subsequently be implemented and assessed.

  14. Early postnatal exposure to cigarette smoke impairs the antigen-specific T-cell responses in the spleen.

    PubMed

    Singh, Shashi P; Razani-Boroujerdi, Seddigheh; Pena-Philippides, Juan C; Langley, Raymond J; Mishra, Neerad C; Sopori, Mohan L

    2006-12-15

    Annually, approximately two million babies are exposed to cigarette smoke in utero and postnatally through cigarette smoking of their mothers. Exposure to mainstream cigarette smoke is known to impair both innate and adaptive immunities, and it has been hypothesized that the effects of in utero exposure to cigarette smoke on children's health might primarily stem from the adverse effects of cigarette smoke on the immune system. To simulate the environment that babies from smoking mothers encounter, we examined the effects of prenatal mainstream and postnatal sidestream cigarette smoke on spleen cell responses. Results show that postnatal exposure of newborn Balb/c mouse pups to sidestream cigarette smoke through the first 6 weeks of life strongly suppresses the antibody response of spleen cells to the T-cell-dependent antigen, sheep red blood cells. The reduction in the antibody response seen within 6 weeks of postnatal smoke exposure is much quicker than the published data on the time 25 weeks) required to establish reproducible immunosuppression in adult rats and mice. Moreover, the immunosuppression is not associated with significant changes in T-cell numbers or subset distribution. While the postnatal exposure to cigarette smoke did not affect the mitogenic response of T and B cells, the exposure inhibited the T cell receptor-mediated rise in the intracellular calcium concentration. These results suggest that the early postnatal period is highly sensitive to the immunosuppressive effects of environmental tobacco smoke, and the effects are causally associated with impaired antigen-mediated signaling in T cells.

  15. Normalization of Patient-Identified Plasma Biomarkers in SMNΔ7 Mice following Postnatal SMN Restoration

    PubMed Central

    Arnold, W. David; Duque, Sandra; Iyer, Chitra C.; Zaworski, Phillip; McGovern, Vicki L.; Taylor, Shannon J.; von Herrmann, Katharine M.; Kobayashi, Dione T.; Chen, Karen S.; Kolb, Stephen J.; Paushkin, Sergey V.; Burghes, Arthur H. M.

    2016-01-01

    Introduction and Objective Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. Methods SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. Results Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. Conclusion This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers. PMID:27907033

  16. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects

    PubMed Central

    Lepeshko, Arina A.; Reshetnikov, Vasiliy V.

    2018-01-01

    Stressful events in an early postnatal period have critical implications for the individual's life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling), which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior. PMID:29619126

  17. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice.

    PubMed

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-10-01

    Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.

  19. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

    PubMed

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Legardinier, Sébastien; Blanquet, Véronique; Maftah, Abderrahman

    2016-09-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. © 2016 The Authors.

  20. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice

    PubMed Central

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Blanquet, Véronique; Maftah, Abderrahman

    2016-01-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1cax/cax (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1cax/cax mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1cax/cax SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7+/MYOD− progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. PMID:27628322

  1. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

    PubMed Central

    Tarussio, David; Metref, Salima; Seyer, Pascal; Mounien, Lourdes; Vallois, David; Magnan, Christophe; Foretz, Marc; Thorens, Bernard

    2013-01-01

    How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function. PMID:24334455

  2. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustafa, A.; Holladay, S.D.; Goff, M.

    Developmental exposure of mice to the environmental contaminant and AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes persistent postnatal suppression of T cell-mediated immune responses. The extent to which prenatal TCDD may induce or exacerbate postnatal autoimmune disease remains unknown. In the present study, time-pregnant high affinity AhR C57BL/6 mice received a single oral administration of 0, 2.5, or 5 {mu}g/kg TCDD on gestation day (gd) 12. Offspring of these mice (n = 5/gender/treatment) were evaluated at 24 weeks-of-age and showed considerable immune dysregulation that was often gender-specific. Decreased thymic weight and percentages of CD4{sup +}CD8{sup +} thymocytes, and increased CD4{sup +}CD8{sup -}more » thymocytes, were present in the female but not male offspring. Males but not females showed decreased CD4{sup -}CD8{sup +} T cells, and increased V{beta}3{sup +} and V{beta}17a{sup +} T cells, in the spleen. Males but not females also showed increased percentages of bone marrow CD24{sup -}B220{sup +} B cell progenitors. Antibody titers to dsDNA, ssDNA and cardiolipin displayed increasing trends in both male and female mice, reaching significance for anti-dsDNA in both genders and for ssDNA in males at 5 {mu}g/kg TCDD. Immunofluorescent staining of IgG and C3 deposition in kidney glomeruli increased in both genders of prenatal TCDD-exposed mice, suggestive of early stages of autoimmune glomerulonephritis. Collectively, these results show that exposure to TCDD during immune system development causes persistent humoral immune dysregulation as well as altered cell-mediated responses, and induces an adult profile of changes suggestive of increased risk for autoimmune disease.« less

  3. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea

    PubMed Central

    Brown, LaShardai N.; Xing, Yazhi; Noble, Kenyaria V.; Barth, Jeremy L.; Panganiban, Clarisse H.; Smythe, Nancy M.; Bridges, Mary C.; Zhu, Juhong; Lang, Hainan

    2017-01-01

    Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation. PMID:29375297

  4. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration.

    PubMed

    Osada, Masako; Jardine, Logan; Misir, Ruth; Andl, Thomas; Millar, Sarah E; Pezzano, Mark

    2010-02-08

    Thymic epithelial cell (TEC) microenvironments are essential for the recruitment of T cell precursors from the bone marrow, as well as the subsequent expansion and selection of thymocytes resulting in a mature self-tolerant T cell repertoire. The molecular mechanisms, which control both the initial development and subsequent maintenance of these critical microenvironments, are poorly defined. Wnt signaling has been shown to be important to the development of several epithelial tissues and organs. Regulation of Wnt signaling has also been shown to impact both early thymocyte and thymic epithelial development. However, early blocks in thymic organogenesis or death of the mice have prevented analysis of a role of canonical Wnt signaling in the maintenance of TECs in the postnatal thymus. Here we demonstrate that tetracycline-regulated expression of the canonical Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult mice, results in rapid thymic degeneration characterized by a loss of DeltaNP63(+) Foxn1(+) and Aire(+) TECs, loss of K5K8DP TECs thought to represent or contain an immature TEC progenitor, decreased TEC proliferation and the development of cystic structures, similar to an aged thymus. Removal of DKK1 from DKK1-involuted mice results in full recovery, suggesting that canonical Wnt signaling is required for the differentiation or proliferation of TEC populations needed for maintenance of properly organized adult thymic epithelial microenvironments. Taken together, the results of this study demonstrate that canonical Wnt signaling within TECs is required for the maintenance of epithelial microenvironments in the postnatal thymus, possibly through effects on TEC progenitor/stem cell populations. Downstream targets of Wnt signaling, which are responsible for maintenance of these TEC progenitors may provide useful targets for therapies aimed at counteracting age associated thymic involution or the premature thymic degeneration associated

  5. Social Enrichment during Postnatal Development Induces Transgenerational Effects on Emotional and Reproductive Behavior in Mice

    PubMed Central

    Curley, James P.; Davidson, Stephanie; Bateson, Patrick; Champagne, Frances A.

    2009-01-01

    Across species there is evidence that the quality of the early social environment can have a profound impact on neurobiology and behavior. In the present study we explore the effect of communal rearing conditions (three dams with three litters per cage) during the postnatal period on offspring (F1) and grand-offspring (F2) anxiety-like and maternal behavior in Balb/c mice. Females rearing pups in communal nests exhibited increased levels of postpartum maternal care and communal rearing was found to abolish sex-differences in weaning weights. In adulthood, communally reared offspring were observed to display reduced anxiety-like behavior when placed in a novel environment. When rearing their own offspring under standard conditions, communally reared females demonstrated higher levels of motivation to retrieve pups, built higher quality nests, and exhibited higher levels of postpartum care compared to standard reared females. When exposed to an intruder male, communally reared females were more subordinate and less aggressive. F2 offspring of communally reared females were observed to engage in reduced anxiety-like behavior, have larger litter sizes and an increased frequency of nursing on PND 1. Analysis of neuropeptide receptor levels suggest that a communal rearing environment may exert sustained effects on behavior through modification of oxytocin and vasopressin (V1a) receptor densities. Though Balb-C mice are often considered “socially-incompetent” and high in anxiety-like behavior, our findings suggest that through enrichment of the postnatal environment, these behavioral and neuroendocrine deficits may be attenuated both within and across generations. PMID:19826497

  6. Human chorionic gonadotropin but not the calcitonin gene-related peptide induces postnatal testicular descent in mice.

    PubMed

    Houle, A M; Gagné, D

    1995-01-01

    The androgen-regulated paracrine factor, calcitonin gene-related peptide (CGRP), has been proposed as a possible mediator of testicular descent. This peptide has been found to increase rhythmic contractions of gubernaculae and is known to be released by the genitofemoral nerve. We have investigated the ability of CGRP to induce premature testicular descent. CGRP was administered alone, or in combination with human chorionic gonadotropin (hCG) to C57BL/6 male mice postnatally. The extent of testicular descent at 18 days postpartum was then ascertained. The potential relationship between testicular weight and descent was also examined. Our results show that testes of mice treated with either hCG alone, or in combination with 500 ng CGRP, were at a significantly lower position than those of controls by 16% and 17%, respectively. In contrast, mice treated with 500 ng of CGRP alone had testes at a higher position when compared to those of controls, by 19%. In mice treated with 50 ng of CGRP alone or in combination with hCG, testes were at a position similar to those in controls. Furthermore, testicular descent was analyzed in relation to testicular weight, and we found that significantly smaller testes per gram of body weight than those of controls were at a significantly lower position compared to those of controls. Our data demonstrate that CGRP had no effect on postnatal testicular descent and that there is no relationship between postnatal descent and testicular weight.

  7. Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism.

    PubMed

    de Carvalho, Ana Elisa Teófilo Saturi; Bassaneze, Vinícius; Forni, Maria Fernanda; Keusseyan, Aline Alfonso; Kowaltowski, Alicia Juliana; Krieger, José Eduardo

    2017-11-13

    Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.

  8. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice

    PubMed Central

    Dinger, Katharina; Kasper, Philipp; Hucklenbruch-Rother, Eva; Vohlen, Christina; Jobst, Eva; Janoschek, Ruth; Bae-Gartz, Inga; van Koningsbruggen-Rietschel, Silke; Plank, Christian; Dötsch, Jörg; Alejandre Alcázar, Miguel Angel

    2016-01-01

    Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma. PMID:27087690

  9. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    PubMed

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  10. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans.

    PubMed

    Bell, Margaret R

    2018-05-14

    Postnatal development includes dramatic changes in gonadal hormones and the many social behaviors they help regulate, both in rodents and humans. Parental care-seeking is the most salient social interaction in neonates and infants, play and pro-social behaviors are commonly studied in juveniles, and the development of aggression and sexual behavior begins in peripubertal stages but continues through late adolescence into adulthood. While parental behaviors are shown after reproductive success in adulthood, alloparenting behaviors are actually high in juveniles as well. These behaviors are sensitive to both early life organizational effects of gonadal hormones and later life activational regulation. However, changes in circulating gonadal hormones and the display of the above behaviors over development differs between rats, mice and humans. These endpoints are of interest to endocrinologist, toxicologists, neuroscientists because of their relevance to mental health disorders and their vulnerability to effects of endocrine disrupting chemical exposure. As such, the goal of this minireview is to succinctly describe and relate the postnatal development of gonadal hormones and social behaviors to each other, over time and across animal models. Ideally, this will help identify appropriate animal models and age ranges for continued study of both normative development and in contexts of environmental disruption.

  11. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    PubMed

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sensitivity to cocaine in adult mice is due to interplay between genetic makeup, early environment and later experience.

    PubMed

    Di Segni, Matteo; Andolina, Diego; Coassin, Alessandra; Accoto, Alessandra; Luchetti, Alessandra; Pascucci, Tiziana; Luzi, Carla; Lizzi, Anna Rita; D'Amato, Francesca R; Ventura, Rossella

    2017-10-01

    Although early aversive postnatal events are known to increase the risk to develop psychiatric disorders later in life, rarely they determine alone the nature and outcome of the psychopathology, indicating that interaction with genetic factors is crucial for expression of psychopathologies in adulthood. Moreover, it has been suggested that early life experiences could have negative consequences or confer adaptive value in different individuals. Here we suggest that resilience or vulnerability to adult cocaine sensitivity depends on a "triple interaction" between genetic makeup x early environment x later experience. We have recently showed that Repeated Cross Fostering (RCF; RCF pups were fostered by four adoptive mothers from postnatal day 1 to postnatal day 4. Pups were left with the last adoptive mother until weaning) experienced by pups affected the response to a negative experience in adulthood in opposite direction in two genotypes leading DBA2/J, but not C57BL/6J mice, toward an "anhedonia-like" phenotype. Here we investigate whether exposure to a rewarding stimulus, instead of a negative one, in adulthood induces an opposite behavioral outcome. To test this hypothesis, we investigated the long-lasting effects of RCF on cocaine sensitivity in C57 and DBA female mice by evaluating conditioned place preference induced by different cocaine doses and catecholamine prefrontal-accumbal response to cocaine using a "dual probe" in vivo microdialysis procedure. Moreover, cocaine-induced c-Fos activity was assessed in different brain regions involved in processing of rewarding stimuli. Finally, cocaine-induced spine changes were evaluated in the prefrontal-accumbal system. RCF experience strongly affected the behavioral, neurochemical and morphological responses to cocaine in adulthood in opposite direction in the two genotypes increasing and reducing, respectively, the sensitivity to cocaine in C57 and DBA mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Genetic Deletion of the Adenosine A2A Receptor Confers Postnatal Development of Relative Myopia in Mice

    PubMed Central

    Zhou, Xiangtian; Huang, Qinzhu; An, Jianhong; Lu, Runxia; Qin, Xiaoyi; Jiang, Liqin; Li, Yuan; Wang, Jianhua; Chen, Jiangfan; Qu, Jia

    2010-01-01

    Purpose. To critically evaluate whether the adenosine A2A receptor (A2AR) plays a role in postnatal refractive development in mice. Methods. Custom-built biometric systems specifically designed for mice were used to assess the development of relative myopia by examining refraction and biometrics in A2AR knockout (KO) mice and wild-type (WT) littermates between postnatal days (P)28 and P56. Ocular dimensions were measured by customized optical coherence tomography (OCT), refractive state by eccentric infrared photorefraction (EIR), and corneal radius of curvature by modified keratometry. Scleral collagen diameter and density were examined by electron microscopy on P35. The effect of A2AR activation on collagen mRNA expression and on soluble collagen production was examined in cultured human scleral fibroblasts by real-time RT-PCR and a collagen assay kit. Results. Compared with WT littermates, the A2AR KO mice displayed relative myopia (average difference, 5.1 D between P28 and P35) and associated increases in VC depth and axial length from P28 to P56. Furthermore, the myopic shift in A2AR KO mice was associated with ultrastructural changes in the sclera: Electron microscopy revealed denser collagen fibrils with reduced diameter in A2AR KO compared with WT. Last, A2AR activation induced expression of mRNAs for collagens I, III, and V and increased production of soluble collagen in cultured human scleral fibroblasts. Conclusions. Genetic deletion of the A2AR promotes development of relative myopia with increased axial length and altered scleral collagen fiber structure during postnatal development in mice. Thus, the A2AR may be important in normal refractive development. PMID:20484596

  14. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm

    PubMed Central

    Aye, Christina Y L; Lewandowski, Adam J; Lamata, Pablo; Upton, Ross; Davis, Esther; Ohuma, Eric O; Kenworthy, Yvonne; Boardman, Henry; Wopperer, Samuel; Packham, Alice; Adwani, Satish; McCormick, Kenny; Papageorghiou, Aris T; Leeson, Paul

    2017-01-01

    Background Adults born very preterm have increased cardiac mass and reduced function. We investigated whether a hypertrophic phenomenon occurs in later preterm infants and when this occurs during early development. Methods Cardiac ultrasound was performed on 392 infants (33% preterm at mean gestation 34±2 weeks). Scans were performed during fetal development in 137, at birth and 3 months of postnatal age in 200, and during both fetal and postnatal development in 55. Cardiac morphology and function was quantified and computational models created to identify geometric changes. Results At birth, preterm offspring had reduced cardiac mass and volume relative to body size with a more globular heart. By 3 months, ventricular shape had normalized but both left and right ventricular mass relative to body size were significantly higher than expected for postmenstrual age (left 57.8±41.9 vs. 27.3±29.4%, P<0.001; right 39.3±38.1 vs. 16.6±40.8, P=0.002). Greater changes were associated with lower gestational age at birth (left P<0.001; right P=0.001). Conclusion Preterm offspring, including those born in late gestation, have a disproportionate increase in ventricular mass from birth up to 3 months of postnatal age. These differences were not present before birth. Early postnatal development may provide a window for interventions relevant to long-term cardiovascular health. PMID:28399117

  15. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm.

    PubMed

    Aye, Christina Y L; Lewandowski, Adam J; Lamata, Pablo; Upton, Ross; Davis, Esther; Ohuma, Eric O; Kenworthy, Yvonne; Boardman, Henry; Wopperer, Samuel; Packham, Alice; Adwani, Satish; McCormick, Kenny; Papageorghiou, Aris T; Leeson, Paul

    2017-07-01

    BackgroundAdults born very preterm have increased cardiac mass and reduced function. We investigated whether a hypertrophic phenomenon occurs in later preterm infants and when this occurs during early development.MethodsCardiac ultrasound was performed on 392 infants (33% preterm at mean gestation 34±2 weeks). Scans were performed during fetal development in 137, at birth and 3 months of postnatal age in 200, and during both fetal and postnatal development in 55. Cardiac morphology and function was quantified and computational models created to identify geometric changes.ResultsAt birth, preterm offspring had reduced cardiac mass and volume relative to body size with a more globular heart. By 3 months, ventricular shape had normalized but both left and right ventricular mass relative to body size were significantly higher than expected for postmenstrual age (left 57.8±41.9 vs. 27.3±29.4%, P<0.001; right 39.3±38.1 vs. 16.6±40.8, P=0.002). Greater changes were associated with lower gestational age at birth (left P<0.001; right P=0.001).ConclusionPreterm offspring, including those born in late gestation, have a disproportionate increase in ventricular mass from birth up to 3 months of postnatal age. These differences were not present before birth. Early postnatal development may provide a window for interventions relevant to long-term cardiovascular health.

  16. Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype.

    PubMed

    Sexton, Timothy J; Bleckert, Adam; Turner, Maxwell H; Van Gelder, Russell N

    2015-06-21

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. Melanopsin-positive cell density decreases by 17% between post-natal days 8 and 15 and by 25% between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes - Types I-III - have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose

  17. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Microglial disruption in young mice with early chronic lead exposure☆

    PubMed Central

    Sobin, Christina; Montoya, Mayra Gisel Flores; Parisi, Natali; Schaub, Tanner; Cervantes, Miguel; Armijos, Rodrigo X.

    2013-01-01

    The mechanisms by which early chronic lead (Pb) exposure alter brain development have not been identified. We examined neuroimmune system effects in C57BL/6J mice with Pb exposure, including levels that may be common among children in lower socioeconomic income environments. Pups were exposed via dams’ drinking water from birth to post-natal day 28 to low, high or no Pb conditions. We compared gene expression of neuroinflammatory markers (study 1); and microglial mean cell body volume and mean cell body number in dentate gyrus, and dentate gyrus volume (study 2). Blood Pb levels in exposed animals at sacrifice (post-natal day 28) ranged from 2.66 to 20.31 μg/dL. Only interleukin-6 (IL6) differed between groups and reductions were dose-dependent. Microglia cell body number also differed between groups and reductions were dose-dependent. As compared with controls, microglia cell body volume was greater but highly variable in only low-dose animals; dentate gyri volumes in low- and high-dose animals were reduced. The results did not support a model of increased neuroinflammation. Instead, early chronic exposure to Pb disrupted microglia via damage to, loss of, or lack of proliferation of microglia in the developing brains of Pb-exposed animals. PMID:23598043

  19. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice.

    PubMed

    Fazeli, Walid; Zappettini, Stefania; Marguet, Stephan Lawrence; Grendel, Jasper; Esclapez, Monique; Bernard, Christophe; Isbrandt, Dirk

    2017-09-01

    The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice.

    PubMed

    Zhao, Qun; Yu, XianJun; Zhang, HaiWei; Liu, YongBo; Zhang, XiXi; Wu, XiaoXia; Xie, Qun; Li, Ming; Ying, Hao; Zhang, Haibing

    2017-04-25

    RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3 Δ/Δ mice), thus abolishing its kinase activity. Ripk3 Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3 Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3 Δ/Δ mutation rescued embryonic lethality in Fadd -/- embryos, Fadd -/- Ripk3 Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd -/- mice. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Brain damage resulting from postnatal hypoxic-ischemic brain injury is reduced in C57BL/6J mice as compared to C57BL/6N mice.

    PubMed

    Wolf, S; Hainz, N; Beckmann, A; Maack, C; Menger, M D; Tschernig, T; Meier, C

    2016-11-01

    Perinatal hypoxia is a critical complication during delivery and is mostly studied in animal models of postnatal hypoxic-ischemic brain injury. We here studied the effects of postnatal hypoxic-ischemic brain injury in two different sub-strains of C57BL/6 mice, i.e. C57BL/6J and C57BL/6N mice. These two sub-strains show different metabolic properties, for instance an impaired glucose tolerance in C57BL/6J mice. Genetically, this was linked to differences in their nicotinamide nucleotide transhydrogenase (Nnt) genes: In C57BL/6J mice, exons 7-11 of the Nnt gene are deleted, resulting in the absence of functional Nnt protein. The mitochondrial Nnt-protein is one of several enzymes that catalyses the generation of NADPH, which in turn is important for the elimination of reactive oxygen species (ROS). As ROS is thought to contribute to the pathophysiology of hypoxia-ischemia, the lack of Nnt might indirectly increase ROS levels and therefore result in increased brain damage. We therefore hypothesize that lesion score and lesion size will increase in C57BL/6J mice as compared to C57BL/6N mice. Surprisingly, the results showed exactly the opposite: C57BL/6J mice showed a decrease in lesion score and size, associated with a reduced number of apoptotic cells and activated microglia. In contrast, the number of cells with ROS-induced DNA modifications (detected by 8OHdG) was higher in C57BL/6J than C57BL/6N mice. In conclusion, C57BL/6J mice showed reduced ischemic consequences after postnatal hypoxic-ischemic brain injury compared to C57BL/6N mice, with the exception of the amount of ROS-induced DNA-damage. These differences might relate to the lack of Nnt, but also to a modified metabolic setting (cardiovascular parameters, oxygen and glucose metabolism, immune function) in C57BL/6J mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice.

    PubMed

    Smarr, Benjamin L; Grant, Azure D; Perez, Luz; Zucker, Irving; Kriegsfeld, Lance J

    2017-06-12

    Modern life involves chronic circadian disruption through artificial light and these disruptions are associated with numerous mental and physical health maladies. Because the developing nervous system is particularly vulnerable to perturbation, we hypothesized that early-life circadian disruption would negatively impact offspring development and adult function. Pregnant mice were subjected to chronic circadian disruption from the time of uterine implantation through weaning. To dissociate in utero from postnatal effects, a subset of litters was cross-fostered at birth from disrupted dams to control dams and vice versa. Postnatal circadian disruption was associated with reduced adult body mass, social avoidance, and hyperactivity. In utero disruption resulted in more pronounced social avoidance and hyperactivity, phenotypes not abrogated by cross-fostering to control mothers. To examine whether circadian disruption affects development by acting as an early life stressor, we examined birthweight, litter size, maternal cannibalism, and epigenetic modifications. None of these variables differed between control and disrupted dams, or resembled patterns seen following early-life stress. Our findings indicate that developmental chronic circadian disruption permanently affects somatic and behavioral development in a stage-of-life-dependent manner, independent of early life stress mechanisms, underscoring the importance of temporal structure during development, both in utero and early postnatal life.

  3. Acute and chronic neurological consequences of early-life Zika virus infection in mice.

    PubMed

    Nem de Oliveira Souza, Isis; Frost, Paula S; França, Julia V; Nascimento-Viana, Jéssica B; Neris, Rômulo L S; Freitas, Leandro; Pinheiro, Daniel J L L; Nogueira, Clara O; Neves, Gilda; Chimelli, Leila; De Felice, Fernanda G; Cavalheiro, Ésper A; Ferreira, Sergio T; Assunção-Miranda, Iranaia; Figueiredo, Claudia P; Da Poian, Andrea T; Clarke, Julia R

    2018-06-06

    Although congenital Zika virus (ZIKV) exposure has been associated with microcephaly and other neurodevelopmental disorders, long-term consequences of perinatal infection are largely unknown. We evaluated short- and long-term neuropathological and behavioral consequences of neonatal ZIKV infection in mice. ZIKV showed brain tropism, causing postnatal-onset microcephaly and several behavioral deficits in adulthood. During the acute phase of infection, mice developed frequent seizures, which were reduced by tumor necrosis factor-α (TNF-α) inhibition. During adulthood, ZIKV replication persisted in neonatally infected mice, and the animals showed increased susceptibility to chemically induced seizures, neurodegeneration, and brain calcifications. Altogether, the results show that neonatal ZIKV infection has long-term neuropathological and behavioral complications in mice and suggest that early inhibition of TNF-α-mediated neuroinflammation might be an effective therapeutic strategy to prevent the development of chronic neurological abnormalities. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Maternal postnatal psychiatric symptoms and infant temperament affect early mother-infant bonding.

    PubMed

    Nolvi, Saara; Karlsson, Linnea; Bridgett, David J; Pajulo, Marjukka; Tolvanen, Mimmi; Karlsson, Hasse

    2016-05-01

    Postnatal mother-infant bonding refers to the early emotional bond between mothers and infants. Although some factors, such as maternal mental health, especially postnatal depression, have been considered in relation to mother-infant bonding, few studies have investigated the role of infant temperament traits in early bonding. In this study, the effects of maternal postnatal depressive and anxiety symptoms and infant temperament traits on mother-infant bonding were examined using both mother and father reports of infant temperament. Data for this study came from the first phase of the FinnBrain Birth Cohort Study (n=102, father reports n=62). After controlling for maternal symptoms of depression and anxiety, mother-reported infant positive emotionality, measured by infant smiling was related to better mother-infant bonding. In contrast, infant negative emotionality, measured by infant distress to limitations was related to lower quality of bonding. In regards to father-report infant temperament, only infant distress to limitations (i.e., frustration/anger) was associated with lower quality of mother-infant bonding. These findings underline the importance of infant temperament as one factor contributing to early parent-infant relationships, and counseling parents in understanding and caring for infants with different temperament traits. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Electrophysiological characteristics of hippocampal postnatal early development mediated by AMPA receptors in rats].

    PubMed

    Chen, Xue-Yi; Zhang, Ai-Feng; Zhao, Wen; Gao, Yu-Dan; Duan, Hong-Mei; Hao, Peng; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-25

    The present study was aimed to investigate the electrophysiological characteristics of hippocampal postnatal early development mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rats. Forty-eight Wistar rats were divided into postnatal 0.5-, 1-, 2- and 3-month groups (n = 12). Spontaneous excitatory postsynaptic currents (sEPSCs) and field excitatory postsynaptic potentials (fEPSPs) mediated by AMPA receptors were recorded to evaluate the changes in the intrinsic membrane properties of hippocampal CA1 pyramidal neurons by using patch-clamp and MED64 planar microelectrode array technique respectively. The results showed that, during the period of postnatal 0.5-3 months, some of the intrinsic membrane properties of hippocampal CA1 pyramidal neurons, such as the membrane capacitance (Cm) and the resting membrane potential (RMP), showed no significant changes, while the membrane input resistance (Rin) and the time constant (τ) of the cells were decreased significantly. The amplitude, frequency and kinetics (both rise and decay times) of sEPSCs were significantly increased during the period of postnatal 0.5-1 month, but they were all decreased during the period of postnatal 1-3 months. In addition, the range of evoked fEPSPs in hippocamal CA1 region was significantly expanded, but the fEPSP amplitudes were decreased significantly during the period of postnatal 0.5-3 months. Furthermore, the evoked fEPSPs could be significantly inhibited by extracellular application of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These results suggest that AMPA receptor may act as a major type of excitatory receptor to regulate synaptic transmission and connections during the early stage of hippocampal postnatal development, which promotes the development and functional maturation of hippocampus in rats.

  6. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  7. Pre- and Postnatal Parental Smoking and Acute Otitis Media in Early Childhood

    PubMed Central

    Håberg, Siri E.; Bentdal, Yngvild E.; London, Stephanie J.; Kværner, Kari J.; Nystad, Wenche; Nafstad, Per

    2010-01-01

    Aim To explore associations between acute otitis media in early childhood and prenatal and postnatal tobacco smoke exposure. Methods Subjects were 32,077 children born 2000 – 2005 in the Norwegian Mother and Child Study with questionnaire data on tobacco smoke exposure and acute otitis media up to 18 months of age. Multivariate regression models were used to obtain adjusted relative risks for acute otitis media. Results Acute otitis media was slightly more common in children exposed to parental smoking. The incidence from 0–6 months was 4.7% in unexposed children, and 6.0% in children exposed both pre-and postnatally. After adjusting for postnatal exposure and covariates, the relative risk for acute otitis media 0–6 months when exposed to maternal smoking in pregnancy was 1.34, 95% confidence interval: 1.06–1.69. Maternal smoking in pregnancy was associated with acute otitis media up to 12 months of age. Compared to non-exposed children, there was a slightly increased risk of recurrent acute otitis media for children exposed both pre- and postnatally with a relative risk of 1.24, 95% confidence interval: 1.01–1.52,. Conclusion Even in a cohort with relatively low exposure levels of parental smoking, maternal smoking in pregnancy was associated with an increased risk of acute otitis media in early childhood. PMID:19764924

  8. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.

    PubMed

    Serradj, Nadjet; Picquet, Florence; Jamon, Marc

    2013-11-01

    This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Glutamate induces the elongation of early dendritic protrusions via mGluRs in wild type mice, but not in fragile X mice.

    PubMed

    Cruz-Martín, Alberto; Crespo, Michelle; Portera-Cailliau, Carlos

    2012-01-01

    Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable. This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3 neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5 signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which may be a critical step to initiate synaptogenesis and stabilize spines.

  10. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts.

    PubMed

    Downs, Anthony M; Jalloh, Hawa B; Prater, Kayla J; Fregoso, Santiago P; Bond, Cherie E; Hampton, Thomas G; Hoover, Donald B

    2016-05-01

    The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  12. Expressing human SHOX in Shox2SHOX KI/KI mice leads to congenital osteoarthritis-like disease of the temporomandibular joint in postnatal mice

    PubMed Central

    Liang, Wenna; Li, Xihai; Chen, Houhuang; Shao, Xiang; Lin, Xuejuan; Shen, Jianying; Ding, Shanshan; Kang, Jie; Li, Candong

    2016-01-01

    The temporomandibular joint (TMJ), a unique synovial joint whose development differs from that of other synovial joints, develops from two distinct mesenchymal condensations that grow toward each other and ossify through different mechanisms. The short stature homeobox 2 (Shox2) gene serves an important role in TMJ development and previous studies have demonstrated that Shox2SHOX KI/KI mice display a TMJ defective phenotype, congenital dysplasia and premature eroding of the articular disc, which is clinically defined as a TMJ disorder. In the present study, Shox2SHOX KI/KI mouse models were used to investigate the mechanisms of congenital osteoarthritis (OA)-like disease during postnatal TMJ growth. Shox2SHOX KI/KI mice were observed to develop a severe muscle wasting syndrome from day 7 postnatal. Histological examination indicated that the condyle and glenoid fossa of Shox2SHOX KI/KI mice was reduced in size in the second week after birth. The condyles of Shox2SHOX KI/KI mice exhibited reduced expression levels of collagen type II and Indian hedgehog, and increased expression of collagen type I. A marked increase in matrix metalloproteinase 9 (MMP9) and MMP13 in the condyles was also observed. These cellular and molecular defects may contribute to the observed (OA)-like phenotype of Shox2SHOX KI/KI mouse TMJs. PMID:27601064

  13. Expressing human SHOX in Shox2SHOX KI/KI mice leads to congenital osteoarthritis‑like disease of the temporomandibular joint in postnatal mice.

    PubMed

    Liang, Wenna; Li, Xihai; Chen, Houhuang; Shao, Xiang; Lin, Xuejuan; Shen, Jianying; Ding, Shanshan; Kang, Jie; Li, Candong

    2016-10-01

    The temporomandibular joint (TMJ), a unique synovial joint whose development differs from that of other synovial joints, develops from two distinct mesenchymal condensations that grow toward each other and ossify through different mechanisms. The short stature homeobox 2 (Shox2) gene serves an important role in TMJ development and previous studies have demonstrated that Shox2SHOX KI/KI mice display a TMJ defective phenotype, congenital dysplasia and premature eroding of the articular disc, which is clinically defined as a TMJ disorder. In the present study, Shox2SHOX KI/KI mouse models were used to investigate the mechanisms of congenital osteoarthritis (OA)‑like disease during postnatal TMJ growth. Shox2SHOX KI/KI mice were observed to develop a severe muscle wasting syndrome from day 7 postnatal. Histological examination indicated that the condyle and glenoid fossa of Shox2SHOX KI/KI mice was reduced in size in the second week after birth. The condyles of Shox2SHOX KI/KI mice exhibited reduced expression levels of collagen type II and Indian hedgehog, and increased expression of collagen type I. A marked increase in matrix metalloproteinase 9 (MMP9) and MMP13 in the condyles was also observed. These cellular and molecular defects may contribute to the observed (OA)‑like phenotype of Shox2SHOX KI/KI mouse TMJs.

  14. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    PubMed Central

    Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui

    2017-01-01

    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition. PMID:28266538

  15. A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells.

    PubMed

    Richardson, G P; Forge, A; Kros, C J; Marcotti, W; Becker, D; Williams, D S; Thorpe, J; Fleming, J; Brown, S D; Steel, K P

    1999-11-28

    Myosin VIIA is expressed by sensory hair cells in the inner ear and proximal tubule cells in the kidney, the two primary targets of aminoglycoside antibiotics. Using cochlear cultures prepared from early postnatal Myo7a6J mice with a missense mutation in the head region of the myosin VIIA molecule we show that this myosin is required for aminoglycoside accumulation in cochlear hair cells. Hair cells in homozygous mutant Myo7a6J cochlear cultures have disorganized hair bundles, but are otherwise morphologically normal and transduce. However, and in contrast to hair cells from heterozygous Myo7a6J cultures, the homozygous Myo7a6J hair cells do not accumulate [3H]gentamicin and do not exhibit an ototoxic response on exposure to aminoglycoside. Possible roles for myosin VIIA in the process of aminoglycoside accumulation are discussed.

  16. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes

    PubMed Central

    Chabowska-Kita, Agnieszka; Trabczynska, Anna; Korytko, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.

    2015-01-01

    The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. PMID:25896784

  17. Notch Signaling in Postnatal Pituitary Expansion: Proliferation, Progenitors, and Cell Specification

    PubMed Central

    Nantie, Leah B.; Himes, Ashley D.; Getz, Dan R.

    2014-01-01

    Mutations in PROP1 account for up to half of the cases of combined pituitary hormone deficiency that result from known causes. Despite this, few signaling molecules and pathways that influence PROP1 expression have been identified. Notch signaling has been linked to Prop1 expression, but the developmental periods during which Notch signaling influences Prop1 and overall pituitary development remain unclear. To test the requirement for Notch signaling in establishing the normal pituitary hormone milieu, we generated mice with early embryonic conditional loss of Notch2 (conditional knockout) and examined the consequences of chemical Notch inhibition during early postnatal pituitary maturation. We show that loss of Notch2 has little influence on early embryonic pituitary proliferation but is crucial for postnatal progenitor maintenance and proliferation. In addition, we show that Notch signaling is necessary embryonically and postnatally for Prop1 expression and robust Pit1 lineage hormone cell expansion, as well as repression of the corticotrope lineage. Taken together, our studies identify temporal and cell type–specific roles for Notch signaling and highlight the importance of this pathway throughout pituitary development. PMID:24673559

  18. Sex-dependent role of vesicular glutamate transporter 3 in stress-regulation and related anxiety phenotype during the early postnatal period.

    PubMed

    Balázsfi, Diána; Farkas, Lívia; Csikota, Péter; Fodor, Anna; Zsebők, Sándor; Haller, József; Zelena, Dóra

    2016-07-01

    Stress and related disorders are in the focus of interest and glutamate is one of the most important neurotransmitters that can affect these processes. Glutamatergic neurons are characterized by vesicular glutamate transporters (VGluT1-3) among which vGluT3 is unique contributing to the non-canonical, neuromodulatory effect of glutamate. We aimed to study the role of vGluT3 in stress axis regulation and related anxiety during the early postnatal period using knockout (KO) mice with special focus on sex differences. Anxiety was explored on postnatal day (PND) 7-8 by maternal separation-induced ultrasonic vocalization (USV). Stress-hormone levels were detected 60 min after intraperitoneal lipopolysaccharide (LPS) injection 7 days later. Both genotypes gained weight, but on PND 14-15 KO mice pups had smaller body weight compared to wild type (WT). vGluT3 KO mice reacted to an immune stressor with enhanced adrenocorticotropin (ACTH) and corticosterone secretion compared to WT. Although there was a tendency for enhanced anxiety measured by more emitted USV, this did not reach the level of significance. The only sex-related effect was the enhanced corticosterone reactivity in male pups. For the HPA axis regulation in neonates vGluT3 expression seems to be dispensable under basal conditions, but is required for optimal response to immune stressors, most probably through an interaction with other neurotransmitters. Disturbance of the fine balance between these systems may result in a borderline enhanced anxiety-like behavior in vGluT3 KO pups.

  19. Early chronic lead exposure reduces exploratory activity in young C57BL/6J mice.

    PubMed

    Flores-Montoya, Mayra Gisel; Sobin, Christina

    2015-07-01

    Research has suggested that chronic low-level lead exposure diminishes neurocognitive function in children. Tests that are sensitive to behavioral effects at lowest levels of lead exposure are needed for the development of animal models. In this study we investigated the effects of chronic low-level lead exposure on exploratory activity (unbaited nose poke task), exploratory ambulation (open field task) and motor coordination (Rotarod task) in pre-adolescent mice. C57BL/6J pups were exposed to 0 ppm (controls), 30 ppm (low-dose) or 230 ppm (high-dose) lead acetate via dams' drinking water administered from birth to postnatal day 28, to achieve a range of blood lead levels (BLLs) from not detectable to 14.84 µg dl(-1) ). At postnatal day 28, mice completed behavioral testing and were killed (n = 61). BLLs were determined by inductively coupled plasma mass spectrometry. The effects of lead exposure on behavior were tested using generalized linear mixed model analyses with BLL, sex and the interaction as fixed effects, and litter as the random effect. BLL predicted decreased exploratory activity and no threshold of effect was apparent. As BLL increased, nose pokes decreased. The C57BL/6J mouse is a useful model for examining effects of early chronic low-level lead exposure on behavior. In the C57BL/6J mouse, the unbaited nose poke task is sensitive to the effects of early chronic low-level lead exposure. This is the first animal study to show behavioral effects in pre-adolescent lead-exposed mice with BLL below 5 µg dl(-1). Copyright © 2014 John Wiley & Sons, Ltd.

  20. Early chronic lead exposure reduces exploratory activity in young C57BL/6J mice

    PubMed Central

    Flores-Montoya, Mayra Gisel; Sobin, Christina

    2014-01-01

    Research has suggested that chronic low-level lead exposure diminishes neurocognitive function in children. Tests that are sensitive to behavioral effects at lowest levels of lead exposure are needed for the development of animal models. In this study we investigated the effects of chronic low-level lead exposure on exploratory activity (unbaited nose poke task), exploratory ambulation (open field task) and motor coordination (Rotarod task) in pre-adolescent mice. C57BL/6J pups were exposed to 0 ppm (controls), 30 ppm (low-dose) or 230 ppm (high-dose) lead acetate via dams’ drinking water administered from birth to postnatal day 28, to achieve a range of blood lead levels (BLLs) from not detectable to 14.84 μg dl−1). At postnatal day 28, mice completed behavioral testing and were killed (n = 61). BLLs were determined by inductively coupled plasma mass spectrometry. The effects of lead exposure on behavior were tested using generalized linear mixed model analyses with BLL, sex and the interaction as fixed effects, and litter as the random effect. BLL predicted decreased exploratory activity and no threshold of effect was apparent. As BLL increased, nose pokes decreased. The C57BL/6J mouse is a useful model for examining effects of early chronic low-level lead exposure on behavior. In the C57BL/6J mouse, the unbaited nose poke task is sensitive to the effects of early chronic low-level lead exposure. This is the first animal study to show behavioral effects in pre-adolescent lead-exposed mice with BLL below 5 μg dl−1. PMID:25219894

  1. Stress during a Critical Postnatal Period Induces Region-Specific Structural Abnormalities and Dysfunction of the Prefrontal Cortex via CRF1

    PubMed Central

    Yang, Xiao-Dun; Liao, Xue-Mei; Uribe-Mariño, Andrés; Liu, Rui; Xie, Xiao-Meng; Jia, Jiao; Su, Yun-Ai; Li, Ji-Tao; Schmidt, Mathias V; Wang, Xiao-Dong; Si, Tian-Mei

    2015-01-01

    During the early postnatal period, environmental influences play a pivotal role in shaping the development of the neocortex, including the prefrontal cortex (PFC) that is crucial for working memory and goal-directed actions. Exposure to stressful experiences during this critical period may disrupt the development of PFC pyramidal neurons and impair the wiring and function of related neural circuits. However, the molecular mechanisms of the impact of early-life stress on PFC development and function are not well understood. In this study, we found that repeated stress exposure during the first postnatal week hampered dendritic development in layers II/III and V pyramidal neurons in the dorsal agranular cingulate cortex (ACd) and prelimbic cortex (PL) of neonatal mice. The deleterious effects of early postnatal stress on structural plasticity persisted to adulthood only in ACd layer V pyramidal neurons. Most importantly, concurrent blockade of corticotropin-releasing factor receptor 1 (CRF1) by systemic antalarmin administration (20 μg/g of body weight) during early-life stress exposure prevented stress-induced apical dendritic retraction and spine loss in ACd layer V neurons and impairments in PFC-dependent cognitive tasks. Moreover, the magnitude of dendritic regression, especially the shrinkage of apical branches, of ACd layer V neurons predicted the degree of cognitive deficits in stressed mice. Our data highlight the region-specific effects of early postnatal stress on the structural plasticity of prefrontal pyramidal neurons, and suggest a critical role of CRF1 in modulating early-life stress-induced prefrontal abnormalities. PMID:25403725

  2. Mosaic analysis of gene function in postnatal mouse brain development by using virus-based Cre recombination.

    PubMed

    Gibson, Daniel A; Ma, Le

    2011-08-01

    Normal brain function relies not only on embryonic development when major neuronal pathways are established, but also on postnatal development when neural circuits are matured and refined. Misregulation at this stage may lead to neurological and psychiatric disorders such as autism and schizophrenia. Many genes have been studied in the prenatal brain and found crucial to many developmental processes. However, their function in the postnatal brain is largely unknown, partly because their deletion in mice often leads to lethality during neonatal development, and partly because their requirement in early development hampers the postnatal analysis. To overcome these obstacles, floxed alleles of these genes are currently being generated in mice. When combined with transgenic alleles that express Cre recombinase in specific cell types, conditional deletion can be achieved to study gene function in the postnatal brain. However, this method requires additional alleles and extra time (3-6 months) to generate the mice with appropriate genotypes, thereby limiting the expansion of the genetic analysis to a large scale in the mouse brain. Here we demonstrate a complementary approach that uses virally-expressed Cre to study these floxed alleles rapidly and systematically in postnatal brain development. By injecting recombinant adeno-associated viruses (rAAVs) encoding Cre into the neonatal brain, we are able to delete the gene of interest in different regions of the brain. By controlling the viral titer and coexpressing a fluorescent protein marker, we can simultaneously achieve mosaic gene inactivation and sparse neuronal labeling. This method bypasses the requirement of many genes in early development, and allows us to study their cell autonomous function in many critical processes in postnatal brain development, including axonal and dendritic growth, branching, and tiling, as well as synapse formation and refinement. This method has been used successfully in our own lab

  3. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice.

    PubMed

    Rabaneda, Luis G; Robles-Lanuza, Estefanía; Nieto-González, José Luis; Scholl, Francisco G

    2014-07-24

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Early postnatal treatment with clomipramine induces female sexual behavior and estrous cycle impairment.

    PubMed

    Molina-Jiménez, Tania; Limón-Morales, Ofelia; Bonilla-Jaime, Herlinda

    2018-03-01

    Administration of clomipramine (CMI), a tricyclic antidepressant, in early stages of development in rats, is considered an animal model for the study of depression. This pharmacological manipulation has induced behavioral and physiological alterations, i.e., less pleasure-seeking behaviors, despair, hyperactivity, cognitive dysfunction, alterations in neurotransmitter systems and in HPA axis. These abnormalities in adult male rats are similar to the symptoms observed in major depressive disorders. One of the main pleasure-seeking behaviors affected in male rats treated with CMI is sexual behavior. However, to date, no effects of early postnatal CMI treatment have been reported on female reproductive cyclicity and sexual behavior. Therefore, we explored CMI administration in early life (8-21 PN) on the estrous cycle and sexual behavior of adult female rats. Compared to the rats in the early postnatal saline treatment (CTRL group), the CMI rats had fewer estrous cycles, fewer days in the estrous stage, and longer cycles during a 20-day period of vaginal cytology analysis. On the behavioral test, the CMI rats displayed fewer proceptive behaviors (hopping, darting) and had lower lordosis quotients. Also, they usually failed to display lordosis and only rarely manifested marginal or normal lordosis. In contrast, the CTRL rats tended to display normal lordosis. These results suggest that early postnatal CMI treatment caused long-term disruptions of the estrous cycle and female sexual behavior, perhaps by alteration in the hypothalamic-pituitary-gonadal (HPG) axes and in neuronal circuits involved in the regulation of the performance and motivational of sexual behavior as the noradrenergic and serotonergic systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Prenatal and early postnatal depression and child maltreatment among Japanese fathers.

    PubMed

    Takehara, Kenji; Suto, Maiko; Kakee, Naoko; Tachibana, Yoshiyuki; Mori, Rintaro

    2017-08-01

    We investigated the association of paternal depression in the prenatal and early postnatal period with child maltreatment tendency at two months postpartum among Japanese fathers. This population-based longitudinal study recruited Japanese perinatal women and their partners living in Nishio City, Aichi, Japan. Of the 270 fathers who participated, 196 were included in the analysis. All data were collected via self-administrated questionnaires at four time points: 20 weeks' gestation and in the first few days, one month, and two months postpartum. Paternal depression was assessed using the Edinburgh Postnatal Depression Scale. Three definitions of paternal depression were coded based on participants' scores on this measure: prenatal, prior, and current. Child maltreatment tendency was evaluated using the Child Maltreatment Scale at two months postpartum. The associations of the three definitions of paternal depression and child maltreatment tendency were separately analyzed using logistic regression analysis. The prevalence of prenatal, prior, and current paternal depression was 9.7%, 10.2%, and 8.8%, respectively. According to the multivariate analysis, current paternal depression was significantly associated with child maltreatment tendency at two months postpartum (adjusted odds ratio: 7.77, 95% CI: 1.83-33.02). The other two types of depression, however, were not related to child maltreatment tendency. Thus, current paternal depression increased the risk of child maltreatment tendency in the postnatal period, suggesting that early detection and treatment of paternal depression might be useful for the prevention of child maltreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Strain dependent effects of conditioned fear in adult C57Bl/6 and Balb/C mice following postnatal exposure to chlorpyrifos: relation to expression of brain acetylcholinesterase mRNA

    PubMed Central

    Oriel, Sarit; Kofman, Ora

    2015-01-01

    Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795

  7. Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    PubMed Central

    Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.

    2011-01-01

    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294

  8. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2.

    PubMed

    Peña, Catherine J; Kronman, Hope G; Walker, Deena M; Cates, Hannah M; Bagot, Rosemary C; Purushothaman, Immanuel; Issler, Orna; Loh, Yong-Hwee Eddie; Leong, Tin; Kiraly, Drew D; Goodman, Emma; Neve, Rachael L; Shen, Li; Nestler, Eric J

    2017-06-16

    Early life stress increases risk for depression. Here we establish a "two-hit" stress model in mice wherein stress at a specific postnatal period increases susceptibility to adult social defeat stress and causes long-lasting transcriptional alterations that prime the ventral tegmental area (VTA)-a brain reward region-to be in a depression-like state. We identify a role for the developmental transcription factor orthodenticle homeobox 2 ( Otx2 ) as an upstream mediator of these enduring effects. Transient juvenile-but not adult-knockdown of Otx2 in VTA mimics early life stress by increasing stress susceptibility, whereas its overexpression reverses the effects of early life stress. This work establishes a mechanism by which early life stress encodes lifelong susceptibility to stress via long-lasting transcriptional programming in VTA mediated by Otx2 . Copyright © 2017, American Association for the Advancement of Science.

  9. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice.

    PubMed

    Allen, Joshua L; Liu, Xiufang; Pelkowski, Sean; Palmer, Brian; Conrad, Katherine; Oberdörster, Günter; Weston, Douglas; Mayer-Pröschel, Margot; Cory-Slechta, Deborah A

    2014-09-01

    Air pollution has been associated with adverse neurological and behavioral health effects in children and adults. Recent studies link air pollutant exposure to adverse neurodevelopmental outcomes, including increased risk for autism, cognitive decline, ischemic stroke, schizophrenia, and depression. We sought to investigate the mechanism(s) by which exposure to ultrafine concentrated ambient particles (CAPs) adversely influences central nervous system (CNS) development. We exposed C57BL6/J mice to ultrafine (< 100 nm) CAPs using the Harvard University Concentrated Ambient Particle System or to filtered air on postnatal days (PNDs) 4-7 and 10-13, and the animals were euthanized either 24 hr or 40 days after cessation of exposure. Another group of males was exposed at PND270, and lateral ventricle area, glial activation, CNS cytokines, and monoamine and amino acid neurotransmitters were quantified. We observed ventriculomegaly (i.e., lateral ventricle dilation) preferentially in male mice exposed to CAPs, and it persisted through young adulthood. In addition, CAPs-exposed males generally showed decreases in developmentally important CNS cytokines, whereas in CAPs-exposed females, we observed a neuroinflammatory response as indicated by increases in CNS cytokines. We also saw changes in CNS neurotransmitters and glial activation across multiple brain regions in a sex-dependent manner and increased hippocampal glutamate in CAPs-exposed males. We observed brain region- and sex-dependent alterations in cytokines and neurotransmitters in both male and female CAPs-exposed mice. Lateral ventricle dilation (i.e., ventriculomegaly) was observed only in CAPs-exposed male mice. Ventriculomegaly is a neuropathology that has been associated with poor neurodevelopmental outcome, autism, and schizophrenia. Our findings suggest alteration of developmentally important neurochemicals and lateral ventricle dilation may be mechanistically related to observations linking ambient air

  10. Postnatal Changes in K+/Cl- Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy.

    PubMed

    Amadeo, Alida; Coatti, Aurora; Aracri, Patrizia; Ascagni, Miriam; Iannantuoni, Davide; Modena, Debora; Carraresi, Laura; Brusco, Simone; Meneghini, Simone; Arcangeli, Annarosa; Pasini, Maria Enrica; Becchetti, Andrea

    2018-06-24

    The Na + /K + /Cl - cotransporter-1 (NKCC1) and the K + /Cl - cotransporter-2 (KCC2) set the transmembrane Cl - gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters' expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits. Copyright © 2018. Published by Elsevier Ltd.

  11. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice

    PubMed Central

    Williams, Scott E.; Garcia, Idoia; Crowther, Andrew J.; Li, Shiyi; Stewart, Alyssa; Liu, Hedi; Lough, Kendall J.; O'Neill, Sean; Veleta, Katherine; Oyarzabal, Esteban A.; Merrill, Joseph R.; Shih, Yen-Yu Ian; Gershon, Timothy R.

    2015-01-01

    Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma. PMID:26450969

  12. Prenatal Exposure to Respiratory Syncytial Virus Alters Postnatal Immunity and Airway Smooth Muscle Contractility during Early-Life Reinfections

    PubMed Central

    Harford, Terri J.; Agrawal, Vandana; Yen-Lieberman, Belinda; Rezaee, Fariba; Piedimonte, Giovanni

    2017-01-01

    Maternal viral infections can have pathological effects on the developing fetus which last long after birth. Recently, maternal-fetal transmission of respiratory syncytial virus (RSV) was shown to cause postnatal airway hyperreactivity (AHR) during primary early-life reinfection; however, the influence of prenatal exposure to RSV on offspring airway immunity and smooth muscle contractility during recurrent postnatal reinfections remains unknown. Therefore, we sought to determine whether maternal RSV infection impairs specific aspects of cell-mediated offspring immunity during early-life reinfections and the mechanisms leading to AHR. Red fluorescent protein-expressing recombinant RSV (rrRSV) was inoculated into pregnant rat dams at midterm, followed by primary and secondary postnatal rrRSV inoculations of their offspring at early-life time points. Pups and weanlings were tested for specific lower airway leukocyte populations by flow cytometry; serum cytokine/chemokine concentrations by multiplex ELISA and neurotrophins concentrations by standard ELISA; and ex vivo lower airway smooth muscle (ASM) contraction by physiological tissue bath. Pups born to RSV-infected mothers displayed elevated total CD3+ T cells largely lacking CD4+ and CD8+ surface expression after both primary and secondary postnatal rrRSV infection. Cytokine/chemokine analyses revealed reduced IFN-γ, IL-2, IL-12, IL-17A, IL-18, and TNF-α, as well as elevated nerve growth factor (NGF) expression. Prenatal exposure to RSV also increased ASM reactivity and contractility during early-life rrRSV infection compared to non-exposed controls. We conclude that maternal RSV infection can predispose offspring to postnatal lower airways dysfunction by altering immunity development, NGF signaling, and ASM contraction during early-life RSV reinfections. PMID:28178290

  13. Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network.

    PubMed

    Good, Jean-Marc; Mahoney, Michael; Miyazaki, Taisuke; Tanaka, Kenji F; Sakimura, Kenji; Watanabe, Masahiko; Kitamura, Kazuo; Kano, Masanobu

    2017-11-21

    Neural circuits undergo massive refinements during postnatal development. In the developing cerebellum, the climbing fiber (CF) to Purkinje cell (PC) network is drastically reshaped by eliminating early-formed redundant CF to PC synapses. To investigate the impact of CF network refinement on PC population activity during postnatal development, we monitored spontaneous CF responses in neighboring PCs and the activity of populations of nearby CF terminals using in vivo two-photon calcium imaging. Population activity is highly synchronized in newborn mice, and the degree of synchrony gradually declines during the first postnatal week in PCs and, to a lesser extent, in CF terminals. Knockout mice lacking P/Q-type voltage-gated calcium channel or glutamate receptor δ2, in which CF network refinement is severely impaired, exhibit an abnormally high level of synchrony in PC population activity. These results suggest that CF network refinement is a structural basis for developmental desynchronization and maturation of PC population activity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Factors associated with early resumption of sexual intercourse among postnatal women in Uganda.

    PubMed

    Alum, Alice C; Kizza, Irene B; Osingada, Charles P; Katende, Godfrey; Kaye, Dan K

    2015-11-19

    Despite being a key component to be addressed during postnatal period, sexuality has long been a subject of secrecy and taboo in Africa. Resumption of sexual intercourse after giving birth has been shown to reduce extramarital affairs and consequently reduce risk of sexually transmitted infections like HIV/AIDS. Consequences of early resumption of sexual intercourse include unwanted pregnancy, genital trauma and puerperal infection. The objective of the study was to assess prevalence and factors associated with early resumption of sexual intercourse among postnatal mothers attending postnatal clinic at a National referral Hospital in Uganda. A cross-sectional study that employed an interviewer-administered questionnaire was conducted among 374 women who delivered six months prior to conducting the study. The independent variables included socio-demographic characteristics of the participant, socio-demographic characteristics of the spouse, perceived cultural norms, medical history, mode of delivery, and postpartum complications. The dependent variable was timing of resumption of sexual intercourse after childbirth (before or after six weeks postpartum). Data were analysed using SPSS version 16.0. The study showed that 105 participants (21.6%) had resumed sexual intercourse before 6 weeks after childbirth. The participants' education level, occupation, and parity; education level of the spouse, age of baby and use of family planning were the factors associated with early resumption of sexual intercourse after child birth (before six weeks postpartum) (p < 0.05). Many women resumed sexual intercourse after six weeks. Women with high income, low parity, who ever-used contraception or had a spouse with high education level were more likely to have early resumption of sexual intercourse.

  15. Postnatal Weight Gain Modifies Severity and Functional Outcome of Oxygen-Induced Proliferative Retinopathy

    PubMed Central

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R.; Krah, Nathan M.; Dennison, Roberta J.; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D.; Smith, Lois E.H.

    2010-01-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r2 = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome. PMID:21056995

  16. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy.

    PubMed

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R; Krah, Nathan M; Dennison, Roberta J; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D; Smith, Lois E H

    2010-12-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r(2) = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome.

  17. High uptake of exclusive breastfeeding and reduced early post-natal HIV transmission.

    PubMed

    Kuhn, Louise; Sinkala, Moses; Kankasa, Chipepo; Semrau, Katherine; Kasonde, Prisca; Scott, Nancy; Mwiya, Mwiya; Vwalika, Cheswa; Walter, Jan; Tsai, Wei-Yann; Aldrovandi, Grace M; Thea, Donald M

    2007-12-26

    Empirical data showing the clear benefits of exclusive breastfeeding (EBF) for HIV prevention are needed to encourage implementation of lactation support programs for HIV-infected women in low resource settings among whom replacement feeding is unsafe. We conducted a prospective, observational study in Lusaka, Zambia, to test the hypothesis that EBF is associated with a lower risk of postnatal HIV transmission than non-EBF. As part of a randomized trial of early weaning, 958 HIV-infected women and their infants were recruited and all were encouraged to breastfeed exclusively to 4 months. Single-dose nevirapine was provided to prevent transmission. Regular samples were collected from infants to 24 months of age and tested by PCR. Detailed measurements of actual feeding behaviors were collected to examine, in an observational analysis, associations between feeding practices and postnatal HIV transmission. Uptake of EBF was high with 84% of women reporting only EBF cumulatively to 4 months. Post-natal HIV transmission before 4 months was significantly lower (p = 0.004) among EBF (0.040 95% CI: 0.024-0.055) than non-EBF infants (0.102 95% CI: 0.047-0.157); time-dependent Relative Hazard (RH) of transmission due to non-EBF = 3.48 (95% CI: 1.71-7.08). There were no significant differences in the severity of disease between EBF and non-EBF mothers and the association remained significant (RH = 2.68 95% CI: 1.28-5.62) after adjusting for maternal CD4 count, plasma viral load, syphilis screening results and low birth weight. Non-EBF more than doubles the risk of early postnatal HIV transmission. Programs to support EBF should be expanded universally in low resource settings. EBF is an affordable, feasible, acceptable, safe and sustainable practice that also reduces HIV transmission providing HIV-infected women with a means to protect their children's lives. ClinicalTrials.gov NCT00310726.

  18. Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice.

    PubMed

    Basaure, Pia; Guardia-Escote, Laia; Cabré, Maria; Peris-Sampedro, Fiona; Sánchez-Santed, Fernando; Domingo, José L; Colomina, Maria Teresa

    2018-05-03

    Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides in the world. Our previous results described that apolipoprotein E (APOE) polymorphisms are a source of individual differences in susceptibility to CPF. The aim of this study was to assess the physical and biochemical effects of postnatal exposure to CPF in the apoE targeted replacement mouse model. Mice were exposed to CPF at 0 or 1 mg/kg/day from postnatal day 10-15. Physical development, plasma and forebrain cholinesterase (ChE) activity and gene expression in liver and forebrain were evaluated. CPF exposure delays physical maturation and decreases the expression of choline acetyltransferase, α4-subunit and the α7 receptor. CPF decreases the expression of vesicular acetylcholine transporter (VAChT) mRNA in the forebrain only in apoE3 mice. The expression of paraoxonase-2 in the forebrain was also influenced by APOE genotype and CPF. Differences between genotypes were observed in litter size, ChE activity, expression of butyrylcholinesterase and paraoxonase-1 in liver and variants of acetylcholinesterase, VAChT and the α7 receptor in the forebrain. These results support that there are different vulnerabilities to postnatal CPF exposure according to the APOE polymorphism, which in turn affects the cholinergic system and defenses to oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Multigenerational effects of bisphenol A or ethinyl estradiol exposure on F2 California mice (Peromyscus californicus) pup vocalizations

    PubMed Central

    Johnson, Sarah A.; Farrington, Michelle J.; Murphy, Claire R.; McAllister, Leif A.; Kaur, Sarabjit; Chun, Catherine; Ortega, Madison T.; Marshall, Brittney L.; Hoffmann, Frauke; Ellersieck, Mark R.; Schenk, A. Katrin

    2018-01-01

    Rodent pups use vocalizations to communicate with one or both parents in biparental species, such as California mice (Peromyscus californicus). Previous studies have shown California mice developmentally exposed to endocrine disrupting chemicals, bisphenol A (BPA) or ethinyl estradiol (EE), demonstrate later compromised parental behaviors. Reductions in F1 parental behaviors might also be due to decreased emissions of F2 pup vocalizations. Thus, vocalizations of F2 male and female California mice pups born to F1 parents developmentally exposed to BPA, EE, or controls were examined. Postnatal days (PND) 2–4 were considered early postnatal period, PND 7 and 14 were defined as mid-postnatal period, and PND 21 and 28 were classified as late postnatal period. EE pups showed increased latency to emit the first syllable compared to controls. BPA female pups had decreased syllable duration compared to control and EE female pups during the early postnatal period but enhanced responses compared to controls at late postnatal period; whereas, male BPA and EE pups showed greater syllable duration compared to controls during early postnatal period. In mid-postnatal period, F2 BPA and EE pups emitted greater number of phrases than F2 control pups. Results indicate aspects of vocalizations were disrupted in F2 pups born to F1 parents developmentally exposed to BPA or EE, but their responses were not always identical, suggesting BPA might not activate estrogen receptors to the same extent as EE. Changes in vocalization patterns by F2 pups may be due to multigenerational exposure to BPA or EE and/or reduced parental care received. PMID:29912934

  20. Oligodendrocytes as Regulators of Neuronal Networks during Early Postnatal Development

    PubMed Central

    Ramos, Maria; Ikrar, Taruna; Kinoshita, Chisato; De Mei, Claudia; Tirotta, Emanuele; Xu, Xiangmin; Borrelli, Emiliana

    2011-01-01

    Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development. PMID:21589880

  1. The effect of early postnatal discharge from hospital for women and infants: a systematic review protocol.

    PubMed

    Jones, Eleanor; Taylor, Beck; MacArthur, Christine; Pritchett, Ruth; Cummins, Carole

    2016-02-08

    The length of postnatal hospital stay has declined over the last 40 years. There is little evidence to support a policy of early discharge following birth, and there is some concern about whether early discharge of mothers and babies is safe. The Cochrane review on the effects of early discharge from hospital only included randomised controlled trials (RCTs) which are problematic in this area, and a systematic review including other study designs is required. The aim of this broader systematic review is to determine possible effects of a policy of early postnatal discharge on important maternal and infant health-related outcomes. A systematic search of published literature will be conducted for randomised controlled trials, non-randomised controlled trials (NRCTs), controlled before-after studies (CBA), and interrupted time series studies (ITS) that report on the effect of a policy of early postnatal discharge from hospital. Databases including Cochrane CENTRAL, MEDLINE, EMBASE, CINAHL and Science Citation Index will be searched for relevant material. Reference lists of articles will also be searched in addition to searches to identify grey literature. Screening of identified articles and data extraction will be conducted in duplicate and independently. Methodological quality of the included studies will be assessed using the Effective Practice and Organisation of Care (EPOC) criteria for risk of bias tool. Discrepancies will be resolved by consensus or by consulting a third author. Meta-analysis using a random effects model will be used to combine data. Where significant heterogeneity is present, data will be combined in a narrative synthesis. The findings will be reported according to the preferred reporting items for systematic reviews (PRISMA) statement. Information on the effects of early postnatal discharge from hospital will be important for policy makers and clinicians providing maternity care. This review will also identify any gaps in the current

  2. Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in a long-lived seabird

    PubMed Central

    Herborn, Katherine A.; Heidinger, Britt J.; Boner, Winnie; Noguera, Jose C.; Adam, Aileen; Daunt, Francis; Monaghan, Pat

    2014-01-01

    Exposure to stressors early in life is associated with faster ageing and reduced longevity. One important mechanism that could underlie these late life effects is increased telomere loss. Telomere length in early post-natal life is an important predictor of subsequent lifespan, but the factors underpinning its variability are poorly understood. Recent human studies have linked stress exposure to increased telomere loss. These studies have of necessity been non-experimental and are consequently subjected to several confounding factors; also, being based on leucocyte populations, where cell composition is variable and some telomere restoration can occur, the extent to which these effects extend beyond the immune system has been questioned. In this study, we experimentally manipulated stress exposure early in post-natal life in nestling European shags (Phalacrocorax aristotelis) in the wild and examined the effect on telomere length in erythrocytes. Our results show that greater stress exposure during early post-natal life increases telomere loss at this life-history stage, and that such an effect is not confined to immune cells. The delayed effects of increased telomere attrition in early life could therefore give rise to a ‘time bomb’ that reduces longevity in the absence of any obvious phenotypic consequences early in life. PMID:24648221

  3. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects.

    PubMed

    Cardoso, Filipa L; Herz, Jasmin; Fernandes, Adelaide; Rocha, João; Sepodes, Bruno; Brito, Maria A; McGavern, Dorian B; Brites, Dora

    2015-04-29

    The inflammatory mediator lipopolysaccharide (LPS) has been shown to induce acute gliosis in neonatal mice. However, the progressive effects on the murine neurodevelopmental program over the week that follows systemic inflammation are not known. Thus, we investigated the effects of repeated LPS administration in the first postnatal week in mice, a condition mimicking sepsis in late preterm infants, on the developing central nervous system (CNS). Systemic inflammation was induced by daily intraperitoneal administration (i.p.) of LPS (6 mg/kg) in newborn mice from postnatal day (PND) 4 to PND6. The effects on neurodevelopment were examined by staining the white matter and neurons with Luxol Fast Blue and Cresyl Violet, respectively. The inflammatory response was assessed by quantifying the expression/activity of matrix metalloproteinases (MMP), toll-like receptor (TLR)-4, high mobility group box (HMGB)-1, and autotaxin (ATX). In addition, B6 CX3CR1(gfp/+) mice combined with cryo-immunofluorescence were used to determine the acute, delayed, and lasting effects on myelination, microglia, and astrocytes. LPS administration led to acute body and brain weight loss as well as overt structural changes in the brain such as cerebellar hypoplasia, neuronal loss/shrinkage, and delayed myelination. The impaired myelination was associated with alterations in the proliferation and differentiation of NG2 progenitor cells early after LPS administration, rather than with excessive phagocytosis by CNS myeloid cells. In addition to disruptions in brain architecture, a robust inflammatory response to LPS was observed. Quantification of inflammatory biomarkers revealed decreased expression of ATX with concurrent increases in HMGB1, TLR-4, and MMP-9 expression levels. Acute astrogliosis (GFAP(+) cells) in the brain parenchyma and at the microvasculature interface together with parenchymal microgliosis (CX3CR1(+) cells) were also observed. These changes preceded the migration

  4. Intervention among new parents followed up by an interview study exploring their experiences of telemedicine after early postnatal discharge.

    PubMed

    Danbjørg, D B; Wagner, L; Kristensen, B R; Clemensen, J

    2015-06-01

    a move towards earlier postnatal discharge raises the challenge of finding new ways to support families when they are discharged early after childbirth. to explore how postnatal parents experienced the use of telemedicine following early discharge from hospital (i.e. 24 hours after childbirth) by investigating if they consider that their postnatal needs are met, and whether or not they experience a sense of security and parental self-efficacy. intervention followed by a qualitative interview study. The intervention took place on a postnatal ward with approximately 1000 births a year. An app including chat, a knowledgebase and automated messages was trialled between postnatal parents at home and the hospital. Parents had access to the app for seven days after discharge. 42 new mothers were recruited from the postnatal ward in accordance with the inclusion criteria (i.e. discharged within 24 hours of childbirth). Both parents were invited for interview. 42 sets of parents participated in the trial, and 28 sets agreed to be interviewed. Interviews (n=28) were conducted with 27 mothers and 11 fathers. Parents were interviewed together in 10 cases, 17 mothers were interviewed alone, and one father was interviewed alone. The data analysis was inspired by systematic text condensation based on Giorgi׳s descriptive phenomenological method. parents were confident in use of the app, and did not experience any barriers in contacting the nurses via asynchronous communication. Parents received timely information and guidance by communicating online, and felt that their follow-up support needs were met. parents viewed the app as a lifeline, and saw it as a means of informing and guiding them following early discharge from hospital after childbirth. As such, this app shows potential for enhancing self-efficacy and postnatal sense of security. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  6. Delayed stabilization of dendritic spines in fragile X mice.

    PubMed

    Cruz-Martín, Alberto; Crespo, Michelle; Portera-Cailliau, Carlos

    2010-06-09

    Fragile X syndrome (FXS) causes mental impairment and autism through transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein fragile X mental retardation protein (FMRP). Cortical pyramidal neurons in affected individuals and Fmr1 knock-out (KO) mice have an increased density of dendritic spines. The mutant mice also show defects in synaptic and experience-dependent circuit plasticity, which are known to be mediated in part by dendritic spine dynamics. We used in vivo time-lapse imaging with two-photon microscopy through cranial windows in male and female neonatal mice to test the hypothesis that dynamics of dendritic protrusions are altered in KO mice during early postnatal development. We find that layer 2/3 neurons from wild-type mice exhibit a rapid decrease in dendritic spine dynamics during the first 2 postnatal weeks, as immature filopodia are replaced by mushroom spines. In contrast, KO mice show a developmental delay in the downregulation of spine turnover and in the transition from immature to mature spine subtypes. Blockade of metabotropic glutamate receptor (mGluR) signaling, which reverses some adult phenotypes of KO mice, accentuated this immature protrusion phenotype in KO mice. Thus, absence of FMRP delays spine stabilization and dysregulated mGluR signaling in FXS may partially normalize this early synaptic defect.

  7. A miniature mechanical ventilator for newborn mice.

    PubMed

    Kolandaivelu, K; Poon, C S

    1998-02-01

    Transgenic/knockout mice with pre-defined mutations have become increasingly popular in biomedical research as models of human diseases. In some instances, the resulting mutation may cause cardiorespiratory distress in the neonatal or adult animals and may necessitate resuscitation. Here we describe the design and testing of a miniature and versatile ventilator that can deliver varying ventilatory support modes, including conventional mechanical ventilation and high-frequency ventilation, to animals as small as the newborn mouse. With a double-piston body chamber design, the device circumvents the problem of air leakage and obviates the need for invasive procedures such as endotracheal intubation, which are particularly important in ventilating small animals. Preliminary tests on newborn mice as early as postnatal day O demonstrated satisfactory restoration of pulmonary ventilation and the prevention of respiratory failure in mutant mice that are prone to respiratory depression. This device may prove useful in the postnatal management of transgenic/knockout mice with genetically inflicted respiratory disorders.

  8. Melamine in prenatal and postnatal organs in rats.

    PubMed

    Chu, Ching Yan; Chu, Kai On; Ho, Chung Shun; Kwok, Sung Shing; Chan, Ho Ming; Fung, Kwok Pui; Wang, Chi Chiu

    2013-01-01

    Melamine can be transferred to fetus in utero through placenta and to infant ex utero by breast feeding. In this study, we characterized the pharmacokinetics of melamine in prenatal and postnatal organs in rats. Single bolus of melamine was administered to pregnant rats at different gestational stages and to infants at different postnatal stages. Distribution of melamine in maternal serum was about 30% higher in late pregnancy than that in early pregnancy; and it was 2 folds higher in postnatal serum in early infants in young adulthood. Distribution of melamine in all postnatal organs was higher than that in prenatal organs. Postnatal kidneys in early infants had the highest maximum concentration and the lowest clearance of melamine than the other postnatal organs. It may relate to the high vulnerability to the toxicity of melamine in this population. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice

    PubMed Central

    Nielsen, Corinne M.; Cuervo, Henar; Ding, Vivianne W.; Kong, Yupeng; Huang, Eric J.; Wang, Rong A.

    2014-01-01

    Arteriovenous malformations (AVMs) are tortuous vessels characterized by arteriovenous (AV) shunts, which displace capillaries and shunt blood directly from artery to vein. Notch signaling regulates embryonic AV specification by promoting arterial, as opposed to venous, endothelial cell (EC) fate. To understand the essential role of endothelial Notch signaling in postnatal AV organization, we used inducible Cre-loxP recombination to delete Rbpj, a mediator of canonical Notch signaling, from postnatal ECs in mice. Deletion of endothelial Rbpj from birth resulted in features of AVMs by P14, including abnormal AV shunting and tortuous vessels in the brain, intestine and heart. We further analyzed brain AVMs, as they pose particular health risks. Consistent with AVM pathology, we found cerebral hemorrhage, hypoxia and necrosis, and neurological deficits. AV shunts originated from capillaries (and possibly venules), with the earliest detectable morphological abnormalities in AV connections by P8. Prior to AV shunt formation, alterations in EC gene expression were detected, including decreased Efnb2 and increased Pai1, which encodes a downstream effector of TGFβ signaling. After AV shunts had formed, whole-mount immunostaining showed decreased Efnb2 and increased Ephb4 expression within AV shunts, suggesting that ECs were reprogrammed from arterial to venous identity. Deletion of Rbpj from adult ECs led to tortuosities in gastrointestinal, uterine and skin vascular beds, but had mild effects in the brain. Our results demonstrate a temporal requirement for Rbpj in postnatal ECs to maintain proper artery, capillary and vein organization and to prevent abnormal AV shunting and AVM pathogenesis. PMID:25209249

  10. Prenatal and Early Postnatal Diagnosis of Congenital Toxoplasmosis in a Setting With No Systematic Screening in Pregnancy.

    PubMed

    Stajner, Tijana; Bobic, Branko; Klun, Ivana; Nikolic, Aleksandra; Srbljanovic, Jelena; Uzelac, Aleksandra; Rajnpreht, Irena; Djurkovic-Djakovic, Olgica

    2016-03-01

    To determine the risk of congenital toxoplasmosis (CT) and provide early (pre- or postnatal) identification of cases of CT in the absence of systematic screening in pregnancy.I n the presented cross-sectional study, serological criteria were used to date Toxoplasma gondii infection versus conception in 80 pregnant women with fetal abnormalities or referred to as suspected of acute infection, and in 16 women after delivery of symptomatic neonates. A combination of serological, molecular (qPCR), and biological (bioassay) methods was used for prenatal and/or postnatal diagnosis of CT. Most (77.5%) pregnant women were examined in advanced pregnancy. Of all the examined seropositive women (n = 90), infection could not be ruled out to have occurred during pregnancy in 93.3%, of which the majority (69%) was dated to the periconceptual period. CT was diagnosed in 25 cases, of which 17 prenatally and 8 postnatally. Molecular diagnosis proved superior, but the diagnosis of CT based on bioassay in 7 instances and by Western blot in 2 neonates shows that other methods remain indispensable. In the absence of systematic screening in pregnancy, maternal infection is often diagnosed late, or even only when fetal/neonatal infection is suspected. In such situations, use of a complex algorithm involving a combination of serological, biological, and molecular methods allows for prenatal and/or early postnatal diagnosis of CT, but lacks the preventive capacity provided by early maternal treatment.

  11. Prenatal and Early Postnatal Diagnosis of Congenital Toxoplasmosis in a Setting With No Systematic Screening in Pregnancy

    PubMed Central

    Stajner, Tijana; Bobic, Branko; Klun, Ivana; Nikolic, Aleksandra; Srbljanovic, Jelena; Uzelac, Aleksandra; Rajnpreht, Irena; Djurkovic-Djakovic, Olgica

    2016-01-01

    Abstract To determine the risk of congenital toxoplasmosis (CT) and provide early (pre- or postnatal) identification of cases of CT in the absence of systematic screening in pregnancy. In the presented cross-sectional study, serological criteria were used to date Toxoplasma gondii infection versus conception in 80 pregnant women with fetal abnormalities or referred to as suspected of acute infection, and in 16 women after delivery of symptomatic neonates. A combination of serological, molecular (qPCR), and biological (bioassay) methods was used for prenatal and/or postnatal diagnosis of CT. Most (77.5%) pregnant women were examined in advanced pregnancy. Of all the examined seropositive women (n = 90), infection could not be ruled out to have occurred during pregnancy in 93.3%, of which the majority (69%) was dated to the periconceptual period. CT was diagnosed in 25 cases, of which 17 prenatally and 8 postnatally. Molecular diagnosis proved superior, but the diagnosis of CT based on bioassay in 7 instances and by Western blot in 2 neonates shows that other methods remain indispensable. In the absence of systematic screening in pregnancy, maternal infection is often diagnosed late, or even only when fetal/neonatal infection is suspected. In such situations, use of a complex algorithm involving a combination of serological, biological, and molecular methods allows for prenatal and/or early postnatal diagnosis of CT, but lacks the preventive capacity provided by early maternal treatment. PMID:26945416

  12. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats.

    PubMed

    Beaudin, Stephane A; Strupp, Barbara J; Strawderman, Myla; Smith, Donald R

    2017-02-01

    Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1-21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230-237; http://dx.doi.org/10.1289/EHP258.

  13. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats

    PubMed Central

    Beaudin, Stephane A.; Strupp, Barbara J.; Strawderman, Myla; Smith, Donald R.

    2016-01-01

    Background: Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. Objectives: To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Methods: Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1–21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Results: Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. Conclusions: This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230–237; http://dx.doi.org/10.1289/EHP258 PMID:27384154

  14. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.

    PubMed

    Desbonnet, Lieve; Clarke, Gerard; Traplin, Alexander; O'Sullivan, Orla; Crispie, Fiona; Moloney, Rachel D; Cotter, Paul D; Dinan, Timothy G; Cryan, John F

    2015-08-01

    There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut-brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut-brain axis dysfunction in mice. Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut-brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota-gut-brain axis suggesting that dysregulation of this axis in the post-weaning period may

  15. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice.

    PubMed

    Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F

    2015-12-01

    Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4. Copyright © 2015 the American Physiological Society.

  16. Neurobehavioral effects of postnatal exposure to low-level mercury vapor and/or methylmercury in mice.

    PubMed

    Yoshida, Minoru; Lee, Jin-Yong; Satoh, Masahiko; Watanabe, Chiho

    2018-01-01

    This study examined the effects on neurobehavioral function of exposure to low-level mercury vapor (Hg 0 ), methylmercury (MeHg) in female mice and the combination of Hg 0 and MeHg during postnatal development. Postnatal mice were exposed to Hg 0 at a mean concentration of 0.188 mg/m 3 Hg 0 and supplied with food containing 3.85 μg/g of MeHg from day 2 to day 28 after delivery. The combined exposure group was exposed to both Hg 0 and MeHg, using the same procedure. When their offspring reached the age of 11 weeks, behavioral analyses were performed. The behavioral effects in mice were evaluated based on locomotive activity and rate of center entries in the open field (OPF), learning activity in the passive avoidance response (PA) and spatial learning ability in the radial maze (RM). Total locomotive activity in the OPF significantly decreased in the Hg 0 , MeHg and combined exposure groups compared with the control group. The proportion of entries to central area in the OPF was significantly higher in the combined exposure group than in the control group, while those in the Hg 0 or MeHg exposure group did not differ from the control group. Other behavioral tests did not reveal significant differences among the groups. Behavioral anomalies were more distinctive after combined exposure compared to Hg 0 or MeHg exposure alone. The brain Hg concentration of offspring, immediately after exposure, was highest in the combined exposure group, exceeding 2 μg/g, followed by the MeHg and Hg 0 exposure groups. Thus, the enhancement of neurobehavioral effects in the combined exposure group was associated with higher brain mercury concentration.

  17. Impaired GABAergic inhibition in the prefrontal cortex of early postnatal phencyclidine (PCP)-treated rats.

    PubMed

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe; Dalby, Nils Ole

    2014-09-01

    A compromised γ-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-D-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmission in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl-methylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid, and also diminished currents passed by δ-subunit-containing GABAA receptors in layer II/III pyramidal neurons. The observed impairments in GABAergic function are compatible with the alteration of GABAergic markers as well as cognitive dysfunction observed in early postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Maternal immunization with a DNA vaccine candidate elicits specific passive protection against post-natal Zika virus infection in immunocompetent BALB/c mice.

    PubMed

    Wang, Ran; Liao, Xianzheng; Fan, Dongying; Wang, Lei; Song, Ji; Feng, Kaihao; Li, Mingyuan; Wang, Peigang; Chen, Hui; An, Jing

    2018-06-07

    Zika virus (ZIKV) infection is closely associated in the fetus with microcephaly and in the adults with Guillain-Barré syndrome and even male infertility. It is an urgent international priority to develop a safe and effective vaccine that offers protection to both women of childbearing age and their children. In this study, female immunocompetent BALB/c mice were immunized with a DNA-based vaccine candidate, pVAX1-ZME, expressing the prM/E protein of ZIKV, and the immunogenicity for maternal mice and the post-natal protection for suckling mice were evaluated. It was found that administration with three doses of 50 μg pVAX1-ZME via in vivo electroporation induced robust ZIKV-specific cellular and long-term humoral immune responses with high and sustained neutralizing activity in adult mice. Moreover, using a maternal immunization protocol, neutralizing antibodies provided specific passive protection against ZIKV infection in neonatal mice and effectively inhibited the growth delay. This vaccine candidate is expected to be further evaluated in higher animals, and maternal vaccination shows great promise for protecting both women of childbearing age and their offspring against post-natal ZIKV infection. The vaccinated mothers and ZIKV-challenged pups provide key insight into Zika vaccine evaluation in an available fully immunocompetent animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Estrogenicity of parabens revisited: impact of parabens on early pregnancy and an uterotrophic assay in mice.

    PubMed

    Shaw, Jordan; deCatanzaro, Denys

    2009-07-01

    Parabens, a class of preservatives routinely added to cosmetics, pharmaceuticals, and foods, have estrogenic properties. Given that intrauterine implantation of fertilized ova in inseminated females can be disrupted by minute levels of exogenous estrogens, we assessed the impact of parabens upon early gestation. In Experiment 1, butylparaben was administered subcutaneously in several doses ranging from 0.05 to 35 mg/animal/day to inseminated CF-1 mice on days 1-4 of pregnancy. Butylparaben exposure did not affect litter size, the number of pups born, postnatal day 3 litter weights, or the number of pups surviving to postnatal day 5. In contrast, administration of 500 ng/animal/day 17beta-estradiol terminated all pregnancies. In Experiment 2, propylparaben was subcutaneously administered to inseminated CF-1 mice on gestational days 1-4. Dams were sacrificed on gestation day 6 and the number of implantation sites was counted. Propylparaben had no impact on the number of implantation sites observed. Since Experiments 1 and 2 did not yield the anticipated results, an uterotrophic assay was conducted in Experiment 3 to re-evaluate the in vivo estrogenicity of parabens. Ovariectomized CF-1 and CD-1 mice were administered butylparaben in doses ranging from 0.735 to 35 mg per animal for three consecutive days. Mice were sacrificed on the fourth day, and uterine mass was recorded. There was no effect of butylparaben on uterine wet or dry mass at any dose in either strain. In contrast, administration of 17beta-estradiol consistently increased uterine mass in both strains. These data indicate that the estrogen-sensitive period of implantation is not vulnerable to paraben exposure, and that the in vivo estrogenicity of parabens may not be as potent as previously reported.

  20. Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development

    PubMed Central

    Cerpa, Veronica J.; Wu, Yuanming; Bravo, Eduardo; Teran, Frida A.; Flynn, Rachel S.; Richerson, George B.

    2016-01-01

    Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1bf/f/p mice, which lack 5-HT neurons. From postnatal days 1–7 (P1–P7), ventilation of Lmx1bf/f/p mice breathing room air was 50% of WT mice (p < 0.001). By P12, baseline ventilation increased to a level equal to WT mice. In contrast, the hypercapnic ventilatory response (HCVR) of neonatal Lmx1bf/f/p and WT mice were equal to each other, but were both much less than adult WT mice. By P21 the HCVR of WT mice increased to near adult levels, but the HCVR of Lmx1bf/f/p mice had not changed, and was 42% less than WT mice. Primary cell cultures were prepared from the ventromedial medulla of neonatal mice, and patch-clamp recordings were made from neurons identified as serotonergic by expression of a reporter gene. In parallel with developmental changes of the HCVR in vivo, 5-HT neurons had little chemosensitivity to acidosis until 12 days in vitro (DIV), after which their response increased to reach a plateau around 25 DIV. Neonatal Lmx1bf/f/p mice displayed high mortality and decreased growth rate, and this worsened in hypoxia. Mortality was decreased in hyperoxia. These results indicate that maturation of 5-HT neurons contributes to development of respiratory CO2/pH chemoreception during the first few weeks of life in mice in vivo. A defect in the 5-HT system in early postnatal life decreases survival due in part to hypoxia. PMID:27619736

  1. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    PubMed

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  2. Gene Expression Deregulation in Postnatal Skeletal Muscle of TK2 Deficient Mice Reveals a Lower Pool of Proliferating Myogenic Progenitor Cells

    PubMed Central

    Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978

  3. The amyloid precursor protein and postnatal neurogenesis/neuroregeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yanan; Tang, Bor Luen

    2006-03-03

    The amyloid precursor protein (APP) is the source of amyloid-beta (A{beta}) peptide, produced via its sequential cleavage {beta}- and {gamma}-secretases. Various biophysical forms of A{beta} (and the mutations of APP which results in their elevated levels) have been implicated in the etiology and early onset of Alzheimer's disease. APP's evolutionary conservation and the existence of APP-like isoforms (APLP1 and APLP2) which lack the A{beta} sequence, however, suggest that these might have important physiological functions that are unrelated to A{beta} production. Soluble N-terminal fragments of APP have been known to be neuroprotective, and the interaction of its cytoplasmic C-terminus with amore » myriad of proteins associates it with diverse processes such as axonal transport and transcriptional regulation. The notion for an essential postnatal function of APP has been demonstrated genetically, as mice deficient in both APP and APLP2 or all three APP isoforms exhibit early postnatal lethality and neuroanatomical abnormalities. Recent findings have also brought to light two possible functions of the APP family in Brain-regulation of neural progenitor cell proliferation and axonal outgrowth after injury. Interestingly, these two apparently related neurogenic/neuroregenerative functions of APP involve two separate domains of the molecule.« less

  4. Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development

    PubMed Central

    Li, Qian; Guo, Song; Jiang, Xi; Bryk, Jaroslaw; Naumann, Ronald; Enard, Wolfgang; Tomita, Masaru; Sugimoto, Masahiro; Khaitovich, Philipp; Pääbo, Svante

    2016-01-01

    Whereas all mammals have one glutamate dehydrogenase gene (GLUD1), humans and apes carry an additional gene (GLUD2), which encodes an enzyme with distinct biochemical properties. We inserted a bacterial artificial chromosome containing the human GLUD2 gene into mice and analyzed the resulting changes in the transcriptome and metabolome during postnatal brain development. Effects were most pronounced early postnatally, and predominantly genes involved in neuronal development were affected. Remarkably, the effects in the transgenic mice partially parallel the transcriptome and metabolome differences seen between humans and macaques analyzed. Notably, the introduction of GLUD2 did not affect glutamate levels in mice, consistent with observations in the primates. Instead, the metabolic effects of GLUD2 center on the tricarboxylic acid cycle, suggesting that GLUD2 affects carbon flux during early brain development, possibly supporting lipid biosynthesis. PMID:27118840

  5. [Formation of antioxidant defence system of geese in embryogenesis and early postnatal ontogenesis].

    PubMed

    Danchenko, O O; Kalytka, V V

    2002-01-01

    The features of antioxidant protection of tissues of a liver and blood of the gooses in embriogenesis and early postnatal ontogenesis are found out. Maximal contents TBA active products both in a liver, and in a blood are observed in 28 diurnal embriones. Is shown, that in a liver the activity of basic antioxidant enzymes (superoxide dismutases, catalase and glutathione peroxidase) in a liver is developed already at early stages embriogenesis and is considerably enlarged in the end embriogenesis. The becoming of enzymatic system of a blood descends much more slower.

  6. Placental glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 recruitment indicates impact of prenatal adversity upon postnatal development in mice.

    PubMed

    Gross, Moshe; Romi, Hava; Gilimovich, Yelena; Drori, Elyashiv; Pinhasov, Albert

    2018-04-12

    Prenatal stress may increase concentrations of maternal glucocorticoids, which restrict fetal growth, with variable impact upon postnatal development. Among key regulators of stress hormone effects are the glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase-2 (11βHSD2), the enzyme that inactivates glucocorticoid. This study utilized mice selectively bred for social dominance (Dom) or submissiveness (Sub), respectively exhibiting resilience or sensitivity to stress, to test whether stress-induced alterations in placental GR and 11βHSD2 protein expression may mediate divergent effects of prenatal adversity upon postnatal development. Pregnant Dom and Sub dams underwent prenatal restraint stress (PRS) for 45 min on gestational days (GD) 15-17. PRS induced a similar spike in serum corticosterone concentrations of dams from each strain on GD15 (p < .001, n = 8), and impaired fetal growth (p < .01, n = 5 litters), although Dom placentae were larger than Sub placentae (p < .01). Among placentae from Dom dams, PRS elevated protein contents of both GR (p < .05, n = 5 litters) and 11βHSD2 (p < .01) on GD19. In contrast, GR contents were reduced among placentae from PRS-exposed Sub mice (p < .01), without changes in 11βHSD2 content. Correspondingly, Dom PRS pup growth recovered by PND14, yet Sub PRS pups remained underweight into adolescence (p < .0001, n = 40 pups). Thus, prenatal stress more strongly increased placental GR and 11βHSD2 levels among Dom mice than in Subs. Increased GR may improve placental function and up-regulate 11βHSD2 expression, protecting fetuses from effects of prenatal stress upon postnatal development. Placental recruitment of GR and 11βHSD2 are potential markers of stress-induced developmental disorders, in accordance with maternal resilience or sensitivity to stress.

  7. Time-controllable Nkcc1 knockdown replicates reversible hearing loss in postnatal mice.

    PubMed

    Watabe, Takahisa; Xu, Ming; Watanabe, Miho; Nabekura, Junichi; Higuchi, Taiga; Hori, Karin; Sato, Mitsuo P; Nin, Fumiaki; Hibino, Hiroshi; Ogawa, Kaoru; Masuda, Masatsugu; Tanaka, Kenji F

    2017-10-19

    Identification of the causal effects of specific proteins on recurrent and partially reversible hearing loss has been difficult because of the lack of an animal model that provides reversible gene knockdown. We have developed the transgenic mouse line Actin-tTS::Nkcc1 tetO/tetO for manipulatable expression of the cochlear K + circulation protein, NKCC1. Nkcc1 transcription was blocked by the binding of a tetracycline-dependent transcriptional silencer to the tetracycline operator sequences inserted upstream of the Nkcc1 translation initiation site. Administration of the tetracycline derivative doxycycline reversibly regulated Nkcc1 knockdown. Progeny from pregnant/lactating mothers fed doxycycline-free chow from embryonic day 0 showed strong suppression of Nkcc1 expression (~90% downregulation) and Nkcc1 null phenotypes at postnatal day 35 (P35). P35 transgenic mice from mothers fed doxycycline-free chow starting at P0 (delivery) showed weaker suppression of Nkcc1 expression (~70% downregulation) and less hearing loss with mild cochlear structural changes. Treatment of these mice at P35 with doxycycline for 2 weeks reactivated Nkcc1 transcription to control levels and improved hearing level at high frequency; i.e., these doxycycline-treated mice exhibited partially reversible hearing loss. Thus, development of the Actin-tTS::Nkcc1 tetO/tetO transgenic mouse line provides a mouse model for the study of variable hearing loss through reversible knockdown of Nkcc1.

  8. Clinical presentation of postnatal and non-postnatal depressive episodes.

    PubMed

    Cooper, Carly; Jones, Lisa; Dunn, Emma; Forty, Liz; Haque, Sayeed; Oyebode, Femi; Craddock, Nick; Jones, Ian

    2007-09-01

    The relationship of postnatal (postpartum) depression (PND) to episodes of depression occurring at other times is not well understood. Despite a number of studies of clinical presentation, there is little consistency in the literature. We have undertaken within- and between-individual comparisons of the clinical presentation of postnatal (PN) and non-postnatal (NPN) depressive episodes in women with recurrent depression. In a sample of well-characterized, parous women meeting DSM-IV and ICD-10 criteria for recurrent major depressive disorder, the clinical presentation of episodes of major depression with onset within 4 weeks of giving birth (PND group, n=50) were compared with (i) the non-postnatal episodes of women with PND, and (ii) episodes of major depression in parous women who had not experienced episodes of mood disorder in relation to childbirth (NPND group, n=132). In addition, the non-postnatal episodes of the PND group of women were compared with the depressive episodes of the NPND group. The small number of differences found between PN and NPN depressive episodes, such as reduced early morning wakening in postnatal episodes, are likely to be explicable by the context of having a new baby rather than by any difference in the nature of the underlying depression. The results do not point to substantial differences in clinical presentation between episodes of major depression occurring in relation to childbirth and at other times. Other avenues of research are therefore required to demonstrate a specific relationship between childbirth and depression.

  9. Early-postnatal changes in adiposity and lipids profile by transgenerational developmental programming in swine with obesity/leptin resistance.

    PubMed

    Gonzalez-Bulnes, Antonio; Astiz, Susana; Ovilo, Cristina; Lopez-Bote, Clemente J; Sanchez-Sanchez, Raul; Perez-Solana, Maria L; Torres-Rovira, Laura; Ayuso, Miriam; Gonzalez, Jorge

    2014-10-01

    Maternal malnutrition during pregnancy, both deficiency and excess, induces changes in the intrauterine environment and the metabolic status of the offspring, playing a key role in the growth, status of fitness/obesity and appearance of metabolic disorders during postnatal life. There is increasing evidence that these effects may not be only limited to the first generation of descendants, the offspring directly exposed to metabolic challenges, but to subsequent generations. This study evaluated, in a swine model of obesity/leptin resistance, the existence and extent of transgenerational developmental programming effects. Pre- and postnatal development, adiposity and metabolic features were assessed in the second generation of piglets, descendant of sows exposed to either undernutrition or overnutrition during pregnancy. The results indicated that these piglets exhibited early-postnatal increases in adiposity and disturbances in lipid profiles compatible with the early prodrome of metabolic syndrome, with liver tissue also displaying evidence of paediatric liver disease. These features indicative of early-life metabolic disorders were more evident in the males that were descended from overfed grandmothers and during the transition from milk to solid feeding. Thus, this study provides evidence supporting transgenerational developmental programming and supports the necessity for the development of strategies for avoiding the current epidemics of childhood overweight and obesity. © 2014 Society for Endocrinology.

  10. Update on Postnatal Steroids.

    PubMed

    Halliday, Henry L

    2017-01-01

    Antenatal steroid treatment to enhance fetal lung maturity and surfactant treatment to prevent or treat respiratory distress syndrome have been major advances in perinatal medicine in the past 40 years contributing to improved outcomes for preterm infants. Use of postnatal steroids to prevent or treat chronic lung disease in preterm infants has been less successful and associated with adverse neurodevelopmental outcomes. Although early (in the first week of life) postnatal steroid treatment facilitates earlier extubation and reduces the risk of chronic lung disease, it is associated with adverse effects, such as hyperglycemia, hypertension, gastrointestinal bleeding and perforation, hypertrophic cardiomyopathy, growth failure, and cerebral palsy, and cannot be recommended. Early treatment with hydrocortisone may also improve survival without chronic lung disease, but concerns remain about possible adverse effects such as gastrointestinal perforation and sepsis, particularly in very preterm infants. Early inhaled budesonide also reduces the incidence of chronic lung disease but there are concerns that this may occur at the expense of increased risk of death. More studies of early low-dose steroids with adequate long-term follow-up are needed before they can be recommended for the prevention of chronic lung disease. Late (after the first week of life) postnatal steroids may have a better benefit-to-harm ratio than early steroids. A Cochrane Review shows that late steroid treatment reduces chronic lung disease, the combination of death and chronic lung disease at both 28 days and 36 weeks' corrected age, and the need for later rescue dexamethasone. Adverse effects include hyperglycemia, hypertension, hypertrophic cardiomyopathy, and severe retinopathy of prematurity but without an increase in blindness. Long-term neurodevelopmental effects are not significantly increased by late postnatal steroid treatment. Current recommendations are that postnatal steroid treatment

  11. Intrauterine and early postnatal exposure to outdoor air pollution and lung function at preschool age.

    PubMed

    Morales, Eva; Garcia-Esteban, Raquel; de la Cruz, Oscar Asensio; Basterrechea, Mikel; Lertxundi, Aitana; de Dicastillo, Maria D Martinez López; Zabaleta, Carlos; Sunyer, Jordi

    2015-01-01

    Effects of prenatal and postnatal exposure to air pollution on lung function at preschool age remain unexplored. We examined the association of exposure to air pollution during specific trimesters of pregnancy and postnatal life with lung function in preschoolers. Lung function was assessed with spirometry in preschoolers aged 4.5 years (n=620) participating in the INfancia y Medio Ambiente (INMA) cohort. Temporally adjusted land use regression (LUR) models were applied to estimate individual residential exposures to benzene and nitrogen dioxide (NO₂) during specific trimesters of pregnancy and early postnatal life (the first year of life). Recent and current (1 year and 1 week before lung function testing, respectively) exposures to NO₂ and nitrogen oxides (NOx) were also assessed. Exposure to higher levels of benzene and NO₂ during pregnancy was associated with reduced lung function. FEV1 estimates for an IQR increase in exposures during the second trimester of pregnancy were -18.4 mL, 95% CI -34.8 to -2.1 for benzene and -28.0 mL, 95% CI -52.9 to -3.2 for NO₂. Relative risk (RR) of low lung function (<80% of predicted FEV1) for an IQR increase in benzene and NO₂ during the second trimester of pregnancy were 1.22, 95% CI 1.02 to 1.46 and 1.30, 95% CI 0.97 to 1.76, respectively. Associations for early postnatal, recent and current exposures were not statistically significant. Stronger associations appeared among allergic children and those of lower social class. Prenatal exposure to residential traffic-related air pollution may result in long-term lung function deficits at preschool age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning.

    PubMed

    Li, Ki Angel; Lund, Emilie Torp; Voigt, Jörg-Peter W

    2016-01-01

    The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, relatively little information is available about the impact of environmental enrichment on offspring behaviour if enrichment is implemented only during this period. Here, environmental enrichment was provided from postnatal day 1 until weaning. On post-natal day 9, maternal behaviour and nonmaternal behaviour of the dam was observed. Nursing time in the enriched group was reduced but dams showed more non-maternal appetitive behaviours. Offspring were exposed to either the open field or the elevated plus maze (EPM) after weaning. In the open field, rats from the enriched group approached the more aversive inner zone of the open field later than control rats. Offspring from the enriched group made fewer entries into the inner zone and spent less time in this part of the arena. Enrichment had no impact on behaviour in the EPM. The present study provides evidence that postnatal enrichment can interfere with maternal behaviour in rats and can possibly lead to increased anxiety in the offspring. The findings suggest that enrichment procedures can have potentially unintended effects, interfering with the development of emotional behaviours in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.

    PubMed

    Martin, J H; Donarummo, L; Hacking, A

    2000-02-01

    This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous

  14. Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway

    PubMed Central

    Lim, Sanghee; Kwak, Minhye; Gray, Christy D.; Xu, Michael; Choi, Jun H.; Junn, Sue; Kim, Jieun; Xu, Jing; Schaefer, Michele; Johns, Roger A.; Song, Hongjun; Ming, Guo-Li; Mintz, C. David

    2017-01-01

    Clinical and preclinical studies indicate that early postnatal exposure to anesthetics can lead to lasting deficits in learning and other cognitive processes. The mechanism underlying this phenomenon has not been clarified and there is no treatment currently available. Recent evidence suggests that anesthetics might cause persistent deficits in cognitive function by disrupting key events in brain development. The hippocampus, a brain region that is critical for learning and memory, contains a large number of neurons that develop in the early postnatal period, which are thus vulnerable to perturbation by anesthetic exposure. Using an in vivo mouse model we demonstrate abnormal development of dendrite arbors and dendritic spines in newly generated dentate gyrus granule cell neurons of the hippocampus after a clinically relevant isoflurane anesthesia exposure conducted at an early postnatal age. Furthermore, we find that isoflurane causes a sustained increase in activity in the mechanistic target of rapamycin pathway, and that inhibition of this pathway with rapamycin not only reverses the observed changes in neuronal development, but also substantially improves performance on behavioral tasks of spatial learning and memory that are impaired by isoflurane exposure. We conclude that isoflurane disrupts the development of hippocampal neurons generated in the early postnatal period by activating a well-defined neurodevelopmental disease pathway and that this phenotype can be reversed by pharmacologic inhibition. PMID:28683067

  15. Post-natal hypoxic activity of the central respiratory command is improved in transgenic mice overexpressing Epo in the brain.

    PubMed

    Caravagna, Céline; Kinkead, Richard; Soliz, Jorge

    2014-08-15

    Previous studies indicated that erythropoietin modulates central respiratory command in mice. Specifically, a one-hour incubation of the brainstems with erythropoietin attenuates hypoxia-induced central respiratory depression. Here, using transgenic mice constitutively overexpressing erythropoietin specifically in the brain (Tg21), we investigated the effect of chronic erythropoietin stimulation on central respiratory command activity during post-natal development. In vitro brainstem-spinal cord preparations from mice at 0 (P0) or 3 days of age (P3) were used to record the fictive inspiratory activity from the C4 ventral root. Our results show that erythropoietin already stimulates the hypoxic burst frequency at P0, and at P3, erythropoietin effectively stimulates the hypoxic burst frequency and amplitude. Because the maturation of the central respiratory command in mice is characterized by a decrease in the burst frequency with age, our results also suggest that erythropoietin accelerates the maturation of the newborn respiratory network and its response to hypoxia. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Maternal Separation Does Not Produce a Significant Behavioral Change in Mice

    PubMed Central

    Tan, Shawn; Ho, Hin San; Song, Anna Yoonsu; Low, Joey

    2017-01-01

    Early life adversities together with genetic predispositions have been associated with elevated risks of neuropsychiatric disorders during later life. In order to investigate the underlying mechanisms, many chronic, early-life stress paradigms in multiple animal models have been developed. Previously, studies reported that maternal separation (MS) in the early postnatal stages triggers depression-and/or anxiety-like behaviors in rats. However, similar studies using mice have reported inconsistent behavioral outcomes. In this study, we sought to assess behavioral outcomes from two different early-life stress paradigms; a conventional 3-hour MS and a maternal separation with early weaning (MSEW) paradigm using C57BL/6J male mice with independent cohorts. Our data demonstrated that both MS and MSEW paradigms did not produce reported behavioral anomalies. Therefore, MS paradigms in mice require further validation and modification. PMID:29302206

  17. The Effects of Prenatal and Early-Postnatal Exposure to Mexico's "Oportunidades" on Long-Term Cognitive Achievement

    ERIC Educational Resources Information Center

    Sanchez, Alonso

    2016-01-01

    It is well established that children's early life environments can have significant consequences on their long-term outcomes. Yet, there is still limited empirical evidence on the effects that being exposed during the prenatal and early postnatal periods to positive shocks, such as conditional cash transfers, has on long-term cognitive function.…

  18. Zinc and glutamine improve brain development in suckling mice subjected to early postnatal malnutrition.

    PubMed

    Ladd, Fernando V L; Ladd, Aliny A B L; Ribeiro, Antônio Augusto C M; Costa, Samuel B C; Coutinho, Bruna P; Feitosa, George André S; de Andrade, Geanne M; de Castro-Costa, Carlos Maurício; Magalhães, Carlos Emanuel C; Castro, Ibraim C; Oliveira, Bruna B; Guerrant, Richard L; Lima, Aldo Angelo M; Oriá, Reinaldo B

    2010-06-01

    The effect of zinc and glutamine on brain development was investigated during the lactation period in Swiss mice. Malnutrition was induced by clustering the litter size from 6-7 pups/dam (nourished control) to 12-14 pups/dam (undernourished control) following birth. Undernourished groups received daily supplementation with glutamine by subcutaneous injections starting at day 2 and continuing until day 14. Glutamine (100 mM, 40-80 microL) was used for morphological and behavioral studies. Zinc acetate was added in the drinking water (500 mg/L) to the lactating dams. Synaptophysin and myelin basic protein brain expressions were evaluated by immunoblot. Zinc serum and brain levels and hippocampal neurotransmitters were also evaluated. Zinc with or without glutamine improved weight gain as compared to untreated, undernourished controls. In addition, zinc supplementation improved cliff avoidance and head position during swim behaviors especially on days 9 and 10. Using design-based stereological methods, we found a significant increase in the volume of CA1 neuronal cells in undernourished control mice, which was not seen in mice receiving zinc or glutamine alone or in combination. Undernourished mice given glutamine showed increased CA1 layer volume as compared with the other groups, consistent with the trend toward increased number of neurons. Brain zinc levels were increased in the nourished and undernourished-glutamine treated mice as compared to the undernourished controls on day 7. Undernourished glutamine-treated mice showed increased hippocampal gamma-aminobutyric acid and synaptophysin levels on day 14. We conclude that glutamine or zinc protects against malnutrition-induced brain developmental impairments. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice

    PubMed Central

    Malloul, Hanaa; Mahdani, Ferdaousse M.; Bennis, Mohammed; Ba-M’hamed, Saadia

    2017-01-01

    Occupational exposure and sniffing of volatile organic solvents continue to be a worldwide health problem, raising the risk for teratogenic sequelae of maternal inhalant abuse. Real life exposures usually involve simultaneous exposures to multiple solvents, and almost all the abused solvents contain a mixture of two or more different volatile compounds. However, several studies examined the teratogenicity due to industrial exposure to a single volatile solvent but investigating the teratogenic potential of complex chemical mixture such as thinner remains unexplored. This study was undertaken to evaluate developmental neurotoxicity of paint thinner using a mouse model. Mated female mice (N = 21) were, therefore, exposed to repeated and brief inhalation episodes of 0, 300 or 600 ppm of thinner during the entire period of pregnancy. Females weigh was recorded and their standard fertility and reproductive parameters were assessed. After birth postnatal day 1 (PND1), offspring (N = 88) length and body weight were measured in a daily basis. At PND5, the pups were assessed for their postnatal growth, physical maturation, reflex development, neuromotor abilities, sensory function, activity level, anxiety, depression, learning and memory functions. At adulthood, structural changes of the hippocampus were examined by estimating the total volume of the dentate gyrus. Except one case of thinner induced abortion at the higher dose, our results showed that the prenatal exposure to the solvent did not cause any maternal toxicity or decrease in the viability of the offspring. Therefore, a lower birth weight, decrease in the litter size and delayed reflexes ontogeny were registered in prenatally exposed offspring to both 300 ppm and 600 ppm of thinner. In addition, prenatally exposure to thinner resulted in increased anxiolytic- and depression-like behaviors. In contrast, impaired learning and memory functions and decreased hippocampal dentate gyrus volume were revealed only in the

  20. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytesmore » and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.« less

  1. Selective deletion of Smad4 in postnatal germ cells does not affect spermatogenesis or fertility in mice.

    PubMed

    Hao, Xiao-Xia; Chen, Su-Ren; Tang, Ji-Xin; Li, Jian; Cheng, Jin-Mei; Jin, Cheng; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-07-01

    SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Screening Tool for Early Postnatal Prediction of Retinopathy of Prematurity in Preterm Newborns (STEP-ROP).

    PubMed

    Ricard, Caroline A; Dammann, Christiane E L; Dammann, Olaf

    2017-01-01

    Retinopathy of prematurity (ROP) is a disorder of the preterm newborn characterized by neurovascular disruption in the immature retina that may cause visual impairment and blindness. To develop a clinical screening tool for early postnatal prediction of ROP in preterm newborns based on risk information available within the first 48 h of postnatal life. Using data submitted to the Vermont Oxford Network (VON) between 1995 and 2015, we created logistic regression models based on infants born <28 completed weeks gestational age. We developed a model with 60% of the data and identified birth weight, gestational age, respiratory distress syndrome, non-Hispanic ethnicity, and multiple gestation as predictors of ROP. We tested the model in the remaining 40%, performed tenfold cross-validation, and tested the score in ELGAN study data. Of the 1,052 newborns in the VON database, 627 recorded an ROP status. Forty percent had no ROP, 40% had mild ROP (stages 1 and 2), and 20% had severe ROP (stages 3-5). We created a weighted score to predict any ROP based on the multivariable regression model. A cutoff score of 5 had the best sensitivity (95%, 95% CI 93-97), while maintaining a strong positive predictive value (63%, 95% CI 57-68). When applied to the ELGAN data, sensitivity was lower (72%, 95% CI 69-75), but PPV was higher (80%, 95% CI 77-83). STEP-ROP is a promising screening tool. It is easy to calculate, does not rely on extensive postnatal data collection, and can be calculated early after birth. Early ROP screening may help physicians limit patient exposure to additional risk factors, and may be useful for risk stratification in clinical trials aimed at reducing ROP. © 2017 S. Karger AG, Basel.

  3. Hepatic loss of survivin impairs postnatal liver development and promotes expansion of hepatic progenitor cells in mice.

    PubMed

    Li, Dan; Cen, Jin; Chen, Xiaotao; Conway, Edward M; Ji, Yuan; Hui, Lijian

    2013-12-01

    Hepatocytes possess a remarkable capacity to regenerate and reconstitute the parenchyma after liver damage. However, in the case of chronic injury, their proliferative potential is impaired and hepatic progenitor cells (HPCs) are activated, resulting in a ductular reaction known as oval cell response. Proapoptotic and survival signals maintain a precise balance to spare hepatocytes and progenitors from hyperplasia and cell death during regeneration. Survivin, a member of the family of inhibitor of apoptosis proteins (IAPs), plays key roles in the proliferation and apoptosis of various cell types. Here, we characterized the in vivo function of Survivin in regulating postnatal liver development and homeostasis using mice carrying conditional Survivin alleles. Hepatic perinatal loss of Survivin causes impaired mitosis, increased genome ploidy, and enlarged cell size in postnatal livers, which eventually leads to hepatocyte apoptosis and triggers tissue damage and inflammation. Subsequently, HPCs that retain genomic Survivin alleles are activated, which finally differentiate into hepatocytes and reconstitute the whole liver. By contrast, inducible ablation of Survivin in adult hepatocytes does not affect HPC activation and liver homeostasis during a long-life period. Perinatal Survivin deletion impairs hepatic mitosis in postnatal liver development, which induces HPC activation and reconstitution in the liver, therefore providing a novel HPC induction model. Copyright © 2013 by the American Association for the Study of Liver Diseases.

  4. The influence of early postnatal nutrition on retinopathy of prematurity in extremely low birth weight infants.

    PubMed

    Porcelli, Peter J; Weaver, R Grey

    2010-06-01

    Retinopathy of prematurity(ROP) is the most common serious ophthalmic disease in preterm infants. Human milk may provide a protective effect for ROP; however, beneficial effects of human milk preclude randomized trials. Therefore, we conducted a retrospective analysis comparing early postnatal nutrition with ROP development. Evaluate relationship between early postnatal nutriture and ROP surgery. Nutrition data was collected for inborn AGA infants, BW 700-1000 g. ROP surgery was the primary outcome variable. A single pediatric ophthalmologist supervised examinations. All infants received triweekly IM vitamin A as chronic lung disease prophylaxis (Tyson: NEJM, 1999). BW and gestational age were 867+/-85 g and 26.3+/-1.2 weeks (n=77, mean+/-1SD). ROP surgery infants(n=11) received more parenteral nutrition, 1648 mL, and less human milk, 13.8 mL/kg-day, and vitamin E, 1.4 mg/kg-day, during the second postnatal week. Human milk was a negative predictor for ROP surgery, odds ratio=0.94. Both groups met vitamin A recommendations; however, 74% was administered via IM injections. Neither group met vitamin E recommendations. Human milk feeding, parenteral nutrition volume and vitamin E intake were predictors for ROP surgery. IM vitamin A injections provided the majority of vitamin A; vitamin E administration was insufficient. Improving human milk feeding rates and vitamin dosing options may affect ROP surgery rates. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Corrales, Andrea; Parisotto, Eduardo B; Vidal, Verónica; García-Cerro, Susana; Lantigua, Sara; Diego, Marian; Wilhem Filho, Danilo; Sanchez-Barceló, Emilio J; Martínez-Cué, Carmen; Rueda, Noemí

    2017-09-15

    Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Estrogen-Dependent Proteolytic Cleavage of Semaphorin 4D and Plexin-B1 Enhances Semaphorin 4D-Induced Apoptosis during Postnatal Vaginal Remodeling in Pubescent Mice

    PubMed Central

    Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2014-01-01

    Around the fifth week after birth, the vaginal cavity in female mouse pups opens to the overlaying skin. This postnatal tissue remodeling of the genital tract occurs during puberty, and it largely depends upon hormonally induced apoptosis that mainly occurs in the epithelium at the lower part of the mouse vaginal cavity. Previously, we showed that most BALB/c mice lacking the class IV Semaphorin (Sema4D) develop imperforate vagina and hydrometrocolpos; therefore, we reasoned that the absence of Sema4D-induced apoptosis in vaginal epithelial cells may cause the imperforate vagina. Sema4D signals via the Plexin-B1 receptor; nevertheless detailed mechanisms mediating this hormonally triggered apoptosis are not fully documented. To investigate the estrogen-dependent control of Sema4D signaling during the apoptosis responsible for mouse vaginal opening, we examined structural and functional modulation of Sema4D, Plexin-B1, and signaling molecules by analyzing both wild-type and Sema4D−/− mice with or without ovariectomy. Both the release of soluble Sema4D and the conversion of Plexin-B1 by proteolytic processing in vaginal tissue peaked 5 weeks after birth of wild-type BALB/c mice at the time of vaginal opening. Estrogen supplementation of ovariectomized wild-type mice revealed that both the release of soluble Sema4D and the conversion of Plexin-B1 into an active form were estrogen-dependent and concordant with apoptosis. Estrogen supplementation of ovariectomized Sema4D−/− mice did not induce massive vaginal apoptosis in 5-week-old mice; therefore, Sema4D may be an essential apoptosis-inducing ligand that acts downstream of estrogen action in vaginal epithelium during this postnatal tissue remodeling. Analysis of ovariectomized mice also indicated that Sema4D contributed to estrogen-dependent dephosphorylation of Akt and ERK at the time of vaginal opening. Based on our results, we propose that apoptosis in vaginal epithelium during postnatal vaginal opening is

  7. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    PubMed

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development. Copyright © 2015. Published by Elsevier Inc.

  8. Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice.

    PubMed

    Kido, Tatsuo; Sun, Zhaoyu; Lau, Yun-Fai Chris

    2017-06-23

    Sexual dimorphisms are prevalent in development, physiology and diseases in humans. Currently, the contributions of the genes on the male-specific region of the Y chromosome (MSY) in these processes are uncertain. Using a transgene activation system, the human sex-determining gene hSRY is activated in the single-cell embryos of the mouse. Pups with hSRY activated (hSRY ON ) are born of similar sizes as those of non-activated controls. However, they retard significantly in postnatal growth and development and all die of multi-organ failure before two weeks of age. Pathological and molecular analyses indicate that hSRY ON pups lack innate suckling activities, and develop fatty liver disease, arrested alveologenesis in the lung, impaired neurogenesis in the brain and occasional myocardial fibrosis and minimized thymus development. Transcriptome analysis shows that, in addition to those unique to the respective organs, various cell growth and survival pathways and functions are differentially affected in the transgenic mice. These observations suggest that ectopic activation of a Y-located SRY gene could exert male-specific effects in development and physiology of multiple organs, thereby contributing to sexual dimorphisms in normal biological functions and disease processes in affected individuals.

  9. PEPCK-C reexpression in the liver counters neonatal hypoglycemia in Pck1 del/del mice, unmasking role in non-gluconeogenic tissues.

    PubMed

    Semakova, Jana; Hyroššová, Petra; Méndez-Lucas, Andrés; Cutz, Ernest; Bermudez, Jordi; Burgess, Shawn; Alcántara, Soledad; Perales, José C

    2017-02-01

    Whole body cytosolic phosphoenolpyruvate carboxykinase knockout (PEPCK-C KO) mice die early after birth with profound hypoglycemia therefore masking the role of PEPCK-C in adult, non-gluconeogenic tissues where it is expressed. To investigate whether PEPCK-C deletion in the liver was critically responsible for the hypoglycemic phenotype, we reexpress this enzyme in the liver of PEPCK-C KO pups by early postnatal administration of PEPCK-C-expressing adenovirus. This maneuver was sufficient to partially rescue hypoglycemia and allow the pups to survive and identifies the liver as a critical organ, and hypoglycemia as the critical pathomechanism, leading to early postnatal death in the whole-body PEPCK-C knockout mice. Pathology assessment of survivors also suggest a possible role for PEPCK-C in lung maturation and muscle metabolism.

  10. [Effects of postnatal lambda-cyhalothrin exposure on synaptic proteins in ICR mouse brain].

    PubMed

    Bao, Xun-Di; Wang, Qu-Nan; Li, Fang-Fang; Chai, Xiao-Yu; Gao, Ye

    2011-04-01

    To evaluate the influence on the synaptic protein expression in different brain regions of ICR mice after lambda-cyhalothrin (LCT) exposure during postnatal period. Two male and 4 female healthy ICR mice were put in one cage. It was set as pregnancy if vaginal plug was founded. Offspring were divided into 5 groups randomly, and exposed to LCT (0.01% DMSO solution) at the doses of 0.1, 1.0 and 10.0 mg/kg by intragastric rout every other day from postnatal days (PND) 5 to PND13, control animals were treated with normal saline or DMSO by the same route. The brains were removed from pups on PND 14, the synaptic protein expression levels in cortex, hippocampus and striatum were measured by western blot. GFAP levels of cortex and hippocampus in the LCT exposure group increased with doses, as compared with control group (P < 0.05), while Tuj protein expression did not change significantly in the various brain regions of ICR mice. GAP-43 protein expression levels in the LCT exposed mouse hippocampus and in female ICR mouse cortex increased with doses, as compared with control group (P < 0.05). Presynaptic protein (Synapsin I) expression levels did not change obviously in various brain regions. However, postsynaptic density protein 95 (PSD95) expression levels of the hippocampus and striatum in male offspring of 10.0 mg/kg LCT group, of cortex of female LCT groups, and of female offspring in all exposure groups, of striatum, in 1.0 or 10.0 mg/kg LCT exposure groups significantly decreased (P < 0.05). Early postnatal exposure to LCT affects synaptic protein expression. These effects may ultimately affect the construction of synaptic connections.

  11. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, R. Clark; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ 85721; BIO5 Institute, University of Arizona, Tucson, AZ 85721

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less

  12. Early postnatal hyperglycaemia is a risk factor for treatment-demanding retinopathy of prematurity.

    PubMed

    Slidsborg, Carina; Jensen, Louise Bering; Rasmussen, Steen Christian; Fledelius, Hans Callø; Greisen, Gorm; Cour, Morten de la

    2018-01-01

    To investigate whether neonatal hyperglycaemia in the first postnatal week is associated with treatment-demanding retinopathy of prematurity (ROP). This is a Danish national, retrospective, case-control study of premature infants (birth period 2003-2006). Three national registers were searched, and data were linked through a unique civil registration number. The study sample consisted of 106 cases each matched with two comparison infants. Matching criteria were gestational age (GA) at birth, ROP not registered and born at the same neonatal intensive care unit. Potential 'new' risk factors were analysed in a multivariate logistic regression model, while adjusted for previously recognised risk factors (ie, GA at birth, small for gestational age, multiple birth and male sex). Hospital records of 310 preterm infants (106 treated; 204 comparison infants) were available. Nutrition in terms of energy (kcal/kg/week) and protein (g/kg/week) given to the preterm infants during the first postnatal week were statistically insignificant between the study groups (Mann-Whitney U test; p=0.165/p=0.163). Early postnatal weight gain between the two study groups was borderline significant (t-test; p=0.047). Hyperglycaemic events (indexed value) were statistically significantly different between the two study groups (Mann-Whitney U test; p<0.001). Hyperglycaemia was a statistically independent risk factor (OR: 1.022; 95% CI 1.002 to 1.042; p=0.031). An independent association was found between the occurrence of hyperglycaemic events during the first postnatal week and later development of treatment-demanding ROP, when adjusted for known risk factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. [Gender-dependent effects of histone deacetylase inhibitor sodium valproate on early olfactory learning in 129Sv mice].

    PubMed

    Burenkova, O V; Aleksandrova, E A; Zaraĭskaia, I Iu

    2013-02-01

    In the brain, histone acetylation underlies both learning and the maintenance of long-term sustained effects of early experience which is further epigenetically inherited. However, the role of acetylation in learning previously has only been studied in adult animals: high level of learning could be dependent on high levels of histone H3 acetylation in the brain. The role of acetylation in the mechanisms of early learning has not been studied. In the present work, we were interested whether histone deacetylase inhibitor sodium valproate which increases the level of histone H3 acetylation will affect early olfactory discrimination learning in 8-day-old pups of 129Sv mice that are characterized by low efficiency of learning with imitation of maternal grooming. Multiple valproate injections from 3rd to 6th postnatal day had a gender-dependent effect: learning was selectively improved in male but not in female pups. In the female pups, learning improvement was observed after multiple injections of saline. Possible epigenetic mechanisms underlying these sex differences are discussed.

  14. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds.

    PubMed

    Wang, Yunfeng; Sun, Yu; Chang, Qing; Ahmad, Shoeb; Zhou, Binfei; Kim, Yeunjung; Li, Huawei; Lin, Xi

    2013-01-01

    Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  15. The Mass1frings mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC

    PubMed Central

    Johnson, K.R.; Zheng, Q.Y.; Weston, M.D.; Ptacek, L.J.; Noben-Trauth, K.

    2010-01-01

    The human ortholog of the gene responsible for audiogenic seizure susceptibility in Frings and BUB/BnJ mice (mouse gene symbol Mass1) recently was shown to underlie Usher syndrome type IIC (USH2C). Here we report that the Mass1frings mutation is responsible for the early onset hearing impairment of BUB/BnJ mice. We found highly significant linkage of Mass1 with ABR threshold variation among mice from two backcrosses involving BUB/BnJ mice with mice of strains CAST/EiJ and MOLD/RkJ. We also show an additive effect of the Cdh23 locus in modulating the progression of hearing loss in backcross mice. Together, these two loci account for more than 70% of the total ABR threshold variation among the backcross mice at all ages. The modifying effect of the strain-specific Cdh23ahl variant may account for the hearing and audiogenic seizure differences observed between Frings and BUB/BnJ mice, which share the Mass1frings mutation. During postnatal cochlear development in BUB/BnJ mice, stereocilia bundles develop abnormally and remain immature and splayed into adulthood, corresponding with the early onset hearing impairment associated with Mass1frings. Progressive base–apex hair cell degeneration occurs at older ages, corresponding with the age-related hearing loss associated with Cdh23ahl. The molecular basis and pathophysiology of hearing loss suggest BUB/BnJ and Frings mice as models to study cellular and molecular mechanisms underlying USH2C auditory pathology. PMID:15820310

  16. Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice.

    PubMed

    Lopez, Marcelo F; Doremus-Fitzwater, Tamara L; Becker, Howard C

    2011-06-01

    Experience with stress situations during early development can have long-lasting effects on stress- and anxiety-related behaviors. Importantly, this can also favor drug self-administration. These studies examined the effects of chronic social isolation and/or variable stress experiences during early development on subsequent voluntary ethanol intake in adult male and female C57BL/6J mice. The experiments were conducted to evaluate the effect of chronic isolation between weaning and adulthood (Experiment 1), chronic isolation during adulthood (Experiment 2), and chronic variable stress (CVS) alone or in combination with chronic social isolation between weaning and adulthood (Experiment 3) on subsequent voluntary ethanol intake. Mice were born in our facility and were separated into two housing conditions: isolate housed (one mouse/cage) or group housed (four mice/cage) according to sex. Separate groups were isolated for 40 days starting either at time of weaning postnatal day 21 (PD 21) (early isolation, Experiments 1 and 3) or at adulthood (PD 60: late isolation, Experiment 2). The effects of housing condition on subsequent ethanol intake were assessed starting at around PD 65 in Experiments 1 and 3 or PD 105 days in Experiment 2. In Experiment 3, starting at PD 32, isolate-housed and group-housed mice were either subjected to CVS or left undisturbed. CVS groups experienced random presentations of mild stressors for 14 days, including exposure to an unfamiliar open field, restraint, physical shaking, and forced swim, among others. All mice were tested for ethanol intake for 14 days using a two-bottle choice (ethanol 15% vol/vol vs. water) for a 2-h limited access procedure. Early social isolation resulted in greater ethanol intake compared with the corresponding group-housed mice (Experiment 1). In contrast, social isolation during adulthood (late isolation) did not increase subsequent ethanol intake compared with the corresponding group-housed mice (Experiment 2

  17. Early post-natal neuroactive steroid manipulation modulates ondansetron effects on initial periods of alcohol consumption in rats.

    PubMed

    Bartolomé, Iris; Llidó, Anna; Darbra, Sònia; Pallarès, Marc

    2018-06-21

    Neuroactive steroids (NS) such as allopregnanolone are crucial for brain development and adult behaviour. Early post-natal alterations of NS by administering finasteride induce a decrease in the sensitivity to stimulant effects of low alcohol doses, an increase in alcohol consumption, and a decrease in ventrostriatal dopamine and serotonin levels. The aim of the present study is to observe if the effects of the 5HT3 receptor antagonist ondansetron on initial alcohol consumption are modulated by post-natal NS manipulation. For this purpose, allopregnanolone, finasteride, or vehicle was injected from day 5 to 9. In adulthood, a novel object preference test was carried out in order to detect a possible novelty-seeking pattern in our animals, which has been related to vulnerability to drug abuse. The subjects then had access to two bottles (alcohol or control solutions) one hour daily for two consecutive weeks. Ondansetron (0.01 mg/kg, 0.1 mg/kg or vehicle) was administered before the hour of consumption in the initial phase (days 1, 2, 3) of the procedure, and after prolonged alcohol intake (days 11, 12, 13). Results indicated that finasteride animals showed a higher preference to explore the new object, as well as a higher alcohol consumption than the rest of the groups. Moreover, 0.1 mg/kg of ondansetron decreased alcohol consumption, but only in the post-natal finasteride group, suggesting a possible increase in 5HT3 receptor sensitivity in these animals. In conclusion, NS manipulation in crucial stages of development, such as early post-natal periods, seems to play an important role on the effects of ondansetron on alcohol intake and in the vulnerability to develop drug use or abuse. Copyright © 2018. Published by Elsevier Inc.

  18. Early Exposure to Intermediate-Frequency Magnetic Fields Alters Brain Biomarkers without Histopathological Changes in Adult Mice

    PubMed Central

    Win-Shwe, Tin-Tin; Ohtani, Shin; Ushiyama, Akira; Kunugita, Naoki

    2015-01-01

    Recently we have reported that intermediate-frequency magnetic field (IF-MF) exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have not yet been clarified. In the present study, we investigated the effect of IF-MF exposure during development on neurological and immunological markers in the mouse hippocampus in 3- and 7-week-old male mice. Pregnant C57BL/6J mice were exposed to IF-MF (21 kHz, 3.8 mT) for one hour per day from organogenesis period day 7 to 17. At adolescence, some IF-MF-exposed mice were further divided into exposure, recovery, and sham-exposure groups. The adolescent-exposure groups were exposed again to IF-MF from postnatal day 27 to 48. The expression of mRNA in the hippocampi was examined using a real-time RT-PCR method, and microglia activation was examined by immunohistochemical analysis. The expression levels of NR1 and NR2B as well as transcription factors (CaMKIV, CREB1), inflammatory mediators (COX2, IL-1 β,TNF-α), and the oxidative stress marker heme-oxygenase (HO)-1 were significantly increased in the IF-MF-exposed mice, compared with the control group, in the 7-week-old mice, but not in the 3-week-old mice. Microglia activation was not different between the control and other groups. This study provides the first evidence that early exposure to IF-MF reversibly affects the NMDA receptor, its related signaling pathways, and inflammatory mediators in the hippocampus of young adult mice; these changes are transient and recover after termination of exposure without histopathological changes. PMID:25913185

  19. Bone-specific gene expression patterns and whole bone tissue of female mice are programmed by early life exposure to soy isoflavones and folic acid.

    PubMed

    Kaludjerovic, Jovana; Ward, Wendy E

    2015-10-01

    Female mice exposed to soy isoflavones (ISO) during early postnatal life have improved bone outcomes at adulthood. Since long-lasting effects may be mediated by DNA methylation, we hypothesized that providing supplemental folic acid (FA), a methyl donor, during early life, would enhance the positive effect of ISO to bone health. Bone-specific gene expression patterns were studied to understand potential mechanisms. CD-1 dams (n=36) were randomized to adequate or supplemental levels of FA (2 or 8 mg/kg diet) during pregnancy and lactation, and offspring received corn oil or ISO (7 mg/kg body weight/d) from postnatal day 1 to 10. From weaning, pups were fed an adequate FA diet and were studied to 4 months of age. Female offspring exposed to supplemental FA+ISO had higher bone mineral density (BMD), trabecular connectivity and peak load at the lumbar spine compared to females exposed to adequate FA. Female offspring exposed to adequate FA+ISO or supplemental FA had higher (P<.05) BMD and greater resistance to fracture at the lumbar spine and the femur; higher trabecular connectivity at the lumbar spine; and lower expression of DNA methyltransferase 3a (Dnmt3a) and neuropeptide Y (NPY) in the femur compared to mice exposed to adequate FA. In addition, only mice exposed to adequate FA+ISO had microstructural improvements at the femur neck and higher serum osteoprotegrin (OPG) and insulin growth factor-I (IGF-I). In summary, exposure to supplemental FA did not enhance the positive effect of ISO in bone. However, exposure to adequate FA+ISO or supplemental FA improved bone at least in part by suppressing Dnmt3a and NPY. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb

    PubMed Central

    2017-01-01

    Abstract Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB. PMID:28955723

  1. Deficits in adult prefrontal cortex neurons and behavior following early post-natal NMDA antagonist treatment.

    PubMed

    Coleman, Leon G; Jarskog, L Fredrik; Moy, Sheryl S; Crews, Fulton T

    2009-09-01

    The prefrontal cortex (PFC) is associated with higher cognitive functions including attention and working memory and has been implicated in the regulation of impulsivity as well as the pathology of complex mental illnesses. N-methyl D-aspartate (NMDA) antagonist treatment with dizocilpine induces cell death which is greatest in the frontal cortex on post-natal day seven (P7), however the long-term structural and behavioral effects of this treatment are unknown. This study investigates both the acute neurotoxicity of P7 dizocilpine and the persistent effects of this treatment on pyramidal cells and parvalbumin interneurons in the adult PFC, a brain region involved in the regulation of impulsivity. Dizocilpine treatment on P7 increased cleaved caspase-3 immunoreactivity (IR) in the PFC on P8. In adult mice (P82), P7 dizocilpine treatment resulted in 50% fewer parvalbumin-positive interneurons (p<0.01) and 42% fewer layer V pyramidal neurons (p<0.01) in the PFC. Double immunohistochemistry revealed cleaved caspase-3 IR in both GAD67 IR interneurons and GAD67 (-) neurons. Following dizocilpine treatment at P7, adults showed reduced time in the center of the open field suggesting increased anxiety-like behavior. These findings indicate that early brain insults affecting glutamatergic neurotransmission lead to persistent brain pathology that could contribute to impulsivity and cognitive dysfunction.

  2. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    PubMed Central

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  3. Developmental Injury to the Cerebellar Cortex Following Hydroxyurea Treatment in Early Postnatal Life: An Immunohistochemical and Electron Microscopic Study.

    PubMed

    Martí, Joaquín; Molina, Vanesa; Santa-Cruz, M C; Hervás, José P

    2017-02-01

    Postnatal development of the cerebellar cortex was studied in rats administered with a single dose (2 mg/g) of the cytotoxic agent hydroxyurea (HU) on postnatal day (P) 9 and collected at appropriate times ranging from 6 h to 45 days. Quantification of several parameters such as the density of pyknotic, mitotic, BrdU-positive, and vimentin-stained cells revealed that HU compromises the survival of the external granular layer (EGL) cells. Moreover, vimentin immunocytochemistry revealed overexpression and thicker immunoreactive glial processes in HU-treated rats. On the other hand, we also show that HU leads to the activation of apoptotic cellular events, resulting in a substantial number of dying EGL cells, as revealed by TUNEL staining and at the electron microscope level. Additionally, we quantified several features of the cerebellar cortex of rats exposed to HU in early postnatal life and collected in adulthood. Data analysis indicated that the analyzed parameters were less pronounced in rats administered with this agent. Moreover, we observed several alterations in the cerebellar cortex cytoarchitecture of rats injected with HU. Anomalies included ectopic placement of Purkinje cells and abnormities in the dendritic arbor of these macroneurons. Ectopic granule cells were also found in the molecular layer. These findings provide a clue for investigating the mechanisms of HU-induced toxicity during the development of the central nervous system. Our results also suggest that it is essential to avoid underestimating the adverse effects of this hydroxylated analog of urea when administered during early postnatal life.

  4. Sevoflurane-induced memory impairment in the postnatal developing mouse brain.

    PubMed

    Lu, Zhijun; Sun, Jihui; Xin, Yichun; Chen, Ken; Ding, Wen; Wang, Yujia

    2018-05-01

    The aim of the present study was to confirm that sevoflurane induces memory impairment in the postnatal developing mouse brain and determine its mechanism of action. C57BL/6 mice 7 days old were randomly assigned into a 2.6% sevoflurane (n=68), a 1.3% sevoflurane (n=68) and a control (n=38) group. Blood gas analysis was performed to evaluate hypoxia and respiratory depression during anesthesia in 78 mice. Measurements for expression of caspase-3 by immunohistochemistry, cleavage of poly adenosine diphosphate-ribose polymerase (PARP) by western blotting, as well as levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor type 2 (Ntrk2), pro-BDNF, p75 neurotrophin receptor (p75NTR) and protein kinase B (PKB/Akt) by enzyme-linked immunosorbent assay were performed in the hippocampus of 12 mice from each group. A total of 60 mice underwent the Morris water maze (MWM) test. Results from the MWM test indicated that the time spent in the northwest quadrant and platform site crossovers by mice in the 2.6 and 1.3% sevoflurane groups was significantly lower than that of the control group. Meanwhile, levels of caspase-3 and cleaved PARP in the 2.6 and 1.3% sevoflurane groups were significantly higher than that in the control group. Levels of pro-BDNF and p75NTR were significantly increased and the level of PKB/Akt was significantly decreased following exposure to 2.6% sevoflurane. Finally, the memory of postnatal mice was impaired by sevoflurane, this was determined using a MWM test. Therefore, the results of the current study suggest that caspase-3 induced cleavage of PARP, as well as pro-BDNF, p75NTR and PKB/Akt may be important in sevoflurane-induced memory impairment in the postnatal developing mouse brain.

  5. Dwarfism and early death in mice lacking C-type natriuretic peptide

    PubMed Central

    Chusho, Hideki; Tamura, Naohisa; Ogawa, Yoshihiro; Yasoda, Akihiro; Suda, Michio; Miyazawa, Takashi; Nakamura, Kenji; Nakao, Kazuki; Kurihara, Tatsuya; Komatsu, Yasato; Itoh, Hiroshi; Tanaka, Kiyoshi; Saito, Yoshihiko; Katsuki, Motoya; Nakao, Kazuwa

    2001-01-01

    Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia. PMID:11259675

  6. Anterograde Tracing Method using DiI to Label Vagal Innervation of the Embryonic and Early Postnatal Mouse Gastrointestinal Tract

    PubMed Central

    Murphy, Michelle C.; Fox, Edward A.

    2007-01-01

    The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations, or pharmacological manipulations. Therefore, a method using 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development. PMID:17418900

  7. Developmental and Adult GAP-43 Deficiency in Mice Dynamically Alters Hippocampal Neurogenesis and Mossy Fiber Volume

    PubMed Central

    Latchney, Sarah E.; Masiulis, Irene; Zaccaria, Kimberly J.; Lagace, Diane C.; Powell, Craig M.; McCasland, James S.; Eisch, Amelia J.

    2014-01-01

    Growth Associated Protein-43 (GAP-43) is a pre-synaptic protein that plays key roles in axonal growth and guidance and in modulating synapse formation. Previous work has demonstrated that mice lacking one allele of this gene [GAP-43(+/-) mice] exhibit hippocampal structural abnormalities and impaired spatial learning and stress-induced behavioral withdrawal and anxiety (Zaccaria et al., 2010), behaviors that are dependent on proper hippocampal circuitry and function. Given the correlation between hippocampal function, synaptic connectivity, and neurogenesis, we tested if behaviorally-naïve GAP-43(+/-) mice had alterations in either neurogenesis or synaptic connectivity in the hippocampus during early postnatal development and young adulthood, and following behavior testing in older adults. To test our hypothesis, we examined hippocampal cell proliferation (Ki67), number of immature neuroblasts (DCX), and mossy fiber volume (synaptoporin) in behaviorally-naïve postnatal (P) day 9 (P9), P26, and behaviorally-experienced 5-7 month old GAP-43(+/-) and (+/+) littermate mice. P9 GAP-43(+/-) mice had fewer Ki67+ and DCX+ cells compared to (+/+) mice, particularly in the posterior dentate gyrus, and smaller mossy fiber volume in the same region. In young adulthood, however, male GAP-43(+/-) mice had more Ki67+ and DCX+ cells and greater mossy fiber volume in the posterior dentate gyrus relative to male (+/+). These increases were not seen in females. In 5-7 month old GAP-43(+/-) mice whose behaviors were the focus of our prior publication (Zaccaria et al., 2010), there was no global change in number of proliferating or immature neurons relative to (+/+) mice. However, more detailed analysis revealed fewer proliferative DCX+ cells in the anterior dentate gyrus of male GAP-43(+/-) mice compared to male (+/+) mice. This reduction was not observed in females. These results suggest that young GAP-43(+/-) mice have decreased hippocampal neurogenesis and synaptic connectivity

  8. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Adolescent fluoxetine treatment decreases the effects of neonatal immune activation on anxiety-like behavior in mice.

    PubMed

    Majidi-Zolbanin, Jafar; Azarfarin, Maryam; Samadi, Hanieh; Enayati, Mohsen; Salari, Ali-Akbar

    2013-08-01

    Experimental studies have shown conflicting effects of neonatal infection on anxiety-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis activity in adult rats. We investigated for the first time whether neonatal exposure to lipopolysaccharide (LPS) is associated with increased levels of anxiety-like behaviors in mice. Moreover, there have been several studies showing that adolescent fluoxetine (FLX) treatment can influence HPA axis development and prevent occurrence of psychiatric disorders induced by common early-life insults. In the present study, we also investigated the effects of adolescent FLX exposure following neonatal immune activation on anxiety-like behavior in mice. Neonatal mice were treated to LPS (50μg/kg) or saline on postnatal days (PND) 3 and 5, then male and female mice of both neonatal intervention groups received oral administration of FLX (5 and 10mg/kg/day) or water via regular drinking bottles during the adolescent period (PNDs 35-65). The results showed that postnatal immune challenge increased anxiety-like behavior in the open field, elevated plus-maze and light-dark box in adult mice (PND 90). Furthermore, the adolescent FLX treatment inhibited the anxiety-like behavior induced by neonatal infection in both sexes. However, this study indicates the negative effects of the FLX on normal behavioral symptoms in male control mice. Taken together, the current data provide experimental evidence that neonatal infection increases anxiety levels in male and female mice in adulthood. Additionally, the findings of this study support the hypothesis that an early pharmacological intervention with FLX may be an effective treatment for reducing the behavioral abnormalities induced by common early-life insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chronic Postnatal Stress Induces Depressive-like Behavior in Male Mice and Programs second-Hit Stress-Induced Gene Expression Patterns of OxtR and AvpR1a in Adulthood.

    PubMed

    Lesse, Alexandra; Rether, Kathy; Gröger, Nicole; Braun, Katharina; Bock, Jörg

    2017-08-01

    Chronic stress (CS) during early life represents a major risk factor for the development of mental disorders, including depression. According to the Two/Multiple-Hit hypothesis, the etiology of neuropsychiatric disorders usually involves multiple stressors experienced subsequently during different phases of life. However, the molecular and cellular mechanisms modulating neuronal and behavioral changes induced by multiple stress experiences are just poorly understood. Since the oxytocinergic and vasopressinergic systems are neuroendocrine modulators involved in environmentally driven adaptations of stress sensitivity we hypothesized that postnatal CS programs oxytocinergic and vasopressinergic receptor expression changes in response to a second stress exposure in young adulthood. First we investigated if postnatal CS (maternal separation + social isolation) induces depressive-like behavior and alters oxytocin receptor (OxtR) and arginine vasopressin receptor type 1a (AvpR1a) gene expression in the hippocampus (HC) of male mice and (2) if a second single stressor (forced swimming, FS) in young adulthood affects gene expression of OxtR and AvpR1a at adulthood dependent on CS pre-experience. We found that postnatal CS induced depressive-like behavior and enhanced AvpR1a expression in HC at young adulthood. Moreover, in line with our hypothesis, only combined stress exposure (CS + FS), but not CS or FS alone, resulted in increased gene expression of OxtR in HC at adulthood. In contrast, AvpR1a expression was decreased in both adult FS and CS + FS animals. Overall, our results provide evidence that CS programs neuroendocrine systems and thereby influences stress responses in later life periods.

  11. Early-life estrogen exposure and uterine pathogenesis: ?A model for gene-environment interactions

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed on postnatal day (PND) 1-5 to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. ...

  12. Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice.

    PubMed

    Iso, Hiroyuki; Simoda, Shigero; Matsuyama, Tomohiro

    2007-04-16

    Four groups of male C57BL/6 mice were reared differing combinations of the two environments from 3 to 11 weeks after birth. At 12 and 13 weeks they were assessed by measures of behaviour and learning: open-field activity, auditory startle reflex and prepulse inhibition, water maze learning, and passive avoidance. Another four groups of mice reared under these varying conditions were examined for generation of neurons in hippocampus and cerebral cortex using bromodeoxyuridine (BrdU) at 12 weeks. Enriched (EE) and impoverished (PP) groups were housed in their respective environment for 8 weeks, enriched-impoverished (EP) and impoverished-enriched (PE) mice respectively were reared for 6 weeks in the first-mentioned environment and then for 2 weeks in the second. PP and EP mice showed hyperactivity, greater startle amplitude and significantly slower learning in a water maze than EE or PE animals, and also showed a memory deficit in a probe test, avoidance performance did not differ. Neural generation was greater in the EE and PE than PP and EP groups, especially in the hippocampus. These results suggest that environmental change critically affects behavioural and anatomic brain development, even if brief. In these mice, the effect of unfavourable early experience could be reversed by a later short of favourable experience.

  13. Telomere length dynamics differ in foetal and early post-natal human leukocytes in a longitudinal study.

    PubMed

    Holmes, Denise K; Bellantuono, Ilaria; Walkinshaw, Steve A; Alfirevic, Zarko; Johnston, Tracey A; Subhedar, Nimish V; Chittick, Rachel; Swindell, Richard; Wynn, Robert F

    2009-06-01

    Haemopoietic stem cells (HSC) undergo a process of self renewal to constantly maintain blood cell turnover. However, it has become apparent that adult HSC lose their self-renewal ability with age. Telomere shortening in peripheral blood leukocytes has been seen to occur with age and it has been associated with loss of HSC proliferative capacity and cellular ageing. In contrast foetal HSC are known to have greater proliferative capacity than post-natal stem cells. However it is unknown whether they undergo a similar process of telomere shortening. In this study we show a more accentuated rate of telomere loss in leukocytes from pre term infants compared to human foetuses of comparable age followed longitudinally for 8-12 weeks in a longitudinal study. Our results point to a difference in HSC behaviour between foetal and early postnatal life which is independent of age but may be influenced by events at birth itself.

  14. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues.

    PubMed

    Abbott, Barbara D; Wood, Carmen R; Watkins, Andrew M; Tatum-Gibbs, Katoria; Das, Kaberi P; Lau, Christopher

    2012-07-01

    PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARα is required for PFOA-induced developmental toxicity. In this study, pregnant CD-1 mice were dosed orally from GD1 to 17 with water or 5mg PFOA/kg to examine PPARα, PPARβ, and PPARγ expression and profile the effects of PFOA on PPAR-regulated genes. Prenatal and postnatal liver, heart, adrenal, kidney, intestine, stomach, lung, spleen, and thymus were collected at various developmental ages. RNA and protein were examined using qPCR and Western blot analysis. PPAR expression varied with age in all tissues, and in liver PPARα and PPARγ expression correlated with nutritional changes as the pups matured. As early as GD14, PFOA affected expression of genes involved in lipid and glucose homeostatic control. The metabolic disruption produced by PFOA may contribute to poor postnatal survival and persistent weight deficits of CD-1 mouse neonates. Published by Elsevier Inc.

  15. Postnatal Ablation of Synaptic Retinoic Acid Signaling Impairs Cortical Information Processing and Sensory Discrimination in Mice.

    PubMed

    Park, Esther; Tjia, Michelle; Zuo, Yi; Chen, Lu

    2018-06-06

    Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing. SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional

  16. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice.

    PubMed

    McGrath-Morrow, Sharon A; Hayashi, Madoka; Aherrera, Angela; Lopez, Armando; Malinina, Alla; Collaco, Joseph M; Neptune, Enid; Klein, Jonathan D; Winickoff, Jonathan P; Breysse, Patrick; Lazarus, Philip; Chen, Gang

    2015-01-01

    Electronic cigarette (E-cigarettes) emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth. Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG) or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI) method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml). After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (p<.054 trial 1; p<.006 trial 2). These studies indicate that exposure to E-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.

  17. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice.

    PubMed

    Nakamura, Ryo; Koshiba-Takeuchi, Kazuko; Tsuchiya, Megumi; Kojima, Mizuyo; Miyazawa, Asuka; Ito, Kohei; Ogawa, Hidesato; Takeuchi, Jun K

    2016-05-01

    Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM-associated factor 60c), a component of ATP-dependent chromatin-remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates. © 2016 Japanese Society of Developmental Biologists.

  18. Postnatal establishment of allelic Gαs silencing as a plausible explanation for delayed onset of parathyroid hormone-resistance due to heterozygous Gαs disruption

    PubMed Central

    Turan, Serap; Fernandez-Rebollo, Eduardo; Aydin, Cumhur; Zoto, Teuta; Reyes, Monica; Bounoutas, George; Chen, Min; Weinstein, Lee S.; Erben, Reinhold G.; Marshansky, Vladimir; Bastepe, Murat

    2013-01-01

    Pseudohypoparathyroidism type-Ia (PHP-Ia), characterized by renal proximal tubular resistance to parathyroid hormone (PTH), results from maternal mutations of GNAS that lead to loss of Gαs activity. Gαs expression is paternally silenced in the renal proximal tubule, and this genomic event is critical for the development of PTH-resistance, as patients display impaired hormone action only if the mutation is inherited maternally. The primary clinical finding of PHP-Ia is hypocalcemia, which can lead to various neuromuscular defects including seizures. PHP-Ia patients frequently do not present with hypocalcemia until after infancy, but it has remained uncertain whether PTH-resistance occurs in a delayed fashion. Analyzing reported cases of PHP-Ia with documented GNAS mutations and mice heterozygous for disruption of Gnas, we herein determined that the manifestation of PTH-resistance caused by the maternal loss of Gαs, i.e. hypocalcemia and elevated serum PTH, occurs after early postnatal life. To investigate whether this delay could reflect gradual development of paternal Gαs silencing, we then analyzed renal proximal tubules isolated by laser capture microdissection from mice with either maternal or paternal disruption of Gnas. Our results revealed that, whereas expression of Gαs mRNA in this tissue is predominantly from the maternal Gnas allele at weaning (three-weeks postnatal) and in adulthood, the contributions of the maternal and paternal Gnas alleles to Gαs mRNA expression are equal at postnatal day 3. In contrast, we found that paternal Gαs expression is already markedly repressed in brown adipose tissue at birth. Thus, the mechanisms silencing the paternal Gαs allele in renal proximal tubules are not operational during early postnatal development, and this finding correlates well with the latency of PTH-resistance in patients with PHP-Ia. PMID:23956044

  19. [Effects of postnatal growth retardation on early neurodevelopment in premature infants with intrauterine growth retardation].

    PubMed

    Cai, Yue-Ju; Song, Yan-Yan; Huang, Zhi-Jian; Li, Jian; Qi, Jun-Ye; Xiao, Xu-Wen; Wang, Lan-Xiu

    2015-09-01

    To study the effects of postnatal growth retardation on early neurodevelopment in premature infants with intrauterine growth retardation (IUGR). A retrospective analysis was performed on the clinical data of 171 premature infants who were born between May 2008 and May 2012 and were followed up until a corrected gestational age of 6 months. These infants were classified into two groups: IUGR group (n=40) and appropriate for gestational age (AGA) group (n=131). The growth retardation rates at the corrected gestational ages of 40 weeks, 3 months, and 6 months, as well as the neurodevelopmental outcome (evaluated by Gesell Developmental Scale) at corrected gestational ages of 3 and 6 months, were compared between the two groups. The growth retardation rate in the IUGR group was significantly higher than in the AGA group at the corrected gestational ages of 40 weeks, 3 months, and 6 months. All five developmental quotients evaluated by Gesell Developmental Scale (gross motor, fine motor, language, adaptability and individuality) in the IUGR group were significantly lower than in the AGA group at the corrected gestational ages of 3 months. At the corrected gestational age of 6 months, the developmental quotients of fine motor and language in the IUGR group were significantly lower than in the AGA group, however, there were no significant differences in the developmental quotients of gross motor, adaptability and individuality between the two groups. All five developmental quotients in IUGR infants with catch-up lag in weight were significantly lower than in IUGR and AGA infants who had caught up well. Growth retardation at early postnatal stages may adversely affect the early neurodevelopment in infants with IUGR.

  20. Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus.

    PubMed

    Liu, Na; He, Shan; Yu, Xiang

    2012-01-01

    The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE). Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2) at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95) and receptor proteins (GluR2 and GABA(A)Rγ2) of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.

  1. Active retinitis in an infant with postnatally acquired cytomegalovirus infection.

    PubMed

    Piersigilli, F; Catena, G; De Gasperis, M R; Lozzi, S; Auriti, C

    2012-07-01

    Congenital cytomegalovirus (CMV) is frequently associated with active retinitis. In contrast, in the immunocompetent neonate with postnatally acquired CMV infection retinitis is rarely present and usually does not progress. We describe the case of an infant with postnatal CMV infection and active retinitis diagnosed at 20 days of life. Owing to the rapid progression of the retinitis, therapy with intravenous ganciclovir was performed, with prompt regression of the retinitis. Therapy was then continued with oral valganciclovir for one further week. Although very unusual, CMV retinitis has to be taken into consideration in neonates with early postnatally acquired CMV infection, as an early diagnosis and treatment may be crucial to avoid visual impairment.

  2. Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism.

    PubMed

    Xing, Lianping; Chen, Di; Boyce, Brendan F

    2013-12-01

    NF-κBp50/p52 double knockout (dKO) and RANK KO mice have no osteoclasts and develop severe osteopetrosis associated with dwarfism. In contrast, Op/Op mice, which form few osteoclasts, and Src KO mice, which have osteoclasts with defective resorptive function, are osteopetrotic, but they are not dwarfed. Here, we compared the morphologic features of long bones from p50/p52 dKO, RANK KO, Op/Op and Src KO mice to attempt to explain the differences in their long bone lengths. We found that growth plates in p50/p52 dKO and RANK KO mice are significantly thicker than those in WT mice due to a 2-3-fold increase in the hypertrophic chondrocyte zone associated with normal a proliferative chondrocyte zone. This growth plate abnormality disappears when animals become older, but their dwarfism persists. Op/Op or Src KO mice have relatively normal growth plate morphology. In-situ hybridization study of long bones from p50/p52 dKO mice showed marked thickening of the growth plate region containing type 10 collagen-expressing chondrocytes. Treatment of micro-mass chondrocyte cultures with RANKL did not affect expression levels of type 2 collagen and Sox9, markers for proliferative chondrocytes, but RANKL reduced the number of type 10 collagen-expressing hypertrophic chondrocytes. Thus, RANK/NF-κB signaling plays a regulatory role in post-natal endochondral ossification that maintains hypertrophic conversion and prevents dwarfism in normal mice.

  3. Late emerging effects of prenatal and early postnatal nicotine exposure on the cholinergic system and anxiety-like behavior.

    PubMed

    Eppolito, Amy K; Bachus, Susan E; McDonald, Craig G; Meador-Woodruff, James H; Smith, Robert F

    2010-01-01

    Animal models of prenatal nicotine exposure clearly indicate that nicotine is a neuroteratogen. Some of the persisting effects of prenatal nicotine exposure include low birth weight, behavioral changes and deficits in cognitive function, although few studies have looked for neurobehavioral and neurochemical effects that might persist throughout the lifespan. Pregnant rats were given continuous infusions of nicotine (0.96mg/kg/day or 2.0mg/kg/day, freebase) continuing through the third trimester equivalent, a period of rapid brain development. Because the third trimester equivalent occurs postnatally in the rat (roughly the first week of life) nicotine administration to neonate pups continued via maternal milk until postnatal day (P) 10. Exposure to nicotine during pre- and early postnatal development had an anxiogenic effect on adult rats (P75) in the elevated plus maze (EPM), and blocked extinction learning in a fear conditioning paradigm, suggesting that pre- and postnatal nicotine exposure affect anxiety-like behavior and cognitive function well into adulthood. In contrast, nicotine exposure had no effect on anxiety-like behaviors in the EPM in adolescent animals (P30). Analysis of mRNA for the alpha4, alpha7, and beta2 subunits of nicotinic acetylcholine receptors revealed lower expression of these subunits in the adult hippocampus and medial prefrontal cortex following pre- and postnatal nicotine exposure, suggesting that nicotine altered the developmental trajectory of the brain. These long-term behavioral and neurochemical changes strengthen the case for discouraging cigarette smoking during pregnancy and clearly indicate that the use of the patch as a smoking cessation aid during pregnancy is not a safe alternative.

  4. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis

    PubMed Central

    Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423

  5. The effect of early-life stress on airway inflammation in adult mice.

    PubMed

    Vig, Rattanjeet; Gordon, John R; Thébaud, Bernard; Befus, A Dean; Vliagoftis, Harissios

    2010-01-01

    Neonatal stress induces permanent physiological changes that may influence the immune system. Early-life stress increases asthma disease severity in children. We investigated the effects of early-life stress on allergic airway inflammation using a murine model of asthma coupled to maternal separation as an early-life stress stimulus. Maternally separated (MS) and unseparated control (CON) mice were sensitized with ovalbumin (OVA) beginning at day 31 after birth. Challenging mice with OVA increased airway hyperresponsiveness (AHR) and the number of inflammatory cells recovered in the bronchoalveolar lavage (BAL), compared to saline-challenged mice. Challenging MS mice with OVA resulted in less total inflammatory cells, eosinophils, interferon-gamma, and interleukin-4 in BAL compared to CON mice. However, MS mice challenged with OVA exhibited AHR similar to CON mice challenged with OVA. In contrast, an enhanced stress protocol (MS+) involving removal of pups from their home cages following the removal of the dam resulted in inflammatory cell accumulation and cytokine levels in the BAL similar to CON mice and higher than MS mice. These findings indicate that the effect of early-life psychological factors on the development of airway inflammatory diseases such as asthma is very complex and depends on the quality of the psychological stress stimulus.

  6. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood

    PubMed Central

    Clinton, Sarah M.; Glover, Matthew E.; Maltare, Astha; Laszczyk, Ann M.; Mehi, Stephen J.; Simmons, Rebecca K.; King, Gwendalyn D.

    2013-01-01

    Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development. PMID:23838326

  7. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats.

    PubMed

    Nagapan, Gowri; Meng Goh, Yong; Shameha Abdul Razak, Intan; Nesaretnam, Kalanithi; Ebrahimi, Mahdi

    2013-07-31

    Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus

  8. Postnatal BMI changes in children with different birthweights: A trial study for detecting early predictive factors for pediatric obesity

    PubMed Central

    Nakagawa, Yuichi; Nakanishi, Toshiki; Satake, Eiichiro; Matsushita, Rie; Saegusa, Hirokazu; Kubota, Akira; Natsume, Hiromune; Shibata, Yukinobu; Fujisawa, Yasuko

    2018-01-01

    Abstract. The purpose of this study was to clarify the degree of early postnatal growth by birthweight and detect early predictive factors for pediatric obesity. Body mass index (BMI) and degree of obesity were examined in children in the fourth year of elementary school and second year of junior high school. Their BMI at birth and three years of age were also examined. Based on birthweight, participants were divided into three groups: low (< 2500 g), middle (2500–3500 g), and high (> 3500 g). Furthermore, according to the degree of obesity, they were divided into two groups: obese (20% ≤) and non-obese (20% >). The change of BMI from birth to three years of age (ΔBMI) showed a strong inverse relationship with birthweight and was significantly different among the three birthweight groups (low > middle > high). The ΔBMI and BMI at three years of age were higher in obese than in non-obese children and showed significant positive correlations with the degree of obesity. Early postnatal growth might be determined by birthweight and was higher in obese than in non-obese children. The ΔBMI from birth to three years of age and BMI at age of three years could be predictive factors for pediatric obesity. PMID:29403153

  9. Risk factors for antenatal depression, postnatal depression and parenting stress

    PubMed Central

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-01-01

    Background Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Methods Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program [1]. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26–32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10–12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Results Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors

  10. Risk factors for antenatal depression, postnatal depression and parenting stress.

    PubMed

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-04-16

    Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program 1. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26-32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10-12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors. Risk factor profiles for

  11. Effect of insulin-like growth factor-I during the early postnatal period in intrauterine growth-restricted rats.

    PubMed

    Ikeda, Naho; Shoji, Hiromichi; Suganuma, Hiroki; Ohkawa, Natsuki; Kantake, Masato; Murano, Yayoi; Sakuraya, Koji; Shimizu, Toshiaki

    2016-05-01

    Insulin-like growth factor-I (IGF-I) is essential for perinatal growth and development; low serum IGF-I has been observed during intrauterine growth restriction (IUGR). We investigated the effects of recombinant human (rh) IGF-I in IUGR rats during the early postnatal period. Intrauterine growth restriction was induced by bilateral uterine artery ligation in pregnant rats. IUGR pups were divided into two groups injected daily with rhIGF-I (2 mg/kg; IUGR/IGF-I, n = 16) or saline (IUGR/physiologic saline solution (PSS), n = 16) from postnatal day (PND) 7 to 13. Maternal sham-operated pups injected with saline were used as controls (control, n = 16). Serum IGF-I and IGF binding proteins (IGFBP) 3 and 5 were measured on PND25. The expression of Igf-i, IGF-I receptor (Igf-ir), Igfbp3, and 5 mRNA in the liver and brain was measured using real-time polymerase chain reaction on PND25. Immunohistochemical staining of the liver for IGF expression was performed. Mean bodyweight on PND3 and PND25 in the IUGR pups (IUGR/IGF-I and IUGR/PSS) was significantly lower than that of the control pups. Serum IGF-I and hepatic Igf-ir mRNA in the IUGR pups were significantly lower than those in the control pups. In the IUGR/IGF-I group, hepatic Igfbp3 mRNA and liver immunohistochemical staining were increased. In the IUGR/PSS and control pups, there were no significant differences between these two groups in serum IGFBP3 and IGFBP5, hepatic Igf-i and Igfbp-5 mRNA, or brain Igf mRNA. No benefits on body and brain weight gain but an effective increase in hepatic IGFBP-3 was observed after treatment with 2 mg/kg rhIGF-I during the early postnatal period. © 2015 Japan Pediatric Society.

  12. Prenatal Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters Postnatal Cardiac Growth, Morphology, and Function.

    PubMed

    Hennig, Maria; Fiedler, Saskia; Jux, Christian; Thierfelder, Ludwig; Drenckhahn, Jörg-Detlef

    2017-08-04

    Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth. We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling. Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring

    PubMed Central

    Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.

    2015-01-01

    The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination

  14. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    PubMed

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  15. Prolonged prenatal hypoxia selectively disrupts collecting duct patterning and postnatal function in male mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Little, Melissa H; Bowles, Josephine; Li, Joan; Moritz, Karen M

    2018-04-20

    In this study we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation. Female offspring showed no obvious signs of impaired kidney development and did not develop kidney disease, suggesting a underlying protection mechanism from the hypoxia insult. These results help us better understand the long-lasting impact of gestational hypoxia on kidney development and the increased risk of chronic kidney disease. Prenatal hypoxia is a common perturbation to arise during pregnancy, and can lead to adverse health outcomes in later life. The long-lasting impact of prenatal hypoxia on postnatal kidney development and maturation of the renal tubules, particularly the collecting duct system, is relatively unknown. Here, we used a model of moderate chronic maternal hypoxia throughout late gestation (12% O 2 exposure from E14.5 until birth). Histological analyses revealed marked changes in the tubular architecture of male hypoxia-exposed neonates as early as postnatal day 7, with disrupted medullary development and altered expression of Ctnnb1, and Crabp2 (encoding a retinoic acid binding protein). Kidneys of RARElacZ line offspring exposed to hypoxia showed reduced β-galactosidase activity indicating reduced retinoic acid-directed transcriptional activation. Wildtype male mice exposed to hypoxia had an early decline in urine concentrating capacity, evident at 4 months of age. At 12 months of age, hypoxia-exposed male mice displayed a compromised response to a water deprivation challenge which was was correlated with altered cellular composition of the collecting duct and diminished expression of AQP2. There

  16. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    PubMed Central

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312

  17. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus.

    PubMed

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J; Zykovich, Artem; Coon, Steven L; Klein, David C; Rath, Martin F

    2015-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.

  18. Mouse models for the study of postnatal cardiac hypertrophy.

    PubMed

    Del Olmo-Turrubiarte, A; Calzada-Torres, A; Díaz-Rosas, G; Palma-Lara, I; Sánchez-Urbina, R; Balderrábano-Saucedo, N A; González-Márquez, H; Garcia-Alonso, P; Contreras-Ramos, A

    2015-06-01

    The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH), in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP) isoproterenol (ISO) was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB), neonates (7-15 days) and young adults (6 weeks of age). Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR), alpha and beta myosins (α-MHC, β-MHC) and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS). Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  19. Elevated dietary magnesium during pregnancy and postnatal life prevents ectopic mineralization in Enpp1asj mice, a model for generalized arterial calcification of infancy

    PubMed Central

    Kingman, Joshua; Uitto, Jouni; Li, Qiaoli

    2017-01-01

    Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder caused by mutations in the ENPP1 gene. It is characterized by mineralization of the arterial blood vessels, often diagnosed prenatally, and associated with death in early childhood. There is no effective treatment for this devastating disorder. We previously characterized the Enpp1asjmutant mouse as a model of GACI, and we have now explored the effect of elevated dietary magnesium (five-fold) in pregnant mothers and continuing for the first 14 weeks of postnatal life. The mothers were kept on either control diet or experimental diet supplemented with magnesium. Upon weaning at 4 weeks of age the pups were placed either on control diet or high magnesium diet. The degree of mineralization was assessed at 14 weeks of age by histopathology and a chemical calcium assay in muzzle skin, kidney and aorta. Mice placed on high magnesium diet showed little, if any, evidence of mineralization when their corresponding mothers were also placed on diet enriched with magnesium during pregnancy and nursing. The reduced ectopic mineralization in these mice was accompanied by increased calcium and magnesium content in the urine, suggesting that magnesium competes calcium-phosphate binding thereby preventing the mineral deposition. These results have implications for dietary management of pregnancies in which the fetus is suspected of having GACI. Moreover, augmenting a diet with high magnesium may be beneficial for other ectopic mineralization diseases, including nephrocalcinosis. PMID:28402956

  20. Elevated dietary magnesium during pregnancy and postnatal life prevents ectopic mineralization in Enpp1asj mice, a model for generalized arterial calcification of infancy.

    PubMed

    Kingman, Joshua; Uitto, Jouni; Li, Qiaoli

    2017-06-13

    Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder caused by mutations in the ENPP1 gene. It is characterized by mineralization of the arterial blood vessels, often diagnosed prenatally, and associated with death in early childhood. There is no effective treatment for this devastating disorder. We previously characterized the Enpp1asjmutant mouse as a model of GACI, and we have now explored the effect of elevated dietary magnesium (five-fold) in pregnant mothers and continuing for the first 14 weeks of postnatal life. The mothers were kept on either control diet or experimental diet supplemented with magnesium. Upon weaning at 4 weeks of age the pups were placed either on control diet or high magnesium diet. The degree of mineralization was assessed at 14 weeks of age by histopathology and a chemical calcium assay in muzzle skin, kidney and aorta. Mice placed on high magnesium diet showed little, if any, evidence of mineralization when their corresponding mothers were also placed on diet enriched with magnesium during pregnancy and nursing. The reduced ectopic mineralization in these mice was accompanied by increased calcium and magnesium content in the urine, suggesting that magnesium competes calcium-phosphate binding thereby preventing the mineral deposition. These results have implications for dietary management of pregnancies in which the fetus is suspected of having GACI. Moreover, augmenting a diet with high magnesium may be beneficial for other ectopic mineralization diseases, including nephrocalcinosis.

  1. Balance between early life tolerance and sensitization in allergy: dependence on the timing and intensity of prenatal and postnatal allergen exposure of the mother.

    PubMed

    Fusaro, Ana Elisa; de Brito, Cyro Alves; Taniguchi, Eliana Futata; Muniz, Bruno Pacola; Victor, Jefferson Russo; Orii, Noemia Mie; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2009-09-01

    Allergens can be maternally transferred to the fetus or neonate, though it is uncertain how this initial allergen exposure may impact the development of allergy responses. To evaluate the roles of timing and level of maternal allergen exposure in the early life sensitization of progeny, female BALB/c mice were given ovalbumin (OVA) orally during pregnancy, lactation or weekly at each stage to investigate the immunoglobulin E (IgE) antibody production and cellular responsiveness of their offspring. Exposure to OVA during pregnancy was also evaluated in OVA-specific T-cell receptor (TCR) transgenic (DO11.10) mice. The effect of prenatal antigen exposure on offspring sensitization was dependent on antigen intake, with low-dose OVA inducing tolerance followed by neonatal immunization that was sustained even when pups were immunized when 3 weeks old. These offspring received high levels of transforming growth factor-beta via breastfeeding. High-dose exposure during the first week of pregnancy or perinatal period induced transient inhibition of IgE production following neonatal immunization; although for later immunization IgE production was enhanced in these offspring. Postnatal maternal antigen exposure provided OVA transference via breastfeeding, which consequently induced increased offspring susceptibility to IgE antibody production according to week post-birth. The effect of low-dose maternal exposure during pregnancy was further evaluated using OVA transgenic TCR dams as a model. These progeny presented pronounced entry of CD4(+) T cells into the S phase of the cell cycle with a skewed T helper type 2 response early in life, revealing the occurrence of allergen priming in utero. The balance between tolerance and sensitization depended on the amount and timing of maternal allergen intake during pregnancy.

  2. Acetylcholine receptor distribution and synapse elimination at the developing neuromuscular junction of mdx mice.

    PubMed

    Minatel, Elaine; Neto, Humberto Santo; Marques, Maria Julia

    2003-11-01

    The pattern of innervation of the vertebrate neuromuscular junction is established during early development, when junctions go from multiple to single innervation in the phenomenon of synapse elimination, suggesting that changes at the molecular level in the postsynaptic cell lead to the removal of nerve terminals. The mdx mouse is deficient in dystrophin and associated proteins that are part of the postsynaptic cytoskeleton. We used rhodamine-alpha-bungarotoxin and anti-neurofilament IgG-FITC to stain acetylcholine receptors and nerve terminals of the sternomastoid muscle during postnatal development in mdx and control C57BL/10 mice. Using fluorescence confocal microscopy, we observed that, 7 days after birth, 86.7% of the endplates of mdx mice were monoinnervated (n = 200) compared with 41.4% in control mice (n = 200). By the end of the second postnatal week, all endplates were innervated singly (100% mdx and 94.7% controls, n = 200 per group). These results show that dystrophic fibers achieve single innervation earlier, perhaps because dystrophin or a normal cytoskeletal complex is implicated in this phenomenon.

  3. Early postnatal weight gain as a predictor for the development of retinopathy of prematurity.

    PubMed

    Biniwale, Manoj; Weiner, Angela; Sardesai, Smeeta; Cayabyab, Rowena; Barton, Lorayne; Ramanathan, Rangasamy

    2017-10-01

    The objective of this study is to validate the reliability of early postnatal weight gain as an accurate predictor of type 1 retinopathy of prematurity (ROP) requiring treatment in a large predominantly Hispanic US cohort with the use of an online tool called WINROP (weight, neonatal retinopathy of prematurity (IGF-1), neonatal retinopathy of prematurity). Retrospective cohort study consisted of preterm infants <32 weeks gestation and birth weight <1500 g. Weekly weights to 36 weeks post-menstrual age or discharge if earlier were entered into the WINROP tool. This tool generated alarm and risk indicator for developing ROP. The infants with type 1 ROP requiring treatment as well as all stages of ROP were compared with the alarms and risks generated by WINROP tool. A total of 492 infants were entered into the WINROP tool. The infants who developed type 1 ROP requiring treatment, the WINROP tool detected 80/89 (90%) at less than 32 weeks gestation. Nine infants developed type 1 ROP were classified as low risk and did not alarm. Postnatal weight gain alone, in predominantly Hispanic US population, predicted type 1 ROP requiring treatment before 32 weeks of gestation in infants with a sensitivity of 90%. The tool appeared to identify majority of affected infants much earlier than the scheduled screening.

  4. Sensorimotor development in neonatal progesterone receptor knockout mice.

    PubMed

    Willing, Jari; Wagner, Christine K

    2014-01-01

    Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongly suggests that steroid hormones play a vital role in shaping brain regions involved in cognitive behavior such as the cerebral cortex. The most abundantly expressed steroid hormone receptor in the developing rodent cortex is the progesterone receptor (PR). In the rat, PR is initially expressed in the developmentally-critical subplate at E18, and subsequently in laminas V and II/III through the first three postnatal weeks (Quadros et al. [2007] J Comp Neurol 504:42-56; Lopez & Wagner [2009]: J Comp Neurol 512:124-139), coinciding with significant periods of dendritic maturation, the arrival of afferents and synaptogenesis. In the present study, we investigated PR expression in the neonatal mouse somatosensory cortex. Additionally, to investigate the potential role of PR in developing cortex, we examined sensorimotor function in the first two postnatal weeks in PR knockout mice and their wildtype (WT) and heterozygous (HZ) counterparts. While the three genotypes were similar in most regards, PRKO and HZ mice lost the rooting reflex 2-3 days earlier than WT mice. These studies represent the first developmental behavioral assessment of PRKO mice and suggest PR expression may play an important role in the maturation of cortical connectivity and sensorimotor integration. Copyright © 2013 Wiley Periodicals, Inc.

  5. Postnatal Deletion of the Type II Transforming Growth Factor-β Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice.

    PubMed

    Hu, Jie Hong; Wei, Hao; Jaffe, Mia; Airhart, Nathan; Du, Liang; Angelov, Stoyan N; Yan, James; Allen, Julie K; Kang, Inkyung; Wight, Thomas N; Fox, Kate; Smith, Alexandra; Enstrom, Rachel; Dichek, David A

    2015-12-01

    Prenatal deletion of the type II transforming growth factor-β (TGF-β) receptor (TBRII) prevents normal vascular morphogenesis and smooth muscle cell (SMC) differentiation, causing embryonic death. The role of TBRII in adult SMC is less well studied. Clarification of this role has important clinical implications because TBRII deletion should ablate TGF-β signaling, and blockade of TGF-β signaling is envisioned as a treatment for human aortopathies. We hypothesized that postnatal loss of SMC TBRII would cause aortopathy. We generated mice with either of 2 tamoxifen-inducible SMC-specific Cre (SMC-CreER(T2)) alleles and homozygous floxed Tgfbr2 alleles. Mice were injected with tamoxifen, and their aortas examined 4 and 14 weeks later. Both SMC-CreER(T2) alleles efficiently and specifically rearranged a floxed reporter gene and efficiently rearranged a floxed Tgfbr2 allele, resulting in loss of aortic medial TBRII protein. Loss of SMC TBRII caused severe aortopathy, including hemorrhage, ulceration, dissection, dilation, accumulation of macrophage markers, elastolysis, abnormal proteoglycan accumulation, and aberrant SMC gene expression. All areas of the aorta were affected, with the most severe pathology in the ascending aorta. Cre-mediated loss of SMC TBRII in vitro ablated both canonical and noncanonical TGF-β signaling and reproduced some of the gene expression abnormalities detected in vivo. SMC TBRII plays a critical role in maintaining postnatal aortic homeostasis. Loss of SMC TBRII disrupts TGF-β signaling, acutely alters SMC gene expression, and rapidly results in severe and durable aortopathy. These results suggest that pharmacological blockade of TGF-β signaling in humans could cause aortic disease rather than prevent it. © 2015 American Heart Association, Inc.

  6. Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype.

    PubMed

    Syed, Mansoor A; Bhandari, Vineet

    2013-01-01

    Hyperoxia exposure to developing lungs-critical in the pathogenesis of bronchopulmonary dysplasia-may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39(-/-) mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39(-/-) mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.

  7. Early intervention to protect the mother-infant relationship following postnatal depression: study protocol for a randomised controlled trial.

    PubMed

    Milgrom, Jeannette; Holt, Charlene

    2014-10-03

    postnatal depression group treatment programme. Primary outcome measures are the Parenting Stress Index (self-report measure) and the Parent-child Early Relational Assessment (observational measure coded by a blinded observer). Measurements are taken at baseline, after the postnatal depression programme, post-HUGS/Playtime, and at 6 months post-HUGS/Playtime. This research addresses the need for specific treatment for mother-infant interactional difficulties following postnatal depression. There is a need to investigate interventions in randomised trials to prevent detrimental effects on child development and make available evidence-based treatments. Australia and New Zealand Clinical Trials Register: ACTRN12612001110875. Date Registered: 17 October 2012.

  8. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagahama, Ryo; Department of Orthodontics, School of Dentistry, Showa University, Tokyo; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 {sup fl/fl}; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 {sup fl/fl}) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system.more » The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.« less

  9. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    PubMed

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  10. Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth.

    PubMed

    Yu, Pujiao; Wang, Hongbao; Xie, Yuan; Zhou, Jinzhe; Yao, Jianhua; Che, Lin

    2016-01-01

    The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs), as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs-miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p-were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.

  11. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    PubMed Central

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  12. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    PubMed

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  13. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats

    PubMed Central

    2013-01-01

    Background Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze.Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base

  14. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice.

    PubMed

    Schipper, Lidewij; van Dijk, Gertjan; Broersen, Laus M; Loos, Maarten; Bartke, Nana; Scheurink, Anton Jw; van der Beek, Eline M

    2016-06-01

    Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P < 0.05) and adulthood (novel object recognition; preference index 0.48 in concept-fed mice compared with 0.05 in control-fed mice; P < 0.05). Cognitive performance in long-term memory tasks, however, was unaffected by diet. Brain phospholipid composition at P102 was not different between diet groups. Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas. © 2016 American Society for Nutrition.

  15. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving

  16. Neurobehavioral changes in response to alterations in gene expression profiles in the brains of mice exposed to low and high levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Akiko; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2014-08-01

    This study examined the relationship between neurobehavioral changes and alterations in gene expression profiles in the brains of mice exposed to different levels of Hg(0) during postnatal development. Neonatal mice were repeatedly exposed to mercury vapor (Hg(0)) at a concentration of 0.057 mg/m(3) (low level), which was close to the current threshold value (TLV), and 0.197 mg/m(3) (high level) for 24 hr until the 20(th) day postpartum. Behavioral responses were evaluated based on changes in locomotor activity in the open field test (OPF), learning ability in the passive avoidance response test (PA), and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. No significant differences were observed in the three behavioral measurements between mice exposed to the low level of Hg(0) and control mice. On the other hand, total locomotive activity in mice exposed to the high level of Hg(0) was significantly decreased and central locomotion was reduced in the OPF task. Mercury concentrations were approximately 0.4 μg/g and 1.9 μg/g in the brains of mice exposed to the low and high levels of Hg(0), respectively. Genomic analysis revealed that the expression of 2 genes was up-regulated and 18 genes was down-regulated in the low-level exposure group, while the expression of 3 genes was up-regulated and 70 genes was down-regulated in the high-level exposure group. Similar alterations in the expression of seven genes, six down-regulated genes and one up-regulated gene, were observed in both groups. The results indicate that an increase in the number of altered genes in the brain may be involved in the emergence of neurobehavioral effects, which may be associated with the concentration of mercury in the brain. Moreover, some of the commonly altered genes following exposure to both concentrations of Hg(0) with and without neurobehavioral effects may be candidates as sensitive biomarker genes for assessing behavioral effects in the early stages of

  17. Cognition and behavioural development in early childhood: the role of birth weight and postnatal growth

    PubMed Central

    Huang, Cheng; Martorell, Reynaldo; Ren, Aiguo; Li, Zhiwen

    2013-01-01

    Background We evaluate the relative importance of birth weight and postnatal growth for cognition and behavioural development in 8389 Chinese children, 4–7 years of age. Method Weight was the only size measure available at birth. Weight, height, head circumference and intelligence quotient (IQ) were measured between 4 and 7 years of age. Z-scores of birth weight and postnatal conditional weight gain to 4–7 years, as well as height and head circumference at 4–7 years of age, were the exposure variables. Z-scores of weight at 4–7 years were regressed on birth weight Z-scores, and the residual was used as the measure of postnatal conditional weight gain. The outcomes were child’s IQ, measured by the Chinese Wechsler Young Children Scale of Intelligence, as well as internalizing behavioural problems, externalizing behavioural problems and other behavioural problems, evaluated by the Child Behavior Checklist 4–18. Multivariate regressions were conducted to investigate the relationship of birth weight and postnatal growth variables with the outcomes, separately for preterm children and term children. Results Both birth weight and postnatal weight gain were associated with IQ among term children; 1 unit increment in Z-score of birth weight (∼450 g) was associated with an increase of 1.60 [Confidence interval (CI): 1.18–2.02; P < 0.001] points in IQ, and 1 unit increment in conditional postnatal weight was associated with an increase of 0.46 (CI: 0.06–0.86; P = 0.02) points in IQ, after adjustment for confounders; similar patterns were observed when Z-scores of postnatal height and head circumference at age 4–7 years were used as alternative measurements of postnatal growth. Effect sizes of relationships with IQ were smaller than 0.1 of a standard deviation in all cases. Neither birth weight nor postnatal growth indicators were associated with behavioural outcomes among term children. In preterm children, neither birth weight nor postnatal growth

  18. Cognition and behavioural development in early childhood: the role of birth weight and postnatal growth.

    PubMed

    Huang, Cheng; Martorell, Reynaldo; Ren, Aiguo; Li, Zhiwen

    2013-02-01

    We evaluate the relative importance of birth weight and postnatal growth for cognition and behavioural development in 8389 Chinese children, 4-7 years of age. Method Weight was the only size measure available at birth. Weight, height, head circumference and intelligence quotient (IQ) were measured between 4 and 7 years of age. Z-scores of birth weight and postnatal conditional weight gain to 4-7 years, as well as height and head circumference at 4-7 years of age, were the exposure variables. Z-scores of weight at 4-7 years were regressed on birth weight Z-scores, and the residual was used as the measure of postnatal conditional weight gain. The outcomes were child's IQ, measured by the Chinese Wechsler Young Children Scale of Intelligence, as well as internalizing behavioural problems, externalizing behavioural problems and other behavioural problems, evaluated by the Child Behavior Checklist 4-18. Multivariate regressions were conducted to investigate the relationship of birth weight and postnatal growth variables with the outcomes, separately for preterm children and term children. Both birth weight and postnatal weight gain were associated with IQ among term children; 1 unit increment in Z-score of birth weight (∼450 g) was associated with an increase of 1.60 [Confidence interval (CI): 1.18-2.02; P < 0.001] points in IQ, and 1 unit increment in conditional postnatal weight was associated with an increase of 0.46 (CI: 0.06-0.86; P = 0.02) points in IQ, after adjustment for confounders; similar patterns were observed when Z-scores of postnatal height and head circumference at age 4-7 years were used as alternative measurements of postnatal growth. Effect sizes of relationships with IQ were smaller than 0.1 of a standard deviation in all cases. Neither birth weight nor postnatal growth indicators were associated with behavioural outcomes among term children. In preterm children, neither birth weight nor postnatal growth measures were associated with IQ or

  19. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle.

    PubMed

    Cong, Xiaofei; Doering, Jonathan; Mazala, Davi A G; Chin, Eva R; Grange, Robert W; Jiang, Honglin

    2016-01-01

    The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle.

  20. Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis.

    PubMed

    Sadagurski, Marianna; Landeryou, Taylor; Blandino-Rosano, Manuel; Cady, Gillian; Elghazi, Lynda; Meister, Daniel; See, Lauren; Bartke, Andrzej; Bernal-Mizrachi, Ernesto; Miller, Richard A

    2014-06-01

    The action of nutrients on early postnatal growth can influence mammalian aging and longevity. Recent work has demonstrated that limiting nutrient availability in the first 3 wk of life [by increasing the number of pups in the crowded-litter (CL) model] leads to extension of mean and maximal lifespan in genetically normal mice. In this study, we aimed to characterize the impact of early-life nutrient intervention on glucose metabolism and energy homeostasis in CL mice. In our study, we used mice from litters supplemented to 12 or 15 pups and compared those to control litters limited to eight pups. At weaning and then throughout adult life, CL mice are significantly leaner and consume more oxygen relative to control mice. At 6 mo of age, CL mice had low fasting leptin concentrations, and low-dose leptin injections reduced body weight and food intake more in CL female mice than in controls. At 22 mo, CL female mice also have smaller adipocytes compared with controls. Glucose and insulin tolerance tests show an increase in insulin sensitivity in 6 mo old CL male mice, and females become more insulin sensitive later in life. Furthermore, β-cell mass was significantly reduced in the CL male mice and was associated with reduction in β-cell proliferation rate in these mice. Together, these data show that early-life nutrient intervention has a significant lifelong effect on metabolic characteristics that may contribute to the increased lifespan of CL mice.

  1. periostin Null Mice Exhibit Dwarfism, Incisor Enamel Defects, and an Early-Onset Periodontal Disease-Like Phenotype

    PubMed Central

    Rios, Hector; Koushik, Shrinagesh V.; Wang, Haiyan; Wang, Jian; Zhou, Hong-Ming; Lindsley, Andrew; Rogers, Rhonda; Chen, Zhi; Maeda, Manabu; Kruzynska-Frejtag, Agnieszka; Feng, Jian Q.; Conway, Simon J.

    2005-01-01

    Periostin was originally identified as an osteoblast-specific factor and is highly expressed in the embryonic periosteum, cardiac valves, placenta, and periodontal ligament as well as in many adult cancerous tissues. To investigate its role during development, we generated mice that lack the periostin gene and replaced the translation start site and first exon with a lacZ reporter gene. Surprisingly, although periostin is widely expressed in many developing organs, periostin-deficient (perilacZ) embryos are grossly normal. Postnatally, however, ∼14% of the nulls die before weaning and all of the remaining perilacZ nulls are severely growth retarded. Skeletal analysis revealed that trabecular bone in adult homozygous skeletons was sparse, but overall bone growth was unaffected. Furthermore, by 3 months, the nulls develop an early-onset periodontal disease-like phenotype. Unexpectedly, these mice also show a severe incisor enamel defect, although there is no apparent change in ameloblast differentiation. Significantly, placing the perilacZ nulls on a soft diet that alleviated mechanical strain on the periodontal ligament resulted in a partial rescue of both the enamel and periodontal disease-like phenotypes. Combined, these data suggest that a healthy periodontal ligament is required for normal amelogenesis and that periostin is critically required for maintenance of the integrity of the periodontal ligament in response to mechanical stresses. PMID:16314533

  2. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina.

    PubMed

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro; Furukawa, Takahisa

    2015-08-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina

    PubMed Central

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro

    2015-01-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. PMID:25986607

  4. Neuronal redox imbalance results in altered energy homeostasis and early postnatal lethality.

    PubMed

    Maity-Kumar, Gandhari; Thal, Dietmar R; Baumann, Bernd; Scharffetter-Kochanek, Karin; Wirth, Thomas

    2015-07-01

    Redox imbalance is believed to contribute to the development and progression of several neurodegenerative disorders. Our aim was to develop an animal model that exhibits neuron-specific oxidative stress in the CNS to study the consequences and eventually find clues regarding the pathomechanisms of oxidative insults in neuronal homeostasis. We therefore generated a novel neuron-specific superoxide dismutase 2 (SOD2)-deficient mouse by deleting exon 3 of the SOD2 gene using CamKIIα promoter-driven Cre expression. These neuron-specific SOD2 knockout (SOD2(nko)) mice, although born at normal frequencies, died at the age of 4 weeks with critical growth retardation, severe energy failure, and several neurologic phenotypes. In addition, SOD2(nko) mice exhibited severe neuronal alterations such as reactive astrogliosis, neuronal cell cycle inhibition, and induction of apoptosis. JNK activation and stabilization of p53, as a result of reactive oxygen species accumulation, are most likely the inducers of neuronal apoptosis in SOD2(nko) mice. It is remarkable that hypothalamic regulation of glucose metabolism was affected, which in turn induced necrotic brain lesions in SOD2(nko) mice. Taken together, our findings suggest that exclusive deficiency of SOD2 in neurons results in an impaired central regulation of energy homeostasis that leads to persistent hypoglycemia, hypoglycemia-related neuropathology, and an early lethality of the mutant mice. © FASEB.

  5. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    PubMed

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  6. Enamel Protein Regulation and Dental and Periodontal Physiopathology in Msx2 Mutant Mice

    PubMed Central

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-01-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/− mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2−/− mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2−/− roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context. PMID:20934968

  7. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus

    PubMed Central

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong; Clokie, Samuel J.; Zykovich, Artem; Coon, Steven L.; Klein, David C.; Rath, Martin F.

    2014-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9−/− mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9−/− mutant mice appear normal, severe hydrocephalus develops in about 70 % of the Lhx9−/− mice at 5–8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9−/−mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus. PMID:24647753

  8. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Early Alcohol Exposure Disrupts Visual Cortex Plasticity in Mice

    PubMed Central

    Lantz, Crystal L.; Wang, Weili; Medina, Alexandre E.

    2012-01-01

    There is growing evidence that deficits in neuronal plasticity underlie the cognitive problems seen in fetal alcohol spectrum disorders (FASD). However, the mechanisms behind these deficits are not clear. Here we test the effects of early alcohol exposure on ocular dominance plasticity (ODP) in mice and the reversibility of these effects by phosphodiesterase (PDE) inhibitors. Mouse pups were exposed to 5 g/kg of 25% ethanol i.p. on postnatal days (P) 5, 7 and 9. This type of alcohol exposure mimics binge drinking during the third trimester equivalent of human gestation. To assess ocular dominance plasticity animals were monocularly deprived at P21 for 10 days, and tested using optical imaging of intrinsic signals. During the period of monocular deprivation animals were treated with vinpocetine (20mg/kg; PDE1 inhibitor), rolipram (1.25 mg/Kg; PDE4 inhibitor), vardenafil (3 mg/Kg; PDE5 inhibitor) or vehicle solution. Monocular deprivation resulted in the expected shift in ocular dominance of the binocular zone in saline controls but not in the ethanol group. While vinpocetine successfully restored ODP in the ethanol group, rolipram and vardenafil did not. However, when rolipram and vardenafil were given simultaneously ODP was restored. PDE4 and PDE5 are specific to cAMP and cGMP respectively, while PDE1 acts on both of these nucleotides. Our findings suggest that the combined activation of the cAMP and cGMP cascades may be a good approach to improve neuronal plasticity in FASD models. PMID:22617459

  10. Early-life status epilepticus acutely impacts select quantitative and qualitative features of neonatal vocalization behavior: Spectrographic and temporal characterizations in C57BL/6 mice.

    PubMed

    Reynolds, Conner D; Nolan, Suzanne O; Huebschman, Jessica L; Hodges, Samantha L; Lugo, Joaquin N

    2017-07-01

    Early-life seizures are known to cause long-term deficits in social behavior, learning, and memory, however little is known regarding their acute impact. Ultrasonic vocalization (USV) recordings have been developed as a tool for investigating early communicative deficits in mice. Previous investigation from our lab found that postnatal day (PD) 10 seizures cause male-specific suppression of 50-kHz USVs on PD12 in 129 SvEvTac mouse pups. The present study extends these findings by spectrographic characterization of USVs following neonatal seizures. On PD10, male C57BL/6 pups were administered intraperitoneal injections of kainic acid or physiological saline. On PD12, isolation-induced recordings were captured using a broad-spectrum ultrasonic microphone. Status epilepticus significantly suppressed USV quantity (p=0.001) and total duration (p<0.05). Seizure pups also utilized fewer complex calls than controls (p<0.05). There were no changes in call latency or inter-call intervals. Spectrographic analysis revealed increased peak amplitude for complex, downward, short, two-syllable, and upward calls, as well as reduced mean duration for short and two-syllable calls in seizure mice. This investigation provides the first known spectrographic characterization of USVs following early-life seizures. These findings also enhance evidence for USVs as an indicator of select communicative impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  12. Alterations of arcuate nucleus neuropeptidergic development in contactin-deficient mice: comparison with anorexia and food-deprived mice.

    PubMed

    Fetissov, Sergueï O; Bergström, Ulrika; Johansen, Jeanette E; Hökfelt, Tomas; Schalling, Martin; Ranscht, Barbara

    2005-12-01

    A mutation in the Contactin-1 gene results in an ataxic and anorectic phenotype that is apparent by postnatal day 10 and lethal by postnatal day 19 [Berglund et al. (1999) Neuron 24, 739-750]. The resemblance of this phenotype with the anorexia (anx/anx) mouse mutation prompted us to investigate the hypothalamic neurochemistry of Contactin knock-out (KO) mice. Contactin was expressed in the hypothalamic neuropil of wild-type (WT) but not Contactin KO mice. In the KO condition, neuropeptide Y (NPY) and agouti-related protein (AgRP) immunoreactivity (IR) accumulated in the somata of arcuate nucleus neurons, whereas IR for these neuropeptides as well as for alpha-melanocyte-stimulating hormone (alpha-MSH) decreased in the corresponding axon projections. These changes in the pattern of neuropeptide expression in the Contactin-deficient hypothalamus were similar but more pronounced than those found in anx/anx mice. Increased levels of NPY and AgRP and decreased concentrations of pro-opiomelanocortin mRNA in arcuate neurons accompanied these changes. In relating these alterations a 24-h food deprivation period, we observed in 3-week-old WT mice an elevation of NPY- and AgRP-IR in the perikarya of arcuate neurons without notable reduction of NPY- or AgRP-IR in nerve fibers, suggesting that the decrease of arcuate projections can be associated with postnatal anorectic phenotype. Our data implicate Contactin in the postnatal development of the NPY/AgRP and alpha-MSH arcuate neurons and suggest that similar to anx/anx mutant mice, compromised orexigenic signaling via NPY/AgRP neurons may contribute to reduced food intake by the Contactin-mutant animals.

  13. Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype

    PubMed Central

    Syed, Mansoor A.

    2013-01-01

    Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39−/− mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury. PMID:24347826

  14. Prenatal and Early Postnatal Environmental Enrichment Reduce Acute Cell Death and Prevent Neurodevelopment and Memory Impairments in Rats Submitted to Neonatal Hypoxia Ischemia.

    PubMed

    Durán-Carabali, L E; Arcego, D M; Odorcyk, F K; Reichert, L; Cordeiro, J L; Sanches, E F; Freitas, L D; Dalmaz, C; Pagnussat, A; Netto, C A

    2018-05-01

    Environmental enrichment (EE) is an experimental strategy to attenuate the negative effects of different neurological conditions including neonatal hypoxia ischemia encephalopathy (HIE). The aim of the present study was to investigate the influence of prenatal and early postnatal EE in animals submitted to neonatal HIE model at postnatal day (PND) 3. Wistar rats were housed in EE or standard conditions (SC) during pregnancy and lactation periods. Pups of both sexes were assigned to one of four experimental groups, considering the early environmental conditions and the injury: SC-Sham, SC-HIE, EE-sham, and EE-HIE. The offspring were euthanized at two different time points: 48 h after HIE for biochemical analyses or at PND 67 for histological analyses. Behavioral tests were performed at PND 7, 14, 21, and 60. Offspring from EE mothers had better performance in neurodevelopmental and spatial memory tests when compared to the SC groups. HIE animals showed a reduction of IGF-1 and VEGF in the parietal cortex, but no differences in BDNF and TrkB levels were found. EE-HIE animals showed reduction in cell death, lower astrocyte reactivity, and an increase in AKTp levels in the hippocampus and parietal cortex. In addition, the EE was also able to prevent the hippocampus tissue loss. Altogether, present findings point to the protective potential of the prenatal and early postnatal EE in attenuating molecular and histological damage, as well as the neurodevelopmental impairments and the cognitive deficit, caused by HIE insult at PND 3.

  15. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera.

    PubMed

    Lim, Wan'E; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W; Barathi, Veluchamy A

    2012-01-01

    The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N(6) primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥ 2 relative fold change at a false discovery rate of ≤ 5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Gene expression of eye diseases should be studied as early as postnatal weeks 1-2 to ensure that any changes in gene expression pattern during disease development are detected. In addition, we propose that Ppargc1a

  16. Early postnatal response of the spinal nucleus of the bulbocavernosus and target muscles to testosterone in male gerbils.

    PubMed

    Hadi Mansouri, S; Siegford, Janice M; Ulibarri, Catherine

    2003-05-14

    This study examined the response of the spinal nucleus of the bulbocavernosus (SNB) and the bulbocavernosus (BC) muscle, to testosterone in male Mongolian gerbils (Meriones unguiculatus) during the early postnatal period. Male gerbil pups were given testosterone propionate (TP) or vehicle for 2 days, then perfused on postnatal day (PND) 3, 5, 10 or 15. The BC and levator ani (LA) muscles were removed, weighed, and sectioned. Cross-sections of BC muscle fibers were measured and muscle fiber morphology examined. Spinal cords were removed and coronally sectioned in order to count and measure the SNB motoneurons. Following TP treatment, male pups of all ages had significantly heavier BC-LA muscles and larger fibers in the BC muscle compared to age-matched controls. The increase in muscle weight following TP treatment was greatest at PND10, while fiber size increased to a similar degree at all ages suggesting that hyperplasia as well as hypertrophy was responsible for the increase in muscle mass at this time. SNB motoneurons increased significantly in number and size with age and TP treatment. We hypothesize that the increase in SNB motoneuron number during normal ontogeny that can be augmented by TP treatment and represents an unusual means of establishing sexual dimorphism in the nervous system of a mammal through cell recruitment to the motor pool of a postnatal animal.

  17. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants.

    PubMed

    Doyle, Lex W; Cheong, Jeanie L; Ehrenkranz, Richard A; Halliday, Henry L

    2017-10-24

    Bronchopulmonary dysplasia remains a major problem in neonatal intensive care units. Persistent inflammation in the lungs is the most likely underlying pathogenesis. Corticosteroids have been used to prevent or treat bronchopulmonary dysplasia because of their potent anti-inflammatory effects. To examine the relative benefits and adverse effects of systemic postnatal corticosteroids commenced within the first seven days of life for preterm infants at risk of developing bronchopulmonary dysplasia. For the 2017 update, we used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1); MEDLINE via PubMed (January 2013 to 21 February 2017); Embase (January 2013 to 21 February 2017); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (January 2013 to 21 February 2017). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-randomised trials. For this review, we selected RCTs examining systemic postnatal corticosteroid treatment within the first seven days of life (early) in high-risk preterm infants. Most studies evaluated the use of dexamethasone, but we also included studies that assessed hydrocortisone, even when used primarily for management of hypotension. We used the GRADE approach to assess the quality of evidence.We extracted and analysed data regarding clinical outcomes that included mortality, bronchopulmonary dysplasia, death or bronchopulmonary dysplasia, failure to extubate, complications during primary hospitalisation, and long-term health outcomes. We included 32 RCTs enrolling a total of 4395 participants. The overall risk of bias of included studies was probably low, as all were RCTs, and most trials used rigorous methods. Investigators reported significant benefits for the following outcomes overall: lower rates of failure to extubate, decreased

  18. Early life exposure to environmental tobacco smoke alters immune response to asbestos via a shift in inflammatory phenotype resulting in increased disease development

    PubMed Central

    Brown, Traci A.; Holian, Andrij; Pinkerton, Kent E.; Lee, Joong Won; Cho, Yoon Hee

    2016-01-01

    Asbestos in combination with tobacco smoke exposure reportedly leads to more severe physiological consequences than asbestos alone; limited data also show an increased disease risk due to environmental tobacco smoke (ETS) exposure. Environmental influences during gestation and early lung development can result in physiological changes that alter risk for disease development throughout an individual’s lifetime. Therefore, maternal lifestyle may impact the ability of offspring to subsequently respond to environmental insults and alter overall disease susceptibility. In this study, we examined the effects of exposure to ETS in utero and during early postnatal development on asbestos-related inflammation and disease in adulthood. ETS exposure in utero appeared to shift inflammation towards a Th2 phenotype, via suppression of Th1 inflammatory cytokine production. This effect was further pronounced in mice exposed to ETS in utero and during early postnatal development. In utero ETS exposure led to increased collagen deposition, a marker of fibrotic disease, when the offspring was later exposed to asbestos, which was further increased with additional ETS exposure during early postnatal development. These data suggest that ETS exposure in utero alters the immune responses and leads to greater disease development after asbestos exposure, which is further exacerbated when exposure to ETS continues during early postnatal development. PMID:27138493

  19. Early life exposure to environmental tobacco smoke alters immune response to asbestos via a shift in inflammatory phenotype resulting in increased disease development.

    PubMed

    Brown, Traci Ann; Holian, Andrij; Pinkerton, Kent E; Lee, Joong Won; Cho, Yoon Hee

    2016-07-01

    Asbestos in combination with tobacco smoke exposure reportedly leads to more severe physiological consequences than asbestos alone; limited data also show an increased disease risk due to environmental tobacco smoke (ETS) exposure. Environmental influences during gestation and early lung development can result in physiological changes that alter risk for disease development throughout an individual's lifetime. Therefore, maternal lifestyle may impact the ability of offspring to subsequently respond to environmental insults and alter overall disease susceptibility. In this study, we examined the effects of exposure to ETS in utero and during early postnatal development on asbestos-related inflammation and disease in adulthood. ETS exposure in utero appeared to shift inflammation towards a Th2 phenotype, via suppression of Th1 inflammatory cytokine production. This effect was further pronounced in mice exposed to ETS in utero and during early postnatal development. In utero ETS exposure led to increased collagen deposition, a marker of fibrotic disease, when the offspring was later exposed to asbestos, which was further increased with additional ETS exposure during early postnatal development. These data suggest that ETS exposure in utero alters the immune responses and leads to greater disease development after asbestos exposure, which is further exacerbated when exposure to ETS continues during early postnatal development.

  20. Homeodomain interacting protein kinase 2 regulates postnatal development of enteric dopaminergic neurons and glia via BMP signaling.

    PubMed

    Chalazonitis, Alcmène; Tang, Amy A; Shang, Yulei; Pham, Tuan D; Hsieh, Ivy; Setlik, Wanda; Gershon, Michael D; Huang, Eric J

    2011-09-28

    Trophic factor signaling is important for the migration, differentiation, and survival of enteric neurons during development. The mechanisms that regulate the maturation of enteric neurons in postnatal life, however, are poorly understood. Here, we show that transcriptional cofactor HIPK2 (homeodomain interacting protein kinase 2) is required for the maturation of enteric neurons and for regulating gliogenesis during postnatal development. Mice lacking HIPK2 display a spectrum of gastrointestinal (GI) phenotypes, including distention of colon and slowed GI transit time. Although loss of HIPK2 does not affect the enteric neurons in prenatal development, a progressive loss of enteric neurons occurs during postnatal life in Hipk2(-/-) mutant mice that preferentially affects the dopaminergic population of neurons in the caudal region of the intestine. The mechanism by which HIPK2 regulates postnatal enteric neuron development appears to involve the response of enteric neurons to bone morphogenetic proteins (BMPs). Specifically, compared to wild type mice, a larger proportion of enteric neurons in Hipk2(-/-) mutants have an abnormally high level of phosphorylated Smad1/5/8. Consistent with the ability of BMP signaling to promote gliogenesis, Hipk2(-/-) mutants show a significant increase in glia in the enteric nervous system. In addition, numbers of autophagosomes are increased in enteric neurons in Hipk2(-/-) mutants, and synaptic maturation is arrested. These results reveal a new role for HIPK2 as an important transcriptional cofactor that regulates the BMP signaling pathway in the maintenance of enteric neurons and glia, and further suggest that HIPK2 and its associated signaling mechanisms may be therapeutically altered to promote postnatal neuronal maturation.

  1. Preservation of chromosomal integrity in murine spermatozoa derived from gonocytes and spermatogonial stem cells surviving prenatal and postnatal exposure to γ-rays in mice.

    PubMed

    Watanabe, Hiroyuki; Kohda, Atsushi; Komura, Jun-Ichiro; Tateno, Hiroyuki

    2017-07-01

    Pre- and postnatal male mice were acutely (659-690 mGy/min) and continuously (0.303 mGy/min) exposed to 2 Gy γ-rays to evaluate spermatogenic potential and chromosome damage in their germ cells as adults. Acute irradiation on Days 15.5, 16.5, and 17.5 post-coitus affected testicular development, as a result of massive quiescent gonocyte loss; the majority of the seminiferous tubules in these testes were devoid of germ cells. Acute irradiation on Days 18.5 and 19.5 post-coitus had less effect on testicular development and spermatogenesis, even though germ cells were quiescent gonocytes on these days. Adverse effects on testicular development and spermatogenesis were observed following continuous irradiation between Days 14.5 and 19.5 post-coitus. Exposure to acute and continuous postnatal irradiation after the differentiation of spermatogonial stem cells and spermatogonia resulted in nearly all of the seminiferous tubules exhibiting spermatogenesis. Neither acute nor continuous irradiation was responsible for the increased number of multivalent chromosomes in primary-spermatocyte descendents of the exposed gonocytes. In contrast, a significant increase in cells with multivalent chromosomes was observed following acute irradiation on Days 4 and 11 post-partum. No significant increases in unstable structural chromosomal aberrations or aneuploidy in spermatozoa were observed, regardless of cell stage at irradiation or the radiation dose-rate. Thus, murine germ cells that survive prenatal and postnatal irradiation can restore spermatogenesis and produce viable spermatozoa without chromosome damage. These findings may provide a better understanding of reproductive potential following accidental, environmental, or therapeutic irradiation during the prenatal and postnatal periods in humans. © 2017 Wiley Periodicals, Inc.

  2. Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice.

    PubMed

    Holmes, Andrew P; Wong, Shi Quan; Pulix, Michela; Johnson, Kirsty; Horton, Niamh S; Thomas, Patricia; de Magalhães, João Pedro; Plagge, Antonius

    2016-04-14

    -positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections.

  3. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    PubMed

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-02

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  4. Postnatally acquired cytomegalovirus infection via breast milk: effects on hearing and development in preterm infants.

    PubMed

    Vollmer, Brigitte; Seibold-Weiger, Karin; Schmitz-Salue, Christine; Hamprecht, Klaus; Goelz, Rangmar; Krageloh-Mann, Ingeborg; Speer, Christian P

    2004-04-01

    In preterm infants there is a high risk of transmission of cytomegalovirus (CMV) via breast milk from seropositive mothers with reactivation of the virus during lactation. There is little information about the long term sequel of early postnatally acquired CMV infection in pre-term infants. This study aimed to investigate whether there was an increased frequency of impaired neurodevelopmental outcome and sensorineural hearing loss in preterm infants with postnatally acquired CMV infection through transmission by CMV-positive breast milk. Twenty-two preterm infants [median birth weight, 1020 g (range, 600 to 1870 g); median gestational age, 27.6 weeks (range, 23.6 to 32 weeks] with early postnatally acquired CMV infection by breast-feeding (onset of viruria between Days 23 and 190 postnatally) were compared with 22 CMV-negative preterm infants individually matched for gestational age, birth weight, gender, intracranial hemorrhage and duration of ventilation. At 2 to 4.5 years of age, follow-up assessments were conducted consisting of neurologic examination, neurodevelopmental assessment and detailed audiologic tests. None of the children had sensorineural hearing loss. There was no difference between the groups with regard to neurologic, speech and language or motor development. The results of this study suggest that early postnatally acquired CMV infection via CMV-positive breast milk does not have a negative effect on neurodevelopment and hearing in this group of patients. Because we studied a small number of infants, further follow-up studies are warranted in preterm infants with early postnatally acquired CMV infection.

  5. Early increased density of cyclooxygenase-2 (COX-2) immunoreactive neurons in Down syndrome.

    PubMed

    Mulet, Maria; Blasco-Ibáńez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2017-01-01

    Neuroinflammation is one of the hallmarks of Alzheimer's disease. One of the enzymes involved in neuroinflammation, even in early stages of the disease, is COX-2, an inducible cyclooxygenase responsible for the generation of eicosanoids and for the generation of free radicals. Individuals with Down syndrome develop Alzheimer's disease early in life. Previous studies pointed to the possible overexpression of COX-2 and correlated it to brain regions affected by the disease. We analysed the COX-2 expression levels in individuals with Down syndrome and in young, adult and old mice of the Ts65Dn mouse model for Down syndrome. We have observed an overexpression of COX-2 in both, Down syndrome individuals and mice. Importantly, mice already presented an overexpression of COX-2 at postnatal day 30, before neurodegeneration begins; which suggests that neuroinflammation may underlie the posterior neurodegeneration observed in individuals with Down syndrome and in Ts65Dn mice and could be a factor for the premature appearance of Alzheimer's disease..

  6. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice1

    PubMed Central

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2014-01-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1f/f;Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2 weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous by EXT mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss, osteoarthritis and HME. PMID:23958822

  7. The effects of delivery route and anesthesia type on early postnatal weight loss in newborns: the role of vasoactive hormones.

    PubMed

    Okumus, Nurullah; Atalay, Yildiz; Onal, Eray E; Turkyilmaz, Canan; Senel, Saliha; Gunaydin, Berrin; Pasaoglu, Hatice; Koc, Esin; Ergenekon, Ebru; Unal, Suna

    2011-01-01

    To investigate the effects of delivery route and maternal anesthesia type and the roles of vasoactive hormones on early postnatal weight loss in term newborns. Ninety-four term infants delivered vaginally (group 1, n=31), cesarean section (C/S) with general anesthesia (GA) (group 2, n=29), and C/S with epidural anesthesia (EA) (group 3, n=34) were included in this study. All infants were weighed at birth and on the second day of life and intravenous (IV) fluid infused to the mothers for the last 6 h prior to delivery was recorded. Serum electrolytes, osmolality, N-terminal proANP (NT-proANP), brain natriuretic peptide (BNP), aldosterone and plasma antidiuretic hormone (ADH) concentrations were measured at cord blood and on the second day of life. Our research showed that postnatal weight loss of infants was higher in C/S than vaginal deliveries (5.7% vs. 1.3%) (p < 0.0001) and in EA group than GA group (6.8% vs. 4.3%) (p < 0.0001). Postnatal weight losses were correlated with IV fluid volume infused to the mothers for the last 6 h prior to delivery (R = 0.814, p = 0.000) and with serum NT-proANP (R = 0.418, p = 0.000), BNP (R = 0.454, p = 0.000), and ADH (R = 0.509, p = 0.000) but not with aldosterone concentrations (p > 0.05). Large amounts of IV fluid given to the mothers who were applied EA prior to the delivery affect their offsprings' postnatal weight loss via certain vasoactive hormones.

  8. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia

    2010-10-10

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses,more » as measured by the breadth of the Gag peptide-specific IFN-{gamma}, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.« less

  9. Understanding How Postnatal Depression Screening and Early Intervention Work in the Real World - A Singaporean Perspective.

    PubMed

    Lee, Theresa My; Bautista, Dianne; Chen, Helen Y

    2016-10-01

    Postnatal depression is a major public health problem with clearly established adverse effects in child outcomes. This study examines the 4-year outcomes of a screening and early intervention programme, in relation to improvement in symptoms, functioning and health quality of life. Women were prospectively recruited up to 6 months postdelivery, using the Edinburgh Postnatal Depression Scale (EPDS) as a screening tool. High-scorers (EPDS >13), were offered psychiatric consultation, and those with borderline scores (EPDS 10-12) were provided counselling, and offered follow-up phone counselling by the assigned case manager. Outcome measures were obtained at baseline, and at 6 months or discharge if earlier, for levels of symptoms, functioning, and health quality of life. From 2008 to 2012, 5245 women were screened, with 307 (5.9%) women with EPDS >13 receiving intervention. Of these, 70.0% had depression, 4.6% anxiety and 3.4% psychosis. In the depression subgroup, the net change was improvement of 93.4% EPDS symptom scores, 92.2% Global Assessment of Functioning (GAF) scores, and 88.3% visual analogue scale (EQ VAS) health quality of life scores. Outcome scores across diagnostic categories demonstrated median changes of 10 points on EPDS, 20 points on GAF, and 25 points on EQ VAS, reflecting 73.9%, 36.4% and 41.7% change from baseline scores. Women with psychosis showed the biggest (80.0%) relative change in GAF functioning scores from baseline to discharge but had the lowest median change in EPDS symptom scores. A screening and intervention programme rightly-sited within an obstetric setting can improve clinical outcomes because of early detection and intervention.

  10. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  11. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Flatscher-Bader, Traute; Wilkins, Sarah J; Anderson, Greg J; Whitelaw, Emma; Chong, Suyinn

    2010-10-01

    Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.g., craniofacial changes and growth restriction in adolescent mice). In this study, we characterize in detail the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and by extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of nonfostered, ethanol-exposed and control mice at postnatal day 28.We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This finding suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiologic result of ethanol exposure in utero. We also find that, despite some catch-up growth after 5 weeks of age, the effect extends into adulthood, which is consistent with longitudinal studies in humans.Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis, and lipid metabolism. © 2010 Wiley-Liss, Inc.

  12. Methylxanthines during pregnancy and early postnatal life.

    PubMed

    Adén, Ulrika

    2011-01-01

    World-wide, many fetuses and infants are exposed to methylxanthines via maternal consumption of coffee and other beverages containing these substances. Methylxanthines (caffeine, theophylline and aminophylline) are also commonly used as a medication for apnea of prematurity.The metabolism of methylxanthines is impaired in pregnant women, fetuses and neonates, leading to accumulating levels thereof. Methylxanthines readily passes the placenta barrier and enters all tissues and thus may affect the fetus/newborn at any time during pregnancy or postnatal life, given that the effector systems are mature.At clinically relevant doses, the major effector system for methylxanthines is adenosine receptors. Animal studies suggest that adenosine receptors in the cardiovascular, respiratory and immune system are developed at birth, but that cerebral adenosine receptors are not fully functional. Furthermore animal studies have shown protective positive effects of methylxanthines in situations of hypoxia/ischemia in neonates. Similarly, a positive long-term effect on lung function and CNS development was found in human preterm infants treated with high doses of caffeine for apneas. There is now evidence that the overall benefits from methylxanthine therapy for apnea of prematurity outweigh potential short-term risks.On the other hand it is important to note that experimental studies have indicated that long-term effects of caffeine during pregnancy and postnatally may include altered behavior and altered respiratory control in the offspring, although there is currently no human data to support this.Some epidemiology studies have reported negative effects on pregnancy and perinatal outcomes related to maternal ingestion of high doses of caffeine, but the results are inconclusive. The evidence base for adverse effects of caffeine in first third of pregnancy are stronger than for later parts of pregnancy and there is currently insufficient evidence to advise women to restrict

  13. Critical period for acoustic preference in mice

    PubMed Central

    Yang, Eun-Jin; Lin, Eric W.; Hensch, Takao K.

    2012-01-01

    Preference behaviors are often established during early life, but the underlying neural circuit mechanisms remain unknown. Adapting a unique nesting behavior assay, we confirmed a “critical period” for developing music preference in C57BL/6 mice. Early music exposure between postnatal days 15 and 24 reversed their innate bias for silent shelter, which typically could not be altered in adulthood. Instead, exposing adult mice treated acutely with valproic acid or carrying a targeted deletion of the Nogo receptor (NgR−/−) unmasked a strong plasticity of preference consistent with a reopening of the critical period as seen in other systems. Imaging of cFos expression revealed a prominent neuronal activation in response to the exposed music in the prelimbic and infralimbic medial prefrontal cortex only under conditions of open plasticity. Neither behavioral changes nor selective medial prefrontal cortex activation was observed in response to pure tone exposure, indicating a music-specific effect. Open-field center crossings were increased concomitant with shifts in music preference, suggesting a potential anxiolytic effect. Thus, music may offer both a unique window into the emotional state of mice and a potentially efficient assay for molecular “brakes” on critical period plasticity common to sensory and higher order brain areas. PMID:23045690

  14. Critical period for acoustic preference in mice.

    PubMed

    Yang, Eun-Jin; Lin, Eric W; Hensch, Takao K

    2012-10-16

    Preference behaviors are often established during early life, but the underlying neural circuit mechanisms remain unknown. Adapting a unique nesting behavior assay, we confirmed a "critical period" for developing music preference in C57BL/6 mice. Early music exposure between postnatal days 15 and 24 reversed their innate bias for silent shelter, which typically could not be altered in adulthood. Instead, exposing adult mice treated acutely with valproic acid or carrying a targeted deletion of the Nogo receptor (NgR(-/-)) unmasked a strong plasticity of preference consistent with a reopening of the critical period as seen in other systems. Imaging of cFos expression revealed a prominent neuronal activation in response to the exposed music in the prelimbic and infralimbic medial prefrontal cortex only under conditions of open plasticity. Neither behavioral changes nor selective medial prefrontal cortex activation was observed in response to pure tone exposure, indicating a music-specific effect. Open-field center crossings were increased concomitant with shifts in music preference, suggesting a potential anxiolytic effect. Thus, music may offer both a unique window into the emotional state of mice and a potentially efficient assay for molecular "brakes" on critical period plasticity common to sensory and higher order brain areas.

  15. Effects of early intraoral acesulfame-K stimulation to mice on the adult's sweet preference and the expression of α-gustducin in fungiform papilla.

    PubMed

    Chen, Meng-Ling; Liu, Si-Si; Zhang, Gen-Hua; Quan, Ying; Zhan, Yue-Hua; Gu, Tian-Yuan; Qin, Yu-Mei; Deng, Shao-Ping

    2013-06-01

    Exposure to artificial sweetener acesulfame-K (AK) at early development stages may influence the adult sweet preference and the periphery gustatory system. We observed that the intraoral AK stimulation to mice from postnatal day 4 (P4) to weaning decreased the preference thresholds for AK and sucrose solutions in adulthood, with the preference pattern unchanged. The preference scores were increased in the exposure group significantly when compared with the control group at a range of concentrations for AK or sucrose solution. Meanwhile, more α-Gustducin-labeled fungiform taste buds and cells in a single taste bud were induced from week 7 by the early intraoral AK stimulation. However, the growth in the number of α-Gustducin-positive taste bud or positive cell number per taste bud occurred only in the anterior region, the rostral 1-mm part, but not in the intermediate region, the caudal 4-mm part, of the anterior two-third of the tongue containing fungiform papillae. This work extends our previous observations and provides new information about the developmental and regional expression pattern of α-Gustducin in mouse fungiform taste bud under early AK-stimulated conditions.

  16. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer's disease.

    PubMed

    Lesuis, Sylvie L; Maurin, Herve; Borghgraef, Peter; Lucassen, Paul J; Van Leuven, Fred; Krugers, Harm J

    2016-06-28

    Stress has been implicated as a risk factor for the severity and progression of sporadic Alzheimer's disease (AD). Early life experiences determine stress responsivity in later life, and modulate age-dependent cognitive decline. Therefore, we examined whether early life experiences influence AD outcome in a bigenic mouse model which progressively develops combined tau and amyloid pathology (biAT mice).Mice were subjected to either early life stress (ELS) or to 'positive' early handling (EH) postnatally (from day 2 to 9). In biAT mice, ELS significantly compromised long term survival, in contrast to EH which increased life expectancy. In 4 month old mice, ELS-reared biAT mice displayed increased hippocampal Aβ levels, while these levels were reduced in EH-reared biAT mice. No effects of ELS or EH were observed on the brain levels of APP, protein tau, or PSD-95. Dendritic morphology was moderately affected after ELS and EH in the amygdala and medial prefrontal cortex, while object recognition memory and open field performance were not affected. We conclude that despite the strong transgenic background, early life experiences significantly modulate the life expectancy of biAT mice. Parallel changes in hippocampal Aβ levels were evident, without affecting cognition of young adult biAT mice.

  17. Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development.

    PubMed

    Kozul-Horvath, Courtney D; Zandbergen, Fokko; Jackson, Brian P; Enelow, Richard I; Hamilton, Joshua W

    2012-01-01

    Arsenic (As) exposure is a significant worldwide environmental health concern. Chronic exposure via contaminated drinking water has been associated with an increased incidence of a number of diseases, including reproductive and developmental effects. The goal of this study was to identify adverse outcomes in a mouse model of early life exposure to low-dose drinking water As (10 ppb, current U.S. EPA Maximum Contaminant Level). C57B6/J pups were exposed to 10 ppb As, via the dam in her drinking water, either in utero and/or during the postnatal period. Birth outcomes, the growth of the F1 offspring, and health of the dams were assessed by a variety of measurements. Birth outcomes including litter weight, number of pups, and gestational length were unaffected. However, exposure during the in utero and postnatal period resulted in significant growth deficits in the offspring after birth, which was principally a result of decreased nutrients in the dam's breast milk. Cross-fostering of the pups reversed the growth deficit. Arsenic exposed dams displayed altered liver and breast milk triglyceride levels and serum profiles during pregnancy and lactation. The growth deficits in the F1 offspring resolved following separation from the dam and cessation of exposure in male mice, but did not resolve in female mice up to six weeks of age. Exposure to As at the current U.S. drinking water standard during critical windows of development induces a number of adverse health outcomes for both the dam and offspring. Such effects may contribute to the increased disease risks observed in human populations.

  18. Neonatal Sleep Restriction Increases Nociceptive Sensitivity in Adolescent Mice.

    PubMed

    Araujo, Paula; Coelho, Cesar A; Oliveira, Maria G; Tufik, Sergio; Andersen, Monica L

    2018-03-01

    Sleep loss in infants may have a negative effect on the functional and structural development of the nociceptive system. We tested the hypothesis that neonatal sleep restriction induces a long-term increase of pain-related behaviors in mice and that this hypersensitivity occurs due to changes in the neuronal activity of nociceptive pathways. We aim to investigate the effects of sleep loss in neonatal mice on pain behaviors of adolescent and adult mice in a sex-dependent manner. We also analyzed neuroanatomical and functional changes in pain pathways associated with behavioral changes. An experimental animal study. A basic sleep research laboratory at Universidade Federal de São Paulo in Brazil. Neonatal mice at postnatal day (PND) 12 were randomly assigned to either control (CTRL), maternal separation (MS), or sleep restriction (SR) groups. MS and SR were performed 2 hours a day for 10 days (PND 12 until PND 21). The gentle handling method was used to prevent sleep. At PND 21, PND 35, or PND 90, the mice were tested for pain-related behaviors. Their brains were harvested and immunohistochemically stained for c-Fos protein in the anterior cingulate cortex, primary somatosensory cortex, and periaqueductal gray (PAG). Neonatal SR significantly increased nociceptive sensitivity in the hot plate test in adolescent mice (-23.5% of pain threshold). This alteration in nociceptive response was accompanied by a decrease in c-Fos expression in PAG (-40% of c-Fos positive cells compared to the CTRL group). The hypersensitivity found in adolescent mice was not present in adult animals, and all mice showed a comparable nociceptive response. Even using a mild manipulation method, in which a minimal amount of handling was applied to maintain wakefulness, sleep deprivation was a stressful event evidenced by higher corticosterone levels. Repeated exposures to sleep loss during early life were able to induce changes in the nociceptive response associated with alterations in neural

  19. In utero and acute exposure to benzene: investigation of DNA double-strand breaks and DNA recombination in mice.

    PubMed

    Lau, Annette; Belanger, Christine Lea; Winn, Louise M

    2009-05-31

    Benzene, a ubiquitous pollutant, has been identified as a human leukemogen and early exposure to environmental carcinogens such as benzene has been linked to childhood leukemia. It is known that genotoxic agents can increase the frequency of DNA double-strand breaks (DSBs), which can initiate DNA recombinational repair mechanisms. In this study we investigated the induction of micronuclei, the formation of gamma-H2A.X as a marker of DNA DSBs, and the induction of somatic DNA recombination events in hematopoietic tissue from pKZ1 transgenic mice exposed acutely or in utero to benzene. Adult male C57Bl/6N mice were treated with a single i.p. injection of benzene, and timed-pregnant females pKZ1 were treated with daily i.p. injections of 200 mg/kg or 400 mg/kg benzene through gestational days 7-15. Acute exposure to 400 mg/kg benzene resulted in a statistically significant increase in the percentage of micronucleated cells in adult male bone marrow cells and in fetal liver and post-natal day 9 bone marrow cells of mice exposed in utero. Immunoblotting techniques did not detect benzene-induced increases in the formation of gamma-H2A.X in bone marrow cells of adult male mice and in maternal bone marrow, fetal liver, and post-natal bone marrow cells after specific time-point exposures. Finally, no recombination events were detected in adult pKZ1 mouse tissue; however, in post-natal day 9 pups in utero exposure to 400 mg/kg of benzene caused a trend towards increasing recombination frequency although this did not reach statistical significance. These results demonstrate that in utero exposure increases the frequency of micronuclei and DNA recombination events in hematopoietic tissue of fetal and post-natal mice and may be an initiating event in the etiology of childhood leukemias. Further investigations into different types of DNA damage and repair pathways are warranted to fully elucidate the role of genotoxic mechanisms in the etiology of benzene-induced childhood

  20. Postnatal Loss of Mef2c Results in Dissociation of Effects on Synapse Number and Learning and Memory.

    PubMed

    Adachi, Megumi; Lin, Pei-Yi; Pranav, Heena; Monteggia, Lisa M

    2016-07-15

    Myocyte enhancer factor 2 (MEF2) transcription factors play critical roles in diverse cellular processes during central nervous system development. Studies attempting to address the role of MEF2 in brain have largely relied on overexpression of a constitutive MEF2 construct that impairs memory formation or knockdown of MEF2 function that increases spine numbers and enhances memory formation. Genetic deletion of individual MEF2 isoforms in brain during embryogenesis demonstrated that Mef2c loss negatively regulates spine numbers resulting in learning and memory deficits, possibly as a result of its essential role in development. To investigate MEF2C function in brain further, we genetically deleted Mef2c during postnatal development in mice. We characterized these conditional Mef2c knockout mice in an array of behavioral paradigms and examined the impact of postnatal loss of Mef2c on long-term potentiation. We observed increased spine numbers in hippocampus of the conditional Mef2c knockout mice. However, the postnatal loss of Mef2c did not impact learning and memory, long-term potentiation, or social and repetitive behaviors. Our findings demonstrate a critical role for MEF2C in the regulation of spine numbers with a dissociation of learning and memory, synaptic plasticity, and measures of autism-related behaviors in postnatal brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice.

    PubMed

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) in the pancreas of mice at embryonic day 15.5 (E15.5), E18.5, postnatal day 1 (P1) and P7. Our data showed that at E15.5 the pancreatic and duodenum homeobox-1 (Pdx1) was expressed in the majority of cells in the developing pancreata. Notably, insulin immunoreactivity was identified in a subpopulation of pancreatic cells with a high level of Pdx1 expression. About 80% of the high-level Pdx-1 expressing cells in the pancreas expressed GAD and GABAARα1 at all pancreatic developmental stages. In contrast, only about 30% of the high-level Pdx-1 expressing cells in the E15.5 pancreas expressed insulin; i.e., a large number of GAD/GABAARα1-expressing cells did not express insulin at this early developmental stage. The expression level of GAD and GABAARα1 increased steadily, and progressively more GAD/GABAARα1-expressing cells expressed insulin in the course of pancreatic development. These results suggest that 1) GABA signaling proteins appear in β-cell progenitors prior to insulin expression; and 2) the increased expression of GABA signaling proteins may be involved in β-cell progenitor maturation.

  2. A Subtype-Specific Critical Period for Neurogenesis in the Postnatal Development of Mouse Olfactory Glomeruli

    PubMed Central

    Ito, Keishi; Arakawa, Sousuke; Murakami, Shingo; Sawamoto, Kazunobu

    2012-01-01

    Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training. PMID:23133633

  3. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep

    PubMed Central

    Khanal, Prabhat; Johnsen, Lærke; Axel, Anne Marie Dixen; Hansen, Pernille Willert; Kongsted, Anna Hauntoft; Lyckegaard, Nette Brinch; Nielsen, Mette Olaf

    2016-01-01

    We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein requirements) diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF) or moderate (CONV) diets until 6 months of age, and a moderate (obesity correcting) diet thereafter. At 2½ years of age (adulthood), plasma metabolite profiles during fasting, glucose, insulin and propionate (in fed and fasted states) tolerance tests were examined. Organ weights were determined at autopsy. Early obesity development was associated with lack of expansion of perirenal, but not other adipose tissues from adolescence to adulthood, resulting in 10% unit increased proportion of mesenteric of intra-abdominal fat. Prenatal undernutrition had a similar but much less pronounced effect. Across tolerance tests, LOW-HCHF sheep had highest plasma levels of cholesterol, urea-nitrogen, creatinine, and lactate. Sex specific differences were observed, particularly with respect to fat deposition, but direction of responses to early nutrition impacts were similar. However, prenatal undernutrition induced greater metabolic alterations in adult females than males. Foetal undernutrition, but not overnutrition, predisposed for adult hypercholesterolaemia, hyperureaemia, hypercreatinaemia and hyperlactataemia, which became manifested only in combination with early obesity development. Perirenal expandability may play a special role in this context. Differential nutrition recommendations may be advisable for individuals with low versus high birth weights. PMID:27257993

  4. Impact of Early Postnatal Androgen Exposure on Voice Development

    PubMed Central

    Grisa, Leila; Leonel, Maria L.; Gonçalves, Maria I. R.; Pletsch, Francisco; Sade, Elis R.; Custódio, Gislaine; Zagonel, Ivete P. S.; Longui, Carlos A.; Figueiredo, Bonald C.

    2012-01-01

    Background The impact of early postnatal androgen exposure on female laryngeal tissue may depend on certain characteristics of this exposure. We assessed the impact of the dose, duration, and timing of early androgen exposure on the vocal development of female subjects who had been treated for adrenocortical tumor (ACT) in childhood. Methods The long-term effects of androgen exposure on the fundamental vocal frequency (F0), vocal pitch, and final height and the presence of virilizing signs were examined in 9 adult (age, 18.4 to 33.5 years) and 10 adolescent (13.6 to 17.8 years) female ACT patients. We also compared the current values with values obtained 0.9 years to 7.4 years after these subjects had undergone ACT surgery, a period during which they had shown normal androgen levels. Results Of the 19 subjects, 17 (89%) had been diagnosed with ACT before 4 years of age, 1 (5%) at 8.16 years, and 1 (5%) at 10.75 years. Androgen exposure (2 to 30 months) was sufficiently strong to cause pubic hair growth in all subjects and clitoromegaly in 74% (14/19) of the subjects, but did not reduce their height from the target value. Although androgen exposure induced a remarkable reduction in F0 (132 Hz) and moderate pitch virilization in 1 subject and partial F0 virilization, resulting in F0 of 165 and 169 Hz, in 2 subjects, the majority had normal F0 ranging from 189 to 245 Hz. Conclusions Female laryngeal tissue is less sensitive to androgen exposure between birth and adrenarche than during other periods. Differential larynx sensitivity to androgen exposure in childhood and F0 irreversibility in adulthood are age-, concentration-, duration-, and timing-dependent events that may also be affected by exposure to inhibitory or stimulatory hormones. Further studies are required to better characterize each of these factors. PMID:23284635

  5. Transient Overexposure of Neuregulin 3 during Early Postnatal Development Impacts Selective Behaviors in Adulthood

    PubMed Central

    Paterson, Clare; Law, Amanda J.

    2014-01-01

    Neuregulin 3 (NRG3), a specific ligand for ErbB4 and a neuronal-enriched neurotrophin is implicated in the genetic predisposition to a broad spectrum of neurodevelopmental, neurocognitive and neuropsychiatric disorders, including Alzheimer's disease, autism and schizophrenia. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, accompanied by increased expression of prefrontal cortical NRG3. Despite our expanding knowledge of genetic involvement of NRG3 in neurological disorders, little is known about the neurodevelopmental mechanisms of risk. Here we exploited the fact that a paralog of NRG3, NRG1, readily penetrates the murine blood brain barrier (BBB). In this study we synthesized the bioactive epidermal growth factor (EGF) domain of NRG3, and using previously validated in-vivo peripheral injection methodologies in neonatal mice, demonstrate that NRG3 successfully crosses the BBB, where it activates its receptor ErbB4 and downstream Akt signaling at levels of bioactivity comparable to NRG1. To determine the impact of NRG3 overexpression during one critical developmental window, C57BL/6 male mice were subcutaneously injected daily with NRG1-EGF, NRG3-EGF or vehicle from postnatal days 2–10. Mice were tested in adulthood using a comprehensive battery of behavioral tasks relevant to neurocognitive and psychiatric disorders. In agreement with previous studies, developmental overexposure to NRG1 induced multiple non-CNS mediated peripheral effects as well as severely disrupting performance of prepulse inhibition of the startle response. In contrast, NRG3 had no effect on any peripheral measures investigated or sensorimotor gating. Specifically, developmental NRG3 overexposure produced an anxiogenic-like phenotype and deficits in social behavior in adulthood. These results provide primary data to support a role for NRG3 in brain development and function, which appears to be distinct

  6. Effect of Early-Life Fluoxetine on Anxiety-Like Behaviors in BDNF Val66Met Mice.

    PubMed

    Dincheva, Iva; Yang, Jianmin; Li, Anfei; Marinic, Tina; Freilingsdorf, Helena; Huang, Chienchun; Casey, B J; Hempstead, Barbara; Glatt, Charles E; Lee, Francis S; Bath, Kevin G; Jing, Deqiang

    2017-12-01

    Adolescence is a developmental stage in which the incidence of psychiatric disorders, such as anxiety disorders, peaks. Selective serotonin reuptake inhibitors (SSRIs) are the main class of agents used to treat anxiety disorders. However, the impact of SSRIs on the developing brain during adolescence remains unknown. The authors assessed the impact of developmentally timed SSRI administration in a genetic mouse model displaying elevated anxiety-like behaviors. Knock-in mice containing a common human single-nucleotide polymorphism (Val66Met; rs6265) in brain-derived neurotrophic factor (BDNF), a growth factor implicated in the mechanism of action of SSRIs, were studied based on their established phenotype of increased anxiety-like behavior. Timed administration of fluoxetine was delivered during one of three developmental periods (postnatal days 21-42, 40-61, or 60-81), spanning the transition from childhood to adulthood. Neurochemical and anxiety-like behavioral analyses were performed. We identified a "sensitive period" during periadolescence (postnatal days 21-42) in which developmentally timed fluoxetine administration rescued anxiety-like phenotypes in BDNF Val66Met mice in adulthood. Compared with littermate controls, BDNF Met/Met mice exhibited diminished maturation of serotonergic fibers projecting particularly to the prefrontal cortex, as well as decreased expression of the serotonergic trophic factor S100B in the dorsal raphe. Interestingly, deficient serotonergic innervation, as well as S100B levels, were rescued with fluoxetine administration during periadolescence. These findings suggest that SSRI administration during a "sensitive period" during periadolescence leads to long-lasting anxiolytic effects in a genetic mouse model of elevated anxiety-like behaviors. These persistent effects highlight the role of BDNF in the maturation of the serotonin system and the capacity to enhance its development through a pharmacological intervention.

  7. Influence of prenatal and postnatal growth on intellectual functioning in school-aged children.

    PubMed

    Pongcharoen, Tippawan; Ramakrishnan, Usha; DiGirolamo, Ann M; Winichagoon, Pattanee; Flores, Rafael; Singkhornard, Jintana; Martorell, Reynaldo

    2012-05-01

    To assess the relative influence of size at birth, infant growth, and late postnatal growth on intellectual functioning at 9 years of age. A follow-up, cross-sectional study. Three districts in Khon Kaen province, northeast Thailand. A total of 560 children, or 92% of former participants of a trial of iron and/or zinc supplementation during infancy. Prenatal (size at birth), early infancy (birth to 4 months), late infancy (4 months to 1 year), and late postnatal (1 to 9 years) growth. Multiple-stage least squares analyses were used to generate uncorrelated residuals of postnatal growth. Intellectual functioning was measured at 9 years using the Wechsler Intelligence Scale for Children and the Raven's Colored Progressive Matrices (Pearson). Analyses included adjustment for maternal, household, and school characteristics. Significant relationships were found between growth and IQ (Wechsler Intelligence Scale for children, third edition, Thai version), but only up to 1 year of age; overall, growth was not related to the Raven's Colored Progressive Matrices. The strongest and most consistent relationships were with length (birth, early infancy, and late infancy); for weight, only early infancy gain was consistently related to IQ. Head circumference at birth was not collected routinely; head circumference at 4 months (but not head circumference growth thereafter) was related to IQ. Late postnatal growth was not associated with any outcome. Physical growth in early infancy (and, to a lesser extent, physical growth in late infancy and at birth) is associated with IQ at 9 years of age. Early infancy may be a critical window for human development.

  8. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    PubMed

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  9. Early physical and motor development of mouse offspring exposed to valproic acid throughout intrauterine development.

    PubMed

    Podgorac, Jelena; Pešić, Vesna; Pavković, Željko; Martać, Ljiljana; Kanazir, Selma; Filipović, Ljupka; Sekulić, Slobodan

    2016-09-15

    Clinical research has identified developmental delay and physical malformations in children prenatally exposed to the antiepileptic drug (AED) valproic acid (VPA). However, the early signs of neurodevelopmental deficits, their evolution during postnatal development and growth, and the dose effects of VPA are not well understood. The present study aimed to examine the influence of maternal exposure to a wide dose range (50, 100, 200 and 400mg/kg/day) of VPA during breeding and gestation on early physical and neuromotor development in mice offspring. Body weight gain, eye opening, the surface righting reflex (SRR) and tail suspension test (TST) were examined in the offspring at postnatal days 5, 10 and 15. We observed that: (1) all tested doses of VPA reduced the body weight of the offspring and the timing of eye opening; (2) offspring exposed to VPA displayed immature forms of righting and required more time to complete the SRR; (3) latency for the first immobilization in the TST is shorter in offspring exposed to higher doses of VPA; however, mice in all groups exposed to VPA exhibited atypical changes in this parameter during the examined period of maturation; (4) irregularities in swinging and curling activities were observed in animals exposed to higher doses of VPA. This study points to delayed somatic development and postponed maturation of the motor system in all of the offspring prenatally exposed to VPA, with stronger effects observed at higher doses. The results implicate that the strategy of continuous monitoring of general health and achievements in motor milestones during the early postnatal development in prenatally VPA-exposed offspring, irrespectively of the dose applied, could help to recognize early developmental irregularities. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Early postnatal effects of noopept and piracetam on declarative and procedural memory of adult male and female rats.

    PubMed

    Trofimov, S S; Voronina, T A; Guzevatykh, L S

    2005-06-01

    We studied the effect of a new nootropic dipeptide Noopept and reference nootropic preparation piracetam injected subcutaneously on days 8-20 of life on learning of alternative feeding response in a 6-arm-maze in male and female rats. Early postnatal administration of Noopept disturbed the dynamics of learning by parameters of declarative and procedural memory. Piracetam impaired learning by parameters of procedural, but not declarative memory (only in males). Both preparations decreased the ratio of successfully learned males (but not females). The observed effects were not associated with changes in locomotor activity.

  11. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice.

    PubMed

    Moya-Pérez, A; Perez-Villalba, A; Benítez-Páez, A; Campillo, I; Sanz, Y

    2017-10-01

    Emerging evidence suggests that there is a window of opportunity within the early developmental period, when microbiota-based interventions could play a major role in modulating the gut-brain axis and, thereby, in preventing mood disorders. This study aims at evaluating the effects and mode of action of Bifidobacterium pseudocatenulatum CECT 7765 in a murine model of chronic stress induced by maternal separation (MS). C57Bl/6J male breast-fed pups were divided into four groups, which were subjected or not to MS and supplemented with placebo or B. pseudocatenulatum CECT7765 until postnatal period (P) 21 and followed-up until P41. Behavioral tests were performed and neuroendocrine parameters were analyzed including corticosterone, cytokine/chemokine concentrations and neurotransmitters. Microbiota was also analyzed in stools by 16S rRNA gene sequencing. B. pseudocatenulatum CECT 7765 administration attenuated some aspects of the excessive MS-induced stress response of the hypothalamic-pituitary-adrenal (HPA) axis, particularly corticosterone production at baseline and in response to subsequent acute stress in adulthood. B. pseudocatenulatum CECT 7765 also down-regulated MS-induced intestinal inflammation (reducing interferon gamma [IFN-γ]) and intestinal hypercatecholaminergic activity (reducing dopamine [DA] and adrenaline [A] concentrations) at P21. These effects have a long-term impact on the central nervous system (CNS) of adult mice since MS mice fed B. pseudocatenulatum CECT 7765 showed lower anxiety levels than placebo-fed MS mice, as well as normal neurotransmitter levels in the hypothalamus. The anti-inflammatory effect of B. pseudocatenulatum CECT 7765 seemed to be related to an improvement in glucocorticoid sensitivity in mesenteric lymph node immunocompetent cells at P21. The administration of B. pseudocatenulatum CECT 7765 to MS animals also reversed intestinal dysbiosis affecting the proportions of ten Operational Taxonomic Units (OTUs) at P21, which

  12. Fetal Nicotine Exposure Increases Preference for Nicotine Odor in Early Postnatal and Adolescent, but Not Adult, Rats

    PubMed Central

    Mantella, Nicole M.; Kent, Paul F.; Youngentob, Steven L.

    2013-01-01

    Human studies demonstrate a four-fold increased possibility of smoking in the children of mothers who smoked during pregnancy. Nicotine is the active addictive component in tobacco-related products, crossing the placenta and contaminating the amniotic fluid. It is known that chemosensory experience in the womb can influence postnatal odor-guided preference behaviors for an exposure stimulus. By means of behavioral and neurophysiologic approaches, we examined whether fetal nicotine exposure, using mini-osmotic pumps, altered the response to nicotine odor in early postnatal (P17), adolescent (P35) and adult (P90) progeny. Compared with controls, fetal exposed rats displayed an altered innate response to nicotine odor that was evident at P17, declined in magnitude by P35 and was absent at P90 - these effects were specific to nicotine odor. The behavioral effect in P17 rats occurred in conjunction with a tuned olfactory mucosal response to nicotine odor along with an untoward consequence on the epithelial response to other stimuli – these P17 neural effects were absent in P35 and P90 animals. The absence of an altered neural effect at P35 suggests that central mechanisms, such as nicotine-induced modifications of the olfactory bulb, bring about the altered behavioral response to nicotine odor. Together, these findings provide insights into how fetal nicotine exposure influences the behavioral preference and responsiveness to the drug later in life. Moreover, they add to a growing literature demonstrating chemosensory mechanisms by which patterns of maternal drug use can be conveyed to offspring, thereby enhancing postnatal vulnerability for subsequent use and abuse. PMID:24358374

  13. Long-term Fate Mapping to Assess the Impact of Postnatal Isoflurane Exposure on Hippocampal Progenitor Cell Productivity.

    PubMed

    Jiang, Yifei; Tong, Dongyi; Hofacer, Rylon D; Loepke, Andreas W; Lian, Qingquan; Danzer, Steve C

    2016-12-01

    Exposure to isoflurane increases apoptosis among postnatally generated hippocampal dentate granule cells. These neurons play important roles in cognition and behavior, so their permanent loss could explain deficits after surgical procedures. To determine whether developmental anesthesia exposure leads to persistent deficits in granule cell numbers, a genetic fate-mapping approach to label a cohort of postnatally generated granule cells in Gli1-CreER::GFP bitransgenic mice was utilized. Green fluorescent protein (GFP) expression was induced on postnatal day 7 (P7) to fate map progenitor cells, and mice were exposed to 6 h of 1.5% isoflurane or room air 2 weeks later (P21). Brain structure was assessed immediately after anesthesia exposure (n = 7 controls and 8 anesthesia-treated mice) or after a 60-day recovery (n = 8 controls and 8 anesthesia-treated mice). A final group of C57BL/6 mice was exposed to isoflurane at P21 and examined using neurogenesis and cell death markers after a 14-day recovery (n = 10 controls and 16 anesthesia-treated mice). Isoflurane significantly increased apoptosis immediately after exposure, leading to cell death among 11% of GFP-labeled cells. Sixty days after isoflurane exposure, the number of GFP-expressing granule cells in treated animals was indistinguishable from control animals. Rates of neurogenesis were equivalent among groups at both 2 weeks and 2 months after treatment. These findings suggest that the dentate gyrus can restore normal neuron numbers after a single, developmental exposure to isoflurane. The authors' results do not preclude the possibility that the affected population may exhibit more subtle structural or functional deficits. Nonetheless, the dentate appears to exhibit greater resiliency relative to nonneurogenic brain regions, which exhibit permanent neuron loss after isoflurane exposure.

  14. Early postnatal development of vasoactive intestinal polypeptide- and peptide histidine isoleucine-immunoreactive structures in the cat visual cortex.

    PubMed

    Wahle, P; Meyer, G

    1989-04-08

    The early postnatal development of neurons containing vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) has been analyzed in visual areas 17 and 18 of cats aged from postnatal day (P) 0 to adulthood. Neuronal types are established mainly by axonal criteria. Both peptides occur in the same neuronal types and display the same postnatal chronology of appearance. Several cell types are transient, which means that they are present in the cortex only for a limited period of development. According to their chronology of appearance the VIP/PHI-immunoreactive (ir) cell types are grouped into three neuronal populations. The first population comprises six cell types which appear early in postnatal life. The pseudohorsetail cells of layer I possess a vertically descending axon which initially gives rise to recurrent collaterals, then forms a bundle passing layers III to V, and finally, horizontal terminal fibers in layer VI. The neurons differentiate at P 4 and disappear by degeneration around P 30. The neurons with columnar dendritic fields of layers IV/V are characterized by a vertical arrangement of long dendrites ascending or descending parallel to each other, thus forming an up to 600 microns long dendritic column. Their axons always descend and terminate in broad fields in layer VI. The neurons appear at P 7 and are present until P 20. The multipolar neurons of layer VI occur in isolated positions and have broad axonal territories. The neurons differentiate at P 7 and persist into adulthood. Bitufted to multipolar neurons of layers II/III have axons descending as a single fiber to layer VI, where they terminate. The neurons appear at P 12 and persist into adulthood. The four cell types described above issue a vertically oriented fiber architecture in layers II-V and a horizontal terminal plexus in layer VI which is dense during the second, third and fourth week. Concurrent with the disappearance of the two transient types the number of

  15. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera

    PubMed Central

    Lim, Wan’E.; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W.

    2012-01-01

    Purpose The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Methods Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N6 primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥2 relative fold change at a false discovery rate of ≤5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. Results The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Conclusions Gene expression of eye diseases should be studied as early as postnatal weeks 1–2 to ensure that any changes in gene expression pattern during disease development are detected. In

  16. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.

    PubMed

    Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I

    2009-01-12

    Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.

  17. Postnatal brain and skull growth in an Apert syndrome mouse model

    PubMed Central

    Hill, Cheryl A.; Martínez-Abadías, Neus; Motch, Susan M.; Austin, Jordan R.; Wang, Yingli; Jabs, Ethylin Wang; Richtsmeier, Joan T.; Aldridge, Kristina

    2012-01-01

    Craniofacial and neural tissues develop in concert throughout pre- and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for Apert syndrome using the Fgfr2+/P253R mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2+/P253R mice and unaffected littermates at P0 (N=28) and P2 (N=23). 3D coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2+/P253R mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other. PMID:23495236

  18. Early life exposure to 2.45GHz WiFi-like signals: effects on development and maturation of the immune system.

    PubMed

    Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Lopresto, Vanni; Altavista, Pierluigi; Marino, Carmela; Pioli, Claudio

    2011-12-01

    The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice

    PubMed Central

    Hougaard, Karin S; Jensen, Keld A; Nordly, Pernille; Taxvig, Camilla; Vogel, Ulla; Saber, Anne T; Wallin, Håkan

    2008-01-01

    Background Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ≅ 240 nm) on gestational days 9–19, for 1 h/day. Results Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances. Conclusion In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies. PMID:18331653

  20. [Postnatal diagnosis of gastric volvulus revealing congenital diaphragmatic hernia].

    PubMed

    Aprahamian, A; Nouyrigat, V; Grévent, D; Hervieux, E; Chéron, G

    2017-05-01

    Postnatally diagnosed congenital diaphragmatic hernias (CDH) are rare and have a better prognosis than those diagnosed prenatally. Postnatal symptoms can be respiratory, digestive, or mixed. Gastric volvulus can reveal CDH. Symptoms are pain, abdominal distension, and/or vomiting. Upper gastrointestinal barium X-ray radiography provides the diagnosis. Prognosis is related to early surgical management in complicated forms with intestinal occlusion or sub-occlusion. We report on an infant who presented with vomiting, which revealed gastric volvulus associated with a CDH. Progression was favorable after surgical treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Effects of short-duration electromagnetic radiation on early postnatal neurogenesis in rats: Fos and NADPH-d histochemical studies.

    PubMed

    Orendáčová, Judita; Orendáč, Martin; Mojžiš, Miroslav; Labun, Ján; Martončíková, Marcela; Saganová, Kamila; Lievajová, Kamila; Blaško, Juraj; Abdiová, Henrieta; Gálik, Ján; Račeková, Eniko

    2011-11-01

    The immediate effects of whole body electromagnetic radiation (EMR) were used to study postnatal neurogenesis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of Wistar rats of both sexes. Newborn postnatal day 7 (P7) and young adult rats (P28) were exposed to pulsed electromagnetic fields (EMF) at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm(2) for 2 h. Post-irradiation changes were studied using immunohistochemical localization of Fos and NADPH-d. We found that short-duration exposure induces increased Fos immunoreactivity selectively in cells of the SVZ of P7 and P28 rats. There were no Fos positive cells visible within the RMS of irradiated rats. These findings indicate that some differences exist in prerequisites of proliferating cells between the SVZ and RMS regardless of the age of the rats. Short-duration exposure also caused praecox maturation of NADPH-d positive cells within the RMS of P7 rats. The NADPH-d positive cells appeared several days earlier than in age-matched controls, and their number and morphology showed characteristics of adult rats. On the other hand, in the young adult P28 rats, EMR induced morphological signs typical of early postnatal age. These findings indicate that EMR causes age-related changes in the production of nitric oxide (NO), which may lead to different courses of the proliferation cascade in newborn and young adult neurogenesis. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Sensorimotor and Neurocognitive Dysfunctions Parallel Early Telencephalic Neuropathology in Fucosidosis Mice

    PubMed Central

    Stroobants, Stijn; Wolf, Heike; Callaerts-Vegh, Zsuzsanna; Dierks, Thomas; Lübke, Torben; D’Hooge, Rudi

    2018-01-01

    Fucosidosis is a lysosomal storage disorder (LSD) caused by lysosomal α-L-fucosidase deficiency. Insufficient α-L-fucosidase activity triggers accumulation of undegraded, fucosylated glycoproteins and glycolipids in various tissues. The human phenotype is heterogeneous, but progressive motor and cognitive impairments represent the most characteristic symptoms. Recently, Fuca1-deficient mice were generated by gene targeting techniques, constituting a novel animal model for human fucosidosis. These mice display widespread LSD pathology, accumulation of secondary storage material and neuroinflammation throughout the brain, as well as progressive loss of Purkinje cells. Fuca1-deficient mice and control littermates were subjected to a battery of tests detailing different aspects of motor, emotional and cognitive function. At an early stage of disease, we observed reduced exploratory activity, sensorimotor disintegration as well as impaired spatial learning and fear memory. These early markers of neurological deterioration were related to the respective stage of neuropathology using molecular genetic and immunochemical procedures. Increased expression of the lysosomal marker Lamp1 and neuroinflammation markers was observed throughout the brain, but appeared more prominent in cerebral areas in comparison to cerebellum of Fuca1-deficient mice. This is consistent with impaired behaviors putatively related to early disruptions of motor and cognitive circuits particularly involving cerebral cortex, basal ganglia, and hippocampus. Thus, Fuca1-deficient mice represent a practical and promising fucosidosis model, which can be utilized for pathogenetic and therapeutic studies. PMID:29706874

  3. A mouse model with postnatal endolymphatic hydrops and hearing loss

    PubMed Central

    Megerian, Cliff A.; Semaan, Maroun T.; Aftab, Saba; Kisley, Lauren B.; Zheng, Qing Yin; Pawlowski, Karen S.; Wright, Charles G.; Alagramam, Kumar N.

    2010-01-01

    Endolymphatic hydrops (ELH), hearing loss and neuronal degeneration occur together in a variety of clinically significant disorders, including Meniere’s disease (MD). However, the sequence of these pathological changes and their relationship to each other are not well understood. In this regard, an animal model that spontaneously develops these features postnatally would be useful for research purposes. A search for such a model led us to the PhexHyp-Duk mouse, a mutant allele of the Phex gene causing X-linked hypophosphatemic rickets. The hemizygous male (PhexHyp-Duk/Y) was previously reported to exhibit various abnormalities during adulthood, including thickening of bone, ELH and hearing loss. The reported inner-ear phenotype was suggestive of progressive pathology and spontaneous development of ELH postnatally, but not conclusive. The main focuses of this report are to further characterize the inner ear phenotype in PhexHyp-Duk/Y mice and to test the hypotheses that (a) the PhexHyp-Duk/Y mouse develops ELH and hearing loss postnatally, and (b) the development of ELH in the PhexHyp-Duk/Y mouse is associated with obstruction of the endolymphatic duct (ED) due to thickening of the surrounding bone. Auditory brainstem response (ABR) recordings at various times points and histological analysis of representative temporal bones reveal that PhexHyp-Duk/Y mice typically develop adult onset, asymmetric, progressive hearing loss closely followed by the onset of ELH. ABR and histological data show that functional degeneration precedes structural degeneration. The major degenerative correlate of hearing loss and ELH in the mutants is the primary loss of spiral ganglion cells. Further, PhexHyp-Duk/Y mice develop ELH without evidence of ED obstruction, supporting the idea that ELH can be induced by a mechanism other than the blockade of longitudinal flow of endolymphatic fluid, and occlusion of ED is not a prerequisite for the development of ELH in patients. PMID:18289812

  4. Pre- and Post-Natal Maternal Depressive Symptoms in Relation with Infant Frontal Function, Connectivity, and Behaviors

    PubMed Central

    Soe, Ni Ni; Wen, Daniel J.; Poh, Joann S.; Li, Yue; Broekman, Birit F. P.; Chen, Helen; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D.; Meaney, Michael J.; Rifkin-Graboi, Anne; Qiu, Anqi

    2016-01-01

    This study investigated the relationships between pre- and early post-natal maternal depression and their changes with frontal electroencephalogram (EEG) activity and functional connectivity in 6- and 18-month olds, as well as externalizing and internalizing behaviors in 24-month olds (n = 258). Neither prenatal nor postnatal maternal depressive symptoms independently predicted neither the frontal EEG activity nor functional connectivity in 6- and 18-month infants. However, increasing maternal depressive symptoms from the prenatal to postnatal period predicted greater right frontal activity and relative right frontal asymmetry amongst 6-month infants but these finding were not observed amongst 18-month infants after adjusted for post-conceptual age on the EEG visit day. Subsequently increasing maternal depressive symptoms from the prenatal to postnatal period predicted lower right frontal connectivity within 18-month infants but not among 6-month infants after controlling for post-conceptual age on the EEG visit day. These findings were observed in the full sample and the female sample but not in the male sample. Moreover, both prenatal and early postnatal maternal depressive symptoms independently predicted children’s externalizing and internalizing behaviors at 24 months of age. This suggests that the altered frontal functional connectivity in infants born to mothers whose depressive symptomatology increases in the early postnatal period compared to that during pregnancy may reflect a neural basis for the familial transmission of phenotypes associated with mood disorders, particularly in girls. PMID:27073881

  5. Sex differences in β-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure.

    PubMed

    Carroll, Jenna C; Rosario, Emily R; Kreimer, Sara; Villamagna, Angela; Gentzschein, Elisabet; Stanczyk, Frank Z; Pike, Christian J

    2010-12-17

    The risk of Alzheimer's disease (AD) is higher in women than in men, a sex difference that likely results from the effects of sex steroid hormones. To investigate this relationship, we first compared progression of β-amyloid (Aβ) pathology in male and female triple transgenic (3xTg-AD) mice. We found that female 3xTg-AD mice exhibit significantly greater Aβ burden and larger behavioral deficits than age-matched males. Next, we evaluated how the organizational effects of sex steroid hormones during postnatal development may affect adult vulnerability to Aβ pathology. We observed that male 3xTg-AD mice demasculinized during early development exhibit significantly increased Aβ accumulation in adulthood. In contrast, female mice defeminized during early development exhibit a more male-like pattern of Aβ pathology in adulthood. Taken together, these results demonstrate significant sex differences in pathology in 3xTg-AD mice and suggest that these differences may be mediated by organizational actions of sex steroid hormones during development. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Ovarian mast cells migrate toward ovary-fimbria connection in neonatal MRL/MpJ mice.

    PubMed

    Nakamura, Teppei; Chihara, Masataka; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nagasaki, Ken-Ichi; Elewa, Yaser Hosny Ali; Tatsumi, Osamu; Kon, Yasuhiro

    2018-01-01

    MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin+/Foxl2-/Gata4+) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit- immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit- oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal

  7. Ovarian mast cells migrate toward ovary-fimbria connection in neonatal MRL/MpJ mice

    PubMed Central

    Chihara, Masataka; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nagasaki, Ken-ichi; Elewa, Yaser Hosny Ali; Tatsumi, Osamu; Kon, Yasuhiro

    2018-01-01

    MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin+/Foxl2-/Gata4+) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit- immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit- oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal

  8. Effect of prenatal and postnatal malnutrition on intellectual functioning in early school-aged children in rural western China

    PubMed Central

    Li, Chao; Zhu, Ni; Zeng, Lingxia; Dang, Shaonong; Zhou, Jing; Yan, Hong

    2016-01-01

    Abstract The aim of this study was to evaluate the effect of prenatal and postnatal malnutrition on the intellectual functioning of early school-aged children. We followed the offspring of women who had participated in a trial of prenatal supplementation with different combinations of micronutrients and who remained resident in the study field. We measured their intellectual functioning using the Wechsler intelligence scale for children (WISC-IV). Height-for-age, weight-for-age, and body mass index (BMI)-for-age were used as anthropometric nutritional status indices. Four of the 5 composite scores derived from the WISC-IV, except for working memory index (WMI), were significantly lower in low birth weight children after adjusting for confounds. All 5 composite scores, including full-scale intelligence quotient (FSIQ), verbal comprehension index (VCI), WMI, perceptual reasoning index (PRI), and processing speed index (PSI) were significant lower in stunted and underweight children. The differences in the means of WISC-IV test scores were greatest between stunted and nonstunted children. The means for FSIQ, VCI, WMI, PRI, and PSI were as follows: 5.88 (95% confidence interval [CI]: 2.84–8.92), 5.08 (95% CI: 1.12–8.41), 4.71 (95% CI: 1.78–7.66), 6.13 (95% CI: 2.83–9.44), and 5.81 (95% CI: 2.61–9.00). These means were lower in stunted children after adjusting for confounds. Our results suggest the important influences of low birth weight and postnatal malnutrition (stunting, low body weight) on intellectual functioning in early school-aged children. PMID:27495020

  9. Effect of prenatal and postnatal malnutrition on intellectual functioning in early school-aged children in rural western China.

    PubMed

    Li, Chao; Zhu, Ni; Zeng, Lingxia; Dang, Shaonong; Zhou, Jing; Yan, Hong

    2016-08-01

    The aim of this study was to evaluate the effect of prenatal and postnatal malnutrition on the intellectual functioning of early school-aged children. We followed the offspring of women who had participated in a trial of prenatal supplementation with different combinations of micronutrients and who remained resident in the study field. We measured their intellectual functioning using the Wechsler intelligence scale for children (WISC-IV). Height-for-age, weight-for-age, and body mass index (BMI)-for-age were used as anthropometric nutritional status indices. Four of the 5 composite scores derived from the WISC-IV, except for working memory index (WMI), were significantly lower in low birth weight children after adjusting for confounds. All 5 composite scores, including full-scale intelligence quotient (FSIQ), verbal comprehension index (VCI), WMI, perceptual reasoning index (PRI), and processing speed index (PSI) were significant lower in stunted and underweight children. The differences in the means of WISC-IV test scores were greatest between stunted and nonstunted children. The means for FSIQ, VCI, WMI, PRI, and PSI were as follows: 5.88 (95% confidence interval [CI]: 2.84-8.92), 5.08 (95% CI: 1.12-8.41), 4.71 (95% CI: 1.78-7.66), 6.13 (95% CI: 2.83-9.44), and 5.81 (95% CI: 2.61-9.00). These means were lower in stunted children after adjusting for confounds. Our results suggest the important influences of low birth weight and postnatal malnutrition (stunting, low body weight) on intellectual functioning in early school-aged children.

  10. Expression of transcripts for fibroblast growth factor 18 and its possible receptors during postnatal dentin formation in rat molars.

    PubMed

    Baba, Otto; Ota, Masato S; Terashima, Tatsuo; Tabata, Makoto J; Takano, Yoshiro

    2015-05-01

    Fibroblast growth factors (FGFs) regulate the proliferation and differentiation of various cells via their respective receptors (FGFRs). During the early stages of tooth development in fetal mice, FGFs and FGFRs have been shown to be expressed in dental epithelia and mesenchymal cells at the initial stages of odontogenesis and to regulate cell proliferation and differentiation. However, little is known about the expression patterns of FGFs in the advanced stages of tooth development. In the present study, we focused on FGF18 expression in the rat mandibular first molar (M1) during the postnatal crown and root formation stages. FGF18 signals by RT-PCR using cDNAs from M1 were very weak at postnatal day 5 and were significantly up-regulated at days 7, 9 and 15. Transcripts were undetectable by in situ hybridization (ISH) but could be detected by in situ RT-PCR in the differentiated odontoblasts and cells of the sub-odontoblastic layer in both crown and root portions of M1 at day 15. The transcripts of FGFR2c and FGFR3, possible candidate receptors of FGF18, were detected by RT-PCR and ISH in differentiated odontoblasts throughout postnatal development. These results suggest the continual involvement of FGF18 signaling in the regulation of odontoblasts during root formation where it may contribute to dentin matrix formation and/or mineralization.

  11. Induction and persistence of abnormal testicular germ cells following gestational exposure to di-(n-butyl) phthalate in p53-null mice.

    PubMed

    Saffarini, Camelia M; Heger, Nicholas E; Yamasaki, Hideki; Liu, Tao; Hall, Susan J; Boekelheide, Kim

    2012-01-01

    Phthalate esters are commonly used plasticizers found in many household items, personal care products, and medical devices. Animal studies have shown that in utero exposure to di-(n-butyl) phthalate (DBP) within a critical window during gestation causes male reproductive tract abnormalities resembling testicular dysgenesis syndrome. Our studies utilized p53-deficient mice for their ability to display greater resistance to apoptosis during development. This model was chosen to determine whether multinucleated germ cells (MNG) induced by gestational DBP exposure could survive postnatally and evolve into testicular germ cell cancer. Pregnant dams were exposed to DBP (500 mg/kg/day) by oral gavage from gestational day 12 until birth. Perinatal effects were assessed on gestational day 19 and postnatal days 1, 4, 7, and 10 for the number of MNGs present in control and DBP-treated p53-heterozygous and null animals. As expected, DBP exposure induced MNGs, with greater numbers found in p53-null mice. Additionally, there was a time-dependent decrease in the incidence of MNGs during the early postnatal period. Histologic examination of adult mice exposed in utero to DBP revealed persistence of abnormal germ cells only in DBP-treated p53-null mice, not in p53-heterozygous or wild-type mice. Immunohistochemical staining of perinatal MNGs and adult abnormal germ cells was negative for both octamer-binding protein 3/4 and placental alkaline phosphatase. This unique model identified a role for p53 in the perinatal apoptosis of DBP-induced MNGs and provided insight into the long-term effects of gestational DBP exposure within a p53-null environment.

  12. Activation of Postnatal Neural Stem Cells Requires Nuclear Receptor TLX

    PubMed Central

    Niu, Wenze; Zou, Yuhua; Shen, ChengCheng; Zhang, Chun-Li

    2011-01-01

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a non-dividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mis-positioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroducing ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways. PMID:21957244

  13. Loss of Gq/11 Family G Proteins in the Nervous System Causes Pituitary Somatotroph Hypoplasia and Dwarfism in Mice

    PubMed Central

    Wettschureck, N.; Moers, A.; Wallenwein, B.; Parlow, A. F.; Maser-Gluth, C.; Offermanns, S.

    2005-01-01

    Heterotrimeric G proteins of the Gq/11 family transduce signals from a variety of neurotransmitter and hormone receptors and have therefore been implicated in various functions of the nervous system. Using the Cre/loxP system, we generated mice which lack the genes coding for the α subunits of the two main members of the Gq/11 family, gnaq and gna11, selectively in neuronal and glial precursor cells. Mice with defective gnaq and gna11 genes were morphologically normal, but they died shortly after birth. Mice carrying a single gna11 allele survived the early postnatal period but died within 3 to 6 weeks as anorectic dwarfs. In these mice, postnatal proliferation of pituitary somatotroph cells was strongly impaired, and plasma growth hormone (GH) levels were reduced to 15%. Hypothalamic levels of GH-releasing hormone (GHRH), an important stimulator of somatotroph proliferation, were strongly decreased, and exogenous administration of GHRH restored normal proliferation. The hypothalamic effects of ghrelin, a regulator of GHRH production and food intake, were reduced in these mice, suggesting that an impairment of ghrelin receptor signaling might contribute to GHRH deficiency and abnormal eating behavior. Taken together, our findings show that Gq/11 signaling is required for normal hypothalamic function and that impairment of this signaling pathway causes somatotroph hypoplasia, dwarfism, and anorexia. PMID:15713647

  14. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability.

    PubMed

    Kropp, Peter A; Dunn, Jennifer C; Carboneau, Bethany A; Stoffers, Doris A; Gannon, Maureen

    2018-04-01

    The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.

  15. Early chronic low-level lead exposure produces glomerular hypertrophy in young C57BL/6J mice☆

    PubMed Central

    Basgen, John M.; Sobin, Christina

    2014-01-01

    Early chronic lead exposure continues to pose serious health risks for children, particularly those living in lower socioeconomic environments. This study examined effects on developing glomeruli in young C57BL/6J mice exposed to low (30 ppm), higher (330 ppm) or no lead via dams’ drinking water from birth to sacrifice on post-natal day 28. Low-level lead exposed mice [BLL mean (SD); 3.19 (0.70) μg/dL] had an increase in glomerular volume but no change in podocyte number compared to control mice [0.03 (0.01) μg/dL]. Higher-level lead exposed mice [14.68 (2.74) μg/dL] had no change in either glomerular volume or podocyte number. The increase in glomerular volume was explained by increases in glomerular capillary and mesangial volumes with no change in podocyte volume. Early chronic lead exposure yielding very low blood lead levels alters glomerular development in pre-adolescent animals. PMID:24300173

  16. Involvement of {gamma}-secretase in postnatal angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-inducedmore » angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.« less

  17. Exposure to low doses of 137cesium and nicotine during postnatal development modifies anxiety levels, learning, and spatial memory performance in mice.

    PubMed

    Bellés, Montserrat; Heredia, Luis; Serra, Noemí; Domingo, José L; Linares, Victoria

    2016-11-01

    Radiation therapy is a major cause of long-term complications observed in survivors of pediatric brain tumors. However, the effects of low-doses of ionizing radiation (IR) to the brain are less studied. On the other hand, tobacco is one of the most heavily abused drugs in the world. Tobacco is not only a health concern for adults. It has also shown to exert deleterious effects on fetuses, newborns, children and adolescents. Exposure to nicotine (Nic) from smoking may potentiate the toxic effects induced by IR on brain development. In this study, we evaluated in mice the cognitive effects of concomitant exposure to low doses of internal radiation ( 137 Cs) and Nic during neonatal brain development. On postnatal day 10 (PND10), two groups of C57BL/6J mice were subcutaneously exposed to 137-Cesium ( 137 Cs) (4000 and 8000 Bq/kg) and/or Nic (100 μg/ml). At the age of two months, neurobehavior of mice was assessed. Results showed that exposure to IR-alone or in combination with Nic-increased the anxiety-like of the animals without changing the activity levels. Moreover, exposure to IR impaired learning and spatial memory. However, Nic administration was able to reverse this effect, but only at the low dose of 137 Cs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Maternal nutrient restriction during late gestation and early postnatal growth in sheep differentially reset the control of energy metabolism in the gastric mucosa.

    PubMed

    Sebert, S P; Dellschaft, N S; Chan, L L Y; Street, H; Henry, M; Francois, C; Sharma, V; Fainberg, H P; Patel, N; Roda, J; Keisler, D; Budge, H; Symonds, M E

    2011-07-01

    Fetal growth restriction followed by accelerated postnatal growth contributes to impaired metabolic function in adulthood. The extent to which these outcomes may be mediated centrally within the hypothalamus, as opposed to in the periphery within the digestive tract, remains unknown. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and compared with controls also reared singly. From weaning, all offspring were maintained indoors until adulthood. A reduced litter size accelerated postnatal growth for only the first month of lactation. Independently from postnatal weight gain and later fat mass, R animals developed insulin resistance as adults. However, restricted accelerated offspring compared with both the control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin as adults, an adaptation which was accompanied by changes in energy sensing and cell proliferation within the abomasum. Additionally, although fetal restriction down-regulated gene expression of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-activated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the importance of diet in early life in regulating energy metabolism during adulthood.

  19. Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice.

    PubMed

    Chang, Yu-Chi; Cole, Toby B; Costa, Lucio G

    2018-04-20

    Escalating prevalence of autism spectrum disorders (ASD) in recent decades has triggered increasing efforts in understanding roles played by environmental risk factors as a way to address this widespread public health concern. Several epidemiological studies show associations between developmental exposure to traffic-related air pollution and increased ASD risk. In rodent models, a limited number of studies have shown that developmental exposure to ambient ultrafine particulates or diesel exhaust (DE) can result in behavioral phenotypes consistent with mild ASD. We performed a series of experiments to determine whether developmental DE exposure induces ASD-related behaviors in mice. C57Bl/6J mice were exposed from embryonic day 0 to postnatal day 21 to 250-300 μg/m 3 DE or filtered air (FA) as control. Mice exposed developmentally to DE exhibited deficits in all three of the hallmark categories of ASD behavior: reduced social interaction in the reciprocal interaction and social preference tests, increased repetitive behavior in the T-maze and marble-burying test, and reduced or altered communication as assessed by measuring isolation-induced ultrasonic vocalizations and responses to social odors. These findings demonstrate that exposure to traffic-related air pollution, in particular that associated with diesel-fuel combustion, can cause ASD-related behavioral changes in mice, and raise concern about air pollution as a contributor to the onset of ASD in humans.

  20. Macrophage dysfunction initiates colitis during weaning of infant mice lacking the interleukin-10 receptor

    PubMed Central

    Redhu, Naresh S; Bakthavatchalu, Vasudevan; Conaway, Evan A; Shouval, Dror S; Tsou, Amy; Goettel, Jeremy A; Biswas, Amlan; Wang, Chuanwu; Field, Michael; Muller, Werner; Bleich, Andre; Li, Ning; Gerber, Georg K; Bry, Lynn; Fox, James G; Snapper, Scott B; Horwitz, Bruce H

    2017-01-01

    Infants with defects in the interleukin 10 receptor (IL10R) develop very early onset inflammatory bowel disease. Whether IL10R regulates lamina propria macrophage function during infant development in mice and whether macrophage-intrinsic IL10R signaling is required to prevent colitis in infancy is unknown. Here we show that although signs of colitis are absent in IL10R-deficient mice during the first two weeks of life, intestinal inflammation and macrophage dysfunction begin during the third week of life, concomitant with weaning and accompanying diversification of the intestinal microbiota. However, IL10R did not directly regulate the microbial ecology during infant development. Interestingly, macrophage depletion with clodronate inhibited the development of colitis, while the absence of IL10R specifically on macrophages sensitized infant mice to the development of colitis. These results indicate that IL10R-mediated regulation of macrophage function during the early postnatal period is indispensable for preventing the development of murine colitis. DOI: http://dx.doi.org/10.7554/eLife.27652.001 PMID:28678006

  1. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.

    PubMed

    Jonscher, Karen R; Stewart, Michael S; Alfonso-Garcia, Alba; DeFelice, Brian C; Wang, Xiaoxin X; Luo, Yuhuan; Levi, Moshe; Heerwagen, Margaret J R; Janssen, Rachel C; de la Houssaye, Becky A; Wiitala, Ellen; Florey, Garrett; Jonscher, Raleigh L; Potma, Eric O; Fiehn, Oliver; Friedman, Jacob E

    2017-04-01

    Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes ( Nos2 , Nlrp3 , Il6 , and Ptgs2 ), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. © FASEB.

  2. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    PubMed

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  3. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling

    PubMed Central

    ITO, TAKUJI; BAI, TAO; TANAKA, TETSUJI; YOSHIDA, KENJI; UEYAMA, TAKASHI; MIYAJIMA, MASAYASU; NEGISHI, TAKAYUKI; KAWASAKI, TAKAHIKO; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2015-01-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild-type (WT) mice. Administration of β-estradiol to infant Sema4D-deficient (Sema4D−/−) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β-estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin-B1, was examined as well as the level of apoptosis in the vaginal epithelia of five-week-old WT and Sema4D−/− mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin-B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase-3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five-week-old Sema4D−/− mice compared with WT mice. The addition of recombinant Sema4D to Sema4D−/− vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis-inducing activity of Sema4D. The experimental reduction of

  4. Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor

    PubMed Central

    Chitu, Violeta; Stanley, E. Richard

    2017-01-01

    Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain. PMID:28236968

  5. Influence of early stress on memory reconsolidation: Implications for post-traumatic stress disorder treatment

    PubMed Central

    Birmes, Philippe; Ferry, Barbara

    2018-01-01

    Post-traumatic stress disorder (PTSD) is a common consequence of exposure to a life-threatening event. Currently, pharmacological treatments are limited by high rates of relapse, and novel treatment approaches are needed. We have recently demonstrated that propranolol, a β-adrenergic antagonist, inhibited aversive memory reconsolidation in animals. Following this, in an open-label study 70% of patients with PTSD treated with propranolol during reactivation of traumatic memory exhibited full remission. However, the reason why 30% of these patients did not respond positively to propranolol treatment is still unclear. One of the major candidates as factor of treatment resistance is the patient's early-life traumatic history. To test the role of this factor, mice with pre- or postnatal stress are being tested in fear conditioning and in a new behavioral task, the "city-like", specifically designed as a mouse model of PTSD. After reactivation of the traumatic event, mice received propranolol injection to block the noradrenergic system during memory reconsolidation. Results show that, in the “city-like” test, control mice strongly avoided the shock compartment but also the compartments containing cues associated with the electric shocks. Injection of propranolol after reactivation greatly reduced the memory of the traumatic event, but this effect was not present when mice had received pre- or postnatal stress. Moreover, propranolol produced only a very weak effect in the fear conditioning test, and never changed the corticosterone level whatever the behavioral experiment. Taken together our results suggest that our new behavioural paradigm is well adapted to PTSD study in mice, and that early stress exposure may have an impact on propranolol PTSD treatment outcome. These data are critical to understanding the effect of propranolol treatment, in order to improve the therapeutic protocol currently used in humans. PMID:29352277

  6. Influence of early stress on memory reconsolidation: Implications for post-traumatic stress disorder treatment.

    PubMed

    Villain, Hélène; Benkahoul, Aïcha; Birmes, Philippe; Ferry, Barbara; Roullet, Pascal

    2018-01-01

    Post-traumatic stress disorder (PTSD) is a common consequence of exposure to a life-threatening event. Currently, pharmacological treatments are limited by high rates of relapse, and novel treatment approaches are needed. We have recently demonstrated that propranolol, a β-adrenergic antagonist, inhibited aversive memory reconsolidation in animals. Following this, in an open-label study 70% of patients with PTSD treated with propranolol during reactivation of traumatic memory exhibited full remission. However, the reason why 30% of these patients did not respond positively to propranolol treatment is still unclear. One of the major candidates as factor of treatment resistance is the patient's early-life traumatic history. To test the role of this factor, mice with pre- or postnatal stress are being tested in fear conditioning and in a new behavioral task, the "city-like", specifically designed as a mouse model of PTSD. After reactivation of the traumatic event, mice received propranolol injection to block the noradrenergic system during memory reconsolidation. Results show that, in the "city-like" test, control mice strongly avoided the shock compartment but also the compartments containing cues associated with the electric shocks. Injection of propranolol after reactivation greatly reduced the memory of the traumatic event, but this effect was not present when mice had received pre- or postnatal stress. Moreover, propranolol produced only a very weak effect in the fear conditioning test, and never changed the corticosterone level whatever the behavioral experiment. Taken together our results suggest that our new behavioural paradigm is well adapted to PTSD study in mice, and that early stress exposure may have an impact on propranolol PTSD treatment outcome. These data are critical to understanding the effect of propranolol treatment, in order to improve the therapeutic protocol currently used in humans.

  7. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner.

    PubMed

    Zou, Jia; Zhang, Bo; Gutmann, David H; Wong, Michael

    2017-12-01

    Epilepsy is one of the most prominent symptoms of tuberous sclerosis complex (TSC), a genetic disorder, and may be related to developmental defects resulting from impaired TSC1 or TSC2 gene function in astrocytes and neurons. Inactivation of the Tsc1 gene driven by a glial-fibrillary acidic protein (GFAP) promoter during embryonic brain development leads to widespread pathologic effects on astrocytes and neurons, culminating in severe, progressive epilepsy in mice (Tsc1 GFAP -Cre mice). However, the developmental timing and cellular specificity relevant to epileptogenesis in this model has not been well defined. The present study evaluates the effect of postnatal Tsc1 gene inactivation on pathologic features of astrocytes and neurons and development of epilepsy. An inducible Tsc1 knock-out mouse was created utilizing a tamoxifen-driven GFAP-CreER line (Tsc1 GFAP -Cre ER mice) with TSC1 reduction induced postnatally at 2 and 6 weeks of age, and compared to conventional Tsc1 GFAP -Cre mice with prenatal TSC1 reduction. Western blotting, immunohistochemistry, histology, and video-electroencephalography (EEG) assessed mechanistic target of rapamycin (mTOR) pathway activation, astrogliosis, neuronal organization, and spontaneous seizures, respectively. Tsc1 gene inactivation at 2 weeks of age was sufficient to cause astrogliosis and mild epilepsy in Tsc1 GFAP -Cre ER mice, but the phenotype was much less severe than that observed with prenatal Tsc1 gene inactivation in Tsc1 GFAP -Cre mice. Both astrocytes and neurons were affected by prenatal and postnatal Tsc1 gene activation to a degree similar to the severity of epilepsy, suggesting that both cellular types may contribute to epileptogenesis. These findings support a model in which the developmental timing of TSC1 loss dictates the severity of neuronal and glial abnormalities and resulting epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  8. Postnatal care in the community: report of an evaluation of birthing women's assessments of a postnatal home-care programme.

    PubMed

    Zadoroznyj, Maria

    2007-01-01

    For more than a decade, there has been a strong trend in many Western countries to decrease the length of time that women spend in hospital following childbirth. The research evidence regarding the consequences of early discharge for mothers and babies is mixed. Recent evidence has suggested that early discharge may not be randomly distributed across all sociodemographic groups of birthing women, and that the structures of home care have an important influence on maternal and child outcomes. In the context of decreasing lengths of hospital stay, the aim of the present study was to evaluate a new postnatal home support worker introduced into a geographically defined catchment area of a metropolitan hospital in South Australia. The evaluation included a formative process component to monitor recruitment strategies into the programme, as well as summative evaluation of a number of projected programme outcomes. The research methods used included interviews with antenatal women (n = 20) about their knowledge of and attitudes to the programme, and interviews with postnatal women (n = 63) about their transition home experience and assessment of the programme. Secondary analysis of client satisfaction surveys (n = 163) and aggregate breast-feeding data was also conducted. The results concur with previous research findings regarding the importance of rest and practical, home-based support in the postnatal period to maternal well-being, successful bonding and transition to motherhood. The results demonstrate the importance of well-structured home support services to maternal satisfaction and maternal well-being through the provision of physical, social and emotional care and support in the home.

  9. Growth restriction, leptin, and the programming of adult behavior in mice.

    PubMed

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus.

    PubMed

    Smith, Peter L; Myers, Jay T; Rogers, Clare E; Zhou, Lan; Petryniak, Bronia; Becker, Daniel J; Homeister, Jonathon W; Lowe, John B

    2002-08-19

    Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP-fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(-/-) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(-/-) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP-fucose synthesis. Conditional control of fucosylation in FX(-/-) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.

  11. A BIOASSAY THAT IDENTIFIES POSTNATAL FUNCTIONAL DEFICITS IN MICE PRENATALLY EXPOSED TO XENOBIOTICS

    EPA Science Inventory

    Experimental strategies to evaluate adverse postnatal effects due to prenatal exposure exist for many organ systems. Often, however, there is insufficient information to suggest that a particular organ system(s) may be sensitive to the test agent. A single bioassay to identify ...

  12. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth

    PubMed Central

    Karuppaiah, Kannan; Yu, Kai; Lim, Joohyun; Chen, Jianquan; Smith, Craig; Long, Fanxin

    2016-01-01

    ABSTRACT Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth. PMID:27052727

  13. First-time fathers' postnatal experiences and support needs: A descriptive qualitative study.

    PubMed

    Shorey, Shefaly; Dennis, Cindy-Lee; Bridge, Shiho; Chong, Yap Seng; Holroyd, Eleanor; He, Hong-Gu

    2017-12-01

    To explore first-time fathers' postnatal experiences and support needs in the early postpartum period. The postnatal period is a stressful transition period for new fathers. It is imperative to understand their needs and experiences to provide appropriate support for them. The majority of previous studies were based in Western countries and explored fathers' needs during pregnancy and childbirth, with few studies conducted in the postnatal period. In Singapore, a multiracial society with differing paternal cultural values from its Western counterparts, there is considerable need to examine the experiences and needs of first-time fathers. A descriptive qualitative design was used. Data were collected from November 2015-January 2016. Fifteen first-time fathers were recruited from two postnatal wards of a public hospital, using a purposive sampling method. A semi-structured interview guide was used to conduct face-to-face interviews. A thematic analysis was conducted and ethics approval was sought for this study. Four overarching themes and seventeen subthemes were generated. The four overarching themes were: (1) No sense of reality to sense of responsibility; (2) Unprepared and challenged; (3) Support: needs, sources, experience and attitude; and (4) Future help for fathers. Fathers undergo a transition phase where they have unmet support needs during the early postnatal period. Understanding and addressing these needs may facilitate smooth transition to fatherhood. This study's findings can be used to involve fathers and design future supportive educational programs to promote positive parenting experiences and family dynamics. © 2017 John Wiley & Sons Ltd.

  14. In utero arsenic exposure induces early onset of atherosclerosis in ApoE−/− mice

    PubMed Central

    Srivastava, Sanjay; D’Souza, Stanley E.; Sen, Utpal; States, J. Christopher

    2007-01-01

    Consumption of arsenic contaminated drinking water has been linked to higher rates of coronary disease, stroke, and peripheral arterial disease. Recent evidence suggests that early life exposures may play a significant role in the onset of chronic adult diseases. To investigate the potential for in utero exposure to accelerate the onset of cardiovascular disease we exposed pregnant ApoE-knockout (ApoE−/−) mice to arsenic in their drinking water and examined the aortic trees of their male offspring for evidence of early disease 10 and 16 weeks after birth. Mice were maintained on normal chow after weaning. ApoE−/− mice are a commonly used model for atherogenesis and spontaneously develop atherosclerotic disease. Mice exposed to arsenic in utero showed a >2-fold increase in lesion formation in the aortic roots as well as the aortic arch compared to control mice at both 10 and 16 weeks of age. The mice exposed to arsenic also had a 20 – 40% decrease in total triglycerides, but no change in total cholesterol, phospholipids and total abundance of VLDL or HDL particles. Subfractionation of VLDL particles showed a decrease in large VLDL particles. In addition, the arsenic exposed mice showed a vasorelaxation defect in response to acetylcholine suggesting disturbance of endothelial cell signalling. These results indicate that in utero arsenic exposure induces an early onset of atherosclerosis in ApoE−/− mice without a hyperlipidemic diet and support the hypothesis that in utero arsenic exposure may be atherogenic in humans. PMID:17317095

  15. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits

    PubMed Central

    Navarrete, Erika; Ortega-Bernal, Juan Roberto; Trejo-Muñoz, Lucero; Díaz, Georgina; Montúfar-Chaveznava, Rodrigo; Caldelas, Ivette

    2016-01-01

    Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb. PMID:27305041

  16. Prevalence and risk factors for postnatal depression in Sabah, Malaysia: a cohort study.

    PubMed

    Mohamad Yusuff, Aza Sherin; Tang, Li; Binns, Colin W; Lee, Andy H

    2015-03-01

    Postnatal depression can have serious consequences for both the mother and infant. However, epidemiological data required to implement appropriate early prevention are still lacking in Malaysia. To investigate the prevalence of postnatal depression within six months postpartum and associated risk factors among women in Sabah, Malaysia. A prospective cohort study of 2072 women was conducted in Sabah during 2009-2010. Participants were recruited at 36-38 weeks of gestation and followed up at 1, 3 and 6 months postpartum. The presence of depressive symptoms was assessed using the validated Malay version of the Edinburgh Postnatal Depression Scale. Logistic regression analyses were performed to ascertain risk factors associated with postnatal depression. Overall, 14.3% of mothers (95% confidence interval (CI) 12.5-16.2%) had experienced depression within the first six months postpartum. Women depressed during pregnancy (odds ratio (OR) 3.71, 95% CI 2.46-5.60) and those with consistent worries about the newborn (OR 1.68, 95% CI 1.16-2.42) were more likely to suffer from depression after childbirth. Women whose husband assisted with infant care (OR 0.43, 95% CI 0.20-0.97) and mothers who were satisfied with their marital relationship (OR 0.27, 95% CI 0.09-0.81) appeared to incur a reduced risk of postnatal depression. A substantial proportion of mothers suffered from postnatal depression in Sabah, Malaysia. Screening and intervention programmes targeting vulnerable subgroups of women during antenatal and early postpartum periods are recommended to deal with the problem. Copyright © 2014 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  17. Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation

    PubMed Central

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2 -/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605

  18. Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.

    PubMed

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.

  19. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size.

    PubMed

    Wojcik, S M; Rhee, J S; Herzog, E; Sigler, A; Jahn, R; Takamori, S; Brose, N; Rosenmund, C

    2004-05-04

    Quantal neurotransmitter release at excitatory synapses depends on glutamate import into synaptic vesicles by vesicular glutamate transporters (VGLUTs). Of the three known transporters, VGLUT1 and VGLUT2 are expressed prominently in the adult brain, but during the first two weeks of postnatal development, VGLUT2 expression predominates. Targeted deletion of VGLUT1 in mice causes lethality in the third postnatal week. Glutamatergic neurotransmission is drastically reduced in neurons from VGLUT1-deficient mice, with a specific reduction in quantal size. The remaining activity correlates with the expression of VGLUT2. This reduction in glutamatergic neurotransmission can be rescued and enhanced with overexpression of VGLUT1. These results show that the expression level of VGLUTs determines the amount of glutamate that is loaded into vesicles and released and thereby regulates the efficacy of neurotransmission.

  20. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation

    EPA Science Inventory

    The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated ...

  1. Increased Postnatal Cardiac Hyperplasia Precedes Cardiomyocyte Hypertrophy in a Model of Hypertrophic Cardiomyopathy

    PubMed Central

    Farrell, Emily T.; Grimes, Adrian C.; de Lange, Willem J.; Armstrong, Annie E.; Ralphe, J. Carter

    2017-01-01

    Rationale: Hypertrophic cardiomyopathy (HCM) occurs in ~0.5% of the population and is a leading cause of sudden cardiac death (SCD) in young adults. Cardiomyocyte hypertrophy has been the accepted mechanism for cardiac enlargement in HCM, but the early signaling responsible for initiating hypertrophy is poorly understood. Mutations in cardiac myosin binding protein C (MYBPC3) are among the most common HCM-causing mutations. Ablation of Mybpc3 in an HCM mouse model (cMyBP-C−/−) rapidly leads to cardiomegaly by postnatal day (PND) 9, though hearts are indistinguishable from wild-type (WT) at birth. This model provides a unique opportunity to explore early processes involved in the dramatic postnatal transition to hypertrophy. Methods and Results: We performed microarray analysis, echocardiography, qPCR, immunohistochemistry (IHC), and isolated cardiomyocyte measurements to characterize the perinatal cMyBP-C−/− phenotype before and after overt hypertrophy. cMyBP-C−/− hearts showed elevated cell cycling at PND1 that transitioned to hypertrophy by PND9. An expanded time course revealed that increased cardiomyocyte cycling was associated with elevated heart weight to body weight ratios prior to cellular hypertrophy, suggesting that cell cycling resulted in cardiomyocyte proliferation. Animals heterozygous for the cMyBP-C deletion trended in the direction of the homozygous null, yet did not show increased heart size by PND9. Conclusions: Results indicate that altered regulation of the cell cycling pathway and elevated proliferation precedes hypertrophy in the cMyBP-C−/− HCM model, and suggests that increased cardiomyocyte number contributes to increased heart size in cMyBP-C−/− mice. This pre-hypertrophic period may reflect a unique time during which the commitment to HCM is determined and disease severity is influenced. PMID:28659827

  2. Neurobehavioral changes and alteration of gene expression in the brains of metallothionein-I/II null mice exposed to low levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2011-10-01

    This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).

  3. Postnatal ocular expression of tyrosinase and related proteins: disruption by the pink-eyed unstable (p(un)) mutation.

    PubMed

    Chiu, E; Lamoreux, M L; Orlow, S J

    1993-09-01

    Ocular pigmentation in the mouse occurs primarily postnatally as a result of the melanization of neural crest-derived melanocytes. Using immunologic and biochemical techniques, we demonstrate that in normal mice the expression of tyrosinase and the related proteins TRP-1 and TRP-2, rises during the first week of life, remains elevated for a week, and then steadily declines to low levels by adulthood. Sucrose gradient density centrifugation demonstrates that tyrosinase, TRP-1 and TRP-2 are present in high molecular weight forms in the eyes of wild-type mice. The normal time course is disrupted in mice carrying the pink-eyed unstable (p(un)) mutation at the P-locus, a model for tyrosinase-positive albinism in man. Tyrosinase and TRP-2 are present at wild-type levels in the eyes of p(un)/p(un) mice at birth, but, rather than rising, their levels rapidly decline over the first week of life. TRP-1 is almost undetectable, even at birth. High molecular weight complexes could not be detected in eyes of p(un)/p(un) mice. Our results suggest that postnatal ocular melanogenesis in the mouse presents an attractive model for the study of the orderly expression and action of the proteins involved in eumelanin synthesis, and that the p(un) mutation disrupts this temporally controlled process.

  4. Association between maternal depressive symptoms in the early post-natal period and responsiveness in feeding at child age 2 years.

    PubMed

    Mallan, Kimberley M; Daniels, Lynne A; Wilson, Jacinda L; Jansen, Elena; Nicholson, Jan M

    2015-10-01

    Maternal depression is a known risk factor for poor outcomes for children. Pathways to these poor outcomes relate to reduced maternal responsiveness or sensitivity to the child. Impaired responsiveness potentially impacts the feeding relationship and thus may be a risk factor for inappropriate feeding practices. The aim of this study was to examine the longitudinal relationships between self-reported maternal post-natal depressive symptoms at child age 4 months and feeding practices at child age 2 years in a community sample. Participants were Australian first-time mothers allocated to the control group of the NOURISH randomized controlled trial when infants were 4 months old. Complete data from 211 mothers (of 346 allocated) followed up when their children were 2 years of age (51% girls) were available for analysis. The relationship between Edinburgh Postnatal Depression Scale (EPDS) score (child age 4 months) and child feeding practices (child age 2 years) was tested using hierarchical linear regression analysis adjusted for maternal and child characteristics. Higher EPDS score was associated with less responsive feeding practices at child age 2 years: greater pressure [β = 0.18, 95% confidence interval (CI): 0.04-0.32, P = 0.01], restriction (β = 0.14, 95% CI: 0.001-0.28, P = 0.05), instrumental (β = 0.14, 95% CI: 0.005-0.27, P = 0.04) and emotional (β = 0.15, 95% CI: 0.01-0.29, P = 0.03) feeding practices (ΔR(2) values: 0.02-0.03, P < 0.05). This study provides evidence for the proposed link between maternal post-natal depressive symptoms and lower responsiveness in child feeding. These findings suggest that the provision of support to mothers experiencing some levels of depressive symptomatology in the early post-natal period may improve responsiveness in the child feeding relationship. © 2014 John Wiley & Sons Ltd.

  5. Cardiac Ablation of Rheb1 Induces Impaired Heart Growth, Endoplasmic Reticulum-Associated Apoptosis and Heart Failure in Infant Mice

    PubMed Central

    Cao, Yunshan; Tao, Lichan; Shen, Shutong; Xiao, Junjie; Wu, Hang; Li, Beibei; Wu, Xiangqi; Luo, Wen; Xiao, Qi; Hu, Xiaoshan; Liu, Hailang; Nie, Junwei; Lu, Shuangshuang; Yuan, Baiyin; Han, Zhonglin; Xiao, Bo; Yang, Zhongzhou; Li, Xinli

    2013-01-01

    Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure. PMID:24351823

  6. Postnatal Development of the Spheno-occipital Synchondrosis: A Histological Analysis.

    PubMed

    Dai, Jiewen; Lin, Yuheng; Ningjuan, Ouyang; Shi, Jun; Yu, Dedong; Shen, Guofang

    2017-09-01

    The spheno-occipital synchondrosis (SOS) in cranial base is an important growth center for the craniofacial skeleton, and also is a guide rail for development of the maxilla, midface, and mandible. Previous studies showed that SOS may be a treatment target for youngsters with midfacial hypoplasia and small cranial vault secondary to craniosynostosis. However, most of studies about the SOS are based on imaging data. In this study, we try to explore the characteristics of postnatal development of the mouse SOS based on histological analysis. Our findings showed that the width of the SOS in mice were gradually decreased from newborn mice to adult mice, and the SOS cartilage was gradually became small, then almost completely ossificated in adult mice. The resting and proliferative layers in SOS cartilage were gradually decreased, and almost only hypertrophic chondrocytes while no resting and proliferative layer chondrocytes in adult mice. The proliferative ability of SOS chondrocytes also gradually decreased. These findings will be of benefit for the further clinical treatment for patients with midfacial hypoplasia or small cranial vault secondary to craniosynostosis. Further evidence-based research about the clinical implication is necessary in future.

  7. Indian hedgehog roles in post-natal TMJ development and organization.

    PubMed

    Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E

    2010-04-01

    Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.

  8. Maternal postnatal mental health and later emotional-behavioural development of children: the mediating role of parenting behaviour.

    PubMed

    Giallo, R; Cooklin, A; Wade, C; D'Esposito, F; Nicholson, J M

    2014-05-01

    Maternal postnatal mental health difficulties have been associated with poor outcomes for children. One mechanism by which parent mental health can impact on children's outcomes is via its effects on parenting behaviour. The longitudinal relationships between maternal postnatal distress, parenting warmth, hostility and child well-being at age seven were examined for 2200 families participating in a population-based longitudinal study of Australian children. The relationship between postnatal distress and children's later emotional-behavioural development was mediated by parenting hostility, but not parenting warmth, even after accounting for concurrent maternal mental health. Postnatal distress was more strongly associated with lower parenting warmth for mothers without a past history of depression compared with mothers with a past history of depression. These findings underscore the contribution of early maternal well-being to later parenting and child outcomes, highlighting the importance of mental health and parenting support in the early parenting years. Implications for policy and practice are discussed. © 2013 John Wiley & Sons Ltd.

  9. Prenatal hydronephrosis: postnatal evaluation and management.

    PubMed

    Vemulakonda, Vijaya; Yiee, Jenny; Wilcox, Duncan T

    2014-08-01

    Congenital hydronephrosis is one of the most common anomalies identified on antenatal ultrasound. The underlying etiology of congenital hydronephrosis is multifold, ranging from transient hydronephrosis in utero to clinically significant congenital anomalies of the kidney and urinary tract. While traditional management of hydronephrosis was aimed at relieving symptoms, the advent of routine prenatal ultrasound has led to a shift in the goal of treatment to prevention of renal injury in the asymptomatic patient. However, despite this focus on renal preservation, the diagnostic criteria for identification of children "at risk" for renal damage that can be alleviated by surgical treatment remain a subject of debate. Both antenatal and postnatal imaging studies have been evaluated as indicators for potential reversible renal damage and have been used as potential indicators of the need for surgical intervention. The aim of this review is to discuss the current literature regarding the role of postnatal clinical and radiographic evaluation to identify children who may benefit from early surgical intervention.

  10. Postnatal changes and sexual dimorphism in collagen expression in mouse skin

    PubMed Central

    Arai, Koji Y.; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts. PMID:28494009

  11. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.

    PubMed

    Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R

    2005-01-15

    Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.

  12. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  13. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE PAGES

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy; ...

    2017-02-01

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  14. Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor.

    PubMed

    Chitu, Violeta; Stanley, E Richard

    2017-01-01

    Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain. © 2017 Elsevier Inc. All rights reserved.

  15. Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of Autism.

    PubMed

    Pizzarelli, Rocco; Cherubini, Enrico

    2013-01-01

    Autism Spectrum Disorders (ASDs) comprise an heterogeneous group of neuro-developmental abnormalities, mainly of genetic origin, characterized by impaired social interactions, communications deficits, and stereotyped behaviors. In a small percentage of cases, ASDs have been found to be associated with single mutations in genes involved in synaptic function. One of these involves the postsynaptic cell adhesion molecule neuroligin (NL) 3. NLs interact with presynaptic neurexins (Nrxs) to ensure a correct cross talk between post and presynaptic specializations. Here, transgenic mice carrying the human R451C mutation of Nlgn3, were used to study GABAergic signaling in the hippocampus early in postnatal life. Whole cell recordings from CA3 pyramidal neurons in slices from NL3(R451C) knock-in mice revealed an enhanced frequency of Giant Depolarizing Potentials (GDPs), as compared to controls. This effect was probably dependent on an increased GABAergic drive to principal cells as demonstrated by the enhanced frequency of miniature GABAA-mediated (GPSCs), but not AMPA-mediated postsynaptic currents (EPSCs). Changes in frequency of mGPSCs were associated with an acceleration of their decay kinetics, in the absence of any change in unitary synaptic conductance or in the number of GABAA receptor channels, as assessed by peak scaled non-stationary fluctuation analysis. The enhanced GABAergic but not glutamatergic transmission early in postnatal life may change the excitatory/inhibitory balance known to play a key role in the construction and refinement of neuronal circuits during postnatal development. This may lead to behavioral deficits reminiscent of those observed in ASDs patients.

  16. Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of Autism

    PubMed Central

    Pizzarelli, Rocco; Cherubini, Enrico

    2013-01-01

    Autism Spectrum Disorders (ASDs) comprise an heterogeneous group of neuro-developmental abnormalities, mainly of genetic origin, characterized by impaired social interactions, communications deficits, and stereotyped behaviors. In a small percentage of cases, ASDs have been found to be associated with single mutations in genes involved in synaptic function. One of these involves the postsynaptic cell adhesion molecule neuroligin (NL) 3. NLs interact with presynaptic neurexins (Nrxs) to ensure a correct cross talk between post and presynaptic specializations. Here, transgenic mice carrying the human R451C mutation of Nlgn3, were used to study GABAergic signaling in the hippocampus early in postnatal life. Whole cell recordings from CA3 pyramidal neurons in slices from NL3R451C knock-in mice revealed an enhanced frequency of Giant Depolarizing Potentials (GDPs), as compared to controls. This effect was probably dependent on an increased GABAergic drive to principal cells as demonstrated by the enhanced frequency of miniature GABAA-mediated (GPSCs), but not AMPA-mediated postsynaptic currents (EPSCs). Changes in frequency of mGPSCs were associated with an acceleration of their decay kinetics, in the absence of any change in unitary synaptic conductance or in the number of GABAA receptor channels, as assessed by peak scaled non-stationary fluctuation analysis. The enhanced GABAergic but not glutamatergic transmission early in postnatal life may change the excitatory/inhibitory balance known to play a key role in the construction and refinement of neuronal circuits during postnatal development. This may lead to behavioral deficits reminiscent of those observed in ASDs patients. PMID:23761734

  17. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn.

    PubMed

    Balázs, Anita; Mészár, Zoltán; Hegedűs, Krisztina; Kenyeres, Annamária; Hegyi, Zoltán; Dócs, Klaudia; Antal, Miklós

    2017-07-01

    The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.

  19. Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (mdx) mouse muscles, and their response to taurine treatment.

    PubMed

    Butchart, Lauren C; Terrill, Jessica R; Rossetti, Giulia; White, Robert; Filipovska, Aleksandra; Grounds, Miranda D

    2018-06-01

    Post-natal skeletal muscle growth in mice is very rapid and involves complex changes in many cells types over the first 6 weeks of life. The acute onset of dystropathology also occurs around 3 weeks of age in the mdx mouse model of the human disease Duchenne Muscular Dystrophy (DMD). This study investigated (i) alterations in expression patterns of regulatory non-coding RNAs (ncRNAs) in vivo, including miRNAs, lncRNAs and tRNAs, during early growth of skeletal muscles in normal control C57Bl/10Scsn (C57) compared with dystrophic mdx mice from 2 to 6 weeks of postnatal age, and revealed inherent differences in vivo for levels of 3 ncRNAs between C57 and mdx muscles before the onset of dystropathology. Since the amino acid taurine has many benefits and reduces disease severity in mdx mice, this study also (ii) determined the impact of taurine treatment on these expression patterns in mdx muscles at the onset of dystropathology (3 weeks) and after several bouts of myonecrosis and regeneration (6 weeks). Taurine treatment of mdx mice only altered ncRNA levels when administered from 18 days to 6 weeks of age, but a deficiency in tRNA levels was rectified earlier in mdx skeletal muscles treated from 14 days to 3 weeks. Myogenesis in tissue culture was also used to (iii) compare ncRNA expression patterns for both strains, and (iv) the response to taurine treatment. These analyses revealed intrinsic differences in ncRNA expression patterns during myogenesis between strains, as well as increased sensitivity of mdx ncRNA levels to taurine treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function

    PubMed Central

    Rebello, Tahilia J.; Yu, Qinghui; Goodfellow, Nathalie M.; Caffrey Cagliostro, Martha K.; Teissier, Anne; Morelli, Emanuela; Demireva, Elena Y.; Chemiakine, Alexei; Rosoklija, Gorazd B.; Dwork, Andrew J.; Lambe, Evelyn K.; Ansorge, Mark S.

    2014-01-01

    Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2–P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2–P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors. PMID:25209278

  1. Early postnatal changes in respiratory activity in rat in vitro and modulatory effects of substance P.

    PubMed

    Shvarev, Y N; Lagercrantz, H

    2006-10-01

    Developmental changes in the respiratory activity and its modulation by substance P (SP) were studied in the neonatal rat brainstem-spinal cord preparation from the day of birth to day 3 (P0-P3). The respiratory network activity in the ventrolateral medulla was represented by two types of bursts: basic regular bursts with typical decrementing shape and biphasic bursts appearing after augmented biphasic discharges in inspiratory neurons. With advancing postnatal age the respiratory output was considerably modified; the basic rhythm became faster by 20%, whereas the biphasic burst rate, which was originally 15 times slower, declined further by 180% and the C4 burst duration significantly decreased by 20% due to reduced decay time without preceding changes in the central inspiratory drive. SP had an age-dependent excitatory effect on respiratory activity. In the basic rhythm, SP could induce transient rhythm cessations on P0-P2 but not on P3. For the biphasic burst frequency, the sensitivity to SP significantly decreased from P0 to P3, whereas the range of SP-induced changes increased. In both types of bursts, SP prolonged C4 burst duration due to increasing decay time. This effect was three times greater on P3 and did not depend on the central inspiratory drive. Our results suggest that the potency of SP to regulate the respiratory activity elevates during the early postnatal period. The developmental changes in the respiratory activity appear to represent the transient stage in the maturation of rhythm and pattern generation mechanisms facilitating adaptive behavior of a quickly growing organism.

  2. Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress.

    PubMed

    Murphy, Margaret O; Herald, Joseph B; Wills, Caleb T; Unfried, Stanley G; Cohn, Dianne M; Loria, Analia S

    2017-02-01

    Experimental studies in rodents have shown that females are more susceptible to exhibiting fat expansion and metabolic disease compared with males in several models of fetal programming. This study tested the hypothesis that female rat pups exposed to maternal separation (MatSep), a model of early-life stress, display an exacerbated response to diet-induced obesity compared with male rats. Also, we tested whether the postnatal treatment with metyrapone (MTP), a corticosterone synthase inhibitor, would attenuate this phenotype. MatSep was performed in WKY offspring by separation from the dam (3 h/day, postnatal days 2-14). Upon weaning, male and female rats were placed on a normal (ND; 18% kcal fat) or high-fat diet (HFD; 60% kcal fat). Nondisturbed littermates served as controls. In male rats, no diet-induced differences in body weight (BW), glucose tolerance, and fat tissue weight and morphology were found between MatSep and control male rats. However, female MatSep rats displayed increased BW gain, fat pad weights, and glucose intolerance compared with control rats (P < 0.05). Also, HFD increased plasma corticosterone (196 ± 51 vs. 79 ± 18 pg/ml, P < 0.05) and leptin levels (1.8 ± 0.4 vs. 1.3 ± 0.1 ng/ml, P < 0.05) in female MatSep compared with control rats, whereas insulin and adiponectin levels were similar between groups. Female control and MatSep offspring were treated with MTP (50 µg/g ip) 30 min before the daily separation. MTP treatment significantly attenuated diet-induced obesity risk factors, including elevated adiposity, hyperleptinemia, and glucose intolerance. These findings show that exposure to stress hormones during early life could be a key event to enhance diet-induced obesity and metabolic disease in female rats. Thus, pharmacological and/or behavioral inflection of the stress levels is a potential therapeutic approach for prevention of early life stress-enhanced obesity and metabolic disease. Copyright © 2017 the American Physiological

  3. Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.

    PubMed

    Zeng, Chun; Mulas, Francesca; Sui, Yinghui; Guan, Tiffany; Miller, Nathanael; Tan, Yuliang; Liu, Fenfen; Jin, Wen; Carrano, Andrea C; Huising, Mark O; Shirihai, Orian S; Yeo, Gene W; Sander, Maike

    2017-05-02

    Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Home-based versus hospital-based postnatal care: a randomised trial.

    PubMed

    Boulvain, Michel; Perneger, Thomas V; Othenin-Girard, Véronique; Petrou, Stavros; Berner, Michel; Irion, Olivier

    2004-08-01

    To compare a shortened hospital stay with midwife visits at home to usual hospital care after delivery. Randomised controlled trial. Maternity unit of a Swiss teaching hospital. Four hundred and fifty-nine women with a single uncomplicated pregnancy at low risk of caesarean section. Women were randomised to either home-based (n= 228) or hospital-based postnatal care (n= 231). Home-based postnatal care consisted of early discharge from hospital (24 to 48 hours after delivery) and home visits by a midwife; women in the hospital-based care group were hospitalised for four to five days. Breastfeeding 28 days postpartum, women's views of their care and readmission to hospital. Women in the home-based care group had shorter hospital stays (65 vs 106 hours, P < 0.001) and more midwife visits (4.8 vs 1.7, P < 0.001) than women in the hospital-based care group. Prevalence of breastfeeding at 28 days was similar between the groups (90%vs 87%, P= 0.30), but women in the home-based care group reported fewer problems with breastfeeding and greater satisfaction with the help received. There were no differences in satisfaction with care, women's hospital readmissions, postnatal depression scores and health status scores. A higher percentage of neonates in the home-based care group were readmitted to hospital during the first six months (12%vs 4.8%, P= 0.004). In low risk pregnancies, early discharge from hospital and midwife visits at home after delivery is an acceptable alternative to a longer duration of care in hospital. Mothers' preferences and economic considerations should be taken into account when choosing a policy of postnatal care.

  5. Postnatal Psychosocial Assessment and Clinical Decision-Making, a Descriptive Study.

    PubMed

    Sims, Deborah; Fowler, Cathrine

    2018-05-18

    The aim of this study is to describe experienced child and family health nurses' clinical decision-making during a postnatal psychosocial assessment. Maternal emotional wellbeing in the postnatal year optimises parenting and promotes infant development. Psychosocial assessment potentially enables early intervention and reduces the risk of a mental disorder occurring during this time of change. Assessment accuracy, and the interventions used are determined by the standard of nursing decision-making. A qualitative methodology was employed to explore decision-making behaviour when conducting a postnatal psychosocial assessment. This study was conducted in an Australian early parenting organisation. Twelve experienced child and family health nurses were interviewed. A detailed description of a postnatal psychosocial assessment process was obtained using a critical incident technique. Template analysis was used to determine the information domains the nurses accessed, and content analysis was used to determine the nurses' thinking strategies, to make clinical decisions from this assessment. The nurses described 24 domains of information and used 17 thinking strategies, in a variety of combinations. The four information domains most commonly used were parenting, assessment tools, women-determined issues and sleep. The seven thinking strategies most commonly used were searching for information, forming relationships between the information, recognising a pattern, drawing a conclusion, setting priorities, providing explanations for the information and judging the value of the information. The variety and complexity of the clinical decision-making involved in postnatal psychosocial assessment confirms that the nurses use information appropriately and within their scope of nursing practice. The standard of clinical decision-making determines the results of the assessment and the optimal access to care. Knowledge of the information domains and the decision-making strategies

  6. A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth.

    PubMed

    Martin, Ola J; Lai, Ling; Soundarapandian, Mangala M; Leone, Teresa C; Zorzano, Antonio; Keller, Mark P; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P

    2014-02-14

    Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high-capacity ATP production in the heart. Transcriptional coactivators, peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) α and PGC-1β, have been shown to regulate mitochondrial biogenesis in the heart at the time of birth. The function of PGC-1 coactivators in the heart after birth has been incompletely understood. Our aim was to assess the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts in mice. Conditional gene targeting was used in mice to explore the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/β-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion (Mfn1, Opa1) and fission (Drp1, Fis1) was altered in the hearts of PGC-1α/β-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α on a conserved DNA element. Surprisingly, PGC-1α/β deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that PGC-1 coactivators are required for high-level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in the adult heart. These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.

  7. The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation

    PubMed Central

    Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong

    2017-01-01

    The vertebrate neuromuscular junction (NMJ) is considered as a “tripartite synapse” consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system. PMID:28680299

  8. The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation.

    PubMed

    Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong; Park, Hwan Tae

    2017-06-01

    The vertebrate neuromuscular junction (NMJ) is considered as a "tripartite synapse" consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system.

  9. Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats

    PubMed Central

    Torres-Reveron, Annelyn; Gray, Jason D.; Melton, Jay T.; Punsoni, Michael; Tabori, Nora E.; Ward, Mary J.; Frys, Kelly; Iadecola, Costantino; Milner, Teresa A.

    2009-01-01

    To mimic clinical treatment with methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), rat pups were injected with MPH (5 mg/kg, I.P.) or placebo twice daily during their nocturnal active phase from postnatal day (PND) 7 to 35. Thirty-nine days after the last MPH administration (PND76), four litters of rats experienced stressful conditions during the 2003 New York City blackout. MPH-treated rats that endured the blackout lost more weight and regained it at a slower pace than controls (p<0.05; N=7–11/group). Furthermore, MPH-treated rats had elevated systolic arterial blood pressure (from 115.6 ± 1.2 to 126 ± 1.8 mmHg; p<0.05), assessed on PND130 by tail cuff plethysmography. Immunocytochemical studies of transmitter systems in the brain demonstrated rearrangements of catecholamine and neuropeptide Y fibers in select brain regions at PND135, which did not differ between blackout and control groups. However, MPH-treated rats that endured the blackout had more ectopic granule cells in the hilus of the dorsal hippocampal dentate gyrus compared to controls at PND 135 (p<0.05; N=6/group). These findings indicate that early postnatal exposure to high therapeutic doses of MPH can have long lasting effects on the plasticity of select brain regions and can induce changes in the reactivity to stress that persist into adulthood. PMID:19100815

  10. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    PubMed

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Postnatal Vitamin D Intake Modulates Hippocampal Learning and Memory in Adult Mice

    PubMed Central

    Liang, Qiujuan; Cai, Chunhui; Duan, Dongxia; Hu, Xinyu; Hua, Wanhao; Jiang, Peicheng; Zhang, Liu; Xu, Jun; Gao, Zhengliang

    2018-01-01

    Vitamin D (VD) is a neuroactive steroid crucial for brain development, function and homeostasis. Its deficiency is associated with numerous brain conditions. As such, VD and its variants are routinely taken by a broad of groups with/without known VD deficiency. In contrast, the harmful effects of VD overdose have been poorly studied. Similarly, the developmental stage-specific VD deficiency and overdose have been rarely explored. In the present work, we showed that postnatal VD supplementation enhanced the motor function transiently in the young adult, but not in the older one. Postnatal VD intake abnormality did not impact the anxiety and depressive behavior but was detrimental to spatial learning and hippocampus-dependent memory. At the molecular level we failed to observe an obvious and constant change with the neural development and activity-related genes examined. However, disrupted developmental expression dynamics were observed for most of the genes, suggesting that the altered neural development dynamics and therefore aberrant adult plasticity might underlie the functional deficits. Our work highlights the essence of VD homeostasis in neural development and adult brain function. Further studies are needed to determine the short- and long-term effects VD intake status may have on brain development, homeostasis, and diseases. PMID:29666565

  12. Postnatal Ablation of POMC Neurons Induces an Obese Phenotype Characterized by Decreased Food Intake and Enhanced Anxiety-Like Behavior

    PubMed Central

    Greenman, Yona; Drori, Yonat; Asa, Sylvia L.; Navon, Inbal; Forkosh, Oren; Gil, Shosh; Stern, Naftali

    2013-01-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are central components of systems regulating appetite and energy homeostasis. Here we report on the establishment of a mouse model in which the ribonuclease III ribonuclease Dicer-1 has been specifically deleted from POMC-expressing neurons (POMCΔDCR), leading to postnatal cell death. Mice are born phenotypically normal, at the expected genetic ratio and with normal hypothalamic POMC-mRNA levels. At 6 weeks of age, no POMC neurons/cells could be detected either in the arcuate nucleus or in the pituitary of POMCΔDCR mice. POMCΔDCR develop progressive obesity secondary to decreased energy expenditure but unrelated to food intake, which was surprisingly lower than in control mice. Reduced expression of AgRP and ghrelin receptor in the hypothalamus and reduced uncoupling protein 1 expression in brown adipose tissue can potentially explain the decreased food intake and decreased heat production, respectively, in these mice. Fasting glucose levels were dramatically elevated in POMCΔDCR mice and the glucose tolerance test revealed marked glucose intolerance in these mice. Secondary to corticotrope ablation, basal and stress-induced corticosterone levels were undetectable in POMCΔDCR mice. Despite this lack of activation of the neuroendocrine stress response, POMCΔDCR mice exhibited an anxiogenic phenotype, which was accompanied with elevated levels of hypothalamic corticotropin-releasing factor and arginine-vasopressin transcripts. In conclusion, postnatal ablation of POMC neurons leads to enhanced anxiety and the development of obesity despite decreased food intake and glucocorticoid deficiency. PMID:23676213

  13. Targeted surveillance for postnatal hearing loss: a program evaluation.

    PubMed

    Beswick, Rachael; Driscoll, Carlie; Kei, Joseph; Glennon, Shirley

    2012-07-01

    The importance of monitoring hearing throughout early childhood cannot be understated. However, there is a lack of evidence available regarding the most effective method of monitoring hearing following the newborn screen. The goal of this study was to describe a targeted surveillance program using a risk factor registry to identify children with a postnatal hearing loss. All children who were born in Queensland, Australia between September 2004 and December 2009, received a bilateral 'pass' on newborn hearing screening, and had at least one risk factor, were referred for targeted surveillance and were included in this study. The cohort was assessed throughout early childhood in accordance with Queensland's diagnostic assessment protocols. During the study period, 7320 (2.8% of 261,328) children were referred for targeted surveillance, of which 56 were identified with a postnatal hearing loss (0.77%). Of these, half (50.0%) were identified with a mild hearing loss, and 64.3% were identified with a sensorineural hearing loss. In regards to risk factors, syndrome, craniofacial anomalies, and severe asphyxia had the highest yield of positive cases of postnatal hearing loss for children referred for targeted surveillance, whereas, low birth weight, bacterial meningitis, and professional concern had a particularly low yield. Limitations of the targeted surveillance program were noted and include: (1) a lost contact rate of 32.4%; (2) delays in first surveillance assessment; (3) a large number of children who required on-going monitoring; and (4) extensive diagnostic assessments were completed on children with normal hearing. Examination of the lost contact rate revealed indigenous children were more likely to be documented as lost contact. In addition, children with one risk factor only were significantly more likely to not attend a surveillance appointment. Positive cases of postnatal hearing loss were detected through the targeted surveillance program. However, the

  14. Supplementation with fish oil and coconut fat prevents prenatal stress-induced changes in early postnatal development.

    PubMed

    Borsonelo, Elizabethe C; Suchecki, Deborah; Calil, Helena Maria; Galduróz, José Carlos F

    2011-08-01

    Adequate development of the central nervous system depends on prenatal and postnatal factors. On one hand, prenatal stress (PNS) has been implicated in impaired development of the offspring. On other hand, nutritional factors during pregnancy and lactation can influence fetal and postnatal growth. This study assessed the postnatal development of rat offspring exposed to PNS, which consisted of restraint and bright lights, 3 times/day, from days 14 to 20 of pregnancy, whose mothers were fed different diets during pregnancy and lactation: regular diet, diet supplemented with coconut fat or fish oil. When pregnancy was confirmed, they were distributed into control (CTL) or PNS groups. At birth, PNS males and females weighed less than those in the group CTL. At 21 days of age, this alteration was no longer observed with fish oil and coconut fat groups. PNS and coconut fat diet induced increased locomotor activity in 13 day old male and female pups, and this effect was prevented by fish oil supplementation only in females. In conclusion, postnatal development from birth to weaning was influenced by PNS and diet and some of those alterations were prevented by coconut fat and fish oil. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN

    PubMed Central

    Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2−/−). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2−/− SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074

  16. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE PAGES

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.; ...

    2017-06-30

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  17. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  18. Development of spike-wave seizures in C3H/HeJ mice

    PubMed Central

    Ellens, Damien J.; Hong, Ellie; Giblin, Kathryn; Singleton, Matthew J.; Bashyal, Chhitij; Englot, Dario J.; Mishra, Asht M.; Blumenfeld, Hal

    2012-01-01

    Summary C3H/HeJ mice have been reported to have relatively early onset of spike-wave discharges (SWD), and a defective AMPA receptor subunit Gria4 as the genetic cause. We investigated the time course of SWD development through serial EEG recordings in C3H/HeJ mice to better characterize this model. We found that at immature postnatal ages of 5–15 days, rare SWD-like events were observed at an average rate of 3 per hour, and with relatively broad spikes, irregular rhythm, slow frequency (5–6 Hz), and short duration (mean 1.75 s). This was followed by a transitional period of increasing SWD incidence, which then stabilized in mature animals at age 26–62 days, with SWD at an average rate of 45 per hour, narrower spike morphology, regular rhythm, higher frequency (7–8 Hz), and longer duration (mean 3.40 s). This sequence of maturational changes in SWD development suggests that effects of early intervention could be tested in C3H/HeJ mice over the course of a few weeks, rather than a few months as in rats, greatly facilitating future research on anti-epileptogenesis. PMID:19409755

  19. Duodenal Ca2+ absorption is not stimulated by calcitriol during early postnatal development of pigs.

    PubMed

    Schroeder, B; Dahl, M R; Breves, G

    1998-08-01

    The role of calcitriol in stimulating intestinal active Ca2+ absorption during postnatal life was studied in newborn, suckling, and weaned control (Con) piglets and piglets suffering from inherited calcitriol deficiency (Def piglets). In addition, a group of Def piglets was treated with vitamin D3 (Def-D3 piglets), which normalized plasma calcitriol levels. Regardless of age, duodenal calbindin-D9k concentrations ranged between 1,839 and 2,846 microg/g mucosa in Con piglets, between 821 and 1,219 microg/g mucosa in Def piglets, and between 2,960 and 3,692 microg/g mucosa in Def-D3 animals. In weaned animals, active Ca2+ absorption as calculated from in vitro 45Ca2+ flux rate measurements in Ussing chambers could be related to calbindin-D9k levels. Thus active Ca2+ absorption was completely absent in Def animals but was reconstituted in Def-D3 animals. In contrast, in newborn Def piglets active Ca2+ absorption functioned normally despite the low plasma calcitriol and mucosal calbindin-D9k levels and could not be affected by treatment with vitamin D3. Similar results were obtained from suckling Def piglets. The microtubule-disrupting agent colchicine caused significant inhibition of transepithelial net Ca2+ absorption in duodenal epithelia from newborn piglets without exerting an effect in suckling and weaned animals. Colchicine had no effect on Ca2+ uptake across the brush border membrane of mucosal enterocytes or on glucose-dependent electrogenic net ion flux rates in duodenal preparations from newborn Con piglets. In conclusion, our findings reveal intestinal active Ca2+ absorption during early postnatal life of pigs that involves calcitriol-independent mechanisms and that may include intact microtubule actions.

  20. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Takanori, E-mail: mikit@med.kagawa-u.ac.jp; Liu, Jun-Qian; Ohta, Ken-ichi

    Highlights: •High-fat diet intake following maternal separation did not cause body weight gain. •However, levels of metabolism-related molecules in adipose tissue were altered. •Increased levels of prohibitin mRNA in white fat were observed. •Attenuated levels of β3-adrenergic receptor mRNA were observed in brown fat. •Such alterations in adipose tissue may contribute to obesity later in life. -- Abstract: The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague–Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved bymore » separating the rat pups from their mothers for 3 h each day during the 10–15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.« less

  1. Prenatal immune activation in mice blocks the effects of environmental enrichment on exploratory behavior and microglia density.

    PubMed

    Buschert, Jens; Sakalem, Marna E; Saffari, Roja; Hohoff, Christa; Rothermundt, Matthias; Arolt, Volker; Zhang, Weiqi; Ambrée, Oliver

    2016-06-03

    Adverse environmental factors including prenatal maternal infection are capable of inducing long-lasting behavioral and neural alterations which can enhance the risk to develop schizophrenia. It is so far not clear whether supportive postnatal environments are able to modify such prenatally-induced alterations. In rodent models, environmental enrichment influences behavior and cognition, for instance by affecting endocrinologic, immunologic, and neuroplastic parameters. The current study was designed to elucidate the influence of postnatal environmental enrichment on schizophrenia-like behavioral alterations induced by prenatal polyI:C immune stimulation at gestational day 9 in mice. Adult offspring were tested for amphetamine-induced locomotion, social interaction, and problem-solving behavior as well as expression of dopamine D1 and D2 receptors and associated molecules, microglia density and adult neurogenesis. Prenatal polyI:C treatment resulted in increased dopamine sensitivity and dopamine D2 receptor expression in adult offspring which was not reversed by environmental enrichment. Prenatal immune activation prevented the effects of environmental enrichment which increased exploratory behavior and microglia density in NaCl treated mice. Problem-solving behavior as well as the number of immature neurons was affected by neither prenatal immune stimulation nor postnatal environmental enrichment. The behavioral and neural alterations that persist into adulthood could not generally be modified by environmental enrichment. This might be due to early neurodevelopmental disturbances which could not be rescued or compensated for at a later developmental stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system

    PubMed Central

    Wong, Peiyan; Sze, Ying; Gray, Laura Jane; Chang, Cecilia Chin Roei; Cai, Shiwei; Zhang, Xiaodong

    2015-01-01

    Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT) mice and mice with deficient tryptophan hydroxylase 2 (TPH2) function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI) mice. Whereas, maternal separation (MS) stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A). The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex), will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7–11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7–11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7–11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive

  3. Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling.

    PubMed

    Kozberg, Mariel G; Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Hillman, Elizabeth M C

    2016-06-22

    In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in response to neural

  4. Birth weight and postnatal growth in preterm born children are associated with cortisol in early infancy, but not at age 8 years.

    PubMed

    Ruys, Charlotte A; van der Voorn, Bibian; Lafeber, Harrie N; van de Lagemaat, Monique; Rotteveel, Joost; Finken, Martijn J J

    2017-08-01

    Preterm birth has been associated with altered hypothalamic-pituitary-adrenal (HPA-) axis activity as well as cardiometabolic diseases and neurodevelopmental impairments later in life. We assessed cortisol from term age to age 8 y in children born preterm, to explore the development of HPA-axis activity in association with intrauterine and early-postnatal growth until 6 mo. corrected age. In 152 children born at a gestational age ≤32 wks. and/or with a birth weight ≤1,500g, random serum cortisol was assessed at term age (n=150), 3 mo. (n=145) and 6 mo. corrected age (n=144), and age 8 y (n=59). Salivary cortisol was assessed at age 8 y (n=75): prior to bedtime, at awakening, 15min after awakening, and before lunch. Cortisol was analyzed in association with birth weight-standard deviation score (SDS), being born small for gestational age (SGA), and combinations of intrauterine and postnatal growth: appropriate for gestational age (AGA) with or without growth restriction (AGA GR+ or AGA GR-) at 6 mo. corrected age, and SGA with or without catch-up growth (SGA CUG+ or SGA CUG-) at 6 mo. corrected age. Cross-sectional associations at all time points were analyzed using linear regression, and longitudinal associations were analyzed using generalized estimating equations. Longitudinally, birth weight-SDS was associated with cortisol (β [95%CI]): lower cortisol over time was seen in infants with a birth weight ≤-2 SDS (-50.69 [-94.27; -7.11], p=0.02), infants born SGA (-29.70 [-60.58; 1.19], p=0.06), AGA GR+ infants (-55.10 [-106.02; -4.17], p=0.03) and SGA CUG- infants (-61.91 [-104.73; -19.10], p=0.01). In cross-sectional analyses at age 8 y, no associations were found between either serum or salivary cortisol and birth weight-SDS, SGA-status, or growth from birth to 6 mo. corrected age. In children born preterm, poor intrauterine and postnatal growth were associated with lower cortisol in early infancy, but not at age 8 y. Even though HPA-axis activity no longer

  5. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice.

    PubMed

    Sumner, Charlotte J; Wee, Claribel D; Warsing, Leigh C; Choe, Dong W; Ng, Andrew S; Lutz, Cathleen; Wagner, Kathryn R

    2009-09-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-beta family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn(-/-)) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA.

  6. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    PubMed

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  7. Food, growth and time: Elsie Widdowson's and Robert McCance's research into prenatal and early postnatal growth.

    PubMed

    Buklijas, Tatjana

    2014-09-01

    Cambridge scientists Robert McCance and Elsie Widdowson are best known for their work on the British food tables and wartime food rations, but it is their research on prenatal and early postnatal growth that is today seen as a foundation of the fields studying the impact of environment upon prenatal development and, consequently, adult disease. In this essay I situate McCance's and Widdowson's 1940s human and 1950s experimental studies in the context of pre-war concerns with fetal growth and development, especially within biochemistry, physiology and agriculture; and the Second World War and post-war focus on the effects of undernutrition during pregnancy upon the fetus. I relate Widdowson's and McCance's research on the long-term effects of early undernutrition to the concern with recovery from early trauma so pertinent in post-war Europe and with sensitive (critical) periods, a concept of high importance across different fields. Finally I discuss how, following a hiatus in which fetal physiology engaged with different questions and stressed fetal autonomy, interest in the impact of environment upon prenatal growth and development revived towards the end of the twentieth century. The new field of "developmental origins of health and disease", I suggest, has provided a context in which Widdowson's and McCance's work has regained importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Fission of pancreatic islets during postnatal growth of the mouse

    PubMed Central

    Seymour, Philip A; Bennett, William R; Slack, Jonathan M W

    2004-01-01

    A cell composition analysis was made of the pancreatic islets in postnatal H253 mice. This line has a lacZ insertion on the X chromosome so that in female hemizygotes 50% of cells should be positive for β-galactosidase and 50% negative. Immediately after birth, the islets were of a heterogeneous cell composition. However, by 4 weeks some islets have become homogeneous. This suggests that islets progress towards monoclonality in a similar way to the intestinal crypts and stomach gastric glands. Pancreatic islets may therefore represent ‘structural proliferative units’ in the overall histological organization of the pancreas. Reduction of genetic heterogeneity might arise from cell turnover, fission of islets or both. Analysis of the cell composition of the X-inactivation mosaic mice also provides the first clear evidence for islet fission in pancreatic development. Irregularly shaped islets resembling dumb-bells, with a characteristic neck of α-cells, were observed with decreasing frequency with increasing age. Three-dimensional reconstruction confirmed their resemblance to conjoined islets. The cell composition analysis showed: (1) the relatedness of the two sides of a dumb-bell islet is significantly higher than between two non-dumb-bell islets and (2) the relatedness of two randomly selected islets decreases as the distance between them increases. This suggests that dumb-bell islets are in a state of fission rather than fusion, and that islet fission is a mode of islet production in the postnatal pancreas. PMID:15032917

  9. Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells.

    PubMed

    Zhang, Zhaocheng; Nör, Felipe; Oh, Min; Cucco, Carolina; Shi, Songtao; Nör, Jacques E

    2016-06-01

    Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/β-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, β-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/β-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587. © 2016 AlphaMed Press.

  10. Ear2 deletion causes early memory and learning deficits in APP/PS1 mice.

    PubMed

    Kummer, Markus P; Hammerschmidt, Thea; Martinez, Ana; Terwel, Dick; Eichele, Gregor; Witten, Anika; Figura, Stefanie; Stoll, Monika; Schwartz, Stephanie; Pape, Hans-Christian; Schultze, Joachim L; Weinshenker, David; Heneka, Michael T; Urban, Inga

    2014-06-25

    To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD. Copyright © 2014 the authors 0270-6474/14/348845-10$15.00/0.

  11. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

    PubMed Central

    Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John

    2017-01-01

    There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. PMID:28375200

  12. Quality of life, postnatal depression and baby gender.

    PubMed

    de Tychey, Claude; Briançon, Serge; Lighezzolo, Joëlle; Spitz, Elisabeth; Kabuth, Bernard; de Luigi, Valerie; Messembourg, Catherine; Girvan, Françoise; Rosati, Aurore; Thockler, Audrey; Vincent, Stephanie

    2008-02-01

    To study the impact of postnatal depression on the quality of life of young French mothers and to evaluate if the gender of their child influences this. Postnatal depression (PND) constitutes a major public health problem considering its high prevalence and consequences upon quality of life and parental skills. This research is a cross-sectional study during the postnatal period. This study was carried out during a two-month period. Data were collected by interview and questionnaires. The authors compared the prevalence rate of PND and life quality in a cohort of 181 women and measured the short-term impact of the child's birth. Postnatal depression strongly negatively influences all dimensions of life quality explored through the SF36, e.g. physical functioning (PF), physical Role (RP), bodily pain (BP), mental health (MH), emotional role (RE), social functioning (SF), vitality (VT), general health (GH), standardized physical component (PCS) and standardized mental component (MCS). The baby's gender (having a boy) also significantly reduces quality of life, irrespective of depressive state. There is a relationship between baby gender and PND. This research is the first to show that the birth of a boy reduces several dimensions of the mothers' quality of life. The importance of the impairment of quality of life in case of PND, as well as its effects on mother-child interaction, could justify prevention programs and early psychotherapeutic care. Further research needs to explore the effectiveness of programmes targeting the construction of parenting skills as a preventative measure against PND, especially for parents of boys.

  13. Postnatal development of echolocation abilities in a bottlenose dolphin (Tursiops truncatus): temporal organization.

    PubMed

    Favaro, Livio; Gnone, Guido; Pessani, Daniela

    2013-03-01

    In spite of all the information available on adult bottlenose dolphin (Tursiops truncatus) biosonar, the ontogeny of its echolocation abilities has been investigated very little. Earlier studies have reported that neonatal dolphins can produce both whistles and burst-pulsed sounds just after birth and that early-pulsed sounds are probably a precursor of echolocation click trains. The aim of this research is to investigate the development of echolocation signals in a captive calf, born in the facilities of the Acquario di Genova. A set of 81 impulsive sounds were collected from birth to the seventh postnatal week and six additional echolocation click trains were recorded when the dolphin was 1 year old. Moreover, behavioral observations, concurring with sound production, were carried out by means of a video camera. For each sound we measured five acoustic parameters: click train duration (CTD), number of clicks per train, minimum, maximum, and mean click repetition rate (CRR). CTD and number of clicks per train were found to increase with age. Maximum and mean CRR followed a decreasing trend with dolphin growth starting from the second postnatal week. The calf's first head scanning movement was recorded 21 days after birth. Our data suggest that in the bottlenose dolphin the early postnatal weeks are essential for the development of echolocation abilities and that the temporal features of the echolocation click trains remain relatively stable from the seventh postnatal week up to the first year of life. © 2013 Wiley Periodicals, Inc.

  14. Antenatal interpersonal sensitivity is more strongly associated than perinatal depressive symptoms with postnatal mother-infant interaction quality.

    PubMed

    Raine, Karen; Cockshaw, Wendell; Boyce, Philip; Thorpe, Karen

    2016-10-01

    Maternal mental health has enduring effects on children's life chances and is a substantial cost driver for child health, education and social services. A key linking mechanism is the quality of mother-infant interaction. A body of work associates maternal depressive symptoms across the antenatal and postnatal (perinatal) period with less-than-optimal mother-infant interaction. Our study aims to build on previous research in the field through exploring the association of a maternal personality trait, interpersonal sensitivity, measured in early pregnancy, with subsequent mother-infant interaction quality. We analysed data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to examine the association between antenatal interpersonal sensitivity and postnatal mother-infant interaction quality in the context of perinatal depressive symptoms. Interpersonal sensitivity was measured during early pregnancy and depressive symptoms in the antenatal year and across the first 21 months of the postnatal period. In a subsample of the ALSPAC, mother-infant interaction was measured at 12 months postnatal through a standard observation. For the subsample that had complete data at all time points (n = 706), hierarchical regression examined the contribution of interpersonal sensitivity to variance in mother-infant interaction quality. Perinatal depressive symptoms predicted little variance in mother-infant interaction. Antenatal interpersonal sensitivity explained a greater proportion of variance in mother-infant interaction quality. The personality trait, interpersonal sensitivity, measured in early pregnancy, is a more robust indicator of subsequent mother-infant-interaction quality than perinatal depressive symptoms, thus affording enhanced opportunity to identify vulnerable mother-infant relationships for targeted early intervention.

  15. Angiotensin II-AT1-receptor signaling is necessary for cyclooxygenase-2-dependent postnatal nephron generation.

    PubMed

    Frölich, Stefanie; Slattery, Patrick; Thomas, Dominique; Goren, Itamar; Ferreiros, Nerea; Jensen, Boye L; Nüsing, Rolf M

    2017-04-01

    Deletion of cyclooxygenase-2 (COX-2) causes impairment of postnatal kidney development. Here we tested whether the renin angiotensin system contributes to COX-2-dependent nephrogenesis in mice after birth and whether a rescue of impaired renal development and function in COX-2 -/- mice was achievable. Plasma renin concentration in mouse pups showed a birth peak and a second peak around day P8 during the first 10 days post birth. Administration of the angiotensin II receptor AT1 antagonist telmisartan from day P1 to P3 did not result in cortical damage. However, telmisartan treatment from day P3 to P8, the critical time frame of renal COX-2 expression, led to hypoplastic glomeruli, a thinned subcapsular cortex and maturational arrest of superficial glomeruli quite similar to that observed in COX-2 -/- mice. In contrast, AT2 receptor antagonist PD123319 was without any effect on renal development. Inhibition of the renin angiotensin system by aliskiren and enalapril caused similar glomerular defects as telmisartan. Administration of the AT1 receptor agonist L162313 to COX-2 -/- pups improved kidney growth, ameliorated renal defects, but had no beneficial effect on reduced cortical mass. L162313 rescued impaired renal function by reducing serum urea and creatinine and mitigated pathologic albumin excretion. Moreover, glomerulosclerosis in the kidneys of COX-2 -/- mice was reduced. Thus, angiotensin II-AT1-receptor signaling is necessary for COX-2-dependent normal postnatal nephrogenesis and maturation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Postnatal cocaine exposure: effects on behavior of rats in forced swim test.

    PubMed

    Magalhães, Ana; Tavares, Maria Amélia; de Sousa, Liliana

    2002-06-01

    Exposure to cocaine in early periods of postnatal life has adverse effects on behavior, namely, it induces the display of anxiety and fear-like behaviors that are associated with stress and depression. This study examined the effects of early developmental cocaine exposure in several categories of behavior observed in forced swim test. Male and female Wistar rats were given 15 mg/kg of cocaine hydrochloride/body weight/day, subcutaneously, in two daily doses, from postnatal day (PND) 1 to PND27. Controls were saline injected in the same protocol. In PND26-PND27, rats were placed in a swimming pool during 5 min in two sessions. The categories of behavior studied in this work included horizontal and vertical rotation, vibrissae clean, head clean, fast and slow swim, struggling, floating, sliding, diving, head-diving, and wagging head. Results showed differences in the frequencies of several behavioral categories that allowed the discrimination of the behaviors that may constitute "behavioral despair" indicators, as well as which behaviors are most affected by cocaine exposure. Cocaine groups were less active and more immobile than controls. These results suggest that postnatal exposure to cocaine can produce depression-like effects and affect the ability of these animals to cope with stress situations.

  17. Postnatal effects of intrauterine treatment of the growth-restricted ovine fetus with intra-amniotic insulin-like growth factor-1.

    PubMed

    Spiroski, A M; Oliver, M H; Jaquiery, A L; Prickett, T C R; Espiner, E A; Harding, J E; Bloomfield, F H

    2017-12-12

    Fetal growth restriction increases the risk of fetal and neonatal mortality and morbidity, and contributes to increased risk of chronic disease later in life. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of the growth-restricted ovine fetus improves fetal growth, but postnatal effects are unknown. Here we report that intra-amniotic IGF1 treatment of the growth-restricted ovine fetus alters size at birth and mechanisms of early postnatal growth in a sex-specific manner. We also show that maternal plasma C-type natriuretic peptide (CNP) products are related to fetal oxygenation and size at birth, and hence may be useful for non-invasive monitoring of fetal growth restriction. Intrauterine IGF1 treatment in late gestation is a potentially clinically relevant intervention that may ameliorate the postnatal complications of fetal growth restriction. Placental insufficiency-mediated fetal growth restriction (FGR) is associated with altered postnatal growth and metabolism, which are, in turn, associated with increased risk of adult disease. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of ovine FGR increases growth rate in late gestation, but the effects on postnatal growth and metabolism are unknown. We investigated the effects of intra-amniotic IGF1 administration to ovine fetuses with uteroplacental embolisation-induced FGR on phenotypical and physiological characteristics in the 2  weeks after birth. We measured early postnatal growth velocity, amino-terminal propeptide of C-type natriuretic peptide (NTproCNP), body composition, tissue-specific mRNA expression, and milk intake in singleton lambs treated weekly with 360 μg intra-amniotic IGF1 (FGRI; n = 13 females, 19 males) or saline (FGRS; n = 18 females, 12 males) during gestation, and in controls (CON; n = 15 females, 22 males). There was a strong positive correlation between maternal NTproCNP and fetal oxygenation, and size at birth in FGR lambs. FGR lambs were ∼20% lighter

  18. Beneficial effects of postnatal choline supplementation on long-Term neurocognitive deficit resulting from fetal-Neonatal iron deficiency.

    PubMed

    Kennedy, Bruce C; Tran, Phu V; Kohli, Maulika; Maertens, Jamie J; Gewirtz, Jonathan C; Georgieff, Michael K

    2018-01-15

    Early-life iron deficiency is a common nutrient condition worldwide and can result in cognitive impairment in adulthood despite iron treatment. In rodents, prenatal choline supplementation can diminish long-term hippocampal gene dysregulation and neurocognitive deficits caused by iron deficiency. Since fetal iron status is generally unknown in humans, we determined whether postnatal choline supplementation exerts similar beneficial effects. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (3-6ppm Fe) from gestational day (G) 3 through postnatal day (P) 7, and an iron-sufficient (IS) diet (200ppm Fe) thereafter. Control pups were provided IS diet throughout. Choline (5ppm) was given to half the nursing dams and weanlings in each group from P11-P30. P65 rat cognitive performance was assessed by novel object recognition (NOR). Real-time PCR was performed to validate expression levels of synaptic plasticity genes known to be dysregulated by early-life iron deficiency. Postnatal choline supplementation prevented impairment of NOR memory in formerly iron-deficient (FID) adult rats but impaired NOR memory in IS controls. Gene expression analysis revealed a recovery of 4 out of 10 dysregulated genes compared to 8 of the same 10 genes that we previously demonstrated to recover following prenatal choline supplementation. Recognition memory deficits induced by early-life iron deficiency can be prevented by postnatal choline supplementation and disrupted expression of a subset of synaptic plasticity genes can be ameliorated. The positive response to postnatal choline represents a potential adjunctive therapeutic supplement to treat iron-deficient anemic children in order to spare long-term neurodevelopmental deficits. Copyright © 2017. Published by Elsevier B.V.

  19. Cyp1b1 deletion and retinol deficiency coordinately suppress mouse liver lipogenic genes and hepcidin expression during post-natal development

    PubMed Central

    Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.

    2018-01-01

    Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802

  20. The Effects of Maternal Postnatal Depression and Child Sex on Academic Performance at Age 16 Years: A Developmental Approach

    ERIC Educational Resources Information Center

    Murray, Lynne; Arteche, Adriane; Fearon, Pasco; Halligan, Sarah; Croudace, Tim; Cooper, Peter

    2010-01-01

    Background: Postnatal depression (PND) is associated with poor cognitive functioning in infancy and the early school years; long-term effects on academic outcome are not known. Method: Children of postnatally depressed (N = 50) and non-depressed mothers (N = 39), studied from infancy, were followed up at 16 years. We examined the effects on…

  1. Understanding exercise self-efficacy and barriers to leisure-time physical activity among postnatal women.

    PubMed

    Cramp, Anita G; Bray, Steven R

    2011-07-01

    Studies have demonstrated that postnatal women are at high risk for physical inactivity and generally show lower levels of leisure-time physical activity (LTPA) compared to prepregnancy. The overall purpose of the current study was to investigate social cognitive correlates of LTPA among postnatal women during a 6-month period following childbirth. A total of 230 women (mean age = 30.9) provided descriptive data regarding barriers to LTPA and completed measures of LTPA and self-efficacy (exercise and barrier) for at least one of the study data collection periods. A total of 1,520 barriers were content analyzed. Both exercise and barrier self-efficacy were positively associated with subsequent LTPA. Exercise self-efficacy at postnatal week 12 predicted LTPA from postnatal weeks 12 to 18 (β = .40, R (2) = .18) and exercise self-efficacy at postnatal week 24 predicted LTPA during weeks 24-30 (β = .49, R (2) = .30). Barrier self-efficacy at week 18 predicted LTPA from weeks 18 to 24 (β = .33, R (2) = .13). The results of the study identify a number of barriers to LTPA at multiple time points closely following childbirth which may hinder initiation, resumption or maintenance of LTPA. The results also suggest that higher levels of exercise and barrier self-efficacy are prospectively associated with higher levels of LTPA in the early postnatal period. Future interventions should be designed to investigate causal effects of developing participants' exercise and barrier self-efficacy for promoting and maintaining LTPA during the postnatal period.

  2. Original Research: Metabolic alterations from early life thyroxine replacement therapy in male Ames dwarf mice are transient.

    PubMed

    Darcy, Justin; Fang, Yimin; Hill, Cristal M; McFadden, Sam; Sun, Liou Y; Bartke, Andrzej

    2016-10-01

    Ames dwarf mice are exceptionally long-lived due to a Prop1 loss of function mutation resulting in deficiency of growth hormone, thyroid-stimulating hormone and prolactin. Deficiency in thyroid-stimulating hormone and growth hormone leads to greatly reduced levels of circulating thyroid hormones and insulin-like growth factor 1, as well as a reduction in insulin secretion. Early life growth hormone replacement therapy in Ames dwarf mice significantly shortens their longevity, while early life thyroxine (T4) replacement therapy does not. Possible mechanisms by which early life growth hormone replacement therapy shortens longevity include deleterious effects on glucose homeostasis and energy metabolism, which are long lasting. A mechanism explaining why early life T4 replacement therapy does not shorten longevity remains elusive. Here, we look for a possible explanation as to why early life T4 replacement therapy does not impact longevity of Ames dwarf mice. We found that early life T4 replacement therapy increased body weight and advanced the age of sexual maturation. We also find that early life T4 replacement therapy does not impact glucose tolerance or insulin sensitivity, and any deleterious effects on oxygen consumption, respiratory quotient and heat production are transient. Lastly, we find that early life T4 replacement therapy has long-lasting effects on bone mineral density and bone mineral content. We suggest that the transient effects on energy metabolism and lack of effects on glucose homeostasis are the reasons why there is no shortening of longevity after early life T4 replacement therapy in Ames dwarf mice. © 2016 by the Society for Experimental Biology and Medicine.

  3. Postnatal development of GABAergic interneurons in the neocortical subplate of mice.

    PubMed

    Qu, G-J; Ma, J; Yu, Y-C; Fu, Y

    2016-05-13

    The subplate (SP) plays important roles in developmental and functional events in the neocortex, such as thalamocortical and corticofugal projection, cortical oscillation generation and corticocortical connectivity. Although accumulated evidence indicates that SP interneurons are crucial for SP function, the molecular composition of SP interneurons as well as their developmental profile and distribution remain largely unclear. In this study, we systematically investigated dynamic development of SP thickness and chemical marker expression in SP interneurons in distinct cortical regions during the first postnatal month. We found that, although the relative area of the SP in the cerebral cortex significantly declined with postnatal development, the absolute thickness did not change markedly. We also found that somatostatin (SOM), the ionotropic serotonin receptor 3A (5HT3AR), and parvalbumin (PV) reliably identify three distinct non-overlapping subpopulations of SP interneurons. The SOM group, which represents ~30% of total SP interneurons, expresses neuronal nitric oxide synthase (nNOS) and calbindin (CB) and colocalizes entirely with neuropeptide Y (NPY). The 5HT3AR group, which accounts for ~60% of the total interneuronal population, expresses calretinin (CR) and GABA-A receptor subunit delta (GABAARδ). The PV group accounts for ~10% of total SP interneurons and coexpressed GABAARδ. Moreover, distinct interneuron subtypes show characteristic temporal and spatial distribution in the SP. nNOS(+) interneurons in the SP increase from the anterior motor cortex to posterior visual cortex, while CR(+) and CB(+) interneurons the opposite. Interestedly, the majority of GABAARδ(+) neurons in SP are non-GABAergic neurons in contrast to other cortical layers. These findings clarify and extend our understanding of SP interneurons in the developing cerebral cortex and will underpin further study of SP function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights

  4. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.

    PubMed

    Feng, Shufang; Shi, Tianyao; Qiu, Jiangxia; Yang, Haihong; Wu, Yan; Zhou, Wenxia; Wang, Wei; Wu, Haitao

    2017-10-01

    It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX) + neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1 -/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. © FASEB.

  5. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination.

    PubMed

    Klocke, Carolyn; Allen, Joshua L; Sobolewski, Marissa; Blum, Jason L; Zelikoff, Judith T; Cory-Slechta, Deborah A

    2018-03-01

    Accumulating studies indicate that the brain is a direct target of air pollution exposure during the fetal period. We have previously demonstrated that exposure to concentrated ambient particles (CAPs) during gestation produces ventriculomegaly, periventricular hypermyelination, and enlargement of the corpus callosum (CC) during postnatal development in mice. This study aimed to further characterize the cellular basis of the observed hypermyelination and determine if this outcome, among other effects, persisted as the brain matured. Analysis of CC-1 + mature oligodendrocytes in the CC at postnatal days (PNDs) 11-15 suggest a premature maturational shift in number and proportion of total cells in prenatally CAPs-exposed males and females, with no overall change in total CC cellularity. The overall number of Olig2 + lineage cells in the CC was not affected in either sex at the same postnatal timepoint. Assessment of myelin status at early brain maturity (PNDs 57-61) revealed persistent hypermyelination in CAPs-exposed animals of both sexes. In addition, ventriculomegaly was persistent in CAPs-treated females, with possible amelioration of ventriculomegaly in CAPs-exposed males. When oligodendrocyte precursor cell (OPC) pool status was analyzed at PNDs 57-61, there were significant CAPs-induced alterations in cycling Ki67 + /Olig2 + cell number and proportion of total cells in the female CC. Total CC cellularity was slightly elevated in CAPs-exposed males at PNDs 57-61. Overall, these data support a growing body of evidence that demonstrate the vulnerability of the developing brain to environmental insults such as ambient particulate matter. The sensitivity of oligodendrocytes and myelin, in particular, to such an insult warrants further investigation into the mechanistic underpinnings of OPC and myelin disruption by constituent air pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Growth trajectories in early childhood, their relationship with antenatal and postnatal factors, and development of obesity by age 9 years: results from an Australian birth cohort study.

    PubMed

    Giles, L C; Whitrow, M J; Davies, M J; Davies, C E; Rumbold, A R; Moore, V M

    2015-07-01

    In an era where around one in four children in the United Kingdom, the United States, and Australia are overweight or obese, the development of obesity in early life needs to be better understood. We aimed to identify groups of children with distinct trajectories of growth in infancy and early childhood, to examine any association between these trajectories and body size at age 9, and to assess the relative influence of antenatal and postnatal exposures on growth trajectories. Prospective Australian birth cohort study. In total, 557 children with serial height and weight measurements from birth to 9 years were included in the study. Latent class growth models were used to derive distinct groups of growth trajectories from birth to age 3½ years. Multivariable logistic regression models were used to explore antenatal and postnatal predictors of growth trajectory groups, and multivariable linear and logistic regression models were used to examine the relationships between growth trajectory groups and body size at age 9 years. We identified four discrete growth trajectories from birth to age 3½ years, characterised as low, intermediate, high, or accelerating growth. Relative to the intermediate growth group, the low group had reduced z-body mass index (BMI) (-0.75 s.d.; 95% confidence interval (CI) -1.02, -0.47), and the high and accelerating groups were associated with increased body size at age 9 years (high: z-BMI 0.70 s.d.; 95% CI 0.49, 0.62; accelerating: z-BMI 1.64 s.d.; 95% CI 1.16, 2.11). Of the antenatal and postnatal exposures considered, the most important differentiating factor was maternal obesity in early pregnancy, associated with a near quadrupling of risk of membership of the accelerating growth trajectory group compared with the intermediate growth group (odds ratio (OR) 3.72; 95% CI 1.15, 12.05). Efforts to prevent childhood obesity may need to be embedded within population-wide strategies that also pay attention to healthy weight for women in

  7. Pre- and postnatal stress and asthma in children: Temporal- and sex-specific associations

    PubMed Central

    Lee, Alison; Chiu, Yueh-Hsiu Mathilda; Rosa, Maria José; Jara, Calvin; Wright, Robert O.; Coull, Brent A.; Wright, Rosalind J.

    2016-01-01

    BACKGROUND Temporal- and sex-specific effects of perinatal stress have not been examined for childhood asthma. OBJECTIVES We examined associations between pre- and/or postnatal stress and children's asthma (n=765) and effect modification by sex in a prospective cohort study. METHODS Maternal negative life events (NLEs) were ascertained prenatally and postpartum. NLEs scores were categorized as 0, 1-2, 3-4, or ≥5 to assess exposure-response relationships. We examined effects of pre- and postnatal stress on children's asthma by age 6 years modeling each as independent predictors; mutually adjusting for prenatal and postnatal stress; and finally considering interactions between pre- and postnatal stress. Effect modification by sex was examined in stratified analyses and by fitting interaction terms. RESULTS When considering stress in each period independently, among boys a dose-response relationship was evident for each level increase on the ordinal scale prenatally (OR=1.38, 95% CI 1.06, 1.79; p-for-trend=0.03) and postnatally (OR=1.53, 95% CI 1.16, 2.01; p-for-trend=0.001); among girls only the postnatal trend was significant (OR=1.60, 95% CI 1.14, 2.22; p-for-trend=0.005). Higher stress in both the pre- and postnatal periods was associated with increased odds of being diagnosed with asthma in girls [OR=1.37, 95% CI 0.98, 1.91 (pinteraction=0.07)] but not boys [OR=1.08, 95% CI 0.82, 1.42 (pinteraction=0.61)]. CONCLUSIONS While boys were more vulnerable to stress during the prenatal period, girls were more impacted by postnatal stress and cumulative stress across both periods in relation to asthma. Understanding sex and temporal differences in response to early life stress may provide unique insight into asthma etiology and natural history. PMID:26953156

  8. Antenatal/early postnatal hypothyroidism alters arterial tone regulation in 2-week-old rats.

    PubMed

    Sofronova, Svetlana I; Gaynullina, Dina K; Shvetsova, Anastasia A; Borzykh, Anna A; Selivanova, Ekaterina K; Kostyunina, Daria S; Sharova, Anna P; Martyanov, Andrey A; Tarasova, Olga S

    2017-11-01

    The mechanisms of vascular alterations resulting from early thyroid hormones deficiency are poorly understood. We tested the hypothesis that antenatal/early postnatal hypothyroidism would alter the activity of endothelial NO pathway and Rho-kinase pathway, which are specific for developing vasculature. Dams were treated with propylthiouracil (PTU, 7 ppm) in drinking water during gestation and 2 weeks after delivery, and their progeny had normal body weight but markedly reduced blood levels of thyroid hormones (ELISA). Small arteries from 2-week-old male pups were studied using wire myography, qPCR and Western blotting. Mesenteric arteries of PTU pups, compared to controls, demonstrated smaller maximum response to α 1 -adrenergic agonist methoxamine and reduced mRNA contents of smooth muscle differentiation markers α-actin and SERCA2A. Inhibition of basal NO synthesis by l-NNA led to tonic contraction of mesenteric arteries and augmented their contractile responses to methoxamine; both l-NNA effects were impaired in PTU pups. PTU pups demonstrated lower blood level of NO metabolites compared to control group (Griess reaction). Rho-kinase inhibitor Y27632 strongly reduced mesenteric arteries responses to methoxamine in PTU pups, that was accompanied by elevated Rho-kinase content in their arteries in comparison to control ones. Unlike mesenteric, saphenous arteries of PTU pups, compared to controls, had no changes in α-actin and SERCA2A contents and in responses to l-NNA and Y27632. In conclusion, thyroid hormones deficiency suppresses the anticontractile effect of NO and potentiates the procontractile Rho-kinase effects in mesenteric arteries of 2-week-old pups. Such alterations disturb perinatal cardiovascular homeostasis and might lead to cardiovascular pathologies in adulthood. © 2017 Society for Endocrinology.

  9. Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling.

    PubMed

    Teegarden, S L; Scott, A N; Bale, T L

    2009-09-15

    Overweight and obesity in the United States continues to grow at epidemic rates in large part due to the overconsumption of calorically-dense palatable foods. Identification of factors influencing long-term macronutrient preferences may elucidate points of prevention and behavioral modification. In our current study, we examined the adult macronutrient preferences of mice acutely exposed to a high fat diet during the third postnatal week. We hypothesized that the consumption of a high fat diet during early life would alter the programming of central pathways important in adult dietary preferences. As adults, the early-exposed mice displayed a significant preference for a diet high in fat compared to controls. This effect was not due to diet familiarity as mice exposed to a novel high carbohydrate diet during this same early period failed to show differences in macronutrient preferences as adults. The increased intake of high fat diet in early exposed mice was specific to dietary preferences as no changes were detected for total caloric intake or caloric efficiency. Mechanistically, mice exposed to a high fat diet during early life exhibited significant alterations in biochemical markers of dopamine signaling in the nucleus accumbens, including changes in levels of phospho-dopamine and cyclic AMP-regulated phosphoprotein, molecular weight 32 kDa (DARPP-32) threonine-75, DeltaFosB, and cyclin-dependent kinase 5. These results support our hypothesis that even brief early life exposure to calorically-dense palatable diets alters long-term programming of central mechanisms important in dietary preferences and reward. These changes may underlie the passive overconsumption of high fat foods contributing to the increasing body mass in the western world.

  10. Antenatal and early infant predictors of postnatal growth in rural Vietnam: a prospective cohort study

    PubMed Central

    Hanieh, Sarah; Ha, Tran T; De Livera, Alysha M; Simpson, Julie A; Thuy, Tran T; Khuong, Nguyen C; Thoang, Dang D; Tran, Thach D; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann

    2015-01-01

    Objective To determine which antenatal and early-life factors were associated with infant postnatal growth in a resource-poor setting in Vietnam. Study design Prospective longitudinal study following infants (n=1046) born to women who had previously participated in a cluster randomised trial of micronutrient supplementation (ANZCTR:12610000944033), Ha Nam province, Vietnam. Antenatal and early infant factors were assessed for association with the primary outcome of infant length-for-age z scores at 6 months of age using multivariable linear regression and structural equation modelling. Results Mean length-for-age z score was −0.58 (SD 0.94) and stunting prevalence was 6.4%. Using structural equation modelling, we highlighted the role of infant birth weight as a predictor of infant growth in the first 6 months of life and demonstrated that maternal body mass index (estimated coefficient of 45.6 g/kg/m2; 95% CI 34.2 to 57.1), weight gain during pregnancy (21.4 g/kg; 95% CI 12.6 to 30.1) and maternal ferritin concentration at 32 weeks' gestation (−41.5 g per twofold increase in ferritin; 95% CI −78 to −5.0) were indirectly associated with infant length-for-age z scores at 6 months of age via birth weight. A direct association between 25-(OH) vitamin D concentration in late pregnancy and infant length-for-age z scores (estimated coefficient of −0.06 per 20 nmol/L; 95% CI −0.11 to −0.01) was observed. Conclusions Maternal nutritional status is an important predictor of early infant growth. Elevated antenatal ferritin levels were associated with suboptimal infant growth in this setting, suggesting caution with iron supplementation in populations with low rates of iron deficiency. PMID:25246090

  11. MusTRD can regulate postnatal fiber-specific expression.

    PubMed

    Issa, Laura L; Palmer, Stephen J; Guven, Kim L; Santucci, Nicole; Hodgson, Vanessa R M; Popovic, Kata; Joya, Josephine E; Hardeman, Edna C

    2006-05-01

    Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.

  12. Long-Term Effects of Neonatal Methamphetamine Exposure on Cognitive Function in Adolescent Mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2011-01-01

    Exposure to methamphetamine during brain development impairs cognition in children and adult rodents. In mice, these impairments are greater in females than males. Adult female, but not male, mice show impairments in novel location recognition following methamphetamine exposure during brain development. In contrast to adulthood, little is known about the potential effects of methamphetamine exposure on cognition in adolescent mice. As adolescence is an important time of development and is relatively understudied, the aim of the current study was to examine potential long-term effects of neonatal methamphetamine exposure on behavior and cognition during adolescence. Male and female mice were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal day 11-20, the period of rodent hippocampal development. Behavioral and cognitive function was assessed during adolescence beginning on postnatal day 30. During the injection period, methamphetamine-exposed mice gained less weight on average compared to saline-exposed mice. In both male and female mice, methamphetamine exposure significantly impaired novel object recognition and there was a trend towards impaired novel location recognition. Anxiety-like behavior, sensorimotor gating, and contextual and cued fear conditioning were not affected by methamphetamine exposure. Thus, neonatal methamphetamine exposure affects cognition in adolescence and unlike in adulthood equally affects male and female mice. PMID:21238498

  13. Anandamide-CB1 Receptor Signaling Contributes to Postnatal Ethanol-Induced Neonatal Neurodegeneration, Adult Synaptic and Memory Deficits

    PubMed Central

    Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Xie, Shan; Basavarajappa, Balapal S.

    2013-01-01

    The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), which is comparable to the third trimester human pregnancy, induces synaptic dysfunctions. However, the molecular mechanisms underlying these dysfunctions are still poorly understood. Although the endocannabinoid system has been shown to be an important modulator of ethanol sensitivity in adult mice, its potential role in synaptic dysfunctions in mice exposed to ethanol during early brain development is not examined. In this study, we investigated the potential role of endocannabinoids and the cannabinoid receptor type 1 (CB1R) in neonatal neurodegeneration and adult synaptic dysfunctions in mice exposed to ethanol at P7. Ethanol treatment at P7, which induces neurodegeneration, increased anandamide (AEA) but not 2-arachidonylglycerol biosynthesis and CB1R protein expression in the hippocampus and cortex, two brain areas that are important for memory formation and storage, respectively. N-arachidonoyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), glycerophosphodiesterase (GDE1) and CB1Rs protein expression were enhanced by transcriptional activation of the genes encoding NAPE-PLD, GDE1 and CB1R proteins respectively. In addition, ethanol inhibited ERK1/2 and AKT phosphorylation. The blockade of CB1Rs prior to ethanol treatment at P7 relieved ERK1/2 but not AKT phosphorylation and prevented neurodegeneration. CB1R knockout mice exhibited no ethanol-induced neurodegeneration and inhibition of ERK1/2-phosphorylation. The protective effects of CB1R blockade through pharmacological or genetic deletion resulted in normal adult synaptic plasticity and novel object recognition memory in mice exposed to ethanol at P7. The AEA/CB1R/pERK1/2 signaling pathway may be directly responsible for the synaptic and memory deficits associated with fetal alcohol spectrum disorders. PMID:23575834

  14. Precision-cut vibratome slices allow functional live cell imaging of the pulmonary neuroepithelial body microenvironment in fetal mice.

    PubMed

    Schnorbusch, Kathy; Lembrechts, Robrecht; Brouns, Inge; Pintelon, Isabel; Timmermans, Jean-Pierre; Adriaensen, Dirk

    2012-01-01

    We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1-21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by 'Clara-like' cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17-20).In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.

  15. Identification of long non-coding RNA and mRNA expression in βΒ2-crystallin knockout mice.

    PubMed

    Jia, Yin; Xiong, Kang; Ren, Han-Xiao; Li, Wen-Jie

    2018-05-01

    βΒ2-crystallin (CRYBB2) is expressed at an increased level in the postnatal lens cortex and is associated with cataracts. Improved understanding of the underlying biology of cataracts is likely to be critical for the development of early detection strategies and new therapeutics. The present study aimed to identify long non-coding RNAs (lncRNAs) and mRNAs associated with CRYBB2 knockdown (KO)-induced cataracts. RNAs from 3 non-treated mice and 3 CRYBB2 KO mice were analyzed using the Affymetrix GeneChip Mouse Gene 2.0 ST array. A total of 149 lncRNAs and 803 mRNAs were identified to have upregulated expression, including Snora73b, Klk1b22 and Rnu3a, while the expression levels of 180 lncRNAs and 732 mRNAs were downregulated in CRYBB2 KO mice, including Snord82, Snhg9 and Foxn3. This lncRNA and mRNA expression profile of mice with CRYBB2 KO provides a basis for studying the genetic mechanisms of cataract progression.

  16. Is the organisation and structure of hospital postnatal care a barrier to quality care? Findings from a state-wide review in Victoria, Australia.

    PubMed

    McLachlan, Helen L; Forster, Della A; Yelland, Jane; Rayner, Joanne; Lumley, Judith

    2008-09-01

    to describe the structure and organisation of hospital postnatal care in Victoria, Australia. postal survey sent to all public hospitals in Victoria (n=71) and key-informant interviews with midwives and medical practitioners (n=38). Victoria, Australia. providers of postnatal care in Victorian public hospitals. there is significant diversity across Victoria in the way postnatal units are structured and organised and in the way care is provided. There are differences in numerous practices, including maternal and neonatal observations and the length of time women spend in hospital after giving birth. Although the benefits of continuity of care are recognised by health care providers, continuity is difficult to provide in the postnatal period. Postnatal care is provided in busy, sometimes chaotic environments, with many barriers to providing effective care and few opportunities for women to rest and recover after childbirth. The findings in this study can, in part, be explained by the lack of evidence that has been available to guide early postnatal care. current structures such as standard postnatal documentation (clinical pathways) and fixed length of stay, may inhibit rather than support individualised care for women after childbirth. There is a need to move towards greater flexibility in providing of early postnatal care, including alternative models of service delivery; choice and flexibility in the length of stay after birth; a focus on the individual with far less emphasis on care being structured around organisational requirements; and building an evidence base to guide care.

  17. Exposure to dim light at night during early development increases adult anxiety-like responses.

    PubMed

    Borniger, Jeremy C; McHenry, Zachary D; Abi Salloum, Bachir A; Nelson, Randy J

    2014-06-22

    Early experiences produce effects that may persist throughout life. Therefore, to understand adult phenotype, it is important to investigate the role of early environmental stimuli in adult behavior and health. Artificial light at night (LAN) is an increasingly common phenomenon throughout the world. However, animals, including humans, evolved under dark night conditions. Many studies have revealed affective, immune, and metabolic alterations provoked by aberrant light exposure and subsequent circadian disruption. Pups are receptive to entraining cues from the mother and then light early during development, raising the possibility that the early life light environment may influence subsequent behavior. Thus, to investigate potential influences of early life exposure to LAN on adult phenotype, we exposed mice to dim (~5 lux; full spectrum white light) or dark (~0 lux) nights pre- and/or postnatally. After weaning at 3 weeks of age, all mice were maintained in dark nights until adulthood (9 weeks of age) when behavior was assessed. Mice exposed to dim light in early life increased anxiety-like behavior and fearful responses on the elevated plus maze and passive avoidance tests. These mice also displayed reduced growth rates, which ultimately normalized during adolescence. mRNA expression of brain derived neurotrophic factor (BDNF), a neurotrophin previously linked to early life environment and adult phenotype, was not altered in the prefrontal cortex or hippocampus by early life LAN exposure. Serum corticosterone concentrations were similar between groups at weaning, suggesting that early life LAN does not elicit a long-term physiologic stress response. Dim light exposure did not influence behavior on the open field, novel object, sucrose anhedonia, or forced swim tests. Our data highlight the potential deleterious consequences of low levels of light during early life to development and subsequent behavior. Whether these changes are due to altered maternal behavior

  18. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice

    PubMed Central

    Sumner, Charlotte J.; Wee, Claribel D.; Warsing, Leigh C.; Choe, Dong W.; Ng, Andrew S.; Lutz, Cathleen; Wagner, Kathryn R.

    2009-01-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-β family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn−/−) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA. PMID:19477958

  19. Differential neuronal plasticity in mouse hippocampus associated with various periods of enriched environment during postnatal development.

    PubMed

    Hosseiny, Salma; Pietri, Mariel; Petit-Paitel, Agnès; Zarif, Hadi; Heurteaux, Catherine; Chabry, Joëlle; Guyon, Alice

    2015-11-01

    Enriched environment (EE) is characterized by improved conditions for enhanced exploration, cognitive activity, social interaction and physical exercise. It has been shown that EE positively regulates the remodeling of neural circuits, memory consolidation, long-term changes in synaptic strength and neurogenesis. However, the fine mechanisms by which environment shapes the brain at different postnatal developmental stages and the duration required to induce such changes are still a matter of debate. In EE, large groups of mice were housed in bigger cages and were given toys, nesting materials and other equipment that promote physical activity to provide a stimulating environment. Weaned mice were housed in EE for 4, 6 or 8 weeks and compared with matched control mice that were raised in a standard environment. To investigate the differential effects of EE on immature and mature brains, we also housed young adult mice (8 weeks old) for 4 weeks in EE. We studied the influence of onset and duration of EE housing on the structure and function of hippocampal neurons. We found that: (1) EE enhances neurogenesis in juvenile, but not young adult mice; (2) EE increases the number of synaptic contacts at every stage; (3) long-term potentiation (LTP) and spontaneous and miniature activity at the glutamatergic synapses are affected differently by EE depending on its onset and duration. Our study provides an integrative view of the role of EE during postnatal development in various mechanisms of plasticity in the hippocampus including neurogenesis, synaptic morphology and electrophysiological parameters of synaptic connectivity. This work provides an explanation for discrepancies found in the literature about the effects of EE on LTP and emphasizes the importance of environment on hippocampal plasticity.

  20. Pre- and Early-Postnatal Nutrition Modify Gene and Protein Expressions of Muscle Energy Metabolism Markers and Phospholipid Fatty Acid Composition in a Muscle Type Specific Manner in Sheep

    PubMed Central

    Hou, Lei; Kongsted, Anna H.; Ghoreishi, Seyed M.; Takhtsabzy, Tasnim K.; Friedrichsen, Martin; Hellgren, Lars I.; Kadarmideen, Haja N.; Vaag, Allan; Nielsen, Mette O.

    2013-01-01

    We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty), twin offspring received a high-carbohydrate-high-fat (HCHF) or a moderate-conventional (CONV) diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults). The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4) protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α) mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins) related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced whole

  1. Transplacental Arsenic Carcinogenesis in Mice

    PubMed Central

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation, and the offspring were observed for up to two years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans and

  2. Postnatal Ablation of Foxm1 from Cardiomyocytes Causes Late Onset Cardiac Hypertrophy and Fibrosis without Exacerbating Pressure Overload-Induced Cardiac Remodeling

    PubMed Central

    Bolte, Craig; Zhang, Yufang; York, Allen; Kalin, Tanya V.; Schultz, Jo El J.; Molkentin, Jeffery D.; Kalinichenko, Vladimir V.

    2012-01-01

    Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2) plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis. PMID:23144938

  3. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection

    PubMed Central

    Santos, Patrícia d‘Emery Alves; de Lorena, Virgínia Maria Barros; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; do Nascimento, Wheverton Ricardo Correia; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; de Souza, Valdênia Maria Oliveira

    2016-01-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants. PMID:26872339

  4. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection.

    PubMed

    Santos, Patrícia d'Emery Alves; Lorena, Virgínia Maria Barros de; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; Nascimento, Wheverton Ricardo Correia do; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; Souza, Valdênia Maria Oliveira de

    2016-02-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants.

  5. Postnatal PPARdelta activation and myostatin inhibition exert distinct yet complimentary effects on the metabolic profile of obese insulin-resistant mice.

    PubMed

    Bernardo, Barbara L; Wachtmann, Timothy S; Cosgrove, Patricia G; Kuhn, Max; Opsahl, Alan C; Judkins, Kyle M; Freeman, Thomas B; Hadcock, John R; LeBrasseur, Nathan K

    2010-06-25

    Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.

  6. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice.

    PubMed

    Wang, Yongan; Yang, Qing; Liu, Wei; Yu, Mingxi; Zhang, Zhou; Cui, Xiaoyu

    2016-09-15

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A qualitative study of the acceptability of routine screening of postnatal women using the Edinburgh Postnatal Depression Scale.

    PubMed Central

    Shakespeare, Judy; Blake, Fiona; Garcia, Jo

    2003-01-01

    BACKGROUND: Screening for postnatal depression using the Edinburgh Postnatal Depression Scale (EPDS) has been widely recommended and implemented in primary care, although little is known about how acceptable it is to women. AIM: To explore the acceptability to women of postnatal screening by health visitors with the EPDS. DESIGN OF STUDY: Qualitative interview study. SETTING: Postnatal patients from 22 general practices within the area of Oxford City Primary Care Group. METHOD: Thirty-nine postnatal women from a purposive sample were interviewed, chosen on the basis of different general practices, EPDS results at eight weeks and eight months postnatal, and whether 'listening visits' were received. The interviews were analysed using the constant comparative method. RESULTS: Just over half of the women interviewed found screening with the EPDS less than acceptable, whatever their postnatal emotional health. The main themes identified were problems with the process of screening and, in particular, the venue, the personal intrusion of screening and stigma. The women interviewed had a clear preference for talking about how they felt, rather than filling out a questionnaire. CONCLUSION: For this sample, routine screening with the EPDS was less than acceptable for the majority of women. This is of concern, as universal screening with the EPDS for the detection of postnatal depression is already recommended and widespread in primary care. PMID:14601337

  8. Ablation of RIC8A function in mouse neurons leads to a severe neuromuscular phenotype and postnatal death.

    PubMed

    Ruisu, Katrin; Kask, Keiu; Meier, Riho; Saare, Merly; Raid, Raivo; Veraksitš, Alar; Karis, Alar; Tõnissoo, Tambet; Pooga, Margus

    2013-01-01

    Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8a (F/F) ) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre (+/-) Ric8 (lacZ/F) mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre (+/-) Ric8a (lacZ/F) mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype.

  9. Ablation of RIC8A Function in Mouse Neurons Leads to a Severe Neuromuscular Phenotype and Postnatal Death

    PubMed Central

    Ruisu, Katrin; Kask, Keiu; Meier, Riho; Saare, Merly; Raid, Raivo; Veraksitš, Alar; Karis, Alar; Tõnissoo, Tambet; Pooga, Margus

    2013-01-01

    Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8a F/F) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre +/- Ric8 lacZ/F mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre +/- Ric8a lacZ/F mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype. PMID:23977396

  10. DEHP exposure in utero disturbs sex determination and is potentially linked with precocious puberty in female mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongan

    Human's ubiquitous exposure to di (2-ethylhexyl) phthalate (DEHP) is thought to be associated with female reproductive toxicity. Previous studies found that DEHP inhibited follicle growth and decreased estradiol levels in adult female mice. However, limited information is available on the link between in utero DEHP exposure and ovarian development in female mouse offspring. The present study evaluates the disturbances in regulatory genes involved in female sex determination and the ovarian outcomes in fetal and postnatal female mice treated with in utero DEHP exposure. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposuremore » levels. After in utero DEHP exposure, increased follicular atresia was observed in the female pups at postnatal days (PND) 21. Foxl2 expression was significantly upregulated, and Fst was significantly downregulated by DEHP above 2 mg/kg/d at PND 1 and 21. This suggests that lesion of granulosa cell differentiation and disturbance of follicle development in postnatal female mice. The expression of Cyp11a1 and Star were significantly downregulated by in utero DEHP exposure, indicating effects on estradiol biosynthesis. The female sex determination pathway was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination causing significant upregulation of Foxl2, Wnt4, β-catenin and Fst. Furthermore, the increased expression of Wnt4 was supported by whole-mount in situ hybridization (WISH). These results suggest a possible association between in utero DEHP exposure and precocious puberty in the postnatal life of mice offspring, where disturbance of the sex determination regulating pathway acted as an important mechanism. - Highlights: • Maternal exposure to di (2-ethylhexyl) phthalate disturbs fetus sex determination. • DEHP upregulated Foxl2 expression potentially disturbs postnatal granulosa cell differentiation. • DEHP accelerated medulla

  11. Offspring psychopathology following preconception, prenatal, and postnatal maternal bereavement stress

    PubMed Central

    Class, Quetzal A.; Abel, Kathryn M.; Khashan, Ali S.; Rickert, Martin E.; Dalman, Christina; Larsson, Henrik; Hultman, Christina M.; Långström, Niklas; Lichtenstein, Paul; D’Onofrio, Brian M.

    2013-01-01

    Background Preconception, prenatal, and postnatal maternal stress are associated with increased offspring psychopathology, but findings are inconsistent and need replication. We estimated associations between maternal bereavement stress and offspring autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), bipolar disorder, schizophrenia, suicide attempt, and completed suicide. Methods Using Swedish registers, we conducted the largest population-based study to date examining associations between stress exposure in 738,144 offspring born 1992–2000 for childhood outcomes and 2,155,221 offspring born 1973–1997 for adult outcomes with follow-up through 2009. Maternal stress was defined as death of a first degree relative during 6 months before conception, across pregnancy, or the first two postnatal years. Cox proportional survival analyses were used to obtain hazard ratios (HR) in unadjusted and adjusted analyses. Results Marginal increased risk of bipolar disorder and schizophrenia following preconception bereavement stress was not significant. Third trimester prenatal stress increased risk of ASD (adjusted HR=1.58, 95% CI: 1.15–2.17) and ADHD (adjusted HR=1.31, 95% CI: 1.04–1.66). First postnatal year stress increased risk for offspring suicide attempt (adjusted HR=1.13, 95% CI: 1.02–1.25) and completed suicide (adjusted HR=1.51, 95% CI: 1.08–2.11). Bereavement stress during the second postnatal year increased risk of ASD (adjusted HR=1.30, 95% CI: 1.09–1.55). Conclusions Further research is needed on associations between preconception stress and psychopathological outcomes. Prenatal bereavement stress increases risk of offspring ASD and ADHD. Postnatal bereavement stress moderately increases risk of offspring suicide attempt, completed suicide, and ASD. Smaller previous studies may have overestimated associations between early stress and psychopathological outcomes. PMID:23591021

  12. RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse.

    PubMed

    Ballester-Lurbe, Begoña; González-Granero, Susana; Mocholí, Enric; Poch, Enric; García-Manzanares, María; Dierssen, Mara; Pérez-Roger, Ignacio; García-Verdugo, José M; Guasch, Rosa M; Terrado, José

    2015-11-01

    The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89% less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.

  13. Exploratory behavior in rats postnatally exposed to cocaine and housed in an enriched environment.

    PubMed

    Magalhães, Ana; Melo, Pedro; Alves, Cecília Juliana; Tavares, Maria Amélia; de Sousa, Liliana; Summavielle, Teresa

    2008-10-01

    Exposure to cocaine in early periods of postnatal life is usually associated with changes in development of neurotransmitter systems and structure of the central nervous system. Such changes are most likely correlated with behavioral alterations. Environmental enrichment conditions (EC) in early stages is a factor that affects structural and behavioral development. The purpose of this study is to examine the effects of EC on rats postnatally exposed to cocaine on exploratory behavior. Wistar rats were assigned to four groups-Group 1: pups exposed to cocaine hydrochloride (15 mg/kg body weight/day) s.c., in two daily doses, from postnatal day (PND) 1 to 28 and reared in EC; Group 2: pups exposed to cocaine as previously described and reared in a standard environmental conditions (SC); Group 3: pups saline-injected and reared in EC; and Group 4: pups saline-injected and reared in SC. On PND 21, 24, and 28, groups of four rats (to reduce anxiety) were placed for 10 minutes into an arena with several objects. The following exploratory behavioral categories were examined: object interaction, exploration, manipulation, approximation, and total time of object contact. Animals from Group 2 showed decreased object interaction and total contact on PND 21. Control offspring reared in EE showed decreases in exploratory behavior at all ages analyzed compared with the control SE group, while cocaine-exposed animals reared in EC showed decreased object interaction, object approximation, and total exploratory behavior. The results in this group suggest that EC improved information acquisition and memory processes in animals postnatally exposed to cocaine.

  14. Identification of depression in women during pregnancy and the early postnatal period using the Whooley questions and the Edinburgh Postnatal Depression Scale: protocol for the Born and Bred in Yorkshire: PeriNatal Depression Diagnostic Accuracy (BaBY PaNDA) study.

    PubMed

    Littlewood, Elizabeth; Ali, Shehzad; Ansell, Pat; Dyson, Lisa; Gascoyne, Samantha; Hewitt, Catherine; Keding, Ada; Mann, Rachel; McMillan, Dean; Morgan, Deborah; Swan, Kelly; Waterhouse, Bev; Gilbody, Simon

    2016-06-13

    Perinatal depression is well recognised as a mental health condition but <50% of cases are identified by healthcare professionals in routine clinical practice. The Edinburgh Postnatal Depression Scale (EPDS) is often used to detect symptoms of postnatal depression in maternity and child services. The National Institute for Health and Care Excellence (NICE) recommends 2 'ultra-brief' case-finding questions (the Whooley questions) to aid identification of depression during the perinatal period, but this recommendation was made in the absence of any validation studies in a perinatal population. Limited research exists on the acceptability of these depression case-finding instruments and the cost-effectiveness of routine screening for perinatal depression. The diagnostic accuracy of the Whooley questions and the EPDS will be determined against a reference standard (the Client Interview Schedule-Revised) during pregnancy (around 20 weeks) and the early postnatal period (around 3-4 months post partum) in a sample of 379 women. Further outcome measures will assess a range of psychological comorbidities, health-related quality of life and resource utilisation. Women will be followed up 12 months postnatally. The sensitivity, specificity and predictive values of the Whooley questions and the EPDS will be calculated against the reference standard at 20 weeks pregnancy and 3-4 months post partum. Acceptability of the depression case-finding instruments to women and healthcare professionals will involve in-depth qualitative interviews. An existing decision analytic model will be adapted to determine the cost-effectiveness of routine screening for perinatal depression. This study is considered low risk for participants. Robust protocols will deal with cases where risk of depression, self-harm or suicide is identified. The protocol received favourable ethical opinion from the North East-York Research Ethics Committee (reference: 11/NE/0022). The study findings will be

  15. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    PubMed

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice.

    PubMed

    Rogero, Marcelo Macedo; Borelli, Primavera; Vinolo, Marco Aurélio Ramirez; Fock, Ricardo Ambrósio; de Oliveira Pires, Ivanir Santana; Tirapegui, Julio

    2008-06-01

    To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal macrophages, hematopoiesis and nutritional status of mice. Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P<0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal macrophages obtained from the -GLN group (P<0.05). These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters.

  17. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.

    PubMed

    Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise

    2004-10-20

    Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.

  18. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    PubMed

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Fish consumption in pregnancy and omega-3 status after birth are not associated with postnatal depression.

    PubMed

    Browne, Joanna C; Scott, Kate M; Silvers, Karen M

    2006-02-01

    Research to date suggests a relationship between fish consumption, omega-3 polyunsaturated fatty acids, and depression. However, interpretation of this research is difficult due to methodological limitations. Postpartum women provide an excellent opportunity to examine these relationships because omega-3s are transferred from mother to fetus during pregnancy and from mother to child after birth through breast milk. Hence new mothers are more likely to be depleted in omega-3s. Our aim was to determine whether prenatal fish consumption and omega-3 status after birth were associated with postnatal depression. Eighty first-time mothers were recruited; 41 who scored on or over the cut-off on one of two depression-screening instruments, and 39 in the control group. Depression was diagnosed using the Composite International Diagnostic Interview. Fish consumption was measured during pregnancy, and depression and omega-3 status were determined postnatally. Logistic regression and t-tests were used to examine relationships between fish consumption, omega-3 status, and postnatal depression, while controlling for known covariates. Prenatal fish consumption was not predictive of postnatal depression, and postnatal omega-3 status was not associated with postnatal depression. However, prenatal fish consumption did predict omega-3 status after birth. Prenatal fish consumption was measured using only a food frequency questionnaire, and no participants consumed oily fish (rich in omega-3s) regularly. There was no association between postnatal depression and either fish consumption in early pregnancy, or omega-3 status after birth. Our findings make it difficult to justify trials of omega-3 polyunsaturated fatty acids in the treatment of postnatal depression.

  20. Prenatal and postnatal stress and asthma in children: Temporal- and sex-specific associations.

    PubMed

    Lee, Alison; Mathilda Chiu, Yueh-Hsiu; Rosa, Maria José; Jara, Calvin; Wright, Robert O; Coull, Brent A; Wright, Rosalind J

    2016-09-01

    Temporal- and sex-specific effects of perinatal stress have not been examined for childhood asthma. We examined associations between prenatal and/or postnatal stress and children's asthma (n = 765) and effect modification by sex in a prospective cohort study. Maternal negative life events were ascertained prenatally and postpartum. Negative life event scores were categorized as 0, 1 to 2, 3 to 4, or 5 or greater to assess exposure-response relationships. We examined effects of prenatal and postnatal stress on children's asthma by age 6 years, modeling each as independent predictors, mutually adjusting for prenatal and postnatal stress, and finally considering interactions between prenatal and postnatal stress. Effect modification by sex was examined in stratified analyses and by fitting interaction terms. When considering stress in each period independently, among boys, a dose-response relationship was evident for each level increase on the ordinal scale prenatally (odds ratio [OR], 1.38; 95% CI, 1.06-1.79; P value for trend = .03) and postnatally (OR, 1.53; 95% CI, 1.16-2.01; P value for trend = .001); among girls, only the postnatal trend was significant (OR, 1.60; 95% CI, 1.14-2.22; P value for trend = .005). Higher stress in both the prenatal and postnatal periods was associated with increased odds of receiving a diagnosis of asthma in girls (OR, 1.37; 95% CI, 0.98-1.91; Pinteraction = .07) but not boys (OR, 1.08; 95% CI, 0.82-1.42; Pinteraction = .61). Although boys were more vulnerable to stress during the prenatal period, girls were more affected by postnatal stress and cumulative stress across both periods in relation to asthma. Understanding sex and temporal differences in response to early-life stress might provide unique insight into the cause and natural history of asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Effects of pre- and postnatal exposure to chromium picolinate or picolinic acid on neurological development in CD-1 mice.

    PubMed

    Bailey, Melissa M; Boohaker, Jonathan G; Jernigan, Peter L; Townsend, Megan B; Sturdivant, John; Rasco, Jane F; Vincent, John B; Hood, Ronald D

    2008-07-01

    Chromium picolinate, Cr(pic)3, a popular dietary supplement marketed as an aid in fat loss and lean muscle gain, has also been suggested as a therapy for women with gestational diabetes. The current study investigated the effects of maternal exposure to Cr(pic)3 and picolinic acid during gestation and lactation on neurological development of the offspring. Mated female CD-1 mice were fed diets from implantation through weaning that were either untreated or that contained Cr(pic)3 (200 mg kg(-1) day(-1)) or picolinic acid (174 mg kg(-1) day(-1)). A comprehensive battery of postnatal tests was administered, including a modified Fox battery, straight-channel swim, open-field activity, and odor-discrimination tests. Pups exposed to picolinic acid tended to weigh less than either control or Cr(pic)3-exposed pups, although the differences were not significant. Offspring of picolinic acid-treated dams also appeared to display impaired learning ability, diminished olfactory orientation ability, and decreased forelimb grip strength, although the differences among the treatment groups were not significant. The results indicate that there were no significant effects on the offspring with regard to neurological development from supplementation of the dams with either Cr(pic)3 or picolinic acid.

  2. Brain and retinal ferroportin 1 dysregulation in polycythaemia mice.

    PubMed

    Iacovelli, Jared; Mlodnicka, Agnieska E; Veldman, Peter; Ying, Gui-Shuang; Dunaief, Joshua L; Schumacher, Armin

    2009-09-15

    Disruption of iron homeostasis within the central nervous system (CNS) can lead to profound abnormalities during both development and aging in mammals. The radiation-induced polycythaemia (Pcm) mutation, a 58-bp microdeletion in the promoter region of ferroportin 1 (Fpn1), disrupts transcriptional and post-transcriptional regulation of this pivotal iron transporter. This regulatory mutation induces dynamic alterations in peripheral iron homeostasis such that newborn homozygous Pcm mice exhibit iron deficiency anemia with increased duodenal Fpn1 expression while adult homozygotes display decreased Fpn1 expression and anemia despite organismal iron overload. Herein we report the impact of the Pcm microdeletion on iron homeostasis in two compartments of the central nervous system: brain and retina. At birth, Pcm homozygotes show a marked decrease in brain iron content and reduced levels of Fpn1 expression. Upregulation of transferrin receptor 1 (TfR1) in brain microvasculature appears to mediate the compensatory iron uptake during postnatal development and iron content in Pcm brain is restored to wild-type levels by 7 weeks of age. Similarly, changes in expression are transient and expression of Fpn1 and TfR1 is indistinguishable between Pcm homozygotes and wild-type by 12 weeks of age. Strikingly, the adult Pcm brain is effectively protected from the peripheral iron overload and maintains normal iron content. In contrast to Fpn1 downregulation in perinatal brain, the retina of Pcm homozygotes reveals increased levels of Fpn1 expression. While retinal morphology appears normal at birth and during early postnatal development, adult Pcm mice demonstrate a marked, age-dependent loss of photoreceptors. This phenotype demonstrates the importance of iron homeostasis in retinal health.

  3. Brain and retinal ferroportin 1 dysregulation in polycythaemia mice

    PubMed Central

    Iacovelli, Jared; Mlodnicka, Agnieska E.; Veldman, Peter; Ying, Gui-Shuang; Dunaief, Joshua L.; Schumacher, Armin

    2009-01-01

    Disruption of iron homeostatsis within the central nervous system (CNS) can lead to profound abnormalities during both development and aging in mammals. The radiation-induced polycythaemia (Pcm) mutation, a 58-bp microdeletion in the promoter region of ferroportin 1 (Fpn1), disrupts transcriptional and post-transcriptional regulation of this pivotal iron transporter. This regulatory mutation induces dynamic alterations in peripheral iron homeostatis such that newborn homozygous Pcm mice exhibit iron deficiency anemia with increased duodenal Fpn1 expression while adult homozygotes display decreased Fpn1 expression and anemia despite organismal iron overload. Herein we report the impact of the Pcm microdeletion on iron homeostasis in two compartments of the the central nervous system: brain and retina. At birth, Pcm homozygotes show a marked decrease in brain iron content and reduced levels of Fpn1 expression. Upregulation of transferrin receptor 1 (TfR1) in brain microvasculature appears to mediate the compensatory iron uptake during postnatal development and iron content in Pcm brain is restored to wildtype levels by 7 weeks of age. Similarly, changes in expression are transient and expression of Fpn1 and TfR1 is indistinguishable between Pcm homozygotes and wildtype by 12 weeks of age. Strikingly, the adult Pcm brain is effectively protected from the peripheral iron overload and maintains normal iron content. In contrast to Fpn1 downregulation in perinatal brain, the retina of Pcm homozygotes reveals increased levels of Fpn1 expression. While retinal morphology appears normal at birth and during early postnatal development, adult Pcm mice demonstrate a marked, age-dependent loss of photoreceptors. This phenotype demonstrates the importance of iron homeostasis in retinal health. PMID:19596281

  4. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.

    PubMed

    Demeure, Christian E; Blanchet, Charlène; Fitting, Catherine; Fayolle, Corinne; Khun, Huot; Szatanik, Marek; Milon, Geneviève; Panthier, Jean-Jacques; Jaubert, Jean; Montagutelli, Xavier; Huerre, Michel; Cavaillon, Jean-Marc; Carniel, Elisabeth

    2012-01-01

    Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.

  5. Maternal deprivation decelerates postnatal morphological lung development of F344 rats.

    PubMed

    Hupa, Katharina Luise; Schmiedl, Andreas; Pabst, Reinhard; Von Hörsten, Stephan; Stephan, Michael

    2014-02-01

    Intensive medical care at premature born infants is often associated with separation of neonates from their mothers. Here, early artificial prolonged separation of rat pups from their dams (Maternal Deprivation, MD) was used to study potential impact on morphological lung maturation. Furthermore, we investigated the influence of an endogenous deficiency of the neuropeptide-cleaving dipeptidyl peptidase IV (DPP4), since the effects of MD are known to be partly mediated via neuropeptidergic effects, hypothesizing that MD will lead to a retardation of postnatal lung development, DPP4-dependendly. We used wild type and CD26/DPP4 deficient rats. For MD, the dam was placed each day into a separate cage for 2 h, while the pups remained in the nest on their own. Morphological lung maturation and cell proliferation at the postnatal days 7, 10, 14, and 21 were determined morphometrically. Maternally deprived wild types showed a retarded postnatal lung development compared with untreated controls in both substrains. During alveolarization, an increased thickness of alveolar septa and a decreased surface of septa about 50% were found. At the end of the morphological lung maturation, the surface of the alveolar septa was decreased at about 25% and the septal thickness remained increased about 20%. The proliferation rate was also decreased about 50% on day 14. However, the MD induced effects were less pronounced in DPP4-deficient rats, due to a significant deceleration already induced by DPP4-deficiency. Thus, MD as a model for postnatal stress experience influences remarkably postnatal development of rats, which is significantly modulated by the DPP4-system. Copyright © 2013 Wiley Periodicals, Inc.

  6. Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats

    PubMed Central

    2016-01-01

    Abstract Microglia are the primary immune cells of the brain and function in multiple ways to facilitate proper brain development. However, our current understanding of how these cells influence the later expression of normal behaviors is lacking. Using the laboratory rat, we administered liposomal clodronate centrally to selectively deplete microglia in the developing postnatal brain. We then assessed a range of developmental, juvenile, and adult behaviors. Liposomal clodronate treatment on postnatal days 0, 2, and 4 depleted microglia with recovery by about 10 days of age and induced a hyperlocomotive phenotype, observable in the second postnatal week. Temporary microglia depletion also increased juvenile locomotion in the open field test and decreased anxiety-like behaviors in the open field and elevated plus maze. These same rats displayed reductions in predator odor–induced avoidance behavior, but increased their risk assessment behaviors compared with vehicle-treated controls. In adulthood, postnatal microglia depletion resulted in significant deficits in male-specific sex behaviors. Using factor analysis, we identified two underlying traits—behavioral disinhibition and locomotion—as being significantly altered by postnatal microglia depletion. These findings further implicate microglia as being critically important to the development of juvenile and adult behavior. PMID:27957532

  7. Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice.

    PubMed

    Wang, Qingshan; Oyarzabal, Esteban; Wilson, Belinda; Qian, Li; Hong, Jau-Shyong

    2015-10-01

    The distribution of microglia varies greatly throughout the brain. The substantia nigra (SN) contains the highest density of microglia among different brain regions. However, the mechanism underlying this uneven distribution remains unclear. Substance P (SP) is a potent proinflammatory neuropeptide with high concentrations in the SN. We recently demonstrated that SP can regulate nigral microglial activity. In the present study, we further investigated the involvement of SP in modulating nigral microglial density in postnatal developing mice. Nigral microglial density was quantified in wild-type (WT) and SP-deficient mice from postnatal day 1 (P1) to P30. SP was detected at high levels in the SN as early as P1 and microglial density did not peak until around P30 in WT mice. SP-deficient mice (TAC1(-/-)) had a significant reduction in nigral microglial density. No differences in the ability of microglia to proliferate were observed between TAC1(-/-) and WT mice, suggesting that SP may alter microglial density through chemotaxic recruitment. SP was confirmed to dose-dependently attract microglia using a trans-well culture system. Mechanistic studies revealed that both the SP receptor neurokinin-1 receptor (NK1R) and the superoxide-producing enzyme NADPH oxidase (NOX2) were necessary for SP-mediated chemotaxis in microglia. Furthermore, genetic ablation and pharmacological inhibition of NK1R or NOX2 attenuated SP-induced microglial migration. Finally, protein kinase Cδ (PKCδ) was recognized to couple SP/NK1R-mediated NOX2 activation. Altogether, we found that SP partly accounts for the increased density of microglia in the SN through chemotaxic recruitment via a novel NK1R-NOX2 axis-mediated pathway. © 2015 Authors; published by Portland Press Limited.

  8. Hypothalamic-pituitary-adrenal axis and behavioral dysfunction following early binge-like prenatal alcohol exposure in mice.

    PubMed

    Wieczorek, Lindsay; Fish, Eric W; O'Leary-Moore, Shonagh K; Parnell, Scott E; Sulik, Kathleen K

    2015-05-01

    The range of defects that fall within fetal alcohol spectrum disorder (FASD) includes persistent behavioral problems, with anxiety and depression being two of the more commonly reported issues. Previous studies of rodent FASD models suggest that interference with hypothalamic-pituitary-adrenal (HPA) axis structure and/or function may be the basis for some of the prenatal alcohol (ethanol) exposure (PAE)-induced behavioral abnormalities. Included among the previous investigations are those illustrating that maternal alcohol treatment limited to very early stages of pregnancy (i.e., gestational day [GD]7 in mice; equivalent to the third week post-fertilization in humans) can cause structural abnormalities in areas such as the hypothalamus, pituitary gland, and other forebrain regions integral to controlling stress and behavioral responses. The current investigation was designed to further examine the sequelae of prenatal alcohol insult at this early time period, with particular attention to HPA axis-associated functional changes in adult mice. The results of this study reveal that GD7 PAE in mice causes HPA axis dysfunction, with males and females showing elevated corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, respectively, following a 15-min restraint stress exposure. Males also showed elevated CORT levels following an acute alcohol injection of 2.0 g/kg, while females displayed blunted ACTH levels. Furthermore, analysis showed that anxiety-like behavior was decreased after GD7 PAE in female mice, but was increased in male mice. Collectively, the results of this study show that early gestational alcohol exposure in mice alters long-term HPA axis activity and behavior in a sexually dimorphic manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genetic control of postnatal human brain growth

    PubMed Central

    van Dyck, Laura I.; Morrow, Eric M.

    2017-01-01

    Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583

  10. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus

    USDA-ARS?s Scientific Manuscript database

    Prenatal and early postnatal environment can persistently alter one's risk of obesity. Environmental effects on hypothalamic developmental epigenetics constitute a likely mechanism underlying such 'developmental programming' of energy balance regulation. To advance our understanding of these process...

  11. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling.

    PubMed

    Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R

    2004-06-25

    Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.

  12. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucosemore » intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.« less

  13. Cognitive style, personality and vulnerability to postnatal depression.

    PubMed

    Jones, Lisa; Scott, Jan; Cooper, Caroline; Forty, Liz; Smith, Katherine Gordon; Sham, Pak; Farmer, Anne; McGuffin, Peter; Craddock, Nick; Jones, Ian

    2010-03-01

    Only some women with recurrent major depressive disorder experience postnatal episodes. Personality and/or cognitive styles might increase the likelihood of experiencing postnatal depression. To establish whether personality and cognitive style predicts vulnerability to postnatal episodes over and above their known relationship to depression in general. We compared personality and cognitive style in women with recurrent major depressive disorder who had experienced one or more postnatal episodes (postnatal depression (PND) group, n=143) with healthy female controls (control group, n=173). We also examined parous women with recurrent major depressive disorder who experienced no perinatal episodes (non-postnatal depression (NPND) group, n=131). The PND group had higher levels of neuroticism and dysfunctional beliefs, and lower self-esteem than the control group. However, there were no significant differences between the PND and NPND groups. Established personality and cognitive vulnerabilities for depression were reported by women with a history of postnatal depression, but there was no evidence that any of these traits or styles confer a specific risk for the postnatal onset of episodes.

  14. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2013-01-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143

  15. Piracetam prevents memory deficit induced by postnatal propofol exposure in mice.

    PubMed

    Wang, Yuan-Lin; Li, Feng; Chen, Xin

    2016-05-15

    Postnatal propofol exposure impairs hippocampal synaptic development and memory. However, the effective agent to alleviate the impairments was not verified. In this study, piracetam, a positive allosteric modulator of AMPA receptor was administered following a seven-day propofol regime. Two months after propofol administration, hippocampal long-term potentiation (LTP) and long-term memory decreased, while intraperitoneal injection of piracetam at doses of 100mg/kg and 50mg/kg following last propofol exposure reversed the impairments of memory and LTP. Mechanically, piracetam reversed propofol exposure-induced decrease of BDNF and phosphorylation of mTor. Similar as piracetam, BDNF supplementary also ameliorated propofol-induced abnormalities of synaptic plasticity-related protein expressions, hippocampal LTP and long-term memory. These results suggest that piracetam prevents detrimental effects of propofol, likely via activating BDNF synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pre-natal and post-natal growth trajectories and childhood cognitive ability and mental health.

    PubMed

    Yang, Seungmi; Tilling, Kate; Martin, Richard; Davies, Neil; Ben-Shlomo, Yoav; Kramer, Michael S

    2011-10-01

    Most studies of the associations between pre-natal or post-natal growth and cognitive ability have been based on children with pathologically slow growth measured between two time points only, rather than children with normal growth trajectories estimated from multiple measures of growth. We investigated the associations of pre-natal and post-natal trajectories in both weight and length/height through the first 5 years of life with cognitive ability and mental health at 6.5 years of age among healthy children. Our study is based on 11 899 children who were born healthy at ≥37 completed weeks with birth weight ≥2500 g and had up to 13 measures of weight and length/height from birth to age 5 years and cognitive ability and behaviour measured at 6.5 years. Using a linear spline random-effects model with 2 knots at 3 and 12 months, we estimated growth trajectories for each child from birth to age 5 years in weight and length/height in four periods: gestational age-specific birth weight and length (pre-natal 'growth'), early infancy (0-3 months), late infancy (3-12 months) and early childhood (1-5 years). We used generalized estimating equations to estimate mean differences in IQ and mental health according to pre-natal and post-natal growth trajectory. IQ was measured using the Wechsler Abbreviated Scales of Intelligence, and mental health was assessed using the Strengths and Difficulties Questionnaire. A 1 standard deviation (SD) in birth weight was positively associated with cognitive ability (0.82 IQ points, 95% CI: 0.54-1.10) after adjusting for confounders. For post-natal weight gain trajectories, a 1 SD faster weight gain was associated with an increase of 0.77 (95% CI: 0.42-1.11) IQ points for early infancy, 0.30 (95% CI: 0.02-0.58) points for late infancy, and 0.40 (95% CI: 0.04-0.76) for early childhood after adjusting for confounders and for earlier growth. For length/height trajectories, the magnitudes of increase in cognitive ability were similar

  17. Prenatal and Postnatal Cell Phone Exposures and Headaches in Children.

    PubMed

    Sudan, Madhuri; Kheifets, Leeka; Arah, Onyebuchi; Olsen, Jorn; Zeltzer, Lonnie

    2012-12-05

    Children today are exposed to cell phones early in life, and may be at the greatest risk if exposure is harmful to health. We investigated associations between cell phone exposures and headaches in children. The Danish National Birth Cohort enrolled pregnant women between 1996 and 2002. When their children reached age seven years, mothers completed a questionnaire regarding the child's health, behaviors, and exposures. We used multivariable adjusted models to relate prenatal only, postnatal only, or both prenatal and postnatal cell phone exposure to whether the child had migraines and headache-related symptoms. Our analyses included data from 52,680 children. Children with cell phone exposure had higher odds of migraines and headache-related symptoms than children with no exposure. The odds ratio for migraines was 1.30 (95% confidence interval: 1.01-1.68) and for headache-related symptoms was 1.32 (95% confidence interval: 1.23-1.40) for children with both prenatal and postnatal exposure. In this study, cell phone exposures were associated with headaches in children, but the associations may not be causal given the potential for uncontrolled confounding and misclassification in observational studies such as this. However, given the widespread use of cell phones, if a causal effect exists it would have great public health impact.

  18. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance.

    PubMed

    Van Eetvelde, M; Opsomer, G

    2017-08-01

    As heifer rearing is a costly investment, dairy farmers have been stimulated to maximize early growth of their calves, mainly by enhanced liquid feeding. However, the long-term effects of this "accelerated growth" are largely unknown. Studies recently performed at Ghent University indicate that in dairy cattle, certain maternal factors (such as young age and high milk yield) and environmental factors (such as high ambient temperatures) create a suboptimal environment for the developing foetus, altering the phenotype of the newborn calf. According to the "thrifty phenotype hypothesis," these metabolic alterations prepare the newborn for similar ("matching") conditions after birth, enhancing its survival during periods of limited feeding. Yet, when an abundance of nutrients is available in post-natal life (e.g., during periods of enhanced feeding), the "mismatch" between pre- and post-natal environment results in an early catch-up growth, with potential negative consequences. The aim of the article was to discuss this mismatch between pre- and post-natal environment in dairy calves. Previous studies, especially in human medicine, have shown catch-up growth to be associated with obesity, fertility problems, metabolic diseases and a reduced lifespan. Hence, we hypothesize that, by applying programs of accelerated growth, our current management system accentuates the mismatch between the pre- and post-natal environment in dairy calves. We can conclude that, although more research is necessary, the current findings point towards a more individual approach when rearing dairy heifers. © 2017 Blackwell Verlag GmbH.

  19. Antenatal and early infant predictors of postnatal growth in rural Vietnam: a prospective cohort study.

    PubMed

    Hanieh, Sarah; Ha, Tran T; De Livera, Alysha M; Simpson, Julie A; Thuy, Tran T; Khuong, Nguyen C; Thoang, Dang D; Tran, Thach D; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann

    2015-02-01

    To determine which antenatal and early-life factors were associated with infant postnatal growth in a resource-poor setting in Vietnam. Prospective longitudinal study following infants (n=1046) born to women who had previously participated in a cluster randomised trial of micronutrient supplementation (ANZCTR:12610000944033), Ha Nam province, Vietnam. Antenatal and early infant factors were assessed for association with the primary outcome of infant length-for-age z scores at 6 months of age using multivariable linear regression and structural equation modelling. Mean length-for-age z score was -0.58 (SD 0.94) and stunting prevalence was 6.4%. Using structural equation modelling, we highlighted the role of infant birth weight as a predictor of infant growth in the first 6 months of life and demonstrated that maternal body mass index (estimated coefficient of 45.6 g/kg/m(2); 95% CI 34.2 to 57.1), weight gain during pregnancy (21.4 g/kg; 95% CI 12.6 to 30.1) and maternal ferritin concentration at 32 weeks' gestation (-41.5 g per twofold increase in ferritin; 95% CI -78 to -5.0) were indirectly associated with infant length-for-age z scores at 6 months of age via birth weight. A direct association between 25-(OH) vitamin D concentration in late pregnancy and infant length-for-age z scores (estimated coefficient of -0.06 per 20 nmol/L; 95% CI -0.11 to -0.01) was observed. Maternal nutritional status is an important predictor of early infant growth. Elevated antenatal ferritin levels were associated with suboptimal infant growth in this setting, suggesting caution with iron supplementation in populations with low rates of iron deficiency. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b(+)Gr-1(+) cells and accelerated establishment of the CD4(+) T cell population in the spleen.

    PubMed

    Kristensen, Matilde B; Metzdorff, Stine B; Bergström, Anders; Damlund, Dina S M; Fink, Lisbeth N; Licht, Tine R; Frøkiær, Hanne

    2015-09-01

    To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b(+)Gr-1(+) splenocytes present perinatally was sustained for a longer period in conventionally colonized (CONV) mice than in mono-colonized (MC) and germfree (GF) mice, and the CD4(+) T cell population established faster in CONV mice. At the day of birth, compared to GF mice, the expression of Cxcl2 was up-regulated and Arg1 down-regulated in livers of CONV mice. This coincided with lower abundance of polylobed cells in the liver of CONV mice. An earlier peak in the expression of the genes Tjp1, Cdh1, and JamA in intestinal epithelial cells of CONV mice indicated an accelerated closure of the epithelial barrier. In conclusion, we have identified an important microbiota-dependent neonatal hematopoietic event, which we suggest impacts the subsequent development of the T cell population in the murine spleen.

  1. Influence of socio-economic factors on emotional changes during the postnatal period.

    PubMed

    Wszołek, Katarzyna; Żak, Ewa; Żurawska, Joanna; Olszewska, Jolanta; Pięta, Beata; Bojar, Iwona

    2018-03-14

    The aim of the study was to identify socio-economic factors that may influence the emotional changes which occur among new mothers in the first days postpartum. A group of 541 women completed a questionnaire consisting of 30 multiple-choice questions, Edinburgh Postnatal Depression Scale (EPDS), and Hospital Anxiety and Depression Scale (HADS). Statistical calculations were performed with the use of Statistica v.10 and Cytel Studio v. 9.0.0. The findings revealed the presence of factors which might increase the risk of mood disorders during the postpartum period. Women who demonstrate warning symptoms should be screened for postnatal emotional changes and mood swings during their hospitalization after delivery. EPDS seems to be a suitable tool for early detection of emotional disturbances.

  2. Anti-angiogenic drug loaded liposomes: Nanotherapy for early atherosclerotic lesions in mice

    PubMed Central

    Pont, Isabel; Calatayud-Pascual, Aracely; López-Castellano, Alicia; Albelda, Elena P.; García-España, Enrique; Martí-Bonmatí, Luis; Frias, Juan C.

    2018-01-01

    Fumagillin-loaded liposomes were injected into ApoE-KO mice. The animals were divided into several groups to test the efficacy of this anti-angiogenic drug for early treatment of atherosclerotic lesions. Statistical analysis of the lesions revealed a decrease in the lesion size after 5 weeks of treatment. PMID:29338009

  3. Pre- and Postnatal Influences on Preschool Mental Health: A Large-Scale Cohort Study

    ERIC Educational Resources Information Center

    Robinson, Monique; Oddy, Wendy H.; Li, Jianghong; Kendall, Garth E.; de Klerk, Nicholas H.; Silburn, Sven R.; Zubrick, Stephen R.; Newnham, John P.; Stanley, Fiona J.; Mattes, Eugen

    2008-01-01

    Background: Methodological challenges such as confounding have made the study of the early determinants of mental health morbidity problematic. This study aims to address these challenges in investigating antenatal, perinatal and postnatal risk factors for the development of mental health problems in pre-school children in a cohort of Western…

  4. L-threo 3,4-dihydroxyphenylserine treatment during mouse perinatal and rat postnatal development does not alter the impact of dietary copper deficiency

    PubMed Central

    Pyatskowit, Joshua W.; Prohaska, Joseph R.

    2009-01-01

    Dietary copper (Cu) deficiency was induced perinatally in Swiss Albino mice and postnatally in male Holtzman rats to investigate the effect of L-threo 3,4-dihydroxyphenylserine (DOPS) on pup survival and catecholamine levels in a 2 × 2 factorial design. Mouse dams were placed on one of four treatments 14 days after mating and rats at postnatal day 19 (P19). Treatments were Cu-adequate (Cu +) and Cu-deficient (Cu −) diets with or without DOPS (1 mg/ml) in the drinking water. Mouse pups were killed at P14 and rats at P49. Mortality in Cu − pups was 46% and not significantly improved by DOPS, 39%. A repeat study with mice adding ascorbic acid in the water with DOPS showed no improvement. Compared to Cu + animals, Cu − animals were smaller, anemic and had a 92% reduction in liver Cu. DOPS treatment made no improvement to and in some cases exacerbated the Cu deficiency. Catecholamine levels measured in heart and brain by LCEC showed decreased NE levels and increased DA levels in Cu − animals compared to controls. DOPS treatment did not alter this pattern. Although DOPS was present in treated animal’s tissues, survival in mice and catecholamine levels in mice and rats were not altered by the 1 mg/ml dose of DOPS. PMID:16117185

  5. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.

    PubMed

    Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji

    2012-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice.

    PubMed

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-06-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. © The Author 2016. Published by Oxford University Press.

  7. Germline deletion of FAK-related non-kinase delays post-natal cardiomyocyte mitotic arrest

    PubMed Central

    O’Neill, Thomas J.; Mack, Christopher P.; Taylor, Joan M.

    2012-01-01

    The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state impacts normal heart development and pathologic myocardial remodeling, yet the signaling mechanisms that regulate this vital process are incompletely understood. Studies from our lab and others indicate that focal adhesion kinase (FAK) is a critical regulator of cardiac growth and remodeling and we found that expression of the endogenous FAK inhibitor, FAK-related non kinase (FRNK) coincided with postnatal cardiomyocyte arrest. Mis-expression of FRNK in the embryonic heart led to pre-term lethality associated with reduced cardiomyocyte proliferation and led us to speculate that the postnatal FRNK surge might be required to promote quiescence in this growth promoting environment. Herein, we provide strong evidence that endogenous FRNK contributes to post-mitotic arrest. Depletion of FRNK promoted DNA synthesis in post-natal day (P) 10 hearts accompanied by a transient increase in DNA content and multi-nucleation by P14, indicative of DNA replication without cell division. Interestingly, a reduction in tri- and tetra-nucleated cardiomyocytes, concomitant with an increase in bi-nucleated cells by P21, indicated the possibility that FRNK-depleted cardiomyocytes underwent eventual cytokinesis. In support of this conclusion, Aurora B-labeled central spindles (a hallmark of cytokinesis) were observed in tetra-nucleated P20 FRNK−/− but not wt cardiomyocytes, while no evidence of apoptosis was observed. Moreover, hearts from FRNK null mice developed ventricular enlargement that persisted until young adulthood which resulted from myocyte expansion rather than myocyte hypertrophy or interstitial growth. These data indicate that endogenous FRNK serves an important role in limiting DNA synthesis and regulating the un-coupling between DNA synthesis and cytokinesis in the post-natal myocardium. PMID:22555221

  8. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    PubMed

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  9. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    PubMed Central

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C

    2014-01-01

    Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500

  10. Depression is an early disease manifestation in lupus-prone MRL/lpr mice.

    PubMed

    Gao, Hua-Xin; Campbell, Sean R; Cui, Min-Hui; Zong, Pu; Hee-Hwang, Jong; Gulinello, Maria; Putterman, Chaim

    2009-02-15

    Many lupus patients develop neuropsychiatric manifestations, including cognitive dysfunction, depression, and anxiety. However, it is not clear if neuropsychiatric lupus is a primary disease manifestation, or is secondary to non-CNS disease. We found that MRL/lpr lupus-prone mice exhibited significant depression-like behavior already at 8 weeks of age, despite normal visual working memory, locomotor coordination and social preference. Moreover, depression was significantly correlated with titers of autoantibodies against DNA, NMDA receptors and cardiolipin. Our results indicate that lupus mice develop depression and CNS dysfunction very early in the course of disease, in the absence of substantial pathology involving other target organs.

  11. Skilled movements require non-apoptotic Bax/Bak pathway-mediated corticospinal circuit reorganization

    PubMed Central

    Gu, Zirong; Serradj, Najet; Ueno, Masaki; Liang, Mishi; Li, Jie; Baccei, Mark L.; Martin, John H.; Yoshida, Yutaka

    2017-01-01

    Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements. PMID:28472660

  12. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

    PubMed

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-10-14

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

  13. Dmp1-deficient Mice Display Severe Defects in Cartilage Formation Responsible for a Chondrodysplasia-like Phenotype*

    PubMed Central

    Ye, Ling; Mishina, Yuji; Chen, Di; Huang, Haiyang; Dallas, Sarah L.; Dallas, Mark R.; Sivakumar, Pitchumani; Kunieda, Tetsuo; Tsutsui, Takeo W.; Boskey, Adele; Bonewald, Lynda F.; Feng, Jian Q.

    2009-01-01

    Understanding the molecular mechanisms by which cartilage formation is regulated is essential toward understanding the physiology of both embryonic bone development and postnatal bone growth. Although much is known about growth factor signaling in cartilage formation, the regulatory role of noncollagenous matrix proteins in this process are still largely unknown. In the present studies, we present evidence for a critical role of DMP1 (dentin matrix protein 1) in postnatal chondrogenesis. The Dmp1 gene was originally identified from a rat incisor cDNA library and has been shown to play an important role in late stage dentinogenesis. Whereas no apparent abnormalities were observed in prenatal bone development, Dmp1-deficient (Dmp1−/−) mice unexpectedly develop a severe defect in cartilage formation during postnatal chondrogenesis. Vertebrae and long bones in Dmp1-deficient (Dmp1−/−) mice are shorter and wider with delayed and malformed secondary ossification centers and an irregular and highly expanded growth plate, results of both a highly expanded proliferation and a highly expanded hypertrophic zone creating a phenotype resembling dwarfism with chondrodysplasia. This phenotype appears to be due to increased cell proliferation in the proliferating zone and reduced apoptosis in the hypertrophic zone. In addition, blood vessel invasion is impaired in the epiphyses of Dmp1−/− mice. These findings show that DMP1 is essential for normal postnatal chondrogenesis and subsequent osteogenesis. PMID:15590631

  14. Phlebotomy-induced anemia alters hippocampal neurochemistry in neonatal mice

    PubMed Central

    Wallin, Diana J.; Tkac, Ivan; Stucker, Sara; Ennis, Kathleen M.; Sola-Visner, Martha; Rao, Raghavendra; Georgieff, Michael K.

    2015-01-01

    Background Phlebotomy-induced anemia (PIA) is common in preterm infants. The hippocampus undergoes rapid differentiation during late fetal/early neonatal life and relies on adequate oxygen and iron to support oxidative metabolism necessary for development. Anemia shortchanges these two critical substrates, potentially altering hippocampal development and function. Methods PIA (hematocrit <25%) was induced in neonatal mice pups from postnatal day (P)3 to P14. Neurochemical concentrations in the hippocampus were determined using in vivo 1H NMR spectroscopy at 9.4T and compared with control animals at P14. Gene expression was assessed using qRT-PCR. Results PIA decreased brain iron concentration, increased hippocampal lactate and creatine concentrations, and decreased phosphoethanolamine (PE) concentration and the phosphocreatine/creatine ratio. Hippocampal transferrin receptor (Tfrc) gene expression was increased, while the expression of calcium/calmodulin-dependent protein kinase type II alpha (CamKIIα) was decreased in PIA mice. Conclusion This clinically relevant model of neonatal anemia alters hippocampal energy and phospholipid metabolism and gene expression during a critical developmental period. Low target hematocrits for preterm neonates in the NICU may have potential adverse neural implications. PMID:25734245

  15. Neonatal Ethanol Exposure Causes Behavioral Deficits in Young Mice.

    PubMed

    Xu, Wenhua; Hawkey, Andrew B; Li, Hui; Dai, Lu; Brim, Howard H; Frank, Jacqueline A; Luo, Jia; Barron, Susan; Chen, Gang

    2018-04-01

    Fetal ethanol (EtOH) exposure can damage the developing central nervous system and lead to cognitive and behavioral deficits, known as fetal alcohol spectrum disorders (FASD). EtOH exposure to mouse pups during early neonatal development was used as a model of EtOH exposure that overlaps the human third-trimester "brain growth spurt"-a model that has been widely used to study FASD in rats. C57BL/6 male and female mice were exposed to EtOH (4 g/kg/d) on postnatal days (PD) 4 to 10 by oral intubation. Intubated and nontreated controls were also included. Behavioral testing of the offspring, including open field, elevated plus maze, and Morris water maze, was performed on PD 20 to 45. EtOH exposure during PD 4 to 10 resulted in hyperactivity and deficits in learning and memory in young mice with no apparent sex differences. Based on these data, this neonatal intubation mouse model may be useful for future mechanistic and genetic studies of FASD and for screening of novel therapeutic agents. Copyright © 2018 by the Research Society on Alcoholism.

  16. In vivo analysis of Purkinje cell firing properties during postnatal mouse development

    PubMed Central

    Arancillo, Marife; White, Joshua J.; Lin, Tao; Stay, Trace L.

    2014-01-01

    Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories. PMID:25355961

  17. Ex-vivo assessment and non-invasive in vivo imaging of internal hemorrhages in Aga2/+ mutant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermolayev, Vladimir; Cohrs, Christian M.; Mohajerani, Pouyan

    Highlights: ► Aga2/+ mice, model for Osteogenesis imperfecta, have type I collagen mutation. ► Aga2/+ mice display both moderate and severe phenotypes lethal 6–11th postnatal. ► Internal hemorrhages studied in Aga2/+ vs. control mice at 6 and 9 days postnatal. ► Anatomical and functional findings in-vivo contrasted to the ex-vivo appearance. -- Abstract: Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta, the most common heritable cause of skeletal fractures and bone deformation in humans. Heterozygous Col1a1{sup Aga2/+}, animals with a dominant mutation in the terminal C-propeptide domain of type I collagen develop typical skeletal hallmarks andmore » internal hemorrhages starting from 6 day after birth. The disease progression for Aga2/+ mice, however, is not uniform differing between severe phenotype lethal at the 6–11th day of life, and moderate-to-severe one with survival to adulthood. Herein we investigated whether a new modality that combines X-ray computer tomography with fluorescence tomography in one hybrid system can be employed to study internal bleedings in relation to bone fractures and obtain insights into disease progression. The disease phenotype was characterized on Aga2/+ vs. wild type mice between 6 and 9 days postnatal. Anatomical and functional findings obtained in-vivo were contrasted to the ex-vivo appearance of the same tissues under cryo-slicing.« less

  18. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring

    PubMed Central

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701

  19. Antenatal iron/folic acid supplements, but not postnatal care, prevents neonatal deaths in Indonesia: analysis of Indonesia Demographic and Health Surveys 2002/2003–2007 (a retrospective cohort study)

    PubMed Central

    Titaley, Christiana Rialine; Dibley, Michael John

    2012-01-01

    Objective This study aimed to assess the contribution of postnatal services to the risk of neonatal mortality, and the relative contributions of antenatal iron/folic acid supplements and postnatal care in preventing neonatal mortality in Indonesia. Design Retrospective cohort study. Setting and participants Data used in this study were the 2002–2007 Indonesia Demographic and Health Surveys, nationally representative surveys. The pooled data provided survival information of 26 591 most recent live-born infants within the 5-years prior to each interview. Primary outcomes Primary outcomes were early neonatal mortality, that is, deaths in the first week, and all neonatal mortality, that is, deaths in the first month of life. Exposures were antenatal iron/folic acid supplementation and postnatal care from days 1 to 7. Potential confounders were community, socio-economic status and birthing characteristics and perinatal healthcare. Cox regression was used to assess the association between study factors and neonatal mortality. Results Postnatal care services were not associated with newborn survival. Postnatal care on days 1–7 after birth did not reduce neonatal death (HR=1.00, 95% CI 0.55 to 1.83, p=1.00) and early postnatal care on day 1 was associated with an increased risk of early neonatal death (HR=1.27, 95% CI 0.69 to 2.32, p=0.44) possibly reflecting referral of ill newborns. Early postnatal care on day 1 was not protective for neonatal deaths on days 2–7 whether provided by doctors (HR 3.61, 95% CI 1.54 to 8.45, p<0.01), or by midwives or nurses (HR 1.38, 95% CI 0.53 to 3.57, p=0.512). In mothers who took iron/folic acid supplements during pregnancy, the risk of early neonatal death was reduced by 51% (HR=0.49, 95% CI 0.30 to 0.79, p<0.01). Conclusions We found no protective effect of postnatal care against neonatal deaths in Indonesia. However, important reductions in the risk of neonatal death were found for women who reported use of antenatal iron

  20. A Novel Role of Periostin in Postnatal Tooth Formation and Mineralization*

    PubMed Central

    Ma, Dedong; Zhang, Rong; Sun, Yao; Rios, Hector F.; Haruyama, Naoto; Han, Xianglong; Kulkarni, Ashok B.; Qin, Chunlin; Feng, Jian Q.

    2011-01-01

    Periostin plays multiple functions during development. Our previous work showed a critical role of this disulfide-linked cell adhesion protein in maintenance of periodontium integrity in response to occlusal load. In this study, we attempted to address whether this mechanical response molecule played a direct role in postnatal tooth development. Our key findings are 1) periostin is expressed in preodontoblasts, and odontoblasts; and the periostin-null incisor displayed a massive increase in dentin formation after mastication; 2) periostin is also expressed in the ameloblast cells, and an enamel defect is identified in both the adult-null incisor and molar; 3) deletion of periostin leads to changes in expression profiles of many non-collagenous protein such as DSPP, DMP1, BSP, and OPN in incisor dentin; 4) the removal of a biting force leads to reduction of mineralization, which is partially prevented in periostin-null mice; and 6) both in vitro and in vivo data revealed a direct regulation of periostin by TGF-β1 in dentin formation. In conclusion, periostin plays a novel direct role in controlling postnatal tooth formation, which is required for the integrity of both enamel and dentin. PMID:21131362

  1. EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    EPA Science Inventory

    EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have shown that DCA induces liver tumors in rodents when administered in drinking wate...

  2. EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHOLORACETC ACID

    EPA Science Inventory

    EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    Dichloroacetic acid COCA) is a major by-product ofwater disinfection by cWorination. Several
    studies have shown that DCA induces liver tumors in rodents when administered in drinkmg wate...

  3. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods

    PubMed Central

    LIANG, WENNA; LI, XIHAI; GAO, BIZHEN; GAN, HUIJUAN; LIN, XUEJUAN; LIAO, LINGHONG; LI, CANDONG

    2016-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint that is essential for the movement and function of the mammalian jaw. The TMJ develops from two mesenchymal condensations, and is composed of the glenoid fossa that originates from the otic capsule by intramembranous ossification, the mandibular condyle of the temporal bone and a fibrocartilagenous articular disc derived from a secondary cartilaginous joint by endochondral ossification. However, the development of the TMJ remains unclear. In the present study, the formation and development of the mouse TMJ was investigated between embryonic day 13.5 and post-natal day 180 in order to elucidate the morphological and molecular alterations that occur during this period. TMJ formation appeared to proceed in three stages: Initiation or blastema stage; growth and cavitation stage; and the maturation or completion stage. In order to investigate the activity of certain transcription factors on TMJ formation and development, the expression of extracellular matrix (ECM), sex determining region Y-box 9, runt-related transcription factor 2, Indian hedgehog homolog, Osterix, collagen I, collagen II, aggrecan, total matrix metalloproteinase (MMP), MMP-9 and MMP-13 were detected in the TMJ using in situ and/or immunohistochemistry. The results indicate that the transcription factors, ECM and MMP serve critical functions in the formation and development of the mouse TMJ. In summary, the development of the mouse TMJ was investigated, and the molecular regulation of mouse TMJ formation was partially characterized. The results of the present study may aid the systematic understanding of the physiological processes underlying TMJ formation and development in mice. PMID:26893634

  4. Early detection of Trichinella spiralis DNA in the feces of experimentally infected mice by using PCR.

    PubMed

    Liu, Xiao Lin; Ren, Hua Nan; Shi, Ya Li; Hu, Chen Xi; Song, Yan Yan; Duan, Jiang Yang; Zhang, Hui Ping; Du, Xin Rui; Liu, Ruo Dan; Jiang, Peng; Wang, Zhong Quan; Cui, Jing

    2017-02-01

    The aim of this study was to detect Trichinella spiralis DNA in mouse feces during the early stages of infection using PCR. The target gene fragment, a 1.6kb repetitive sequence of T. spiralis genome, was amplified by PCR from feces of mice infected with 100 or 300 larvae at 3-24h post infection (hpi) and 2-28dpi. The sensitivity of PCR was 0.016 larvae in feces. The primers used were highly specific for T. spiralis. No cross-reactivity was observed with the DNA of other intestinal helminths. T. spiralis DNA was detected in 100% (12/12) of feces of mice infected with 100 or 300 larvae as early as 3hpi, with the peak detection lasting to 12-24hpi, and then fluctuating before declining gradually. By 28dpi, the detection rate of T. spiralis DNA in feces of the two groups of infected mice decreased to 8.33% and 25%, respectively. PCR detection of T. spiralis DNA in feces is simple and specific; it might be useful for the early diagnosis of Trichinella infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of constitutive inactivation of the myostatin gene on the gain in muscle strength during postnatal growth in two murine models.

    PubMed

    Stantzou, Amalia; Ueberschlag-Pitiot, Vanessa; Thomasson, Remi; Furling, Denis; Bonnieu, Anne; Amthor, Helge; Ferry, Arnaud

    2017-02-01

    The effect of constitutive inactivation of the gene encoding myostatin on the gain in muscle performance during postnatal growth has not been well characterized. We analyzed 2 murine myostatin knockout (KO) models, (i) the Lee model (KO Lee ) and (ii) the Grobet model (KO Grobet ), and measured the contraction of tibialis anterior muscle in situ. Absolute maximal isometric force was increased in 6-month-old KO Lee and KO Grobet mice, as compared to wild-type mice. Similarly, absolute maximal power was increased in 6-month-old KO Lee mice. In contrast, specific maximal force (relative maximal force per unit of muscle mass was decreased in all 6-month-old male and female KO mice, except in 6-month-old female KO Grobet mice, whereas specific maximal power was reduced only in male KO Lee mice. Genetic inactivation of myostatin increases maximal force and power, but in return it reduces muscle quality, particularly in male mice. Muscle Nerve 55: 254-261, 2017. © 2016 Wiley Periodicals, Inc.

  6. An Increased Dietary Supply of Medium-Chain Fatty Acids during Early Weaning in Rodents Prevents Excessive Fat Accumulation in Adulthood

    PubMed Central

    van de Heijning, Bert J. M.; Oosting, Annemarie; Kegler, Diane; van der Beek, Eline M.

    2017-01-01

    Medium-chain fatty acids (MCFA) are a directly and readily absorbed source of energy. Exposure early-in-life to increased MCFA levels might affect development and impact (lipid) metabolism later in life. We tested whether an increased MCFA intake early-in-life positively affects adult body composition and metabolic status when challenged by a western-style diet (WSD). Male offspring of C57Bl/6j mice and Wistar rats were fed a control diet (CTRL; 10 w% fat, 14% MCFA) or a medium-chain triglycerides (MCT) diet with 20% MCFA until postnatal (PN) day 42, whereupon animals were fed a WSD (10 w% fat) until PN day 98. Body composition was monitored by Dual Energy X-ray Absorptiometry (DEXA). In rats, glucose homeostasis was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT); in mice, the HOmeostasis Model Assessment of Insulin Resistance (HOMA-IR) was calculated. At autopsy on PN day 98, plasma lipid profiles, glucose, insulin, and adipokines were measured; organs and fat pads were collected and the adipocyte size distribution was analysed. Milk analysis in mice showed that the maternal MCT diet was not translated into milk, and pups were thus only exposed to high MCT levels from early weaning onward: PN day 16 until 42. Mice exposed to MCT showed 28% less fat accumulation vs. CTRL during WSD. The average adipocyte cell size, fasting plasma triglycerides (TG), and leptin levels were reduced in MCT mice. In rats, no effects were found on the adult body composition, but the adipocyte cell size distribution shifted towards smaller adipocytes. Particularly mice showed positive effects on glucose homeostasis and insulin sensitivity. Increased MCFA intake early-in-life protected against the detrimental effects of an obesogenic diet in adulthood. PMID:28632178

  7. Postnatal epigenetic modification of glucocorticoid receptor gene in preterm infants: a prospective cohort study

    PubMed Central

    Kantake, Masato; Yoshitake, Hiroshi; Ishikawa, Hitoshi; Araki, Yoshihiko; Shimizu, Toshiaki

    2014-01-01

    Objective To examine the environmental effects on cytosine methylation of preterm infant's DNA, because early life experiences are considered to influence the physiological and mental health of an individual through epigenetic modification of DNA. Design A prospective cohort study, comparison of epigenetic differences in the glucocorticoid receptor (GR) gene between healthy term and preterm infants. Setting Neonatal Intensive Care Unit in a Japanese University Hospital. Participants A cohort of 40 (20 term and 20 preterm) infants was recruited on the day of birth, and peripheral blood was obtained from each infant at birth and on postnatal day 4. Main outcome measures The methylation rates in the 1-F promoter region of the GR gene using the Mquant method. Results The methylation rate increased significantly between postnatal days 0 and 4 in preterm infants but remained stable in term infants. Thus, the methylation rate was significantly higher in preterm than in term infants at postnatal day 4. Several perinatal parameters were significantly correlated with this change in the methylation rate. Logistic regression analysis revealed that methylation rates at postnatal day 4 predicted the occurrence of later complications that required glucocorticoid administration during the neonatal period. No gene polymorphism was detected within the GR promoter region analysed. Conclusions Although further large-scale studies are needed to detect the environmental factors that explain the difference in epigenetic modification among infants after birth, our data show that the postnatal environment influences epigenetic programming of GR expression through methylation of the GR gene promoter in premature infants, which may result in relative glucocorticoid insufficiency during the postnatal period. PMID:25023132

  8. Fgf10-positive cells represent a progenitor cell population during lung development and postnatally

    PubMed Central

    El Agha, Elie; Herold, Susanne; Alam, Denise Al; Quantius, Jennifer; MacKenzie, BreAnne; Carraro, Gianni; Moiseenko, Alena; Chao, Cho-Ming; Minoo, Parviz; Seeger, Werner; Bellusci, Saverio

    2014-01-01

    The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10iCre knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1- E-Cad- Epcam+ Pro-Spc+ lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45- Cd31- Sca-1+). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases. PMID:24353064

  9. Organization of the Indian hedgehog--parathyroid hormone-related protein system in the postnatal growth plate.

    PubMed

    Chau, Michael; Forcinito, Patricia; Andrade, Anenisia C; Hegde, Anita; Ahn, Sohyun; Lui, Julian C; Baron, Jeffrey; Nilsson, Ola

    2011-08-01

    In embryonic growth cartilage, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) participate in a negative feedback loop that regulates chondrocyte differentiation. Postnatally, this region undergoes major structural and functional changes. To explore the organization of the Ihh–PTHrP system in postnatal growth plate, we microdissected growth plates of 7-day-old rats into their constituent zones and assessed expression of genes participating in the h–PTHrP feedback loop. Ihh, Patched 1, Smoothened, Gli1, Gli2, Gli3, and Pthr1 were expressed in regions analogous to the expression domains in embryonic growth cartilage. However, PTHrP was expressed in resting zone cartilage, a site that differs from the embryonic source, the periarticular cells. We then used mice in which lacZ has replaced coding sequences of Gli1 and thus serves as a marker for active hedgehog signaling. At 1, 4, 8, and 12 weeks of age, lacZ expression was detected in a pattern analogous to that of embryonic cartilage. The findings support the hypothesis that the embryonic Ihh–PTHrP feedback loop is maintained in the postnatal growth plate except that the source of PTHrP has shifted to a more proximal location in the resting zone.

  10. Early-life stress links 5-hydroxymethylcytosine to anxiety-related behaviors

    PubMed Central

    Papale, Ligia A.; Madrid, Andy; Li, Sisi; Alisch, Reid S.

    2017-01-01

    ABSTRACT Environmental stress contributes to the development of psychiatric disorders, including posttraumatic stress disorder and anxiety. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in the brain and is associated with active transcription of neuronal genes. Here we examined behavioral and molecular alterations in adult mice that experienced an early-life stress before weaning (postnatal day 12 to 18) and found anxiety-like behaviors in adult female mice that were accompanied by correlated disruptions of hypothalamic 5hmC and gene expression in 118 genes, revealing potentially functional 5hmC (i.e., gene regulation). These genes are known and potentially novel stress-related targets, including Nr3c2, Nrxn1, Nfia, and Clip1, that have a significant enrichment for neuronal ontological functions, such as neuronal development and differentiation. Sequence motif predictions indicated that 5hmC may regulate gene expression by mediating transcription factor binding and alternative splicing of many of these transcripts. Together, these findings represent a critical step toward understanding the effects of early environment on the neuromolecular mechanisms that underlie the risk to develop anxiety disorders. PMID:28128679

  11. Postnatal Brain Growth Assessed by Sequential Cranial Ultrasonography in Infants Born <30 Weeks' Gestational Age.

    PubMed

    Cuzzilla, R; Spittle, A J; Lee, K J; Rogerson, S; Cowan, F M; Doyle, L W; Cheong, J L Y

    2018-06-01

    Brain growth in the early postnatal period following preterm birth has not been well described. This study of infants born at <30 weeks' gestational age and without major brain injury aimed to accomplish the following: 1) assess the reproducibility of linear measures made from cranial ultrasonography, 2) evaluate brain growth using sequential cranial ultrasonography linear measures from birth to term-equivalent age, and 3) explore perinatal predictors of postnatal brain growth. Participants comprised 144 infants born at <30 weeks' gestational age at a single center between January 2011 and December 2013. Infants with major brain injury seen on cranial ultrasonography or congenital or chromosomal abnormalities were excluded. Brain tissue and fluid spaces were measured from cranial ultrasonography performed as part of routine clinical care. Brain growth was assessed in 3 time intervals: <7, 7-27, and >27 days' postnatal age. Data were analyzed using intraclass correlation coefficients and mixed-effects regression. A total of 429 scans were assessed for 144 infants. Several linear measures showed excellent reproducibility. All measures of brain tissue increased with postnatal age, except for the biparietal diameter, which decreased within the first postnatal week and increased thereafter. Gestational age of ≥28 weeks at birth was associated with slower growth of the biparietal diameter and ventricular width compared with gestational age of <28 weeks. Postnatal corticosteroid administration was associated with slower growth of the corpus callosum length, transcerebellar diameter, and vermis height. Sepsis and necrotizing enterocolitis were associated with slower growth of the transcerebellar diameter. Postnatal brain growth in infants born at <30 weeks' gestational age can be evaluated using sequential linear measures made from routine cranial ultrasonography and is associated with perinatal predictors of long-term development. © 2018 by American Journal of

  12. Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Sanjay, E-mail: sanjay@louisville.ed; Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, KY 40202; Vladykovskaya, Elena N.

    2009-11-15

    Exposure to arsenic-contaminated water has been shown to be associated with cardiovascular disease, especially atherosclerosis. We examined the effect of arsenic exposure on atherosclerotic lesion formation, lesion composition and nature in ApoE-/- mice. Early post-natal exposure (3-week-old mice exposed to 49 ppm arsenic as NaAsO{sub 2} in drinking water for 7 weeks) increased the atherosclerotic lesion formation by 3- to 5-fold in the aortic valve and the aortic arch, without affecting plasma cholesterol. Exposure to arsenic for 13 weeks (3-week-old mice exposed to 1, 4.9 and 49 ppm arsenic as NaAsO{sub 2} in drinking water) increased the lesion formation andmore » macrophage accumulation in a dose-dependent manner. Temporal studies showed that continuous arsenic exposure significantly exacerbated the lesion formation throughout the aortic tree at 16 and 36 weeks of age. Withdrawal of arsenic for 12 weeks after an initial exposure for 21 weeks (to 3-week-old mice) significantly decreased lesion formation as compared with mice continuously exposed to arsenic. Similarly, adult exposure to 49 ppm arsenic for 24 weeks, starting at 12 weeks of age increased lesion formation by 2- to 3.6-fold in the aortic valve, the aortic arch and the abdominal aorta. Lesions of arsenic-exposed mice displayed a 1.8-fold increase in macrophage accumulation whereas smooth muscle cell and T-lymphocyte contents were not changed. Expression of pro-inflammatory chemokine MCP-1 and cytokine IL-6 and markers of oxidative stress, protein-HNE and protein-MDA adducts were markedly increased in lesions of arsenic-exposed mice. Plasma concentrations of MCP-1, IL-6 and MDA were also significantly elevated in arsenic-exposed mice. These data suggest that arsenic exposure increases oxidative stress, inflammation and atherosclerotic lesion formation.« less

  13. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st) Project.

    PubMed

    Villar, José; Giuliani, Francesca; Bhutta, Zulfiqar A; Bertino, Enrico; Ohuma, Eric O; Ismail, Leila Cheikh; Barros, Fernando C; Altman, Douglas G; Victora, Cesar; Noble, Julia A; Gravett, Michael G; Purwar, Manorama; Pang, Ruyan; Lambert, Ann; Papageorghiou, Aris T; Ochieng, Roseline; Jaffer, Yasmin A; Kennedy, Stephen H

    2015-11-01

    Charts of size at birth are used to assess the postnatal growth of preterm babies on the assumption that extrauterine growth should mimic that in the uterus. The INTERGROWTH-21(st) Project assessed fetal, newborn, and postnatal growth in eight geographically defined populations, in which maternal health care and nutritional needs were met. From these populations, the Fetal Growth Longitudinal Study selected low-risk women starting antenatal care before 14 weeks' gestation and monitored fetal growth by ultrasonography. All preterm births from this cohort were eligible for the Preterm Postnatal Follow-up Study, which included standardised anthropometric measurements, feeding practices based on breastfeeding, and data on morbidity, treatments, and development. To construct the preterm postnatal growth standards, we selected all live singletons born between 26 and before 37 weeks' gestation without congenital malformations, fetal growth restriction, or severe postnatal morbidity. We did analyses with second-degree fractional polynomial regression models in a multilevel framework accounting for repeated measures. Fetal and neonatal data were pooled from study sites and stratified by postmenstrual age. For neonates, boys and girls were assessed separately. From 4607 women enrolled in the study, there were 224 preterm singleton births, of which 201 (90%) were enrolled in the Preterm Postnatal Follow-up Study. Variance component analysis showed that only 0·2% and 4·0% of the total variability in postnatal length and head circumference, respectively, could be attributed to between-site differences, justifying pooling the data from all study sites. Preterm growth patterns differed from those for babies in the INTERGROWTH-21(st) Newborn Size Standards. They overlapped with the WHO Child Growth Standards for term babies by 64 weeks' postmenstrual age. Our data have yielded standards for postnatal growth in preterm infants. These standards should be used for the assessment of

  14. Effects of Postnatal Enriched Environment in a Model of Parkinson's Disease in Adult Rats.

    PubMed

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-02-14

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson's disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life.

  15. Depletion of Neutrophils Exacerbates the Early Inflammatory Immune Response in Lungs of Mice Infected with Paracoccidioides brasiliensis

    PubMed Central

    Lopera, Damaris; Urán-Jiménez, Martha Eugenia

    2016-01-01

    Neutrophils predominate during the acute phase of the Paracoccidioides brasiliensis infection. Herein, we determined the role of the neutrophil during the early stages of experimental pulmonary paracoccidioidomycosis using a monoclonal antibody (mAb) specific for neutrophils. Male BALB/c mice were inoculated intranasally with 1.5 × 106 or 2 × 106 P. brasiliensis yeast cells. The mAb was administered 24 h before infection, followed by doses every 48 h until mice were sacrificed. Survival time was evaluated and mice were sacrificed at 48 h and 96 h after inoculation to assess cellularity, fungal load, cytokine/chemokine levels, and histopathological analysis. Neutrophils from mAb-treated mice were efficiently depleted (99.04%). Eighty percent of the mice treated with the mAb and infected with 1.5 × 106 yeast cells died during the first two weeks after infection. When mice were treated and infected with 2 × 106 yeast cells, 100% of them succumbed by the first week after infection. During the acute inflammatory response significant increases in numbers of eosinophils, fungal load and levels of proinflammatory cytokines/chemokines were observed in the mAb-treated mice. We also confirmed that neutrophils are an important source of IFN-γ and IL-17. These results indicate that neutrophils are essential for protection as well as being important for regulating the early inflammatory immune response in experimental pulmonary paracoccidioidomycosis. PMID:27642235

  16. Relationship between Numerous Mast Cells and Early Follicular Development in Neonatal MRL/MpJ Mouse Ovaries

    PubMed Central

    Nakamura, Teppei; Otsuka, Saori; Ichii, Osamu; Sakata, Yuko; Nagasaki, Ken-Ichi; Hashimoto, Yoshiharu; Kon, Yasuhiro

    2013-01-01

    In the neonatal mouse ovary, clusters of oocytes called nests break into smaller cysts and subsequently form individual follicles. During this period, we found numerous mast cells in the ovary of MRL/MpJ mice and investigated their appearance and morphology with follicular development. The ovarian mast cells, which were already present at postnatal day 0, tended to localize adjacent to the surface epithelium. Among 11 different mouse strains, MRL/MpJ mice possessed the greatest number of ovarian mast cells. Ovarian mast cells were also found in DBA/1, BALB/c, NZW, and DBA/2 mice but rarely in C57BL/6, NZB, AKR, C3H/He, CBA, and ICR mice. The ovarian mast cells expressed connective tissue mast cell markers, although mast cells around the surface epithelium also expressed a mucosal mast cell marker in MRL/MpJ mice. Some ovarian mast cells migrated into the oocyte nests and directly contacted the compressed and degenerated oocytes. In MRL/MpJ mice, the number of oocytes in the nest was significantly lower than in the other strains, and the number of oocytes showed a positive correlation with the number of ovarian mast cells. The gene expression of a mast cell marker also correlated with the expression of an oocyte nest marker, suggesting a link between the appearance of ovarian ? 4mast cells and early follicular development. Furthermore, the expression of follicle developmental markers was significantly higher in MRL/MpJ mice than in C57BL/6 mice. These results indicate that the appearance of ovarian mast cells is a unique phenotype of neonatal MRL/MpJ mice, and that ovarian mast cells participate in early follicular development, especially nest breakdown. PMID:24124609

  17. Diagnosis of neonatal ovarian torsion: Emphasis on prenatal and postnatal sonographic findings.

    PubMed

    Kim, Hyun Su; Yoo, So-Young; Cha, Min Jae; Kim, Ji Hye; Jeon, Tae Yeon; Kim, Wee Kyoung

    2016-06-01

    Our aim was to retrospectively review the imaging findings of patients with neonatal ovarian torsion, emphasizing prenatal and postnatal sonographic findings. Eleven patients who had had neonatal ovarian torsion diagnosed surgically (n = 9) or clinicoradiologically (n = 2) were enrolled. Prenatal and postnatal sonographic features, including sequential postnatal change, were reviewed. Clinical and pathologic features were also investigated. All patients except one had a fetal ovarian cyst (mean, 5.3 cm) detected on third-trimester sonography, either simple (n = 6) or complex (n = 4). In all 11 patients, initial postnatal sonography had revealed a complex cyst (mean, 4.7 cm) with intracystic clot or debris, the double-wall sign, a fluid-fluid level, and multiple septation. None of the patients had had symptoms or signs related to the ovarian torsion. Follow-up sonography in seven patients had revealed increased echogenicity of the cyst wall with frequent calcification and a decrease in size of the cyst. In two patients, the interval of the change in cyst position was noted, and autoamputation of the torsed ovary had been surgically confirmed. Serous cystadenoma had been identified in one patient. Neonatal ovarian torsion most commonly manifests as an asymptomatic complex cyst on sonography due to torsion of a fetal ovarian cyst. Serial monitoring of a fetal ovarian cyst for its resolution or changes in its appearance is mandatory for making an early diagnosis of torsion. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 44:290-297, 2016. © 2016 Wiley Periodicals, Inc.

  18. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice.

    PubMed

    Ramsey, Kathryn A; Larcombe, Alexander N; Sly, Peter D; Zosky, Graeme R

    2013-02-18

    Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100 μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations.

  19. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice

    PubMed Central

    2013-01-01

    Background Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Methods Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. Results In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Conclusions Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations. PMID:23419080

  20. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life.

    PubMed

    Velazquez, Miguel A; Sheth, Bhavwanti; Smith, Stephanie J; Eckert, Judith J; Osmond, Clive; Fleming, Tom P

    2018-02-01

    Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin+N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin+N-bcaa, N-insulin+L-bcaa, and L-insulin+N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.