Science.gov

Sample records for early precambrian crustal

  1. Early Precambrian crustal evolution of south India

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The Early Precambrian sequence in Karnataka, South India provides evidences for a distinct trend of evolution which differs from trends exhibited in many other Early Precambrian regions of the world. The supracrustal rock associations preserved in greenstone belts and as inclusions in gneisses and granulites suggest the evolution of the terrain from a stable to a mobile regime. The stable regime is represented by (1) layered ultramafic-mafic complexes, (2) orthoquartzite-basalt-rhyodacite-iron formation, and (30 ortho-quartzite-carbonate-Mn-Fe formation. The mobile regime, which can be shown on sedimentological grounds to have succeeded the stable regime, witnessed the accumulation of a greywacke-pillow basalt-dacite-rhyolite-iron formation association. Detrital sediments of the stable zone accumulated dominantly in fluvial environment and the associated volcanics are ubaerial. The volcanics of the stable regime are tholeiites derived from a zirconium and LREE-enriched sources. The greywackes of the mobile regime are turbidities, and the volcanic rocks possess continental margin (island-arc or back-arc) affinity; they show a LREE depleted to slightly LREE-enriched pattern. The evolution from a stable to a mobile regime is in contrast to the trend seen in most other regions of the world, where an early dominantly volcanic association of a mobile regime gives way upward in the sequence to sediments characteristic of a stable regime.

  2. The Precambrian crustal structure of East Africa

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Tugume, F.; Nyblade, A.; Julia, J.; Mulibo, G.

    2011-12-01

    We present new results on crustal structure from East Africa from analyzing P wave receiver functions. The data for this study come from temporary AfricaArray broadband seismic stations deployed between 2007 and 2011 in Uganda, Tanzania and Zambia. Receiver functions have been computed using an iterative deconvolution method. Crustal structure has been imaged using the H-k stacking method and by jointly inverting the receiver functions and surface wave phase and group velocities. The results show remarkably uniform crust throughout the Archean and Proterozoic terrains that comprise the Precambrian tectonic framework of the region. Crustal thickness for most terrains is between 37 and 40 km, and Poisson's ratio is between 0.25 and 0.27. Results from the joint inversion yield average crustal Vs values of 3.6 to 3.7 km/s. For most terrains, a thin (1-5 km) thick high velocity (Vs>4.0 km/s) is found at the base of the crust.

  3. Early Precambrian gneiss terranes and Pan-African island arcs in Yemen: Crustal accretion of the eastern Arabian Shield

    NASA Astrophysics Data System (ADS)

    Windley, Brian F.; Whitehouse, Martin J.; Ba-Bttat, Mahfood A. O.

    1996-02-01

    Within the Precambrian of Yemen, we have identified four gneiss terranes and two island-arc terranes on the basis of existing literature, mapping, and our own field observations, together with new Sm-Nd isotopic data. The two western gneiss terranes can be correlated with well-documented terranes (Asir and Afif) in Saudi Arabia. To the east of these, the Abas and Al-Mahfid gneiss terranes yield Sm-Nd model ages (tDM) of 1.7 2.3 Ga and 1.3 2.7 Ga, respectively, and cannot be correlated with any documented terranes in Saudi Arabia. These two terranes are separated by a Pan-African island-arc terrane that has been obducted onto one or both of the gneiss terranes, and a second arc bounds the Al-Mahfid gneiss terrane to the east. Our discovery of extensive Proterozoic to late Archean gneisses in Yemen provides important constraints upon the much-discussed tectonic framework of northeast Gondwana and the rate of Pan-African crustal growth. The terranes in Yemen may be correlated with comparable terranes on the eastern margin of the Arabian Shield and in northern Somalia. Thus Yemen provides a link between the arc collage of the Arabian Shield and the gneissic Mozambique belt of East Africa.

  4. Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Bekker, A.; Zakharov, D. O.

    2016-03-01

    .4-2.3 Ga. Shales do not show comparable δ18 O rise in the early Phanerozoic as is observed in the coeval δ18 O trends for cherts and carbonates. There is however a sharp increase in the average δ18 O value from the Early Archean to the Late Archean followed by a progressively decelerating increase into the Phanerozoic. This decelerating increase with time likely reflects declining contribution of mantle-extracted, normal-δ18 O crust and lends support to crustal maturation and increasing 18O sequestration into the crust and recycling of high-δ18 O (and 87Sr/86Sr) sedimentary rocks. This secular increase in the δ18 O composition of the continental crust could have also had a mild effect on seawater δ18 O composition.

  5. Quantifying precambrian crustal extraction: The root is the answer

    Abbott, D.; Sparks, D.; Herzberg, C.; Mooney, W.; Nikishin, A.; Zhang, Y.-S.

    2000-01-01

    We use two different methods to estimate the total amount of continental crust that was extracted by the end of the Archean and the Proterozoic. The first method uses the sum of the seismic thickness of the crust, the eroded thickness of the crust, and the trapped melt within the lithospheric root to estimate the total crustal volume. This summation method yields an average equivalent thickness of Archean crust of 49 ?? 6 km and an average equivalent thickness of Proterozoic crust of 48 ?? 9 km. Between 7 and 9% of this crust never reached the surface, but remained within the continental root as congealed, iron-rich komatiitic melt. The second method uses experimental models of melting, mantle xenolith compositions, and corrected lithospheric thickness to estimate the amount of crust extracted through time. This melt column method reveals that the average equivalent thickness of Archean crust was 65 ?? 6 km. and the average equivalent thickness of Early Proterozoic crust was 60 ?? 7 km. It is likely that some of this crust remained trapped within the lithospheric root. The discrepancy between the two estimates is attributed to uncertainties in estimates of the amount of trapped, congealed melt, overall crustal erosion, and crustal recycling. Overall, we find that between 29 and 45% of continental crust was extracted by the end of the Archean, most likely by 2.7 Ga. Between 51 and 79% of continental crust was extracted by the end of the Early Proterozoic, most likely by 1.8-2.0 Ga. Our results are most consistent with geochemical models that call upon moderate amounts of recycling of early extracted continental crust coupled with continuing crustal growth (e.g. McLennan, S.M., Taylor, S.R., 1982. Geochemical constraints on the growth of the continental crust. Journal of Geology, 90, 347-361; Veizer, J., Jansen, S.L., 1985. Basement and sedimentary recycling - 2: time dimension to global tectonics. Journal of Geology 93(6), 625-643). Trapped, congealed, iron

  6. Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis

    NASA Astrophysics Data System (ADS)

    Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi

    2015-07-01

    New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.

  7. Flow of ultra-hot Precambrian orogens and the making of crustal layering in Phanerozoic orogenic plateaux

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques

    2010-05-01

    Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen

  8. Precambrian perspectives.

    PubMed

    Goodwin, A M

    1981-07-03

    The Precambrian record is interpreted in terms of an evolutionary progression that moves in the direction of increasing continental stability. An early, highly mobile microplate tectonics phase progressed through a more stable, largely intracratonic, ensialic, mobile belt phase to the modern macroplate tectonics phase that involves large, rigid lithospheric plates. Various phases are characterized by distinctive crustal associations. Three controls-bulk earth heat production, crustal fractionation and cratonization, and atmospheric oxygen accumulation-are viewed as the cumulative cause of the trends and events that characterize the crust at different stages of development, from its inception approximately 4.6 billion years ago to the present.

  9. Workshop on Early Crustal Genesis: The World's Oldest Rocks

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor)

    1986-01-01

    Topics addressed include: a general review of Precambrain crustal evolution; geology and geochemistry of the Archean Craton in Greenland and Labrador; Precambrian crustal evolution in North and South America; and the field excursion to the Ameralik Fjord.

  10. Isotopic and chemical studies of early crustal metasedimentary rocks

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  11. The Role of Noble Gases in Defining the Mean Residence Times of Fluids within Precambrian Crustal Systems

    NASA Astrophysics Data System (ADS)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.

    2015-12-01

    Brines rich in N2, H2, CH4 and He hosted within Precambrian crustal rocks are known to sustain microbial life [1]. The geological systems containing these brines have the potential to isolate organisms over planetary timescales and so can provide unique insight into the diversity and evolution of terrestrial life [1-3]. Long considered geological outliers, the prevalence of systems containing these ancient, deep fracture waters is only now being revealed. Recent studies demonstrate the Precambrian crust which accounts for ~70% of total crustal surface area has a global hydrogen production comparable to marine systems [2]. In addition to H2-producing reactions (e.g. radiolysis and serpentinization), a diversity of CH4-producing reactions also occur in these systems through both microbial and water-rock interactions [1, 2]. However, the role these Precambrian systems have in global hydrogen and carbon cycles is poorly understood. For this we need good constraints on the origins, residence times and degree of microbial activity of the fluids within these systems as well as the degree of interaction with external systems. Fortunately, noble gases are ideal for this role [1,3]. Previous noble gas analysis of N2, H2, CH4 and He-rich fluid samples collected at 2.4 km depth from a Cu-Zn mine in Timmins, Ontario, identified isolated fracture fluids with the oldest residence times ever observed (>1.1 Ga) [3]. This study has been significantly expanded now to fluids from an even greater depth (3 km) at Timmins, and from two new mines in the Sudbury Basin. Preliminary data from the deeper Timmins level indicate a new closed system with 136Xe/130Xe ratios 93% above modern air values (20% at 2.4 km) and an early atmosphere 124Xe/130Xe signal approaching the age of the host rock (~2.7 Ga) [4]. In comparison, the Sudbury system indicates exchange with an external source, being highly enriched in helium (30% gas volume) but with a low fissiogenic 136Xe/130Xe excess (10-38% above

  12. Precambrian Time - The Story of the Early Earth

    Lindsey, D.A.

    2007-01-01

    The Precambrian is the least-understood part of Earth history, yet it is arguably the most important. Precambrian time spans almost nine-tenths of Earth history, from the formation of the Earth to the dawn of the Cambrian Period. It represents time so vast and long ago that it challenges all comprehension. The Precambrian is the time of big questions. How old is the Earth? How old are the oldest rocks and continents? What was the early Earth like? What was the early atmosphere like? When did life appear, and what did it look like? And, how do we know this? In recent years, remarkable progress has been made in understanding the early evolution of the Earth and life itself. Yet, the scientific story of the early Earth is still a work in progress, humankind's latest attempt to understand the planet. Like previous attempts, it too will change as we learn more about the Earth. Read on to discover what we know now, in the early 21st century.

  13. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  14. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  15. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  16. Baltica from the Late Precambrian to the Early Ordovician

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Cocks, L. R.

    2004-05-01

    Current thinking supports the existence of the Rodinia supercontinent which consolidated at perhaps 1100 to 1000 million years ago and most probably disintegrated somewhere before 800 Ma. Within the Rodinian collage, Baltica was adjacent to, and probably welded to, Laurentia, with the modern eastern (Uralian) part of Baltica conjugate with the north of Laurentia. Laurentia was in turn attached to the South American terranes of Rio Plata and Amazonia, and possibly also West Africa. Baltica became an independent terrane when it split off from Laurentia, leaving a widening Iapetus Ocean between the two. When this rifting actually commenced is a matter of dispute due to very conflicting palaeomagnetic data from both Laurentia and Baltica; however, we favor that the southern part of the Iapetus, between Laurentia and South America, opened first at about 570 Ma and that this rifting spread gradually northwards until Baltica separated from Laurentia at approximately 550 Ma, near the end of Precambrian time at 543 Ma. New palaeomagnetic and geochronological data from the 616-610 Ma Egersund Dykes (SW Baltica) place Baltica at the south pole whereas subsequent Late Precambrian to Early Cambrian poles places Baltica at lower latitudes. During the late and middle Vendian, the NW margin of Baltica changed from an extensional tectonic regime to an active margin (Timanian Orogeny) in which microcontinental blocks in the Timan-Pechora, northern Ural and Novaya Zemlya areas were united with Baltica at 550-560 Ma. Largely between Middle Cambrian and Middle Ordovician times, the whole large terrane of Baltica underwent a very substantial rotation of about 120°, the maximum rate of this rotation occurred in late Cambrian and early Ordovician times. Much of the craton of Baltica appears to have been submerged under shelf seas for long parts of this time, which lasted from 544 to 490 Ma. As a consequence the olenid trilobite fauna represent a fauna living largely in niches which were

  17. Metamorphic P-T paths and Precambrian crustal growth in East Antarctica

    NASA Technical Reports Server (NTRS)

    Harley, S. L.

    1988-01-01

    The metamorphic constraints on crustal thicknesses in Archean and post-Archean terranes are summarized along with possible implications for tectonic processes. It is important to recognize that P-T estimates represent perturbed conditions and should not be used to estimate steady state geothermal gradients or crustal thicknesses. The example is cited of the Dora Maira complex in the French Alps, where crustal rocks record conditions of 35 kbar and 800 C, implying their subduction to depths of 100 km or more, followed by subsequent uplift to the surface. Therefore such P-T estimates tell more about processes than crustal thicknesses. More importantly, according to the author, are determinations of P-T paths, particularly coupled with age measurements, because these may provide constraints on how and when perturbed conditions relax back to steady state conditions. P-T paths are illustrated that should be expected from specific tectonic processes, including Tibetan style collision, with and without subsequent extension, rifting of thin or thickened crust, and magmatic accretion. Growth of new crust, associated with magmatic accretion, for example, could possibly be monitored with these P-T paths.

  18. Tectonic control of the crustal organic carbon reservoir during the Precambrian

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1994-01-01

    Carbon isotopic trends indicate that the crustal reservoir of reduced, organic carbon increased during the Proterozoic, particularly during periods of widespread continental rifting and orogeny. No long-term trends are apparent in the concentration of organic carbon in shales, cherts and carbonates. The age distribution of 261 sample site localities sampled for well-preserved sedimentary rocks revealed a 500-700-Ma periodicity which coincided with tectonic cycles. It is assumed that the numbers of sites are a proxy for mass of sediments. A substantial increase in the number of sites in the late Archean correlates with the first appearance between 2.9 and 2.5 Ga of extensive continental platforms and their associated sedimentation. It is proposed that the size of the Proterozoic crustal organic carbon reservoir has been modulated by tectonic control of the volume of sediments deposited in environments favorable for the burial and preservation of organic matter. Stepwise increases in this reservoir would have caused the oxidation state of the Proterozoic environment to increase in a stepwise fashion.

  19. Precambrian Continent Arctida: A New Kinematic Reconstruction of Late Precambrian - Early Paleozoic Arctida U Europe (baltia) Collision

    NASA Astrophysics Data System (ADS)

    Borisova, T. P.; Guertseva, M. V.; Egorov, A. Ju.; Kononov, M. V.; Kouznetsov, N. B.

    In according to L.P.Zonenshain and L.M.Natapov (1988, 1990), different size conti- nental blocks locating at the margins and inside of present-day Arctic ocean composed the hypothetical early Paleozoic paleocontinent Arctida. The blocks are Kara block (north part of Taymir peninsula, Severnaja Zemlja archipelago and Franz Joseph Land archipelago), north part of Alaska (northward Bruks ridge), Chukchi block, Novosi- birsky block (Novosibirskiye islands together their shelves), several fragments north- ward to the Innuitian orogen (north parts of Peary Land and Ellesmere Island), and Lomonosov ridgeSs block. In the previous kinematic reconstruction it was believed that Arctida as a whole collided with north flanks of Laurentia (Innuitian margin) and Europe (Baltia, Barentsia margin) in middle Paleozoic time. Later, the Arctida (been a fragment of supercontinent Pangea) was fragmented due to a spreading in the Arctic ocean and north part of Atlantic ocean in late Mesozoic and Cenozoic times. Then ArctidaSs fragments were accreted to the Eurasia and North America conti- nents. During the last decade "AEROGEOLOGIA" company has been gathered new data (geologic, stratigraphical, paleomagnetic, and others) of Russian Arctic sector and Svalbard. The data were summarized into "Paleogeographical Atlas for the Rus- sian Arctic sector and Svalbard from Vendian to Jurassic times" (see Abstact SE1.04, ID-NR: EGS02-A-02453). An analyzing of the maps for Vend and Cambrian times allows us to reconsider a few stages of kinematic scenario of late Precambrian - early Paleozoic Arctida U Europe collision. 1) Old interpretation: Arctida was considered as an isolated paleocontinent during early Paleozoic time. New interpretation: during the early Paleozoic Arctida together Europe (Baltia) were assembled into a paleo- continent named us Arcteurope. This conclusion is based on excellent coincidence of Paleozoic paleomagnetic poles of the Kara block (which is a part of Arctida) and Europe

  20. Abiogenic and Microbial Controls on Volatile Fatty Acids in Precambrian Crustal Fracture Waters

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Heuer, V.; Tille, S.; Moran, J.; Slater, G.; Sutcliffe, C. N.; Glein, C. R.; Hinrichs, K. U.; Sherwood Lollar, B.

    2015-12-01

    Saline fracture waters within the Precambrian Shield rocks of Canada and South Africa have been sequestered underground over geologic timescales up to 1.1-1.8 Ga [1, 2]. These fluids are rich in H2 derived from radiolysis and hydration of mafic and ultramafic rocks [1, 2, 3] and host a low-biomass, low-diversity microbial ecosystem at some sites [2]. The abiogenic or biogenic nature of geochemical processes has important implications for bioavailable carbon sources and the role played by abiotic organic synthesis in sustaining a chemosynthetic deep biosphere. Volatile fatty acids (VFAs) are simple carboxylic acids that may support microbial communities in such environments, such as those found in terrestrial [4] and deep-sea [5] hot springs. We present abundance and δ13C analysis for VFAs in a spectrum of Canadian Shield fluids characterized by varying dissolved H2, CH4, and C2+ n-alkane compositions. Isotope mass balance indicates that microbially mediated fermentation of carbon-rich graphitic sulfides may produce the elevated levels of acetate (39-273 μM) found in Birchtree and Thompson mine. In contrast, thermodynamic considerations and isotopic signatures of the notably higher acetate (1.2-1.9 mM), as well as formate and propionate abundances (371-816 μM and 20-38 μM, respectively) found at Kidd Creek mine suggest a role for abiogenic production via reduction of dissolved inorganic carbon with H2 for formate, and oxidation of C2+ n-alkanes for acetate and propionate, along with possible microbial cycling. VFAs comprise the bulk of dissolved and total organic carbon in the mines surveyed, and as such represent a potential key substrate for life. [1] Holland et al. (2013) Nature 497: 367-360. [2] Lin et al. (2006) Science 314: 479-482. [3] Sherwood Lollar et al. (2014) Nature 516: 379-382. [4] Windman et al. (2007) Astrobiology 7(6): 873-890. [5] Lang et al. (2010) Geochim. Cosmochim. Acta 92: 82-99.

  1. Precambrian paleobiology.

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1972-01-01

    Outline in broad terms of major events in Precambrian biological history. Limitations of the Precambrian fossil record, chemical fossils, and findings of the early, middle, and late Precambrian records are examined. Biological systems originated during the earliest third of geologic time, about four billion years ago. It is generally assumed that the primitive atmosphere was a highly reduced mixture, primarily composed of methane and ammonia, and that the earliest living systems were heterotrophic, using organic matter of abiotic origin as a carbon source. The development of the metazoan grade of organization apparently occurred near the close of the Precambrian. The picture of gradually accelerating early evolutionary development, beginning rather slowly but markedly quickening with the emergence of eucaryotic organization, seems consistent with the fragmentary evidence currently available.

  2. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wang, He; Wang, Min

    2017-10-01

    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  3. Precambrian Sulphide Deposits

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    1984-04-01

    This book is dedicated to Howard S. Robinson, who was born and educated in the United States, but who spent his professional career in Canada with McIntyre Porcupine Mines, concentrating on Precambrian mineral deposits. Although his career in mineral exploration was distinguished, his major contribution to earth science was probably as one of the founders of the Geological Association of Canada, an institution to which he made a bequest in his will. With this background, the strong emphasis on Canadian Precambrian mineral deposits should come as no surprise; of the 23 papers in this book, 21 are solely or primarily devoted to Canadian deposits. The two exceptions—those describing the Balmat, N.Y., zinc mines (at times the largest zinc producer in the United States) and the Crandon, Wisconsin, volcanogenic zinc-copper massive-sulfide deposit (the largest deposit of its kind found in the 1970s)—are each within a couple of hundred kilometers of the Canadian border. Although the title of the book is more expansive than the actual topics discussed, Canada is rich in Precambrian rocks and ore bodies, and Canadian scientists have been especially alert to tectonic influences in the formation of mineral deposits. These features, plus the fact that the country contains a very well exposed expanse of Archean rocks which is the largest in the world, facilitate the study of early crustal evolution and make the book of particular interest to geophysicists.

  4. The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth

    NASA Astrophysics Data System (ADS)

    Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.

    2001-12-01

    Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled

  5. Role of upper-most crustal composition in the evolution of the Precambrian ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Large, R. R.; Mukherjee, I.; Zhukova, I.; Corkrey, R.; Stepanov, A.; Danyushevsky, L. V.

    2018-04-01

    Recent research has emphasized the potential relationships between supercontinent cycles, mountain building, nutrient flux, ocean-atmosphere chemistry and the origin of life. The composition of the Upper-Most Continental Crust (UMCC) also figures prominently in these relationships, and yet little detailed data on each component of this complex relationship has been available for assessment. Here we provide a new set of data on the trace element concentrations, including the Rare Earth Elements (REE), in the matrix of 52 marine black shale formations spread globally through the Archean and Proterozoic. The data support previous studies on the temporal geochemistry of shales, but with some important differences. Results indicate a change in provenance of the black shales (upper-most crustal composition), from more mafic in the Archean prior to 2700 Ma, to more felsic from 2700 to 2200 Ma, followed by a return to mafic compositions from 2200 to 1850 Ma. Around 1850 to 1800 Ma there is a rapid change to uniform felsic compositions, which remained for a billion years to 800 Ma. The shale matrix geochemistry supports the assertion that the average upper-most continental source rocks for the shales changed from a mix of felsic, mafic and ultramafic prior to 2700 Ma to more felsic after 1850 Ma, with an extended transition period between. The return to more mafic UMCC from 2200 to 1850 Ma is supported by the frequency of Large Igneous Provinces (LIPs) and banded iron formations, which suggest a peak in major mantle-connected plume events and associated Fe-rich hydrothermal activity over this period. Support for the change to felsic UMCC around 1850 Ma is provided by previous geological data which shows that felsic magmas, including, A-type granites and K-Th-U-rich granites intruded vast areas of the continental crust, peaking around 1850 Ma and declining to 1000 Ma. The implications of this change in UMCC are far reaching and may go some way to explain the distinct

  6. Workshop on Early Crustal Genesis: Implications from Earth

    NASA Technical Reports Server (NTRS)

    Phinney, W. C. (Compiler)

    1981-01-01

    Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.

  7. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  8. Early Precambrian Carbonate and Evapolite Sediments: Constraints on Environmental and Biological Evolution

    NASA Technical Reports Server (NTRS)

    Grotzinger, John P.

    2002-01-01

    The work accomplished under NASA Grant NAG5-6722 was very successful. Our lab was able to document the occurrence and distribution of evaporite-to-carbonate transitions in several basins during Precambrian time, to help constrain the long-term chemical evolution of seawater.

  9. Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The ˜1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times

    NASA Astrophysics Data System (ADS)

    Piper, John D. A.; Jiasheng, Zhang; Huang, Baochung; Roberts, Andrew P.

    2011-06-01

    The North China Shield (NCS) is cut by a laterally-extensive dyke swarm emplaced at 1.78-1.76 Ga when an extensional regime succeeded regional metamorphism and completion of cratonisation by ˜1.85 Ga. Palaeomagnetic study of these dykes and adjoining metamorphic country rocks identifies a dominant shallow axis comprising a contiguous population with NE to N declinations and rare opposite polarity. Dykes with NE shallow magnetic declination (A1, D/ I = 36/-1°) recognised from previous study and emplaced in granulite terranes in the north are displaced by more northerly declinations (A2, D/ I = 8/2°) in lower grade metamorphic terranes to the south. Contact tests indicate a primary cooling-related origin to these magnetisations although tests are in part ambiguous because magnetisations in the granulite basement are comparable. Petrologic and rock magnetic considerations imply that magnetisation of the dykes occurred during uplift from depths as deep as 20 km following the peak of metamorphism at ˜1.85 Ga. A temporal migration A2 → A1 is implied by the higher crustal level and earlier acquisition of the former, and the deeper source and later acquisition of the latter. A third population of dyke magnetisations (A3, D/ I = 18/43°) is distributed towards steeper inclinations and close to the Mesozoic-Recent palaeofield. These are either partial or complete overprints of A1-A2 magnetisations with greater degrees of alteration indicated by demagnetisation and thermomagenetic spectra, or are much younger dykes of Mesozoic-Tertiary age. A minority fourth (later Precambrian but presently undated) dual polarity population has a magnetisation (11 dykes, D/ I = 108/7°) with contact tests indicating a primary cooling-related origin. The ˜1.78-1.76 Ga time of emplacement of the dominant dyke swarms in this study is widely represented by contemporaneous igneous rocks in other major shields linked to major Large Igneous Province (LIP)-related events. The new definition of

  10. Crustal structure of the Kaapvaal craton and its significance for early crustal evolution

    NASA Astrophysics Data System (ADS)

    James, David E.; Niu, Fenglin; Rokosky, Juliana

    2003-12-01

    High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is ˜15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km 2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow

  11. Concept for a research project in early crustal genesis

    NASA Technical Reports Server (NTRS)

    Phillips, R. J. (Compiler); Ashwal, L. (Compiler)

    1983-01-01

    Planetary volatiles, physical and chemical planetary evolution, surface processes, planetary formation, metallogenesis, crustal features and their development, tectonics, and paleobiology are discussed.

  12. Crustal evolution of the early earth: The role of major impacts

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The role of major impact basins (such as those which formed on the moon before 4 billion years ago) is examined to determine the effects of such impacts on the early crustal evolution of the earth. Specifically addressed is the fundamental problem of what is the origin of the earth's fundamental crustal dichotomy of low density continental and high density oceanic crust and its relationship to the superficially similar highlands/maria crustal dichotomies of the moon, Mercury and Mars.

  13. Precambrian Skeletonized Microbial Eukaryotes

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.

    2017-04-01

    . Tintinnids first appear in the mid-Mesozoic, like other modern planktic groups, including planktic foraminifera, new types of radiolarians, and a host of skeletal micro-algae. Microbial eukaryotes track algal eukaryote and metazoan evolution—none or very few in the Precambrian, some in the early Paleozoic with radiations in the later Paleozoic, Mesozoic and Cenozoic, with extinctions ( 30) reducing their biodiversity at particular times in the fossil record—thus indicating strong environmental selection on all marine groups.

  14. The early Martian environment: Clues from the cratered highlands and the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Maxwell, T. A.

    1993-01-01

    There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.

  15. MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized.

  16. Geochemistry of Precambrian carbonates. IV - Early Paleoproterozoic (2.25 +/- 0.25 Ga) seawater

    NASA Technical Reports Server (NTRS)

    Veizer, Jan; Clayton, R. N.; Hinton, R. W.

    1992-01-01

    The mineralogy, chemistry, and isotopic composition of the Malmani Dolomite, Duck Creek Dolomite, and Bruce 'Limestone' Member of the Espanola Formation are studied in an effort to restrict the first- and second-order variations in isotopic composition of Early Paleoproterozoic seawater. The diagenetic rank is found to increase in the order Duck Creek less than Bruce less than Malmani. The interpolation of alteration trends to 'best' value yields an estimate of 0.70550 for Sr-87/Sr-86. For delta C-13, the measured range of 0 +/- 1.5 percent PDB is similar to that observed for Phanerozoic marine carbonates, while the 'best' delta O-18 value for dolostones is -5 percent PDB, depleted in O-18 relative to Phanerozoic counterparts but comparable to estimates obtained for Archean facies. The isotope geochemistry and mineralogy of Bruce 'Limestone' Member is consistent with the proposition that the sequence was deposited in a lacustrine environment.

  17. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  18. History and Evolution of Precambrian plate tectonics

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental

  19. Deep Hydrothermal Circulation and Implications for the Early Crustal Compositional and Thermal Evolution of Mars

    NASA Astrophysics Data System (ADS)

    Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.

    2007-12-01

    of a low thermal conductivity regolith, thermal evolution models also indicate that crustal thickness variations created during the Noachian would not be preserved, even with a creep-resistant dry diabase rheology. Thus, a mechanism enhancing heat flux in the Noachian Martian crust is indicated. The studies to be reported will summarize these individual constraints on thermal structure and explore their combined implications for the depth and vigor of hydrothermal circulation during the early crustal evolution of Mars.

  20. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  1. Thorium/U systematics of Precambrian deep-sea pelagic balck shales: implications for redox state of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Jia, Y.; McCulloch, M.; Charlotte, A.

    2003-12-01

    To address the question of the redox state of the Precambrian atmosphere-hydrosphere system via sediments requires measurement of redox sensitive trace elements, and inter-element ratios, in deep water black shales with a chemical sedimentary "hydrogenic" component. This approach is endorsed by recent progress in research of redox-sensitive trace metals records in late Proterozoic and Phanerozoic sedimentary rocks, which has provided important clues to how the redox state of depositional environments has changed over time. Many conventional studies, in contrast, have been on first cycle volcanogenic turbidites with a minimal hydrogenic input (Taylor and McLennan, 1995). Accordingly, we have analyzed the redox-sensitive, trace element compositions of the 2.1 Ga black shales in Birimian Blet, West Africa, and the 2.7 Ga Archean counterparts in Timmins, Canada, Tati Belt, Botswana, and Kanowna District, Western Australia. These pyrite-bearing black shales, which were originally argillaceous sediments containing organic matter and low in thermal maturity, were primarily deposited in the deep-sea pelagic environments. Th/U ratios are lower in the Proterozoic shales (0.38-0.82, average 0.67), and Archean shales (0.47-3.65, average 2.43) relative to "conventional" Archean upper crust (3.8), PAAS (4.7), or average upper continental crust (3.8). Calculated U concentrations from hydrogenic component are between 0.90 and 2.45 in the Proterozoic shales, and range from 0.06 to 0.96 for the Archean black shales. Given the conservative behavior of Th in the sedimentary cycle, variably low Th/U ratios in these Precambrian black shales signify that U6+, soluble in oxidized surface waters, was reduced to insoluble U4+ in reducing bottom waters, as in the contemporary Black Sea. The results are consistent with a locally to globally oxidized atmosphere-shallow hydrosphere pre-2.0 Ga. Taylor, S.R., and McLennan, S.C., 1995. The geochemical evolution of the continental crust: Reviews of

  2. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Our comparisons suggest that large offset border faults that develop very early in rift history create fluid pathways that maintain the initial along-axis segmentation until magma (if available), reaches mid-crustal levels.

  3. The evolution of the early Martian climate and the initial emplacement of crustal H2O

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    Given the geomorphic evidence for the widespread occurrence of water and ice in the early Martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the Martian valley networks to terrestrial runoff channels and their almost exclusive occurrence in the planet's ancient (approximately 4-b.y.-old) heavily cratered terrain are often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was groundwater sapping, a process that does not require that surface water exists in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered here from two perspectives: (1) the early climate started warm and wet, but gradually cooled with time, and (2) the early climate never differed substantially from that of today.

  4. Numerical Mantle Convection Models of Crustal Formation in an Oceanic Environment in the Early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2001-12-01

    The generation of basaltic crust in the early Earth by partial melting of mantle rocks, subject to investigation in this study, is thought to be a first step in the creation of proto-continents (consisting largely of felsic material), since partial melting of basaltic material was probably an important source for these more evolved rocks. In the early Archean the earth's upper mantle may have been hotter than today by as much as several hundred degrees centigrade. As a consequence, partial melting in shallow convective upwellings would have produced a layering of basaltic crust and underlying depleted (lherzolitic-harzburgitic) mantle peridotite which is much thicker than found under modern day oceanic ridges. When a basaltic crustal layer becomes sufficiently thick, a phase transition to eclogite may occur in the lower parts, which would cause delamination of this dense crustal layer and recycling of dense eclogite into the upper mantle. This recycling mechanism may have contributed significantly to the early cooling of the earth during the Archean (Vlaar et al., 1994). The delamination mechanism which limits the build-up of a thick basaltic crustal layer is switched off after sufficient cooling of the upper mantle has taken place. We present results of numerical modelling experiments of mantle convection including pressure release partial melting. The model includes a simple approximate melt segregation mechanism and basalt to eclogite phase transition, to account for the dynamic accumulation and recycling of the crust in an upper mantle subject to secular cooling. Finite element methods are used to solve for the viscous flow field and the temperature field, and lagrangian particle tracers are used to represent the evolving composition due to partial melting and accumulation of the basaltic crust. We find that this mechanism creates a basaltic crust of several tens of kilometers thickness in several hundreds of million years. This is accompanied by a cooling of

  5. Isotope geochronology of the Precambrian

    NASA Astrophysics Data System (ADS)

    Levskii, L. K.; Levchenkov, O. A.

    This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.

  6. Indigenous Precambrian petroleum revisited

    SciT

    Murray, G.E.; Kaczor, M.J.; McArthur, R.E.

    1980-10-01

    Irrefutable evidence of fossil remains from Precambrian sediments and proved petroleum reserves in upper Proterozoic (Riphean-Vendian) strata of the Irkutsk basin, USSR, suggest that unmetamorphosed Precambrian sedimentary rocks should be a focus for hydrocarbon exploration. Since 1965, a dramatic increase in publications which document worldwide occurrences of Precambrian life forms discloses that, by the end of the Proterozoic, organic evolution had produced diversified assemblages of relatively highly developed macroorganisms and microorganisms. Some of these organisms have generated crude oil in the Nonesuch Shale of northern Michigan and kerogen in stromatolitic carbonate rocks in Africa Kerogen has been extracted from approx.more » 2300-m.y. old Transvaal (Africa) stromatolitic limestone containing coccoid and complex filamentous cyanophytes. Also, aromatic and aliphatic hydrocarbons have been obtained from the approx. 2800-m.y. old Bulawayan stromatolitic limestone of Rhodesia. Additional evidence indicates that commercial reserves of petroleum from Precambrian strata are possible. An oil discovery in Lower Cambrian rocks in 1962, at Markovo in the Irkutsk basin of the Siberian platform area, led to four noncommercial and eight commercial fields producing from Lower Cambrian and Upper Proterozoic strata.« less

  7. Precambrian endoliths discovered

    NASA Technical Reports Server (NTRS)

    Campbell, S. E.

    1982-01-01

    The earliest known microborings have now been found in late Precambrian ooids (Upper Riphean/Vendian, 570-700 Myr) of the Eleonore Bay Group of eastern Greenland. The ooids were originally carbonaceous and underwent silicification after boring occurred. The finding establishes that the habit of microbial boring evolved before the appearance of skeleton-bearing metazoans in the geological record.

  8. Excess europium content in Precambrian sedimentary rocks and continental evolution

    NASA Technical Reports Server (NTRS)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  9. Very early Archean crustal-accretion complexes preserved in the North Atlantic craton

    SciT

    Nutman, A.P.; Collerson, K.D.

    1991-08-01

    The North Atlantic craton contains very early Archean supracrustal rocks, orthogneisses, and massive ultramafic rocks. Most units of supracrustal rocks are dominated by mafic volcanic rocks, layered gabbros, and banded iron formations, bust some also contain abundant felsic volcanic-sedimentary rocks, quartzites, and marbles. Some quartzites contain detrital zircons derived from rocks identical in age to felsic volcanic-sedimentary rocks in these sequences (ca. 3800 Ma) and also from older (ca. 3850 Ma) sources. The presence of the ca. 3850 Ma detrital zircons suggests that the supracrustal units containing them were deposited on, or close to, ca. 3850 Ma sialic crust. Themore » massive ultramafic rocks have chemical affinities to upper mantle rocks. The voluminous suites of tonalitic gneisses are dominated by 3700-3730 Ma bodies that intrude the supracrustal sequences, but they also locally contain components with ages between 3820 and 3920 Ma. The diverse supracrustal units, upper mantle rocks, and {ge} 3820 Ma components in the gneisses were tectonically interleaved in very early Archean convergent plate boundaries, giving rise to accretion complexes. In the period 3700-3730 Ma, voluminous tonalitic magmas produced by partial melting of predominantly mafic rocks in the base of the accretion complexes were emplaced at higher levels, forming juvenile continental crust and leaving behind a refractory lower crustal to upper mantle substrate.« less

  10. Origin of the Martian global dichotomy by crustal thinning in the late Noachian or early Hesperian

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Dimitriou, Andrew M.

    1990-01-01

    The marked dichotomy in topography, surface age, and crustal thickness between the northern lowland (NL) and southern upland of Mars has been explained as due to an initially inhomogeneous crust, a single megaimpact event, several overlapping large basin impacts, and first-order convective overtum of the Martian mantle. All of these hypotheses propose that the dichotomy was formed before the end of the primordial heavy bombardment. Geological data indicate episodes of fracturing and faulting in the late Noachian and the early Hesperian, within the NL and along the lowland/highland boundary. Igneous activity also peaked in the late Noachian and early Hesperian. These data suggest a tectonic event near the Noachian/Hesperian boundary characterized by enhanced heat loss and extensive fracturing, including formation of the faults that define much of the highland/lowland boundary. It is argued that the major result of this tectonic event was formation of the dichotomy by thinning of the crust above a large convection cell or plume.

  11. A Time Scale for Major Events in Early Mars Crustal Evolution

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.

    2004-01-01

    The population of visible and buried impact basins > 200 km diameter revealed by high resolution gridded MOLA data and the cumulative frequency curves derived for these pvide a basis for a chronology of major events in early martian history. The relative chronology can be given in terms of N(200) crater retention ages; 'absolute ages' can be assigued using the Hartmann-Neukum (H&N) model chronology. In terms of billions of H&N years, the crustal dichotomy formed by large impact basins at 4.12 +/- 0.08 BYA (N(200) = 3.0-3.2) and the global magnetic field died at about or slightly before the same time (4.15 +/- 0.08 BYA (N(200) = 3.5). In this chronology, the buried lowlands are approx. 120 my younger than the buried highlands, approx. 160 my younger than the highlands overall and approx. 340 my younger than the oldest crater retention surface we see, defined by the largest impact basins.

  12. Consensus in a Precambrian garden

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    At the Precambrian-Cambrian boundary, the course of life on Earth underwent a dramatic change that culminated in the rise of predators and other complex animals, a group of paleontologists agreed at a conferece last week.Just prior to 590 million years ago, the ecology of life in the oceans was very simple; soft-shelled multicellular animals called Ediacara lived in apparent harmony with vast mats o f bacteria and algae that covered the seafloor, dependent on the photosynthesis or chemosynthesis of their one-celled hosts for their existence. According to the consensus reached by the scientists, this symbiotic and apparently global “Garden of Ediacara” fell early in the Cambrian Period, as the mats declined and food chains multiplied with new animals that, for the first time in Earth's history, preyed on other living things.

  13. Precambrian Lunar Volcanic Protolife

    PubMed Central

    Green, Jack

    2009-01-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224

  14. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    Rb-Sr and K-Ar mineral ages are obtained on rocks of the metamorphic complex and on the granite. These ages range from about 2,400 to 1,420 million years and are part of a regional pattern of lowered mineral ages of Precambrian W rocks of southern Wyoming. A major discontinuity in these mineral ages occurs along a line extending from the northern Laramie Range, through the northern part of the Granite Mountains, to the southeastern Wind River Mountains. North of this line, Rb-Sr and K-Ar biotite ages are 2,300 million years or greater, whereas to the south, the biotite ages decrease drastically over a short distance, to a common range of 1,600-1,400 million years. We suggest that these lowered ages represent regional cooling below the 300 0 C isotherm as a consequence of uplift and erosion of the large crustal block occurring south of the age discontinuity. In this interpretation, the westerly-trending age discontinuity would be a zone of major crustal dislocation that resulted from vertical tectonics in late Precambrian X or early Precambrian Y time.

  15. Crustal formation and recycling in an oceanic environment in the early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2003-04-01

    Several lines of evidence indicate higher mantle temperatures (by some hundreds of degrees) during the early history of the Earth. Due to the strong effect of temperature on viscosity as well as on the degree of melting, this enforces a geodynamic regime which is different from the present plate tectonics, and in which smaller scale processes play a more important role. Upwelling of a hotter mantle produces a thicker oceanic crust, of which the lower part may reside in the eclogite stability field. This facilitates delamination, making room for fresh mantle material which may partly melt and add new material to the crust (Vlaar et al., 1994). We present results of numerical thermo-chemical convection models including a simple approximate melt segregation mechanism in which we investigate this alternative geodynamic regime, and its effect on the cooling history and chemical evolution of the mantle. Our results show that the mechanism is capable of working on two scales. On a small scale, involving the lower boundary of the crust, delaminations and downward transport of eclogite into the upper mantle takes place. On a larger scale, involving the entire crustal column, (parts of) the crust may episodically sink into the mantle and be replaced by a fresh crust. Both are capable of significantly and rapidly cooling a hot upper mantle by driving partial melting and thus the generation of new crust. After some hundreds of millions of years, as the temperature drops, the mechanism shuts itself off, and the cooling rate significantly decreases. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18

  16. Thermal thickness and evolution of Precambrian lithosphere: A global study

    Artemieva, I.M.; Mooney, W.D.

    2001-01-01

    The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ???300 blocks with sizes varying from 1?? ?? 1?? to about 5?? ?? 5?? in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300??C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200-220 km and 300-350 km. In general, thin (???220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200 ?? 50 km in early Proterozoic lithosphere, to about 140 ?? 50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the

  17. Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust

    NASA Astrophysics Data System (ADS)

    Korja, T.; Hjelt, S.-E.

    1993-12-01

    Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of

  18. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  19. Morphotype disparity in the Precambrian

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Reitner, Joachim; Braiser, Martin; Donoghue, Phil; Schirrmeister, Bettina

    2015-04-01

    Prokaryotes have dominated life on Earth for over 2 billion years. Throughout the Precambrian, prokaryotes acted as the major biological impetus for both large and small scale environmental changes. Yet, very little is known about the composition, diversity and evolution of ancient microbial communities due to poor preservation during the Precambrian period. Previous studies of fossils that date to this period relied mainly on light microscopy to identify microfossil morphology and abundance, with limited success. Here we present novel analyses of the microbial remains found in Precambrian stromatolites using Synchrotron Radiation x-Ray Tomographic Microscopy (SRXTM). Microfossils found in samples of three Precambrian deposits, 3.45 Ga Strelley Pool, Australia, 2.1 Ga Gunflint Chert, Canada, and 650 Ma Rasthof Cap Carbonate, Namibia, have been reconstructed in 3D. Based on four scans from each sample, we estimated size and abundance of spheroidal microfossils within those deposits. Our findings show that while cell abundance decreased towards the end of the Precambrian, the biovolume of microfossils within the host rock remained relatively constant. Additionally, both size and disparity increase through time. Constant biovolumes and yet different sizes for these three deposits, point towards a negative correlation of large cell size and cell abundance. This negative correlation indicates that the systems in which these prokaryotes lived may have been biolimited. Both, gas exchange and nutrient uptake in prokaryotes function via diffusion. Therefore, one would expect bacteria to evolve towards an increasing surface to volume ratio. Increased cell sizes, and hence decreased overall surface to volume ratio observed in our data, suggest the influence of other selective factors. Decreased abundance and increased cell size could potentially be associated to changes in nutrient availability and the occurrence of predation. As cells increased in size, more nutrients would

  20. Recent progress in Precambrian paleobiology

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1986-01-01

    Ongoing studies at UCLA include the following: (1) investigations in Archean and Proterozoic sequences of various locations; (2) laboratory and field studies of modern microbial biocoenoses (analogues of Precambrian microbial communities) especially those at Laguna Mormona, Baja California, Mexico; (3) development of new laboratory techniques for the separation and concentration of minute cellularly preserved fossils for isotopic and organic geochemical analyses; and (4) assembly of a computerized database for assessment of the timing and nature of major events occurring during Precambrian biotic evolution, and of the potential applicability of ancient microbiotas to problems of global biostratigraphy and biogeography.

  1. Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Hemming, S. R.; Taylor, S. R.; Eriksson, K. A.

    1995-03-01

    Early Proterozoic (1.8-1.7 Ga) metasedimentary rocks in northern New Mexico and southern Colorado, USA, can be divided into turbidite successions (commonly volcanogenic) associated with mafic/felsic metavolcanic successions (e.g., Irving Fm.) and stable shelf quartzite-pelite successions of shallow marine origin (e.g., Hondo Gp.). Metapelites from the turbidite successions reported here have low K2O/Na2O, low Th/U (<3.0), low to moderate Th/Sc (0.1-0.6), and slight negative Eu-anomalies, although regionally, negative Eu-anomalies in such rocks are common. At the time of sedimentation (ca. 1.7-1.8 Ga), ɛNd values were in the range +3 to +7, indistinguishable from associated metavolcanic and plutonic rocks. Similarly, lead isotopic data scatter about a 1.7 Ga reference isochron. Low κ (232Th/238U) values for the Irving Formation are consistent with derivation from crustal sources similar to the southern Colorado/northern New Mexico lead isotope crustal province. These data are further consistent with a volcanic arc related origin. In contrast, stable shelf metapelites have high K2O/Na2O, variable but commonly high Th/U (2.0-7.0), moderate to high Th/Sc (0.5-1.4), and substantial negative Eu-anomalies. Although compositions are rather variable, they are typical of post-Archean shales. Neodymium isotopes are surprisingly radiogenic with ɛNd(1.7 Ga) in the range -0.2 to +4. Lead isotopic data for the least radiogenic samples also are consistent with a dominantly juvenile source and on a 207Pb/204Pb vs. 206Pb/204Pb diagram, data scatter slightly above the 1.7 Ga reference isochron, suggesting minor components of significantly older material. Lead isotopic systematics suggest that a major component of the provenance was derived from the immediately associated metavolcanic-plutonic terranes, consistent with suggestions of a first-cycle origin, but with an Archean component. Isotopic data restrict the Archean component to about 10%, on average, and no more than 25% in

  2. Precambrian evolution of the climate system.

    PubMed

    Walker, J C

    1990-01-01

    Climate is an important environmental parameter of the early Earth, likely to have affected the origin and evolution of life, the composition and mineralogy of sedimentary rocks, and stable isotope ratios in sedimentary minerals. There is little observational evidence constraining Precambrian climates. Most of our knowledge is at present theoretical. Factors that must have affected the climate include reduced solar luminosity, enhanced rotation rate of the Earth, an area of land that probably increased with time, and biological evolution, particularly as it affected the composition of the atmosphere and the greenhouse effect. Cloud cover is a major uncertainty about the early Earth. Carbon dioxide and its greenhouse effect are the factors that have been most extensively studied. This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  3. Juvenile crustal recycling in an accretionary orogen: Insights from contrasting Early Permian granites from central Inner Mongolia, North China

    NASA Astrophysics Data System (ADS)

    Yuan, Lingling; Zhang, Xiaohui; Xue, Fuhong; Liu, Fulin

    2016-11-01

    Coeval high-K calc-alkaline to alkaline granites constitute important components of post-collisional to post-orogenic igneous suites in most orogenic belts of various ages on Earth and their genesis harbors a key to ascertaining critical geodynamic controls on continental crustal formation and differentiation. This zircon U-Pb dating and geochemical study documents three contrasting Early Permian granites from Erenhot of central Inner Mongolia, eastern Central Asian Orogenic Belt (CAOB) and reveals concurrent high-K calc-alkaline to alkaline granite association derived from successive partial melting of distinct protoliths. The ca. 280 Ma Gancihuduge (GCG) pluton shows a calc-alkaline I-type character, with initial 87Sr/86Sr ratios of 0.7035 to 0.7039, εNd(t) of + 1.87 to + 4.70, zircon εHf(t) of + 8.0 to + 13.2 and δ18O from 7.4 to 8.7‰. The ca. 276 Ma Cailiwusu (CLS) pluton is magnesian and peraluminous, with initial 87Sr/86Sr ratios of 0.7036 to 0.7040, εNd(t) of + 1.9 to + 2.4, zircon εHf(t) of + 6.5 to + 12.1 and δ18O from 9.7 to 10.9‰. These features are consistent with partial melts of mixed sources composed of newly underplated meta-basaltic to -andesitic protoliths and variable supracrustal components, with distinctively higher proportion of the latter in the CLS pluton. By contrast, the ca. 279 Ma Kunduleng (KDL) suite exhibits an A-type magmatic affinity, with typical enrichment in alkalis, Ga, Zr, Nb and Y, εNd(t) of + 2.39 to + 3.55, zircon εHf(t) from + 8.3 to + 12.3 and δ18O values from 6.8 to 7.5‰. These features suggest that they stem from high-temperature fusion of dehydrated K-rich mafic to intermediate protoliths. Besides presenting a snapshot into a stratified crustal architecture in δ18O, these contrasting granites could not only serve as a temporal marker for monitoring post-collisional extension in the aftermath of a retreating subduction zone, but also present spatial magmatic proxy for tracing crustal formation and

  4. A Precambrian microcontinent in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Amundsen, Hans; Hartz, Ebbe H.; Corfu, Fernando; Kusznir, Nick; Gaina, Carmen; Doubrovine, Pavel V.; Steinberger, Bernhard; Ashwal, Lewis D.; Jamtveit, Bjørn

    2013-03-01

    The Laccadive-Chagos Ridge and Southern Mascarene Plateau in the north-central and western Indian Ocean, respectively, are thought to be volcanic chains formed above the Réunion mantle plume over the past 65.5 million years. Here we use U-Pb dating to analyse the ages of zircon xenocrysts found within young lavas on the island of Mauritius, part of the Southern Mascarene Plateau. We find that the zircons are either Palaeoproterozoic (more than 1,971 million years old) or Neoproterozoic (between 660 and 840 million years old). We propose that the zircons were assimilated from ancient fragments of continental lithosphere beneath Mauritius, and were brought to the surface by plume-related lavas. We use gravity data inversion to map crustal thickness and find that Mauritius forms part of a contiguous block of anomalously thick crust that extends in an arc northwards to the Seychelles. Using plate tectonic reconstructions, we show that Mauritius and the adjacent Mascarene Plateau may overlie a Precambrian microcontinent that we call Mauritia. On the basis of reinterpretation of marine geophysical data, we propose that Mauritia was separated from Madagascar and fragmented into a ribbon-like configuration by a series of mid-ocean ridge jumps during the opening of the Mascarene ocean basin between 83.5 and 61 million years ago. We suggest that the plume-related magmatic deposits have since covered Mauritia and potentially other continental fragments.

  5. Early Proterozoic ties between two suspect terranes and the Mojave crustal block of the Southwestern U.S

    Bender, E. Erik; Morrison, Jean; Anderson, J. Lawford; Wooden, Joseph L.

    1993-01-01

    Southern California and adjacent areas contain two suspect or exotic terranes comprised largely of ancient continental crust, namely the Tujunga (San Gabriel) and Joshua Tree terranes, that have been considered part of a larger displaced terrane, the Santa Lucia-Orocopia allochthon. Paleomagnetic data for the allochthon indicate northward transport in excess of 2000 km and, thus, an origin extraneous to North America. However, Early Proterozoic plutons of the Mojave crustal block and the Joshua Tree and Tujunga terranes have strikingly comparable features, including: (1) crystallization ages of 1.63 to 1.68 Ga; (2) biotite + sphene + magnetite hornblende garnet mineralogy; (3) high LIL and enriched HFS elemental composition; (4) WPG (within-plate granite) trace element chemistry; (5) similar and unique oxygen isotopic compositions; and (6) distinct Pb and Nd isotopic signatures. These features of the Mojave block, which clearly originated as part of native North America, nevertheless distinguish it from crust elsewhere in North America. On the basis of data presented here, we conclude that the Tujunga terrane is a disrupted portion of the Mojave crustal block and is neither far-traveled nor exotic to North America. Its apparent "exotic" nature stems from derivation out of the middle crust. We also conclude that the Joshua Tree terrane is correlative to the Mojave block. We have found no significant evidence for its displacement and consider Joshua Tree to be contiguous with the Mojave block and thus not a valid terrane. The Tujunga (San Gabriel) and Joshua Tree terranes should not be considered as part of, or having shared the same transport as, the Santa Lucia-Orocopia allocthon.

  6. The development and diversification of Precambrian life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1974-01-01

    The temporal relationships among various prominent events occurring in the evolution of life are considered. It is seen that the Precambrian encompasses an enormous segment of geologic time and includes more than 80% of the history of life on this planet. As a result of the studies of the past decade it appears that living systems were probably extant as early as 3300 m.y. ago. Photoautotrophs, apparently including blue-green algae, originated earlier than 3000 m.y. ago. Blue-green algae were the dominant components of earth's biota for the period extending from about 3000 to 1000 m.y. ago. The nucleated, eukaryotic cell type had become established at least as early as 900, and possibly prior to 1300 m.y. ago.

  7. Irregularities in Early Seismic Rupture Propagation for Large Events in a Crustal Earthquake Model

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Rice, J. R.; Rice, J. R.

    2001-12-01

    We study early seismic propagation of model earthquakes in a 2-D model of a vertical strike-slip fault with depth-variable rate and state friction properties. Our model earthquakes are obtained in fully dynamic simulations of sequences of instabilities on a fault subjected to realistically slow tectonic loading (Lapusta et al., JGR, 2000). This work is motivated by results of Ellsworth and Beroza (Science, 1995), who observe that for many earthquakes, far-field velocity seismograms during initial stages of dynamic rupture propagation have irregular fluctuations which constitute a "seismic nucleation phase". In our simulations, we find that such irregularities in velocity seismograms can be caused by two factors: (1) rupture propagation over regions of stress concentrations and (2) partial arrest of rupture in neighboring creeping regions. As rupture approaches a region of stress concentration, it sees increasing background stress and its moment acceleration (to which velocity seismographs in the far field are proportional) increases. After the peak in stress concentration, the rupture sees decreasing background stress and moment acceleration decreases. Hence a fluctuation in moment acceleration is created. If rupture starts sufficiently far from a creeping region, then partial arrest of rupture in the creeping region causes a decrease in moment acceleration. As the other parts of rupture continue to develop, moment acceleration then starts to grow again, and a fluctuation again results. Other factors may cause the irregularities in moment acceleration, e.g., phenomena such as branching and/or intermittent rupture propagation (Poliakov et al., submitted to JGR, 2001) which we have not studied here. Regions of stress concentration are created in our model by arrest of previous smaller events as well as by interactions with creeping regions. One such region is deep in the fault zone, and is caused by the temperature-induced transition from seismogenic to creeping

  8. Control of early-formed vesicle cylinders on upper crustal prismatic jointing in compound pāhoehoe lavas of Elephanta Island, western Deccan Traps, India

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu; Patel, Vanit; Samant, Hrishikesh

    2017-08-01

    Upper crustal prismatic joints and vesicle cylinders, common in pāhoehoe lava flows, form early and late, respectively, and are therefore independent features. However, small-scale compound pāhoehoe lava lobes on Elephanta Island (western Deccan Traps, India), which resemble S-type (spongy) pāhoehoe in some aspects, contain vesicle cylinders which apparently controlled the locations of upper crustal prismatic joints. The lobes are decimeters thick, did not experience inflation after emplacement, and solidified rapidly. They have meter-scale areas that are exceptionally rich in vesicle cylinders (up to 68 cylinders in 1 m2, with a mean spacing of 12.1 cm), separated by cylinder-free areas, and pervasive upper crustal prismatic jointing with T, curved T, and quadruple joint intersections. A majority (≥76.5%) of the cylinders are located exactly on joints or at joint intersections, and were not simply captured by downward growing joints, as the cylinders show no deflection in vertical section. We suggest that large numbers of cylinders originated in a layer of bubble-rich residual liquid at the top of a basal diktytaxitic crystal mush zone which was formed very early (probably within the first few minutes of the emplacement history). The locations where the rising cylinders breached the crust provided weak points or mechanical flaws towards which any existing joints (formed by thermal contraction) propagated. New joints may also have propagated outwards from the cylinders and linked up laterally. Some cylinders breached the crust between the joints, and thus formed a little later than most others. The Elephanta Island example reveals that, whereas thermal contraction is undoubtedly valid as a standard mechanism for forming upper crustal prismatic joints, abundant mechanical flaws (such as large concentrations of early-formed, crust-breaching vesicle cylinders) can also control the joint formation process.

  9. A palaeomagnetic perspective of Precambrian tectonic styles

    NASA Technical Reports Server (NTRS)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  10. Early precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia.

    PubMed

    Glikson, Andrew Y

    2004-01-01

    Pioneering studies of Precambrian impact fallout units and associated tsunami deposits in the Hamersley Basin, Pilbara Craton, Western Australia, by B.M. Simonson and S.W. Hassler, document a range of tsunami deposits associated with impact fallout units whose impact connection is identified by associated microtektites and microkrystites (condensation spherules). The impact connection of these particles is demonstrated by iridium anomalies, unique platinum group elements patterns, and Ni-rich mineral phases. Densely packed tsunami-transported fragments and boulders overlie microkrystite units of the >2629 +/- 5 Ma top Jeerinah Impact Layer (JIL). Tsunami events closely follow spherule settling associated with the 2561 +/- 8 Ma Spherule Marker Bed SMB-1 and SMB-2 impact events, Bee Gorge Member, Wittenoom Formation. The two impact cycles are separated by a stratigraphically consistent silicified black siltstone, representing a "Quiet Interval." The SMB turbidites display turbulence eddies, climbing ripples, conglomerate pockets, slumps, and waterlogged sediment deformation features. Consequences of tsunami in the probably contemporaneous Carawine Dolomite (Pb-Pb carbonate ages of approximately 2.56-2.54 Ga), eastern Hamersley Basin, include sub-autochthonous below-wave base excavation and megabrecciation of sea floor substrata, resulting in a unique 10-30-m-thick spherule-bearing megabreccia marker mapped over a nearly 100-km north-south strike distance in the east Hamersley Basin. The field relations suggest a pretsunami settling of the bulk of the spherules. Tsunami wave effects include: (1). dispersal of the spherule-rich soft upper sea floor sediments as a subaqueous mud cloud and (2). excavation of consolidated substrata below the soft sediment zone. Excavation and megabrecciation included injection of liquefied spherule-bearing microbreccia into dilated fractures in the disrupted underlying carbonates. Near-perfect preservation of the spherules within the

  11. The Precambrian terranes of Yemen and their correlation with those of Saudi Arabia and Somalia: Implications for the accretion of Gondwana

    Windley, B.F.; Whitehouse, M.J.; Stoeser, D.B.; Al-Khirbash, S.; Ba-Bttat, M. A. O.; Al-Ghotbah, A.

    2001-01-01

    Most of the basement of Yemen consists of early Precambrian continental high-grade terranes and Neoproterozoic low-grade island arcs that were accreted together to form an arc-continent collage during the Pan-African orogeny (Windley et al., 1996; Whitehouse et al., 1998; Whitehouse et al., in press). The suture zones between the arc and gneiss terranes are major crustal- scale tectonic boundaries. The terranes are situated east of the Nabitah suture and of the collage of low-grade, mainly island arc terranes of the Arabian Shield, but they have been reworked by a Neoproterozoic event associated with island arc accretion. Further east in Yemen are mostly unconformable, very weakly deformed and very low-grade or unmetamorphosed sediments. Thus Yemen provides key information on the broad zone of Neoproterozoic reworking associated with the collisional boundary between western and eastern Gondwana. 

  12. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  13. Les marqueurs structuraux et magmatiques de l'extension crustale au Protérozoïque terminal-Cambrien basal autour du massif de Kerdous (Anti-Atlas occidental, Maroc)

    NASA Astrophysics Data System (ADS)

    Soulaimani, Abderrahmane; Essaifi, Abderrahim; Youbi, Nassrddine; Hafid, Ahmid

    2004-12-01

    During the Late Precambrian-Early Cambrian times, the borders of the Kerdous inlier were affected by normal faults where thick conglomerates (Ouarzazate Group: PIII), grading progressively upwards into Cambrian marine sediments, were accumulated along their hanging walls. This tectonic activity persisted during the Early Cambrian and was accompanied by a magmatic activity resulting mainly in the emplacement of continental tholeiitic basalts. These tectono-sedimentary and magmatic events are related to the crustal extensional episode that affected the northwestern Gondwana margin during the opening of the Iapetus Ocean during Late Proterozoic times. To cite this article: A. Soulaimani et al., C. R. Geoscience 336 (2004).

  14. The crustal thickness of Australia

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  15. Precambrian plate tectonic setting of Africa from multidimensional discrimination diagrams

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.

    2017-01-01

    New multi-dimensional discrimination diagrams have been used to identify plate tectonic setting of Precambrian terrains. For this work, nine sets of new discriminant-function based multi-dimensional discrimination diagrams were applied for thirteen case studies of Precambrian basic, intermediate and acid magmas from Africa to highlight the application of these diagrams and probability calculations. The applications of these diagrams indicated the following results: For northern Africa: to Wadi Ghadir ophiolite, Egypt indicated an arc setting for Neoproterozoic (746 ± 19 Ma). For South Africa: Zandspruit greenstone and Bulai pluton showed a collision and a transitional continental arc to collision setting at about Mesoarchaean and Neoarchaean (3114 ± 2.3 Ma and 2610-2577 Ma); Mesoproterozoic (1109 ± 0.6 Ma and 1100 Ma) ages for Espungabera and Umkondo sills were consistent with an island arc setting. For eastern Africa, Iramba-Sekenke greenstone belt and Suguti area, Tanzania showed an arc setting for Neoarchaean (2742 ± 27 Ma and 2755 ± 1 Ma). Chila, Bulbul-Kenticha domain, and Werri area indicated a continental arc setting at about Neoproterozoic (800-789 Ma); For western Africa, Sangmelima region and Ebolowa area, southern Cameroon indicated a collision and continental arc setting, respectively for Neoarchaean (∼2800-2900 Ma and 2687-2666 Ma); Finally, Paleoproterozoic (2232-2169 Ma) for Birimian supergroup, southern Ghana a continental arc setting; and Paleoproterozoic (2123-2108 Ma) for Katiola-Marabadiassa, Côte d'Ivoire a transitional continental arc to collision setting. Although there were some inconsistencies in the inferences, most cases showed consistent results of tectonic settings. These inconsistencies may be related to mixed ages, magma mixing, crustal contamination, degree of mantle melting, and mantle versus crustal origin.

  16. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  17. Precambrian organic geochemistry - Preservation of the record

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Wedeking, K. W.; Kaplan, I. R.

    1983-01-01

    A review of earlier studies is presented, and new results in Precambrian organic geochemistry are discussed. It is pointed out that two lines of evidence can be developed. One is based on structural organic chemistry, while the other is based on isotopic analyses. In the present investigation, the results of both structural and isotopic investigations of Precambrian organic matter are discussed. Processes and products related to organic geochemistry are examined, taking into account the carbon cycle, an approximate view of the principal pathways of carbon cycling associated with organic matter in the present global ecosystem, processes affecting sedimentary organic matter, and distribution and types of organic matter. Attention is given to chemical fossils in Precambrian sediments, kerogen analyses, the determination of the structural characteristics of kerogen, and data concerning the preservation of the Precambrian organic geochemical record.

  18. Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa

    NASA Astrophysics Data System (ADS)

    Topno, Abhishek; Dey, Sukanta; Liu, Yongsheng; Zong, Keqing

    2018-04-01

    Several volumetrically minor ˜ 2.8 Ga anorogenic granites and rhyolites occur along the marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly constrained. This contribution presents petrographic, geochemical, zircon U-Pb and trace element, and mineral chemical data on such granites exposed in the Pala Lahara area to understand their petrogenesis and tectonic setting. The Pala Lahara granites are calc-alkaline, high-silica rocks and define a zircon U-Pb age of 2.79 Ga. These granites are ferroan, weakly metaluminous, depleted in Al, Ca and Mg and rich in LILE and HFSE. They are classified as A2-type granites with high Y/Nb ratios. Geochemical characteristics (high SiO2 and K2O, very low MgO, Mg#, Cr, Ni and V, negative Eu anomaly, flat HREE and low Sr/Y) and comparison with melts reported by published experimental studies suggest an origin through high-temperature, shallow crustal melting of tonalitic/granodioritic source similar to the ˜ 3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE-SSW trending mafic dyke swarm). It is suggested that the ˜ 2.8 Ga A-type granites in the Singhbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting.

  19. A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion

    NASA Astrophysics Data System (ADS)

    Abouchami, Wafa; Boher, Muriel; Michard, Annie; Albarede, Francis

    1990-10-01

    environments. Back-arc or low-Ti continental flood basalts provide a marginally good agreement but still face some difficulties. Oceanic flood basalts similar to those which form oceanic plateaus (e.g. in the Nauru basin) and later accreted to continents as allochtonous terranes represent the most acceptable modern analogue of many Proterozoic basalts. It is suggested that deep plumes piercing young lithosphere can generate huge amounts of tholeiites in a short time. Birimian basalts, like many Early Proterozoic basalts, may also be viewed as recent equivalents of the Archean greenstone belts. The modern komatiite of Gorgona Island is suggested to fit this model of intraplate volcanism. Although the 2.1 Ga magmatic event in West Africa has gone virtually unnoticed in the literature, it extends over several thousand kilometers and compares with the distribution of mantle-derived magmatic activity in other major orogenic provinces (e.g. Superior). It shows that the growth rate of continents cannot be extrapolated from the data obtained solely from the best studied continents (North America, Europe, Australia). If such large crustal segments were overlooked, a spurious pattern of episodic activity of the mantle could arise.

  20. Control of Precambrian basement deformation zones on emplacement of the Laramide Boulder batholith and Butte mining district, Montana, United States

    Berger, Byron R.; Hildenbrand, Thomas G.; O'Neill, J. Michael

    2011-01-01

    What are the roles of deep Precambrian basement deformation zones in the localization of subsequent shallow-crustal deformation zones and magmas? The Paleoproterozoic Great Falls tectonic zone and its included Boulder batholith (Montana, United States) provide an opportunity to examine the importance of inherited deformation fabrics in batholith emplacement and the localization of magmatic-hydrothermal mineral deposits. Northeast-trending deformation fabrics predominate in the Great Falls tectonic zone, which formed during the suturing of Paleoproterozoic and Archean cratonic masses approximately 1,800 mega-annum (Ma). Subsequent Mesoproterozoic to Neoproterozoic deformation fabrics trend northwest. Following Paleozoic through Early Cretaceous sedimentation, a Late Cretaceous fold-and-thrust belt with associated strike-slip faulting developed across the region, wherein some Proterozoic faults localized thrust faulting, while others were reactivated as strike-slip faults. The 81- to 76-Ma Boulder batholith was emplaced along the reactivated central Paleoproterozoic suture in the Great Falls tectonic zone. Early-stage Boulder batholith plutons were emplaced concurrent with east-directed thrust faulting and localized primarily by northwest-trending strike-slip and related faults. The late-stage Butte Quartz Monzonite pluton was localized in a northeast-trending pull-apart structure that formed behind the active thrust front and is axially symmetric across the underlying northeast-striking Paleoproterozoic fault zone, interpreted as a crustal suture. The modeling of potential-field geophysical data indicates that pull-apart?stage magmas fed into the structure through two funnel-shaped zones beneath the batholith. Renewed magmatic activity in the southern feeder from 66 to 64 Ma led to the formation of two small porphyry-style copper-molybdenum deposits and ensuing world-class polymetallic copper- and silver-bearing veins in the Butte mining district. Vein orientations

  1. Hydrology of some deep mines in Precambrian rocks

    SciT

    Yardley, D.H.

    1975-10-01

    A number of underground mines were investigated during the summer of 1975. All of them are in Precambrian rocks of the Lake Superior region. They represent a variety of geologic settings. The purpose of the investigations was to make a preliminary study of the dryness, or lack of dryness of these rocks at depth. In other words, to see if water was entering the deeper workings through the unmined rock by some means such as fracture or fault zones, joints or permeable zones. Water entering through old mine workings extending to, or very near to the surface, or from themore » drilling equipment, was of interest only insofar as it might mask any water whose source was through the hanging or footwall rocks. No evidence of running, seeping or moving water was seen or reported at depths exceeding 3,000 feet. At depths of 3,000 feet or less, water seepages do occur in some of the mines, usually in minor quantities but increased amounts occur as depth becomes less. Others are dry at 2,000 feet of depth. Rock movements associated with extensive mining should increase the local secondary permeability of the rocks adjoining the mined out zones. Also most ore bodies are located where there has been a more than average amount of faulting, fracturing, and folding during the geologic past. They tend to cluster along crustal flows. In general, Precambrian rocks of similar geology, to those seen, well away from zones that have been disturbed by extensive deep mining, and well away from the zones of more intense geologic activity ought to be even less permeable than their equivalents in a mining district.« less

  2. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  3. Crustal permeability

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  4. New aeromagnetic data of eastern Dronning Maud Land: implications for the spatial extent of a major Early Neoproterozoic juvenile crustal province

    NASA Astrophysics Data System (ADS)

    Ruppel, A. S.; Jacobs, J.; Eagles, G.; Läufer, A.; Jokat, W.

    2017-12-01

    A long-standing collaboration between Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Federal Institute for Geosciences and Natural Resources (BGR) aims to investigate the sub-ice crustal architecture and tectonic evolution of East Antarctica. Its main emphasis is on Dronning Maud Land (DML). During the austral summers 2014 and 2015, ca. 40.000 line kilometre of new magnetic, gravity and ice-penetrating radar data were collected with 10 km line spacing. Here, we report on magnetic anomaly data to the east and south of Sør Rondane (eastern DML), analysed with several filtering techniques. These data are integrated with exposure information from Sør Rondane, the Belgica Mts., and the Yamato Mts.. The study area covers the eastern part of a major, recently revealed Early Neoproterozoic juvenile crustal block, the Tonian Oceanic Arc Super Terrane (TOAST). The western extent of the TOAST is well defined by the Forster Magnetic Anomaly and characterized by a province of subdued SE-striking parallel positive magnetic anomalies in the mostly ice-covered region of south-eastern DML (the SE DML province). Geological investigations showed that this area can be correlated with exposures in Sør Rondane and scattered nunataks west of it. U-Pb ages of ca. 1000-900 Ma, are documented from zircons of gabbro-trondhjemite-tonalite-granodiorite (GTTG) suites in both areas. Further, geochemical analyses prove a juvenile character of the GTTGs, which are interpreted as oceanic arc complexes. Glacial drift from southern Sør Rondane points to an inland continuation of the TOAST, so far of unknown dimensions. The new magnetic data constrain the southern and eastern minimum extent of the TOAST, which we think has a minimum area of 450.000 km2. The spatial extent of this major juvenile crustal province has major significance for the tectonic reconstruction of East Antarctica and its involvement in Rodinia since it is suggested having evolved

  5. Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB)

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.

    2016-04-01

    The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is

  6. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination

    NASA Astrophysics Data System (ADS)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii

    2015-04-01

    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the

  7. A pan-Precambrian link between deglaciation and environmental oxidation

    Raub, T.J.; Kirschvink, J.L.

    2007-01-01

    Despite a continuous increase in solar luminosity to the present, Earth’s glacial record appears to become more frequent, though less severe, over geological time. At least two of the three major Precambrian glacial intervals were exceptionally intense, with solid evidence for widespread sea ice on or near the equator, well within a “Snowball Earth” zone produced by ice-albedo runaway in energy-balance models. The end of the first unambiguously low-latitude glaciation, the early Paleoproterozoic Makganyene event, is associated intimately with the first solid evidence for global oxygenation, including the world’s largest sedimentary manganese deposit. Subsequent low-latitude deglaciations during the Cryogenian interval of the Neoproterozoic Era are also associated with progressive oxidation, and these young Precambrian ice ages coincide with the time when basal animal phyla were diversifying. However, specifically testing hypotheses of cause and effect between Earth’s Neoproterozoic biosphere and glaciation is complicated because large and rapid True Polar Wander events appear to punctuate Neoproterozoic time and may have episodically dominated earlier and later intervals as well, rendering geographic reconstruction and age correlation challenging except for an exceptionally well-defined global paleomagnetic database.

  8. Precambrian evolution and the rock record

    NASA Technical Reports Server (NTRS)

    Awramik, S.

    1985-01-01

    The Precambrian time which refers to geological time prior to the first appearance of animals with mineralized hard parts was investigated. Best estimates for this event are around 570 million years ago. Because the rock record begins some 3,800 million years ago the Precambrian encompasses about 84% of geologic time. The fossil record for this immense span of time is dominated by prokaryotes and the sedimentary structures produced by them. The first fossil remains that are considered eukaryotic are found in 1,000 million year old rocks. The first animals may be as old as 700 million years. The fossil records of the first 84% of the Earth's history are collected and described.

  9. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    NASA Astrophysics Data System (ADS)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to

  10. Hf and Nd Isotope Evidence for Production of an Incompatible Trace Element Enriched Crustal Reservoir in Early Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Debaille, V.; Lapen, T. J.

    2010-12-01

    The final significant stage of accretion of the Earth was likely a collision between proto-Earth and a Mars sized impactor that formed the Moon. This event is thought to have produced enough thermal energy to melt all or most of the Earth, with a consequent magma ocean (MO). During subsequent cooling, the Earth would have formed its protocrust and corresponding mantle lithosphere, consisting of solidified basalt-komatiitic melt, in combination with buoyant cumulates and late stage residual melts from the MO. Relative to the convecting mantle, portions of this protolithosphere are likely to have been enriched in incompatible trace elements (ITE) in sufficient quantities to contain a significant amount of the bulk Earth’s budget for rare earth elements, U, Th, and Hf. If the protolithosphere was negatively buoyant, it may have overturned at or near the final stages of MO crystallization and a significant portion of that material may have been transported into the deep mantle where it resided and remixed into the convecting mantle over Earth history [1,2]. If the protolithosphere remained positively buoyant, its crust would have likely begun to erode from surface processes, and subsequently recycled back into the mantle over time as sediment and altered crust, once a subduction mechanism arose. The Nd and Hf isotopic compositions of Earth’s earliest rocks support the idea that an early-formed ITE-enriched reservoir was produced. The maxima in 142Nd/144Nd for 3.85 to 3.64 Ga rocks from Isua, Greenland decreases from +20 ppm to +12 ppm relative to the present day mantle value, respectively [3]. This indicates mixing of an early-formed ITE enriched reservoir back into the convecting mantle. In addition, zircons from the 3.1 Ga Jack Hills conglomerate indicate that material with an enriched 176Lu/177Hf of ~0.02 and an age of 4.4 Ga or greater was present at the Earth’s surface over the first 2 Ga of Earth history, supporting the scenario of a positively buoyant

  11. A propagator matrix method for the Rayleigh-Taylor instability of multiple layers: a case study on crustal delamination in the early Earth

    NASA Astrophysics Data System (ADS)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.

  12. Crustal structure of the southeastern Brazilian margin, Campos Basin, from aeromagnetic data: New kinematic constraints

    NASA Astrophysics Data System (ADS)

    Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.

    2010-07-01

    The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.

  13. Late Permian to Early Oligocene granitic magmatism of the Phan Si Pan uplift area, NW Vietnam: their relationship to Phanerozoic crustal evolution of Southwest China

    NASA Astrophysics Data System (ADS)

    Pham, T. T.; Shellnutt, G.

    2015-12-01

    The Phan Si Pan uplift area of NW Vietnam is a part of the Archean to Paleoproterozoic Yangtze Block, Southwest China. This area is of particular interest because it experienced a number of Phanerozoic crustal building events including the Emeishan Large Igneous Province, the India-Eurasia collision and Ailaoshan - Red River Fault displacement. In the Phan Si Pan uplift area, there are at least three different geochronological complexes, including: (1) Late Permian, (2) Eocene and (3) Early Oligocene. (1) The Late Permian silicic rocks are alkali ferroan A1-type granitic rocks with U/Pb ages of 251 ± 3 to 254 ± 3 Ma. The Late Permian silicic rocks of Phan Si Pan uplift area intrude the upper to middle crust and are considered to be part of the ELIP that was displaced during the India-Eurasian collision along the Ailaoshan-Red River Fault shear zone and adjacent structures (i.e. Song Da zone). Previous studies suggest the Late Permian granitic rocks were derived by fractional crystallization of high - Ti basaltic magma. (2) The Eocene rocks are alkali ferroan A1-type granites (U/Pb ages 49 ± 0.9 Ma) and are spatially associated with the Late Permian granitic rocks. The trace element ratios of this granite are similar to the Late Permian rocks (Th/Nb=0.2, Th/Ta = 2.5, Nb/U = 24, Nb/La =1.2, Sr/Y=1). The origin of the Eocene granite is uncertain but it is possible that it formed by fractional crystallization of a mafic magma during a period of extension within the Yangtze Block around the time of the India-Eurasia collision. (3) The Early Oligocene granite is characterized as a peraluminous within-plate granite with U/Pb ages of 31.3 ± 0.4 to 34 ± 1 Ma. The Early Oligocene granite has trace element ratios (Th/Nb = 2.1, Th/Ta = 22.6, Nb/U = 4.4, Nb/La = 0.4, Sr/Y = 60.4) similar to crust melts. The high Sr/Y ratio (Sr/Y = 20 - 205) indicates a lower crust source that was garnet-bearing. The Phan Si Pan uplift was neither a subduction zone nor an arc environment

  14. Early cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing'an range

    NASA Astrophysics Data System (ADS)

    Li, Yinglei; Liu, Huichuan; Huangfu, Pengpeng; He, Hongyun; Liu, Yongzheng

    2018-01-01

    This paper presents new zircon LA-ICP-MS U-Pb ages and whole-rock geochemical data for two granitic plutons and rhyolites of the Baiyingaolao Formation in the western Xing'an range (NE China). The two syenogranite granitic plutons yield identical zircon U-Pb age of 142 ± 1 Ma, and the Baiyingaolao rhyolites yield zircon U-Pb age of 138 ± 2 Ma. The granites contain some hornblendes, and show low Zr and Zr + Nb + Ce + Y contents, and low A/CNK (0.98-1.11), Mg# (6-55), and FeOT/MgO values. Rhyolite samples show similar geochemical characteristics with A/CNK of 0.99-1.10 and Mg# of 14-21. In combination with the high K2O contents (4.43-5.61 wt%) and negative correlations between P2O5 and SiO2, both the granites and rhyolites were classified as high-K calc-alkaline I-type granitoids. All samples give high zirconium saturation temperature of 794-964 °C with few initially inherited zircons, and belong to high-temperature I-type granitoids. They were generated by dehydration melting of biotite/muscovite from sub-alkaline meta-basalts in lower crust depth, leaving garnet, amphibole, and plagioclase as the major residual minerals. The syenogranites and rhyolites are likely formed in Mongol-Okhotsk oceanic subduction setting. Incorporating other lower crust-originated felsic rocks in Erguna and Xing'an massifs and Songliao basin, it is argued that lower crustal reworking is pronounced in NE China during Early Cretaceous.

  15. An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    NASA Technical Reports Server (NTRS)

    Hastings, D. A. (Principal Investigator)

    1982-01-01

    The problems associated with the use of an interactive magnetic modeling program are reported and a publication summarizing the MAGSAT anomaly results for Africa and the possible tectonic associations of these anomalies is provided. An overview of the MAGSAT scalar anomaly map for Africa suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Results indicate that the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.

  16. Precambrian Secular Evolution of Oceanic Nickel Concentrations: An Update

    NASA Astrophysics Data System (ADS)

    Konhauser, K.; Pecoits, E.; Peacock, C.; Robbins, L. J.; Kappler, A.; Lalonde, S.

    2014-12-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to address nutrient limitations on early biological productivity. In 2009 we reported that secular trends in IF Ni/Fe ratios record a reduced flux of Ni to the oceans ca. 2.7 billion years ago, which we attribute to decreased eruption of Ni-rich ultramafic rocks1. We determined that dissolved Ni concentrations may have reached ~400 nM throughout much of the Archean, but dropped below ~200 nM by 2.5 Ga and to modern day values (~9 nM) by ~550 Ma. As Ni is a key metal cofactor in several enzymes of methanogens, its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. Here we provide an updated compilation of Ni concentrations and Ni/Fe ratios in Precambrian iron formations based on a greatly expanded (>3 fold) dataset. We frame our rock record compilation in the context of new experiments examining the partitioning and mobility of Ni during simulated diagenesis of Ni-doped iron formation mineral precursors, as well as a fresh look at Ni-Fe scaling relationships in IF vs. modern Fe-rich chemical sediments. While its potential effects on atmospheric oxygenation remains to be fully resolved2, our new results reaffirm the Paleoproterozoic Ni famine, whereby the enzymatic reliance of methanogens on a diminishing supply of volcanic Ni links mantle cooling to the trajectory of Earth surface biogeochemical evolution. Konhauser KO, et al. (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458: 750-753. Kasting JE (2013) What caused the rise of atmospheric O2? Chemical Geology 362: 13-25.

  17. Testing the GAD throughout the Precambrian

    NASA Astrophysics Data System (ADS)

    Veikkolainen, T.; Pesonen, L. J.; Korhonen, K.

    2013-05-01

    A long tradition has emerged in using the inclination frequency analysis to study the functionality of the Geocentric Axial Dipole (GAD) hypothesis in paleomagnetism. Here a test is presented, based on 3016 records of the Earth's Precambrian geomagnetic field as acquired from a novel catalogue maintained by University of Helsinki, and Yale University. The technique is based on fitting zonal (axial) dipolar (GAD), quadrupolar (G2) and octupolar (G3) harmonics to find the best-fitting inclination distribution. The influence of various factors, such as the geologic age, rock type, magnetic polarity, quality of data and its spatial distribution has been tested. Finally, the most plausible estimates for the zonal non-dipolar contributions of the field have been determined as 0 % for G2 and 6 % for G3. Another way to analyze the zonal harmonics of the geomagnetic field and the validity of GAD is based on the asymmetry between the normal and reversed polarities. To get an insight to the morphology of the field in the late Paleoproterozoic, we have also run a reversal simulation using data mainly from the 1.88 Ga Stark Formation, Canada, revealing the both stable polarity directions (N, R) and also transitional directions between them. In the global Precambrian perspective, an overall moderate dependence of the inclination asymmetry on paleolatitude is visible with a distinct mid-latitude peak. However, the required values to account for the observed deviation from GAD are less than 5 % for G2 and less than 10 % for G3. Alternatively, paleosecular variation (PSV) can be used to shed light to processes in the geodynamo and to model the growth of the inner core. We have applied the CALS3K model of the field as a basis of a time simulation of declination-inclination pairs around a grid on the Earth and by this way in estimating PSV. Our approach is based on calculating S vs latitude curves at different time instances in the validity period of the model, and comparing them

  18. From a collage of microplates to stable continental crust - an example from Precambrian Europe

    NASA Astrophysics Data System (ADS)

    Korja, Annakaisa

    2013-04-01

    Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive

  19. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.

    PubMed

    Li, Yi-Liang

    2012-12-01

    Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.

  20. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    Howard, K.A.

    2003-01-01

    The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large

  1. The late Precambrian greening of the Earth.

    PubMed

    Knauth, L Paul; Kennedy, Martin J

    2009-08-06

    Many aspects of the carbon cycle can be assessed from temporal changes in the (13)C/(12)C ratio of oceanic bicarbonate. (13)C/(12)C can temporarily rise when large amounts of (13)C-depleted photosynthetic organic matter are buried at enhanced rates, and can decrease if phytomass is rapidly oxidized or if low (13)C is rapidly released from methane clathrates. Assuming that variations of the marine (13)C/(12)C ratio are directly recorded in carbonate rocks, thousands of carbon isotope analyses of late Precambrian examples have been published to correlate these otherwise undatable strata and to document perturbations to the carbon cycle just before the great expansion of metazoan life. Low (13)C/(12)C in some Neoproterozoic carbonates is considered evidence of carbon cycle perturbations unique to the Precambrian. These include complete oxidation of all organic matter in the ocean and complete productivity collapse such that low-(13)C/(12)C hydrothermal CO(2) becomes the main input of carbon. Here we compile all published oxygen and carbon isotope data for Neoproterozoic marine carbonates, and consider them in terms of processes known to alter the isotopic composition during transformation of the initial precipitate into limestone/dolostone. We show that the combined oxygen and carbon isotope systematics are identical to those of well-understood Phanerozoic examples that lithified in coastal pore fluids, receiving a large groundwater influx of photosynthetic carbon from terrestrial phytomass. Rather than being perturbations to the carbon cycle, widely reported decreases in (13)C/(12)C in Neoproterozoic carbonates are more easily interpreted in the same way as is done for Phanerozoic examples. This influx of terrestrial carbon is not apparent in carbonates older than approximately 850 Myr, so we infer an explosion of photosynthesizing communities on late Precambrian land surfaces. As a result, biotically enhanced weathering generated carbon-bearing soils on a large

  2. Diversity of Microfossils and Preservation of Thermally Altered Stromatolites from Anomalous Precambrian Paleoenvironments

    NASA Astrophysics Data System (ADS)

    Osterhout, Jeffrey Thomas

    Studies of Precambrian life on Earth have been dominated by those of shallow marine deposits, and in order to gain a more complete picture of life's early evolution it is important to consider a wider range of inhabited environments, including deep marine and terrestrial ecosystems. Evidence for early microbial life comes primarily from fossil microorganisms (microfossils), microbial sedimentary structures (e.g., stromatolites), and sedimentary organic matter (e.g., kerogen). The diversity and preservation of these different forms of fossil evidence introduces several challenges to their interpretation, requiring thorough analysis for accurately determining their biological origins. Investigating the paleobiology, organic geochemistry, and thermal maturity of such deposits provides a holistic approach to exploring the Precambrian biosphere in unfamiliar paleoenvironments. This thesis presents two studies of unique Precambrian ecosystems: a diverse microfossil assemblage from a 2.52-billion-year-old (Ga) deep marine deposit, and thermally altered stromatolites from a 1.4-billion-year-old evaporitic lacustrine deposit. Black cherts from the upper Gamohaan Formation (2.52 Ga) contain a consortium of organic-walled large and small coccoids, tubular filaments, and mat-like biofilm structures. Geochemical analyses of stromatolitic chert-carbonate from the Middlebrun Bay Member (1.4 Ga) in contact with a mafic sill show a trend in organic carbon isotopes relative to thermal maturity that is contrary to theoretical predictions. Findings from these studies reveal, for the first time, microfossil evidence of a diverse microbial community in the open Archean ocean prior to the Great Oxidation Event (GOE) 2.4 billion years ago, and provide insight on the relationship between thermal maturity and organic carbon isotopes within a set of terrestrial stromatolites. Together, these studies help capture the enigmatic nature of the Precambrian fossil record and expand our full

  3. The oxygen-hafnium isotope paradox in the early post Columbia River Basalt silicic volcanism: Evidence for complex batch assembly of upper crustal, lower crustal and low-δ18O silicic magmas

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Ellis, B. S.; Schmitt, A. K.; Fisher, C. M.; Vervoort, J. D.

    2013-12-01

    Eruptions of the Columbia River flood basalts were immediately followed by large eruptions of silicic magmas; some may have been coeval, others genetically-linked to the CRB. Among the most voluminous of these eruptions was the Jarbidge Rhyolite, which comprises ~500 km3 of lava erupted from 16.1-15.0 Ma in northern Nevada. Activity at Jarbidge was followed at 15.0 Ma by a series of rhyolitic ignimbrites and lavas in the J-P Desert of Idaho ~50 km NW of the Jarbidge Rhyolite center. To constrain magmatic origins and upper crustal magma storage conditions of these two silicic magmatic systems, we conducted bulk and high spatial resolution analysis of whole rocks and minerals (quartz, feldspar, and zircon). Bulk quartz and plagioclase δ18O values of the J-P Desert units are only moderately lower than mantle values, with δ18O-quartz of 5.0-5.5‰ and plagioclase δ18O of ~3.9-5.8‰, along with slightly unradiogenic Nd and Hf whole rock values (average ɛHf and ɛNd of -13.1 and -10.0, respectively), while quartz from the Jarbidge Rhyolite has normal δ18O (+8.4‰), but very unradiogenic ɛHf-ɛNd (ɛHf = -34.7, ɛNd = -24.0), fingerprinting Archean upper crust. SIMS analysis of J-P Desert zircons reveals considerably diverse δ18O values, ranging from -0.6‰ to +6.5‰ in a single unit. The same zircon spots yielded U-Pb SIMS ages which generally agree with the 40Ar/39Ar eruption ages, with no evidence of inheritance of pre-Miocene zircons. Combined with LA-MC-ICP-MS analysis of Hf isotopes overlapping the earlier SIMS spots, these zircons show a clear near-linear correlation between ɛHf and δ18O values observed in individual zircons. This relationship suggests variable mixing of two distinct silicic magmas prior to eruption of the J-P Desert rhyolites. One of these, characterized by extremely low ɛHf values and normal δ18O values, is likely a mantle magma strongly contaminated with shallow Archean crust, represented by the Jarbidge Rhyolite. The other is

  4. Distinct Chlorine Isotopic Reservoirs on Mars: Implications for Character, Extent and Relative Timing of Crustal Interaction with Mantle-Derived Magmas, Evolution of the Martian Atmosphere, and the Building Blocks of an Early Mars

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Messenger, S.; Sharp, Z. D.; Burger, P. V.; Nguyen, N.; McCubbin, F. M.

    2017-01-01

    The style, magnitude, timing, and mixing components involved in the interaction between mantle derived Martian magmas and Martian crust have long been a point of debate. Understanding this process is fundamental to deciphering the composition of the Martian crust and its interaction with the atmosphere, the compositional diversity and oxygen fugacity variations in the Martian mantle, the bulk composition of Mars and the materials from which it accreted, and the noble gas composition of Mars and the Sun. Recent studies of the chlorine isotopic composition of Martian meteorites imply that although the variation in delta (sup 37) Cl is limited (total range of approximately14 per mille), there appears to be distinct signatures for the Martian crust and mantle. However, there are potential issues with this interpretation. New Cl isotope data from the SAM (Sample Analysis at Mars) instrument on the Mars Science Lab indicate a very wide range of Cl isotopic compositions on the Martian surface. Recent measurements by [10] duplicated the results of [7,8], but placed them within the context of SAM surface data. In addition, Martian meteorite Chassigny contains trapped noble gases with isotopic ratios similar to solar abundance, and has long been considered a pristine, mantle derived sample. However, previous studies of apatite in Chassigny indicate that crustal fluids have interacted with regions interstitial to the cumulus olivine. The initial Cl isotope measurements of apatite in Chassigny suggest an addition of crustal component to this lithology, apparently contradicting the rare gas data. Here, we examine the Cl isotopic composition of multiple generations and textures of apatite in Chassigny to extricate the crustal and mantle components in this meteorite and to reveal the style and timing of the addition of crustal components to mantle-derived magmas. These data reveal distinct Martian Cl sources whose signatures have their origins linked to both the early Solar

  5. Reconnaissance geology of the Precambrian rocks in the Ayn Qunay quadrangle, Kingdom of Saudi Arabia

    Overstreet, William C.; Whitlow, Jesse William; Ankary, Abdullah O.

    1972-01-01

    The Aya Qunay quadrangle covers an area of 2833 sq km in central Saudi Arabia, Only the western edge of the quadrangle is underlain by Precambrian rocks, which were the subject of this investigation. Toward the east the Precambrian rocks are unconformably overlain by Permian and younger sedimentary rocks. The Permian rocks at the west edge of the Ayn Qunay quadrangle consist mainly of a granitic intrusive complex of batholithic dimensions. Parts of the eastern edge of the granitic complex are exposed just west of the overlying Khuff Formation of Permian age, where biotite-hornblende granite of the complex intrudes chlorite-sericite schist of the Precambrian Bi'r Khountina Group. The biotite-hornblende granite of the complex also intrudes plutons of diorite, gabbro, and pyroxenite and is itself intruded by granite porphyry, thereby indicating some difference in age between the granitic rocks in the complex. A sequence of metamorphosed volcanic rocks composed mainly of andesite, rhyolite, and kindred rocks, and called the Halaban Group, is older than the Bi'r Khountina Group. Relations between the Halaban and a gray hornblende-biotite granite gneiss are uncertain, but the gneiss may be older than the Halaban. The few observed contacts disclosed parallel foliation in the two units, but the foliation may have been imposed after the Halaban was deposited on the granite gneiss. Two major left-lateral faults extend west-northwest across the Precambrian rocks but are not in the Permian rocks. These faults parallel to the Najd fault zone found farther south. Seemingly they correlate in time with early movements on the Najd fault zone, but not with the latest. Saprolitic material-of variable thickness is present on the upper surface of the Precambrian rocks beneath the Khuff Formation at many places. Where the Khuff Formation has been removed by erosion, the saprolite is also stripped away. The weathering probably took place in pre-Khuff time. No ancient mines or prospects

  6. Age and provenance constraints on seismically-determined crustal layers beneath the Paleozoic southern Central Asian Orogen, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Jian, Ping; Kröner, Alfred; Shi, Yuruo; Zhang, Wei; Liu, Yaran; Windley, Brian F.; Jahn, Bor-ming; Zhang, Liqao; Liu, Dunyi

    2016-06-01

    We present 110 ages and 51 in-situ δ18O values for zircon xenocrysts from a post-99 Ma intraplate basaltic rock suite hosted in a subduction-accretion complex of the southern Central Asian Orogenic Belt in order to constrain a seismic profile across the Paleozoic Southern Orogen of Inner Mongolia and the northern margin of the North China Craton. Two zircon populations are recognized, namely a Phanerozoic group of 70 zircons comprising granitoid-derived (ca. 431-99 Ma; n = 31; peak at 256 Ma), meta-granitoid-derived (ca. 449-113 Ma; n = 24; peak at 251 Ma) and gabbro-derived (436-242 Ma; n = 15; peaks at 264 and 244 Ma) grains. Each textural type is characterized by a distinct zircon oxygen isotope composition and is thus endowed with a genetic connotation. The Precambrian population (2605-741 Ma; n = 40) exhibits a prominent age peak at 2520 Ma (granulite-facies metamorphism) and four small peaks at ca. 1900, 1600, and 800 Ma. Our new data, together with literature zircon ages, significantly constrain models of three seismically-determined deep crustal layers beneath the fossil subduction zone-forearc along the active northern margin of the North China Craton, namely: (1) an upper arc crust of early to mid-Paleozoic age, intruded by a major Permian-Triassic composite granitoid-gabbroic pluton (8-20 km depth); (2) a middle crust, predominantly consisting of mid-Meso- to Neoproterozoic felsic and mafic gneisses; and (3) a lower crust composed predominantly of late Archean granulite-facies rocks. We conclude that the Paleozoic orogenic crust is limited to the upper crustal level, and the middle to lower crust has a North China Craton affinity. Furthermore, integrating our data with surface geological, petrological and geochronological constraints, we present a new conceptual model of orogenic uplift, lithospheric delamination and crustal underthrusting for this key ocean-continent convergent margin.

  7. Moon Crustal Thickness

    2013-11-08

    Global map of crustal thickness of the moon derived from gravity data obtained by NASA GRAIL spacecraft. The lunar near side is represented on the left hemisphere. The far side is represented in the right hemisphere.

  8. New constraints on Precambrian ocean composition

    NASA Technical Reports Server (NTRS)

    Grotzinger, J. P.; Kasting, J. F.

    1993-01-01

    The Precambrian record of carbonate and evaporite sedimentation is equivocal. In contrast to most previous interpretations, it is possible that Archean, Paleoproterozoic, and to a lesser extent, Meso to Neoproterozoic seawater favored surplus abiotic carbonate precipitation, as aragonite and (hi-Mg?) calcite, in comparison to younger times. Furthermore, gypsum/anhydrite may have been only rarely precipitated prior to halite precipitation during evaporation prior to about 1.8 Ga. Two effects may have contributed to these relationships. First, sulfate concentration of seawater may have been critically low prior to about 1.9 Ga so the product mCa++ x mSO4-- would not have produced gypsum before halite, as in the Mesoproterozoic to modern ocean. Second, the bicarbonate to calcium ratio was sufficiently high so that during progressive evaporation of seawater, calcium would have been exhausted before the gypsum field was reached. The pH of the Archean and Paleoproterozoic ocean need not have been significantly different from the modern value of 8.1, even at CO2 partial pressures of a tenth of an atmosphere. Higher CO2 partial pressures require somewhat lower pH values.

  9. Heat flow from the Liberian precambrian shield

    SciT

    Sass, J.H.; Behrendt, J.C.

    1980-06-10

    Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m/sup -2/. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m/sup -2/. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42 +- 8 mW m/sup -2/) and Nigeria (38 +- 2 mW /sup -2/) but are somewhat higher than values from Niger (20 mW m/sup -2/)more » and neighboring Sierra Leone (26 mW m/sup -2/). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58 +- 8 mW m/sup -2/), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 ..mu..W m/sup -3/. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a 'characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m/sup -2/ is consistent with that from other Precambrian shields.« less

  10. Heat flow from the Liberian Precambrian Shield

    NASA Astrophysics Data System (ADS)

    Sass, J. H.; Behrendt, J. C.

    1980-06-01

    Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m-2. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m-2. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42±8 mW m-2) and Nigeria (38±2 mW m-2) but are somewhat higher than values from Niger (20 mW m-2) and neighboring Sierra Leone (26 mW m-2). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58±8 m W m-2), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 /μW m-3. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a `characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m-2 is consistent with that from other Precambrian shields.

  11. Continental crustal composition and lower crustal models

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1983-01-01

    The composition of the upper crust is well established as being close to that of granodiorite. The upper crustal composition is reflected in the uniform REE abundances in shales which represent an homogenization of the various REE patterns. This composition can only persist to depths of 10-15 km, for heat flow and geochemical balance reasons. The composition of the total crust is model dependent. One constraint is that it should be capable of generating the upper granodioritic (S.L.) crust by partial melting within the crust. This composition is based on the andesite model, which assumes that the total crust has grown by accretion of island arc material. A representation of the growth rate of the continental crust is shown. The composition of the lower crust, which comprises 60-80% of the continental crust, remains a major unknown factor for models of terrestrial crustal evolution. Two approaches are used to model the lower crust.

  12. CRUSTAL FAILURE DURING BINARY INSPIRAL

    SciT

    Penner, A. J.; Andersson, N.; Jones, D. I.

    2012-04-20

    We present the first fully relativistic calculations of the crustal strain induced in a neutron star by a binary companion at the late stages of inspiral, employing realistic equations of state for the fluid core and the solid crust. We show that while the deep crust is likely to fail only shortly before coalescence, there is a large variation in elastic strain, with the outermost layers failing relatively early on in the inspiral. We discuss the significance of the results for both electromagnetic and gravitational-wave astronomy.

  13. Recalibrating the concentration of Precambrian seawater sulfate

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Bradley, A. S.; Hoarfrost, A.; Girguis, P. R.

    2010-12-01

    The isotopic offset between sulfate sulfur and sulfide sulfur (δ34Ssulfate-sulfide) is widely used in the Precambrian as a paleo-indicator of seawater sulfate concentrations. Popularized by experimental work proposing an increase in seawater sulfate at the Archean - Proterozoic boundary, the concept of using a calibrated physiological process (dissimilatory sulfate reduction) to extract environmental information holds the potential to unlock numerous geological questions. To that end, the interpretability of sulfur isotope records relies on the degree to which strict quantitative constraints have been placed on the relationship between sulfate concentrations and sulfate reducing bacteria. Our work serves to extend those constraints. Here we present data from a series of replicate quasi-chemostat microbial reactors, inoculated with marine sediment from Monterey Bay and incubated with artificial seawater ([SO42-]< 5 mM). Our experimental design continuously removes sulfide and allows for systematic tracking of the dependence of δ34Ssulfate-sulfide on seawater sulfate concentration. In addition to expanding the existing δ34S context, we target high-precision multiple sulfur isotope data, which allows for a greater interpretability of both the overall result and its mapping onto environmental records. Further, we use natural abundance and δ18O spiked water within our experiments to assay rates of cellular re-oxidation (within the sulfate reduction pathway) and to constrain natural δ18O effects within these systems. Finally, we use modern molecular biological techniques to track community structure as a function of time and environmental conditions. Together, these data provide an integrated metric with which to interpret complex natural sulfur isotope records.

  14. Cryptic crustal events during the Taconic Orogeny elucidated through LA-ICPMS studies of volcanic zircons, southern Appalachians, Alabama

    NASA Astrophysics Data System (ADS)

    Herrmann, A. D.; Leslie, S.; Haynes, J.

    2017-12-01

    Despite a long history of stratigraphic work, many questions remain about the tectonic setting of the Taconic orogeny during the early late Ordovician. Several different global paleogeographic hypotheses exist about the driving force that led to this orogeny. While some studies suggest that the closing of the Iapetus ocean was caused by the collision of the North American and South American plates, most studies suggest that island arc systems collided with the passive continental margin of North America. Nevertheless, disagreement exists on how to explain the stratigraphic architecture of the siliciclastic sequences representing the erosion of the Taconic Highlands in an island arc setting. Some studies suggest the collision was analogous to the modern Banda Arc system with the development of a foreland basin and a sedimentary wedge, while other studies call for the presence of a back arc basin. Here we present U-Pb results of volcanic zircons that are associated with the magmatic activity during this time. Previous studies focused on slender zircons for age dating. However, in this study we analyzed several large zircons from close to the volcanic center in Alabama that have inherited cores in order to test for the presence of geochemical evidence for multiple crustal events. While the rims have ages consistent with the Taconic Orogeny ( 450 my), the cores have much older ages ( 1000 my). Our results support the hypothesis that during the closing of the Iapetus ocean, Precambrian and Cambrian sediments from the passive continental margin were subducted and incorporated into the volcanic system. This led to the inclusion of Precambrian zircons into melts associated with the Taconic Orogeny. Overall, our study supports the presence of subduction of preexisting sedimentary rocks and potentially the presence of a sedimentary wedge.

  15. Crustal structure beneath the Kenya Rift from axial profile data

    Mechie, J.; Keller, Gordon R.; Prodehl, C.; Gaciri, S.; Braile, L.W.; Mooney, W.D.; Gajewski, D.; Sandmeier, K.-J.

    1994-01-01

    Modelling of the KRISP 90 axial line data shows that major crustal thinning occurs along the axis of the Kenya Rift from Moho depths of 35 km in the south beneath the Kenya Dome in the vicinity of Lake Naivasha to 20 km in the north beneath Lake Turkana. Low Pn velocities of 7.5-7.7 km/s are found beneath the whole of the axial line. The results indicate that crustal extension increases to the north and that the low Pn velocities are probably caused by magma (partial melt) rising from below and being trapped in the uppermost kilometres of the mantle. Along the axial line, the rift infill consisting of volcanics and a minor amount of sediments varies in thickness from zero where Precambrian crystalline basement highs occur to 5-6 km beneath the lakes Turkana and Naivasha. Analysis of the Pg phase shows that the upper crystalline crust has velocities of 6.1-6.3 km/s. Bearing in mind the Cainozoic volcanism associated with the rift, these velocities most probably represent Precambrian basement intruded by small amounts of igneous material. The boundary between the upper and lower crusts occurs at about 10 km depth beneath the northern part of the rift and 15 km depth beneath the southern part of the rift. The upper part of the lower crust has velocities of 6.4-6.5 km/s. The basal crustal layer which varies in thickness from a maximum of 2 km in the north to around 9 km in the south has a velocity of about 6.8 km/s. ?? 1994.

  16. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?

    NASA Technical Reports Server (NTRS)

    Grotzinger, J. P.; Knoll, A. H.

    1995-01-01

    Late Permian reefs of the Capitan complex, west Texas; the Magnesian Limestone, England; Chuenmuping reef, south China; and elsewhere contain anomalously large volumes of aragonite and calcite marine cements and sea-floor crusts, as well as abundant microbial precipitates. These components strongly influenced reef growth and may have been responsible for the construction of rigid, open reefal frames in which bryozoans and sponges became encrusted and structurally reinforced. In some cases, such as the upper biostrome of the Magnesian Limestone, precipitated microbialites and inorganic crusts were the primary constituents of the reef core. These microbial and inorganic reefs do not have modern marine counterparts; on the contrary, their textures and genesis are best understood through comparison with the older rock record, particularly that of the early Precambrian. Early Precambrian reefal facies are interpreted to have formed in a stratified ocean with anoxic deep waters enriched in carbonate alkalinity. Upwelling mixed deep and surface waters, resulting in massive seafloor precipitation of aragonite and calcite. During Mesoproterozoic and early Neoproterozoic time, the ocean became more fully oxidized, and seafloor carbonate precipitation was significantly reduced. However, during the late Neoproterozoic, sizeable volumes of deep ocean water once again became anoxic for protracted intervals; the distinctive "cap carbonates" found above Neoproterozoic tillites attest to renewed upwelling of anoxic bottom water enriched in carbonate alkalinity and 12C. Anomalous late Permian seafloor precipitates are interpreted as the product, at least in part, of similar processes. Massive carbonate precipitation was favored by: 1) reduced shelf space for carbonate precipitation, 2) increased flux of Ca to the oceans during increased continental erosion, 3) deep basinal anoxia that generated upwelling waters with elevated alkalinities, and 4) further evolution of ocean water in

  17. Revisiting the Si Isotope Record of Precambrian Cherts and Banded Iron Formations Using New Experimental Results

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Satkoski, A.; Beard, B. L.; Reddy, T. R.; Beukes, N. J.; Johnson, C.

    2017-12-01

    Precambrian Banded iron formations (BIFs) and cherts provide a record of Fe and Si biogeochemical cycling in early Earth marine environments. Much of the focus on BIFs has been the origin and pathways for Fe, but Si is intimately tied to BIF genesis through its connection to Fe minerals, either through direct structural bonding or through sorption. In the Precambrian ocean, aqueous Si contents were high, and it is increasingly recognized that Fe(III)-Si gels were the most likely precursor to BIFs [1]. It is known that Fe-Si bonding affects stable Fe isotope fractionations [2], and our recent experimental work shows this to be true for stable Si isotope fractionations [3, 4]. Silicon isotope fractionations in the Fe-Si system vary from 0‰ to nearly 4‰ in 30Si/28Si ratios with the solid phase being isotopically light depending on Fe:Si ratio [3, 4, and this study], a range far larger than that of 56Fe/54Fe ratios, highlighting the fact that Si isotopes are a highly sensitive tracer of the Fe-Si cycle. This range in Si isotope fractionation factors for the Fe-Si system can explain the full range of δ30Si values measured in Precambrian BIFs, providing a new framework to interpret Precambrian δ30Si records. Our results provide strong support for a model where Fe(III)-Si gels are the precursor phase for BIFs, which in turn affects estimates for the aqueous Fe and Si contents of the Precambrian oceans through changes in Fe-Si gel solubility. Our experiments also showed that microbial dissimilatory iron reduction (DIR) of Fe(III)-Si gel can easily produce a solid with Fe(II)-Fe(III) stoichiometry equal to magnetite, in marked contrast to abiotic incorporation of Fe(II) into Fe(III)-Si gel that resulted in a solid with Fe(II)-Fe(III) stoichiometry much lower than magnetite. Moreover, this DIR process produces a unique, negative δ30Si signature that should be eventually preserved in quartz closely associated with magnetite upon phase transformation of Fe-Si gel, and

  18. Precambrian evolution of the Salalah Crystalline Basement from structural analysis and 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Al-Doukhi, Hanadi Abulateef

    The Salalah Crystalline Basement (SCB) is the largest Precambrian exposure in Oman located on the southern margin of the Arabian Plate at the Arabian Sea shore. This work used remote sensing, detailed structural analysis and the analysis of ten samples using 40Ar/39Ar age dating to establish the Precambrian evolution of the SCB by focusing on its central and southwestern parts. This work found that the SCB evolved through four deformational events that shaped its final architecture: (1) Folding and thrusting event that resulted in the emplacement of the Sadh complex atop the Juffa complex. This event resulted in the formation of possibly N-verging nappe structure; (2) Regional folding event around SE- and SW-plunging axes that deformed the regional fabric developed during the N-verging nappe structure and produced map-scale SE- and SW-plunging antiforms shaping the complexes into a semi-dome structure; (3) Strike-slip shearing event that produced a conjugate set of NE-trending sinistral and NW-trending dextral strike-slip shear zones; and (4) Localized SE-directed gravitational collapse manifested by top-to-the-southeast kinematic indicators. Deformation within the SCB might have ceased by 752.2+/-2.7 Ma as indicated by an age given by an undeformed granite. The thermochron of samples collected throughout the SCB complexes shows a single cooling event that occurred between about 800 and 760 Ma. This cooling event could be accomplished by crustal exhumation resulting in regional collapse following the prolonged period of the contractional deformation of the SCB. This makes the SCB a possible metamorphic core complex.

  19. An ultraviolet light induced bacteriophage in Beneckea gazogenes. [organism growth on precambrian earth

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1979-01-01

    The effects of UV and high intensity irradiation on microorganisms growing under conditions prevalent during the early Precambrian Aeon are examined. The study employed the anaerobic red pigmented marine vibrio, Beneckea gazogenes (Harwood, 1978), using an extreme UV sensitivity of 2537 A, extensive cell lysis, and commitant production of bacteriophage induced by the UV light. Three types of white mutant, pink colony mutant, and red wild type isolates of B gazogenes were grown showing differential irradiation sensitivity and phage particles from all three lysates were collected and examined.

  20. Use of Magsat anomaly data for crustal structure and mineral resources in the US midcontinent

    NASA Technical Reports Server (NTRS)

    Carmichael, R. S. (Principal Investigator)

    1981-01-01

    Magnetic profiles on individual satellites tracks were examined to identify bad (nonterrestrially-based) data points r profiles. Anomaly profiles for the same satellite track, but at different passes were compared for parallel tracks and for tracks that cross. The selected and processed data were plotted and contoured to develop a preliminary magnetic anomaly map. The map is similar in general morphology to NASA's Magsat global scalar anomaly map, but has more detail which is related to crustal properties. Efforts have begun to interpret the satellite magnetic anomalies in terms of crustal character. The correlation of magnetics with crustal petrology may have a much larger tectonic implication. Th possibility of there being an ultramafic lower crust along one zone as a consequence of a continental collision/subduction which helped form the midcontinent craton in Precambrian times is being investigated.

  1. Full 40 km crustal reflection seismic datasets in several Indonesian basins

    NASA Astrophysics Data System (ADS)

    Dinkelman, M. G.; Granath, J. W.; Christ, J. M.; Emmet, P. A.; Bird, D. E.

    2010-12-01

    Long offset, deep penetration regional 2D seismic data sets have been acquired since 2002 by GX Technology in a number of regions worldwide (www.iongeo.com/Data_Libraries/Spans/). Typical surveys consist of 10+ lines located to image specific critical aspects of basin structure. Early surveys were processed to 20 km, but more recent ones have extended to 40-45 km from 16 sec records. Pre-stack time migration is followed by pre-stack depth migration using gravity and in some cases magnetic modeling to constrain the velocity structure. We illustrate several cases in the SE Asian and Australasian area. In NatunaSPAN™ two generations of inversion can be distinguished, one involving Paleogene faults with Neogene inversion and one involving strike slip-related uplift in the West Natuna Basin. Crustal structure in the very deep Neogene East Natuna Basin has also been imaged. The JavaSPAN™ program traced Paleogene sediments onto oceanic crust of the Flores Sea, thus equating back arc spreading there to the widespread Eocene extension. It also imaged basement in the Makassar Strait beneath as much as 6 km of Cenozoic sedimentary rocks that accumulated Eocene rift basins (the North and South Makassar basins) on the edge of Sundaland, the core of SE Asia. The basement is seismically layered: a noisy upper crust overlies a prominent 10 km thick transparent zone, the base of which marks another change to slightly noisier reflectivity. Eocene normal faults responsible for the opening of extensional basins root in the top of the transparent layer which may be Moho or a brittle-ductile transition within the extended continental crust. Of particular significance is the first image of thick Precambrian basins comprising the bulk of continental crust under the Arafura Sea in the ArafuraSPAN™ program. Four lines some 1200 km long located between Australia and New Guinea on the Arafura platform image a thin Phanerozoic section overlying a striking Precambrian basement composed of

  2. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    NASA Astrophysics Data System (ADS)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  3. Precambrian basement geology of North and South Dakota.

    Klasner, J.S.; King, E.R.

    1986-01-01

    Combined analysis of drill-hole, gravity and magnetic data indicates that the Precambrian rocks in the basement of the Dakotas may be divided into a series of lithotectonic terrains. On the basis of an analysis of geological and geophysical data in the Dakotas and from the surrounding states and Canada, it is shown how the exposed Precambrian rocks of the adjacent shield areas project into the study area. Brief comments are made on the tectonic implications of this study. Geological and geophysical characteristics of 11 terrains are tabulated. -P.Br.

  4. U Pb and Lu Hf isotope record of detrital zircon grains from the Limpopo Belt Evidence for crustal recycling at the Hadean to early-Archean transition

    NASA Astrophysics Data System (ADS)

    Zeh, Armin; Gerdes, Axel; Klemd, Reiner; Barton, J. M., Jr.

    2008-11-01

    Detrital zircon grains from Beit Bridge Group quartzite from the Central Zone of the Limpopo Belt near Musina yield mostly ages of 3.35-3.15 Ga, minor 3.15-2.51 Ga components, and numerous older grains grouped at approximately 3.4, 3.5 and 3.6 Ga. Two grains yielded concordant Late Hadean U-Pb ages of 3881 ± 11 Ma and 3909 ± 26 Ma, which are the oldest zircon grains so far found in Africa. The combined U-Pb and Lu-Hf datasets and field relationships provide evidence that the sedimentary protolith of the Beit Bridge Group quartzite was deposited after the emplacement of the Sand River Gneisses (3.35-3.15 Ga), but prior to the Neoarchean magmatic-metamorphic events at 2.65-2.60 Ga. The finding of abundant magmatic zircon detritus with concordant U-Pb ages of 3.35-3.15 Ga, and 176Hf/ 177Hf of 0.28066 ± 0.00004 indicate that the Sand River Gneiss-type rocks were a predominant source. In contrast, detrital zircon grains older than approximately 3.35 Ga were derived from the hinterland of the Limpopo Belt; either from a so far unknown crustal source in southern Africa, possibly from the Zimbabwe Craton and/or a source, which was similar but not necessarily identical to the one that supplied the Hadean zircons to Jack Hills, Western Australia. The Beit Bridge Group zircon population at >3.35 Ga shows a general ɛHf t increase with decreasing age from ɛHf 3.9Ga = -6.3 to ɛHf 3.3-3.1Ga = -0.2, indicating that Hadean crust older than 4.0 Ga ( TDM = 4.45-4.36 Ga) was rejuvenated during magmatic events between >3.9 and 3.1 Ga, due to a successive mixing of crustal rocks with mantle derived magmas. The existence of a depleted mantle reservoir in the Limpopo's hinterland is reflected by the ˜3.6 Ga zircon population, which shows ɛHf 3.6Ga between -4.6 and +3.2. In a global context, our data suggest that a long-lived, mafic Hadean protocrust with some tonalite-trondhjemite-granodiorite constituents was destroyed and partly recycled at the Hadean/Archean transition, perhaps

  5. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Hassanzadeh, Jamshid; Kirschvink, Joseph L.; Bahroudi, Abbas

    2017-11-01

    . Palinspastic restoration of structural cross-sections and crustal volume conservation comprise only ca. 200 km of shortening across the Zagros and metamorphic Sanandaj-Sirjan belt implying that at least 150 km of the Arabian crust was underthrust beneath Eurasia without contributing to crustal thickening, possibly due to eclogitization.

  6. Late Precambrian-Cambrian sediments of Huqf group, Sultanate of Oman

    SciT

    Gorin, G.E.; Racz, L.G.; Walter, M.R.

    1982-12-01

    The Huqf Group is the oldest known sedimentary sequence overlying crystalline basement in the Sultanate of Oman. It crops out on a broad regional high, the Huqf Axis, which forms a dominating structural element on the southeastern edge of the Arabian peninsula. Subsurface and outcrop evidence within and outside of Oman suggests that the sediments of the Huqf Group lie within the age span of late Precambrian to Early-Middle Cambrian. The Huqf Group is subdivided into five formations corresponding to an alternation of clastics (Abu Mahara and Shuram Formations) and carbonates (Khufai and Buah Formations) deposited in essentially shallow marinemore » to supratidal (or fluviatile) conditions and terminated by an evaporitic sequence (Ara Formation). Evaporites are absent on the Huqf Axis, but they are thickly developed to the west over a large part of southern and central Oman, where they acted as the major structure former of most of Oman's fields, and even locally pierced up to the surface. Regional correlations suggest that the predominantly carbonate-evaporitic facies of the Huqf Group was widely distributed in late Precambrian-Early Cambrian time: the Huqf basin is tentatively considered part of a belt of evaporitic basins and intervening carbonate platforms, which stretched across the Pangea landmass from the Indian subcontinent (Salt Range of Pakistan) through South Yemen, Oman, and Saudi Arabia into the gulf states and Iran (Hormuz Series and carbonate platform north of the Zagros).« less

  7. A synthesis of Jurassic and Early Cretaceous crustal evolution along the southern margin of the Arctic Alaska–Chukotka microplate and implications for defining tectonic boundaries active during opening of Arctic Ocean basins

    Till, Alison B.

    2016-01-01

    A synthesis of Late Jurassic and Early Cretaceous collision-related metamorphic events in the Arctic Alaska–Chukotka microplate clarifies its likely movement history during opening of the Amerasian and Canada basins. Comprehensive tectonic reconstructions of basin opening have been problematic, in part, because of the large size of the microplate, uncertainties in the location and kinematics of structures bounding the microplate, and lack of information on its internal deformation history. Many reconstructions have treated Arctic Alaska and Chukotka as a single crustal entity largely on the basis of similarities in their Mesozoic structural trends and similar late Proterozoic and early Paleozoic histories. Others have located Chukotka near Siberia during the Triassic and Jurassic, on the basis of detrital zircon age populations, and suggested that it was Arctic Alaska alone that rotated. The Mesozoic metamorphic histories of Arctic Alaska and Chukotka can be used to test the validity of these two approaches.A synthesis of the distribution, character, and timing of metamorphic events reveals substantial differences in the histories of the southern margin of the microplate in Chukotka in comparison to Arctic Alaska and places specific limitations on tectonic reconstructions. During the Late Jurassic and earliest Cretaceous, the Arctic Alaska margin was subducted to the south, while the Chukotka margin was the upper plate of a north-dipping subduction zone or a zone of transpression. An early Aptian blueschist- and greenschist-facies belt records the most profound crustal thickening event in the evolution of the orogen. It may have resulted in thicknesses of 50–60 km and was likely the cause of flexural subsidence in the foredeep of the Brooks Range. This event involved northern Alaska and northeasternmost Chukotka; it did not involve central and western Chukotka. Arctic Alaska and Chukotka evolved separately until the Aptian thickening event, which was likely a

  8. Precambrian-Cambrian provenance of Matinde Formation, Karoo Supergroup, northwestern Mozambique, constrained from detrital zircon U-Pb age and Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Jelinek, Andrea Ritter; Philipp, Ruy Paulo; de Carvalho Lana, Cristiano; Alkmim, Ana Ramalho

    2018-02-01

    The Permian-Triassic time interval was a period of high sedimentation rates in the intracontinental Karoo rift basin of northwestern Mozambique, reflecting high exhumation rates in the surrounding high ground Precambrian-Cambrian basement and juxtaposed nappes. U-Pb LA-MC-ICPMS dating and Lu-Hf isotopic analysis of detrital zircons from the Late Permian-Early Triassic Matinde Formation of the Karoo Supergroup is used as a reliable proxy to map denudation patterns of source regions. Data allow discrimination of U-Pb age populations of ca. 1250-900 Ma, a secondary population between ca. 900-700 and a major contribution of ages around ca. 700-490 Ma. Zircon grains of the Mesoproterozoic age population present Mesoproterozoic (1000-1500 Ma) to Paleoproterozoic (1800-2300 Ma) Hf TDM ages, with positive (0 to +11) and negative εHf values (-3 to -15), respectively. The younger U-Pb age population also presents two different groups of zircon grains according to Lu-Hf isotopes. The first group comprise Paleoproterozoic (1800-2300 Ma) ages, with highly negative εHf values, between -10 and -22, and the second group exhibits Mesoproterozoic ages (1200-1500 Ma), with increased juvenile εHf values (ca. 0 to -5). These Hf isotopes reinforce the presence of unexposed ancient crust in this region. The oldest U-Pb age population resembles the late stages of Grenville Orogeny and the Rodinia Supercontinent geotectonic activity mostly represented by magmatic rocks, which are widely present in the basement of northern Mozambique. The juvenile Hf-isotope signature with an older age component is associated to rocks generated from subduction processes with crust assimilation by continental arcs, which we correlate to rocks of the Nampula Complex, south and east of the Moatize-Minjova Basin. The U-Pb ages between 900 and 700 Ma were correlated to the calc-alkaline magmatism registered in the Guro Suite, related to the breakup phase of Rodinia, and mark the western limit of the Moatize

  9. United States crustal thickness

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.; Schnetzler, C. C.

    1983-01-01

    The thickness of the crust, the thickness of the basal (intermediate or lower) crustal layer, and the average velocity at the top of the mantle have been mapped using all available deep-penetrating seismic-refraction profiles in the conterminous United States and surrounding border areas. These profiles are indexed to their literature data sources. The more significant long wavelength anomalies on the three maps are briefly discussed and analyzed. An attempt to use Bouguer gravity to validate mantle structure was inconclusive.

  10. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  11. Contrasted crustal sources as defined by whole-rock and Sr-Nd-Pb isotope geochemistry of neoproterozoic early post-collisional granitic magmatism within the Southern Brazilian Shear Belt, Camboriú, Brazil

    NASA Astrophysics Data System (ADS)

    Florisbal, Luana Moreira; de Assis Janasi, Valdecir; de Fátima Bitencourt, Maria; Stoll Nardi, Lauro Valentim; Heaman, Larry M.

    2012-11-01

    The early phase of post-collisional granitic magmatism in the Camboriú region, south Brazil, is represented by the porphyritic biotite ± hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (˜610 Ma), equigranular, biotite ± muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriú Complex, as indicated by strongly negative ɛNdt (-23 to -24) and unradiogenic Pb (e.g., 206Pb/204Pb = 16.0-16.3; 207Pb/204Pb = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative ɛNdt (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriú Complex.

  12. Internal Dynamics and Crustal Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The objective of this work is to improve understanding of the internal structure, crustal evolution, and thermal history of Mars by combining geophysical data analysis of topography, gravity and magnetics with results from analytical and computational modeling. Accomplishments thus far in this investigation include: (1) development of a new crustal thickness model that incorporates constraints from Mars meteorites, corrections for polar cap masses and other surface loads, Pratt isostasy, and core flattening; (2) determination of a refined estimate of crustal thickness of Mars from geoid/topography ratios (GTRs); (3) derivation of a preliminary estimate of the k(sub 2) gravitational Love number and a preliminary estimate of possible dissipation within Mars consistent with this value; and (4) an integrative analysis of the sequence of evolution of early Mars. During the remainder of this investigation we will: (1) extend models of degree-1 mantle convection from 2-D to 3-D; (2) investigate potential causal relationships and effects of major impacts on mantle plume formation, with primary application to Mars; (3) develop exploratory models to assess the convective stability of various Martian core states as relevant to the history of dynamo action; and (4) develop models of long-wavelength relaxation of crustal thickness anomalies to potentially explain the degree-1 structure of the Martian crust.

  13. Crustal structure of southwestern Saudi Arabia

    Gettings, M.E.; Blank, H.R.; Mooney, W.D.; Healy, J.H.

    1983-01-01

    The southwestern Arabian Shield is composed of uplifted Proterozoic metamorphic and plutonic rocks. The Shield is bordered on the southwest by Cenozoic sedimentary and igneous rocks of the Red Sea paar and on the east by the Arabian Platform, an area of basin sedimentation throughout Phanerozoic time. The Shield appears to have been formed by successive episodes of island arc volcanism and sea-floor spreading, followed by several cycles of compressive tectonism and metamorphism. An interpretation and synthesis of a deep-refraction seismic profile from the Riyadh area to the Farasan Islands, and regional gravity, aeromagnetic, heat flow, and surface geologic data have yielded a self-consistent regional-scale model of the crust and upper mantle for this area. The model consists of two 20 km-thick layers of crust with an average compressional wave velocity in the upper crust of about 6.3 km/s and an average velocity in the lower. crust of about 7.0 km/s. This crust thins abruptly to less than 20 km near the southwestern end of the profile where Precambrian outcrops abut the Cenozoic rocks and to 8 km beneath the Farasan Islands. The data over the coastal plain and Red Sea shelf areas are fit satisfactorily by an oceanic crustal model. A major lateral velocity inhomogeneity in the crust is inferred about 25 km northeast of Sabhah and is supported by surface geologic evidence. The major velocity discontinuities occur at about the same depth across the entire Shield and are interpreted to indicate horizontal metamorphic stratification of the Precambrian crust. Several lateral inhomogenities in both the upper and lower .crust of the . Shield are interpreted, to indicate bulk compositional variations. The subcrustal portion of the model is composed of a hot, low-density lithosphere beneath the Red Sea which is systematically cooler and denser to the northeast. This model provides a mechanism which explains the observed topographic uplift, regional gravity pattern, heat

  14. Fossil Record of Precambrian Life on Land

    NASA Technical Reports Server (NTRS)

    Knauth, Paul

    2000-01-01

    The argument that the earth's early ocean was up to two times modern salinity was published in 'Nature' and presented at the 1998 Annual Meeting of the Geological Society of America in Toronto. The argument is bolstered by chemical data for fluid inclusions in Archean black smokers. The inclusions were 1.7 times the modern salinity causing the authors to interpret the parent fluids as evaporite brines (in a deep marine setting). I reinterpreted the data in terms of the predicted value of high Archean salinities. If the arguments I presented are on track, early life was either halophilic or non-marine. Halophiles are not among the most primitive organisms based on RNA sequencing, so here is an a priori argument that non-marine environments may have been the site of most early biologic evolution. This result carries significant implications for the issue of past life on Mars or current life on the putative sub-ice oceans on Europa and possibly Callisto. If the Cl/H2O ratio on these objects is similar to that of the earth, then oceans and oceanic sediments are probably not the preferred sites for early life. On Mars, this means that non-marine deposits such as caliche in basalt may be an overlooked potential sample target.

  15. The First Evidence of the Precambrian Basement in the Fore Range Zone of the Great Caucasus.

    NASA Astrophysics Data System (ADS)

    Latyshev, A.; Kamzolkin, V.; Vidjapin, Y.; Somin, M.; Ivanov, S.

    2017-12-01

    Within the Great Caucasus fold-thrust belt, the Fore Range zone has the most complicated structure, and the highest degree of metamorphism was found there. This zone consists of several salients with the different composition and the structural and metamorphic evolution. The largest Blyb salient includes the metamorphic basement covered by the pack of thrusts. According to the recent isotopic data the upper levels of the Blyb metamorphic complex (BMC) are supposed to be Middle-Paleozoic (Somin, 2011). We studied zircons from the granitic intrusions located in the metamorphic rocks of the BMC. The U-Pb dating (SHRIMP II, VSEGEI, Russia) of zircons from the large Balkan metadiorite massif yielded the ages of 549±7,4, 574,1±6,7, and 567,9±6,9 Ma. All studied zircons show the high Th/U ratios and likely have the magmatic origin. This data is the first confirmation of the presence of the Precambrian basement and Vendian magmatic activity in the Fore Range zone. Zircons from the Unnamed granodiorite massif from the south of the Blyb salient yielded the age of 319±3.8 Ma (the Early Carboniferous). This fact taken together with the low grade of metamorphism in this intrusion reveals the Late Paleozoic magmatic event in the Fore Range zone. We also suggest that the Precambrian basement of the BMC, including the Balkan intrusion, is covered by so-called Armovsky nappe. This is confirmed by the field data, Middle-Paleozoic U-Pb ages and the higher degree of metamorphism of the Armovsky gneisses and schists. Thus, the BMC is not uniform but includes the blocks of the different age and metamorphic grades. Finally, we measured the anisotropy of magnetic susceptibility (AMS) of the Balkan metadiorites. The axes of AMS ellipsoid fix the conditions of the north-east compression, as well as the strain field reconstructed from the macrostructures orientation, which corresponds to the thrusts propagation. Therefore, the emplacement of the Balkan massif happened before the thrust

  16. Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust

    Akinin, V.V.; Miller, E.L.; Wooden, J.L.

    2009-01-01

    seismic-reflection and refraction data reveal a 30-35-km-thick crust, a sharp Moho and refl ective lower and middle crust. Velocities do not support a largely mafic (underplated) lower crust, but together with xenolith data suggest that Late Cretaceous to early Paleocene maficintrusions are likely increasingly important with depth in the crust and that the elevated temperatures during granulite-facies metamorphism led to large-scale flow of crustal rocks to produce gneiss domes and the observed subhorizontal refl ectivity of the crust. This unique combined data set for the Bering Shelf region provides compelling evidence for the complete reconstitution/re-equilibration of continental crust from the bottom up during mantle-driven magmatic events associated with crustal extension. Thus, despite Precambrian and Paleozoic rocks at the surface and Alaska's accretionary tectonic history, it is likely that a significant portion of the Bering Sea region lower crust is much younger and related to post-accretionary tectonic and magmatic events. ?? 2009 The Geological Society of America.

  17. Crustal structure of southern Madagascar from receiver functions and ambient noise correlation: Implications for crustal evolution

    NASA Astrophysics Data System (ADS)

    Rindraharisaona, E. J.; Tilmann, F.; Yuan, X.; Rümpker, G.; Giese, J.; Rambolamanana, G.; Barruol, G.

    2017-02-01

    The Precambrian rocks of Madagascar were formed and/or modified during continental collision known as the Pan-African orogeny. Aborted Permo-Triassic Karoo rifting and the subsequent separation from Africa and India resulted in the formation of sedimentary basins in the west and volcanic activity predominantly along the margins. Many geological studies have documented the imprint of these processes, but little was known about the deeper structure. We therefore deployed seismic stations along an SE-NW trending profile spanning nearly all geological domains of southern Madagascar. Here we focus on the crustal structure, which we determined based on joint analysis of receiver functions and surface waves derived from ambient noise measurements. For the sedimentary basin we document a thinning of the underlying crystalline basement by up to ˜60% to 13 km. The crustal velocity structure demonstrates that the thinning was accomplished by removal or exhumation of the lower crust. Both the Proterozoic and Archean crust have a 10 km thick upper crust and 10-12 km thick midcrust. However, in contrast to the typical structure of Proterozoic and Archean aged crust, the Archean lower crust is thicker and faster than the Proterozoic one, indicating possible magmatic intrusions; an underplated layer of 2-8 km thickness is present only below the Archean crust. The Proterozoic mafic lower crust might have been lost during continental collision by delamination or subduction or thinned as a result of extensional collapse. Finally, the Cretaceous volcanics along the east coast are characterized by thin crust (30 km) and very large VP/VS ratios.

  18. The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park

    PubMed Central

    Siefert, Janet L.; Escalante, Ana E.; Elser, James J.; Eguiarte, Luis E.

    2012-01-01

    Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a “Precambrian Park” for astrobiology. Key Words: Microbial mats—Stromatolites—Early Earth—Extremophilic microorganisms—Microbial ecology. Astrobiology 12, 641–647. PMID:22920514

  19. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  20. A key role for green rust in the Precambrian oceans and the genesis of iron formations

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Alesker, M.; Schuster, E. M.; Popovitz-Biro, R.; Feldman, Y.

    2017-01-01

    Iron formations deposited in marine settings during the Precambrian represent large sinks of iron and silica, and have been used to reconstruct environmental conditions at the time of their formation. However, the observed mineralogy in iron formations, which consists of iron oxides, silicates, carbonates and sulfides, is generally thought to have arisen from diagenesis of one or more mineral precursors. Ferric iron hydroxides and ferrous carbonates and silicates have been identified as prime candidates. Here we investigate the potential role of green rust, a ferrous-ferric hydroxy salt, in the genesis of iron formations. Our laboratory experiments show that green rust readily forms in early seawater-analogue solutions, as predicted by thermodynamic calculations, and that it ages into minerals observed in iron formations. Dynamic models of the iron cycle further indicate that green rust would have precipitated near the iron redoxcline, and it is expected that when the green rust sank it transformed into stable phases within the water column and sediments. We suggest, therefore, that the precipitation and transformation of green rust was a key process in the iron cycle, and that the interaction of green rust with various elements should be included in any consideration of Precambrian biogeochemical cycles.

  1. Analysis of a Precambrian resonance-stabilized day length

    NASA Astrophysics Data System (ADS)

    Bartlett, Benjamin C.; Stevenson, David J.

    2016-06-01

    During the Precambrian era, Earth's decelerating rotation would have passed a 21 h period that would have been resonant with the semidiurnal atmospheric thermal tide. Near this point, the atmospheric torque would have been maximized, being comparable in magnitude but opposite in direction to the lunar torque, halting Earth's rotational deceleration, maintaining a constant day length, as detailed by Zahnle and Walker (1987). We develop a computational model to determine necessary conditions for formation and breakage of this resonant effect. Our simulations show the resonance to be resilient to atmospheric thermal noise but suggest a sudden atmospheric temperature increase like the deglaciation period following a possible "snowball Earth" near the end of the Precambrian would break this resonance; the Marinoan and Sturtian glaciations seem the most likely candidates for this event. Our model provides a simulated day length over time that resembles existing paleorotational data, though further data are needed to verify this hypothesis.

  2. Paleobiologic Studies of the Antiquity and Precambrian Evolution of Life

    NASA Technical Reports Server (NTRS)

    Schopf, J. William

    1998-01-01

    This paper presents a final technical report on Paleobiologic Studies of the Antiquity and Precambrian Evolution of Life from 1 January 1990 - 30 September 1997. The topics include: 1) Major Research Accomplishments Supported By NAGW-2147 (Research Results Communicated in Edited Books, Research Results Communicated in Journal Articles and Book Chapters, and References Cited); and 2) Published Contributions Supported by NAGW-2147 (Edited Books, Journal Articles and Book Chapters, Book-Related Items, Miscellaneous Publications, Abstracts, and In Press).

  3. Crustal recycling through intraplate magmatism: Evidence from the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.

    2014-12-01

    The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids - the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U-Pb geochronology and REE data, and Lu-Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U-Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite-trondhjemite-granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean-Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly

  4. Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates

    SciT

    Kroener, A.; Eyal, M.; Eyal, Y.

    1990-06-01

    The authors report {sup 207}Pb/{sup 206}Pb single-zircon evaporation ages for early Pan-African rocks from southern Israel and the northeastern Sinai Peninsula, the northernmost extension of the Arabian-Nubian shield. The oldest rocks are metamorphic schists of presumed island-arc derivation; detrital zircons date the source terrain at ca. 800-820 Ma. A major phase of tonalite-trondhjemite plutonism occurred at ca. 760-780 Ma; more evolved granitic rocks were emplaced at about 745 Ma. A metagabbro-metadiorite complex reflects the youngest igneous phase at ca. 640 Ma. We find no evidence for pre-Pan-African crust, and our data document important crust-forming events that correlate with similar episodesmore » elsewhere in the shield. The widespread presence of early Pan-African juvenile rocks (i.e., ca. 760-850 Ma) in many parts of the Arabian-Nubian shield makes this period the most important in the magmatic history of the shield and supports earlier suggestions for unusually high crust-production rates.« less

  5. The Rae craton of Laurentia/Nuna: a tectonically unique entity providing critical insights into the concept of Precambrian supercontinental cyclicity

    NASA Astrophysics Data System (ADS)

    Bethune, K. M.

    2015-12-01

    Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.

  6. Methane as a Climate Driver During the Precambrian Eon (Invited)

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2013-12-01

    Methane is an important greenhouse gas today even at a relatively low concentration of ~1.7 ppmv. Prior to 2.4 Ga, atmospheric O2 concentrations were low, and CH4 could have been much more abundant, perhaps 500-1000 ppmv (1,2). When supplemented by elevated CO2, CH4 could have played a major role in offsetting reduced solar luminosity and keeping the early Earth habitable. Calculations using both 1-D (3) and 3-D (4) climate models suggest that near-modern surface temperatures could have been maintained at 2.8 Ga at 80% solar luminosity by ~0.02 bar CO2 and 1000 ppmv CH4. Such CO2 levels are near the upper limit derived for that period from analysis of paleosols (5). Some 10-12 K of the calculated surface warming in these models comes from CH4; hence, if CH4 concentrations decreased as O2 levels rose, the climate could have suddenly become much colder. This hypothesis can thus explain the timing of the Paleoproterozoic glaciations at 2.2-2.45 Ga, which may have been global in nature (6). An earlier glaciation at ~2.9 Ga might also have been related to CH4, possibly by the development of a thick, anti-greenhouse organic haze layer (7). Alternatively, the recent realization that, at high concentrations, H2 is an even better greenhouse gas than CH4 (8), suggests that the 2.9-Ga glaciation might have been caused by the appearance of methanogens, which would have drawn down atmospheric H2 by converting it to CH4. In either case, the Archean climate control mechanism would have had a distinctly 'Gaian' nature (9). Finally, the initial rise of O2 at 2.4 Ga need not have spelled the end of CH4 as a major climate driver. If the deep oceans remained anoxic throughout most of the Proterozoic (10), marine sediments could have been strong sources of CH4, unlike today. Calculations (11,12) suggest that CH4 concentrations of 100 ppmv are still possible during this time period, and that the combined greenhouse effect of CH4 and N2O could have approached 10 K. A second rise in O2

  7. Recognition of late Precambrian glaciogenic sediments in Liberia

    NASA Astrophysics Data System (ADS)

    Magee, A. W.; Culver, S. J.

    1986-11-01

    Late Precambrian glaciation in West Africa is now suggested to have extended as far south as Gibi Mountain in west-central Liberia, 200 km farther south than previously recognized glacial deposits in central Sierra Leone. The Gibi Mountain Formation includes a basal diamictite, interpreted as a probable tillite, and overlying shallow-marine laminites containing isolated, ice-rafted dropstones and dropgrains. These rocks rest on Late Archean age gneisses and are overlain by Late Archean? age quartzite klippen emplaced during the pan-African orogeny (ca. 550 Ma). *Present address: School of Geography, University of Oxford, Mansfield Road, Oxford OKI 3TB, England

  8. Precambrian crystalline basement map of Idaho-an interpretation of aeromagnetic anomalies

    Sims, P.K.; Lund, Karen; Anderson, E.

    2005-01-01

    Idaho lies within the northern sector of the U.S. Cordillera astride the boundary between the Proterozoic continent (Laurentia) to the east and the Permian to Jurassic accreted terranes to the west. The continental basement is mostly covered by relatively undeformed Mesoproterozoic metasedimentary rocks and intruded or covered by Phanerozoic igneous rocks; accordingly, knowledge of the basement geology is poorly constrained. Incremental knowledge gained since the pioneering studies by W. Lindgren, C.P. Ross, A.L. Anderson, A. Hietanen, and others during the early- and mid-1900's has greatly advanced our understanding of the general geology of Idaho. However, knowledge of the basement geology remains relatively poor, partly because of the remoteness of much of the region plus the lack of a stimulus to decipher the complex assemblage of high-grade gneisses and migmatite of central Idaho. The availability of an updated aeromagnetic anomaly map of Idaho (North American Magnetic Anomaly Group, 2002) provides a means to determine the regional Precambrian geologic framework of the State. The combined geologic and aeromagnetic data permit identification of previously unrecognized crystalline basement terranes, assigned to Archean and Paleoproterozoic ages, and the delineation of major shear zones, which are expressed in the aeromagnetic data as linear negative anomalies (Finn and Sims, 2004). Limited geochronologic data on exposed crystalline basement aided by isotopic studies of zircon inheritance, particularly Bickford and others (1981) and Mueller and others (1995), provide much of the geologic background for our interpretation of the basement geology. In northwestern United States, inhomogeneities in the basement inherited from Precambrian tectogenesis controlled many large-scale tectonic features that developed during the Phanerozoic. Two basement structures, in particular, provided zones of weakness that were repeatedly rejuvenated: (1) northeast-trending ductile

  9. Ted Irving and the Precambrian continental drift of (within?) the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Hoffman, P. F.

    2014-12-01

    Ted Irving was no stranger to the Precambrian when he began paleomagnetic studies in the Canadian Shield (CS) that would dominate his research in the early and mid-1970's. Twenty years before, his graduate work on billion-year-old strata in Scotland established paleomagnetic methodologies applicable to sedimentary rocks generally. In 1958, he and Ronald Green presented an 'Upper Proterozoic' APW path from Australia as evidence for pre-Carboniferous drift relative to Europe and North America (the poles actually range in age from 1.2 to 2.7 Ga). His first published CS poles were obtained from the Franklin LIP of the Arctic platform and demonstrate igneous emplacement across the paleoequator. Characteristically, his 1971 poles are statistically indistinguishable from the most recent grand mean paleopole of 2009. His main focus, however, was on the question of Precambrian continental drift. He compared APW paths with respect to Laurentia with those obtained from other Precambrian shields, and he compared APW paths from different tectonic provinces within the CS. He was consistently antagonistic to the concept of a single long-lived Proterozoic supercontinent, but he was on less certain ground regarding motions within the CS due to inadequate geochronology. With Ron Emslie, he boldly proposed rapid convergence between parts of the Grenville Province and Interior Laurentia (IL) ~1.0 Ga. This was controversial given the uncertain ages of multiple magnetic components in high-grade metamorphic rocks. With John McGlynn and John Park, he developed a Paleoproterozoic APW path for the Slave Province from mafic dikes and red clastics, encompassing the time of consolidation of IL during 2.0-1.8 Ga orogenesis. Before 1980, he constructed Paleoproterozoic APW paths for IL as a whole, finding little evidence for significant internal displacement. He recognized that the Laurentian APW path describes a series of straight tracks linked by hairpins, the latter corresponding in age to

  10. The crustal structure of the continental margin east of the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Schimschal, Claudia Monika; Jokat, Wilfried

    2018-01-01

    The 1500 km long Falkland Plateau is the most prominent morphological structure in the southern South Atlantic Ocean, which crustal composition and development is mainly unknown. At the westernmost boundary of the plateau, the Falkland Islands' Precambrian geology provides the only insight into basement structure and age. The question of whether continental basement of a similar age and origin underlies the Falkland Plateau further east is strongly disputed. We present new high quality constraints on the crustal fabric of the plateau east of the Falkland Islands, based on wide-angle seismic and potential field data acquired in 2013. The P-wave velocity model, supported by amplitude and density modelling, shows that the Falkland Plateau Basin is filled with 8 km of sediments. Continental crust of 34 km thickness underlies the Falkland Islands. The eastern continental margin of the Falkland Islands can be classified as a volcanic rifted margin. The Falkland Plateau Basin is floored by up to 20 km thick oceanic crust. The exceptionally thick igneous crust and its high lower crustal velocities (up to 7.4 km/s) indicate the influence of a regional thermal mantle anomaly during its formation, which provided extra melt material. The wide-angle model revises published crustal models, which predicted thin oceanic or thick extended continental crust below the Falkland Plateau Basin. Our results provide a sound basis for future tectonic interpretations of the area.

  11. The evolution of shallow crustal structures in early rift-transform interaction: a case study in the northern Gulf of California.

    NASA Astrophysics Data System (ADS)

    Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.

    2017-04-01

    end, and is an active rift. The second structural domain is a large, NE-SW-trending anticlinorium 60 km wide to the southeast of the rift zone, towards the Tiburon basin. One possibility is that it represents a positive flower structure and thus indicates a transpressional domain. However, individual structures within the broader zone are normal faults and negative flower structures, suggesting transtensional deformation, and the overall structure may be a roll-over antiform formed on a deep detachment structure. Finally, a strike-slip-dominated zone occurs along the northward continuation of the Ballenas Transform Fault. This is accompanied by the formation of submarine volcanic knolls. These patterns can be compared with seismic stratigraphy facies and structural patterns in mature transform margins and potentially give insight into their early history.

  12. Post-Laramide Epiorogeny through Crustal Hydration?

    NASA Astrophysics Data System (ADS)

    Jones, C. H.; Mahan, K. H.; Farmer, G.

    2011-12-01

    hydration has also been described from xenoliths in the Four Corners region of the Colorado Plateau (Broadhurst, 1986; Selverstone et al., 1999). The presence of a partially hydrated high-wavespeed layer at the base of the crust could complicate attempts to define the Moho using receiver functions, a problem encountered in several areas in Wyoming and the Colorado Plateau.The timing of the observed lower crustal hydration is unknown, but if related to Cenozoic uplift this implies that fluids were added in Late Cretaceous to Early Tertiary, potentially via dehydration of shallowly subducting oceanic lithosphere. If correct, this idea requires some means of passing significant amounts of fluid to the lower crust through the lithospheric mantle.

  13. Generation, migration, and entrapment of Precambrian oils in the Eastern Flank Heavy Oil province, south Oman

    SciT

    Konert, G.; Van Den Brink, H.A.; Visser, W.

    1991-08-01

    The prolific Eastern Flank Heavy Oil province east of the South Oman Salt basin is unique because of the widespread occurrence of Precambrian source rocks from which the hydrocarbons originated. Fission-track analysis and burial studies suggest that most of these source rocks became mature and generated hydrocarbons in the Ordovician; subsequently, the source beds were uplifted and did not re-enter the oil window. Its uniqueness is also based on the all-important role played by Precambrian salt. The traps in Palaeozoic clastics were initially structured by halokinesis, and subsequently by salt dissolution. The latter process gradually removed the salt from themore » area is largely responsible for the present-day structure with palaeo-withdrawal basins inverted in present-day turtles. Present-day traps are mainly post-Late Jurassic in age, significantly post-dating the time of oil generation. Detailed field studies indicate that charge phases appear to correlate with periods of increased salt dissolution in the Late Jurassic-Early Cretaceous, Late Cretaceous, and Tertiary. Oil was probably stored in intermediate traps below and within the salt. It was gradually released upon progressive tilting of the basin flank; it migrated updip toward the basinward retreating salt edge, and subsequently (back) spilled into the stratigraphically younger traps. Also, removal of the top seal of intra-salt and sub-salt traps by salt dissolution allowed upward remigration. It follows that charge concepts in the Eastern Flank Heavy Oil province depend on defining salt-edge-related hydrocarbon release areas, rather than on kitchen modeling.« less

  14. Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.; Sovetov, Iu. K.

    1976-01-01

    Silicified specimens of the Vendian (late Precambrian) 'index fossil' Conophyton gaubitza from South Kazakstan contain a diverse assemblage of well-preserved cyanophytic and apparently eukaryotic algae, the first stromatolitic microbiota to be reported from the Soviet Union. Unlike the stromatolites in which they occur, the microorganisms that apparently built this form of Conophyton did not become extinct at the end of the Precambrian.

  15. Ca Isotopes Fingerprinting the Earliest Crustal Evolution

    NASA Astrophysics Data System (ADS)

    Kreissig, K.; Elliott, T. R.

    2001-12-01

    The mechanisms of continent formation remain unclear and can be explained in two contrasting ways, using either a steady state crustal growth model involving massive crustal recycling or continuous crustal growth models. Recent developments in mass spectrometry manifest in the new Finnigan-Triton allow Ca isotopic measurements precise enough to use the K-Ca isotope system to address the problem of early Archaean crustal evolution. Due to a strong fractionation of 40K and 40Ca during continent formation and a non-linear growth of 40Ca, Archaean continental crust should show radiogenic initial Ca isotopic composition if large volumes of it have already been existed 3.6 Ga ago. Simple 15-step calculations predict a difference in 40Ca /44Ca of 9 epsilon units at 3.6 Ga between the two crustal growth models. To test this, as well as to study the earliest crust formation processes, plagioclase separates from Archaean provinces reflecting the initial Ca isotopic composition and a range of different whole rock samples have been analysed. Preliminary data for ~ 3.6 Ga old TTGs from Zimbabwe show 40Ca /44Ca indistinguishable from the mantle. This is in agreement with rather chondritic initial Sr and Nd data and might reflect a short residence time of the juvenile mafic oceanic crust before partial melting forming the first continental crust. In contrast, the first results for 3.65 Ga old samples from the Itsaq Gneiss Complex of southern West Greenland yield a more evolved radiogenic Ca signature. This can be interpreted in two different ways. Either as partial melting of juvenile mafic crust shortly after its formation but incorporating already existing crust as also suggested by the existence of older inherited zircons in these rocks and negative ɛ Hf values. Partial melting of mafic oceanic crust long after its formation so that 40K and 40Ca had time to evolve would be an alternative explanation. Importantly, there is no evidence so far for high growth and recycling rates

  16. Seismic crustal structure of the Limpopo mobile belt, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Stuart, G. W.; Zengeni, T. G.

    1987-12-01

    A 145 km N-S seismic traverse was deployed to determine the crustal structure of the Limpopo mobile belt in southern Zimbabwe and the nature of its northern boundary with the Zimbabwean craton. Rockbursts from South African gold mines to the south and regional seismicity from the Kariba-South Zambia belt to the north were used as seismic sources. P-wave relative teleseismic residuals were also measured to assess whether any velocity contrast between the craton and the mobile belt extended into the upper mantle. Interpretation of reduced travel times from the local Buchwa iron-ore mine blasts, which were broadside to the traverse, revealed an upper crustal interface in the Limpopo mobile belt at a depth of 5.8 ± 0.6 km, dividing material with a velocity of about 5.8 km/s from that of about 6.4 km/s. On the craton, arrivals from the same source showed a 4.4 ± 0.5 km thick 5.5 km/s layer overlying crust of about velocity 6.5 km/s. P-wave arrivals from the regional seismicity were used to construct a crustal cross-section. Absolute crustal thickness was tentatively estimated from the identification of a Moho reflection on the mine blast recordings. To the south of Rutenga, the crust thins from around 34 km to 29 km in association with a positive gravity anomaly centred over the late-Karoo Nuanetsi Igneous Province and Karoo Tuli Syncline. North of Rutenga to the boundary with the Zimbabwean craton, the crust is about 34 km thick. The craton boundary was found to be a steeply southerly dipping zone associated with high-velocity material, which could either be deep-seated greenstones or mafic material associated with the margin in the region studied. This zone divides cratonic crust, which was found to be about 40 km thick, from that typical of the mobile belt and implies a step in the Moho of around 6 km. Analysis of relative teleseismic residuals showed that the velocity contrasts are not confined to the crust but extend into the uppermost upper mantle with the

  17. De novo active sites for resurrected Precambrian enzymes

    NASA Astrophysics Data System (ADS)

    Risso, Valeria A.; Martinez-Rodriguez, Sergio; Candel, Adela M.; Krüger, Dennis M.; Pantoja-Uceda, David; Ortega-Muñoz, Mariano; Santoyo-Gonzalez, Francisco; Gaucher, Eric A.; Kamerlin, Shina C. L.; Bruix, Marta; Gavira, Jose A.; Sanchez-Ruiz, Jose M.

    2017-07-01

    Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.

  18. Evolution of major metabolic innovations in the Precambrian

    NASA Technical Reports Server (NTRS)

    Barnabas, J.; Schwartz, R. M.; Dayhoff, M. O.

    1982-01-01

    A combination of information on the metabolic capabilities of prokaryotes with a composite phylogenetic tree depicting an overview of prokaryote evolution based on the sequences of bacterial ferredoxin, 2Fe-2S ferredoxin, 5S ribosomal RNA, and c-type cytochromes shows three zones of major metabolic innovation in the Precambrian. The middle of these, which reflects the genesis of oxygen-releasing photosynthesis and aerobic respiration, links metabolic innovations of the anaerobic stem on the one hand and, on the other, proliferation of aerobic bacteria and the symbiotic associations leading to the eukaryotes. Those pathways where information on the structure of the enzymes is known are especially considered. Halobacterium and Thermoplasma (archaebacteria) do not belong to a totally independent line on the basis of the composite tree but branch from the eukaryote cytoplasmic line.

  19. Maps of upper Mississippi embayment Paleozoic and Precambrian rocks

    Dart, Richard L.

    1995-01-01

    The Mississippi Embayment regional seismic hazard (Fuller, 1912; Nuttli, 1973, 1982, 1983), associated with the New Madrid seismic zone (NMSZ) is attributed to displacement on seismogenic structures primarily within the failed Reelfoot rift (Burke and Dewey, 1973; Ervin and McGinnis, 1975; Hildenbrand, 1977; Johnston and Shedlock, 1992). Hildenbrand and others (1977) and Hildenbrand (1985) used potential field data to show the northeast trend of the buried rift and the existence of related intrusive bodies. The Mississippi Valley graben (Hildenbrand and others, 1977; Kane and others, 1981; Hildenbrand, 1985; Wheeler and others, 1993), also referred to as the Reelfoot graben (Hildenbrand and Hendricks, 1995), is here considered to be the structural expression of the Reelfoot rift at the Precambrian basement surface.

  20. Crustal structure of Australia from ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Saygin, Erdinc; Kennett, B. L. N.

    2012-01-01

    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  1. Crustal Structure of Australia from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Kennett, B. L.

    2011-12-01

    We create surface wave tomography for Australian crustal structure by using the group velocity measurements in the period range 1-32 s extracted from the stacked transfer functions of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The all of the portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations fill the gap between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method with weak constraints on the sedimentary thickness and Moho depth. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available interstation paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of

  2. The crustal structure of the eastern Fennoscandian Shield and central part of the East-European platform based on seismic, regional geophysic and geological data

    NASA Astrophysics Data System (ADS)

    Mints, M. V.; Berzin, R. G.; Babayants, P. S.; Konilov, A. N.; Suleimanov, A. K.; Zamozhniaya, N. G.; Zlobin, V. L.

    2003-04-01

    The 1-EU and 4B CDP transects worked out during 1998-2002 years by "Spetsgeophyzica", together with previously developed CDP profiles, have crossed most of the main tectonic units of the eastern Fennoscandian Shield and central part of the East-European platform. They provide seismic images of the Early Precambrian crust and upper mantle from the surface to about 80 km depth (25 s). The Neoarchaean granite-greenstone complexes of the Karelia craton along the 4B profile form a series of the tectonic slices descending eastward, some of which can be traced to the Moho. The Palaeoproterozoic structures presented by two main types: (1) volcano-sedimentary (VS) and (2) granulite-gneiss (GN) belts. The Pechenga-Varzuga VS belt has been identified as overthrust-underthrust southward-dipping package. Tectonic slices formed by the Palaeoproterozoic VS belts alternating with slices of the Neoarchaean granite-gneisses form the imbricated crustal unit that extends along the eastern margin of the Neoarchaean Karelia craton. The slices dip steeply northeastward flattening and partially juxtaposing at 20 km depth at the 1-EU cross-section. This level, which can be understood as the surface of main detachment, ascends westward. An imbrication and related thickening of the crust was caused by displacement of crustal slices in western and southwestern directions because of the Palaeoproterozoic collision event. The Palaeoproterozoic Onega unit comprising VS assemblages originated in a setting of the rifted passive margin forms the northwestward displaced thrust nappe complex. It is considered initially belonging to the southern edge of the Svecofennian passive margin. The Lapland GN belt has been transected by the Polar and EGGI profiles. Both cross-sections demonstrated that it constitutes thick composite crustal-scale tectonic slice. According to geophysical data, the continuation of the Lapland GN belt beneath the platform cover of the East European Craton forms an extended arch

  3. Venus tectonic styles and crustal differentiation

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.; Lenardic, A.

    1992-01-01

    Two of the most important constraints are known from Pioneer Venus data: the lack of a system of spreading rises, indicating distributed deformation rather than plate tectonics; and the high gravity/topography ratio, indicating the absence of an asthenosphere. In addition, the high depth/diameter ratios of craters on Venus indicate that Venus probably has no more crust than Earth. The problems of the character of tectonics and crustal formation and recycling are closely coupled. Venus appears to lack a recycling mechanism as effective as subduction, but may also have a low rate of crustal differentiation because of a mantle convection pattern that is more distributed, less concentrated, than Earth's. Distributed convection, coupled with the nonlinear dependence of volcanism on heat flow, would lead to much less magmatism, despite only moderately less heat flow, compared to Earth. The plausible reason for this difference in convective style is the absence of water in the upper mantle of Venus. We have applied finite element modeling to problems of the interaction of mantle convection and crust on Venus. The main emphasis has been on the tectonic evolution of Ishtar Terra, as the consequence of convergent mantle flow. The early stage evolution is primarily mechanical, with crust being piled up on the down-stream side. Then the downflow migrates away from the center. In the later stages, after more than 100 m.y., thermal effects develop due to the insulating influence of the thickened crust. An important feature of this modeling is the entrainment of some crustal material in downflows. An important general theme in both convergent and divergent flows is that of mixing vs. stratification. Models of multicomponent solid-state flow obtain that lower-density crustal material can be entrained and recycled, provided that the ration of low-density to high-density material is small enough (as in subducted slabs on Earth). The same considerations should apply in upflows; a

  4. Receiver function and gravity constraints on crustal structure and vertical movements of the Upper Mississippi Embayment and Ozark Uplift

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Gao, Stephen S.; Liu, Kelly H.; Mickus, Kevin

    2017-06-01

    The Upper Mississippi Embayment (UME), where the seismically active New Madrid Seismic Zone resides, experienced two phases of subsidence commencing in the Late Precambrian and Cretaceous, respectively. To provide new constraints on models proposed for the mechanisms responsible for the subsidence, we computed and stacked P-to-S receiver functions recorded by 49 USArray and other seismic stations located in the UME and the adjacent Ozark Uplift and modeled Bouguer gravity anomaly data. The inferred thickness, density, and Vp/Vs of the upper and lower crustal layers suggest that the UME is characterized by a mafic and high-density upper crustal layer of ˜30 km thickness, which is underlain by a higher-density lower crustal layer of up to ˜15 km. Those measurements, in the background of previously published geological observations on the subsidence and uplift history of the UME, are in agreement with the model that the Cretaceous subsidence, which was suggested to be preceded by an approximately 2 km uplift, was the consequence of the passage of a previously proposed thermal plume. The thermoelastic effects of the plume would have induced wide-spread intrusion of mafic mantle material into the weak UME crust fractured by Precambrian rifting and increased its density, resulting in renewed subsidence after the thermal source was removed. In contrast, the Ozark Uplift has crustal density, thickness, and Vp/Vs measurements that are comparable to those observed on cratonic areas, suggesting an overall normal crust without significant modification by the proposed plume, probably owing to the relatively strong and thick lithosphere.

  5. Volcanic and nonvolcanic rifted margins of the Red Sea and Gulf of Aden: Crustal cooling and margin evolution in Yemen

    NASA Astrophysics Data System (ADS)

    Menzies, Martin; Gallagher, Kerry; Yelland, Andrew; Hurford, Anthony J.

    1997-06-01

    New apatite fission track (AFT) data from the southern Red Sea volcanic and the Gulf of Aden nonvolcanic margins provide important constraints on the timing of crustal cooling relative to periods of volcanism and lithosphere extension. The AFT data define several regions of extension immediately adjacent to the Red Sea margin with AFT ages < 25 Ma and track-length distributions consistent with rapid cooling. Elevated Precambrian basement highs on the rift shoulder have AFT ages ≫ 100 Ma and track-length distributions indicative of a complex pre-rift history. An intervening area along the Red Sea and Gulf of Aden margins, and inland along the Balhaf graben (Jurassic rift), has AFT ages of 25-100 Ma. and track-length distributions indicative of rapid cooling. Elevated Precambrian basement highs are juxtaposed against topographically lower extended coastal terranes with sharp contrasts in AFT ages and track-length distributions, pointing to possible reactivation in the Tertiary of lineaments of Precambrian and Jurassic age. Integration of field observations with AFT data and 40Ar/ 39Ar data indicates that, on the Red Sea volcanic margin, surface uplift was initiated immediately prior to volcanism and that cooling was synchronous with widespread extension and an apparent hiatus in voluminous volcanic activity.

  6. Sp and Ps Receiver Function Imaging of the Cenozoic and Precambrian US

    NASA Astrophysics Data System (ADS)

    Keenan, James; Thurner, Sally; Levander, Alan

    2013-04-01

    Using teleseismic USArray data we have made Ps and Sp receiver function common conversion point stacked image volumes that extend from the Pacific coast to approximately the Mississippi River. We have used iterative time-domain deconvolution, water-level frequency-domain deconvolution, and least squares inverse filtering to form receiver functions in various frequency bands (Ps: 1.0 and, 0.5 Hz, Sp: 0.2 and 0.1 Hz). The receiver functions were stacked to give an image volume for each frequency band using a hybrid velocity model made by combining Crust2.0 (Bassin et al., 2000) and finite-frequency P and S wave tomography models (Schmandt and Humphreys, 2010; and Schmandt, unpublished). We contrast the lithospheric and asthenospheric structure of the western U.S., modified by Cenozoic tectonism, with that of the Precambrian central U.S. Here we describe 2 notable features: (1) In the Sp image volumes the upper mantle beneath the western U.S. differs dramatically from that to the east of the Rocky Mountain front. In the western U.S. the lithosphere is either thin, or highly variable in thickness (40-140 km) with neither the lithosphere nor asthenosphere having much internal structure (e.g., Levander and Miller, 2012). In contrast, east of the Rocky Mountain front the lithosphere steadily deepens to > 150 km and shows relatively strong internal layering. Individual positive and negative conversions are coherent over 100's of kilometers, suggesting the thrust stacking model of cratonic formation. (2) Beneath parts of the Archean Wyoming Province (Henstock et al, 1998; Snelson et al., 1998; Gorman et al., 2002; Mahan et al, 2012), much of the Great Plains and part of the Midwest lies a vast variable thickness (up to ~25 km) high velocity crustal layer. This layer lies roughly north of the Grenville Front, underlying much of the Yavapai-Mazatzal Province east of the Rockies, parts of the Superior Province, and possibly parts of the Trans-Hudson province.

  7. Analysis of a Precambrian Resonance-Stabilized Day Length

    NASA Astrophysics Data System (ADS)

    Bartlett, B. C.; Stevenson, D. J.

    2014-12-01

    Calculations indicate the average rate of decrease of Earth's angular momentum must have been less than its present value in the past; otherwise, the Earth should have a longer day length. Existing stromatolite data suggests the Earth's rotational frequency would have been near that of the atmospheric resonance frequency toward the end of the Precambrian era, approximately 600Ma. The semidiurnal atmospheric tidal torque would have reached a maximum near this day length of 21hr. At this point, the atmospheric torque would have been comparable in magnitude but opposite in direction to the lunar torque, creating a stabilizing effect which could preserve a constant day length while trapped in this resonant state, as suggested by Zahnle and Walker (1987). We examine the hypothesis that this resonant stability was encountered and sustained for a large amount of time during the Precambrian era and was broken by a large and relatively fast increase in global temperature, possibly in the deglaciation period following a snowball event. Computational simulations of this problem were performed, indicating that a persistent increase in temperature larger than around 10K over a period of time less than 107 years will break resonance (though these values vary with Q), but that the resonant stability is not easily broken by random high-amplitude high-frequency atmospheric temperature fluctuation or other forms of thermal noise. Further work also indicates it is possible to escape resonance simply by increasing the lunar tidal torque on the much longer timescale of plate tectonics, particularly for low atmospheric Q-factors, or that resonance could have never formed in the first place, had the lunar torque been very high or Q been very low when the Earth's rotational frequency was near the atmospheric resonance frequency. However, the need to explain the present day length given the current lunar torque favors the interpretation we offer, in which Earth's length of day was

  8. The geophysical character of southern Alaska - Implications for crustal evolution

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  9. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    SciT

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrianmore » age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.« less

  10. Measuring contemporary crustal motions; NASA’s Crustal Dynamics Project

    Frey, H. V.; Bosworth, J. M.

    1988-01-01

    In this article we describe briefly the two space geodetic techniques and how they are used by the Crustal Dynamics Project, show some of the very exciting results that have emerged at the halfway point in the project's life, describe the availability and utilization of the data being collected, and consider what the future may hold when measurement accuracies eventually exceed even those now available and when other international groups become more heavily involved.   

  11. Crustal Scale Magnetotelluric Imaging of the Central Atlas in Moocco

    NASA Astrophysics Data System (ADS)

    Ledo, J.; Jones, A. G.; Sinischalchi, A.; Rouais, M.; Campanyà, J.; Kiyan, D.; Moretti, P.; Piña, P.; Hogg, C.; Romano, G.; Picasso Team

    2010-12-01

    The Central Atlas of Morocco is an intracontinental fold-thrust belt with an ENE-WSW main strike that extends about 2000 km and 100 km wide, located in the foreland of the Mediterranean Alpine belt. The structure of the Atlas resulted from the tectonic inversion of a Mesozoic extensional basin, due to compression related to convergence between Africa and Europe occurred from cenozoic to present times. Previous MT data models based on stitched 1D inversion or using only the phases and the induction vector data following and trial and error approach (Schwarz et al., 1992), therefore the overall geoelectrical structure is partly unresolved. In this paper we will expose and discuss the results of new magnetotelluric data acquired along a profile crossing the Atlas that allows imaging its electrical crustal structure.In the lower crust two conductive units appear. One below the Moulouya plains that coincides with a minimum of the Bouguer anomaly, less earthquakes than the adjacent Middle and High Atlas and a low velocity anomaly at lower crustal levels. Moreover, the Moulouya plain and the Middle Atlas to the north are host of the largest Neogene-Quaternary intraplate alkaline volcanic field in Morocco. This feature has been associated either to a Canary mantle plume flow beneath Africa or to the interplay between reactivation of inherited geological structures and the thermal erosion of the metasomatized lithosphere. In any case, all the authors agree that are originated by low degree partial melting of sublithospheric mantle sources. Another low resistivity anomaly appears at lower crustal depths below the Anti-Atlas, that could be either a remnant of tectonic processes in the pre-mesozoic or a more recent overprint of the lower crust due to mantle processes. Two main events during the Pan African orogeny may be the cause of this anomaly, a relic of a subduction process or a deep mineralization associated to magmatism. The Anti-Atlas consists of of a Precambrian

  12. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  13. Role of Precambrian compositions and fabrics in the development of foreland structures, southern Front Range, Colorado

    SciT

    Chase, R.B.

    1985-01-01

    The Front Range terminates to the south as three basement-cored uplifts located north and west of the Canon City embayment. Precambrian units consist of foliated and non-foliated granitic rocks, augen gneiss, interlayered schist and gneiss, amphibolite, quartzite, and pegmatite. Precambrian deformations include at least three phases of folding, two phases of crenulation cleavage development, and local mylonitization. Metamorphic conditions reached those of cordierite-sillimanite grade. Paleozoic and Mesozoic sediments surround and overlap the exposed uplifts to form south-plunging arches. Excellent three-dimensional exposure of structural relationships between Precambrian rocks and overlying Phanerozoic sediments is present. Deformation styles in the sedimentary cover aremore » strongly influenced by underlying Precambrian lithologies and structural orientations. Where the crystalline units are granitic, with steeply-dipping foliation or no directional fabric, uplifts are bounded by high angle faults. Some such faults show evidence of repeated movements and reversals dating back to Precambrian time. The boundary between mechanical basement and suprastructure is clearly not defined as the base of the sedimentary section. Balanced cross-sections constructed through the southern Front Range must include contemporaneous flexural folds and thrusts in Precambrian schistose and gneissic rocks as well as in Phanerozoic sedimentary layers.« less

  14. Tectonic implications of Mars crustal magnetism

    PubMed Central

    Connerney, J. E. P.; Acuña, M. H.; Ness, N. F.; Kletetschka, G.; Mitchell, D. L.; Lin, R. P.; Reme, H.

    2005-01-01

    Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an ≈400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics. PMID:16217034

  15. Crustal evolution inferred from Apollo magnetic measurements

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Daily, W. D.; Vanyan, L. L.

    1978-01-01

    Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments.

  16. Moroccan crustal response to continental drift.

    PubMed

    Kanes, W H; Saadi, M; Ehrlich, E; Alem, A

    1973-06-01

    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.

  17. Tectonic implications of Mars crustal magnetism.

    PubMed

    Connerney, J E P; Acuña, M H; Ness, N F; Kletetschka, G; Mitchell, D L; Lin, R P; Reme, H

    2005-10-18

    Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an approximately 400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics.

  18. Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga -Santa Marta Fault

    NASA Astrophysics Data System (ADS)

    Piraquive Bermúdez, Alejandro; Pinzón, Edna; Bernet, Matthias; Kammer, Andreas; Von Quadt, Albrecht; Sarmiento, Gustavo

    2016-04-01

    Plate interaction between Caribbean and Nazca plates with Southamerica gave rise to an intricate pattern of tectonic blocks in the Northandean realm. Among these microblocks the Sierra Nevada de Santa Marta (SNSM) represents a fault-bounded triangular massif composed of a representative crustal section of the Northandean margin, in which a Precambrian to Late Paleozoic metamorphic belt is overlain by a Triassic to Jurassic magmatic arc and collateral volcanic suites. Its western border fault belongs to the composite Bucaramanga - Santa Marta fault with a combined left lateral-normal displacement. SE of Santa Marta it exposes remnants of an Oligocene marginal basin, which attests to a first Cenoizoic activation of this crustal-scale lineament. The basin fill consists of a sequence of coarse-grained cobble-pebble conglomerates > 1000 m thick that unconformably overlay the Triassic-Jurassic magmatic arc. Its lower sequence is composed of interbedded siltstones; topwards the sequence becomes dominated by coarser fractions. These sedimentary sequences yields valuable information about exhumation and coeval sedimentation processes that affected the massif's western border since the Upper Eocene. In order to analyse uplifting processes associated with tectonics during early Neogene we performed detrital zircon U-Pb geochronology, detrital thermochronology of zircon and apatites coupled with the description of a stratigraphic section and its facies composition. We compared samples from the Aracataca basin with analog sequences found at an equivalent basin at the Oca Fault at the northern margin of the SNSM. Our results show that sediments of both basins were sourced from Precambrian gneisses, along with Mesozoic acid to intermediate plutons; sedimentation started in the Upper Eocene-Oligocene according to palynomorphs, subsequently in the Upper Oligocene a completion of Jurassic to Cretaceous sources was followed by an increase of Precambrian input that became the dominant

  19. Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China

    NASA Technical Reports Server (NTRS)

    Chen, Jun-Yuan; Oliveri, Paola; Gao, Feng; Dornbos, Stephen Q.; Li, Chia-Wei; Bottjer, David J.; Davidson, Eric H.

    2002-01-01

    The evolutionary divergence of cnidarian and bilaterian lineages from their remote metazoan ancestor occurred at an unknown depth in time before the Cambrian, since crown group representatives of each are found in Lower Cambrian fossil assemblages. We report here a variety of putative embryonic, larval, and adult microfossils deriving from Precambrian phosphorite deposits of Southwest China, which may predate the Cambrian radiation by 25-45 million years. These are most probably of cnidarian affinity. Large numbers of fossilized early planula-like larvae were observed under the microscope in sections. Though several forms are represented, the majority display remarkable conformity, which is inconsistent with the alternative that they are artifactual mineral inclusions. Some of these fossils are preserved in such high resolution that individual cells can be discerned. We confirm in detail an earlier report of the presence in the same deposits of tabulates, an extinct crown group anthozoan form. Other sections reveal structures that most closely resemble sections of basal modern corals. A large number of fossils similar to modern hydrozoan gastrulae were also observed. These again displayed great morphological consistency. Though only a single example is available, a microscopic animal remarkably similar to a modern adult hydrozoan is also presented. Taken together, the new observations reported in this paper indicate the existence of a diverse and already differentiated cnidarian fauna, long before the Cambrian evolutionary event. It follows that at least stem group bilaterians must also have been present at this time.

  20. Geology of the Sierra de Fiambala, northwestern Argentina: implications for Early Palaeozoic Andean tectonics

    Grissom, G.C.; DeBari, S.M.; Snee, L.W.

    1998-01-01

    This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Field mapping in conjunction with structural, metamorphic, and geochronological data document the tectono-thermal history of exhumed deep crustal rocks in the Sierra de Fiambala, NW Argentina. The range consists of two structural blocks distinguished by different metasedimentary sequences and different grades of metamorphism. Orthogneiss and paragneiss in the northern structural block may have a Precambrian history. Greenschist- to amphibolite-facies metamorphism, intrusion, and injection magmatization affected all rocks at 540-550 Ma. A subsequent event in the Late Cambrian to Ordovician (c.515 to 470 Ma) involved amphibolite- to granulite-facies metamorphism, mafic intrusion, and deformation, followed by cooling through mid-Palaeozoic time. The emplacement of Carboniferous (325-350 Ma) post-tectonic granites caused reheating and retrogression that was strongest toward the northeast part of the range. The Cambrian, Ordovician, and Carboniferous events in the Sierra de Fiambala were of regional extent as indicated by temporal correlations with events reported for other deep crustal rocks of the northern Sierras Pampeanas. Correlations between periods of intrusion and high-grade metamorphism in the northern Sierras Pampeanas and volcanic-sedimentary events in the adjacent supracrustal exposures confirm that rocks in the northern Sierras Pampeanas formed at deep (10-25 km) structural levels in the early Palaeozoic continental margin of Gondwana.

  1. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.

    2004-05-01

    The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.

  2. Keivy Paraschists (Archean-Early Proterozoic): Nanobacteria and Life

    NASA Astrophysics Data System (ADS)

    Astafieva, M. M.; Balaganskii, V. V.

    2018-05-01

    Nanobacteria, buried in situ, were discovered in the Early Precambrian paraschists (Keivy, Kola Peninsula). It is suggested that occurrence of nanobacteria indicates that a biological factor played a role in the formation of enclosing rocks.

  3. An Integrated Crustal Dynamics Simulator

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Mora, P.

    2007-12-01

    Numerical modelling offers an outstanding opportunity to gain an understanding of the crustal dynamics and complex crustal system behaviour. This presentation provides our long-term and ongoing effort on finite element based computational model and software development to simulate the interacting fault system for earthquake forecasting. A R-minimum strategy based finite-element computational model and software tool, PANDAS, for modelling 3-dimensional nonlinear frictional contact behaviour between multiple deformable bodies with the arbitrarily-shaped contact element strategy has been developed by the authors, which builds up a virtual laboratory to simulate interacting fault systems including crustal boundary conditions and various nonlinearities (e.g. from frictional contact, materials, geometry and thermal coupling). It has been successfully applied to large scale computing of the complex nonlinear phenomena in the non-continuum media involving the nonlinear frictional instability, multiple material properties and complex geometries on supercomputers, such as the South Australia (SA) interacting fault system, South California fault model and Sumatra subduction model. It has been also extended and to simulate the hot fractured rock (HFR) geothermal reservoir system in collaboration of Geodynamics Ltd which is constructing the first geothermal reservoir system in Australia and to model the tsunami generation induced by earthquakes. Both are supported by Australian Research Council.

  4. Tonalites in crustal evolution

    Barker, F.; Arth, Joseph G.; Hudson, T.

    1981-01-01

    Tonalites, including trondhjemite as a variety, played three roles through geological time in the generation of Earth's crust. Before about 2.9 Ga ago they were produced largely by simple partial melting of metabasalt to give the dominant part of Archaean grey gneiss terranes. These terranes are notably bimodal; andesitic rocks are rare. Tonalites played a crucial role in the generation of this protocontinental and oldest crust 3.7-2.9 Ga ago in that they were the only low-density, high-SiO2 rocks produced directly from basaltic crust. In the enormous event giving the greenstone-granite terranes, mostly 2.8-2.6 Ga ago, tonalites formed in lesser but still important proportions by partial melting of metabasalt in the lower regions of down-buckled greenstone belts and by remobilization of older grey gneisses. Tectonism in the Archaean (3.9-2.5 Ga ago) perhaps was controlled by small-cell convection (McKenzie & Weiss I975). Little or no ophiolite or eclogite formed, and only minor andesite. Plate tectonics of modern type (involving large, rigid plates) commenced in the early Proterozoic. Uniformitarianism thus goes back one-half of the age of the earth. Tonalites compose about 5-10 % of crust generated in Proterozoic and Phanerozoic time at convergent oceanic-continental margins. They occur here as minor to prominent members of the compositionally continuous continental-margin batholiths. A simple model of generation of these batholiths is offered: mantle-derived mafic magma pools in the lower crust above a subduction zone reacts with and incorporates wall-rock components (Bowen I922), and breaches its roof rocks as an initial diapir. This mantle magma also develops a gradient of partial melting in its wall rocks. This wall-rock melt accretes in the collapsed chamber and moves up the conduit broached by the initial diapir, the higher, less siliceous fractions of melting first, the lower, more siliceous (and further removed) fractions of melting last. The process gives

  5. Crustal growth in subduction zones

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Castro, Antonio; Gerya, Taras

    2015-04-01

    There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other

  6. Archean sedimentary systems and crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1985-01-01

    Current knowledge of preserved Archean sedimentary rocks suggests that they accumulated in at least three major depositional settings. These are represented generally by sedimentary units: (1) in early Archean, pre-3.0 Ga old greenstone belts, (2) on late Archean sialic cratons, and (3) in late Archean, post-3.0 Ga old greenstone belts. Research suggests that the Archean was characterized by at least two distinctive and largely diachronous styles of crustal evolution. Thick, stable early Archean simatic platforms, perhaps analogous to modern oceanic islands formed over hot spots, underwent a single cycle of cratonization to form stable continental blocks in the early Archean. Later formed Archean continents show a two stage evolution. The initial stage is reflected in the existence of older sialic material, perhaps representing incompletely cratonized areas or microcontinents of as yet unknown origin. During the second stage, late Archean greenstone belts, perhaps analogous to modern magmatic arcs or back arc basins, developed upon or adjacent to these older sialic blocks. The formation of this generation of Archean continents was largely complete by the end of the Archean. These results suggest that Archean greenstone belts may represent a considerable range of sedimentological and tectonic settings.

  7. Tectonics of Precambrian basement along the Pacific margin of Antarctica and relation to western North America

    SciT

    Goodge, J.W.; Hansen, V.L.; Walker, N.W.

    1993-02-01

    High-grade metamorphic rocks of the Precambrian Nimrod Group (NG) constitute one of few cratonal basement exposures in the Transantarctic Mountains. These rocks represent an outlier of the East Antarctic craton, evolved as part of Gondwana and pre-Gondwana (Rodinia) supercontinents. Despite pervasive, high-strain ductile deformation at T [>=] 650 C, they preserve petrologic and geochronologic evidence of an earlier history. Sm-Nd model ages from several NG lithologies, including that of a [approximately]1.7 Ga orthogneiss, range from about 2.7--2.9 Ga; these ages reflect both sedimentary and magmatic derivation from Archean crust. Individual detrital zircon U-Pb ages (about 1.7--2.6 Ga) from NG quartzitesmore » indicate clastic input from Archean to Paleoproterozoic source terrains. The Sm-Nd and U-Pb ages are reminiscent of both the Yavapai-Mazatzal (1.6--1.8 Ga) and Wyoming (> 2.5 Ga) provinces in western North America. U-Pb ages from syn-tectonic metaigneous and pelitic NG tectonites indicate that this basement complex was re-worked by the major ductile deformation in latest neoproterozoic to Early Cambrian time. Supracrustal assemblages that lie outboard of the Nimrod craton include Neoproterozoic graywacke, impure carbonate, and minor mafic volcanics (Beardmore Group), and Cambrian to Lower Ordovician carbonate and siliciclastic rocks (Byrd Group). Neoproterozoic ([approximately]750 Ma) rifting along the proto-Pacific margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism. Latest Neoproterozoic to early Paleozoic orogenesis occurred along a left-oblique convergent plate margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism.« less

  8. Crustal Structure Of Western China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yuan, X.; Mooney, W. D.; Coleman, R. G.

    Western China is a showcase of complex geological and geophysical features, includ- ing sedimentary basins, regimes of continental collisional tectonics, and the thickest crust found on Earth. Here, we present new results of a 2700-km-long seismic re- fraction profile across northwest China and the northeastern Tibetan Plateau. Seismic energy for this profile was provided by twelve chemical explosive shots fired in bore- holes. The charge size ranged from 1500 to 4000 kg, sufficient to provide clear first arrivals to a maximum distance of 300 km. The distance between shotpoints ranged from 63 to 205 km, and the interval between portable seismographs was between 2 and 4 km. The profile was recorded along existing roads, and provided nearly straight profile segments. We have divided the seismic profile into two segments- the northern segment from the Altai mountains to the Altyn Tagh fault, and the southern segment from the Altyn Tagh fault to the Longmen Shan. The crustal velocity structure and Poissons ratio (sigma) for the transect, which provide a constraint on crustal composi- tion, were determined from P- and S-wave data. The crustal thickness along the profile was determined, and the crust was found to have three layers with P-wave velocities (Vp) of 6.0-6.3 km/s, 6.3-6.6 km/s, and 6.9-7.0 km/s, respectively. We interpret the consistent three-layer stratification of the crust to indicate that the crust has undergone partial melting and differentiation after Paleozoic terrane accretion. Pn velocities were found to be about 7.7 to 7.8 km/s.

  9. Crustal structure of Central Sicily

    NASA Astrophysics Data System (ADS)

    Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo

    2018-01-01

    We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.

  10. Crustal thickness and composition beneath the High Lava Plains of Eastern Oregon from teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Eagar, K. C.; Fouch, M. J.; James, D. E.; Carlson, R. W.

    2009-12-01

    The nature of the crust beneath the High Lava Plains of eastern Oregon is fundamental for understanding the origins of widespread Cenozoic volcanism in the region. Eruptions of flood basalts in the southern Cascadian back arc peaked ~17-15 Ma, and were followed by distributed bimodal volcanism along two perpendicular migrating tracks; the Snake River Plain and the High Lava Plains. The orientations of eruptive centers have led to several competing hypotheses about their cause, including a deep mantle plume, slab retreat and asthenospheric inflow, lithospheric delamination, and lithospheric extension. The goal of this project is to constrain the nature, geometry, and depth of the Moho across the High Lava Plains, which will shed light on questions regarding crustal influence on melt generation and differentiation and the degree of magmatic underplating. In this study, we analyze teleseismic receiver functions from 118 stations of the High Lava Plains temporary broadband array, 34 nearby EarthScope/USArray stations, and 5 other regional broadband stations to determine bulk crustal features of thickness (H) and Vp/Vs ratio (κ). Applying the H-κ stacking method, we search for the best-fitting solution of timing predictions for direct and multiple P-to-S conversions from the Moho interface. Converting Vp/Vs to Poisson ratio, which is dependent primarily upon rock composition, allows for comparison with other direct geological observations. Preliminary results show that the crust of the High Lava Plains is relatively thin (~31 km) with a very sharp gradient to thicker crust (~42 km) at the western edge of the Owyhee Plateau in southwestern Idaho. This gradient is co-located with the western margin of Precambrian North America and is in the vicinity of the Jordan Craters volcanic center. The sharp topography of the Moho might have been a factor in melt migration beneath this area. West of the High Lava Plains, the crust thickens to ~40 km into the Cascade volcanic arc

  11. Constraints on Thermal Evolution of Mars from Relaxation Models of Crustal and Topographic Dichotomy

    NASA Technical Reports Server (NTRS)

    Guest, A.; Smrekar, S. E.

    2005-01-01

    The early thermal evolution of Mars is largely unconstrained. Models such as degree one convection [1,2,3], plate tectonics [4], and a transition to stagnant lid [5] have been proposed to explain formation of the dichotomy, the Tharsis rise, crustal production, and dynamo evolution. Here we model both the early deformation of the dichotomy and the long-term preservation as a means of examining the plausibility of a range of early thermal evolution models. Constraints include the preservation of crustal thickness and topographic differences between the northern and southern hemispheres and the geologic history of the dichotomy [6]). Our previous modeling indicates that the lower crust must have been weak enough to allow for relaxation early on, but the Martian interior had to cool fast enough to preserve the crustal difference and the associated topographic difference (5 km) over approx. 3-3.5 Gyr [7].

  12. A geological synthesis of the Precambrian shield in Madagascar

    Tucker, Robert D.; Roig, J.Y.; Moine, B.; Delor, C.; Peters, S.G.

    2014-01-01

    Available U–Pb geochronology of the Precambrian shield of Madagascar is summarized and integrated into a synthesis of the region’s geological history. The shield is described in terms of six geodynamic domains, from northeast to southwest, the Bemarivo, Antongil–Masora, Antananarivo, Ikalamavony, Androyan–Anosyan, and Vohibory domains. Each domain is defined by distinctive suites of metaigneous rocks and metasedimentary groups, and a unique history of Archean (∼2.5 Ga) and Proterozoic (∼1.0 Ga, ∼0.80 Ga, and ∼0.55 Ga) reworking. Superimposed within and across these domains are scores of Neoproterozoic granitic stocks and batholiths as well as kilometer long zones of steeply dipping, highly strained rocks that record the effects of Gondwana’s amalgamation and shortening in latest Neoproterozoic time (0.560–0.520 Ga). The present-day shield of Madagascar is best viewed as part of the Greater Dharwar Craton, of Archean age, to which three exotic terranes were added in Proterozoic time. The domains in Madagascar representing the Greater Dharwar Craton include the Antongil–Masora domain, a fragment of the Western Dharwar of India, and the Neoarchean Antananarivo domain (with its Tsaratanana Complex) which is broadly analogous to the Eastern Dharwar of India. In its reconstructed position, the Greater Dharwar Craton consists of a central nucleus of Paleo-Mesoarchean age (>3.1 Ga), the combined Western Dharwar and Antongil–Masora domain, flanked by mostly juvenile “granite–greenstone belts” of Neoarchean age (2.70–2.56 Ga). The age of the accretionary event that formed this craton is approximately 2.5–2.45 Ga. The three domains in Madagascar exotic to the Greater Dharwar Craton are the Androyan–Anosyan, Vohibory, and Bemarivo. The basement to the Androyan–Anosyan domain is a continental terrane of Paleoproterozoic age (2.0–1.78 Ga) that was accreted to the southern margin (present-day direction) of the Greater Dharwar Craton in pre

  13. Magnetotelluric imaging of the crustal structure of the Great Slave Lake shear zone in Northwest Alberta

    NASA Astrophysics Data System (ADS)

    WANG, E.; Unsworth, M. J.; Chacko, T.

    2017-12-01

    The Alberta basement is part of the North American craton - Laurentia, which was assembled in the Paleoproterozoic era. The Great Slave Lake shear zone (GSLsz) is the major crustal-scale right-lateral strike-slip feature in northwest Laurentia. Because of the extensive coverage of the rocks of the WCSB, geological studies in northern Alberta are limited to studies of drill core samples. The crustal structures of northern Alberta were defined from potential field in combination with isotopic studies. Magnetotelluric method is helpful in this case, because it is sensitive to conductive bodies. New Broadband magnetotelluric data were collected across the GSLsz to give a clear image of the crustal structure. Dimensionality analyses showed that the data are two-dimensional at the crustal depth, even though 3-D effects are present at the lowest frequencies. Consequently, 2-D inversions were applied and a preferred resistivity model was achieved. The WCSB was imaged as a conductive layer on the top of the resistive Precambrian basement rocks. Four conductive bodies associate with terrane boundaries were identified. The largest conductor - KC is located coincident with the Kiskatinaw terrane at the mid-crustal depth. The second conductor - KCC is located at the boundary of the Ksituan and Chinchaga terranes at upper-crustal depth. The KC and KCC are suspected to be linear conductors that are consistent along the strikes of the Kiskatinaw terrane and the western boundary of the Chinchaga terrane, respectively. This is concluded when considering the result of this study in combination with the potential field data, a previously proposed 3-D resistivity model and a 2-D seismic reflection result. Both of the KC and KCC corresponds to seismically reflective zones. The third conductor - HC is imaged beneath the Hottah terrane. The GSLsz is close to the HC and they may be related in origin. The fourth conductor - CBHC is imaged at the boundary of the Chinchaga and Buffalo Head

  14. Precambrian domains in Lithuania: evidence of terrane tectonics

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Motuza, Gediminas

    2001-09-01

    ). This was followed by cooling and reheating, and then an uplift event. Repeated magmatic underplating accompanied the metamorphism. In the ELD, in contrast, the rocks have been subjected to comprehensive metamorphism under moderate, amphibolite-facies conditions. That metamorphism, however, was not uniform throughout. The metasediments in the east have recorded pressures similar to those in the neighbouring BBG (7-8 kbar) but lower temperatures (650-680°C), while in the central and western parts of the ELD, metamorphism occurred at ca. 480-580°C with pressures increasing from 3-4 kbar in the centre, to 6 kbar close to the western boundary. Reheating to 700°C due to a ca. 1.5-Ga magmatic event is characteristic. The MLSZ, which separates the two Lithuanian basement domains from each other, is a N-S-oriented, ca. 30-50 km wide, westward-plunging crustal discontinuity marked by magnetic and gravity highs, mafic and felsic intrusions, and sheared rocks. Crustal thicknesses change from 42-44 km in the west to 50 km in the eastern side of the Zone, which also truncates a crustal low-velocity layer characteristic of the WLG. The amalgamation of the WLG and ELD along the MLSZ occurred at ca. 1.71-1.66 Ga, after which time both domains were affected by the same post-kinematic, anorogenic magmatism ca. 1.58-1.45 Ga ago. That event and related shearing were responsible for some ultimate refragmentation of the Lithuanian basement terranes.

  15. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism

    NASA Astrophysics Data System (ADS)

    Fedonkin, Mikhail A.; Waggoner, Benjamin M.

    1997-08-01

    The fossil Kimberella quadrata was originally described from late Precambrian rocks of southern Australia. Reconstructed as a jellyfish, it was later assigned to the cubozoans (`box jellies'), and has been cited as a clear instance of an extant animal lineage present before the Cambrian. Until recently, Kimberella was known only from Australia, with the exception of some questionable north Indian specimens. We now have over thirty-five specimens of this fossil from the Winter Coast of the White Sea in northern Russia. Our study of the new material does not support a cnidarian affinity. We reconstruct Kimberella as a bilaterally symmetrical, benthic animal with a non-mineralized, univalved shell, resembling a mollusc in many respects. This is important evidence for the existence of large triploblastic metazoans in the Precambrian and indicates that the origin of the higher groups of protostomes lies well back in the Precambrian.

  16. Crustal structure of central Syria: The intracontinental Palmyride mountain belt

    NASA Astrophysics Data System (ADS)

    Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali; Barazangi, Muawia; Best, John A.; Chaimov, Thomas A.

    1992-07-01

    Along a 450-km transect across central Syria seismic reflection data, borehole information, potential field data and surface geologic mapping have been combined to examine the crustal structure of the northern Arabian platform beneath Syria. The transect is surrounded by the major plate boundaries of the Middle East, including the Dead Sea transform fault system along the Levantine margin to the west, the Bitlis suture and East Anatolian fault to the north, and the Zagros collisional belt to the northeast and east. Three main tectonic provinces of the northern Arabian platform in Syria are crossed by this transect from south to north: the Rutbah uplift, the Palmyra fold-thrust belt, and the Aleppo plateau. The Rutbah uplift in southern Syria is a broad, domal basement-cored structure with a thick Phanerozoic (mostly Paleozoic) cover of 6-7 km. Isopachs based on well and seismic reflection data indicate that this region was an early Paleozoic depocenter. The Palmyra fold-thrust belt, the northeastern arm of the Syrian Arc, is a northeast-southwest-trending intracontinental mountain belt that acts as a mobile tectonic zone between the relatively stable Rutbah uplift to the south and the less stable Aleppo plateau to the north. Short-wavelength en-echelon folds characterized by relatively steep, faulted southeast flanks dominate in the southwest, most strongly deformed segment of the belt, while a complex system of deeply rooted faults and broad folds characterize the northeastern region, described in this study. The Aleppo plateau lies immediately north of the Palmyride belt, with a combined Paleozoic and Mesozoic sedimentary section that averages 4-5 km in thickness. Although this region appears relatively undeformed on seismic reflection data when compared to Palmyride deformation, a system of near-vertical, probable strike-slip faults crosscut the region in a dominantly northeasterly direction. Gravity and magnetic modeling constrains the deep crustal structure

  17. The contribution of the Precambrian continental lithosphere to global H2 production.

    PubMed

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  18. Detecting the transport of toxic pesticides from golf courses into watersheds in the Precambrian Shield region of Ontario, Canada.

    PubMed

    Metcalfe, Tracy L; Dillon, Peter J; Metcalfe, Chris D

    2008-04-01

    Golf courses impact the environment through alterations to habitat and through the release of nutrients and pesticides. The Precambrian Shield region of central Ontario, Canada, which is a major recreational area, is especially susceptible to the impacts of golf courses as a result of the geology and hydrology of the region. In a monitoring program at two golf courses in the Muskoka region conducted during the spring, summer, and fall of 2002, semipermeable membrane devices (SPMDs) were deployed into streams that drain the golf courses. The extracts from the SPMDs were tested for toxicity using bioassays with early life stages of an aquarium fish, the Japanese medaka (Oryzias latipes). Toxicity was assessed using a scoring system developed for the present study. The bioassays with medaka indicated that toxicity was highest in extracts from SPMDs deployed during the spring and the fall. The peaks in toxicity for the SPMDs deployed at the two golf courses corresponded with the presence in the SPMD extracts of pentachloronitrobenzene (PCNB) at concentrations up to 334 ng/SPMD. Quintozene is the turfgrass fungicide in which PCNB is the active ingredient. Pentachlorothioanisole, an anaerobic degradation product of PCNB, also was detected in the SPMDs deployed during the spring. Extracts prepared from SPMDs with high toxicity contained residues of a surfactant used in pesticide formulations, nonylphenol, at concentrations up to approximately 20 microg/SPMD. Overall, these data indicate that some pesticides applied to golf courses in the Precambrian Shield of central Ontario may have the potential to cause toxic impacts to aquatic organisms in adjacent watersheds.

  19. Multiple High-Frequency Carbon Isotope Excursions Across the Precambrian-Cambrian Boundary: Implications for Correlations and Environmental Change

    NASA Astrophysics Data System (ADS)

    Smith, E. F.; Macdonald, F. A.; Schrag, D. P.; Laakso, T.

    2014-12-01

    The GSSP Precambrian-Cambrian boundary in Newfoundland is defined by the first appearance datum (FAD) of Treptichnus pedum, which is considered to be roughly coincident with the FAD of small shelly fossils (SSFs) and a large negative carbon isotope excursion. An association between the FAD of T. pedum and a negative carbon isotope excursion has previously been documented in Northwest Canada (Narbonne et al., 1994) and Death Valley (Corsetti and Hagadorn, 2000), and since then has been used as an chronostratigraphic marker of the boundary, particularly in siliciclastic poor sections that do not preserve T. pedum. Here we present new high-resolution carbon isotope (δ13C ) chemostratigraphy from multiple sections in western Mongolia and the western United States that span the Ediacaran-Cambrian transition. High-resolution sampling (0.2-1 m) reveals that instead of one large negative excursion, there are multiple, high-frequency negative excursions with an overall negative trend during the latest Ediacaran. These data help to more precisely calibrate changes in the carbon cycle across the boundary as well as to highlight the potential problem of identifying the boundary with just a few negative δ13C values. We then use a simple carbon isotope box model to explore relationships between phosphorous delivery to the ocean, oxygenation, alkalinity, and turnovers in carbonate secreting organisms. Corsetti, F.A., and Hagadorn, J.W., 2000, Precambrian-Cambrian transition: Death Valley, United States: Geology, v. 28, no. 4, p. 299-302. Narbonne, G.M., Kaufman, A.J., and Knoll, A.H., 1994, Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals: Geological Society of America Bulletin, v. 106, no. 10, p. 1281-1292.

  20. Crustal Dynamics Project: Catalogue of site information

    NASA Technical Reports Server (NTRS)

    Noll, Carey E. (Editor)

    1988-01-01

    This document represents a catalog of site information for the Crustal Dynamics Project. It contains information on and descriptions of those sites used by the Project as observing stations for making the precise geodetic measurements necessary for studies of the Earth's crustal movements and deformation.

  1. Crustal Dynamics Project: Catalogue of site information

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This document represents a catalogue of site information for the Crustal Dynamics Project. It contains information and descriptions of those sites used by the Project as observing stations for making the precise geodetic measurements useful for studies of the Earth's crustal movements and deformation.

  2. Crustal and Mantle Structure beneath the Okavango and Malawi Rifts and Its Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Liu, K. H.; Yu, Y.; Reed, C. A.; Mickus, K. L.; Moidaki, M.

    2017-12-01

    To investigate crustal and mantle structure beneath the young and incipient sections of the East African Rift System and provide constraints on rifting models, a total of 50 broadband seismic stations were placed along three profiles across the Okavango and Malawi rifts, with a total length of about 2500 km. Results to date suggest minor crustal thinning and nearly normal seismic velocities in the upper mantle beneath both rifts. The thickness of the mantle transition zone is comparable to the global average, suggesting the lack of thermal upwelling from the lower mantle beneath the rifts. In addition, shear-wave splitting analysis found no anomalies in either the fast polarization orientation or the splitting time associated with the rifts, and thus has ruled out the existence of small-scale mantle convection or plume-related mantle flow beneath the rifts. While the Okavango rift has long been recognized to be located in a Precambrian orogenic zone between the Kalahari and Congo cratons, our results suggest that the Malawi Rift is also developing along the western edge of a lithospheric block with relatively greater thickness relative to the surrounding area. Those seismological and gravity modeling results are consistent with a passive rifting model, in which rifts develop along pre-existing zones of lithospheric weakness, where rapid variations of lithospheric thickness is observed. Lateral variations of dragging stress applied to the bottom of the lithosphere are the most likely cause for the initiation and development of both rifts.

  3. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.

    2005-01-01

    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  4. A Tale of Two Orogens: Comparing Crustal Processes in the Proterozoic Trans-Hudson and Grenville Orogens, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Bastow, I. D.; Gilligan, A.; Petrescu, L.

    2016-12-01

    The Precambrian core of North America is an assemblage of Archean cratons and Proterozoic orogenic belts, preserving over 3 billion years of Earth history. Here we focus on two of the largest collisional orogens, using recent and ongoing seismological studies to probe their present-day structure and tectonic history. The 1.8 Ga collision between the Western Churchill and Superior cratons, along with microcontinental and island arc terranes, formed the Trans-Hudson Orogen (THO), a collisional belt similar in scale and shape to the present-day Himalaya-Karakoram-Tibet Orogen (HKTO). In the Mesoproterozoic, a series of collisions reworked the SE margin of the Superior craton and added new material over a period of several hundred Ma, culminating in the Grenvillian orogeny and the assembly of the supercontinent Rodinia. The Grenville Orogen is thought to have been a large, hot, long-lived plateau which subsequently underwent orogenic collapse. While similar in spatial scale, the Trans-Hudson and Grenville Orogens have significantly different tectonic histories, notably in terms of longevity and tectonic evolution. Comparison of these collisional belts with each other, and with the HTKO, provide valuable insights into plate-tectonic history. Recently a number of broadband seismograph installations have allowed a detailed study of present-day crustal structure beneath the THO and the Grenville. Receiver-function and surface wave studies provide information on crustal thickness variations, bulk crustal composition and crustal heterogeneity. The crust beneath the orogens is generally thicker, more mafic and more heterogeneous than that beneath neighbouring Archean and Phanerozoic domains, with significant along-strike variability and Moho complexity. We review and interpret the new crustal structure information in the context of the tectonic processes affecting the two contrasting orogens.

  5. Deep crustal earthquakes associated with continental rifts

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.; Yarwood, Dennis R.

    1994-01-01

    Deep (> 20 km) crustal earthquakes have occurred within or along the margins of at least four continental rift zones. The largest of these deep crustal earthquakes ( M ⩾ 5.0) have strike-slip or oblique-slip mechanisms with T-axes oriented similarly to those associated with shallow normal faulting within the rift zones. The majority of deep crustal earthquakes occur along the rift margins in regions that have cooler, thicker crust. Several deep crustal events, however, occur in regions of high heat flow. These regions also appear to be regions of high strain, a factor that could account for the observed depths. We believe the deep crustal earthquakes represent either the relative motion of rift zones with respect to adjacent stable regions or the propagation of rifting into stable regions.

  6. Lithospheric Expressions of the Precambrian Shield, Mesozoic Rifting, and Cenozoic Subduction and Mountain Building in Venezuela

    NASA Astrophysics Data System (ADS)

    Levander, A.; Masy, J.; Niu, F.

    2013-05-01

    The Caribbean (CAR)-South American (SA) plate boundary in Venezuela is a broad zone of faulting and diffuse deformation. GPS measurements show the CAR moving approximately 2 cm/yr relative to SA, parallel to the strike slip fault system in the east, with more oblique convergence in the west (Weber et al., 2001) causing the southern edge of the Caribbean to subduct beneath northwestern South America. The west is further complicated by the motion of the triangular Maracaibo block, which is escaping northeastward relative to SA along the Bocono and Santa Marta Faults. In central and eastern Venezuela, plate motion is accommodated by transpression and transtension along the right lateral San Sebastian- El Pilar strike-slip fault system. The strike-slip system marks the northern edge of coastal thrust belts and their associated foreland basins. The Archean-Proterozoic Guayana Shield, part of the Amazonian Craton, underlies southeastern and south-central Venezuela. We used the 87 station Venezuela-U.S. BOLIVAR array (Levander et al., 2006) to investigate lithospheric structure in northern South America. We combined finite-frequency Rayleigh wave tomography with Ps and Sp receiver functions to determine lithosphere-asthenosphere boundary (LAB) depth. We measured Rayleigh phase velocities from 45 earthquakes in the period band 20-100s. The phase velocities were inverted for 1D shear velocity structure on a 0.5 by 0.5 degree grid. Crustal thickness for the starting model was determined from active seismic experiments and receiver function analysis. The resulting 3D shear velocity model was then used to determine the depth of the LAB, and to CCP stack Ps and Sp receiver functions from ~45 earthquakes. The receiver functions were calculated in several frequency bands using iterative deconvolution and inverse filtering. Lithospheric thickness varies by more a factor of 2.5 across Venezuela. We can divide the lithosphere into several distinct provinces, with LAB depth

  7. Asteroids and Archaean crustal evolution: Tests of possible genetic links between major mantle/crust melting events and clustered extraterrestrial bombardments

    NASA Technical Reports Server (NTRS)

    Glikson, A. Y.

    1992-01-01

    Since the oldest intact terrestrial rocks of ca. 4.0 Ga and oldest zircon xenocrysts of ca. 4.3 Ga measured to date overlap with the lunar late heavy bombardment, the early Precambrian record requires close reexamination vis a vis the effects of megaimpacts. The identification of microtektite-bearing horizons containing spinals of chondritic chemistry and Ir anomalies in 3.5-3.4-Ga greenstone belts provides the first direct evidence for large-scale Archaean impacts. The Archaean crustal record contains evidence for several major greenstone-granite-forming episodes where deep upwelling and adiabatic fusion of the mantle was accompanied by contemporaneous crustal anatexis. Isotopic age studies suggest evidence for principal age clusters about 3.5, 3.0, and 2.7 (+/- 0.8) Ga, relics of a ca. 3.8-Ga event, and several less well defined episodes. These peak events were accompanied and followed by protracted thermal fluctuations in intracrustal high-grade metamorphic zones. Interpretations of these events in terms of internal dynamics of the Earth are difficult to reconcile with the thermal behavior of silicate rheologies in a continuously convecting mantle regime. A triggering of these episodes by mantle rebound response to intermittent extraterrestrial asteroid impacts is supported by (1) identification of major Archaean impacts from microtektite and distal ejecta horizons marked by Ir anomalies; (2) geochemical and experimental evidence for mantle upwelling, possibly from levels as deep as the transition zone; and (3) catastrophic adiabatic melting required to generate peridotitic komatites. Episodic differentiation/accretion growth of sial consequent on these events is capable of resolving the volume problem that arises from comparisons between modern continental crust and the estimated sial produced by continuous two-stage mantle melting processes. The volume problem is exacerbated by projected high accretion rates under Archaean geotherms. It is suggested that

  8. The evolution and distribution of life in the Precambrian eon-global perspective and the Indian record.

    PubMed

    Sharma, M; Shukla, Y

    2009-11-01

    The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.

  9. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.

    2014-01-01

    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  10. A model of precambrian geology of Kansas derived from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Xia, Jianghai; Sprowl, Donald R.; Steeples, Don W.

    1996-10-01

    The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension.

  11. A model of Precambrian geology of Kansas derived from gravity and magnetic data

    Xia, J.; Sprowl, D.R.; Steeples, D.W.

    1996-01-01

    The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension. Copyright ?? 1996 Elsevier Science Ltd.

  12. Constraining a Precambrian Wilson Cycle lifespan: An example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland

    NASA Astrophysics Data System (ADS)

    Nicoli, Gautier; Thomassot, Emilie; Schannor, Mathias; Vezinet, Adrien; Jovovic, Ivan

    2018-01-01

    In the Phanerozoic, plate tectonic processes involve the fragmentation of the continental mass, extension and spreading of oceanic domains, subduction of the oceanic lithosphere and lateral shortening that culminate with continental collision (i.e. Wilson cycle). Unlike modern orogenic settings and despite the collection of evidence in the geological record, we lack information to identify such a sequence of events in the Precambrian. This is why it is particularly difficult to track plate tectonics back to 2.0 Ga and beyond. In this study, we aim to show that a multidisciplinary approach on a selected set of samples from a given orogeny can be used to place constraints on crustal evolution within a P-T-t-d-X space. We combine field geology, petrological observations, thermodynamic modelling (Theriak-Domino) and radiogenic (U-Pb, Lu-Hf) and stable isotopes (δ18O) to quantify the duration of the different steps of a Wilson cycle. For the purpose of this study, we focus on the Proterozoic Nagssugtoqidian Orogenic Belt (NOB), in the Tasiilaq area, South-East Greenland. Our study reveals that the Nagssugtoqidian Orogen was the result of a complete three stages juvenile crust production (Xjuv) - recycling/reworking sequence: (I) During the 2.60-2.95 Ga period, the Neoarchean Skjoldungen Orogen remobilised basement lithologies formed at TDM 2.91 Ga with progressive increase of the discharge of reworked material (Xjuv from 75% to 50%; δ18O: 4-8.5‰). (II) After a period of crustal stabilization (2.35-2.60 Ga), discrete juvenile material inputs (δ18O: 5-6‰) at TDM 2.35 Ga argue for the formation of an oceanic lithosphere and seafloor spreading over a period of 0.2 Ga (Xjuv from < 25% to 70%). Lateral shortening is set to have started at ca. 2.05 Ga with the accretion of volcanic/magmatic arcs (i.e. Ammassalik Intrusive Complex) and by subduction of small oceanic domains (M1: 520 ± 60 °C at 6.6 ± 1.4 kbar). (III) Continental collision between the North Atlantic

  13. Crustal evolution inferred from Apollo magnetic measurements

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Daily, W. D.; Vanian, L. L.

    1978-01-01

    The topology of lunar remanent fields is investigated by analyzing simultaneous magnetometer and solar wind spectrometer data. The diffusion model proposed by Vanyan (1977) to describe the field-plasma interaction at the lunar surface is extended to describe the interaction with fields characterized by two scale lengths, and the extended model is compared with data from three Apollo landing sites (Apollo 12, 15 and 16) with crustal fields of differing intensity and topology. Local remanent field properties from this analysis are compared with high spatial resolution magnetic maps obtained from the electron reflection experiment. It is concluded that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized early in the evolution of the crust. Smaller scale (5 to 10 km) magnetic sources close to the surface were left by bombardment and subsequent gardening of the upper layers of these magnetized regions. The small scale sized remanent fields of about 100 gammas are measured by surface experiments, whereas the larger scale sized fields of about 0.1 gammas are measured by the orbiting subsatellite experiments.

  14. Lower crustal mush generation and evolution

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret

    2016-04-01

    Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.

  15. Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure

    Mooney, W.D.; Gettings, M.E.; Blank, H.R.; Healy, J.H.

    1985-01-01

    The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovic??ic?? discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is

  16. Constraining the Mean Crustal Thickness on Mercury

    NASA Technical Reports Server (NTRS)

    Nimmo, F.

    2001-01-01

    The topography of Mercury is poorly known, with only limited radar and stereo coverage available. However, radar profiles reveal topographic contrasts of several kilometers over wavelengths of approximately 1000 km. The bulk of Mercury's geologic activity took place within the first 1 Ga of the planet's history), and it is therefore likely that these topographic features derive from this period. On Earth, long wavelength topographic features are supported either convectively, or through some combination of isostasy and flexure. Photographic images show no evidence for plume-like features, nor for plate tectonics; I therefore assume that neither convective support nor Pratt isostasy are operating. The composition and structure of the crust of Mercury are almost unknown. The reflectance spectrum of the surface of Mercury is similar to that of the lunar highlands, which are predominantly plagioclase. Anderson et al. used the observed center-of-mass center-of-figure offset together with an assumption of Airy isostasy to infer a crustal thickness of 100-300 km. Based on tidal despinning arguments, the early elastic thickness (T(sub e)) of the (unfractured) lithosphere was approximately equal to or less than 100 km. Thrust faults with lengths of up to 500 km and ages of about 4 Ga B.P. are known to exist on Mercury. Assuming a semicircular slip distribution and a typical thrust fault angle of 10 degrees, the likely vertical depth to the base of these faults is about 45 km. More sophisticated modelling gives similar or slightly smaller answers. The depth to the base of faulting and the elastic layer are usually similar on Earth, and both are thought to be thermally controlled. Assuming that the characteristic temperature is about 750 K, the observed fault depth implies that the heat flux at 4 Ga B.P. is unlikely to be less than 20 mW m(exp -2) for a linear temperature gradient. For an elastic thickness of 45 km, topography at 1000 km wavelength is likely to be about 60

  17. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    NASA Astrophysics Data System (ADS)

    Best, John A.; Barazangi, Muawia; Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40 ±4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  18. Intensity of geomagnetic field in the Precambrian and evolution of the Earth's deep interior

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.

    2017-09-01

    Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively "young" Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth's internal structure, such as the age of the Earth's solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth's inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth's core. The data are

  19. A model for diurnal patterns of carbon fixation in a Precambrian microbial mat based on a modern analog

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1991-01-01

    Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using a modern microbial mat as an analog for Precambrian stromatolites, a study of carbon fixation during a diurnal cycle under ambient conditions was undertaken. The rate of carbon fixation depends primarily on the availability of light (consistent with photosynthetic carbon fixation) and inorganic carbon, and not nitrogen or phosphorus. Atmospheric PCO2 is thought to have decreased from 10 bars at 4 Ga (10(9) years before present) to approximately 10(-4) bars today, implying a change in the availability of inorganic carbon for carbon fixation. Experimental manipulation of levels of inorganic carbon to levels that may have been available to Precambrian mat communities resulted in increased levels of carbon fixation during daylight hours. Combining these data with models of daylength during the Precambrian, models are derived for diurnal patterns of photosynthetic carbon fixation in a Precambrian microbial mat community. The models suggest that, even in the face of shorter daylengths during the Precambrian, total daily carbon fixation has been declining over geological time, with most of the decrease having occurred during the Precambrian.

  20. Quantitative investigations of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone

    Hildenbrand, T.G.; Griscom, A.; Van Schmus, W. R.; Stuart, W.D.

    1996-01-01

    Analysis of gravity and magnetic anomaly data helps characterize the geometry and physical properties of the source of the Missouri gravity low, an important cratonic feature of substantial width (about 125 km) and length (> 600 km). Filtered anomaly maps show that this prominent feature extends NW from the Reelfoot rift to the Midcontinent Rift System. Geologic reasoning and the simultaneous inversion of the gravity and magnetic data lead to an interpretation that the gravity anomaly reflects an upper crustal, 11-km-thick batholith with either near vertical or outward dipping boundaries. Considering the modeled characteristics of the batholith, structural fabric of Missouri, and relations of the batholith with plutons and regions of alteration, a tectonic model for the formation of the batholith is proposed. The model includes a mantle plume that heated the crust during Late Precambrian and melted portions of lower and middle crust, from which the low-density granitic rocks forming the batholith were partly derived. The batholith, called the Missouri batholith, may be currently related to the release of seismic energy in the New Madrid seismic zone (earthquake concentrations occur at the intersection of the Missouri batholith and the New Madrid seismic zone). Three qualitative mechanical models are suggested to explain this relationship with seismicity. Copyright 1996 by the American Geophysical Union.

  1. A mechanism for crustal recycling on Venus

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.; Bindschadler, D. L.

    1993-01-01

    Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle approximately equal 1 cu km of crust per year under favorable conditions.

  2. NASA plan for international crustal dynamics studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  3. Io: Mountains and crustal extension

    NASA Technical Reports Server (NTRS)

    Heath, M. J.

    1985-01-01

    It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.

  4. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  5. The crustal thickness of West Antarctica

    NASA Astrophysics Data System (ADS)

    Chaput, J.; Aster, R. C.; Huerta, A.; Sun, X.; Lloyd, A.; Wiens, D.; Nyblade, A.; Anandakrishnan, S.; Winberry, J. P.; Wilson, T.

    2014-01-01

    P-to-S receiver functions (PRFs) from the Polar Earth Observing Network (POLENET) GPS and seismic leg of POLENET spanning West Antarctica and the Transantarctic Mountains deployment of seismographic stations provide new estimates of crustal thickness across West Antarctica, including the West Antarctic Rift System (WARS), Marie Byrd Land (MBL) dome, and the Transantarctic Mountains (TAM) margin. We show that complications arising from ice sheet multiples can be effectively managed and further information concerning low-velocity subglacial sediment thickness may be determined, via top-down utilization of synthetic receiver function models. We combine shallow structure constraints with the response of deeper layers using a regularized Markov chain Monte Carlo methodology to constrain bulk crustal properties. Crustal thickness estimates range from 17.0±4 km at Fishtail Point in the western WARS to 45±5 km at Lonewolf Nunataks in the TAM. Symmetric regions of crustal thinning observed in a transect deployment across the West Antarctic Ice Sheet correlate with deep subice basins, consistent with pure shear crustal necking under past localized extension. Subglacial sediment deposit thicknesses generally correlate with trough/dome expectations, with the thickest inferred subice low-velocity sediment estimated as ˜0.4 km within the Bentley Subglacial Trench. Inverted PRFs from this study and other published crustal estimates are combined with ambient noise surface wave constraints to generate a crustal thickness map for West Antarctica south of 75°S. Observations are consistent with isostatic crustal compensation across the central WARS but indicate significant mantle compensation across the TAM, Ellsworth Block, MBL dome, and eastern and western sectors of thinnest WARS crust, consistent with low density and likely dynamic, low-viscosity high-temperature mantle.

  6. Crustal Heat Production and the Thermal Evolution of Mars. Revision

    NASA Technical Reports Server (NTRS)

    McLennan, Scott M.

    2001-01-01

    The chemical compositions of soils and rocks from the Pathfinder site and Phobos-2 orbital gamma-ray spectroscopy indicate that the Martian crust has a bulk composition equivalent to large-ion lithophile (LIL) and heat-producing element (HPE) enriched basalt, with a potassium content of about 0.5%. A variety of radiogenic isotopic data also suggest that separation of LIL-enriched crustal and depleted mantle reservoirs took place very early in Martian history (greater than 4.0 Ga). Accordingly, if the enriched Martian crust is greater than 30km thick it is likely that a large fraction (up to at least 50%) of the heat-producing elements in Mars was transferred into the crust very early in the planet's history. This would greatly diminish the possibility of early widespread melting of the Martian mantle.

  7. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei

    2017-10-01

    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  8. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

    NASA Astrophysics Data System (ADS)

    Schiffer, Christian; Stephenson, Randell; Oakey, Gordon N.; Jacobsen, Bo H.

    2016-03-01

    Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (˜82°-83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (˜35-36 km) and comparable velocity-depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ˜24-30 km in the Eurekan fold and thrust belt (˜79.7°-80.6°N) to ˜16-20 km in the Hazen Stable Block (HSB; ˜80.6°-81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (˜48 km) at ˜79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1-4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.

  9. Extraterrestrial Impact Episodes and Archaean to Early Proterozoic (3.8 2.4 Ga) Habitats of Life

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    The terrestrial record is punctuated by major clustered asteroid and comet impacts, which affected the appearance, episodic extinction, radiation, and reemergence of biogenic habitats. Here I examine manifest and potential extraterrestrial impact effects on the onset and evolution of Archaean to early Proterozoic (3.8- 2.4-Ga) habitats, with reference to the Pilbara (Western Australia) and Kaapvaal (eastern Transvaal) Cratons. The range of extraterrestrial connections of microbial habitats includes cometary contribution of volatiles and amino acids, sterilization by intense asteroid and comet bombardment, supernova and solar flares, and impacttriggered volcanic and hydrothermal activity, tectonic modifications, and tsunami effects. Whereas cometary dusting of planetary atmosphere may contribute littlemodi fied extraterrestrial organic components, large impact effects result in both incineration of organic molecules and shock synthesis of new components. From projected impact incidence, ~1.3% of craters >100 km and ~3.8% of craters >250 km have to date been identified for post-3.8-Ga events, due to the mm-scale of impact spherules and the difficulty in their identification in the field - only the tip of the iceberg is observed regarding the effects of large impacts on the Precambrian biosphere, to date no direct or genetic relations between impacts and the onset or extinction of early Precambrian habitats can be confirmed. However, potential relations include (1) ~3.5-3.43 Ga - intermittent appearance of stromatolite-like structures of possible biogenic origin on felsic volcanic shoals representing intervals between mafic volcanic episodes in rapidly subsiding basins, a period during which asteroid impacts are recorded; (2) ~3.26-3.225 Ga - impact-triggered crustal transformation from mafic-ultramafic volcanic environments to rifted troughs dominated by felsic volcanics and turbidites, marked by a major magmatic peak, resulting in extensive hydrothermal activity and

  10. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    NASA Technical Reports Server (NTRS)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  11. Precambrian Basement Structure Map of the Continental United States - An Interpretation of Geologic and Aeromagnetic Data

    Sims, Paul K.; Saltus, Richard W.; Anderson, Eric D.

    2008-01-01

    The Precambrian basement rocks of the continental United States are largely covered by younger sedimentary and volcanic rocks, and the availability of updated aeromagnetic data (NAMAG, 2002) provides a means to infer major regional basement structures and tie together the scattered, but locally abundant, geologic information. Precambrian basement structures in the continental United States have strongly influenced later Proterozoic and Phanerozoic tectonism within the continent, and there is a growing awareness of the utility of these structures in deciphering major younger tectonic and related episodes. Interest in the role of basement structures in the evolution of continents has been recently stimulated, particularly by publications of the Geological Society of London (Holdsworth and others, 1998; Holdsworth and others, 2001). These publications, as well as others, stress the importance of reactivation of basement structures in guiding the subsequent evolution of continents. Knowledge of basement structures is an important key to understanding the geology of continental interiors.

  12. The potential for crustal resources on Mars

    NASA Technical Reports Server (NTRS)

    Cordell, Bruce M.; Gillett, Stephen L.

    1991-01-01

    Martian resources pose not only an interesting scientific challenge but also have immense astronautical significance because of their ability to enhance mission efficiency, lower launch and program costs, and stimulate the development of large Mars surface facilities. Although much terrestrial mineralization is associated with plate tectonics and Mars apparently possesses a thick, stationary lithosphere, the presence of crustal swells, rifting, volcanism, and abundant volatiles indicates that a number of sedimentary, hydrothermal, dry-magma mineral concentration processes may have operated on Mars. For example, in Colorado Plateau-style (roll-front) deposits, uranium precipitation is localized by redox variations in groundwater. Also, evaporites (either in salt pans or even interstitially in pore spaces) might concentrate Cl, Li, and K. Many Martian impact craters have been modified by volcanism and probably have been affected by rising magma bodies interacting with ground ice or water. Such conditions might produce hydrothermal circulations and element concentrations. If the high sulfur content found by the Viking landers typifies Martian abundances, sulfide ore bodies may have been formed locally. Mineral-rich Africa seems to share many volcanic and tectonic characteristics with portions of Mars and may suggest Mars' potential mineral wealth. For example, the rifts of Valles Marineris are similar to the rifts in east Africa, and may both result from a large mantle plume rising from the interior and disrupting the surface. The gigantic Bushveld complex of South Africa, an ancient layered igneous intrusion that contains ores of chromium and Pt-group metals, illustrates the sort of dry-magma processes that also could have formed local element concentrations on Mars, especially early in the planet's history when heat flow was higher.

  13. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution

    NASA Astrophysics Data System (ADS)

    Jahn, Bor-ming; Valui, Galina; Kruk, Nikolai; Gonevchuk, V.; Usuki, Masako; Wu, Jeremy T. J.

    2015-11-01

    The Sikhote-Alin Range of the Russian Far East is an important accretionary orogen of the Western Pacific Orogenic Belt. In order to study the formation and tectonic evolution of the orogen, we performed zircon U-Pb dating, as well as geochemical and Sr-Nd-Hf isotopic analyses on 24 granitoid samples from various massifs in the Primorye and Khabarovsk regions. The zircon dating revealed that the granitoids were emplaced from 131 to 56 Ma (Cretaceous to Paleogene). In the Primorye Region, granitoids in the coastal Sikhote-Alin intruded the Cretaceous Taukha Accretionary Terrane from ca. 90 to 56 Ma, whereas those along the Central Sikhote-Alin Fault zone intruded the Jurassic Samarka Accretionary Terrane during ca. 110-75 Ma. The "oldest" monzogranite (131 Ma) was emplaced in the Lermontovka area of the NW Primorye Region. Granitoid massifs along the Central Sikhote-Alin Fault zone in the Khabarovsk Region formed from 109 to 58 Ma. Thus, the most important tectonothermal events in the Sikhote-Alin orogen took place in the Cretaceous. Geochemical analysis indicates that most samples are I-type granitoids. They have initial 87Sr/86Sr ratios ranging from 0.7040 to 0.7083, and initial Nd isotopic ratios, expressed as εNd(t) values, from +3.0 to -5.0 (mostly 0 to -5). The data suggest that the granitoid magmas were generated by partial melting of sources with mixed lithologies, including the subducted accretionary complex ± hidden Paleozoic-Proterozoic basement rocks. Based on whole-rock Nd isotopic data, we estimated variable proportions (36-77%) of juvenile component (=mantle-derived basaltic rocks) in the generation of the granitic magmas. Furthermore, zircon Hf isotopic data (εHf(t) = 0 to +15) indicate that the zircon grains crystallized from melts of mixed sources and that crustal assimilation occurred during magmatic differentiation. The quasi-continuous magmatism in the Sikhote-Alin orogen suggests that the Paleo-Pacific plate subduction was very active in the

  14. Depositional environments and paleocurrent directions in the Precambrian Moeda Formation, Minas Gerais, Brazil

    Lindsey, David A.

    1975-01-01

    The middle Precambrian Moeda Formation of Minas Gerais, Brazil, contains uranium and other minerals believed to be of detrital origin. Two areas of anomalously high concentrations of uranium have been discovered in conglomeratic zones that are interpreted as paleochannels. Because the distribution of uranium is believed to be controlled at least in part by sedimentation, a reconnaissance study was undertaken to assess the depositional environment and sediment dispersal pattern of the Moeda Formation.

  15. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China

    NASA Technical Reports Server (NTRS)

    Chen, J. Y.; Oliveri, P.; Li, C. W.; Zhou, G. Q.; Gao, F.; Hagadorn, J. W.; Peterson, K. J.; Davidson, E. H.

    2000-01-01

    Putative fossil embryos and larvae from the Precambrian phosphorite rocks of the Doushantuo Formation in Southwest China have been examined in thin section by bright field and polarized light microscopy. Although we cannot completely exclude a nonbiological or nonmetazoan origin, we identified what appear to be modern cnidarian developmental stages, including both anthozoan planula larvae and hydrozoan embryos. Most importantly, the sections contain a variety of small (

  16. Geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary sequence, Easton quadrangle, PA

    SciT

    Thomas, D.M.; Malinconico, L.L. Jr.

    1993-03-01

    This project involves the geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary cover rocks near Easton, Pennsylvania. The Precambrian rocks have generally been assumed to have been emplaced on the Paleozoic sequence along a shallow thrust fault. However, at present time the attitude of the faults bordering the Precambrian terranes are all very steeply dipping. This was explained by the subsequent folding of the whole sequence during later orogenic activity. The objective of this work is to determine the attitude and depth of the fault contact between the Precambrian crystalline rocks andmore » the Paleozoic sedimentary rocks. A series of traverses (each separated by approximately one mile) were established perpendicular to the strike of the Precambrian rocks. Along each traverse both gravity and magnetic readings were taken at 0.2 kilometer intervals. The data were reduced and presented as profiles and contour maps. Both the magnetic and gravity data show positive anomalies that correlate spatially with the location of the Precambrian rocks. The gravity data have a long wavelength regional trend increasing to the north with a shorter wavelength anomaly of 2 milligals which coincides with the Precambrian rocks. The magnetic data have a single positive anomaly of almost 1,000 gammas which also coincides with the Precambrian terrane. These data will now be used to develop two dimensional density and susceptibility models of the area. From these models, the thickness of each formation and the structural relationships between them, as well as the attitude and depth of the fault contact will be determined.« less

  17. Evidence for hydrous high-MgO melts in the Precambrian

    NASA Astrophysics Data System (ADS)

    Stone, William E.; Deloule, Etienne; Larson, Michelle S.; Lesher, C. Michael

    1997-02-01

    Prevailing petrogenetic models for Precambrian high-MgO melts such as komatiites invoke crystallization from nearly anhydrous melts (≪0.5% H2O) generated by partial melting of mantle peridotite at temperatures of (≤ 1900 °C and pressures of (18 GPa. However, ultramafic cumulate and gabbro zones of komatiitic and other high-MgO units in Precambrian greenstone belts contain vesicles and minor to major amounts (≤ 25%) of igneous amphibole. The textures (oikocrysts, rims on intercumulate pyroxene, and mineral inclusions within orthocumulate olivine) and the water-rich compositions (1.00% 2.50% H2O) of igneous amphiboles from the Archean Abitibi belt indicate crystallization in situ from significantly hydrous melts while the melt fraction was still as high as 40% 50%. Comparisons to experimental phase equilibria suggest that the residual melts from which the amphiboles crystallized contained 3% 4% H2O, and adjustments for fractional crystallization suggest that the initial melts may have contained as much as 2% H2O. H2O contents of this magnitude would require substantial revision of the nearly anhydrous models for Precambrian high-MgO melts, possibly permitting generation at lower temperatures and pressures, lowering their densities and viscosities, increasing their eruptibility, and enhancing the formation of spinifex textures.

  18. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1994-01-01

    Over the past quarter century, detailed genus- and species-level similarities in cellular morphology between described taxa of Precambrian microfossils and extant cyanobacteria have been noted and regarded as biologically and taxonomically significant by numerous workers world-wide. Such similarities are particularly well documented for members of the Oscillatoriaceae and Chroococcaceae, the two most abundant and widespread Precambrian cyanobacterial families. For species of two additional families, the Entophysalidaceae and Pleurocapsaceae, species-level morphologic similarities are supported by in-depth fossil-modern comparisons of environment, taphonomy, development, and behavior. Morphologically and probably physiologically as well, such cyanobacterial "living fossils" have exhibited an extraordinarily slow (hypobradytelic) rate of evolutionary change, evidently a result of the broad ecologic tolerance characteristic of many members of the group and a striking example of G. G. Simpson's [Simpson, G.G. (1944) Tempo and Mode in Evolution (Columbia Univ. Press, New York)] "rule of the survival of the relatively unspecialized." In both tempo and mode of evolution, much of the Precambrian history of life--that dominated by microscopic cyanobacteria and related prokaryotes--appears to have differed markedly from the more recent Phanerozoic evolution megascopic, horotelic, adaptationally specialized eukaryotes.

  19. Isotopic constraints on crustal growth and recycling

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The Sm-Nd isotopic data on clastic and chemical sediments are used with the present-day age distribution of continental crustal rocks to estimate the rates of crustal accretion, growth and recycling throughout earth's history. A new method for interpreting Nd model ages on both chemical and clastic sediments is proposed. A general relationship is derived between the mean crustal residence time of material recycled from the crust to the mantle (i.e., sediments), the mean age of the crust, and the crustal growth and recycling rates. This relationship takes into account the fact that the age distribution of material in the continental crust is generally different from the age distribution of material recycled into the mantle. The episodic nature of the present-day age distribution in crustal rocks results in similar episodicity in the accretion and recycling rates. The results suggest that by about 3.8 Ga ago, about 40 percent of the present continental volume was present. Recycling rates were extremely high 3-4 Ga ago and declined rapidly to an insignificant value of about 0.1 cu km/a during most of the Phanerozoic. The Nd model age pattern on sediments suggests a fairly high rate of growth during the Phanerozoic.

  20. Geochemistry of Precambrian carbonates. V - Late Paleoproterozoic seawater

    NASA Technical Reports Server (NTRS)

    Veizer, Jan; Plumb, K. A.; Clayton, R. N.; Hinton, R. W.; Grotzinger, J. P.

    1992-01-01

    A study of mineralogy, chemistry, and isotopic composition of the Coronation Supergroup (about 1.9 Ga, NWT), Canada, and the McArthur Group (about 1.65 NT), Australia, is reported in order to obtain better constrained data for the first- and second-order variations in the isotopic composition of late Paleoproterozoic (1.9 +/- 0.2 Ga) seawater. Petrologically, both carbonate sequences are mostly dolostones. The McArthur population contains more abundant textural features that attest to the former presence of sulfates and halite, and the facies investigated represent ancient equivalents of modern evaporitic sabkhas and lacustrine playa lakes. It is suggested that dolomitization was an early diagenetic event and that the O-18 depletion of the Archean to late Paleoproterozoic carbonates is not an artifact of postdepositional alteration.

  1. Crustal forensics in arc magmas

    NASA Astrophysics Data System (ADS)

    Davidson, Jon P.; Hora, John M.; Garrison, Jennifer M.; Dungan, Michael A.

    2005-01-01

    The geochemical characteristics of continental crust are present in nearly all arc magmas. These characteristics may reflect a specific source process, such as fluid fluxing, common to both arc magmas and the continental crust, and/or may reflect the incorporation of continental crust into arc magmas either at source via subducted sediment, or via contamination during differentiation. Resolving the relative mass contributions of juvenile, mantle-derived material, versus that derived from pre-existing crust of the upper plate, and providing these estimates on an element-by-element basis, is important because: (1) we want to constrain crustal growth rates; (2) we want to quantitatively track element cycling at convergent margins; and (3) we want to determine the origin of economically important elements and compounds. Traditional geochemical approaches for determining the contributions of various components to arc magmas are particularly successful when applied on a comparative basis. Studies of suites from multiple magmatic systems along arcs, for which differentiation effects can be individually constrained, can be used to extrapolate to potential source compositions. In the Lesser Antilles Arc, for example, differentiation trends from individual volcanoes are consistent with open-system evolution. However, such trends do not project back to a common primitive magma composition, suggesting that differentiation modifies magmas that were derived from distinct mantle sources. We propose that such approaches should now be complemented by petrographically constrained mineral-scale isotope and trace element analysis to unravel the contributing components to arc magmas. This innovative approach can: (1) better constrain true end-member compositions by returning wider ranges in geochemical compositions among constituent minerals than is found in whole rocks; (2) better determine magmatic evolution processes from core-rim isotopic or trace element profiles from the phases

  2. Crustal seismicity in central Chile

    NASA Astrophysics Data System (ADS)

    Barrientos, S.; Vera, E.; Alvarado, P.; Monfret, T.

    2004-06-01

    Both the genesis and rates of activity of shallow intraplate seismic activity in central Chile are poorly understood, mainly because of the lack of association of seismicity with recognizable fault features at the surface and a poor record of seismic activity. The goal of this work is to detail the characteristics of seismicity that takes place in the western flank of the Andes in central Chile. This region, located less than 100 km from Santiago, has been the site of earthquakes with magnitudes up to 6.9, including several 5+ magnitude shocks in recent years. Because most of the events lie outside the Central Chile Seismic Network, at distances up to 60 km to the east, it is essential to have adequate knowledge of the velocity structure in the Andean region to produce the highest possible quality of epicentral locations. For this, a N-S refraction line, using mining blasts of the Disputada de Las Condes open pit mine, has been acquired. These blasts were detected and recorded as far as 180 km south of the mine. Interpretation of the travel times indicates an upper crustal model consisting of three layers: 2.2-, 6.7-, and 6.1-km thick, overlying a half space; their associated P wave velocities are 4.75-5.0 (gradient), 5.8-6.0 (gradient), 6.2, and 6.6 km/s, respectively. Hypocentral relocation of earthquakes in 1986-2001, using the newly developed velocity model, reveals several regions of concentrated seismicity. One clearly delineates the fault zone and extensions of the strike-slip earthquake that took place in September 1987 at the source of the Cachapoal River. Other regions of activity are near the San José volcano, the source of the Maipo River, and two previously recognized lineaments that correspond to the southern extension of the Pocuro fault and Olivares River. A temporary array of seismographs, installed in the high Maipo River (1996) and San José volcano (1997) regions, established the hypocentral location of events with errors of less than 1 km

  3. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi

    2013-04-01

    We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.

  4. Petrology, geochemistry and zirconology of impure calcite marbles from the Precambrian metamorphic basement at the southeastern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Can; Zhang, Pin-Gang; Wang, Cheng-Cheng; Groppo, Chiara; Rolfo, Franco; Yang, Yang; Li, Yuan; Deng, Liang-Peng; Song, Biao

    2017-10-01

    Impure calcite marbles from the Precambrian metamorphic basement of the Wuhe Complex, southeastern margin of the North China Craton, provide an exceptional opportunity to understand the depositional processes during the Late Archean and the subsequent Palaeoproterozoic metamorphic evolution of one of the oldest cratons in the world. The studied marbles are characterized by the assemblage calcite + clinopyroxene + plagioclase + K-feldspar + quartz + rutile ± biotite ± white mica. Based on petrography and geochemistry, the marbles can be broadly divided into two main types. The first type (type 1) is rich in REE with a negative Eu anomaly, whereas the second type (type 2) is relatively poor in REE with a positive Eu anomaly. Notably, all marbles exhibit remarkably uniform REE patterns with moderate LREE/HREE fractionation, suggesting a close genetic relationship. Cathodoluminescence imaging, trace elements and mineral inclusions reveal that most zircons from two dated samples display distinct core-rim structures. Zircon cores show typical igneous features with oscillatory growth zoning and high Th/U ratios (mostly in the range 0.3-0.7) and give ages of 2.53 - 2.48 Ga, thus dating the maximum age of deposition of the protolith. Zircon rims overgrew during granulite-facies metamorphism, as evidenced by calcite + clinopyroxene + rutile + plagioclase + quartz inclusions, by Ti-in-zircon temperatures in the range 660-743 °C and by the low Th/U (mostly < 0.1) and Lu/Hf (< 0.001) ratios. Zircon rims from two dated samples yield ages of 1839 ± 7 Ma and 1848 ± 23 Ma, respectively, suggesting a Palaeoproterozoic age for the granulite-facies metamorphic event. These ages are consistent with those found in other Precambrian basement rocks and lower-crustal xenoliths in the region, and are critical for the understanding of the tectonic history of the Wuhe Complex. Positive Eu anomalies and high Sr and Ba contents in type 2 marbles are ascribed to syn-depositional felsic

  5. Compositional dependence of lower crustal viscosity

    NASA Astrophysics Data System (ADS)

    Shinevar, William J.; Behn, Mark D.; Hirth, Greg

    2015-10-01

    We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.

  6. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    NASA Technical Reports Server (NTRS)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.

    1988-01-01

    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  7. Reports on crustal movements and deformations

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Peck, T.

    1981-01-01

    Studies of tectonic plate motions, regional crustal deformations, strain accumulation and release, deformations associated with earthquakes and fault motion, and micro-plate motion, were collected and are summarized. To a limited extent, papers dealing with global models of current plate motions and crustal stress are included. The data base is restricted to articles appearing in reveiwed technical journals during the years 1970-1980. The major journals searched include: Journal of Geophysical Research (solid earth), Tectonophysics, Bulletin of the Seismological Society of America, Geological Society of America Bulletin, Geophysical Journal of the Royal Astronomical Society, and the Journal of Geology.

  8. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a

  9. The crustal structure of the Enderby Basin, East Antarctica

    NASA Astrophysics Data System (ADS)

    Davis, Joshua K.; Lawver, Lawrence A.; Norton, Ian O.; Dalziel, Ian W. D.; Gahagan, Lisa M.

    2018-05-01

    The passive margin and ocean crust of the Enderby Basin, East Antarctica preserves a record of the breakup of East Gondwana. Using a suite of public domain geophysical data, we have examined and described the crustal morphology of the basin. Based on our geophysical observations, we divide the Enderby Basin into three distinct morphologic domains. The Eastern Domain demonstrates the most volcanic morphology of the basin, with abundant seaward dipping reflector packages and anomalously thick oceanic crust. These features suggest an early influence by the Kerguelen Hotspot on continental breakup within the domain. The Central Domain is characterized by two regions of oceanic crust of varying morphology segregated by a high amplitude magnetic anomaly. Geophysical observations suggest that the basement directly inboard of this magnetic anomaly is composed of thin, rugged, and poorly structured, proto-oceanic crust, similar in morphology to oceanic crust formed at ultraslow/slow mid-ocean ridged. Outboard of this anomaly, oceanic crust appears to be well-structured and of normal thickness. We offer three, non-exclusive, explanations for the observed change in ocean crustal structure: (1) melt production was initially low at the time of continental breakup, and the progressive decompression of the mantle led to a gradual increase in melt production and ocean crust thickness, (2) melt production was initially low to due lower extension rates and that melt production increased following a change in spreading rate, (3) a change in spreading ridge geometry led to more effective seafloor spreading rate and concurrent increase in melt production. The Western Domain of the Enderby Basin is characterized by abundant fracture zones and anomalously thin oceanic crust. We believe these features arose as a geometric consequence of the originally oblique orientation of continental rifting relative to the extension direction within the domain. Together these observations suggest that

  10. Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.

    2016-12-01

    Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.

  11. Crustal architecture of the Pensacola-Pole Basin region in East Antarctica

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Jordan, T. A.; Forsberg, R.; Olesen, A. V.; Matsuoka, K.; Casal, T. G. D.

    2017-12-01

    During the 2015-2016 Antarctic campaign we flew a major aerogeophysical survey over the South Pole frontier, collecting ca 30,000 line km of new radio echo sounding, laser altimetry, airborne gravity and aeromagnetic data. The main aim of the PolarGAP project, supported by ESA was to fill in the data void in GOCE satellite gravity south of 83.3°S. Here we present the ice thickness, bedrock topography, and gravity and magnetic anomaly images derived from the survey and interpret these to investigate the crustal architecture and tectonic evolution of the South Pole region. Linear free-air gravity lows within the Pensacola-Pole Basin are interpreted as a system of glacially overdeepened grabens flanked by uplifted horst blocks, including the Pensacola Mountains, Patuxent Range and the Argentine Range. We link the grabens to the Jurassic Transantarctic rift system, which is also associated with voluminous tholeiitic magmatism of the Ferrar Large Igneous province. To investigate the potential influence of basement provinces and their tectonic boundaries on the Pensacola-Pole basin region, we combined PolarGAP aeromagnetic data with existing aeromagnetic datasets and satellite magnetic (MF7) patterns. Our magnetic compilation reveals that part of the eastern flank of the basin is controlled by a major inherited crustal boundary. The boundary is interpreted here as the southern edge of a hitherto unrecognised composite Precambrian microplate, extending from the Shackleton Range to the Pensacola-Pole basin itself. This inferred microplate forms a key missing link between the southern sector of the subduction-related Ross Orogen and the Pan-African age collisional suture and transpressional shear zones identified in the Shackleton Range.

  12. Crustal dynamics project site selection criteria

    NASA Technical Reports Server (NTRS)

    Allenby, R.

    1983-01-01

    The criteria for selecting site locations and constructing observing pads and monuments for the Mobile VLB1 and the satellite laser ranging systems used in the NASA/GSFC Crustal Dynamics Project are discussed. Gross system characteristics (size, shape, weight, power requirement, foot prints, etc.) are given for the Moblas, MV-1 through 3, TLRS-1 through 4 and Series instruments.

  13. Lunar Crustal Magnetism: Correlations with Geology

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Acuna, M. H.; Hood, L. L.; Binder, A. B.

    2001-01-01

    With Lunar Prospector reflectometry data we now have sufficient surface coverage to allow detailed comparisons between crustal magnetism and geology. We find substantial evidence that lunar magnetism is dominated by the effects of impact processes. Additional information is contained in the original extended abstract.

  14. Crustal Heterogeneity in the Basin and Range,

    DTIC Science & Technology

    1995-08-14

    plutonism ). Seismic velocities are taken from laboratory measurements of rocks with similar compositions and are consistent with the bulk velocities... plutons intruded into Proterozoic North American crust in the Chocolate Mountains (Figure 2, upper crust) as describing the entire crustal column

  15. Linkage between mantle and crustal structures and its bearing on inherited structures in northwestern Scotland

    Snyder, D.B.; England, R.W.; McBride, J.H.

    1997-01-01

    Deep seismic reflection profiles in Scotland reveal mantle structures beneath a crust with a polyphase tectonic history that resulted in several generations of structures. Continuum mechanics suggests that coeval mantle and crustal structures must be kinematically linked. Inherited structures imply relative ages for the reflectors, ages that can be placed into the context of the geological history of the near-surface rocks of northern Scotland. Thus, some mantle reflectors are assigned Triassic ages related to the opening of the West Orkney and related marginal basins of the Atlantic Ocean. Other mantle reflectors are cut by late Caledonian structures associated with the Great Glen Fault Zone and therefore older than c. 400 Ma. Many of these structures also track the late Precambrian margin of Laurentia and may be related to either the opening (900-600 Ma) or closing (500-400 Ma) of the Iapetus Ocean. Some reflective structures may also be attributed to 1800-1700 Ma Laxfordian deformation that was part of a global-scale orogenic belt.

  16. Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum

    NASA Technical Reports Server (NTRS)

    Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.

    2000-01-01

    The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.

  17. Seismotectonics and Crustal Thickness of Northwest Mindoro, Philippines

    NASA Astrophysics Data System (ADS)

    Chen, P. F.; Olavere, E. A.; Lee, K. M.; Bautista, B.; Solidum, R., Jr.; Huang, B. S.

    2015-12-01

    Mindoro Island locates where the Palawan Continental Block (PCB) indented into the Philippine Mobile Belt (PMB) during the Early Miocene and where the Manila Trench terminates, having ceased convergence due to collision. On the transition from subduction to collision, Northwest Mindoro exhibits vigorous seismic activity and has been debated about its affiliation being PCB or PMB. Here, we use data from both the EHB and Global Centroid Moment Tensor catalogues to study the regional seismotectonics. We also deployed five broadband stations to probe the crustal thickness beneath NW Mindoro using receiver function analysis. Results show that, following the southeasterly reduction of convergence rates at the southern termination of the Manila Trench, the slab dipping angles steepen, were initiated at depth (~200 km) and propagate upwards. The horizontal distances of the trench and slab, as measured from the Wadati-Benioff zone at 200 km depth, also reduce in a southeasterly direction. Observations of intermediate-depth earthquakes that exhibit predominantly down-dip extensional stress patterns attest that the steepening of slab dipping angles is due to the negative buoyancy of the slab. Preliminary results of receiver function analysis suggest that the crustal thickness beneath NW Mindoro is about 40 km and is probably PCB affiliated.

  18. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism

    NASA Astrophysics Data System (ADS)

    Citron, Robert I.; Zhong, Shijie

    2012-12-01

    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern

  19. Crustal parameters in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Banda, E.

    1988-06-01

    The structure of the crust in the Iberian Peninsula has been investigated for the last 15 years by Spanish and Portuguese groups in close collaboration with other European institutions. The first experiments were carried out in Portugal (Mueller et al., 1973) with the aim of investigating the crustal structure of the Hercynian belt in the southwest corner of the Iberian peninsula. Other experiments have been subsequently realized to study different aspects of the crust in various regions of Portugal. In Spain the main effort has been focused in Alpine areas, with the first experiments in the Alboran Sea and the Betic Cordilleras (Working Group for Deep Seismic Sounding in Spain, 1974-1975, 1977; Working Group for Deep Seismic Sounding in the Alboran Sea, 1974-1975, 1978). Follow-up experiments until 1981 completed the work in the Betic Cordillera. Extensive experiments were carried out in the Pyrenees in 1978. Further surveys covered the Balearic Islands in 1976, the Valencia Trough in 1976 and 1983, and the Celtiberian Chain (or Iberic system) in 1981. The Hercynian belt has only been studied in detail in the northwest corner of Spain in 1982, with smaller studies in the central Iberian Massif in 1976 and 1986. Mostaanpour (1984) has compiled some crustal parameters (crustal thickness, average crustal velocity and Pn velocity) for western Europe. Meanwhile, more complete data are available for the Iberian Peninsula. The results presented here were derived from a large number of seismic refraction experiments which have been carried out mostly along or close to coastal areas of the Iberian Peninsula. Offshore explosions of various sizes were used as the energy source in most cases, in addition to some quarry blasts. Unfortunately this leaves most of the inner part of the Iberian Peninsula unsurveyed. Our purpose is to summarize some of the crustal parameters obtained so far and to detail the appropriate literature for the interested reader.

  20. Spherule Beds 3.47-3.24 Billion Years Old in the Barberton Greenstone Belt, South Africa: A Record of Large Meteorite Impacts and Their Influence on Early Crustal and Biological Evolution

    NASA Technical Reports Server (NTRS)

    Lowe, Donald R.; Byerly, Gary R.; Kyte, Frank T.; Shukolyukov, Alexander; Asaro, Frank; Krull, Alexander

    2003-01-01

    Four layers, S1-S4, containing sand-sized spherical particles formed as a result of large meteorite impacts, occur in 3.47-3.24 Ga rocks of the Barberton Greenstone Belt, South Africa. Ir levels in S3 and S4 locally equal or exceed chondritic values but in other sections are at or only slightly above background. Most spherules are inferred to have formed by condensation of impact-produced rock vapor clouds, although some may represent ballistically ejected liquid droplets. Extreme Ir abundances and heterogeneity may reflect element fractionation during spherule formation, hydraulic fractionation during deposition, and/or diagenetic and metasomatic processes. Deposition of S1, S2, and S3 was widely influenced by waves and/or currents interpreted to represent impact-generated tsunamis, and S1 and S2 show multiple graded layers indicating the passage of two or more wave trains. These tsunamis may have promoted mixing within a globally stratified ocean, enriching surface waters in nutrients for biological communities. S2 and S3 mark the transition from the 300-million-year-long Onverwacht stage of predominantly basaltic and komatiitic volcanism to the late orogenic stage of greenstone belt evolution, suggesting that regional and possibly global tectonic reorganization resulted from these large impacts. These beds provide the oldest known direct record of terrestrial impacts and an opportunity to explore their influence on early life, crust, ocean, and atmosphere. The apparent presence of impact clusters at 3.26-3.24 Ga and approx. 2.65-2.5 Ga suggests either spikes in impact rates during the Archean or that the entire Archean was characterized by terrestrial impact rates above those currently estimated from the lunar cratering record.

  1. Spherule beds 3.47-3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution.

    PubMed

    Lowe, Donald R; Byerly, Gary R; Kyte, Frank T; Shukolyukov, Alexander; Asaro, Frank; Krull, Alexandra

    2003-01-01

    Four layers, S1-S4, containing sand-sized spherical particles formed as a result of large meteorite impacts, occur in 3.47-3.24 Ga rocks of the Barberton Greenstone Belt, South Africa. Ir levels in S3 and S4 locally equal or exceed chondritic values but in other sections are at or only slightly above background. Most spherules are inferred to have formed by condensation of impact-produced rock vapor clouds, although some may represent ballistically ejected liquid droplets. Extreme Ir abundances and heterogeneity may reflect element fractionation during spherule formation, hydraulic fractionation during deposition, and/or diagenetic and metasomatic processes. Deposition of S1, S2, and S3 was widely influenced by waves and/or currents interpreted to represent impact-generated tsunamis, and S1 and S2 show multiple graded layers indicating the passage of two or more wave trains. These tsunamis may have promoted mixing within a globally stratified ocean, enriching surface waters in nutrients for biological communities. S2 and S3 mark the transition from the 300-million-year-long Onverwacht stage of predominantly basaltic and komatiitic volcanism to the late orogenic stage of greenstone belt evolution, suggesting that regional and possibly global tectonic reorganization resulted from these large impacts. These beds provide the oldest known direct record of terrestrial impacts and an opportunity to explore their influence on early life, crust, ocean, and atmosphere. The apparent presence of impact clusters at 3.26-3.24 Ga and approximately 2.65-2.5 Ga suggests either spikes in impact rates during the Archean or that the entire Archean was characterized by terrestrial impact rates above those currently estimated from the lunar cratering record.

  2. Archean crustal evolution of the Narryer Gneiss Terrane, Western Australia, as revealed by the U-Pb age and Hf-isotope compositions of zircon from the granitic gneisses

    NASA Astrophysics Data System (ADS)

    Sylvester, P.; Souders, K.; Crowley, J. L.; Myers, J.

    2011-12-01

    The Narryer Gneiss Terrane of the Yilgarn Craton, Western Australia, is an important area for studies of early crustal evolution because of the preservation of (1) detrital zircons of Hadean to Archean age in the Jack Hills and Mt. Narryer metasedimentary belts, and (2) several widespread units of granitic gneisses emplaced between ca. 3.7 and 2.6 Ga. We have analyzed the U-Pb geochronology and Hf-isotope geochemistry of magmatic zircons from 38 samples of the granitic gneisses using laser ablation - (multicollector) - ICPMS. The sample suite is dominated by the Meeberrie gneiss, a banded quartz-microcline-oligoclase-biotite gneiss of monzogranite to granodiorite composition, and the Dugel gneiss, a leucocratic, pegmatite-layered syenogranite gneiss, but gneisses of dioritic to tonalitic composition, as well as less deformed granite sheets, are also represented. Magmatic zircons were identified on the basis of the preservation of oscillatory zoning in BSE and CL images, igneous Th/U ratios (>0.2), and concordant U-Pb isotopic systematics with low common Pb contents. The results indicate many of the gneisses are composed of the products of multiple magmatic events, as has been reported previously for samples of the Meeberrie gneiss (Kinny & Nutman, 1996, Precambrian Res. 78, 165-178). Major ages of magmatism preserved in the gneisses occurred at ca. 3685-3665 Ma, 3620-3565 Ma, 3495-3440 Ma, 3375-3330 Ma, and 3300-3260 Ma. The late granite sheets crystallized at 2710-2645 Ma. Hf-isotope compositions of the zircons trend to less radiogenic values with decreasing age, with ɛHf values of ca. 0 to -5 for 3.7-3.4 Ga gneisses, ca. -1 to -9 for 3.4-3.2 Ga gneisses and ca. -5 to -20 for the late granite sheets. The array of the Hf isotopic compositions with time for the entire sample set are fit well by a regression indicating a source reservoir with a 176Lu/177Hf of 0.022 extracted from the depleted mantle at 3.9 Ga. This suggests that the Narryer gneisses and late granite

  3. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  4. Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases

    PubMed Central

    Veikkolainen, Toni H.; Biggin, Andrew J.; Pesonen, Lauri J.; Evans, David A.; Jarboe, Nicholas A.

    2017-01-01

    State-of-the-art measurements of the direction and intensity of Earth’s ancient magnetic field have made important contributions to our understanding of the geology and palaeogeography of Precambrian Earth. The PALEOMAGIA and PINT(QPI) databases provide thorough public collections of important palaeomagnetic data of this kind. They comprise more than 4,100 observations in total and have been essential in supporting our international collaborative efforts to understand Earth's magnetic history on a timescale far longer than that of the present Phanerozoic Eon. Here, we provide an overview of the technical structure and applications of both databases, paying particular attention to recent improvements and discoveries. PMID:28534869

  5. Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases.

    PubMed

    Veikkolainen, Toni H; Biggin, Andrew J; Pesonen, Lauri J; Evans, David A; Jarboe, Nicholas A

    2017-05-23

    State-of-the-art measurements of the direction and intensity of Earth's ancient magnetic field have made important contributions to our understanding of the geology and palaeogeography of Precambrian Earth. The PALEOMAGIA and PINT( QPI ) databases provide thorough public collections of important palaeomagnetic data of this kind. They comprise more than 4,100 observations in total and have been essential in supporting our international collaborative efforts to understand Earth's magnetic history on a timescale far longer than that of the present Phanerozoic Eon. Here, we provide an overview of the technical structure and applications of both databases, paying particular attention to recent improvements and discoveries.

  6. Rutile and topaz in Precambrian gneiss, Jefferson and Clear Creek Counties, Colorado

    Sheridan, Douglas M.; Taylor, Richard B.; Marsh, Sherman P.

    1968-01-01

    Disseminated rutile and major amounts of topaz have been identified in Precambrian topaz-quartz gneiss northwest of Evergreen, Colo. The rutile occurs in quartz-topaz-sillimanite gneiss that forms a stratigraphic unit which is 11 to 100 feet thick and is identified along strike for more than 7,000 feet. Three composite chip samples taken across this unit contain 2.2 to 4.2 percent of rutile, by weight, in grains averaging from 0.1 to 0.3 millimeter in size. The topaz content, by weight, in the same samples ranges from 23 to 67 percent.

  7. Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew; Allen, Charlotte

    2004-04-01

    component to the impact-generated volatile cloud. Conservative mass balance estimates derived from the Ir and Pt flux, assuming global extent of a 10-cm-thick spherule unit and chondritic projectile composition, suggest an asteroid diameter on the scale of ˜30 km. Similar estimates are obtained from spherule sizes, which in DGS4 reach a mean diameter of ˜2.0 mm in aerodynamically elongate spherules. The evidence implies formation of an impact basin on the scale of 400 km in simatic/oceanic regions of the early Proterozoic crust.

  8. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  9. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts.

    PubMed

    Robert, François; Chaussidon, Marc

    2006-10-26

    The terrestrial sediment record indicates that the Earth's climate varied drastically in the Precambrian era (before 550 million years ago), ranging from surface temperatures similar to or higher than today's to global glaciation events. The most continuous record of sea surface temperatures of that time has been derived from variations in oxygen isotope ratios of cherts (siliceous sediments), but the long-term cooling of the oceans inferred from those data has been questioned because the oxygen isotope signature could have been reset through the exchange with hydrothermal fluids after deposition of the sediments. Here we show that the silicon isotopic composition of cherts more than 550 million years old shows systematic variations with age that support the earlier conclusion of long-term ocean cooling and exclude post-depositional exchange as the main source of the isotopic variations. In agreement with other lines of evidence, a model of the silicon cycle in the Precambrian era shows that the observed silicon isotope variations imply seawater temperature changes from about 70 degrees C 3,500 million years ago to about 20 degrees C 800 million years ago.

  10. Index to selected machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas

    Spinazola, J.M.; Hansen, C.V.; Underwood, E.J.; Kenny, J.F.; Wolf, R.J.

    1987-01-01

    Machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas were compiled as part of the USGS Central Midwest Regional Aquifer System Analysis. The geohydrologic data include log, water quality, water level, hydraulics, and water use information. The log data consist of depths to the top of selected geologic formations determined from about 275 sites with geophysical logs and formation lithologies from about 190 sites with lithologic logs. The water quality data consist of about 10,800 analyses, of which about 1 ,200 are proprietary. The water level data consist of about 4 ,480 measured water levels and about 4,175 equivalent freshwater hydraulic heads, of which about 3,745 are proprietary. The hydraulics data consist of results from about 30 specific capacity tests and about 20 aquifer tests, and interpretations of about 285 drill stem tests (of which about 60 are proprietary) and about 75 core-sample analyses. The water use data consist of estimates of freshwater withdrawals from Precambrian through Cretaceous geohydrologic units for each of the 105 counties in Kansas. Average yearly withdrawals were estimated for each decade from 1940 to 1980. All the log and water use data and the nonproprietary parts of the water quality , water level, and hydraulics data are available on magnetic tape from the USGS office in Lawrence, Kansas. (Author 's abstract)

  11. Modeling Continental Rifts and Melting Under Precambrian Mantle Conditions: Effects of Mantle Potential Temperature and Rheology

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Moucha, R.; Rooney, T. O.; Stein, S.; Stein, C. A.

    2016-12-01

    The Mid-Continent Rift System (MCRS) is a 2000 kilometer-long failed rift which formed within the Precambrian continent of Laurentia ca. 1.1 Ga. The MCRS is part of the Keweenaw large igneous province (LIP), and is dominantly composed of flood basalts, with subordinate rhyolite. While continental rifts and LIPs are frequently spatially related, it is unusual for a rift to be filled with flood basalts. Existing work has suggested that the presence of large volumes of flood basalts within the MCRS is the result of the rift interacting with anomalously hot mantle material, possibly a mantle plume. However, ambient mantle conditions were much hotter during the late Proterozoic than in the modern mantle. This raises the question - could rifting alone generate the significant volume of decompressive melt from the ambient atmosphere without the need for a mantle plume? In this contribution, we utilize a 2D particle-in-cell thermomechanical visco-elasto-plastic code (e.g. Gerya, 2010; & references therein) to numerically explore the parameter space: specifically, the mantle potential temperature, plume excess temperature and volume, extension rates and rheology, and estimate the amount of melt produced in a Precambrian continental rift setting. *This submission is a result of Hansen's participation in GLADE, a nine week summer REU program directed by Dave Stegman (SIO/UCSD).

  12. Large-scale removal of lithosphere underneath the North China Craton in the Early Cretaceous: Geochemical constraints from volcanic lavas in the Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Zheng; Zhang, Shuai; Li, Xiaoguang; Qi, Jiafu

    2017-11-01

    Cratons are generally considered as the most stable tectonic units on the Earth. Rare magmatism, seismic activity, and intracrustal ductile deformation occur in them. However, several cratons experienced entirely different fates, including the North China Craton (NCC), and were subsequently destroyed. Geodynamic mechanisms and timing of the cratonic destruction are strongly debated. In this paper, we investigate a suite of Mesozoic intermediate to felsic volcanic rocks which are collected from boreholes in the Liaohe Depression of the Bohai Bay Basin the eastern NCC. These volcanic rocks have Precambrian basement-like Sr-Nd isotopic characteristics, consistent with derivation from the lower continental crust underneath the NCC. The Late Jurassic ( 165 Ma) intermediate volcanic rocks don't exhibit markedly negative Eu anomalies, which require a source beyond the plagioclase stability field. And the low heavy rare earth elements (HREEs) contents of these samples indicate that their source has garnet as residue. The Early Cretaceous ( 122 Ma) felsic volcanic rocks are depleted in HREEs but with remarkable Eu anomalies, suggesting that their source have both garnet and plagioclase. The crust thicknesses, estimated from the geochemistry of the intermediate and felsic rocks, are ≥ 50 km at 165 Ma and 30-50 km at 122 Ma, respectively. The crustal thinning is attributed to lithospheric delamination beneath the NCC. Our results combined with previous studies imply that the large-scale lithospheric removal occurred in the Early Cretaceous, between 140 and 120 Ma.

  13. Impact Constraints on the Age and Origin of the Crustal Dichotomy on Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2004-01-01

    MOLA data have revealed a large population of "Quasi-Circular Depressions" (QCDs) with little or no visible expression in image data. These likely buried impact basins have important implications for the age of the lowland crust, how that compares with original highland crust, and when and how the crustal dichotomy may have formed. The buried lowlands are of Early Noachian age, likely slightly younger than the buried highlands but older than the exposed (visible) highland surface. A depopulation of large visible basins at diameters 800 to 1300 km suggests some global scale event early in martian history, maybe related to the formation of the lowlands andor the development of Tharsis. A suggested early disappearance of the global magnetic field can be placed within a temporal sequence of formation of the very largest impact basins. The global field appears to have disappeared at about the time the lowlands formed. It seems likely the topographic crustal dichotomy was produced very early in martian history by processes which operated very quickly. This and the preservation of large relic impact basins in the north- em hemisphere, which themselves can account for the lowland topography, suggest that large impacts played the major role in the origin Mars fundamental crustal feature.

  14. Impact Constraints on the Age and Origin of the Crustal Dichotomy on Mars

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.

    2004-01-01

    MOLA data have revealed a large population of 'Quasi-Circular Depressions' (QCDs) with little or no visible expression in image data. These likely buried impact basins have important implications for the age of the lowland crust, how that compares with original highland crust, and when and how the crustal dichotomy may have formed. The buried lowlands are of Early Noachian age, likely slightly younger than the buried highlands but older than the exposed (visible) highland surface. A depopulation of large visible basins at diameters 800 to 1300 km suggests some global scale event early in martian history, maybe related to the formation of the lowlands and/or the development of Tharsis. A suggested early disappearance of the global magnetic field can be placed within a temporal sequence of formation of the very largest impact basins. The global field appears to have disappeared at about the time the lowlands formed. It seems likely the topographic crustal dichotomy was produced very early in martian history by processes which operated very quickly. This and the preservation of large relic impact basins in the northern hemisphere, which themselves can account for the lowland topography, suggest that large impacts played the major role in the origin Mars fundamental crustal feature.

  15. Crustal reflectivity in the Skagerrak area

    NASA Astrophysics Data System (ADS)

    Larsson, F. R.; Husebye, E. S.

    1991-04-01

    Reflectors within the crystalline crust are often observed in deep seismic reflection profiling surveys. The lower crust in extensional areas is generally credited with an abundance of reflectors. The deep seismic reflection data (16 s TWT) from the M.V. Mobil Search cruise in Skagerrak show a reflective lower crust and a relatively transparent upper crust in most of the area. Reflectivity seems to be less inside the Oslo Rift, and also beneath the sediment-covered areas. Reflectivity maxima are found near the Moho and at depths of 10-20 km. The latter is taken to coincide with the transition between the brittle upper and ductile lower crust. The distribution of crustal reflectors in Skagerrak and their possible relationships with seismic velocities, earthquake depth distribution and major tectonic elements such as the Fennoscandian Border Zone, the Oslo Rift system and the shield environment are discussed. Hypotheses on the formation of the crustal reflectors are also briefly reviewed.

  16. Crustal deformation in Great California Earthquake cycles

    NASA Technical Reports Server (NTRS)

    Li, Victor C.; Rice, James R.

    1987-01-01

    A model in which coupling is described approximately through a generalized Elsasser model is proposed for computation of the periodic crustal deformation associated with repeated strike-slip earthquakes. The model is found to provide a more realistic physical description of tectonic loading than do simpler kinematic models. Parameters are chosen to model the 1857 and 1906 San Andreas ruptures, and predictions are found to be consistent with data on variations of contemporary surface strain and displacement rates as a function of distance from the 1857 and 1906 rupture traces. Results indicate that the asthenosphere appropriate to describe crustal deformation on the earthquake cycle time scale lies in the lower crust and perhaps the crust-mantle transition zone.

  17. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciT

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less

  18. Crustal Thickness and Structure in Southern Chile: Patagonia plate assembly structures and continental arc modifications

    NASA Astrophysics Data System (ADS)

    Rodriguez, E. E.; Russo, R. M.

    2016-12-01

    Crustal structure is the product of the processes that operated during a region's tectonic history. For Patagonia, these tectonic processes include its early Paleozoic assembly and accretion to the South America portion of Gondwana, Triassic rifting of Gondwana, and a long history as the upper plate during oceanic subduction since the Mesozoic. To assess the crustal structure and glean insight into how these tectonic processes affected the region, we combined data from two seismic networks, the Chile Ridge Subduction Project and Seismic Experiment of Aisen Chile - yielding a total of 77 broadband seismic stations - deployed from 2004 to 2007. The stations were concentrated 300 km inboard of the Chile trench, above structures unlikely to have been affected by ongoing Chile Ridge subduction. Events suitable for receiver function (RF) analyses (M > 5.9, of various backazimuths, epicentral distances of 30 - 90°) yielded 995 radial RFs, constructed using iterative time deconvolution (Ligorria and Ammon, 1999). We estimated crustal thicknesses and compressional to shear wave velocity ratios (Vp/Vs) using the H-k grid search method (Zhu and Kanamori, 2000); common conversion point (CCP) stacking (Zhu, et al., 2006) allowed imaging of crustal structure. Results limit crustal thicknesses to between 30 and 45 km. The crust varies smoothly from 30 km at the N margin of our study area ( 43°S) to a max depth of 45 km at 44.75°S, shallowing to 30 km at 49°S. On E-W CCP sections north of 46°S, the Moho dips westward, from a depth of 35 at 71°W to 45 km at its deepest near 72.75°W. Beneath the active Southern Volcanic Zone, which is bounded to the west by the Liquiñe-Ofqui fault, the Moho is ambiguous, producing unclear Ps phases possibly reflecting a lack of sharp impedance contrast or poor conversion efficiency at the base of the crust, perhaps due to deep-seated volcanic arc processes. The proximity of the Liquiñe-Ofqui strike-slip fault may also complicate the

  19. Granulite belts of Central India with special reference to the Bhopalpatnam Granulite Belt: Significance in crustal evolution and implications for Columbia supercontinent

    NASA Astrophysics Data System (ADS)

    Vansutre, Sandeep; Hari, K. R.

    2010-11-01

    The Central Indian collage incorporates the following major granulite belts: (1) the Balaghat-Bhandara Granulite Belt (BBG), (2) the Ramakona-Katangi Granulite Belt (RKG), (3) the Chhatuabhavna Granulite (CBG) of Bilaspur-Raigarh Belt, (4) the Makrohar Granulite Belt (MGB) of Mahakoshal supracrustals, (5) the Kondagaon Granulite Belt (KGGB), (6) the Bhopalpatnam Granulite Belt (BGB), (7) the Konta Granulite Belt (KTGB) and (8) the Karimnagar Granulite Belt (KNGB) of the East Dharwar Craton (EDC). We briefly synthesize the general geologic, petrologic and geochronologic features of these belts and explain the Precambrian crustal evolution in Central India. On the basis of the available data, a collisional relationship between Bastar craton and the EDC during the Paleo-Mesoproterozoic is reiterated as proposed by the earlier workers. The tectonic evolution of only few of the orogenic belts (BGB in particular) of Central India is related to Columbia.

  20. Crustal Structure beneath Alaska from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  1. Gravity and crustal movements: The canadian experience

    NASA Astrophysics Data System (ADS)

    Tanner, J. G.; Lambert, A.

    1987-07-01

    Repeated high precision gravity measurement have already played an important role in the detection of crustal deformation in Canada and elsewhere, but even more useful results can be expected through more widespread use of gravity in combination with other techniques. The crucial element in the process is the development of a good physical model on which the experiment can be based. Otherwise, considerable time and effort can be spent on determining the most appropriate field strategy. New technical developments on the horizon appear to offer enhanced opportunities for gravity studies of crustal processes. The coming availability of the Global Positioning System and transportable absolute gravimeters will open up the possibility of regional studies (i.e., areas of the order of 100 km or perhaps greater) of crustal movements at reasonable cost. Within Africa the development of an African Gravity Standardization Net will be a major first step in any program to provide a better understanding of the neo-tectonic framework of this vast continent.

  2. Reports on crustal movements and deformations. [bibliography

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Peck, T.

    1983-01-01

    This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.

  3. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow

    PubMed Central

    Wang, Qiang; Hawkesworth, Chris J.; Wyman, Derek; Chung, Sun-Lin; Wu, Fu-Yuan; Li, Xian-Hua; Li, Zheng-Xiang; Gou, Guo-Ning; Zhang, Xiu-Zheng; Tang, Gong-Jian; Dan, Wei; Ma, Lin; Dong, Yan-Hui

    2016-01-01

    There is considerable controversy over the nature of geophysically recognized low-velocity–high-conductivity zones (LV–HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7–0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700–1,050 °C and pressures of 0.5–1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15–50 km in areas where the LV–HCZs have been recognized. This provides new petrological evidence that the LV–HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau. PMID:27307135

  4. Early Jurassic extensional inheritance in the Lurestan region of the Zagros fold-and-thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Parente, Mariano; Vitale, Stefano; Puzone, Francesco; Erba, Elisabetta; Bottini, Cinzia; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    It has long been recognized that the tectonic architecture of the Zagros mountain belt was strongly controlled by inherited structures previously formed within the Arabian plate. These preexisting features span in age from the pre-Cambrian to the Mesozoic, showing different trends and deformation styles. Yet, these structures are currently not fully understood. This uncertainty is partly related with the paucity of exposures, which rarely allows a direct observation of these important deformation features. The Lurestan Province of Iran provides a remarkable exception, since it is one of the few places of the Zagros mountain belt where exposures of Triassic and Jurassic rocks are widespread. In this area we carried out structural observations on Mesozoic extensional structures developed at the southern margin of the Neo-Tethyan basin. Syn-sedimentary extensional faults are hosted within the Triassic-Cretaceous succession, being particularly abundant in the Jurassic portion of the stratigraphy. Early to Middle Jurassic syn-sedimentary faults are observed in different paleogeographic domains of the area, and their occurrence is coherent with the subsequent transition from shallow-water to deep-sea basin environments, observed in a wide portion of the area. Most of the thrusts exposed in the area may indeed be interpreted as reactivated Jurassic extensional faults, or as reverse faults whose nucleation was controlled by the location of preexisting normal faults, as a result of positive inversion during crustal shortening and mountain building.

  5. Crustal Magnetic Field Anomalies and Global Tectonics

    NASA Astrophysics Data System (ADS)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  6. Crustal implications of bedrock geology along the Trans-Alaska Crustal Transect (TACT) in the Brooks Range, northern Alaska

    Moore, Thomas E.; Wallace, W.K.; Mull, C.G.; Adams, K.E.; Plafker, G.; Nokleberg, W.J.

    1997-01-01

    Geologic mapping of the Trans-Alaska Crustal Transect (TACT) project along the Dalton Highway in northern Alaska indicates that the Endicott Mountains allochthon and the Hammond terrane compose a combined allochthon that was thrust northward at least 90 km in the Early Cretaceous. The basal thrust of the combined allochthon climbs up section in the hanging wall from a ductile shear zone, in the south through lower Paleozoic rocks of the Hammond terrane and into Upper Devonian rocks of the Endicott Mountains allochthon at the Mount Doonerak antiform, culminating in Early Cretaceous shale in the northern foothills of the Brooks Range. Footwall rocks north of the Mount Doonerak antiform are everywhere parautochthonous Permian and Triassic shale of the North Slope terrane rather than Jurassic and Lower Cretaceous strata of the Colville Basin as shown in most other tectonic models of the central Brooks Range. Stratigraphic and structural relations suggest that this thrust was the basal detachment for Early Cretaceous deformation. Younger structures, such as the Tertiary Mount Doonerak antiform, deform the Early Cretaceous structures and are cored by thrusts that root at a depth of about 10 to 30 km along a deeper detachment than the Early Cretaceous detachment. The Brooks Range, therefore, exposes (1) an Early Cretaceous thin-skinned deformational belt developed during arc-continent collision and (2) a mainly Tertiary thick-skinned orogen that is probably the northward continuation of the Rocky Mountains erogenic belt. A down-to-the-south zone of both ductile and brittle normal faulting along the southern margin of the Brooks Range probably formed in the mid-Cretaceous by extensional exhumation of the Early Cretaceous contractional deformation. copyright. Published in 1997 by the American Geophysical Union.

  7. Modern stromatolites in a saline maar in the Western District of Victoria, Australia: a possible analogue for Precambrian marine carbonates

    NASA Astrophysics Data System (ADS)

    Lynch, J. E.; Wallace, M. W.

    2011-12-01

    Stromatolites and thrombolites are microbially-mediated, sedimentary structures of various size and morphology, found throughout the rock record. Although they do not always contain fossils of microbial cells, ancient stromatolitic structures are considered biogenic in origin and, therefore, evidence of early life. Modern, living stromatolites are found in lacustrine and marine environments and can provide a window in which to observe some of Earth's earliest biological processes. However, secular variation in marine chemistry over geological time means that modern marine settings are not always the best analogues for ancient carbonates. This study describes the occurrence of modern stromatolites in a saline, alkaline maar in Victoria, Australia. Dolomite is a principle carbonate mineral precipitating from this lake, an unusual and poorly understood occurrence in modern environments, but one that was common in the Precambrian. The peculiar lacustrine chemistry in this volcanic region may, therefore, provide a better analogue for Precambrian marine carbonates than modern marine environments. Several types of stromatolites/thrombolites are observed occurring around this maar. Living thrombolites grow just below the shoreline to ~60 cm below the surface of the water. They are nucleating on the cemented surfaces of older lake carbonates, as well as cattle skulls and fence wires that have become submerged. Distinct microbial mats are observed, the uppermost being cyanobacteria, followed by purple sulfur bacteria, and underlain by sulfate reducing bacteria. Older exposed stromatolites are more consolidated and have a more clearly defined laminated and columnar morphology. The thickness ranges from a few to 15 cm and each column is up to a centimeter in diameter. Together these give the surface of the rock a "bubbly" appearance. Along the shore, a sandy-gravel composed of stromatolite remnants has formed, indicating that wind-generated surface waves of substantial

  8. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  9. Crustal strength anisotropy influences landscape form and longevity

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Upton, P.; Tucker, G. E.

    2013-12-01

    Lithospheric deformation is increasingly recognized as integral to landscape evolution. Here we employ a coupled orogenic and landscape model to test the hypothesis that strain-induced crustal failure exerts the dominant control on rates and patterns of orogenic landscape evolution. We assume that erodibility is inversely proportional to cohesion for bedrock rivers host to bedload abrasion. Crustal failure can potentially reduce cohesion by several orders of magnitude along meter scale planar fault zones. The strain-induced cohesion field is generated by use of a strain softening upper crustal rheology in our orogenic model. Based on the results of our coupled model, we predict that topographic anisotropy found in natural orogens is largely a consequence of strain-induced anisotropy in the near surface strength field. The lifespan and geometry of mountain ranges are strongly sensitive to 1) the acute division in erodibility values between the damaged fault zones and the surrounding intact rock and 2) the fault zone orientations for a given tectonic regime. The large division in erodibility between damaged and intact rock combined with the dependence on fault zone orientation provides a spectrum of rates at which a landscape will respond to tectonic or climatic perturbations. Knickpoint migration is about an order of magnitude faster along the exposed cores of fault zones when compared to rates in intact rock, and migration rate increases with fault dip. The contrast in relative erosion rate confines much of the early stage fluvial erosion and establishes a major drainage network that reflects the orientations of exposed fault zones. Slower erosion into the surrounding intact rock typically creates small tributaries that link orthogonally to the structurally confined channels. The large divide in fluvial erosion rate permits the long term persistence of the tectonic signal in the landscape and partly contributes to orogen longevity. Landscape morphology and channel

  10. The crustal structure of the southern Argentine margin

    NASA Astrophysics Data System (ADS)

    Becker, Katharina; Franke, Dieter; Schnabel, Michael; Schreckenberger, Bernd; Heyde, Ingo; Krawczyk, Charlotte M.

    2012-06-01

    Multichannel reflection seismic profiles, combined with gravimetric and magnetic data provide insight into the crustal structure of the southernmost Argentine margin, at the transition from a rifted to a transform margin and outline the extent of the North Falkland Graben. Based on these data, we establish a regional stratigraphic model for the post-rift sediments, comprising six marker horizons with a new formation in the Barremian/Lower Cretaceous. Our observations support that a N-S trending subsidiary branch of the North Falkland Graben continues along the continental shelf and slope to the Argentine basin. During the rift phase, a wide shelf area was affected by the E-W extension, subsequently forming the North Falkland Graben and the subsidiary branch along which finally breakup occurred. We propose the division of the margin in two segments: a N-S trending rifted margin and an E-W trending transform margin. This is further underpinned by crustal scale gravity modelling. Three different tectono-dynamic processes shaped the study area. (1) The Triassic/Early Jurassic extensional phase resulting in the formation of the North Falkland Graben and additional narrower rift grabens ended synchronously with the breakup of the South Atlantic in the early Valanginian. (2) Extensional phase related to the opening of the South Atlantic. (3) The transform margin was active in the study area from about Hauterivian times and activity lasted until late Cretaceous/early Cenozoic. Both, the rifted margin and the transform margin are magma-poor. Very limited structures may have a volcanic origin but are suggested to be post-rift. The oceanic crust was found to be unusually thin, indicating a deficit in magma supply during formation. These findings in combination with the proposed breakup age in the early Valanginian that considerably predates the formation of the Paraná-Etendeka continental flood basalt provinces in Brazil and Namibia question the influence of the Tristan da

  11. Geological development and Phanerozoic crustal accretion in the western segment of the southern Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan)

    NASA Astrophysics Data System (ADS)

    Brookfield, M. E.

    2000-12-01

    The Tien Shan form a high intracontinental mountain belt, lying north of the main India-Asia collision mountains, and consist of re-activated Paleozoic orogens. The western segment of the southern Tien Shan lies northwest of the Pamir and west of the Talas-Fergana fault. The stratigraphy, lithology, igneous and metamorphic petrology and geochemistry of this segment indicate that it was formed by the assembly of Lower Paleozoic arcs which developed into microcontinents with Upper Paleozoic mature shelf and slope clastic and carbonate sediments. Precambrian continental crust is confined to two small blocks along its southern margin. The bulk of the southern Tien Shan consists of ?Vendian to Silurian oceanic and slope clastic rocks, resting on oceanic lithosphere, and overlain by thick passive margin Devonian to mid-Carboniferous mature shelf clastics and carbonates. These are unconformably overlain by syn- and post-orogenic immature clastic sediments derived from mountains on the north formed by closure of a Carboniferus southern Tajik and a northern Vendian to Carboniferous Turkestan ocean with the southern Tien Shan microcontinent sandwiched between. Associated with these collisions are late Carboniferous to Permian intrusives, which form three south to north (though overlapping) suites; a southern calc-alkaline granodiorite-granite suite, an intermediate gabbro-monzodiorite-granite suite, and a northern alkaline monzodiorite-granite-alaskite suite. The gabbro-monzodiorite-granite suite forms the earliest subduction-related magmatism of the southern Tien Shan: rare earth element patterns are consistent with derivation from a primitive or slightly enriched mantle. The other suites show more crustal contamination. Rb and Sr vary with depth and degree of partial melting and are consistent with progressive involvement of crustal material in partial melts during collision. The gradual change in composition within each complex, lasting in some cases from 295 to 250 Ma

  12. Crustal Anatexis by Upwelling Mantle Melts in the N.Atlantic Igneous Province: the Isle of Rum, NW Scotland.

    NASA Astrophysics Data System (ADS)

    Hertogen, J.; Meyer, R.; Nicoll, G.; Troll, V. R.; Ellam, R. M.; Emeleus, C. H.

    2008-12-01

    Crustal anatexis is a common process in the rift-to-drift evolution during continental breakup and the formation of Volcanic Rifted Margins (VRM) systems. 'Early felsic-later mafic' volcanic rock associations on the Continent Ocean Boundary (COB) of the N.Atlantic Ocean have been sampled by ODP drilling on the SE Greenland margin and the the Vøring Plateau (Norwegian Sea). Such associations also occur further inland in the British Paleocene Igneous Province, such as on the Isle of Rum (e.g., Troll et al., Contrib. Min. Petrol., 2004, 147, p.722). Sr and Nd isotope and trace element geochemistry show that the Rum rhyodacites are the products of melting of Lewisian amphibolite gneiss. There are no indications of a melt contribution from Lewisian granulite gneiss. The amphibolite gneiss parent rock had experienced an ancient Cs and Rb loss, possibly during a Caledonian event, which caused 87Sr/86Sr heterogeneity in the crustal source of silicic melts. The dacites and early gabbros of Rum are mixtures of crustal melts and primary mantle melts. Rare Earth Element modelling shows that late stage picritic melts on Rum are close analogues for the parent melts of the Rum Layered Suite, and for the mantle melts that caused crustal anatexis of the Lewisian gneiss. These primary mantle melts have close affinities to MORB whose trace element content varies from slightly depleted to slightly enriched. The 'early felsic-later mafic' volcanic associations from Rum, and from the now drowned seaward dipping wedges on the shelf of SE Greenland and on the Vøring Plateau show geochemical differences that result from variations in the regional crustal composition and the depth at which crustal anatexis took place.

  13. Structural analysis of Precambrian rocks at the Hot Dry Rock Site at Fenton Hill, New Mexico

    SciT

    Burns, K.L.; Potter, R.M.

    1995-01-01

    The subcrop of basement rock at Fenton HIll comprises Precambrian gneiss, schist, amphibolite, pegmatite, and granitoids with affinities in metamorphic and structural history to surface outcrops in the Tusas and Picuris Ranges. Televiewer measurements of structures were analyzed by taking advantage of the spatial continuity of foliations. Folds in the foliation are predominantly conical forms due to interference between structures formed in F2 and F3 tectonic events. Field observations of outcrops in the Picuris Range show that the fractures are predominantly an X-T network controlled by the lithological layering, and statistical evidence indicates that this layer-controlled network persists to depthmore » at Fenton Hill.« less

  14. Crustal structure and evolution of the Trans-Hudson orogen: Results from seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Baird, D. J.; Nelson, K. D.; Knapp, J. H.; Walters, J. J.; Brown, L. D.

    1996-04-01

    A 400-km-long deep seismic reflection transect across northeastern Montana and northern North Dakota reveals the crustal-scale structural fabric of the Early Proterozoic Trans-Hudson orogen beneath the Williston basin. Comparison with deep seismic reflection data across the Canadian portion of the same orogen ˜700 km to the north reveals first-order similarities in crustal architecture but documents significant along-strike variation in orogenic evolution. Both transects display a broad crustal-scale antiform axial to the orogen. In the north, geologic data suggest that this antiform is cored by an Archean microcontinent. In the south, west dipping reflections on the western flank of the antiform extend from the upper crust to the uppermost mantle and truncate prominent subhorizontal lower crustal reflections of the Archean Wyoming craton. Within the Wyoming craton, the eastern limit of east dipping midcrustal reflections coincides with the subsurface age boundary between the craton and the Early Proterozoic Trans-Hudson orogen as interpreted from potential field and drill core data. On the basis of subsurface geochronologic data from the crystalline basement and by analogy with the Glennie domain within the exposed Trans-Hudson orogen in Canada, we suggest that the southern antiform is cored by an Archean crustal fragment that was caught up in the terminal collision of the Wyoming and Superior cratons during Hudsonian orogeny. The eastern side of the Trans-Hudson orogen is characterized on both seismic transects by predominantly east dipping crustal penetrating reflections. We interpret the easterly dip of these reflections as evidence that the Superior province was thrust westward over the interludes of the orogen during terminal collision. Although juvenile Early Proterozoic terranes characterize the exposed segment of the Trans-Hudson orogen in Canada, limited drill core information within the Dakota segment of the orogen shows a predominance of granulitic

  15. Petrography and geochemistry of precambrian rocks from GT-2 and EE-1

    SciT

    Laughlin, A.W.; Eddy, A.

    1977-08-01

    During the drilling of GT-2 and EE-1, 27 cores totaling about 35 m were collected from the Precambrian section. Samples of each different lithology in each core were taken for petrographic and whole-rock major- and trace-element analyses. Whole-rock analyses are now completed on 37 samples. From these data four major Precambrian units were identified at the Fenton Hill site. Geophysical logs and cuttings were used to extrapolate between cores. The most abundant rock type is an extremely variable gneissic unit comprising about 75% of the rock penetrated. This rock is strongly foliated and may range compositionally from syenogranitic to tonaliticmore » over a few centimeters. The bulk of the unit falls within the monzogranite field. Interlayered with the gneiss is a ferrohastingsite-biotite schist which compositionally resembles a basaltic andesite. A fault contact between the schist and gneiss was observed in one core. Intrusive into this metamorphic complex are two igneous rocks. A leucocratic monzogranite occurs as at least two 15-m-thick dikes, and a biotite-granodiorite body was intercepted by 338 m of drill hole. Both rocks are unfoliated and equigranular. The biotite granodiorite is very homogeneous and is characterized by high modal contents of biotite and sphene and by high K/sub 2/O, TiO/sub 2/, and P/sub 2/O/sub 5/ contents. Although all of the cores examined show fractures, most of these are tightly sealed or healed. Calcite is the most abundant fracture filling mineral, but epidote, quartz, chlorite, clays or sulfides have also been observed. The degree of alteration of the essential minerals normally increases as these fractures are approached. The homogeneity of the biotite granodiorite at the bottom of GT-2 and the high degree of fracture filling ensure an ideal setting for the Hot Dry Rock Experiment.« less

  16. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal

  17. Mercury's Crustal Magnetic Field from MESSENGER Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Johnson, C.

    2017-12-01

    We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.

  18. Precambrian Field Camp at the University of Minnesota Duluth - Teaching Skills Applicable to Mapping Glaciated Terranes of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Hudak, G. J.; Peterson, D.

    2011-12-01

    Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has

  19. Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: Implications for the interpretation of Precambrian microfossils

    NASA Astrophysics Data System (ADS)

    Wacey, David; Saunders, Martin; Kong, Charlie

    2018-04-01

    SPF in the East Strelley greenstone belt. We find that the majority of previously illustrated microfossils from this greenstone belt possess multiple features that are consistent with a biological interpretation and are unlikely to be volcanogenic, but at least one previously illustrated specimen is here reinterpreted as volcanic in origin. The importance of this work is that it serves to highlight the common occurrence of volcanogenic microstructures resembling biological fossils (i.e. pseudo-fossils) in Archean environments that are habitable for life. Such structures have until now been largely overlooked in the assessment of putative Precambrian microfossils. Our data show that tephra-derived microstructures should be considered as a null hypothesis in future evaluations of potential signs of life on the early Earth, or on other planets.

  20. Crustal Growth: In Defense of the Dogma

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Blichert-Toft, J.; Guitreau, M.

    2012-12-01

    Plate tectonics was not even in its teens when Armstrong suggested that mantle and crust have interacted at steady-state over Earth's history. With the help of new geochemical tools and large-scale compilations, the concept of steady-state crust (as opposed to continuous crustal growth) is being revived with the implications that the equivalent of several volumes of present-day crust (PDCV) may have been subducted through geological times. Here we argue --or recall-- that four different lines of evidence invalidate this model. (i) The subduction filter must be particularly efficient for argon, even more so than for LILE and most other volatile elements. Atmosphere collects 40Ar degassed from both the extant crust and the crust dragged down at subduction zones over geological time. Regardless of the residence time of the crust at the surface, the amount of atmospheric 40Ar limits subduction of continental crust into the mantle to < 30% of the PDCV [1]. (ii) EM II, the only component that undoubtedly represents subducted continental crust in oceanic basalts, is extremely uncommon. (iii) Crustal age histograms are irrepressibly episodic. It has been argued that erosion selectively removes the crust with the elusive ages [2]. Ages of detrital zircons, which in the selective erosion conjecture should fill the voids, do not support this view [3]. Episodicity is difficult to reconcile with a continental protolith isolated by the common geological processes working either at mid-ocean ridges or subduction zones. A role may be recognized for Wilson cycles, if they can be shown to have prevailed for the entire history of the Earth. Geochemistry demonstrates that superplume material makes up the crustal protolith of all the major juvenile provinces. (iv) The residence time in the mantle of the elements distinctive of the crust is similar to the age of the Earth or even longer [4]. Continental crust finds its source in the instabilities of the lower mantle and the irreversible

  1. Crustal Movement: A Major Force in Evolution. Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  2. Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen)

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias

    2014-12-01

    Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.

  3. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    NASA Astrophysics Data System (ADS)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  4. Estimating Crustal Properties Directly from Satellite Tracking Data by Using a Topography-based Constraint

    NASA Astrophysics Data System (ADS)

    Goossens, S. J.; Sabaka, T. J.; Genova, A.; Mazarico, E. M.; Nicholas, J. B.; Neumann, G. A.; Lemoine, F. G.

    2017-12-01

    The crust of a terrestrial planet is formed by differentiation processes in its early history, followed by magmatic evolution of the planetary surface. It is further modified through impact processes. Knowledge of the crustal structure can thus place constraints on the planet's formation and evolution. In particular, the average bulk density of the crust is a fundamental parameter in geophysical studies, such as the determination of crustal thickness, studies of the mechanisms of topography support, and the planet's thermo-chemical evolution. Yet even with in-situ samples available, the crustal density is difficult to determine unambiguously, as exemplified by the results for the Gravity and Recovery Interior Laboratory (GRAIL) mission, which found an average crustal density for the Moon that was lower than generally assumed. The GRAIL results were possible owing to the combination of its high-resolution gravity and high-resolution topography obtained by the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO), and high correlations between the two datasets. The crustal density can be determined by its contribution to the gravity field of a planet, but at long wavelengths flexure effects can dominate. On the other hand, short-wavelength gravity anomalies are difficult to measure, and either not determined well enough (other than at the Moon), or their power is suppressed by the standard `Kaula' regularization constraint applied during inversion of the gravity field from satellite tracking data. We introduce a new constraint that has infinite variance in one direction, called xa . For constraint damping factors that go to infinity, it can be shown that the solution x becomes equal to a scale factor times xa. This scale factor is completely determined by the data, and we call our constraint rank-minus-1 (RM1). If we choose xa to be topography-induced gravity, then we can estimate the average bulk crustal density directly from the data

  5. Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models

    NASA Astrophysics Data System (ADS)

    Hikida, Hajime; Wieczorek, Mark A.

    2007-12-01

    A new method is presented for estimating crustal thickness from gravity and topography data on the Moon. By calculating analytically the exterior gravitational field for a set of arbitrarily shaped polyhedra, relief along the crust-mantle interface can be inverted for that satisfies the observational constraints. As this method does not rely upon filtering the Bouguer anomaly, which was required with previous inversions performed in the spherical-harmonic domain, and as the dramatic variations in spatial quality of the lunar gravity field are taken into account, our crustal thickness model more faithfully represents the available data. Using our model results, we investigate various aspects of the prominent nearside impact basins. The crustal thickness in the central portion of the Orientale and Crisium basins is found to be close to zero, suggesting that these basins could have conceivably excavated into the lunar mantle. Furthermore, given our uncertain knowledge of the density of the crust and mantle, it is possible that the Humorum, Humboldtianum, Nectaris, and Smythii basins could have excavated all the way through the crust as well. The crustal structure for most of the young impact basins implies a depth/diameter ratio of about 0.08 for their excavation cavities. As noted in previous studies, however, the crustal structure of Imbrium and Serenitatis is anomalous, which is conceivably a result of enhanced rates of post-impact viscous relaxation caused by the proximity of these basins to the Procellarum KREEP Terrane. Impact basins older than Smythii show little or no evidence for crustal thinning, suggesting that these ancient basins were also affected by high rates of viscous relaxation resulting from higher crustal temperatures early in the Moon's evolution. The lithosphere beneath many young basins is found to be supporting a downward directed force, even after the load associated with the mare basalts is removed, and this is plausibly attributed to

  6. Evidence of early Archean crust in northwest Gondwana, from U-Pb and Hf isotope analysis of detrital zircon, in Ediacaran surpacrustal rocks of northern Spain

    NASA Astrophysics Data System (ADS)

    Naidoo, Thanusha; Zimmermann, Udo; Vervoort, Jeff; Tait, Jenny

    2018-03-01

    The Mora Formation (Narcea Group) is one of the oldest Precambrian supracrustal successions in northern Spain. Here, we use U-Pb and in situ Hf isotope analysis on detrital zircon to determine its age and provenance. The youngest U-Pb dates constrain the maximum depositional age of the Mora Formation at 565 ± 11 Ma. Results indicate: (1) a dominant Ediacaran zircon population (33%; 565-633 Ma, Cadomian) within a spectrum of Neoproterozoic ages (40%; 636-996 Ma); and (2) smaller Mesoproterozoic (5%; 1004-1240 Ma), Palaeoproterozoic (11%; 1890-2476 Ma) and Archean (11%; 2519-3550 Ma) populations. Results here do not point to one specific cratonic source area; instead, detritus may have been derived from the West African craton and Amazonia, or even the concealed Iberian basement. The lack of 1.3-1.8 Ga grains suggests exclusion of the Sahara Craton as a major source, but this is not certain. This mixed composition favours a complex source history with reworking of detritus across terrane/craton boundaries. Hafnium isotope compositions indicate a range of crustal and juvenile sources, with initial ɛHf values between -15.8 and 11.1, and Hf model ages from 0.8 to 3.7 Ga. For Neoproterozoic zircons (80%), juvenile components (ɛHf(i) +10) may be related to Rodinia fragmentation and the onset of an active margin setting leading to the Cadomian orogeny. Palaeoproterozoic to Paleoarchean grains (20%) all have negative ɛHf values and Meso- to Eoarchean Hf model ages. This indicates an early (Archean) sialic crustal component for northwestern Gondwana.

  7. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    NASA Astrophysics Data System (ADS)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  8. Crustal Seismic Velocity Models of Texas

    NASA Astrophysics Data System (ADS)

    Borgfeldt, T.; Walter, J. I.; Frohlich, C.

    2016-12-01

    Crustal seismic velocity models are used to locate earthquake hypocenters. Typically, one dimensional velocity models are 3 - 8 fixed-thickness layers of varying P and S velocities with depth. On occasion, the layers of the upper crust (0-2 kilometers) are constrained with well log data from nearby wells, when available. Past velocity models used in Texas to locate earthquakes were made with little regard to deeper geologic units because shallow earthquakes with a localized seismic network only require velocity models of the upper crust. A recently funded statewide seismic network, TexNet, will require deeper crustal velocity models. Using data of geologic provinces, tectonics, sonic logs, tomography and receiver function studies, new regional velocity models of the state of Texas will allow researchers to more accurately locate hypocenters of earthquakes. We tested the accuracy of the initial models and then refine the layers of the 1-D regional models by using previously located earthquakes the USArray Transportable Array with earthquake location software. Geologic information will be integrated into a 3D velocity model at 0.5 degreee resolution for the entire state of Texas.

  9. Crustal deformation along the San Andreas, California

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1992-01-01

    The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.

  10. Crustal deformation in great California earthquake cycles

    NASA Technical Reports Server (NTRS)

    Li, Victor C.; Rice, James R.

    1986-01-01

    Periodic crustal deformation associated with repeated strike slip earthquakes is computed for the following model: A depth L (less than or similiar to H) extending downward from the Earth's surface at a transform boundary between uniform elastic lithospheric plates of thickness H is locked between earthquakes. It slips an amount consistent with remote plate velocity V sub pl after each lapse of earthquake cycle time T sub cy. Lower portions of the fault zone at the boundary slip continuously so as to maintain constant resistive shear stress. The plates are coupled at their base to a Maxwellian viscoelastic asthenosphere through which steady deep seated mantle motions, compatible with plate velocity, are transmitted to the surface plates. The coupling is described approximately through a generalized Elsasser model. It is argued that the model gives a more realistic physical description of tectonic loading, including the time dependence of deep slip and crustal stress build up throughout the earthquake cycle, than do simpler kinematic models in which loading is represented as imposed uniform dislocation slip on the fault below the locked zone.

  11. Use and abuse of crustal accretion calculations

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Cole, James C.; Stoeser, Douglas B.; Quick, James E.

    1990-01-01

    Recent attempts to calculate the average growth rate of continental crust for the Late Proterozoic shield of Arabia and Nubia are subject to large geological uncertainties, and widely contrasting conclusions result from dissimilar boundary conditions. The four greatest sources of divergence are (1) the extent of 620-920 Ma arc-terrane crust beneath Phanerozoic cover; (2) the extent of pre-920 Ma continental crust within the arc terranes; (3) the amount of postaccretion magmatic addition and erosion; and (4) the aggregate length and average life span of Late Proterozoic magmatic-arc systems that formed the Arabian-Nubian Shield. Calculations restricted to the relatively well known Arabian segment of the Arabian-Nubian Shield result in average crustal growth rates and arc accretion rates comparable to rates for modern arc systems, but we recognize substantial uncertainty in such results. Critical review of available geochemical, isotopic, and geochronological evidence contradicts the often stated notion that intact, pre-920 Ma crust is widespread in the eastern Arabian Shield. Instead, the arc terranes of the region apparently were "contaminated" with sediments derived, in part, from pre-920 Ma crust. Available geologic and radiometric data indicate that the Arabian-Nubian Shield and its "Pan-African" extensions constitute the greatest known volume of arc-accreted crust on Earth that formed in the period 920-620 Ma. Thus, the region may truly represent a disproportionate share of Earth's crustal growth budget for this time period.

  12. Crustal permeability: Introduction to the special issue

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  13. MAGNETAR FIELD EVOLUTION AND CRUSTAL PLASTICITY

    SciT

    Lander, S. K., E-mail: skl@soton.ac.uk

    2016-06-20

    The activity of magnetars is believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which internal field evolution in magnetars generates a twisted corona, from which energy may be released suddenly in a single giant flare, or more gradually through smaller outbursts and persistent emission. Given the ages of magnetars and the energy of their giant flares, we suggest that their evolution is driven by a novel mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves onlymore » under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. The star’s superconducting core may also play a role in magnetar field evolution, depending on the star’s spindown history and how rotational vortices and magnetic fluxtubes interact.« less

  14. Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics

    NASA Astrophysics Data System (ADS)

    Pande, Kanchan; Cucciniello, Ciro; Sheth, Hetu; Vijayan, Anjali; Sharma, Kamal Kant; Purohit, Ritesh; Jagadeesan, K. C.; Shinde, Sapna

    2017-07-01

    The Mundwara alkaline plutonic complex (Rajasthan, north-western India) is considered a part of the Late Cretaceous-Palaeogene Deccan Traps flood basalt province, based on geochronological data (mainly 40Ar/39Ar, on whole rocks, biotite and hornblende). We have studied the petrology and mineral chemistry of some Mundwara mafic rocks containing mica and amphibole. Geothermobarometry indicates emplacement of the complex at middle to upper crustal levels. We have obtained new 40Ar/39Ar ages of 80-84 Ma on biotite separates from mafic rocks and 102-110 Ma on whole-rock nepheline syenites. There is no evidence for excess 40Ar. The combined results show that some of the constituent intrusions of the Mundwara complex are of Deccan age, but others are older and unrelated to the Deccan Traps. The Mundwara alkaline complex is thus polychronous and similar to many alkaline complexes around the world that show recurrent magmatism, sometimes over hundreds of millions of years. The primary biotite and amphibole in Mundwara mafic rocks indicate hydrous parental magmas, derived from hydrated mantle peridotite at relatively low temperatures, thus ruling out a mantle plume. This hydration and metasomatism of the Rajasthan lithospheric mantle may have occurred during Jurassic subduction under Gondwanaland, or Precambrian subduction events. Low-degree decompression melting of this old, enriched lithospheric mantle, due to periodic diffuse lithospheric extension, gradually built the Mundwara complex from the Early Cretaceous to Palaeogene time.

  15. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Bracciali, Laura; Najman, Yani; Parrish, Randall R.; Akhter, Syed H.; Millar, Ian

    2015-04-01

    The Himalayan orogen provides a type example on which a number of models of the causes and consequences of crustal deformation are based and it has been suggested that it is the site of a variety of feedbacks between tectonics and erosion. Within the broader orogen, fluvial drainages partly reflect surface uplift, different climatic zones and a response to crustal deformation. In the eastern Himalaya, the unusual drainage configuration of the Yarlung Tsangpo-Brahmaputra River has been interpreted either as antecedent drainage distorted by the India-Asia collision (and as such applied as a passive strain marker of lateral extrusion), latest Neogene tectonically-induced river capture, or glacial damming-induced river diversion events. Here we apply a multi-technique approach to the Neogene paleo-Brahmaputra deposits of the Surma Basin (Bengal Basin, Bangladesh) to test the long-debated occurrence and timing of river capture of the Yarlung Tsangpo by the Brahmaputra River. We provide U-Pb detrital zircon and rutile, isotopic (Sr-Nd and Hf) and petrographic evidence consistent with river capture of the Yarlung Tsangpo by the Brahmaputra River in the Early Miocene. We document influx of Cretaceous-Paleogene zircons in Early Miocene sediments of the paleo-Brahmaputra River that we interpret as first influx of material from the Asian plate (Transhimalayan arc) indicative of Yarlung Tsangpo contribution. Prior to capture, the predominantly Precambrian-Paleozoic zircons indicate that only the Indian plate was drained. Contemporaneous with Transhimalayan influx reflecting the river capture, we record arrival of detrital material affected by Cenozoic metamorphism, as indicated by rutiles and zircons with Cenozoic U-Pb ages and an increase in metamorphic grade of detritus as recorded by petrography. We interpret this as due to a progressively increasing contribution from the erosion of the metamorphosed core of the orogen. Whole rock Sr-Nd isotopic data from the same samples

  16. The Transition from Volcanic to Rift Dominated Crustal Breakup - From the Vøring Plateau to the Lofoten Margin, Norway

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.; Flueh, E.; Murai, Y.

    2017-12-01

    The Vøring Plateau was part of the Northeast Atlantic igneous province (NAIP) during early Cenozoic crustal breakup. Crustal breakup at the Vøring Plateau occurred marginal to the deep Cretaceous basins on the shelf, with less extension of the crust. Intrusive magmatism and oceanic crust up to three times normal thickness caused a period of sub-aerial magmatism around breakup time. The transition to the Lofoten Margin is rapid to a deep-water plain. Still, there is some excess magmatism north of this transition, where early oceanic crustal thickness is reduced to half of that of the Vøring Plateau 150 km away. Our estimates of the earliest seafloor spreading rates using new ship-track magnetic profiles on different margin segments offer a clue to what caused this rapid transition. While crustal breakup occurred within the magnetic polarity C24r in other parts of the NAIP, there is a delayed breakup for the Lofoten/Vesterålen margin. Modeling of the earliest seafloor spreading with geomagnetic reversals, indicate a breakup within C24n.3n (anomaly 24b), approximately 1 m.y. later. Both old wide-angle seismic models (from Ocean Bottom Seismometers) off southern Lofoten and a newly published profile farther north show a strongly extended outer margin. Applying early seafloor half-spreading rates ( 30 mm/y) from other NAIP margin segments for 1 m.y. can account for 30 km extra extension, giving a factor of three crustal thinning, and gives a high strain rate of 3.2 ·10-14. Crustal breakup at the magma-poor Iberian Margin occurred at a low strain rate of 4.4·10-15, allowing the ascending mantle to cool, favoring tectonic extension over magmatism. Similar strain rates are found within the main Ethiopian Rift, but there is much magmatism and crustal separation is dominated by dike injection. Mantle tomography models show an exceptionally low seismic velocity below the area interpreted as an unusually hot upper mantle, which will favor magmatism. The transition from

  17. Crustal structure associated with Gondwana graben across the Narmada-Son lineament in India: An inference from aeromagnetics

    NASA Astrophysics Data System (ADS)

    Rao, D. Atchuta; Babu, H. V. Ram; Sinha, G. D. J. Sivakumar

    1992-10-01

    Aeromagnetic data over an 80-km-wide belt along the ENE-trending Narmada-Son lineament (NSL), starting from Baroda in the west and continuing to the south of Jabalpur in the east, has been studied to understand the structural and tectonic framework of the region. The area is covered by generally E-W-trending steeply dipping and folded Archean phyllites and quartzites as basement, with Bijawars (Upper Precambrian), upper Vindhyans (Upper Proterozoic), and Gondwanas (Upper Carboniferous) overlying them. Overlapping them all are the Deccan trap (Cretaceous-Eocene) flows. Aeromagnetic linements and their disposition and pattern in this region suggest major dislocations in the crust. The region around Hoshangabad, which is the intersection point of the NSL and the northwestern extension of the Godavari lineament, appears to have been intensely disturbed. Spectral analysis of aeromagnetic profiles across the NSL belt brought out a deep magnetic interface within crust at depths varying from 4 km to about 20 km below the surface, perhaps corresponding to the discontinuity characterized by the interface of granitic and basaltic rocks. There is a significant downwarping of this interface under the Hoshangabad region, suggesting that this is perhaps related to the evolution of the Gondwana basin structure in this area. This warping of the magnetic interface may be a reflection of the crustal flexuring and rift faulting. Elsewhere in the world, concentrations of carbonatite complexes and dike swarms are known to occur in areas of crustal flexuring and rift faulting. The occurrence of carbonatite complexes in this region (e.g. at Amba Dongar and Barwaha, and dike swarms in the Dadiapada region) gives credence to the present inferences from the aeromagnetic study.

  18. Reports on block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, Amos

    1990-01-01

    Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.

  19. Crustal structure of Mars from gravity and topography

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Zuber, M. T.; Wieczorek, M. A.; McGovern, P. J.; Lemoine, F. G.; Smith, D. E.

    2004-01-01

    Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrostatic flattening of the core. A nonlinear inversion for Moho relief yields a crustal thickness model that obeys a plausible power law and resolves features as small as 300 km wavelength. On the basis of petrological and geophysical constraints, we invoke a mantle density contrast of 600 kg m-3; with this assumption, the Isidis and Hellas gravity anomalies constrain the global mean crustal thickness to be >45 km. The crust is characterized by a degree 1 structure that is several times larger than any higher degree harmonic component, representing the geophysical manifestation of the planet's hemispheric dichotomy. It corresponds to a distinction between modal crustal thicknesses of 32 km and 58 km in the northern and southern hemispheres, respectively. The Tharsis rise and Hellas annulus represent the strongest components in the degree 2 crustal thickness structure. A uniform highland crustal thickness suggests a single mechanism for its formation, with subsequent modification by the Hellas impact, erosion, and the volcanic construction of Tharsis. The largest surviving lowland impact, Utopia, post-dated formation of the crustal dichotomy. Its crustal structure is preserved, making it unlikely that the northern crust was subsequently thinned by internal processes.

  20. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  1. EBSD characterization of pre-Cambrian deformations in conglomerate pebbles (Sierra de la Demanda, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio

    2010-05-01

    Pre-Cambrian and unconformable earliest Cambrian rocks from the Sierra de la Demanda (N Spain) exhibit field and microstructural relationships that attest to orogenic events recorded by concealed basement rocks. Neoproterozoic foliated slates ("Anguiano Schists") crop out under up to 300 m thick, unfoliated quartz-rich conglomerates ("Anguiano Conglomerates") and quartzites which are stratigraphically ca. 600 m below the oldest, paleontologically dated, pre-trilobitic Cambrian layers (likely older than 520 Ma). The Anguiano Conglomerates contain mm to cm grainsized well-rounded pebbles of various types including monocrystalline quartz, detrital zircon and tourmaline-bearing sandstones, black cherts and metamorphic poly-crystalline quartz aggregates. The undeformed matrix is made of much smaller (diagenetically overgrown) monocrystaline quartz grains and minor amounts of accesory zircon, tourmaline and mica. Black chert pebbles exhibit microstructural evidence of brittle deformation (microfaults and thin veins of syntaxial fibrous quartz). These and the fine-grained sandstone pebbles can also exhibit ductile deformations (microfolds with thickened hinges and axial planar continuous foliations), too. Polycrystalline quartz pebbles exhibit a variety of microstructures that resulted from syn-metamorphic ductile deformations. These are recognisable under the petrographic microscope and include continuous foliations, quartz shape fabrics, various types of subgrain or recrystallized new grain microtextures, and lattice preferred orientations (LPOs). Conventional characterization of quartz fabrics (after oriented structural sections) is challenged in conglomerate pebble thin sections by the difficulty of unraveling in them the complete structural reference framework provided by foliation (whose trace can be unraveled) and lineation orientation (which cannot be directly identified). Quartz in various metamorphic polycrystalline pebbles was studied with the Electron Back

  2. Visualization and dissemination of global crustal models on virtual globes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong

    2016-05-01

    Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.

  3. Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe

    NASA Astrophysics Data System (ADS)

    Wilde-Piórko, Monika; Świeczak, Marzena; Grad, Marek; Majdański, Mariusz

    2010-01-01

    The structure and evolution of the Trans-European Suture zone (TESZ), contact between Precambrian Europe to the northeast and Phanerozoic terranes to the southwest is one of the main tectonic questions in Europe. The knowledge of the crustal structure, lithosphere-asthenosphere boundary and mantle transition zone between two seismic discontinuities at depths "410" and "660" km, is one of the most important issues to understand the Earth's dynamics. To create a mantle model of the TESZ and surroundings we used different seismic data collected along the 950 km long POLONAISE'97 profile P4. Previous results of 2-D ray-tracing and P-wave travel time modelling and new results of P-wave travel time residuals methods and receiver function sections provide facts about the seismic structure from the surface down to 900 km depth. In the TESZ a large basin, about 125 km wide, is filled with sedimentary strata (Vp < 6.0 km s - 1 ) to about 20 km depth. This basin is asymmetric with its northeast margin being most abrupt. The crystalline crust under this basin is only about 20 km thick today indicating that the lithosphere of Baltica was either thinned drastically or terminated along the northeast margin of the basin. The East European craton (EEC) has a ~ 45 km thick three-layered crust. The crust of the accreted terranes to the southwest is relatively thin (~ 30 km) and similar to that found in other non-cratonal areas of Western Europe. The lower crust is relatively fast (Vp > 7.0 km s - 1 ) along most of the P4 profile. However, lower values to the southwest may indicate the termination of Baltica. High velocity (~ 8.35 km s - 1 ) uppermost mantle lies beneath the Avalonia/Variscan terranes, and may be due to rifting and/or subduction. The seismic lithosphere thickness for the EEC is about 200 km, while it is only 90 km in the Palaeozoic platform (PP). The mantle transition zone is shallower and about 30 km thicker under the EEC, which could be due to thermal conditions

  4. An REU Project on the Precambrian Rocks of Yellowstone National Park: Some lessons learned

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Mueller, P. A.; Foster, D. A.

    2014-12-01

    An NSF-funded REU project (2011-2013), based in Yellowstone National Park (YNP), was designed to characterize the geology, geochemistry and geochronology of Precambrian rocks in northern YNP. Over two field seasons two cadres of 12 students (12 women and 12 men) were chosen from small-to-large state universities and private colleges. REU students participated in three major activities constituting a complete research experience: Field studies involved geologic mapping and sampling of Precambrian basement; formulation of testable research questions by smaller working groups; and mapping and sampling projects to address research questions; Analytical studies, sample preparation immediately followed field work with petrographic analysis at students' home institutions and a week-long visit to analytical laboratories to conduct follow-up studies by small research groups during the academic year (Univ. Florida - geochemistry and geochronology; Univ. Minnesota - EMPA analysis); Communicating results, each working group submitted an abstract and collectively presented 13 posters at the 2011 and 2012 GSA Rocky Mountain sectional meetings. We used directed discovery to engage students in a community of practice in the field and found that a long apprenticeship (2-3 weeks) is optimal for novice-master interactions in exploring natural setting. Initial group hikes were used to normalize methods and language of the discipline. Students developed a sense of ownership of the overall project and assumed personal responsibility for directed research projects. Training was provided to: guide students in selection and appropriate use of tools; develop sampling strategies; discuss communal ethics, values, and expectations; develop efficient work habits; stimulate independent thinking; and engage decision-making. It was important to scaffold the field experience to students' level of development to lead to mastery. Analytical activities were designed from rock to analysis so that each

  5. Mechanisms of iron-silica aqueous interaction and the genesis of Precambrian iron formation

    NASA Astrophysics Data System (ADS)

    Chemtob, S. M.; Catalano, J. G.; Moynier, F.; Pringle, E. A.

    2015-12-01

    Iron formations (IFs), Fe- and Si-rich chemical sediments common in Precambrian successions, preserve key information about the compositional, biological, and oxidative evolution of the Precambrian ocean. Stable Si isotopes (δ30Si) of IF have been used to infer paleo-oceanic composition, and secular variations in δ30Si may reflect ancient biogeochemical cycles. The δ30Si of primary Fe-Si precipitates that formed IF depends not only on the δ30Si of aqueous silica but also on the precipitation mechanism. Multiple formation mechanisms for these primary precipitates are plausible. Aqueous Si may have adsorbed on newly precipitated iron oxyhydroxide surfaces; alternatively, Fe and Si may have coprecipitated as a single phase. Here we explore variations in the Si isotope fractionation factor (ɛ) with Fe-Si aqueous interaction mechanism (adsorption vs. coprecipitation). In adsorption experiments, sodium silicate solutions (pH 8.1, 125-2000 µM Si) were reacted with iron oxide particles (hematite, ferrihydrite, goethite, and magnetite) for 24 to 72 hours. Resultant solutions had δ30Si between 0 and +6‰. Calculated ɛ varied significantly with oxide mineralogy and morphology. For ferrihydrite, ɛ = -1.7‰; for hematite, ɛ = -2 to -5‰, depending on particle morphology. Apparent ɛ decreased upon surface site saturation, implying a smaller isotope effect for polymeric Si adsorption than monomeric adsorption. In coprecipitation experiments, solutions of Na-silicate and Fe(II) chloride (0.4-10 mM) were prepared anaerobically, then air-oxidized for 3 days to induce precipitation. At low Si concentrations, magnetite formed; near silica saturation, lepidocrocite and ferrihydrite formed. The Si isotope fractionation factor for coprecipitation was within the range of ɛ observed for adsorption (ɛ = -2.3 ± 1.0‰). These results indicate that the mechanism of Fe-Si interaction affects ɛ, presumably due to varying silicate coordination environments. These isotopic

  6. Exploring the deep, ancient hydrogeosphere within Precambrian crystalline rocks using noble gases

    NASA Astrophysics Data System (ADS)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.

    2016-12-01

    Serpentinization is a key long-term water-rock interaction occurring within isolated fractures in Precambrian crystalline rocks and is a significant source of global H2 production. Highly saline fracture fluids, containing in-situ produced dissolved gases (e.g. percent level He, abiogenic CH4 and mM H2), have revealed microbial ecosystems isolated from the surface photosphere for millions of years. Noble gases can provide crucial physical and temporal constraints on these serpentinizing and life-supporting environments via radiogenic-derived fluid residence times, while also providing evidence of isolation. New noble gas data is presented here from four locations on the Canadian Shield. Kidd Creek Mine in Ontario, where fluids with a mean residence time ≥ 1.1 Ga were identified in 2013, was revisited with resampling of the waters from 2.4 km bls (below land surface), and new samples collected from 2.9 km bls. The study was also expanded to include two mines from Sudbury, Ontario at 1.7 (Mine 1) and 1.4 (Mine 2) km bls. The radiogenic excesses within the fluids were greatest for the 2.9 km Kidd Creek samples and provided an average residence time of 1.6 Ga. Consistent with our hypothesis, the resampling of the 2.4 km fluids (80 months after the original study) reveal significantly reduced residence times (1.1 Ga to 390 Ma) due to stress-induced opening of younger, though nonetheless old, fractures. This is supported by recent sulphur isotope, and 2H & 18O data. Additional hydrogeological constraints are provided by the 129Xe & 136Xe data, which suggest distinct fracture networks feed the 2.4 km, and the 2.9 km systems. Fracture fluids in the Sudbury Basin were targeted to investigate the influence of a later 1.8 Ga bolide impact which formed major fractures in the underlying basement. As hypothesised the fluids in the Sudbury Archean basement are younger than those at Kidd Creek, with mean residence times of 313 and 544 Ma for Mine 1 and 2 respectively. Our

  7. Crustal evolution in Asia: Correlations and connections

    NASA Astrophysics Data System (ADS)

    Tsunogae, Toshiaki; Kwon, Sanghoon; Santosh, M.

    2016-11-01

    The Asian region records multiple subduction, accretion and collision processes related to the breakup of Gondwana and Pangea, and the ongoing formation of the future supercontinent Amasia. The oldest geological record of Asia is preserved in Archean crustal fragments which were welded together by later collisional events related to the assembly of several supercontinents. The Asian region also records recent geological events such as volcanic activities and mega-earthquakes related to subduction of oceanic plates along active continental margins and collision of microplates. This region is thus regarded as an excellent field laboratory for examining the evolution of continental crust and cratons, formation and destruction of continents and supercontinents, and related metallogenic and surface environmental processes.

  8. Investigation of lunar crustal structure and isostasy

    NASA Technical Reports Server (NTRS)

    Thurber, Clifford H.

    1987-01-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.

  9. Tectonic Implications of Mars Crustal Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Kleteschka, G.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

    2005-01-01

    Introduction: The Mars Global Surveyor spacecraft has completed three Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriuging in both its global distribution and geometric properties [2,3,4,5]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations. The increased sensitivity and spatial resolution afforded by this new map invites geologic interpretation akin to that here-to-for reserved for aeromagnetic and ship surveys on Earth.

  10. Crustal Dynamics Project data analysis, 1990

    NASA Technical Reports Server (NTRS)

    Caprette, D. S.; Ma, C.; Ryan, J. W.

    1990-01-01

    The Goddard Very Long Baseline Interferometry (VLBI) group reports the results of analyzing 1073 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1989 and available to the Crustal Dynamics Project. Two large solutions, GLB656 and GLB657, were used to establish a VLBI reference frame with an origin coincident with the ITRF89. Another large solution, GLB658, was used to obtain Earth rotation parameters, nutation offsets, and global source positions. Site velocities were obtained from another large solution, GLB659. A fifth large solution, GLB660, was used to obtain baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both Cartesian and topocentric coordinates. The results include 76 sources, 80 sites, and 422 baselines.

  11. The fracture criticality of crustal rocks

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart

    1994-08-01

    The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before

  12. GPS-derived crustal deformation in Azerbaijan

    NASA Astrophysics Data System (ADS)

    Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin

    2017-04-01

    Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  13. Paleobiology of a Precambrian Shale: Geology, organic geochemistry, and paleontology are applied to the problem of detection of ancient life.

    PubMed

    Barghoorn, E S; Meinschein, W G; Schopf, J W

    1965-04-23

    Investigations have been made of crude oil, pristane, phytane, steranetype and optically active alkanes, porphyrins, microfossils, and the stable isotopes of carbon and of sulfur found in the Nonesuch shale of Precambrian age from Northern Michigan. These sediments are approximately 1 billion years old. Geologic evidence indicates that they were deposited in a nearshore deltaic environment. Porphyrins are found in the siltstones but not in the crude oils of the Nonesuch formation-evidence that these chemical fossils are adsorbed or absorbed and immobile. This immobility makes it highly unlikely that these porphyrins could have moved from younger formations into the Nonesuch sediments, and the widely disseminated particulate organic matters and fossils in this Precambrian shale are certainly indigenous.

  14. Crustal structure of China from deep seismic sounding profiles

    Li, S.; Mooney, W.D.

    1998-01-01

    More than 36,000 km of Deep Seismic Sounding (DSS) profiles have been collected in China since 1958. However, the results of these profiles are not well known in the West due to the language barrier. In this paper, we summarize the crustal structure of China with a new contour map of crustal thickness, nine representative crustal columns, and maps showing profile locations, average crustal velocity, and Pn velocity. The most remarkable aspect of the crustal structure of China is the well known 70+ km thickness of the crust of the Tibetan Plateau. The thick (45-70 km) crust of western China is separated from the thinner (30-45 km) crust of eastern China by the north-south trending seismic belt (105??E). The average crustal velocity of China ranges from 6.15 to 6.45 km/s, indicating a felsic-to-intermediate bulk crustal composition. Upper mantle (Pn) velocities are 8.0 ?? 0.2 km/s, equal to the global continental average. We interpret these results in terms of the most recent thermo-tectonic events that have modified the crust. In much of eastern China, Cenoxoic crustal extension has produced a thin crust with a low average crustal velocity, similar to western Europe and the Basin and Range Province, western USA. In western China, Mesozoic and Cenoxoic arc-continent and continent-continent collisions have led to crustal growth and thickening. Inferences on the process of crustal thickening are provided by the deep crustal velocity structure as determined by DSS profiles and other seismological studies. A high velocity (7.0-7.4 km/s) lower-crustal layer has been reported in western China only beneath the southernmost Tibetan Plateau. We identity this high-velocity layer as the cold lower crust of the subducting Indian plate. As the Indian crust is injected northward into the Tibetan lower crust, it heats and assimilates by partial melting, a process that results in a reduction in the seismic velocity of the lower crust in the central and northern Tibetan Plateau

  15. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  16. Constraints on crustal hydration below the Colorado plateau from Vp measurements on crustal xenoliths

    NASA Astrophysics Data System (ADS)

    Padovani, Elaine R.; Hall, Jeremy; Simmons, Gene

    1982-04-01

    Seismic velocities have been measured as a function of confining pressure to 8 kbar for crustal xenoliths from the Moses Rock Dike and Mule Ear Diatreme, two kimberlite pipes on the Colorado Plateau. Rock types measured include rhyolite, granite, diorite, metasedimentary schists and gneisses, mafic amphibolites and granulites. Many of our samples have been hydrothermally altered to greenschist facies mineral assemblages during transport to the earth's surface. The velocity of compressional waves measured on altered amphibolites and granulites are too low by 0.1-0.3 km/s for such rock types to be characteristic of deep crustal levels. A direct correlation exists between progressive alteration and the presence of microcracks extending into the xenoliths from the kimberlitic host rock. Velocities of pristine samples are compatible with existing velocity profiles for the Colorado Plateau and we conclude that the crust at depths greater than 15 km has probably not undergone a greenschist facies metamorphic event. The xenolith suite reflects a crustal profile similar to that exposed in the Ivrea-Verbano and Strona-Ceneri zones in northern Italy.

  17. An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    NASA Technical Reports Server (NTRS)

    Hastings, D. A. (Principal Investigator)

    1981-01-01

    Several possible causes for the east-west striping of the MAGSAT anomaly maps are listed and discussed including: (1) the inadequacy of the field model used for core-crustal separation of geomagnetic anomalies; (2) external field noise remaining in the available maps; (3) east-west trends of crustal uplift and depression; (4) east-west trends to convection patterns in the mantle; (5) bands of crustal materials of similar metamorphic grade; (6) variations in the depth of the Curie isotherm; and (7) the data processing techniques used to overcome the absence of tie lines and orbital path of MAGSAT.

  18. SIR-B analysis of the Precambrian shield of Sudan and Egypt: Penetration studies and subsurface mapping

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Roth, L.; Stern, R. J.; Almond, D. C.; Kroner, A.; Elshazly, E. M.

    1984-01-01

    A shuttle imaging radar-B (SIR-B) study is proposed for the Precambrian shield in southeast Egypt and northeast Sudan in an area east of the Nile. The phenomenon of radar penetration of thin, dry eolian/alluvial cover is to be confirmed and quantified. The penetration phenomenon is to be used to map structural and lithologic features. Field work to be done in conjunction with image acquisition is discussed.

  19. Carbon isotope discrepancy between precambrian stromatolites and their modern analogs: Inferences from hypersaline microbial mats of the sinai coast

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred

    1985-12-01

    The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.

  20. Solution to Darwin's dilemma: Discovery of the missing Precambrian record of life

    PubMed Central

    Schopf, J. William

    2000-01-01

    In 1859, in On the Origin of Species, Darwin broached what he regarded to be the most vexing problem facing his theory of evolution—the lack of a rich fossil record predating the rise of shelly invertebrates that marks the beginning of the Cambrian Period of geologic time (≈550 million years ago), an “inexplicable” absence that could be “truly urged as a valid argument” against his all embracing synthesis. For more than 100 years, the “missing Precambrian history of life” stood out as one of the greatest unsolved mysteries in natural science. But in recent decades, understanding of life's history has changed markedly as the documented fossil record has been extended seven-fold to some 3,500 million years ago, an age more than three-quarters that of the planet itself. This long-sought solution to Darwin's dilemma was set in motion by a small vanguard of workers who blazed the trail in the 1950s and 1960s, just as their course was charted by a few pioneering pathfinders of the previous century, a history of bold pronouncements, dashed dreams, search, and final discovery. PMID:10860955

  1. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  2. Solution to Darwin's dilemma: discovery of the missing Precambrian record of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    2000-01-01

    In 1859, in On the Origin of Species, Darwin broached what he regarded to be the most vexing problem facing his theory of evolution-the lack of a rich fossil record predating the rise of shelly invertebrates that marks the beginning of the Cambrian Period of geologic time ( approximately 550 million years ago), an "inexplicable" absence that could be "truly urged as a valid argument" against his all embracing synthesis. For more than 100 years, the "missing Precambrian history of life" stood out as one of the greatest unsolved mysteries in natural science. But in recent decades, understanding of life's history has changed markedly as the documented fossil record has been extended seven-fold to some 3,500 million years ago, an age more than three-quarters that of the planet itself. This long-sought solution to Darwin's dilemma was set in motion by a small vanguard of workers who blazed the trail in the 1950s and 1960s, just as their course was charted by a few pioneering pathfinders of the previous century, a history of bold pronouncements, dashed dreams, search, and final discovery.

  3. Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids

    NASA Astrophysics Data System (ADS)

    Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja

    2016-05-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.

  4. The keystone species of Precambrian deep bedrock biosphere belong to Burkholderiales and Clostridiales

    NASA Astrophysics Data System (ADS)

    Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M.

    2015-11-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180-2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.

  5. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  6. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  7. Structure Of The Elevated Precambrian Terranes Rising Above The Brahmaputra Plains In Northeastern India.

    NASA Astrophysics Data System (ADS)

    Gaur, V. K.; Hazarika, N. K.; Mitra, S.; Priestley, K.

    2007-12-01

    We present new evidence for a thinner crust beneath most of the Shillong plateau as well as its northeast extension in Mikir Hills of northeastern India.Both these Precambrian terranes rise above the Brahmaputra plains whose crust is thicker in comparison by atleast 4~km. Although Bouger gravity over the Mikir Hills still remains to be determined, its near zero value over the ~1 km high plateau and the near normal upper mantle beneath the region, require that these elevated terranes must have been uplifted between reversed faults and continue to be supported by them under compression. The southern edge of the Shillong plateau is indeed marked by the prominent Dauki fault which swerves northeastward at the south eastern margin of the plateau to merge with the Naga thrusts that bound the Mikir Hills on the east. A similar fault bounding the plateau on the north as hypothesized by Bilham et al (2000) -the Oldham fault- is therfore required to swerve northeastward near the northeastern margin of the plateau to demarcate the Mikir Hills from the thicker crust Brahmaputra plains to its north and west. This could be explained by a strike slip offset of the Oldham fault caused by the as yet obsure but active tectonics of the NNW trending Kopili lineament that ensues from the inflexion in the Dauki-Naga thrust fault system.

  8. A model for the biological precipitation of Precambrian iron-formation

    NASA Technical Reports Server (NTRS)

    Laberge, G. L.

    1986-01-01

    A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.

  9. Fragmentation of wall rock garnets during deep crustal earthquakes

    PubMed Central

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth’s crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale. PMID:28261660

  10. The Modulation of Crustal Magmatic Systems by Tectonic Forcing

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.

    2010-12-01

    The amount, location and residence time of melt in the crust significantly impacts crustal structure and influences the composition, frequency, and volume of eruptive products. In this study, we develop a two dimensional model that simulates the response of the crust to prolonged mantle-derived intrusions in arc environments. The domain includes the entire crustal section and upper mantle and focuses on the evolving thermal structure due to intrusions and external tectonic forcing. Magmatic intrusion into the crust can be accommodated by extension or thickening of the crust or some combination of both mechanisms. Additionally, external tectonic forcing can generate thicker crustal sections, while tectonic extension can significantly thin the crust. We monitor the thermal response, melt fraction and surface heat flux for different tectonic conditions and melt flux from the mantle. The amount of crustal melt versus fractionated primary mantle melts present in the crustal column helps determine crustal structure and growth through time. We express the amount of crustal melting in terms of an efficiency; we define the melting efficiency as the ratio of the melted volume of crustal material to the volume of melt expected from a strict enthalpy balance as explained by Dufek and Bergantz (2005). Melting efficiencies are less than 1 in real systems because heat diffuses to sections of the crust that never melt. In general, thick crust and crust experiencing extended compressional regimes results in an increased melting efficiency; and thin crust and crust with high extension rates have lower efficiency. In most settings, maximum efficiencies are less than 0.05-0.10. We also observe that with a geophysically estimated flux, the mantle-derived magma bodies build up isolated magma pods that are distributed in the crust. One of the aspects of this work is to monitor the location and size of these magma chambers in the crustal column. We further investigate the rheological

  11. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.

    2018-01-01

    Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.

  12. A new model of lunar crust: asymmetry in crustal composition and evolution

    NASA Astrophysics Data System (ADS)

    Arai, Tomoko; Takeda, Hiroshi; Yamaguchi, Akira; Ohtake, Makiko

    2008-04-01

    Earlier models of lunar crustal formation as a simple flotation of ferroan anorthosites (FAN) do not account for the diverse crustal composition revealed by feldspathic lunar meteorites and granulites in the Apollo samples. Based on the integrated results of recent studies of lunar meteorites and global chemical and mineralogical maps, we propose a novel asymmetric crust model with a ferroan, noritic, nearside crust and a magnesian, troctolitic farside crust. Asymmetric crystallization of a primordial magma ocean can be one possibility to produce a crust with an asymmetric composition. A post-magma-ocean origin for a portion of the lunar crust is also possible and would account for the positive eNd value for FAN and phase equilibria. The formation of giant basins, such as the South Pole-Aitken (SPA) basin may have significant effects on resurfacing of the early lunar crust. Thus, the observed surface composition of the feldspathic highland terrane (FHT) represents the combined results of magma ocean crystallization, post-magma-ocean magmatism and resurfacing by basin formation. The Mg/(Mg+Fe) ratios, rock types, and mineral compositions of the FHT and the South Pole-Aitken basin Terrane (SPAT) obtained from the KAGUYA mission, coupled with further mineralogical and isotopic studies of lunar meteorites, will facilitate an assessment of the feasibility of the proposed crust model and improve understanding of lunar crustal genesis and evolution.

  13. Satellite measurements of the earth's crustal magnetic field

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  14. Precambrrian crustal evolution in the great falls tectonic zone

    NASA Astrophysics Data System (ADS)

    Gifford, Jennifer N.

    The Great Falls Tectonic Zone (GFTZ) is a zone of northeast trending geological structures in central Montana that parallel structures in the underlying basement. U-Pb zircon and Nd isotopic data from the Little Belt Mountains (LBM) suggest that the GFTZ formed at ~1.86 to 1.80 Ga due to ocean subduction followed by collision between the Archean Wyoming Province (WP) and Medicine Hat Block (MHB). This study characterizes the GFTZ basement by geochronological and geochemical analysis of crustal xenoliths collected from Montana Alkali Province volcanics and exposed basement rock in the Little Rocky Mountains (LRM). Xenoliths collected from the Grassrange and Missouri Breaks diatremes and volcanics in the Bearpaw and Highwood Mountains have igneous crystallization ages from ~1.7 Ga to 1.9 Ga and 2.4 Ga to 2.7 Ga, and metamorphic ages from ~1.65 Ga to 1.84 Ga. Zircon Lu-Hf and whole-rock Sm-Nd data indicate that the xenoliths originated from reworked older continental crust mixed with mantle-derived components in all cases. Trace element patterns show fluid mobile element enrichments and fluid immobile element depletions suggestive of a subduction origin. Igneous ages in the LRM range older, from ~2.4 Ga to 3.2 Ga. Geochemical evidence suggests that the LRM meta-igneous units also formed in a subduction setting. Detrital zircon ages span the early Paleoproterozoic to Mesoarchean, with abundant 2.8 Ga ages. Zircon U-Pb igneous crystallization age data from xenoliths and the LRM are consistent with U-Pb zircon igneous crystallization ages from the MHB, suggesting that this segment of the GFTZ shares an affinity with concealed MHB crust. Published detrital zircon ages from the northern Wyoming Province reveal more abundant >3.0 Ga ages than the MHB or GFTZ samples. These geochronologic and geochemical data from the xenoliths and LRM samples allow for a refined model for crustal evolution in the GFTZ. Subduction under the Neoarchean to Paleoproterozoic crust of the MHB

  15. Isotopic mapping of age provinces in Precambrian high-grade terrains: Sri Lanka

    SciT

    Milisenda, C.C.; Liew, T.C.; Hofmann, A.W.

    1988-09-01

    Nd model ages of amphibolite- and granulite-grade rocks in Sri Lanka form a simple region pattern that broadly correlates with mappable geological units, and is in effect an isotopic map of the island's basement. The granulite-grade units of the Highland Group and Southwest Group have model ages of 2.2-3.0 Ga indicating derivation mainly from late Archean sources. They are bounded to the east and west by late Proterozoic gneisses of the Vijayan Complex with model ages of 1.1-2.0 Ga. The isotopic data identify three distinct crustal provinces and are not consistent with earlier suggestions that the Vijayan gneisses are retrogrademore » equivalents of the Highland granulites. Sri Lanka is not a direct continuation of the Archean Dharwar Craton of southern India. Identification of Vijayan-type juvenile crustal terrains in other Gondwana fragments may play a key role in determining the precise attachment of southern India-Sri Lanka in eastern Gondwana.« less

  16. Crustal structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a hotspot?

    NASA Astrophysics Data System (ADS)

    Jokat, Wilfried; Hagen, Claudia

    2017-10-01

    The southern South Atlantic Ocean contains several features believed to document the traces of hotspot volcanism during the early formation of the ocean basin, namely the Agulhas Ridge and the Cape Rise seamounts located in the southeast Atlantic between 36°S and 50°S. The Agulhas Ridge parallels the Agulhas-Falkland Fracture Zone, one of the major transform zones of the world. The morphology of the ridge changes dramatically from two parallel segments in the southwest, to the broad plateau-like Agulhas Ridge in the northeast. Because the crustal fabric of the ridge is unknown relating its evolution to hotspots in the southeast Atlantic is an open question. During the RV Polarstern cruise ANT-XXIII-5 seismic reflection and refraction data were collected along a 370 km long profile with 8 Ocean Bottom Stations to investigate its crustal fabric. The profile extends in NNE direction from the Agulhas Basin, 60 km south of the Agulhas Ridge, and continues into the Cape Basin crossing the southernmost of the Cape Rise seamounts. In the Cape Basin we found a crustal thickness of 5.5-7.5 km, and a velocity distribution typical for oceanic crust. The Cape Rise seamounts, however, show a higher velocity in comparison to the surrounding oceanic crust and the Agulhas Ridge. Underplated material is evident below the southernmost of the Cape Rise seamounts. It also has a 5-8% higher density compared to the Agulhas Plateau. The seismic velocities of the Agulhas Ridge are lower, the crustal thickness is approximately 14 km, and age dating of dredge samples from its top provides clear evidence of rejuvenated volcanism at around 26 Ma. Seismic data indicate that although the Cape Rise seamounts formed above a mantle thermal anomaly it had a limited areal extent, whereas the hotspot material that formed the Agulhas Ridge likely erupted along a fracture zone.

  17. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  18. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness <5.2 km (designated as "thin" crust), while 56% of the crustal volume (or 65% of the surface area) is associated with crustal thickness of 5.2-8.6 km thick (designated as "normal" crust). The remaining 39% of the crustal volume (or 26% of the surface area) is associated with crustal thickness >8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic

  19. Quantifying crustal thickness over time in magmatic arcs

    PubMed Central

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; DeCelles, Peter G.

    2015-01-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens. PMID:26633804

  20. Quantifying crustal thickness over time in magmatic arcs

    NASA Astrophysics Data System (ADS)

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; Decelles, Peter G.

    2015-12-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.

  1. Continental crustal formation and recycling: Evidence from oceanic basalts

    NASA Technical Reports Server (NTRS)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  2. Regional Modeling and Power Spectra of Mercury's Crustal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Plattner, A. M.; Johnson, C. L.

    2018-05-01

    Mercury's crustal magnetic field and magnetic power spectra for select regions show distinct patterns for regions without magnetized impact craters, regions with magnetized impact craters, and the region north of Caloris.

  3. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  4. Crustal displacements due to continental water loading

    Van Dam, T.; Wahr, J.; Milly, P.C.D.; Shmakin, A.B.; Blewitt, G.; Lavallee, D.; Larson, K.M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (??rM) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm, with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare ??rM with observed Global Positioning System (GPS) heights (??rO) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the ??rO time series are adjusted by ??rM, their variances are reduced, on average, by an amount equal to the variance of the ??rM. Of the ??rO time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the ??rM. The ??rM time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  5. An algorithmic approach to crustal deformation analysis

    NASA Technical Reports Server (NTRS)

    Iz, Huseyin Baki

    1987-01-01

    In recent years the analysis of crustal deformation measurements has become important as a result of current improvements in geodetic methods and an increasing amount of theoretical and observational data provided by several earth sciences. A first-generation data analysis algorithm which combines a priori information with current geodetic measurements was proposed. Relevant methods which can be used in the algorithm were discussed. Prior information is the unifying feature of this algorithm. Some of the problems which may arise through the use of a priori information in the analysis were indicated and preventive measures were demonstrated. The first step in the algorithm is the optimal design of deformation networks. The second step in the algorithm identifies the descriptive model of the deformation field. The final step in the algorithm is the improved estimation of deformation parameters. Although deformation parameters are estimated in the process of model discrimination, they can further be improved by the use of a priori information about them. According to the proposed algorithm this information must first be tested against the estimates calculated using the sample data only. Null-hypothesis testing procedures were developed for this purpose. Six different estimators which employ a priori information were examined. Emphasis was put on the case when the prior information is wrong and analytical expressions for possible improvements under incompatible prior information were derived.

  6. Crustal attenuation characteristics in western Turkey

    NASA Astrophysics Data System (ADS)

    Kurtulmuş, Tevfik Özgür; Akyol, Nihal

    2013-11-01

    We analysed 1764 records produced by 322 micro- and moderate-size local earthquakes in western Turkey to estimate crustal attenuation characteristics in the frequency range of 1.0 ≤ f ≤ 10 Hz. In the first step, we obtained non-parametric attenuation functions and they show that seismic recordings of transverse and radial S waves exhibit different characteristics at short and long hypocentral distances. Applying a two-step inversion, we parametrized Q( f ) and geometrical spreading exponent b( f ) for the entire distance range between 10 and 200 km and then we estimated separately Q and b values for short (10-70 km) and large (120-200 km) distance ranges. We could not observe significant frequency dependencies of b for short distance range, whereas the significant frequency dependence of b was observed for large distances. Low Q0 values (˜60) with strong frequency dependence of Q (˜1.4) for short distances suggest that scattering might be an important factor contributing to the attenuation of body waves in the region, which could be associated to a high degree of fracturing, fluid filled cracks, young volcanism and geothermal activity in the crust. Weak Q frequency dependence and higher Q0 values for large distances manifest more homogenous medium because of increasing pressure and enhanced healing of cracks with increasing temperature and depth. Q anisotropy was also observed for large hypocentral distance ranges.

  7. Crustal Displacements Due to Continental Water Loading

    NASA Technical Reports Server (NTRS)

    vanDam, T.; Wahr, J.; Milly, P. C. D.; Shmakin, A. B.; Blewitt, G.; Lavallee, D.; Larson, K. M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (delta-r(sub M)) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare delta-r(sub M) with observed Global Positioning System (GPS) heights (delta-r(sub O)) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the delta-r(sub O) time series are adjusted by delta-r(sub M), their variances are reduced, on average, by an amount equal to the variance of the delta-r(sub M). Of the delta-r(sub O) time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the delta-r(sub M). The delta-r(sub M) time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  8. The crustal dynamics intelligent user interface anthology

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M., Jr.; Campbell, William J.; Roelofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has, as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI is to develop a friendly and intelligent user interface service based on expert systems and natural language processing technologies. The purpose of such a service is to support the large number of potential scientific and engineering users that have need of space and land-related research and technical data, but have little or no experience in query languages or understanding of the information content or architecture of the databases of interest. This document presents the design concepts, development approach and evaluation of the performance of a prototype IUI system for the Crustal Dynamics Project Database, which was developed using a microcomputer-based expert system tool (M. 1), the natural language query processor THEMIS, and the graphics software system GSS. The IUI design is based on a multiple view representation of a database from both the user and database perspective, with intelligent processes to translate between the views.

  9. Cooperative research in space geodesy and crustal dynamics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This research grant, which covered the period of July 1991 to August 1994, was concerned with a variety of topics within the geodesy and crustal dynamics fields. The specific topics of this grant included satellite tracking and gravity field determinations and crustal dynamics (this concentrated of space geodetic site stability for VLBI sites). Summaries of the specific research projects are included along with a list of publications and presentations supported by this research grant.

  10. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  11. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    NASA Astrophysics Data System (ADS)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  12. Paleomagnetism and Geochronology of the Precambrian Dikes in NE Fennoscandia, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Samsonov, A.; Stepanova, A.

    2017-12-01

    Paleomagnetism of Proterozoic dikes of Scandinavia, Karelia, and southern part of the Kola Peninsula is extensively explored in many studies (Veikkolainen et al., 2014). In particular, the paleomagnetism of intrusive formations in the southern part of the Kola Peninsula is thoroughly scrutinized in the study authored by Alexey Khramov and his colleagues (Khramov et al., 1997). However, information about the systematic paleomagnetic studies of the Archaean and Proterozoic dikes of the Central Kola block and, especially, Murmansk block are absent. Based on the results of preliminary paleomagnetic investigation of 57 Precambrian dikes of the Kola Peninsula, in 31 of them a stable monopolar component of natural remanent magnetization is revealed. The peculiarities of distribution of this magnetization component within the Kola Peninsula and the rock magnetic characteristics of the dikes in which this component is isolated suggest its secondary nature and relate the mechanism and formation time to the remagnetization processes which took place in the northwest of Fennoscandia about 1.8 Ga during the Svecofennian orogeny. The corresponding geomagnetic pole of Fennoscandia is located in the immediate vicinity of the known Paleoproterozoic (1.9-1.7 Ga) poles of Baltica (Khramov et al., 1997; Veikkolainen et al., 2014). We also present the new geochronological Ar/Ar, Sm-Nd, Rb-Sr and U-Pb data which allow to determine the age of remagnetization as 1.86 Ga. The studies were supported by the Russian Science Foundation (project no. 16-17-10260), partially supported by the Russian Federation Government (project no. 14.Z50.31.0017) and Russian Foundation for Basic Research (project no. 17-05-01121a).

  13. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota.

    PubMed

    Campbell, S E

    1979-09-01

    A cyanophyte dominated mat, desert crust, forms the ground cover in areas measuring hundreds of square meters in Utah and smaller patches in Colorado. The algal mat shows stromatolitic features such as sediment trapping and accretion, a convoluted surface, and polygonal cracking. Sand and clay particles are immobilized by a dense network of filaments of the two dominating cyanophyte species, Microcoleus vaginatus and M. chthonoplastes, which secrete sheaths to which particles adhere. These microorganisms can tolerate long periods of desiccation and are capable of instant reactivation and migration following wetting. Migration occurs in two events: 1. immediately following wetting of dry mat, trichomes are mechanically expelled from the sheath as it swells during rehydration, and 2. subsequently, trichomes begin a self-propelled gliding motility which is accompanied by further production of sheath. The maximum distance traveled on solid agar by trichomes of Microcoleus vaginatus during a 12 hour period of light was 4.8 cm. This corresponds to approximately 500 times the length of the fastest trichome, and provides a measure of the potential for spreading of the mat in nature via the motility of the trichomes. Dehydration resistence of the sheath modifies the extracellular environment of the trichomes and enables their transition to dormancy. Following prolonged wetting and evaporative drying of the mat in the laboratory, a smooth wafer-like crust is formed by the sheaths of Microcleus trichomes that have migrated to the surface. Calcium carbonate precipitates among the algal filaments under experimental conditions, indicating a potential for mat lithification and fossilization in the form of a caliche crust. It is suggested that limestones containing tubular microfossils may, in part, be of such an origin. The formation of mature Precambrian soils may be attributable to soil accretion, stabilization, and biogenic modification by blue-green algal land mats similar to

  14. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of

  15. Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies

    Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.

    2004-01-01

    Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.

  16. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    in the Moho depth, from 30-35 km in the Paleozoic Platform to 42-52 km in the Precambrian craton. The new model confirms the Moho depth derived from previous compilations. In the TESZ the lower crust has a very high seismic velocity (> 7.0 km/s) which correlates to the high P-wave velocity (about 8.4 km/s) in the uppermost mantle beneath the Polish Basin. The Cratonic area is generally characterized by high P-wave velocities (> 8.2 km/s), while the Phanerozoic area is characterized by velocities of ~ 8.0 km/s. In the TESZ very high velocities of 8.3-8.4 km/s are observed, and the southwestern limitation of this area coincides with a high velocity lower crust, and could be continued to the NW toward the Elbe line. The influence of the structure for teleseismic tomography time residuals of seismic waves traveling through the 3D seismic model was analyzed. Lithological candidates for the crust and uppermost mantle of the EEC and WEP were suggested by comparison to laboratory data. The presented 3D seismic model may make more reliable studies on global dynamics, and geotectonic correlations, particularly for sedimentary basins in the Polish Lowlands, the napped flysch sediment series in the Carpathians, the basement shape, the southwestern edge of the EEC, a high-velocity lower crust and the high-velocity uppermost mantle in the TESZ. Finally, the new 3D velocity model of the crust shows a heterogeneous structure and offers a starting point for the numerical modeling of deeper structures by allowing for a correction of the crustal effects in studies of the mantle heterogeneities.

  17. Plume-driven plumbing and crustal formation in Iceland

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Nettles, M.; Ekstrom, G.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    2002-01-01

    Through combination of surface wave and body wave constraints we derive a three-dimensional (3-D) crustal S velocity model and Moho map for Iceland. It reveals a vast plumbing system feeding mantle plume melt into upper crustal magma chambers where crustal formation takes place. The method is based on the partitioned waveform inversion to which we add additional observations. Love waves from six local events recorded on the HOTSPOT-SIL networks are fitted, Sn travel times from the same events measured, previous observations of crustal thickness are added, and all three sets of constraints simultaneously inverted for our 3-D model. In the upper crust (0-15 km) an elongated low-velocity region extends along the length of the Northern, Eastern and Western Neovolcanic Zones. The lowest velocities (-7%) are found at 5-10 km below the two most active volcanic complexes: Hekla and Bardarbunga-Grimsvotn. In the lower crust (>15 km) the low-velocity region can be represented as a vertical cylinder beneath central Iceland. The low-velocity structure is interpreted as the thermal halo of pipe work which connects the region of melt generation in the uppermost mantle beneath central Iceland to active volcanoes along the neovolcanic zones. Crustal thickness in Iceland varies from 15-20 km beneath the Reykjanes Peninsula, Krafla and the extinct Snfellsnes rift zone, to 46 km beneath central Iceland. The average crustal thickness is 29 km. The variations in thickness can be explained in terms of the temporal variation in plume productivity over the last ~20 Myr, the Snfellsnes rift zone being active during a minimum in plume productivity. Variations in crustal thickness do not depart significantly from an isostatically predicted crustal thickness. The best fit linear isostatic relation implies an average density jump of 4% across the Moho. Rare earth element inversions of basalt compositions on Iceland suggest a melt thickness (i.e., crustal thickness) of 15-20 km, given passive

  18. A transient fault-valve mechanism operating in upper crustal level, Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Japas, María Silvia; Urbina, Nilda Esther; Sruoga, Patricia; Garro, José Matías; Ibañes, Oscar

    2016-11-01

    Located in the Sierras Pampeanas (the broken-foreland of the Pampean flat slab segment in the southern Central Andes), the Cerro Tiporco volcanic field shows Neogene hydrothermal activity linked to migration of arc-magmatism into the foreland. Late Neogene deposits comprise epithermal vein systems emplaced in Precambrian-Early Palaeozoic igneous-metamorphic basement, Late Miocene sedimentary rocks and Early Pliocene volcaniclastic rocks. Mineralization consists of calcareous onyx, aragonite and calcite veins as well as travertine deposits. Onyx and aragonite occur as fill of low-displacement nearly vertical reverse-sinistral faults striking NW, and nearly horizontal dilatant fractures. The latter consist of load-removal induced fractures affecting the igneous-metamorphic rocks, as well as bedding planes in the Late Miocene sediments. The presence of veins recording multiple fracture episodes and crack-and-seal growth of veins suggests relatively low differential stress and supralithostatic fluid pressure, as well as cyclic changes in pore pressure and high mineral-deposition/fracture-opening ratio. These conditions support a mechanism of fault-valve behaviour during onyx and aragonite vein emplacement. The fault-valve mechanism involves fractures associated with impermeable barriers between environments with different fluid pressure. Faulting generated an appreciable directional permeability triggering fluid migration from the highest to the lowest pressure region, with subsequent deposition and sealing that started a new pressurization-faulting-sealing cycle. Late aragonite and calcite veins suggest a change in kinematics indicating the onset of tectonic-load conditions.

  19. Building the Pamir-Tibet Plateau: Eo-Oligocene Crustal Stacking and Orogen Parallel Evasion of Upper and Middle Crustal Material in the Pamir

    NASA Astrophysics Data System (ADS)

    Rutte, D.; Ratschbacher, L.; Stübner, K.; Schneider, S.

    2015-12-01

    The gneisses of the Central Pamir Domes and their cover document crustal stacking of a ~10 km thick Ediacaran-Paleogene succession to a thickness of >35 km and their exhumation along bi-vergent, top-to-N and top-to S, normal-sense shear zones. The giant South Pamir Shakhdara-Alichur gneiss-dome system formed similarly by N-S extension along bivergent detachments. Prograde amphibolite-facies metamorphism in the domes and low-grade metamorphism in their hanging wall is dated at ~40 Ma (Lu-Hf garnet, U-Pb titanite) [Smit et al., 2014; Stearns et al., 2015] and ~33 Ma (K/Ar sericite). Retrograde metamorphism―driven by crustal extension―started at ~21 Ma (multi-method thermochronology; Stearns et al.[2013]). These Gneiss Domes offer a unique window into the Eocene-Miocene state of the Asian middle crust of the Pamir-Tibet Plateau. Top-to-N thrust stacking accommodated thickening in the upper crust, with displacements of single thrust sheets of > 30 and > 19 km. At depth, ductile flow formed km-scale recumbent fold nappes. We reconstruct their geometry by structural mapping and U-Pb zircon dating, documenting repetition of metatuffite, and paragneiss layers. In the interior of the domes, amphibolite-facies deformation fabrics with prograde kyanite define an E-W stretching lineation. Associated microstructures indicate top-to-E and top-to-W shear senses. Chocolate tablet boudinage indicate vertical flattening during bulk crustal thickening. We suggest that prograde E-W stretching relates to an early orogen-parallel flow component in the middle crust, contemporaneous with crustal stacking during bulk top-to-N convergence prior to ~21 Ma. Material likely evaded laterally out of the Pamir, contributing to >60 km thick crust in the Hindu Kush, west of the India-Asia frontal collision. In the Neogene crust extruded laterally from the Pamir Plateau to the west by dextral wrenching and E-W extension; this component of deformation is accommodated by E-W shortening in the

  20. Intensity attenuation for active crustal regions

    NASA Astrophysics Data System (ADS)

    Allen, Trevor I.; Wald, David J.; Worden, C. Bruce

    2012-07-01

    We develop globally applicable macroseismic intensity prediction equations (IPEs) for earthquakes of moment magnitude M W 5.0-7.9 and intensities of degree II and greater for distances less than 300 km for active crustal regions. The IPEs are developed for two distance metrics: closest distance to rupture ( R rup) and hypocentral distance ( R hyp). The key objective for developing the model based on hypocentral distance—in addition to more rigorous and standard measure R rup—is to provide an IPE which can be used in near real-time earthquake response systems for earthquakes anywhere in the world, where information regarding the rupture dimensions of a fault may not be known in the immediate aftermath of the event. We observe that our models, particularly the model for the R rup distance metric, generally have low median residuals with magnitude and distance. In particular, we address whether the direct use of IPEs leads to a reduction in overall uncertainties when compared with methods which use a combination of ground-motion prediction equations and ground motion to intensity conversion equations. Finally, using topographic gradient as a proxy and median model predictions, we derive intensity-based site amplification factors. These factors lead to a small reduction of residuals at shallow gradients at strong shaking levels. However, the overall effect on total median residuals is relatively small. This is in part due to the observation that the median site condition for intensity observations used to develop these IPEs is approximately near the National Earthquake Hazard Reduction Program CD site-class boundary.

  1. Effective stress, friction and deep crustal faulting

    Beeler, N.M.; Hirth, Greg; Thomas, Amanda M.; Burgmann, Roland

    2016-01-01

    Studies of crustal faulting and rock friction invariably assume the effective normal stress that determines fault shear resistance during frictional sliding is the applied normal stress minus the pore pressure. Here we propose an expression for the effective stress coefficient αf at temperatures and stresses near the brittle-ductile transition (BDT) that depends on the percentage of solid-solid contact area across the fault. αf varies with depth and is only near 1 when the yield strength of asperity contacts greatly exceeds the applied normal stress. For a vertical strike-slip quartz fault zone at hydrostatic pore pressure and assuming 1 mm and 1 km shear zone widths for friction and ductile shear, respectively, the BDT is at ~13 km. αf near 1 is restricted to depths where the shear zone is narrow. Below the BDT αf = 0 is due to a dramatically decreased strain rate. Under these circumstances friction cannot be reactivated below the BDT by increasing the pore pressure alone and requires localization. If pore pressure increases and the fault localizes back to 1 mm, then brittle behavior can occur to a depth of around 35 km. The interdependencies among effective stress, contact-scale strain rate, and pore pressure allow estimates of the conditions necessary for deep low-frequency seismicity seen on the San Andreas near Parkfield and in some subduction zones. Among the implications are that shear in the region separating shallow earthquakes and deep low-frequency seismicity is distributed and that the deeper zone involves both elevated pore fluid pressure and localization.

  2. Crustal structure and tectonic history of the Kermadec arc inferred from MANGO seismic refraction profiles

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Kopp, H.; Sutherland, R.; Henrys, S.; Watts, A. B.; Timm, C.; Scherwath, M.; Grevemeyer, I.; de Ronde, C. E. J.

    2016-12-01

    We have analyzed three wide-angle seismic reflection and refraction profiles and applied spectral averaging techniques to regional grids of bathymetry and free-air gravity anomaly to place the first regional constraints on the crustal structure of the Kermadec arc. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure, across which, 1) the remnant Lau-Colville and active Kermadec arc ridges narrow by >50%; 2) the backarc and forearc deepen by 1 km, and 3) the active volcanic arc is deflected west into the deepest known backarc basin. We use residual bathymetric anomalies to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110±20 km) and strike ( 005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7-7.3 km s-1. Lower crustal velocities are similar to the northern Kermadec forearc, but there is no seismic or gravimetric evidence for an extinct arc ridge within the forearc. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. The northern Kermadec/Tonga arc preserves a substrate of the Eocene arc, the southern Kermadec forearc preserves Mesozoic forearc rocks accreted at the Gondwana margin, and the central Kermadec arc may have fomed in the Kupe Abyssal Plain. The oldest arc related rocks recovered north and south of the CKD are 52 Ma and 16.7 Ma respectively, and plate tectonic reconstruction suggest the Eocene arc was originally conjoined with the Three Kings Ridge. The separation of these ridges during the early Oligocene likely formed the CKD. In contrast to previous interpretations, we

  3. Iodine-to-calcium ratios in carbonates suggest a primary origin for the Precambrian Lomagundi and Shuram carbon isotope excursions

    NASA Astrophysics Data System (ADS)

    Hardisty, D. S.; Lu, Z.; Planavsky, N. J.; Osburn, M. R.; Bekker, A.; Lyons, T. W.

    2013-12-01

    Systematic increases in iodine-to-calcium ratios (I/Ca) in carbonates from both the Precambrian Lomagundi and Shuram carbonate carbon isotope (δ13Ccarb) excursion intervals suggest primary origins for these events. Iodate (IO3-), the oxidized iodine species, is the exclusive species incorporated into carbonates. The high redox sensitivity of IO3- to deoxygenation requires highly oxidizing fluids for IO3- production, making I/Ca in platform carbonates a simple indicator of the presence of oxidizing fluids in the surface ocean. Similarly, redox sensitivity makes the proxy host susceptible to diagenetic iodine loss during carbonate recrystallization in reducing pore fluids. Recent work has shown carbonates to experience near-complete iodine loss during dolomitization in the Permian, and work from our group evaluating modern and recent carbonates demonstrate the potential for diagenetic iodine loss during carbonate recrystallization. In some cases, however, such as meteoric aragonite-to-calcite transitions, oxidizing pore fluids have the potential to buffer IO3- concentrations, causing negligible alteration to primary I/Ca despite negative shifts in δ13Ccarb. These results highlight that diagenetic alterations to I/Ca and δ13Ccarb need not always be coupled, but importantly, no observed scenario promotes post-depositional addition of iodine to carbonates. This means that, independent of δ13Ccarb, systematic, stratigraphic increases in I/Ca ratios observed in the carbonate record are most easily interpreted as resulting from depositional controls such as surface ocean redox or shifts in the total marine iodine reservoir. From this, increasing I/Ca ratios coincident with rising and falling δ13Ccarb trends for the Paleoproterozic Lomagundi and Neoproterozoic Shuram events, respectively, support suggestions of a primary origin for the δ13Ccarb excursions. Significant increase in I/Ca in dolomites deposited during the Lomagundi excursion, rising from blank values in

  4. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  5. Reconnaissance geology of the Precambrian rocks in the Bi'r Ghamrah quadrangle, Kingdom of Saudi Arabia

    Overstreet, William C.; Whitlow, Jesse William

    1972-01-01

    Three sequences of volcanic and sedimentary rocks are identified in the Precambrian rocks of the Bi'r Ghamrah quadrangle at the eastern edge of the Precambrian Shield in central Saudi Arabia. The oldest sequence is called the Bi'r Khountina Group. It consists of conglomerate marble, andesite, and graywacke. Unconformably overlying this group is a sequence of graywacke with minor lava called the Murdama Group. In a small area in the southern part of the quadrangle, these rocks are unconformably overlain by rhyolitic tuff and rhyolite tentatively correlated with the Shammar Rhyolite. The older of these sedimentary and volcanic rocks were intruded by diorite and gabbro and by a large pluton of alkalic granite. A contact metamorphic aureole was formed in the Bi'r Khountina and Murdama Groups adjacent to the granite, and feeder dikes of the Sbmmmar Rhyolite(?) intrude the granite. The Bi'r Khountina Group is folded into a south-plunging asymmetrical anticlinorium, the west limb of which is repeated across northwest-trending faults. The Murdama Group appears to have been folded along the same axes, but the contact aureole against the alkalic granite and the imprint of the west-northwest striking Najd fault zone cause the rocks of the Murdama Group to appear to trend westward. Results of spectrographic and chemical analyses of wadi sand, heavy-mineral concentrates, and detrital magnetite show small anomalies. The ultramafic rocks intruded prior to the deposition of the Murdama Group are the source of anomalous chromium and lanthanum and of threshold nickel, scandium, and vanadium. The intrusive rocks younger than the Murdama Group are sources for anomalous lead and threshold silver, boron, barium, beryllium, zirconium, lanthanum, and tin. One small ancient working, probably opened for gold, is present, and at least four places in the Precambrian part of the quadrangle ere potentially favorable for gold, silver, and lead. Chromite is a potential resource in the

  6. Martian Crustal Magnetism: What Have We Learned After Approximately 6 Years of MGS Observations?

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    2003-01-01

    The MAG/ER investigation aboard the Mars Global Surveyor (MGS) has established conclusively that an internal, dynamo-generated field does not currently exist at Mars and discovered, unexpectedly, strong magnetization in the crust. An estimate of the upper limit of the current Mars dipole moment derived from the MGS data yields M < 2 x 10(exp 17) A-m2, which corresponds to a surface equatorial field strength of < 0.5 nT. The intense magnetization of the crust is closely associated with the ancient, heavily cratered high terrain, which lies south of Mars dichotomy boundary. The correlation of magnetization with the old terrain and the role of impacts, which have modified the magnetic properties of the crust, constitute a new and powerful diagnostic tool that is providing a unique view into the early thermal history of the planet, which was almost totally unknown prior to the arrival of MGS. Data from the Lunar Prospector mission complement contemporary analyses and interpretation of crustal magnetism in planetary system bodies that do not currently possess core dynamos. The observation of magnetic lineations over Terra Sirenum (Sirenum Fossae) and Terra Cimmeria, are suggestive of tectonic processes observed at Earth in association with sea-floor spreading and geomagnetic field reversals. If this association is correct, it would indicate the possible existence of plate tectonics and magnetic field reversals in Mars' early history. Alternative models involving fault/graben formation associated with the fracturing of a thin, magnetized crustal layer by tectonic or volcanism-induced stresses, yield equally valid interpretations. To date, no reliable correlation between topography, geology and crustal magnetism has been established and the origin of these remarkable Martian magnetic anomalies remains a mystery.

  7. The role of detrital zircons in Hadean crustal research

    NASA Astrophysics Data System (ADS)

    Nebel, Oliver; Rapp, Robert P.; Yaxley, Gregory M.

    2014-03-01

    Meso-Archean sedimentary sequences at Mt. Narryer and the Jack Hills of the Narryer Terrane in Western Australia's Yilgarn Craton contain detrital zircon grains with ages as old as 4.37 Ga, the oldest preserved terrestrial matter. These grains are rare remnants of Hadean (4.5-4.0 Ga) terrestrial crust and their survival stems from the crystallographic properties of zircon during crustal reworking: they are resistant to physical and chemical weathering. Zircons are further suitable for single grain, precise age determinations making them a unique archive of the crustal past. Only a small proportion of all detrital zircons from the Narryer Terrane show Hadean age spectra and younger overgrowth rims on all 'Hadean' grains indicate multiple recycling events. Numerous studies that applied a spectacular range of analytical tools and proxies have been undertaken to decipher the geochemical nature of these zircons' host rocks, in order to place constraints on Hadean geodynamics and the processes responsible for creating the earliest terrestrial crust. Their elemental and isotope budget and mineral inclusions have helped to develop an emerging picture of a water-rich, evolved Hadean crust. However, subsequent studies have challenged this view and it seems that each piece of new evidence indicative of an early, evolved continental crust has non-unique interpretations also permissive of mafic to ultra-mafic crust. In this review we examine these disparate interpretations and their possible implications and conclude that at least parts of the earliest terrestrial crust were hydrated. However, to date there is no conclusive evidence for preserved granitic, continental crust. The protoliths of the Hadean detrital zircons were likely acidic in nature, yet the composition of the greater terrane from which these melts were derived was probably mafic. It remains unclear if the zircons formed in a geodynamic environment that includes Hadean subduction. We suspect that the Hadean

  8. New Interpretation of Crustal Extension Evidences on Mars

    NASA Astrophysics Data System (ADS)

    Grin, E. A.

    The record of early evolution of life on Earth has been obscured by extensive surface activity. On the opposite, large fractions of the martian surface date back to an early clement epoch favorable to the needs of biological systems [1]. The upper martian surface reflects a wide variety of modifying processes which destroy the geological context. However, due to endogenic causes acting after the end of the primordial bombardment, abundant extensional structures display vertical sequences of stratigraphic units from late Noachian to early Hesperian periods [2]. Deep structural incisions in the upper crust provide unaltered strata, open flanks, and slope deposits that favor the use of an autonomous lander-rover-penetrator The strategy for an exobiology search of such an optimum site should be guided by the recent attention devoted to extensional structures and their global significance [4]. Geological evidence supporting the martian crustal extension is suggested by abundant fractures associated with the dichotomy boundary northland-south upland, i.e., Aeolis Region, and peak igneous activity (Elysium bulge). As pointed out by [5], the system of fractures correlates with the endogenic origin of the dichotomy, as related to a major difference in the thicknessof the crust. Perpendicular to this boundary, fractures of deep graben testify to a general tectonic crust relaxation. The opening of the graben, joined with compressive wrinkles, is the signature of a dynamical pervasive stress regime that implies a large scale roll-over of the upper crust over the ductile interface of a more dense mantle. This general motion is not a transport of material, as there is no thickening on the boundary of the dichotomy. The horizontal movement is due to the gravitational mechanism and differential thermal convection cells in the upper crust over the slope of the anti-flexure rigid interface consequential to Elysium bulge. The fracturation occurs as the neutral zone of the crust rises

  9. Modeling the Precambrian Topography of Columbia County, Wisconsin Using Two-Dimensional Models of Gravity and Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Skalbeck, J.; Stewart, E.

    2017-12-01

    The deep sandstone and dolomite aquifer of Wisconsin is the primary source of water in the central, southern, and western portions of the state, as well as a supplier for many high-capacity wells in the eastern portion. This prominent groundwater system is highly impacted by the underlying Precambrian basement, which includes the doubly plunging Baraboo Syncline in Columbia and Sauk Counties. This project is a continuation of previous work done in Dodge and Fond du Lac Counties by the University of Wisconsin-Parkside (UW-P) and the Wisconsin Geological & Natural History Survey (WGNHS). The goal of this project was to produce of an updated Precambrian topographic map of southern Wisconsin, by adding Gravity and Aeromagnetic data to the existing map which is based mainly on sparse outcrop and well data. Gravity and Aeromagnetic data from the United States Geological Survey (USGS) was processed using GM-SYS 3D modeling software in Geosoft Oasis Montaj. Grids of subsurface layers were created from the data and constrained by well and drilling records. The Columbia County basement structure is a complex network of Precambrian granites and rhyolites which is non-conformably overlain by quartzite, slate, and a layer of iron rich sedimentary material. Results from previously collected cores as well as drilling done in neighboring Dodge County, show that the iron rich layer was draped over much of the Baraboo area before being subject to the multitude of folding and faulting events that happened in the region during the late Precambrian. This layer provides telltale signatures that aided in construction of the model due to having an average density of 3.7 g/cm3 and a magnetic susceptibility of 8000 x 10-6 cgs, compared to the average density and susceptibility of the rest of the bedrock being 2.8 g/cm3 and 1500 x 10-6 cgs, respectively. The research done on the Columbia County basement is one part of a larger project aimed at improving groundwater management efforts of the

  10. Constraining the crustal root geometry beneath Northern Morocco

    NASA Astrophysics Data System (ADS)

    Díaz, J.; Gil, A.; Carbonell, R.; Gallart, J.; Harnafi, M.

    2016-10-01

    Consistent constraints of an over-thickened crust beneath the Rif Cordillera (N. Morocco) are inferred from analyses of recently acquired seismic datasets including controlled source wide-angle reflections and receiver functions from teleseismic events. Offline arrivals of Moho-reflected phases recorded in RIFSIS project provide estimations of the crustal thicknesses in 3D. Additional constraints on the onshore-offshore transition are inferred from shots in a coeval experiment in the Alboran Sea recorded at land stations in northern Morocco. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. This larger dataset provides better resolution constraints and reveals a number of abrupt crustal changes. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large crustal root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favors models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area beneath western Alboran Sea and the superficial seismicity in Alhoceima area. Therefore, the presence of a crustal root seems to play also a major role in the

  11. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    ten Brink, Uri S.; Taylor, M.H.

    2002-01-01

    The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.

  12. Early Precambrian mantle derived rocks in the southern Prince Charles Mountains, East Antarctica: age and isotopic constraints

    Mikhalsky, E.V.; Henjes-Kunst, F.; Roland, N.W.

    2007-01-01

    Mafic and ultramafic rocks occurring as lenses, boudins, and tectonic slabs within metamorphic units in the southern Mawson Escarpment display mantle characteristics of either a highly enriched, or highly depleted nature. Fractionation of these mantle rocks from their sources may be as old as Eoarchaean (ca 3850 Ma) while their tectonic emplacement probably occurred prior to 2550 Ma (U-Pb SHRIMP data). These results provide for the first time evidence for Archaean suturing within East Antarctica. Similar upper mantle sources are likely present in the northern Mawson Escarpment. A younger age limit of these rocks is 2200 Ma, as indicated by presumably metamorphic zircon ages while their magmatic age may be constrained by single zircon dates at 2450-2250 Ma. The area of the northern Mawson Escarpment is most likely of ensimatic origin and includes mafic rocks which were derived from distinct mantle source(s) during Palaeoproterozoic time.

  13. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    SciT

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob

    We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in

  14. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    DOE PAGES

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; ...

    2018-02-19

    We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in

  15. Unraveling the redox evolution of the Yangtze Block across the Precambrian/Cambrian transition

    NASA Astrophysics Data System (ADS)

    Diamond, C. W.; Zhang, F.; Chen, Y.; Lyons, T. W.

    2016-12-01

    Rocks preserved on the South China Craton have played a critical role in refining our understanding of the co-evolution of life and Earth's surface environments in the Late Neoproterozoic and earliest Paleozoic. From the earliest metazoan embryos to the many examples of exceptional preservation throughout the Cambrian Explosion, South China has preserved an outstanding record of animal evolution across this critical transition. Similarly, rocks preserved in South China hold key insights into the changing ocean chemistry that accompanied this extraordinary time. Recent work form Sahoo and others (2016, Geobiology) used redox sensitive metal enrichments in the Ediacaran Doushantuo Formation to demonstrate that the redox state of the Latest Neoproterozoic oceans was highly dynamic, rather than stably oxygenated or anoxic as had both been suggested previously. In an attempt to follow on from this and other studies, we have examined samples from a drill core taken in eastern Guizhou capturing deep-water facies of the Liuchapo and Jiumenchong formations, which contain the Precambrian/Cambrian boundary. In addition to containing the boundary, the sampled interval contains an enigmatic, widespread horizon that is strongly enriched in Ni and Mo. We have taken a multi-proxy approach in our investigation of this layer, the possible implications it has for the strata above and below (i.e., how its presence affects their utility as archives of paleo-redox conditions), and what those strata can tell us about local and global redox conditions during this pivotal time in Earth's history. Our Fe speciation data indicate that conditions were sulfidic at this location throughout the majority of the sampled interval. While redox sensitive metal concentrations are dramatically enriched in the Ni/Mo interval, their concentrations return to modest enrichments above it and continue to decrease upward. This trend suggests that while the conditions that favored extreme enrichment during the

  16. Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Cook, Frederick A.; Clowes, Ronald M.; Snyder, David B.; van der Velden, Arie J.; Hall, Kevin W.; Erdmer, Philippe; Evenchick, Carol A.

    2004-04-01

    -British Columbia border, a reflection dips eastward from ˜14.0 s to ˜21.0 s (˜45 to 73 km depth) beneath exposed Eocene magmatic rocks. It is interpreted as a relict subduction surface of the Kula plate. Our interpretation of Proterozoic layered rocks beneath most of the northern Cordillera suggests a much different crustal structure than previously considered: (1) Ancient North American crust comprising up to 25 km of metamorphosed Proterozoic to Paleozoic sediments plus 5-10 km of pre-1.8 Ga crystalline basement projects westward beneath most of the northern Canadian Cordillera. (2) The lateral (500 km by at least 1000 km) and vertical (up to 25 km) extent of the Proterozoic layers and their internal deformation are consistent with a long-lived margin for northwestern North America with alternating episodes of extension and contraction. (3) The detachments that carry deformed rocks of the Mackenzie Mountains and northern Rocky Mountains are largely confined to the upper crustal region above the layering. (4) Accreted terranes include thin klippen that were thrust over North American pericratonic strata (e.g., Yukon-Tanana), and terranes such as Nisling and Stikinia that thicken westward as the underlying Proterozoic layers taper and disappear. (5) The ages of exposed rocks are not necessarily indicative of the ages of underlying crust, a frequent observation in Lithoprobe interpretations, so that estimates of crustal growth based on surface geology may not be representative.

  17. Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Nyblade, A.; Hansen, S. E.; Wiens, D. A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Shore, P.; Wilson, T.

    2016-03-01

    S-wave receiver functions (SRFs) are used to investigate crustal and upper-mantle structure beneath several ice-covered areas of Antarctica. Moho S-to-P (Sp) arrivals are observed at ˜6-8 s in SRF stacks for stations in the Gamburtsev Mountains (GAM) and Vostok Highlands (VHIG), ˜5-6 s for stations in the Transantarctic Mountains (TAM) and the Wilkes Basin (WILK), and ˜3-4 s for stations in the West Antarctic Rift System (WARS) and the Marie Byrd Land Dome (MBLD). A grid search is used to model the Moho Sp conversion time with Rayleigh wave phase velocities from 18 to 30 s period to estimate crustal thickness and mean crustal shear wave velocity. The Moho depths obtained are between 43 and 58 km for GAM, 36 and 47 km for VHIG, 39 and 46 km for WILK, 39 and 45 km for TAM, 19 and 29 km for WARS and 20 and 35 km for MBLD. SRF stacks for GAM, VHIG, WILK and TAM show little evidence of Sp arrivals coming from upper-mantle depths. SRF stacks for WARS and MBLD show Sp energy arriving from upper-mantle depths but arrival amplitudes do not rise above bootstrapped uncertainty bounds. The age and thickness of the crust is used as a heat flow proxy through comparison with other similar terrains where heat flow has been measured. Crustal structure in GAM, VHIG and WILK is similar to Precambrian terrains in other continents where heat flow ranges from ˜41 to 58 mW m-2, suggesting that heat flow across those areas of East Antarctica is not elevated. For the WARS, we use the Cretaceous Newfoundland-Iberia rifted margins and the Mesozoic-Tertiary North Sea rift as tectonic analogues. The low-to-moderate heat flow reported for the Newfoundland-Iberia margins (40-65 mW m-2) and North Sea rift (60-85 mW m-2) suggest that heat flow across the WARS also may not be elevated. However, the possibility of high heat flow associated with localized Cenozoic extension or Cenozoic-recent magmatic activity in some parts of the WARS cannot be ruled out.

  18. New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta; Bililign, Solomon

    2008-10-01

    Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).

  19. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications

    NASA Astrophysics Data System (ADS)

    Xu, Wenliang; Gao, Shan; Wang, Qinghai; Wang, Dongyan; Liu, Yongsheng

    2006-09-01

    A suite of xenoliths of eclogite, garnet clinopyroxenite, and felsic gneiss is found in Early Cretaceous high-Mg [Mg# >45, where Mg# = molar 100 × Mg/(Mg + Fetotal)] adakitic intrusions from the Xuzhou-Huaibei (Xu-Huai) region along the southeastern margin of the North China craton. The primary mineral assemblage of garnet + omphacite/augite + quartz + rutile ± pargasite of the eclogite and garnet clinopyroxenite xenoliths defines a minimum pressure of >1.5 GPa, while the estimated peak metamorphic temperatures range from 800 to 1060 °C. An Sm-Nd whole-rock garnet isochron and zircon U-Pb dates show that timing of the eclogite facies metamorphism took place ca. 220 Ma. This Triassic age agrees with the age of eclogites from the Dabie-Sulu ultrahigh-pressure metamorphic (UHPM) belt. The ages of abundant Late Archean to early Paleoproterozoic (2.3 2.6Ga) inherited zircons correspond to the most prominent crustal growth event in the North China craton. In addition, these xenoliths and their host high-Mg adakitic intrusions have complementary major and trace element compositions, suggesting that the adakites formed by partial melting of Archean metabasalts that were the protoliths of the Xu-Huai eclogite and garnet clinopyroxenite xenoliths. Trace element and Sr-Nd isotopic modeling shows that the high-Mg adakitic intrusions can be modeled as melts from ˜40% partial melting of the metabasalts in the eclogite facies, followed by interaction with the convecting mantle and variable degrees of crustal assimilation. Together with the similar zircon age populations between the xenoliths and the host rocks, these lines of evidence strongly suggest their genetic link via thickening, foundering, and partial melting of the Archean North China craton mafic lower crust, followed by adakitic melt-mantle interaction. The crustal thickening resulted from Triassic collision between the Yangtze craton and the North China craton, which produced the Dabie-Sulu UHPM belt in the

  20. Identification of a precambrian rift through Missouri by digital image processing of geophysical and geological data

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Arvidson, R. E.; Strebeck, J. W.; Schulz, K. J.; Davies, G. F.; Leff, C. E.

    1982-01-01

    A newly discovered feature in the midcontinent - a gravity low that begins at a break in the midcontinent gravity high in SE Nebraska, extends across Missouri in a NW-SE direction, and intersects the Mississippi Valley graben to form the Pascola arch - is discussed. The anomaly varies from 120 to 160 km in width, extends approximately 700 km, and is best expressed in southern Missouri, where it has a Bouguer amplitude of about -34 mGal. It is noted that the magnitude of the anomaly cannot be explained on the basis of a thickened section of Paleozoic sedimentary rock. The gravity data and the sparse seismic refraction data for the region are found to be consistent with an increased crustal thickness beneath the gravity low. It is thought that the gravity anomaly is probably the present expression of a failed arm of a rifting event, perhaps one associated with the spreading that led to or preceded formation of the granite and rhyolite terrain of southern Missouri.

  1. Models for extracting vertical crustal movements from leveling data

    NASA Technical Reports Server (NTRS)

    Holdahl, S. H.

    1978-01-01

    Various adjustment strategies are being used in North America to obtain vertical crustal movements from repeated leveling. The more successful models utilize polynomials or multiquadric analysis to describe elevation change with a velocity surface. Other features permit determination of nonlinear motions, motions associated with earthquakes or episodes, and vertical motions of blocks where boundaries are prespecified. The preferred models for estimating crustal motions permit the use of detached segments of releveling to govern the shape of a velocity surface and allow for input from nonleveling sources such as tide gages and paired lake gages. Some models for extracting vertical crustal movements from releveling data are also excellent for adjusting leveling networks, and permit mixing old and new data in areas exhibiting vertical motion. The new adjustment techniques are more general than older static models and will undoubtedly be used routinely in the future as the constitution of level networks becomes mainly relevelings.

  2. Surface Deformation and Lower Crustal Flow in Eastern Tibet

    PubMed

    Royden; Burchfiel; King; Wang; Chen; Shen; Liu

    1997-05-02

    Field observations and satellite geodesy indicate that little crustal shortening has occurred along the central to southern margin of the eastern Tibetan plateau since about 4 million years ago. Instead, central eastern Tibet has been nearly stationary relative to southeastern China, southeastern Tibet has rotated clockwise without major crustal shortening, and the crust along portions of the eastern plateau margin has been extended. Modeling suggests that these phenomena are the result of continental convergence where the lower crust is so weak that upper crustal deformation is decoupled from the motion of the underlying mantle. This model also predicts east-west extension on the high plateau without convective removal of Tibetan lithosphere and without eastward movement of the crust east of the plateau.

  3. The search for crustal resources - MAGSAT and beyond

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Hinze, W. J.; Ravat, D. N.

    1992-01-01

    In the decade since global satellite magnetic field data have been available from MAGSAT, notable progress has been made in processing these data for purposes of mapping crustal anomalies. Several regional magnetic anomaly maps compiled using these new techniques (e.g. Kursk region, U.S.S.R.; central Africa; Kiruna, Sweden; and the U.S.A. midcontinent) provide insight into the nature and tectonic evolution of the crust that contribute to conceptual crustal models useful in regional resource exploration. A recent mail survey of geopotential-field specialists involved in resource exploration indicates interest in MAGSAT data and future satellite missions with improved resolution. It is apparent that magnetic anomalies derived from satellite observations can aid in the search for crustal resources.

  4. Fortuna Tessera, Venus - Evidence of horizontal convergence and crustal thickening

    NASA Technical Reports Server (NTRS)

    Vorder Bruegge, R. W.; Head, J. W.

    1989-01-01

    Structural and tectonic patterns mapped in Fortuna Tessera are interpreted to reflect a change in the style and intensity of deformation from east to west, beginning with simple tessera terrain at relatively low topographic elevations in the east and progressing through increasingly complex deformation patterns and higher topography to Maxwell Montes in the West. These morphologic and topographic patterns are consistent with east-to-west convergence and compression and the increasing elevations are interpreted to be due to crustal thickening processes associated with the convergent deformational environment. Using an Airy isostatic model, crustal thicknesses of approximately 35 km for the initial tessera terrain, and crustal thicknesses of over 100 km for the Maxwell Montes region are predicted. Detailed mapping with Magellan data will permit the deconvolution of individual components and structures in this terrain.

  5. New Crustal Field Models of Mars

    NASA Astrophysics Data System (ADS)

    Mittelholz, A.; Morschhauser, A.; Johnson, C.

    2017-12-01

    The crustal magnetic field on Mars has been subject of extensive analysis, as it provides us with information about the history of the dynamo, the iron mineralogy of the crust, and the processes that have affected the acquisition and any subsequent modification of crustal magnetization. Mars Global Surveyor (MGS) measured strong, localized crustal magnetic fields, mostly occurring in the southern hemisphere. MGS data were taken mostly at altitudes of 360 - 440 km, with limited (geographically and in local time) observations obtained at lower altitudes. The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit since 2014. MAVEN magnetic field data complement those from MGS by globally expanding the spatial data distribution down to altitudes of 130 km, thus constraining shorter-wavelength structure in the field. Morschhauser et al. (2014) used the full MGS data set to build a spherical harmonic model for the crustal magnetic field up to spherical harmonic degree (l) and order (m) 110 ( λ≈195 km), while accounting for large-scale fields of non-crustal origin. We adopt a similar modeling approach, incorporating MAVEN data and inverting to higher l,m (e.g., λ≈130 km corresponds to l≈165). In order to avoid leakage of external field signals into the crustal field model, we select only nighttime data, use a modified Huber-Norm to treat data outliers and co-estimate a time-variable external field. We have also used another technique to model the field regionally. In this Equivalent Source Dipole (ESD) approach we solve for the magnetization of an assumed uniformly-magnetized layer, represented by equidistant dipoles placed at a single source depth. The ESD inversions indicate that shorter wavelength, weak signals are indeed resolvable in the MAVEN data. A comparison of the field models resulting from the two inversion techniques allows us to confidently identify new lithospheric field information available from the MAVEN observations.

  6. Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory

    NASA Astrophysics Data System (ADS)

    Shinevar, W. J.; Behn, M. D.; Hirth, G.

    2014-12-01

    Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.

  7. Australian Seismological Reference Model (AuSREM): crustal component

    NASA Astrophysics Data System (ADS)

    Salmon, M.; Kennett, B. L. N.; Saygin, E.

    2013-01-01

    Although Australia has been the subject of a wide range of seismological studies, these have concentrated on specific features of the continent at crustal scales and on the broad scale features in the mantle. The Australian Seismological Reference Model (AuSREM) is designed to bring together the existing information, and provide a synthesis in the form of a 3-D model that can provide the basis for future refinement from more detailed studies. Extensive studies in the last few decades provide good coverage for much of the continent, and the crustal model builds on the various data sources to produce a representative model that captures the major features of the continental structure and provides a basis for a broad range of further studies. The model is grid based with a 0.5° sampling in latitude and longitude, and is designed to be fully interpolable, so that properties can be extracted at any point. The crustal structure is built from five-layer representations of refraction and receiver function studies and tomographic information. The AuSREM crustal model is available at 1 km intervals. The crustal component makes use of prior compilations of sediment thicknesses, with cross checks against recent reflection profiling, and provides P and S wavespeed distributions through the crust. The primary information for P wavespeed comes from refraction profiles, for S wavespeed from receiver function studies. We are also able to use the results of ambient noise tomography to link the point observations into national coverage. Density values are derived using results from gravity interpretations with an empirical relation between P wavespeed and density. AuSREM is able to build on a new map of depth to Moho, which has been created using all available information including Moho picks from over 12 000 km of full crustal profiling across the continent. The crustal component of AuSREM provides a representative model that should be useful for modelling of seismic wave

  8. Crustal development of the North China Craton constrained by geochemical and isotopic data on Neoarchean and Paleoproterozoic granitoids, Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Hui-Chun Chen, Nancy; Zhao, Guochun; Cawood, Peter A.

    2017-04-01

    The North China Craton is the oldest continental fragment in China. It contains magmatic rocks as old as 3.8 Ga, but is dominated by crustal components that formed in the Neoarchean at ca. 2.7 and 2.5 Ga, and also includes Paleoproterozoic rocks dated at 1.9-1.8 Ga. The craton has been incorporated into Precambrian supercontinents, although it's exact position within, as well as the overall configuration of, these supercontinents is poorly understood. New geochemical and geochronological data on granitoids from the northern margin of the craton at Siziwangqi in central Inner Mongolia further constrain craton evolution with respect to Neoarchean and Paleoproterozoic supercontinent cycles. The granitoids comprise a tonalite-trondhjemite-granodiorite (TTG) association with crystallization ages of 2.52-2.49 Ga and inherited zircon crystals as old 2.7 Ga, and alkali feldspar granites with ages of 2.47 and 1.87 Ga. Geochemically, the rocks are metaluminous to peraluminous and belong to the calc-alkaline (TTG) and subalkaline to alkaline (alkali feldspar granite) series. The TTG granitoids are characterized by light LREE enrichment, a weak positive Eu anomaly, and flat heavy HREE profiles. The alkali granite is also enriched in the LREE but has a strong positive chondrite-normalized Eu anomaly and displays weak HREE enrichment. Our compositional and geochronological data, integrated with regional data, indicate that in the Neoarchean the North China Craton constituted part of an accretionary convergent plate margin that lay on the edge of a an older continental mass (possibly within the Kenor supercraton). The Paleoproterozoic alkali feldspar granite was associated with collisional assembly of the craton into the Nuna (Columbia) supercontinent.

  9. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization

    Bouligand, C.; Glen, J.M.G.; Blakely, R.J.

    2009-01-01

    We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal

  10. A new model for the initiation, crustal architecture, and extinction of pull-apart basins

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.; Abera, R.

    2015-12-01

    We present a new model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal numerical models of deformation, field observations, and fault theory, and answers many of the outstanding questions related to these rifts. In our model, geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step which results from early geometry of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement and the fault tips may propagate beyond the rift basin. Our model predicts that the sediment source areas may thus migrate over time. This implies that, although pull-apart basins lengthen over time, lengthening is accommodated by extension within the pull-apart basin, rather than formation of new faults outside of the rift zone. In this aspect pull-apart basins behave as narrow rifts: with increasing strike-slip the basins deepen but there is no significant younging outward. We explain why pull-apart basins do not go through previously proposed geometric evolutionary stages, which has not been documented in nature. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because strike-slip systems tend to straighten. The model predicts what the favorable step-dimensions are for the formation of such a fault system, and those for which a pull-apart basin may further develop into a short seafloor-spreading ridge. The model also shows that rift shoulder uplift is enhanced if the strike-slip rate is larger than the fault-propagation rate. Crustal compression then contributes to uplift of the rift flanks.

  11. Crustal structure of the Kermadec arc from MANGO seismic refraction profiles

    NASA Astrophysics Data System (ADS)

    Bassett, Dan; Kopp, Heidrun; Sutherland, Rupert; Henrys, Stuart; Watts, Anthony B.; Timm, Christian; Scherwath, Martin; Grevemeyer, Ingo; de Ronde, Cornel E. J.

    2016-10-01

    Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the fore-arc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km), and strike ( 005° south of 25°S). South of the CKD the fore-arc is structurally homogeneous downdip with VP 5.7-7.3 km s-1. In the Havre Trough back-arc, crustal thickness south of the CKD is 8-9 km, which is up to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge, and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.

  12. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting

    Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.

    2008-01-01

    We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.

  13. Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Yang, Yu-shan; Li, Yuan-yuan

    2018-01-01

    In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.

  14. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut

  15. Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.

    2006-12-01

    The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly

  16. "Storms of crustal stress" and AE earthquake precursors

    NASA Astrophysics Data System (ADS)

    Gregori, G. P.; Poscolieri, M.; Paparo, G.; de Simone, S.; Rafanelli, C.; Ventrice, G.

    2010-02-01

    Acoustic emission (AE) displays violent paroxysms preceding strong earthquakes, observed within some large area (several hundred kilometres wide) around the epicentre. We call them "storms of crustal stress" or, briefly "crustal storms". A few case histories are discussed, all dealing with the Italian peninsula, and with the different behaviour shown by the AE records in the Cephalonia island (Greece), which is characterized by a different tectonic setting. AE is an effective tool for diagnosing the state of some wide slab of the Earth's crust, and for monitoring its evolution, by means of AE of different frequencies. The same effect ought to be detected being time-delayed, when referring to progressively lower frequencies. This results to be an effective check for validating the physical interpretation. Unlike a seismic event, which involves a much limited focal volume and therefore affects a restricted area on the Earth's surface, a "crustal storm" typically involves some large slab of lithosphere and crust. In general, it cannot be easily reckoned to any specific seismic event. An earthquake responds to strictly local rheological features of the crust, which are eventually activated, and become crucial, on the occasion of a "crustal storm". A "crustal storm" lasts typically few years, eventually involving several destructive earthquakes that hit at different times, at different sites, within that given lithospheric slab. Concerning the case histories that are here discussed, the lithospheric slab is identified with the Italian peninsula. During 1996-1997 a "crustal storm" was on, maybe elapsing until 2002 (we lack information for the period 1998-2001). Then, a quiet period occurred from 2002 until 26 May 2008, when a new "crustal storm" started, and by the end of 2009 it is still on. During the 1996-1997 "storm" two strong earthquakes occurred (Potenza and Colfiorito) - and (maybe) in 2002 also the Molise earthquake can be reckoned to this "storm". During the

  17. Crustal Gravitational Potential Energy Change and Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Zhu, P. P.

    2017-05-01

    Crustal gravitational potential energy (GPE) change induced by earthquakes is an important subject in geophysics and seismology. For the past forty years the research on this subject stayed in the stage of qualitative estimate. In recent few years the 3D dynamic faulting theory provided a quantitative solution of this subject. The theory deduced a quantitative calculating formula for the crustal GPE change using the mathematic method of tensor analysis under the principal stresses system. This formula contains only the vertical principal stress, rupture area, slip, dip, and rake; it does not include the horizontal principal stresses. It is just involved in simple mathematical operations and does not hold complicated surface or volume integrals. Moreover, the hanging wall vertical moving (up or down) height has a very simple expression containing only slip, dip, and rake. The above results are significant to investigate crustal GPE change. Commonly, the vertical principal stress is related to the gravitational field, substituting the relationship between the vertical principal stress and gravitational force into the above formula yields an alternative formula of crustal GPE change. The alternative formula indicates that even with lack of in situ borehole measured stress data, scientists can still quantitatively calculate crustal GPE change. The 3D dynamic faulting theory can be used for research on continental fault earthquakes; it also can be applied to investigate subduction earthquakes between oceanic and continental plates. Subduction earthquakes hold three types: (a) crust only on the vertical up side of the rupture area; (b) crust and seawater both on the vertical up side of the rupture area; (c) crust only on the vertical up side of the partial rupture area, and crust and seawater both on the vertical up side of the remaining rupture area. For each type we provide its quantitative formula of the crustal GPE change. We also establish a simplified model (called

  18. Precambrian crust and lithosphere beneath the Northern Canadian Cordillera discovered by LITHOPROBE seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Clowes, R. M.; Cook, F. A.; Snyder, D. B.; van der Velden, A. J.; Hall, K. W.; Erdmer, P.; Evenchick, C. A.

    2003-04-01

    ) the detachments that carry deformed rocks the northern Canadian Cordillera are largely confined to the crust above the layering, and (3) rocks of most of the accreted terranes overlie the layering. Most of the accreted rocks thus appear to be thin (<10 km thick), far-traveled flakes. However, one major terrane, Stikinia, may thicken westward as the underlying layered zone thins such that the lower crustal layering disappears beneath the northeastern portion of Stikinia; the boundary between Stikinia and adjacent rocks to the east may be a crustal-scale tectonic wedge above the deep layering.

  19. Crustal deformation associated with crustal activities in the northern Izu-islands area during the summer, 2000

    NASA Astrophysics Data System (ADS)

    Kaidzu, M.; Nishimura, T.; Murakami, M.; Ozawa, S.; Sagiya, T.; Yarai, H.; Imakiire, T.

    2000-08-01

    In the end of June, 2000, intense crustal activity took place in Miyake-jima, Niijima, Kozu-shima and their vicinity. Here we report on the crustal deformation in the area during the period from June 24 to September 4, 2000, detected with the nationwide Global Positioning System (GPS) array operated by the Geographical Survey Institute. The deformation in this area during the above period is characterized by the deflation of Miyake-jima and the extension of the crust in the northeast-southwest direction over a wide area.

  20. Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2 1.9 Ga Waterberg Group, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus

    2006-08-01

    Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to

  1. A proposed concept for a crustal dynamics information management network

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.; Renfrow, J. T.

    1980-01-01

    The findings of a requirements and feasibility analysis of the present and potential producers, users, and repositories of space-derived geodetic information are summarized. A proposed concept is presented for a crustal dynamics information management network that would apply state of the art concepts of information management technology to meet the expanding needs of the producers, users, and archivists of this geodetic information.

  2. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  3. An Approach to the Crustal Thickness Inversion Problem

    NASA Astrophysics Data System (ADS)

    De Marchi, F.; Di Achille, G.

    2017-12-01

    We describe a method to estimate the crustal thickness of a planet and we apply it to Venus. As in the method of (Parker, 1972), modified by (Wieczorek & Phillips, 1998), the gravity field anomalies of a planet are assumed to be due to the combined effect of topography and relief on the crust-mantle interface. No assumptions on isostasy are necessary. In our case, rather than using the expansion of the powers of the relief in Taylor series, we model the gravitational field of topography/relief by means of a large number of prism-shaped masses covering the whole surface of the planet. Under the hypothesis that crustal and mantle densities are the same everywhere, we solve for the relief depths on the crust-mantle interface by imposing that observed and modeled gravity field at a certain reference spherical surface (external to the planet) must be equal. This method can be extended to the case of non-uniform densities. Finally, we calculate a map of the crustal thickness of Venus and compare our results with those predicted by previous work and with the global distribution of main geological features (e.g. rift zones, tesserae, coronae). We discuss the agremeent between our results and the main geodynamical and crustal models put forth to explain the origin of such features and the applicability of this method in the context of the mission VOX (Venus Origins Explore), proposed for NASA's NF4 call.

  4. The construction of sparse models of Mars' crustal magnetic field

    NASA Astrophysics Data System (ADS)

    Moore, Kimberly; Bloxham, Jeremy

    2017-04-01

    The crustal magnetic field of Mars is a key constraint on Martian geophysical history, especially the timing of the dynamo shutoff. Maps of the crustal magnetic field of Mars show wide variations in the intensity of magnetization, with most of the Northern hemisphere only weakly magnetized. Previous methods of analysis tend to favor smooth solutions for the crustal magnetic field of Mars, making use of techniques such as L2 norms. Here we utilize inversion methods designed for sparse models, to see how much of the surface area of Mars must be magnetized in order to fit available spacecraft magnetic field data. We solve for the crustal magnetic field at 10,000 individual magnetic pixels on the surface of Mars. We employ an L1 regularization, and solve for models where each magnetic pixel is identically zero, unless required otherwise by the data. We find solutions with an adequate fit to the data with over 90% sparsity (90% of magnetic pixels having a field value of exactly 0). We contrast these solutions with L2-based solutions, as well as an elastic net model (combination of L1 and L2). We find our sparse solutions look dramatically different from previous models in the literature, but still give a physically reasonable history of the dynamo (shutting off around 4.1 Ga).

  5. MAGSAT anomaly field data of the crustal properties of Australia

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Progress is reported in producing maps of Australia showing; crustal magnetic anomalies at constant elevation; bulk surface magnetization; and the geomagnetic field intensity, inclination and declination for the Australian region from global models of the geomagnetic field derived from MAGSAT data. The development of a data base management system is also considered.

  6. Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations: A review

    Behrendt, John C.

    1999-01-01

    The active West Antarctic Rift System, which extends from the continental shelf of the Ross Sea, beneath the Ross Ice Shelf and the West Antarctic Ice Sheet, is comparable in size to the Basin and Range in North America, or the East African rift systems. Geophysical surveys (primarily marine seismic and aeromagnetic combined with radar ice sounding) have extended the information provided by sparse geologic exposures and a few drill holes over the ice and sea covered area. Rift basins developed in the early Cretaceous accompanied by the major extension of the region. Tectonic activity has continued episodically in the Cenozoic to the present, including major uplift of the Transantarctic Mountains. The West Antarctic ice sheet, and the late Cenozoic volcanic activity in the West Antarctic Rift System, through which it flows, have been coeval since at least Miocene time. The rift is characterized by sparse exposures of late Cenozoic alkaline volcanic rocks extending from northern Victoria Land throughout Marie Byrd Land. The aeromagnetic interpretations indicate the presence of > 5 x 105 km2 (> 106 km3) of probable late Cenozoic volcanic rocks (and associated subvolcanic intrusions) in the West Antarctic rift. This great volume with such limited exposures is explained by glacial removal of the associated late Cenozoic volcanic edifices (probably hyaloclastite debris) concomitantly with their subglacial eruption. Large offset seismic investigations in the Ross Sea and on the Ross Ice Shelf indicate a ~ 17-24-km-thick, extended continental crust. Gravity data suggest that this extended crust of similar thickness probably underlies the Ross Ice Shelf and Byrd Subglacial Basin. Various authors have estimated maximum late Cretaceous-present crustal extension in the West Antarctic rift area from 255-350 km based on balancing crustal thickness. Plate reconstruction allowed < 50 km of Tertiary extension. However, paleomagnetic measurements suggested about 1000 km of post

  7. Along-axis crustal structure of the Porcupine Basin from seismic refraction data modelling

    NASA Astrophysics Data System (ADS)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian; Minshull, Tim; Reston, Tim; Wagner, Gerlind; Gaws, Viola; Klaschen, Dirk; Shannon, Patrick

    2016-04-01

    The Porcupine Basin is a tongue-shaped offshore basin SW of Ireland that formed during the opening of the North Atlantic Ocean. Its history of development involved several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on subsidence analysis, showed that stretching factors (β) in the northern part of the basin are < 1.5 and increase significantly southwards, where they were estimated to be > 6. However, recent studies based on seismic reflection and refraction profiles concluded that β in places along the basin axis were significantly higher, and suggested the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Constraining β and the processes related to the formation of the basin will provide insights into aspects such as the tectonic response to lithospheric extension and the thermal evolution of the basin. Here we present the tomography results of five wide-angle seismic (WAS) profiles acquired across and along the basin axis. We used a travel time inversion method to model the WAS data and obtain P-wave velocity (Vp) models of the crust and uppermost mantle, together with the geometry of the main geological interfaces along each of these lines. Coincident seismic reflection profiles to each WAS line were also used to integrate the tectonic structure with the Vp model. These results improved constrains on the location of the base of the crust and allow to estimate maximum β (βmax) along each profile. The analysis shows that βmax values in the northern part of the basin are 5-6 times larger than estimates based on subsidence analysis. Towards the south, βmax increases up to 10, but then rapidly decreases to 3.3 southwards. These values are well within the range of crustal extension at which the crust becomes entirely brittle at magma-poor margins allowing the formation of major crustal

  8. Seismic velocity and crustal thickness inversions: Moon and Mars

    NASA Astrophysics Data System (ADS)

    Drilleau, Melanie; Blanchette-Guertin, Jean-François; Kawamura, Taichi; Lognonné, Philippe; Wieczorek, Mark

    2017-04-01

    We present results from new inversions of seismic data arrival times acquired by the Apollo active and passive experiments. Markov chain Monte Carlo inversions are used to constrain (i) 1-D lunar crustal and upper mantle velocity models and (ii) 3-D lateral crustal thickness models under the Apollo stations and the artificial and natural impact sites. A full 3-D model of the lunar crustal thickness is then obtained using the GRAIL gravimetric data, anchored by the crustal thicknesses under each Apollo station and impact site. To avoid the use of any seismic reference model, a Bayesian inversion technique is implemented. The advantage of such an approach is to obtain robust probability density functions of interior structure parameters governed by uncertainties on the seismic data arrival times. 1-D seismic velocities are parameterized using C1-Bézier curves, which allow the exploration of both smoothly varying models and first-order discontinuities. The parameters of the inversion include the seismic velocities of P and S waves as a function of depth, the thickness of the crust under each Apollo station and impact epicentre. The forward problem consists in a ray tracing method enabling both the relocation of the natural impact epicenters, and the computation of time corrections associated to the surface topography and the crustal thickness variations under the stations and impact sites. The results show geology-related differences between the different sites, which are due to contrasts in megaregolith thickness and to shallow subsurface composition and structure. Some of the finer structural elements might be difficult to constrain and might fall within the uncertainties of the dataset. However, we use the more precise LROC-located epicentral locations for the lunar modules and Saturn-IV upper stage artificial impacts, reducing some of the uncertainties observed in past studies. In the framework of the NASA InSight/SEIS mission to Mars, the method developed in

  9. Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Minshull, T. A.; Edwards, R. A.; Flueh, E. R.

    2015-07-01

    The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.

  10. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.

    PubMed

    Ries, J B; Anderson, M A; Hill, R T

    2008-03-01

    A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well

  11. New buoy observation system for tsunami and crustal deformation

    NASA Astrophysics Data System (ADS)

    Takahashi, Narumi; Ishihara, Yasuhisa; Ochi, Hiroshi; Fukuda, Tatsuya; Tahara, Jun'ichiro; Maeda, Yosaku; Kido, Motoyuki; Ohta, Yusaku; Mutoh, Katsuhiko; Hashimoto, Gosei; Kogure, Satoshi; Kaneda, Yoshiyuki

    2014-09-01

    We have developed a new system for real-time observation of tsunamis and crustal deformation using a seafloor pressure sensor, an array of seafloor transponders and a Precise Point Positioning (PPP ) system on a buoy. The seafloor pressure sensor and the PPP system detect tsunamis, and the pressure sensor and the transponder array measure crustal deformation. The system is designed to be capable of detecting tsunami and vertical crustal deformation of ±8 m with a resolution of less than 5 mm. A noteworthy innovation in our system is its resistance to disturbance by strong ocean currents. Seismogenic zones near Japan lie in areas of strong currents like the Kuroshio, which reaches speeds of approximately 5.5 kt (2.8 m/s) around the Nankai Trough. Our techniques include slack mooring and new acoustic transmission methods using double pulses for sending tsunami data. The slack ratio can be specified for the environment of the deployment location. We can adjust slack ratios, rope lengths, anchor weights and buoy sizes to control the ability of the buoy system to maintain freeboard. The measured pressure data is converted to time difference of a double pulse and this simple method is effective to save battery to transmit data. The time difference of the double pulse has error due to move of the buoy and fluctuation of the seawater environment. We set a wire-end station 1,000 m beneath the buoy to minimize the error. The crustal deformation data is measured by acoustic ranging between the buoy and six transponders on the seafloor. All pressure and crustal deformation data are sent to land station in real-time using iridium communication.

  12. Segmentation Control on Crustal Accretion: Insights From the Chile Ridge

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Karsten, J. L.; Milman, M. S.; Klein, E. M.

    2002-12-01

    Controls on crustal accretion at mid-ocean ridges include spreading rate and mantle temperature and composition. Less studied is the effect of the segmentation geometry, although it has been known for some time that large offset transforms have significant effects on the extent of melting and lava compositions produced by ridges in their vicinity. The PANORAMA 4 expedition surveyed the Chile Ridge between 36°-43°S in order to examine the effects of ridge segmentation on crustal accretion. This section of the ridge is spreading uniformly at intermediate rates (~53 mm/yr) and rock sampling and regional data indicate a largely uniform mantle composition with no systematic changes in mantle thermal structure. Thus the segmentation geometry is the primary crustal accretion variable. The survey mapped and sampled 19 first order ridge segments and their transform offsets. The ridges range from 130 to 10 km in length with mapped transform offsets from 168 to 19 km. The segments primarily have axial valley morphology, with segments longer than ~65 km typically displaying central highs deepening toward segment ends. Mantle Bouguer anomalies (MBAs) show that these segments also have bulls eye lows associated with the central highs indicating thicker crust than at segment ends. Overall the mapped segments displays a trend of increasing depth and MBA, implying diminishing crustal production, with decreasing segment length and increasing transform offset. We examine the cause of this trend by modeling the mantle flow pattern generated by finite length ridge segments using the Phipps-Morgan and Forsyth (1988) algorithm. The results indicate that at a constant spreading rate mantle upwelling rates are greatest and extend deeper near the segment center, and that for segments that are significantly offset, upwelling rates decrease overall with decreasing segment length. The modeling implies that segmentation itself, even without cooling and lithospheric relief at transforms has a

  13. Tectono-stratigraphic evolution and crustal architecture of the Orphan Basin during North Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim

    2017-04-01

    The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.

  14. Lunar Crustal History Recorded in Lunar Anorthosites

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Reese, D.; Park, J.; Bogard. D.; Garrison, D.; Yamaguchi, A.

    2010-01-01

    Anorthosites occur ubiquitously within the lunar crust at depths of 3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. We have dated lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater by the Sm-Nd and Rb-Sr techniques. We also have dated an anorthositic white clast (WC) in lunar meteorite Dhofar 908 by the Ar-39-Ar-40 technique and measured whole rock (WR) Sm-Nd data for a companion sample. We discuss the significance of the ages determined for these and other anorthosites for the early magmatic and bombardment history of the moon.

  15. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  16. Fission-track ages of apatites from the Precambrian of Rwanda and Burundi - Relationship to East African rift tectonics

    NASA Astrophysics Data System (ADS)

    van den Haute, P.

    1984-11-01

    Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.

  17. Precambrian accretionary history and phanerozoic structures-A unified explanation for the tectonic architecture of the nebraska region, USA

    Carlson, M.P.

    2007-01-01

    The Phanerozoic history in Nebraska and adjacent regions contains many patterns of structure and stratigraphy that can be directly related to the history of the Precambrian basement rocks of the area. A process is proposed that explains the southward growth of North America during the period 1.8-1.6 Ga. A series of families of accretionary events during the Proterozoic emplaced sutures that remained as fundamental basement weak zones. These zones were rejuvenated in response to a variety of continental stress events that occurred during the Phanerozoic. By combining the knowledge of basement history with the history of rejuvenation during the Phanerozoic, both the details of Proterozoic accretionary growth and an explanation for the patterns of Phanerozoic structure and stratigraphy is provided. ?? 2007 The Geological Society of America. All rights reserved.

  18. Vertical crustal movements in Southern California, 1974 to 1978

    Burford, R.O.; Gilmore, Thomas D.

    1984-01-01

    An extensive resurvey of most of the first-order leveling network in southern California, known as the Southern California Releveling Program (SCRP), was carried out during the first 5 months of 1978. The primary scientific purpose of these measurements was to rapidly update the vertical control record throughout a recently uplifted region of southern California in order to more thoroughly document the vertical component of tectonic movement and to provide a reliable base for comparison with future levelings. Analyses of historic first-order leveling results have clearly demonstrated that a broad crustal upwarping, largely contained within a region consisting of the Transverse Ranges province and an area along the intervening section of the San Andreas fault system, had developed between about 1959 and 1974. Unfortunately, there is strong evidence that parts of the 1978 SCRP data are contaminated by the effects of intrasurvey tectonic deformation, limited surficial failures, and, less certainly, magnetically induced systematic error associated with the use of automatic levels. However, any distortions in leveling results caused by these or other factors are not so serious as to render the SCRP data useless. In fact, the bulk of these data can be accepted at face value, and most of the remaining data can be incorporated with some caution to augment the more reliable parts of the network. The evaluation of the 1978 leveling is based on a combination of circuit-misclosures, local timing of the field observations, analysis of profiles of apparent height changes derived from comparisons with previous levelings, and an analysis of the position and orientation of the various routes in relation to the regional structural grain and the gradients of differential vertical motion established by previous investigations. Comparisons of the 1978 SCRP results with the latest of the previous surveys along each route retained in the analysis show that all but about one-third of the

  19. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    SciT

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leadsmore » to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.« less

  20. Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation

    NASA Astrophysics Data System (ADS)

    Trouwborst, Robert E.; Johnston, Anne; Koch, Gretchen; Luther, George W.; Pierson, Beverly K.

    2007-10-01

    We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O 2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O 2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O 2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O 2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO 2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.

  1. Interpreting Precambrian δ15N: lessons from a new modern analogue, the volcanic crater lake Dziani Dzaha

    NASA Astrophysics Data System (ADS)

    Ader, M.; Cadeau, P.; Jezequel, D.; Chaduteau, C.; Fouilland, E.; Bernard, C.; Leboulanger, C.

    2017-12-01

    Precambrian nitrogen biogeochemistry models rely on δ15N signatures in sedimentary rocks, but some of the underlying assumptions still need to be more robustly established. Especially when measured δ15N values are above 3‰. Several processes have been proposed to explain these values: non-quantitative reduction of nitrate to N2O/N2 (denitrification), non-quantitative oxidation of ammonium to N2O/N2, or ammonia degassing to the atmosphere. The denitrification hypothesis implies oxygenation of part the water column, allowing nitrate to accumulate. The ammonium oxidation hypothesis implies a largely anoxic water column, where ammonium can accumulates, with limited oxygenation of surface waters. This hypothesis is currently lacking modern analogues to be supported. We propose here that the volcanic crater lake Dziani Dzaha (Mayotte, Indian Ocean) might be one of them, on the basis of several analogies including: permanently anoxic conditions at depth in spite of seasonal mixing; nitrate content below detection limit in the oxic surface waters; accumulation of ammonium at depth during the stratified season; primary productivity massively dominated by cyanobacteria. One aspect may restrict the analogy: the pH value of 9-9.5. In this lake, δ15N values of primary producers and ammonium range from 6 to 9‰ and are recorded with a positive offset in the sediments (9<δ15N<13‰). Because N-sources to the system present more negative δ15N values, such positive values can only be achieved if 14N-enriched N is lost from the lake. Although NH3 degassing might play a small role, the main pathway envisaged for this N-loss is NH4+ oxidation to N2O/N2. If confirmed, this would provide strong support for the hypothesis that positive δ15N values in Precambrian rocks may indicate dominantly anoxic oceans, devoid of nitrate, in which ammonium was partly oxidized to N2O/N2.

  2. Late Cretaceous-recent tectonic assembly of diverse crustal blocks in Central America, the Nicaraguan Rise, the Colombian Basin and northern South America as seen on a 1600-km-long, geologic and structural transect

    NASA Astrophysics Data System (ADS)

    Sanchez, J.; Mann, P.

    2015-12-01

    We have constructed a 1600-km-long transect from northern Honduras to northern Colombia that crosses northeastward-striking crustal blocks using a combination of offshore seismic data, gravity and magnetic data, well subsidence information, nearby outcrop information, and results from previous thermochronological, geochronological, geochemical and paleostress studies. The transect defines three major crustal and structural provinces: 1) Precambrian-Paleozoic, Chortis continental block whose northern edge is defined by the North America-Caribbean plate boundary. Events in this ~20-25-km-thick province include two major unconformities at the top of the Cretaceous and Eocene, associated southeast-dipping thrust faults related to collision of the Great Arc of the Caribbean (GAC) and Caribbean Large Igneous Province (CLIP) with the Chortis continental block. A third event is Eocene to recent subsidence and transtensional basins formed during the opening of the Cayman trough; 2) Late Cretaceous GAC and CLIP of oceanic arc and plateau origin, whose northern, deformed edge corresponds to the mapped Siuna belt of northern Nicaragua. This crustal province has a ~15-20-km-thick crust and is largely undeformed and extends across the Lower Nicaraguan Rise, Hess fault, to the southern limit of the Colombian basin where about 300 km of this province has been subducted beneath the accretionary wedge of the South Caribbean deformed belt of northwestern South America; and 3) Eocene to recent accretionary prism and intramontane basins on continental crust of northern South America, where Miocene accelerated exhumation and erosion of Paleogene and Cretaceous rocks reflect either shallow subduction of the CLIP or the Panama collisional event to the southwest.

  3. Crustal architecture of the cascadia forearc.

    PubMed

    Trehu, A M; Asudeh, I; Brocher, T M; Luetgert, J H; Mooney, W D; Nabelek, J L; Nakamura, Y

    1994-10-14

    Seismic profiling data indicate that the thickness of an accreted oceanic terrane of Paleocene and early Eocene age, which forms the basement of much of the forearc beneath western Oregon and Washington, varies by approximately a factor of 4 along the strike of the Cascadia subduction zone. Beneath the Oregon Coast Range, the accreted terrane is 25 to 35 kilometers thick, whereas offshore Vancouver Island it is about 6 kilometers thick. These variations are correlated with variations in arc magmatism, forearc seismicity, and long-term forearc deformation. It is suggested that the strength of the forearc crust increases as the thickness of the accreted terrane increases and that the geometry of the seaward edge of this terrane influences deformation within the subduction complex and controls the amount of sediment that is deeply subducted.

  4. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  5. The Crustal Structure and Seismicity of Eastern Venezuela

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment

  6. Deep Crustal Melting and the Survival of Continental Crust

    NASA Astrophysics Data System (ADS)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient

  7. Seismicity and Crustal Anisotropy Beneath the Western Segment of the North Anatolian Fault: Results from a Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.

    2013-12-01

    The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precise