Science.gov

Sample records for early precambrian microfossils

  1. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  2. Diversity of Microfossils and Preservation of Thermally Altered Stromatolites from Anomalous Precambrian Paleoenvironments

    NASA Astrophysics Data System (ADS)

    Osterhout, Jeffrey Thomas

    Studies of Precambrian life on Earth have been dominated by those of shallow marine deposits, and in order to gain a more complete picture of life's early evolution it is important to consider a wider range of inhabited environments, including deep marine and terrestrial ecosystems. Evidence for early microbial life comes primarily from fossil microorganisms (microfossils), microbial sedimentary structures (e.g., stromatolites), and sedimentary organic matter (e.g., kerogen). The diversity and preservation of these different forms of fossil evidence introduces several challenges to their interpretation, requiring thorough analysis for accurately determining their biological origins. Investigating the paleobiology, organic geochemistry, and thermal maturity of such deposits provides a holistic approach to exploring the Precambrian biosphere in unfamiliar paleoenvironments. This thesis presents two studies of unique Precambrian ecosystems: a diverse microfossil assemblage from a 2.52-billion-year-old (Ga) deep marine deposit, and thermally altered stromatolites from a 1.4-billion-year-old evaporitic lacustrine deposit. Black cherts from the upper Gamohaan Formation (2.52 Ga) contain a consortium of organic-walled large and small coccoids, tubular filaments, and mat-like biofilm structures. Geochemical analyses of stromatolitic chert-carbonate from the Middlebrun Bay Member (1.4 Ga) in contact with a mafic sill show a trend in organic carbon isotopes relative to thermal maturity that is contrary to theoretical predictions. Findings from these studies reveal, for the first time, microfossil evidence of a diverse microbial community in the open Archean ocean prior to the Great Oxidation Event (GOE) 2.4 billion years ago, and provide insight on the relationship between thermal maturity and organic carbon isotopes within a set of terrestrial stromatolites. Together, these studies help capture the enigmatic nature of the Precambrian fossil record and expand our full

  3. Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: Implications for the interpretation of Precambrian microfossils

    NASA Astrophysics Data System (ADS)

    Wacey, David; Saunders, Martin; Kong, Charlie

    2018-04-01

    SPF in the East Strelley greenstone belt. We find that the majority of previously illustrated microfossils from this greenstone belt possess multiple features that are consistent with a biological interpretation and are unlikely to be volcanogenic, but at least one previously illustrated specimen is here reinterpreted as volcanic in origin. The importance of this work is that it serves to highlight the common occurrence of volcanogenic microstructures resembling biological fossils (i.e. pseudo-fossils) in Archean environments that are habitable for life. Such structures have until now been largely overlooked in the assessment of putative Precambrian microfossils. Our data show that tephra-derived microstructures should be considered as a null hypothesis in future evaluations of potential signs of life on the early Earth, or on other planets.

  4. Identifying early Earth microfossils in unsilicified sediments

    NASA Astrophysics Data System (ADS)

    Javaux, Emmanuelle J.; Asael, Dan; Bekker, Andrey; Debaille, Vinciane; Derenne, Sylvie; Hofmann, Axel; Mattielli, Nadine; Poulton, Simon

    2013-04-01

    The search for life on the early Earth or beyond Earth requires the definition of biosignatures, or "indices of life". These traditionally include fossil molecules, isotopic fractionations, biosedimentary structures and morphological fossils interpreted as remnants of life preserved in rocks. This research focuses on traces of life preserved in unsilicified siliciclastic sediments. Indeed, these deposits preserve well sedimentary structures indicative of past aqueous environments and organic matter, including the original organic walls of microscopic organisms. They also do not form in hydrothermal conditions which may be source of abiotic organics. At our knowledge, the only reported occurrence of microfossils preserved in unsilicified Archean sediments is a population of large organic-walled vesicles discovered in shales and siltstones of the 3.2 Ga Moodies Group, South Africa. (Javaux et al, Nature 2010). These have been interpreted as microfossils based on petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as lack of abiotic explanation falsifying a biological origin. Demonstrating that carbonaceous objects from Archaean rocks are truly old and truly biological is the subject of considerable debate. Abiotic processes are known to produce organics and isotopic signatures similar to life. Spheroidal pseudofossils may form as self-assembling vesicles from abiotic CM, e.g. in prebiotic chemistry experiments (Shoztak et al, 2001), from meteoritic lipids (Deamer et al, 2006), or hydrothermal fluids (Akashi et al, 1996); by artifact of maceration; by migration of abiotic or biotic CM along microfractures (VanZuilen et al, 2007) or along mineral casts (Brasier et al, 2005), or around silica spheres formed in silica-saturated water (Jones and

  5. Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.; Sovetov, Iu. K.

    1976-01-01

    Silicified specimens of the Vendian (late Precambrian) 'index fossil' Conophyton gaubitza from South Kazakstan contain a diverse assemblage of well-preserved cyanophytic and apparently eukaryotic algae, the first stromatolitic microbiota to be reported from the Soviet Union. Unlike the stromatolites in which they occur, the microorganisms that apparently built this form of Conophyton did not become extinct at the end of the Precambrian.

  6. Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils

    NASA Astrophysics Data System (ADS)

    Williford, Kenneth H.; Ushikubo, Takayuki; Schopf, J. William; Lepot, Kevin; Kitajima, Kouki; Valley, John W.

    2013-03-01

    Here we present techniques for, and new data from, in situ carbon isotope (δ13C) analysis of Precambrian permineralized microscopic fossils with a reproducibility of 1-2‰ using secondary ion mass spectrometry (SIMS). Individual microfossils, selected for their excellent preservation, were analyzed in petrographic thin sections of stromatolitic cherts from the Proterozoic Gunflint (˜1880 Ma), Bitter Springs (˜830 Ma), Min'yar (˜740 Ma), and Chichkan (˜775 Ma) Formations. The range of δ13C values (-34.6‰ to -22.1‰ VPDB) among the 46 individuals analyzed falls within that expected for photoautotrophic carbon fixation by ribulose bisphosphate carboxylase (RuBisCO), consistent with morphology-based taxonomic assignments for these specimens. Microfossils classified as cyanobacteria from the Gunflint, Bitter Springs, and Min'yar Formations (for which published carbonate carbon isotope data can be used to estimate the δ13C of the original dissolved inorganic carbon substrate) exhibit a consistent ˜19‰ total fractionation (δ13C of dissolved inorganic carbon - δ13C of biomass) similar to that observed in living cyanobacteria, over a wide range of δ13Ccarb values (-2.9‰ to 3.4‰). In stromatolitic chert of the Min'yar Formation, morphologically diverse microfossils preserved in a ˜1 mm2 part of a microbial mat exhibit systematic isotopic differences among and within taxa that correlate with their morphologically inferred biological affinities and suggest that isotopic signatures of their original biosynthetic processes (e.g., lipid and peptidoglycan synthesis) are preserved. Isotopic offsets consistent with the different RuBisCO-based fractionations typical of cyanobacteria and photosynthetic eukaryotes are documented by the differing δ13C values of a colonial cyanobacterium (-22.6 ± 0.5‰) and a phytoplanktonic protistan acritarch (-28.9 ± 1.0‰) situated <1 cm apart in the stromatolitic Chichkan chert. These findings show for the first time the

  7. Early Precambrian crustal evolution of south India

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The Early Precambrian sequence in Karnataka, South India provides evidences for a distinct trend of evolution which differs from trends exhibited in many other Early Precambrian regions of the world. The supracrustal rock associations preserved in greenstone belts and as inclusions in gneisses and granulites suggest the evolution of the terrain from a stable to a mobile regime. The stable regime is represented by (1) layered ultramafic-mafic complexes, (2) orthoquartzite-basalt-rhyodacite-iron formation, and (30 ortho-quartzite-carbonate-Mn-Fe formation. The mobile regime, which can be shown on sedimentological grounds to have succeeded the stable regime, witnessed the accumulation of a greywacke-pillow basalt-dacite-rhyolite-iron formation association. Detrital sediments of the stable zone accumulated dominantly in fluvial environment and the associated volcanics are ubaerial. The volcanics of the stable regime are tholeiites derived from a zirconium and LREE-enriched sources. The greywackes of the mobile regime are turbidities, and the volcanic rocks possess continental margin (island-arc or back-arc) affinity; they show a LREE depleted to slightly LREE-enriched pattern. The evolution from a stable to a mobile regime is in contrast to the trend seen in most other regions of the world, where an early dominantly volcanic association of a mobile regime gives way upward in the sequence to sediments characteristic of a stable regime.

  8. Precambrian Time - The Story of the Early Earth

    USGS Publications Warehouse

    Lindsey, D.A.

    2007-01-01

    The Precambrian is the least-understood part of Earth history, yet it is arguably the most important. Precambrian time spans almost nine-tenths of Earth history, from the formation of the Earth to the dawn of the Cambrian Period. It represents time so vast and long ago that it challenges all comprehension. The Precambrian is the time of big questions. How old is the Earth? How old are the oldest rocks and continents? What was the early Earth like? What was the early atmosphere like? When did life appear, and what did it look like? And, how do we know this? In recent years, remarkable progress has been made in understanding the early evolution of the Earth and life itself. Yet, the scientific story of the early Earth is still a work in progress, humankind's latest attempt to understand the planet. Like previous attempts, it too will change as we learn more about the Earth. Read on to discover what we know now, in the early 21st century.

  9. Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time

    PubMed Central

    Robbins, Eleanora Iberall; Porter, Karen Glaus; Haberyan, Kurt A.

    1985-01-01

    Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 × 110 μm and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that represent environments analogous to those that preserve fecal pellets today. Rocks containing pellets and algal microfossils range in age from 0.53 to 1.9 gigayears (Gyr) and include Burgess Shale, Greyson and Newland Formations, Rove Formation, and Gunflint Iron-Formation. Similar rock types of Archean age, ranging from 2.68 to 3.8 Gyr, were barren of pellets. If the Proterozoic microfossils are fossilized fecal pellets, they provide evidence of metazoan life and a complex food chain at 1.9 Gyr ago. This occurrence predates macroscopic metazoan body fossils in the Ediacaran System at 0.67 Gyr, animal trace fossils from 0.9 to 1.3 Gyr, and fossils of unicellular eukaryotic plankton at 1.4 Gyr. Images PMID:16593599

  10. Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleozoic microfossils

    PubMed Central

    Graham, Linda E.; Wilcox, Lee W.; Cook, Martha E.; Gensel, Patricia G.

    2004-01-01

    Absence of a substantial pretracheophyte fossil record for bryophytes (otherwise predicted by molecular systematics) poses a major problem in our understanding of earliest land-plant structure. In contrast, there exist enigmatic Cambrian–Devonian microfossils (aggregations of tubes or sheets of cells or possibly a combination of both) controversially interpreted as an extinct group of early land plants known as nematophytes. We used an innovative approach to explore these issues: comparison of tube and cell-sheet microfossils with experimentally degraded modern liverworts as analogues of ancient early land plants. Lower epidermal surface tissues, including rhizoids, of Marchantia polymorpha and Conocephalum conicum were resistant to breakdown after rotting for extended periods or high-temperature acid treatment (acetolysis), suggesting fossilization potential. Cell-sheet and rhizoid remains occurred separately or together depending on the degree of body degradation. Rhizoid break-off at the lower epidermal surface left rimmed pores at the centers of cell rosettes; these were similar in structure, diameter, and distribution to pores characterizing nematophyte cell-sheet microfossils known as Cosmochlaina. The range of Marchantia rhizoid diameters overlapped that of Cosmochlaina pores. Approximately 14% of dry biomass of Marchantia vegetative thalli and 40% of gametangiophores was resistant to acetolysis. Pre- and posttreatment cell-wall autofluorescence suggested the presence of phenolic compounds that likely protect lower epidermal tissues from soil microbe attack and provide dimensional stability to gametangiophores. Our results suggest that at least some microfossils identified as nematophytes may be the remains of early marchantioid liverworts similar in some ways to modern Marchantia and Conocephalum. PMID:15263095

  11. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  12. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  13. Microanalyzes of remarkable microfossils of the Late Mesoproterozoic-Early Neoproterozoic

    NASA Astrophysics Data System (ADS)

    Cornet, Yohan; Beghin, Jérémie; Baludikay, Blaise; François, Camille; Storme, Jean-Yves; Compère, Philippe; Javaux, Emanuelle

    2016-04-01

    The Late Mesoproterozoic-Early Neoproterozoic is an important period to investigate the diversification of early eukaryotes [1]. Following the first appearance of red algae in the Late Mesoproterozoic, other (morphological or molecular) fossils of crown groups are recorded during the Early Neoproterozoic, including green algae, sponges, amoebozoa and possibly fungi. Other microfossils also includes unambiguous eukaryotes, including several distinctive forms for that time period, such as the acritarchs Cerebrosphaera buickii (˜820-720 Ma), Trachyhystrichosphaera aimika and T . botula (1100-720 Ma), and the multicellular eukaryotic problematicum taxon Jacutianema solubila (1100-?720 Ma). To further characterize the taxonomy of these microfossils and to test hypotheses about their possible relationships to crown groups, we combine analyzes of their morphology, wall ultrastructure and microchemistry, using optical microscopy, Scanning and Transmission Electron microscopy (SEM and TEM), as well as Raman and FTIR microspectroscopy respectively. Cerebrosphaera populations from the Svanbergfjellet formation, Spitsbergen, and from the Kanpa Formation, Officer Basin, Australia, include organic vesicles with dark and robust walls ornamented by cerebroid folds [2]. Our study shows the occurrence of complex tri- or bi-layered wall ultrastructures and a highly aromatic composition [3]. The genus Trachyhystrichosphaera includes various species characterized by the presence of a variable number of hollow heteromorphic processes [2]. Preliminary infrared microspectroscopy analyzes performed on two species, T. aimika and T. botula, from the 1.1 Ga Taoudeni Basin, Mauritania, and from the ˜1.1 - 0.8 Ga Mbuji-Mayi Supergroup, RDC, indicate a strong aliphatic and carbonyl composition of the wall biopolymer, with some differences linked to thermal maturity between the two locations. TEM is also performed to characterize the wall ultrastructure of these two species. Various morphotypes

  14. Baltica from the Late Precambrian to the Early Ordovician

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Cocks, L. R.

    2004-05-01

    Current thinking supports the existence of the Rodinia supercontinent which consolidated at perhaps 1100 to 1000 million years ago and most probably disintegrated somewhere before 800 Ma. Within the Rodinian collage, Baltica was adjacent to, and probably welded to, Laurentia, with the modern eastern (Uralian) part of Baltica conjugate with the north of Laurentia. Laurentia was in turn attached to the South American terranes of Rio Plata and Amazonia, and possibly also West Africa. Baltica became an independent terrane when it split off from Laurentia, leaving a widening Iapetus Ocean between the two. When this rifting actually commenced is a matter of dispute due to very conflicting palaeomagnetic data from both Laurentia and Baltica; however, we favor that the southern part of the Iapetus, between Laurentia and South America, opened first at about 570 Ma and that this rifting spread gradually northwards until Baltica separated from Laurentia at approximately 550 Ma, near the end of Precambrian time at 543 Ma. New palaeomagnetic and geochronological data from the 616-610 Ma Egersund Dykes (SW Baltica) place Baltica at the south pole whereas subsequent Late Precambrian to Early Cambrian poles places Baltica at lower latitudes. During the late and middle Vendian, the NW margin of Baltica changed from an extensional tectonic regime to an active margin (Timanian Orogeny) in which microcontinental blocks in the Timan-Pechora, northern Ural and Novaya Zemlya areas were united with Baltica at 550-560 Ma. Largely between Middle Cambrian and Middle Ordovician times, the whole large terrane of Baltica underwent a very substantial rotation of about 120°, the maximum rate of this rotation occurred in late Cambrian and early Ordovician times. Much of the craton of Baltica appears to have been submerged under shelf seas for long parts of this time, which lasted from 544 to 490 Ma. As a consequence the olenid trilobite fauna represent a fauna living largely in niches which were

  15. Microfossils' diversity from the Proterozoic Taoudeni Basin, Mauritania

    NASA Astrophysics Data System (ADS)

    Beghin, Jérémie; Houzay, Jean-Pierre; Blanpied, Christian; Javaux, Emmanuelle

    2014-05-01

    palaeoecology (habitat diversity) of early eukaryotes, we are combining morphological, microchemical and ultrastructural studies of microfossils, with high-resolution palaeoenvironmental and palaeoredox characterization. References: Amard B. (1986) Microfossiles (Acritarches) du Protérozoïque supérieur dans les shales de la formation d'Atar (Mauritanie). Precambrian Research 31: 69-95. Blumenberg M, Thiel V, Riegel W, et al. (2012) Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Research 196-197: 113-127. Javaux EJ. (2011) Early eukaryotes in Precambrian oceans. Origins and Evolution of Life. An Astrobiological Perspective. Cambridge University Press, 414-449. Knoll AH, Javaux EJ, Hewitt D, et al. (2006) Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences 361: 1023-1038.

  16. Precambrian Continent Arctida: A New Kinematic Reconstruction of Late Precambrian - Early Paleozoic Arctida U Europe (baltia) Collision

    NASA Astrophysics Data System (ADS)

    Borisova, T. P.; Guertseva, M. V.; Egorov, A. Ju.; Kononov, M. V.; Kouznetsov, N. B.

    In according to L.P.Zonenshain and L.M.Natapov (1988, 1990), different size conti- nental blocks locating at the margins and inside of present-day Arctic ocean composed the hypothetical early Paleozoic paleocontinent Arctida. The blocks are Kara block (north part of Taymir peninsula, Severnaja Zemlja archipelago and Franz Joseph Land archipelago), north part of Alaska (northward Bruks ridge), Chukchi block, Novosi- birsky block (Novosibirskiye islands together their shelves), several fragments north- ward to the Innuitian orogen (north parts of Peary Land and Ellesmere Island), and Lomonosov ridgeSs block. In the previous kinematic reconstruction it was believed that Arctida as a whole collided with north flanks of Laurentia (Innuitian margin) and Europe (Baltia, Barentsia margin) in middle Paleozoic time. Later, the Arctida (been a fragment of supercontinent Pangea) was fragmented due to a spreading in the Arctic ocean and north part of Atlantic ocean in late Mesozoic and Cenozoic times. Then ArctidaSs fragments were accreted to the Eurasia and North America conti- nents. During the last decade "AEROGEOLOGIA" company has been gathered new data (geologic, stratigraphical, paleomagnetic, and others) of Russian Arctic sector and Svalbard. The data were summarized into "Paleogeographical Atlas for the Rus- sian Arctic sector and Svalbard from Vendian to Jurassic times" (see Abstact SE1.04, ID-NR: EGS02-A-02453). An analyzing of the maps for Vend and Cambrian times allows us to reconsider a few stages of kinematic scenario of late Precambrian - early Paleozoic Arctida U Europe collision. 1) Old interpretation: Arctida was considered as an isolated paleocontinent during early Paleozoic time. New interpretation: during the early Paleozoic Arctida together Europe (Baltia) were assembled into a paleo- continent named us Arcteurope. This conclusion is based on excellent coincidence of Paleozoic paleomagnetic poles of the Kara block (which is a part of Arctida) and Europe

  17. Precambrian Skeletonized Microbial Eukaryotes

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  18. Precambrian paleobiology.

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1972-01-01

    Outline in broad terms of major events in Precambrian biological history. Limitations of the Precambrian fossil record, chemical fossils, and findings of the early, middle, and late Precambrian records are examined. Biological systems originated during the earliest third of geologic time, about four billion years ago. It is generally assumed that the primitive atmosphere was a highly reduced mixture, primarily composed of methane and ammonia, and that the earliest living systems were heterotrophic, using organic matter of abiotic origin as a carbon source. The development of the metazoan grade of organization apparently occurred near the close of the Precambrian. The picture of gradually accelerating early evolutionary development, beginning rather slowly but markedly quickening with the emergence of eucaryotic organization, seems consistent with the fragmentary evidence currently available.

  19. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils.

    PubMed

    Sugitani, K; Mimura, K; Takeuchi, M; Lepot, K; Ito, S; Javaux, E J

    2015-11-01

    The Strelley Pool Formation (SPF) is widely distributed in the East Pilbara Terrane (EPT) of the Pilbara Craton, Western Australia, and represents a Paleoarchean shallow-water to subaerial environment. It was deposited ~3.4 billion years ago and displays well-documented carbonate stromatolites. Diverse putative microfossils (SPF microfossils) were recently reported from several localities in the East Strelley, Panorama, Warralong, and Goldsworthy greenstone belts. Thus, the SPF provides unparalleled opportunities to gain insights into a shallow-water to subaerial ecosystem on the early Earth. Our new micro- to nanoscale ultrastructural and microchemical studies of the SPF microfossils show that large (20-70 μm) lenticular organic-walled flanged microfossils retain their structural integrity, morphology, and chain-like arrangements after acid (HF-HCl) extraction (palynology). Scanning and transmitted electron microscopy of extracted microfossils revealed that the central lenticular body is either alveolar or hollow, and the wall is continuous with the surrounding smooth to reticulated discoidal flange. These features demonstrate the evolution of large micro-organisms able to form an acid-resistant recalcitrant envelope or cell wall with complex morphology and to form colonial chains in the Paleoarchean era. This study provides evidence of the evolution of very early and remarkable biological innovations, well before the presumed late emergence of complex cells. © 2015 John Wiley & Sons Ltd.

  20. Morphotype disparity in the Precambrian

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Reitner, Joachim; Braiser, Martin; Donoghue, Phil; Schirrmeister, Bettina

    2015-04-01

    Prokaryotes have dominated life on Earth for over 2 billion years. Throughout the Precambrian, prokaryotes acted as the major biological impetus for both large and small scale environmental changes. Yet, very little is known about the composition, diversity and evolution of ancient microbial communities due to poor preservation during the Precambrian period. Previous studies of fossils that date to this period relied mainly on light microscopy to identify microfossil morphology and abundance, with limited success. Here we present novel analyses of the microbial remains found in Precambrian stromatolites using Synchrotron Radiation x-Ray Tomographic Microscopy (SRXTM). Microfossils found in samples of three Precambrian deposits, 3.45 Ga Strelley Pool, Australia, 2.1 Ga Gunflint Chert, Canada, and 650 Ma Rasthof Cap Carbonate, Namibia, have been reconstructed in 3D. Based on four scans from each sample, we estimated size and abundance of spheroidal microfossils within those deposits. Our findings show that while cell abundance decreased towards the end of the Precambrian, the biovolume of microfossils within the host rock remained relatively constant. Additionally, both size and disparity increase through time. Constant biovolumes and yet different sizes for these three deposits, point towards a negative correlation of large cell size and cell abundance. This negative correlation indicates that the systems in which these prokaryotes lived may have been biolimited. Both, gas exchange and nutrient uptake in prokaryotes function via diffusion. Therefore, one would expect bacteria to evolve towards an increasing surface to volume ratio. Increased cell sizes, and hence decreased overall surface to volume ratio observed in our data, suggest the influence of other selective factors. Decreased abundance and increased cell size could potentially be associated to changes in nutrient availability and the occurrence of predation. As cells increased in size, more nutrients would

  1. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record.

    PubMed

    Rouillard, J; García-Ruiz, J-M; Gong, J; van Zuilen, M A

    2018-05-01

    Archean hydrothermal environments formed a likely site for the origin and early evolution of life. These are also the settings, however, were complex abiologic structures can form. Low-temperature serpentinization of ultramafic crust can generate alkaline, silica-saturated fluids in which carbonate-silica crystalline aggregates with life-like morphologies can self-assemble. These "biomorphs" could have adsorbed hydrocarbons from Fischer-Tropsch type synthesis processes, leading to metamorphosed structures that resemble carbonaceous microfossils. Although this abiogenic process has been extensively cited in the literature and has generated important controversy, so far only one specific biomorph type with a filamentous shape has been discussed for the interpretation of Archean microfossils. It is therefore critical to precisely determine the full distribution in morphology and size of these biomorphs, and to study the range of plausible geochemical conditions under which these microstructures can form. Here, a set of witherite-silica biomorph synthesis experiments in silica-saturated solutions is presented, for a range of pH values (from 9 to 11.5) and barium ion concentrations (from 0.6 to 40 mmol/L BaCl 2 ). Under these varying conditions, a wide range of life-like structures is found, from fractal dendrites to complex shapes with continuous curvature. The size, spatial concentration, and morphology of the biomorphs are strongly controlled by environmental parameters, among which pH is the most important. This potentially limits the diversity of environments in which the growth of biomorphs could have occurred on Early Earth. Given the variety of the observed biomorph morphologies, our results show that the morphology of an individual microstructure is a poor criterion for biogenicity. However, biomorphs may be distinguished from actual populations of cellular microfossils by their wide, unimodal size distribution. Biomorphs grown by diffusion in silica gel can

  2. Early Archean (approximately 3.4 Ga) prokaryotic filaments from cherts of the apex basalt, Western Australia: The oldest cellularly preserved microfossils now known

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1991-01-01

    In comparison with that known from later geologic time, the Archean fossil record is miniscule: although literally hundreds of Proterozoic formations, containing more that 2800 occurrences of bona fide microfossils are now known, fewer than 30 units containing some 43 categories of putative microfossils (the vast majority of which are of questionable authenticity) have been reported from the Archean. Among the oldest known fossils are Early Archean filaments reported from cherts of the Towers Formation and the Apex Basalt of the 3.3-3.6 Ga-old Warrawoona Group of Western Australia. The paleobiologic significance of the Towers Formation microstructures is open to question: thin aggregated filaments are properly regarded as dubiomicrofossils (perhaps biogenic, but perhaps not); therefore, they cannot be regarded as firm evidence of Archean life. Although authentic, filamentous microfossiles were reported from a second Towers Formation locality, because the precise layer containing the fossiliferous cherts was not relocated, this discovery can neither be reconfirmed by the original collector nor confirmed independently by other investigators. Discovery of microfossils in bedded cherts of the Apex Basalt, the stratigraphic unit immediately overlying the Towers Formation, obviates the difficulties stored above. The cellularly preserved filaments of the Apex Basalt meet all of the criteria required of a bona fide Archean microfossils. Recent studies indicate that the Apex assemblage includes at least six morphotypes of uniseriate filaments, composed of barrel-shaped, discoidal, or quadrate cells and exhibiting rounded or conical terminal cells and medial bifurcated and paired half-cells that reflect the occurrence of prokaryotic binary cell division. Interestingly, the majority of these morphotypes are morphologically more similar to extant cyanobacteria than to modern filamentous bacteria. Prokaryotes seem clearly to have been hypobradytelic, and the evidence suggests

  3. Precambrian perspectives.

    PubMed

    Goodwin, A M

    1981-07-03

    The Precambrian record is interpreted in terms of an evolutionary progression that moves in the direction of increasing continental stability. An early, highly mobile microplate tectonics phase progressed through a more stable, largely intracratonic, ensialic, mobile belt phase to the modern macroplate tectonics phase that involves large, rigid lithospheric plates. Various phases are characterized by distinctive crustal associations. Three controls-bulk earth heat production, crustal fractionation and cratonization, and atmospheric oxygen accumulation-are viewed as the cumulative cause of the trends and events that characterize the crust at different stages of development, from its inception approximately 4.6 billion years ago to the present.

  4. The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth

    NASA Astrophysics Data System (ADS)

    Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.

    2001-12-01

    Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled

  5. Possible Microfossils (Warrawoona Group, Towers Formation, Australia, approximately 3.3 - 3.5 Ga)

    NASA Technical Reports Server (NTRS)

    Morris, P. A.; Wentworth, S. J.; Allen, C. C.; McKay, D. S.

    1998-01-01

    Early in the twentieth century there were reports of Archean stromatolite-like structures that were similar to organic rich stromatolites from the base of the Cambrian (600 m.y.). It was not until the latter half of this century that fossilized Archean-age (3.9-2.5 Ga) life forms were found in the Fig Tree Formation of South Africa and the Towers Formation of Australia. Some of the ancient stromatolites contained streaks and clots of kerogen, pyrite grains, remnants of microbial cells, and filaments that represented various stages of preservation, while others appeared to lack fossils. A set of physical criteria was established for evaluating the biogenicity of these Archean discoveries: (1) rocks of unquestionable Archean age; (2) microfossils indigenous to Archean sediments; and (3) microfossils occurring in clasts that are syngenetic with deposition of the sedimentary unit. In the case of bedded cherts, the fossils should predate the cherts; (4) the microfossils are biogenic; and (5) replicate sampling of the fossil-iferous outcrop firmly demonstrates the provenance of these microfossils. Sample 002 from the Precambrian Paleobiology Research Group (PPRG) was examined. This stromatolitic carbonaceous chert contains microbial remains that meet the established criteria [10]. Using a scanning electron microscope (SEM), we have analyzed the morphologies and chemistry of these possible microbial remains.

  6. Microfossils of the Early Archean Apex chert - New evidence of the antiquity of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1993-01-01

    Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacteriumlike microorganisms were extant and morphologically diverse at least as early as about 3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.

  7. Meteorites, Microfossils and Exobiology

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1997-01-01

    The discovery of evidence for biogenic activity and possible microfossils in a Martian meteorite may have initiated a paradigm shift regarding the existence of extraterrestrial microbial life. Terrestrial extremophiles that live in deep granite and hydrothermal vents and nanofossils in volcanic tuffs have altered the premise that microbial life and microfossils are inconsistent with volcanic activity and igneous rocks. Evidence for biogenic activity and microfossils in meteorites can no longer be dismissed solely because the meteoritic rock matrix is not sedimentary. Meteorite impact-ejection and comets provide mechanisms for planetary cross-contamination of biogenic chemicals, microfossils, and living microorganisms. Hence, previously dismissed evidence for complex indigenous biochemicals and possible microfossils in carbonaceous chondrites must be re-examined. Many similar, unidentifiable, biological-like microstructures have been found in different carbonaceous chondrites and the prevailing terrestrial contaminant model is considered suspect. This paper reports the discovery of microfossils indigenous to the Murchison meteorite. These forms were found in-situ in freshly broken, interior surfaces of the meteorite. Environmental Scanning Electron Microscope (ESEM) and optical microscopy images indicate that a population of different biological-like forms are represented. Energy Dispersive Spectroscopy reveals these forms have high carbon content overlaying an elemental distribution similar to the matrix. Efforts at identification with terrestrial microfossils and microorganisms were negative. Some forms strongly resemble bodies previously isolated in the Orgueil meteorite and considered microfossils by prior researchers. The Murchison forms are interpreted to represent an indigenous population of the preserved and altered carbonized remains (microfossils) of microorganisms that lived in the parent body of this meteorite at diverse times during the past 4.5 billion

  8. Early Precambrian Carbonate and Evapolite Sediments: Constraints on Environmental and Biological Evolution

    NASA Technical Reports Server (NTRS)

    Grotzinger, John P.

    2002-01-01

    The work accomplished under NASA Grant NAG5-6722 was very successful. Our lab was able to document the occurrence and distribution of evaporite-to-carbonate transitions in several basins during Precambrian time, to help constrain the long-term chemical evolution of seawater.

  9. Taxonomic composition and biostratigraphic value of the Early Riphean organic-walled microfossil association from the Ust'-Il'ya Formation of the Anabar Uplift, Northern Siberia

    NASA Astrophysics Data System (ADS)

    Sergeev, V. N.; Vorob'eva, N. G.; Petrov, P. Yu.; Semikhatov, M. A.

    2017-05-01

    It is demonstrated on the basis of the first monographic study of multiple and taxonomically variable organic-walled microfossils from the Ust'-Il'ya Formation of the Anabar Uplift that both prokaryotic and eukaryotic forms are present in the composition of this microbiota. They are divided into four formal groups on the basis of the specifics of the morphological indicators of the identified taxa. The review of the data on the isotopic age of hosting deposits showed that the Ust'-Il'ya Formation is of the Early Riphean in age which are currently evaluated as 1750 ± 10-1400 Ma. Relatively large and morphologically complex eukaryotic forms present in the Ust'-Il'ya Formation served in due time as the basis for an erroneous conclusion on the Late Riphean age of the specified formation and the overlying Lower Kotuikan Subformation of the Anabar Uplift. The paper provides a global comparative analysis of the Early Riphean microbiotas, demonstrates the position of the Ust'-Il'ya and Kotuikan microbiotas amidst the microbiotas of the same age, and shows that the relatively large acanthomorphic acritarchs Tappania, Valeria, Dictiosphaera, Satka, and Shuiyousphaeridium appeared in the geological history already during the Early Riphean Erathem. Moreover, the paper discusses the recently published data on the distribution of aerobic and anaerobic conditions in the Early Riphean paleobasins and provides the conclusion on the impact of the lateral change of these conditions on the taxonomic composition of the microbiota.

  10. Evidence for Microfossils in Ancient Rocks and Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, A. Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    The McKay et all. detection of chemical biomarkers and possible microfossils in an ancient meteorite from Mars (ALH84001) stimulated research in several areas of importance to the newly emerging field of Astrobiology. Their report resulted in a search for additional evidence of microfossils in ancient terrestrial rocks and meteorites. These studies of ancient rocks and meteorites were conducted independently (and later collaboratively) in the United States and Russia using the SEM, Environmental Scanning Electron Microscope (ESEM), and Field Emission Scanning Electron Microscope (FESEM). We have encountered in-situ in freshly broken carbonaceous chondrites a large number of complex microstructures that appear to be lithified microbial forms. The meteoritic microstructures have characteristics similar to the lithified remains of filamentous cyanobacteria and bacterial microfossils we have found in ancient phosphorites, ancient graphites and oil shales. Energy Dispersive Spectroscopy (EDS) and Link microprobe analysis shows the possible microfossils have a distribution of chemical elements characteristic of the meteorite rock matrix, although many exhibit a superimposed carbon enhancement. We have concluded that the mineralized bodies encountered embedded in the rock matrix of freshly fractured meteoritic surfaces can not be dismissed as recent surface contaminants. Many of the forms found in-situ in the Murchison, Efremovka, and Orgueil carbonaceous meteorites are strikingly similar to microfossils of coccoid bacteria, cyanobacteria and fungi such as we have found in the Cambrian phosphorites of Khubsugul, Mongolia and high carbon Phanerozoic and Precambrian rocks of the Siberian and Russian Platforms.

  11. Precambrian Sulphide Deposits

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    1984-04-01

    This book is dedicated to Howard S. Robinson, who was born and educated in the United States, but who spent his professional career in Canada with McIntyre Porcupine Mines, concentrating on Precambrian mineral deposits. Although his career in mineral exploration was distinguished, his major contribution to earth science was probably as one of the founders of the Geological Association of Canada, an institution to which he made a bequest in his will. With this background, the strong emphasis on Canadian Precambrian mineral deposits should come as no surprise; of the 23 papers in this book, 21 are solely or primarily devoted to Canadian deposits. The two exceptions—those describing the Balmat, N.Y., zinc mines (at times the largest zinc producer in the United States) and the Crandon, Wisconsin, volcanogenic zinc-copper massive-sulfide deposit (the largest deposit of its kind found in the 1970s)—are each within a couple of hundred kilometers of the Canadian border. Although the title of the book is more expansive than the actual topics discussed, Canada is rich in Precambrian rocks and ore bodies, and Canadian scientists have been especially alert to tectonic influences in the formation of mineral deposits. These features, plus the fact that the country contains a very well exposed expanse of Archean rocks which is the largest in the world, facilitate the study of early crustal evolution and make the book of particular interest to geophysicists.

  12. The early Martian environment: Clues from the cratered highlands and the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Maxwell, T. A.

    1993-01-01

    There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.

  13. Geochemistry of Precambrian carbonates. IV - Early Paleoproterozoic (2.25 +/- 0.25 Ga) seawater

    NASA Technical Reports Server (NTRS)

    Veizer, Jan; Clayton, R. N.; Hinton, R. W.

    1992-01-01

    The mineralogy, chemistry, and isotopic composition of the Malmani Dolomite, Duck Creek Dolomite, and Bruce 'Limestone' Member of the Espanola Formation are studied in an effort to restrict the first- and second-order variations in isotopic composition of Early Paleoproterozoic seawater. The diagenetic rank is found to increase in the order Duck Creek less than Bruce less than Malmani. The interpolation of alteration trends to 'best' value yields an estimate of 0.70550 for Sr-87/Sr-86. For delta C-13, the measured range of 0 +/- 1.5 percent PDB is similar to that observed for Phanerozoic marine carbonates, while the 'best' delta O-18 value for dolostones is -5 percent PDB, depleted in O-18 relative to Phanerozoic counterparts but comparable to estimates obtained for Archean facies. The isotope geochemistry and mineralogy of Bruce 'Limestone' Member is consistent with the proposition that the sequence was deposited in a lacustrine environment.

  14. Imaging of Vanadium in Microfossils: A New Potential Biosignature

    SciTech Connect

    Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.

    Being able to distinguish unambiguously the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from non-biological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This too, is important for the search for life on Mars; either by in situ analyses via rovers, or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biologicalmore » origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature, that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagensis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. Here, we propose that taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenecity of putative microfossil-like structures.« less

  15. Imaging of Vanadium in Microfossils: A New Potential Biosignature

    DOE PAGES

    Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.; ...

    2017-11-01

    Being able to distinguish unambiguously the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from non-biological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This too, is important for the search for life on Mars; either by in situ analyses via rovers, or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biologicalmore » origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature, that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagensis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. Here, we propose that taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenecity of putative microfossil-like structures.« less

  16. Imaging of Vanadium in Microfossils: A New Potential Biosignature

    NASA Astrophysics Data System (ADS)

    Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.; Lai, Barry; Vogt, Stefan; Breuer, Pierre; Steemans, Philippe; Lay, Peter A.

    2017-11-01

    The inability to unambiguously distinguish the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from nonbiological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This, too, is important for the search for life on Mars by in situ analyses via rovers or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biological origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagenesis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. We propose that, taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenicity of putative microfossil-like structures.

  17. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events

    NASA Astrophysics Data System (ADS)

    Itaki, Takuya

    2016-12-01

    Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands. Here, major changes in the microfossil assemblages during the Late Pliocene to Early Pleistocene are reviewed. Late Pliocene (3.5-2.7 Ma) surface-water assemblages were characterized mainly by cold-temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period also suggests that deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. A weak warm-water influence is recognized along the Japanese coast, suggesting a small inflow of warm water via a southern strait. Nannofossil and sublittoral ostracod assemblages record an abrupt cooling event at 2.75 Ma that correlates with the onset of the Northern Hemisphere glaciation. Subsequently, cold intermediate- and deep-water assemblages of ostracods and radiolarians increased in abundance, suggesting active ventilation and the formation of the Japan Sea Proper Water, associated with a strengthened winter monsoon. Pacific-type deep-water radiolarians also disappeared around 2.75 Ma, which is attributed to the intermittent occurrence of deep anoxic environments and limited migration from the North Pacific, resulting from the near-closure or shallowing of the northern strait by a eustatic fall in sea level and tectonic uplift of northeastern Japan. A notable reduction in primary productivity from 2.3 to 1.3 Ma also suggests that the nutrient supply from the North Pacific was restricted by the near-closure of the northern strait. An increase in the abundance of subtropical

  18. Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern biocontaminants.

  19. Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither?

    USGS Publications Warehouse

    Roedder, E.

    1981-01-01

    Bridgwater et al.1 issued a 'cautionary note' concerning several reports published by Pflug and co-workers2-5 describing objects called yeast-like microfossils (Isuasphaera isua Pflug) from a metamorphosed quartzite of the 3,800-Myr-old Isua supracrustal belt of south-west Greenland; Bridgwater et al. believe that the objects described by Pflug et al. 2-5 are 'indistinguishable from limonite-stained fluid inclusions' and hence are non-biogenic. I show here that the objects are neither limonite-stained fluid inclusions nor microfossils, but are limonite-stained cavities from the otherwise complete dissolution by weathering of ferruginous dolomite grains in these rocks. Several supporting arguments presented by both sides are believed to be invalid, and others are ambiguous. In view of the extensive research on the earliest life forms, and then significance to evolution, to early geochemical cycles and to the origin of the atmosphere and some ore deposits, the exact nature of the Isua objects, and particularly the validity of the evidence either for or against a biological origin, are of considerable importance. A careful evaluation of the evidence from Isua is particularly pertinent, as bona fide Precambrian fossils are also found in chemically similar (but much younger) silica-rich environments. ?? 1981 Nature Publishing Group.

  20. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    USGS Publications Warehouse

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  1. Thorium/U systematics of Precambrian deep-sea pelagic balck shales: implications for redox state of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Jia, Y.; McCulloch, M.; Charlotte, A.

    2003-12-01

    To address the question of the redox state of the Precambrian atmosphere-hydrosphere system via sediments requires measurement of redox sensitive trace elements, and inter-element ratios, in deep water black shales with a chemical sedimentary "hydrogenic" component. This approach is endorsed by recent progress in research of redox-sensitive trace metals records in late Proterozoic and Phanerozoic sedimentary rocks, which has provided important clues to how the redox state of depositional environments has changed over time. Many conventional studies, in contrast, have been on first cycle volcanogenic turbidites with a minimal hydrogenic input (Taylor and McLennan, 1995). Accordingly, we have analyzed the redox-sensitive, trace element compositions of the 2.1 Ga black shales in Birimian Blet, West Africa, and the 2.7 Ga Archean counterparts in Timmins, Canada, Tati Belt, Botswana, and Kanowna District, Western Australia. These pyrite-bearing black shales, which were originally argillaceous sediments containing organic matter and low in thermal maturity, were primarily deposited in the deep-sea pelagic environments. Th/U ratios are lower in the Proterozoic shales (0.38-0.82, average 0.67), and Archean shales (0.47-3.65, average 2.43) relative to "conventional" Archean upper crust (3.8), PAAS (4.7), or average upper continental crust (3.8). Calculated U concentrations from hydrogenic component are between 0.90 and 2.45 in the Proterozoic shales, and range from 0.06 to 0.96 for the Archean black shales. Given the conservative behavior of Th in the sedimentary cycle, variably low Th/U ratios in these Precambrian black shales signify that U6+, soluble in oxidized surface waters, was reduced to insoluble U4+ in reducing bottom waters, as in the contemporary Black Sea. The results are consistent with a locally to globally oxidized atmosphere-shallow hydrosphere pre-2.0 Ga. Taylor, S.R., and McLennan, S.C., 1995. The geochemical evolution of the continental crust: Reviews of

  2. Early Precambrian gneiss terranes and Pan-African island arcs in Yemen: Crustal accretion of the eastern Arabian Shield

    NASA Astrophysics Data System (ADS)

    Windley, Brian F.; Whitehouse, Martin J.; Ba-Bttat, Mahfood A. O.

    1996-02-01

    Within the Precambrian of Yemen, we have identified four gneiss terranes and two island-arc terranes on the basis of existing literature, mapping, and our own field observations, together with new Sm-Nd isotopic data. The two western gneiss terranes can be correlated with well-documented terranes (Asir and Afif) in Saudi Arabia. To the east of these, the Abas and Al-Mahfid gneiss terranes yield Sm-Nd model ages (tDM) of 1.7 2.3 Ga and 1.3 2.7 Ga, respectively, and cannot be correlated with any documented terranes in Saudi Arabia. These two terranes are separated by a Pan-African island-arc terrane that has been obducted onto one or both of the gneiss terranes, and a second arc bounds the Al-Mahfid gneiss terrane to the east. Our discovery of extensive Proterozoic to late Archean gneisses in Yemen provides important constraints upon the much-discussed tectonic framework of northeast Gondwana and the rate of Pan-African crustal growth. The terranes in Yemen may be correlated with comparable terranes on the eastern margin of the Arabian Shield and in northern Somalia. Thus Yemen provides a link between the arc collage of the Arabian Shield and the gneissic Mozambique belt of East Africa.

  3. Evidence for marine microfossils from amber.

    PubMed

    Girard, Vincent; Schmidt, Alexander R; Saint Martin, Simona; Struwe, Steffi; Perrichot, Vincent; Saint Martin, Jean-Paul; Grosheny, Danièle; Breton, Gérard; Néraudeau, Didier

    2008-11-11

    Amber usually contains inclusions of terrestrial and rarely limnetic organisms that were embedded in the places were they lived in the amber forests. Therefore, it has been supposed that amber could not have preserved marine organisms. Here, we report the discovery amber-preserved marine microfossils. Diverse marine diatoms as well as radiolarians, sponge spicules, a foraminifer, and a spine of a larval echinoderm were found in Late Albian and Early Cenomanian amber samples of southwestern France. The highly fossiliferous resin samples solidified approximately 100 million years ago on the floor of coastal mixed forests dominated by conifers. The amber forests of southwestern France grew directly along the coast of the Atlantic Ocean and were influenced by the nearby sea: shells and remnants of marine organisms were probably introduced by wind, spray, or high tide from the beach or the sea onto the resin flows.

  4. Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Bekker, A.; Zakharov, D. O.

    2016-03-01

    We present stable isotope and chemical data for 206 Precambrian bulk shale and tillite samples that were collected mostly from drillholes on all continents and span the age range from 0.5 to 3.5 Ga with a dense coverage for 2.5-2.2 Ga time interval when Earth experienced four Snowball Earth glaciations and the irreversible rise in atmospheric O2. We observe significant, downward shift of several ‰ and a smaller range of δ18 O values (7 to 9‰) in shales that are associated with the Paleoproterozoic and, potentially, Neoproterozoic glaciations. The Paleoproterozoic samples consist of more than 50% mica minerals and have equal or higher chemical index of alteration than overlying and underlying formations and thus underwent equal or greater degrees of chemical weathering. Their pervasively low δ18 O and δD (down to - 85 ‰) values provide strong evidence of alteration and diagenesis in contact with ultra-low δ18 O glacial meltwaters in lacustrine, deltaic or periglacial lake (sikussak-type) environments associated with the Paleoproterozoic glaciations. The δDsilicate values for the rest of Precambrian shales range from -75 to - 50 ‰ and are comparable to those for Phanerozoic and Archean shales. Likewise, these samples have similar ranges in δ13Corg values (-23 to - 33 ‰ PDB) and Corg content (0.0 to 10 wt%) to Phanerozoic shales. Precambrian shales have a large range of δ18 O values comparable to that of the Phanerozoic shales in each age group and formation, suggesting similar variability in the provenance and intensity of chemical weathering, except for the earliest 3.3-3.5 Ga Archean shales, which have consistently lower δ18 O values. Moreover, Paleoproterozoic shales that bracket in age the Great Oxidation Event (GOE) overlap in δ18 O values. Absence of a step-wise increase in δ18 O and δD values suggests that despite the first-order change in the composition of the atmosphere, weathering cycle was not dramatically affected by the GOE at ∼2

  5. The evolution and distribution of life in the Precambrian eon-global perspective and the Indian record.

    PubMed

    Sharma, M; Shukla, Y

    2009-11-01

    The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.

  6. Isotope geochronology of the Precambrian

    NASA Astrophysics Data System (ADS)

    Levskii, L. K.; Levchenkov, O. A.

    This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.

  7. Indigenous Precambrian petroleum revisited

    SciTech Connect

    Murray, G.E.; Kaczor, M.J.; McArthur, R.E.

    1980-10-01

    Irrefutable evidence of fossil remains from Precambrian sediments and proved petroleum reserves in upper Proterozoic (Riphean-Vendian) strata of the Irkutsk basin, USSR, suggest that unmetamorphosed Precambrian sedimentary rocks should be a focus for hydrocarbon exploration. Since 1965, a dramatic increase in publications which document worldwide occurrences of Precambrian life forms discloses that, by the end of the Proterozoic, organic evolution had produced diversified assemblages of relatively highly developed macroorganisms and microorganisms. Some of these organisms have generated crude oil in the Nonesuch Shale of northern Michigan and kerogen in stromatolitic carbonate rocks in Africa Kerogen has been extracted from approx.more » 2300-m.y. old Transvaal (Africa) stromatolitic limestone containing coccoid and complex filamentous cyanophytes. Also, aromatic and aliphatic hydrocarbons have been obtained from the approx. 2800-m.y. old Bulawayan stromatolitic limestone of Rhodesia. Additional evidence indicates that commercial reserves of petroleum from Precambrian strata are possible. An oil discovery in Lower Cambrian rocks in 1962, at Markovo in the Irkutsk basin of the Siberian platform area, led to four noncommercial and eight commercial fields producing from Lower Cambrian and Upper Proterozoic strata.« less

  8. Precambrian endoliths discovered

    NASA Technical Reports Server (NTRS)

    Campbell, S. E.

    1982-01-01

    The earliest known microborings have now been found in late Precambrian ooids (Upper Riphean/Vendian, 570-700 Myr) of the Eleonore Bay Group of eastern Greenland. The ooids were originally carbonaceous and underwent silicification after boring occurred. The finding establishes that the habit of microbial boring evolved before the appearance of skeleton-bearing metazoans in the geological record.

  9. Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans

    NASA Astrophysics Data System (ADS)

    Martin, Ronald E.

    1995-06-01

    The stratigraphic occurrence and mineralogy of major protistan microfossil taxa tend to reflect evolutionary innovation in response to ocean chemistry and fertility. In foraminefera, the characteristic test composition—and, in some cases, ultrastructure—of each suborder is indicative of the degree of surface ocean CaCO 3 saturation, which varied in a cyclic manner through the Phanerozoic, at the time of origin of the suborder. High dissolved phosphate and low CaCO 3 saturation in late Precambrian-Early Cambrian surface waters may have prevented calcification in primitive non-calcareous (organic, agglutinated) foraminiferal stocks. Scattered reports of coccolithophorid-like microfossils from the Paleozoic are indicative of a secular trend in rising nutrient levels and marine productivity that controlled the initiation of calcareous oozes. Based on acritarch, carbon isotope, and phosphorite records, extremely low nutrient levels ("superligotrophic" conditions) in Cambrian-to-Devonian seas typically limited population densities of calcareous nannoplankton and prevented the formation of calcareous oozes. The overall "superoligotrophic" surface conditions of the Paleozoic were punctuated, though, by episodes of "catastrophic" eutrophication in the Late Ordovician, Late Devonia, and Late Carboniferous (Worsley et al., 1986). Following each episode, CaCO 3 rain rates were presumably enhanced because Marine C:P (MCP) burial ratios increased permanently above previous levels (Worsley et al., 1986). Nevertheless, it was not until the Carboniferous that the CCD had deepened sufficiently (via erosion of cratonic limestones) to allow pelagic calcareous oozes to begin to accumulate. Prior to this time, surface waters appear to have been sufficiently corrosive (high atmospheric pCO 2 and low CaCO 3 saturation), and the CCD sufficiently shallow, to dissolve virtually all incipient calcareous nannofossils. Following Late Permian extinctions, plankton re-expanded in response to

  10. Consensus in a Precambrian garden

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    At the Precambrian-Cambrian boundary, the course of life on Earth underwent a dramatic change that culminated in the rise of predators and other complex animals, a group of paleontologists agreed at a conferece last week.Just prior to 590 million years ago, the ecology of life in the oceans was very simple; soft-shelled multicellular animals called Ediacara lived in apparent harmony with vast mats o f bacteria and algae that covered the seafloor, dependent on the photosynthesis or chemosynthesis of their one-celled hosts for their existence. According to the consensus reached by the scientists, this symbiotic and apparently global “Garden of Ediacara” fell early in the Cambrian Period, as the mats declined and food chains multiplied with new animals that, for the first time in Earth's history, preyed on other living things.

  11. Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China

    NASA Technical Reports Server (NTRS)

    Chen, Jun-Yuan; Oliveri, Paola; Gao, Feng; Dornbos, Stephen Q.; Li, Chia-Wei; Bottjer, David J.; Davidson, Eric H.

    2002-01-01

    The evolutionary divergence of cnidarian and bilaterian lineages from their remote metazoan ancestor occurred at an unknown depth in time before the Cambrian, since crown group representatives of each are found in Lower Cambrian fossil assemblages. We report here a variety of putative embryonic, larval, and adult microfossils deriving from Precambrian phosphorite deposits of Southwest China, which may predate the Cambrian radiation by 25-45 million years. These are most probably of cnidarian affinity. Large numbers of fossilized early planula-like larvae were observed under the microscope in sections. Though several forms are represented, the majority display remarkable conformity, which is inconsistent with the alternative that they are artifactual mineral inclusions. Some of these fossils are preserved in such high resolution that individual cells can be discerned. We confirm in detail an earlier report of the presence in the same deposits of tabulates, an extinct crown group anthozoan form. Other sections reveal structures that most closely resemble sections of basal modern corals. A large number of fossils similar to modern hydrozoan gastrulae were also observed. These again displayed great morphological consistency. Though only a single example is available, a microscopic animal remarkably similar to a modern adult hydrozoan is also presented. Taken together, the new observations reported in this paper indicate the existence of a diverse and already differentiated cnidarian fauna, long before the Cambrian evolutionary event. It follows that at least stem group bilaterians must also have been present at this time.

  12. Proterozoic microfossils revealing the time of algal divergences

    NASA Astrophysics Data System (ADS)

    Moczydlowska-Vidal, Malgorzata

    2010-05-01

    Proterozoic microfossils revealing the time of algal divergences Małgorzata Moczydłowska-Vidal Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden (malgo.vidal@pal.uu.se) Morphological and reproductive features and cell wall ultrastructure and biochemistry of Proterozoic acritarchs are used to determine their affinity to modern algae. The first appearance datum of these microbiota is traced to infer a minimum age of the divergence of the algal classes to which they may belong. The chronological appearance of microfossils that represent phycoma-like and zygotic cysts and vegetative cells and/or aplanospores, respectively interpreted as prasinophyceaen and chlorophyceaen microalgae, is related to the Viridiplantae phylogeny. These divergence times differ from molecular clock estimates, and the palaeontological evidence suggests that they are older. The best examples of unicellular, organic-walled microfossils (acritarchs) from the Mesoproterozoic to Early Ordovician are reviewed to demonstrate features, which are indicative of their affinity to photosynthetic microalgae. The first indication that a microfossil may be algal is a decay- and acid-resistant cell wall, which reflects its biochemistry and ultrastructure, and probably indicates the ability to protect a resting/reproductive cyst. The biopolymers synthesized in the cell walls of algae and in land plants ("plant cells"), such as sporopollenin/algaenan, are diagnostic for photosynthetic taxa and were inherited from early unicellular ancestors. These preservable cell walls are resistant to acetolysis, hydrolysis and acids, and show diagnostic ultrastructures such as the trilaminar sheath structure (TLS). "Plant cell" walls differ in terms of chemical compounds, which give high preservation potential, from fungal and animal cell walls. Fungal and animal cells are fossilized only by syngenetic permineralization, whereas "plant cells" are fossilized as body

  13. Precambrian Lunar Volcanic Protolife

    PubMed Central

    Green, Jack

    2009-01-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224

  14. Determining the Biogenicity of Microfossils in the Apex Chert, Western Australia, Using Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    DeGregorio, B. T.; Sharp, T. G.

    2003-01-01

    For over a decade, the oldest evidence for life on this planet has been microfossils in the 3.5 Ga Apex Chert in Western Australia. Recently, the biogenicity of these carbon-rich structures has been called into question through reanalysis of the local geology and reinterpretation of the original thin sections. Although initially described as a stratiform, bedded chert of siliceous clasts, the unit is now thought to be a brecciated hydrothermal vein chert. The high temperatures of a hydrothermal environment would probably have detrimental effects to early non-hyperthermophilic life, compared to that of a shallow sea. Conversely, a hydrothermal origin would suggest that if the microfossils were valid, they might have been hyperthermophilic. Apex Chert controversy. The Apex Chert microfossils were originally described as septate filaments composed of kerogen similar in morphology to Proterozoic and modern cyanobacteria. However new thin section analysis shows that these carbonaceous structures are not simple filaments. Many of the original microfossils are branched and have variable thickness when the plane of focus is changed. Hydrothermal alteration of organic remains has also been suggested for the creation of these strange morphologies. Another point of contention lies with the nature of the carbon material in these proposed microfossils. Kerogen is structurally amorphous, but transforms into well-ordered graphite under high pressures and temperatures. Raman spectrometry of the carbonaceous material in the proposed microfossils has been interpreted both as partially graphitized kerogen and amorphous graphite. However, these results are inconclusive, since Raman spectrometry cannot adequately discriminate between kerogen and disordered graphite. There are also opposing views for the origin of the carbon in the Apex Chert. The carbon would be biogenic if the proposed microfossils are indeed the remains of former living organisms. However, an inorganic Fischer

  15. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  16. Evidence of Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    Investigations have been carried out on freshly broken, internal surfaces of the Murchison, Efremovka and Orgueil carbonaceous chondrites using Scanning Electron Microscopes (SEM) in Russia and the Environmental Scanning Electron Microscope (ESEM) in the United States. These independent studies on different samples of the meteorites have resulted in the detection of numerous spherical and ellipsoidal bodies (some with spikes) similar to the forms of uncertain biogenicity that were designated "organized elements" by prior researchers. We have also encountered numerous complex biomorphic microstructures in these carbonaceous chondrites. Many of these complex bodies exhibit diverse characteristics reminiscent of microfossils of cyanobacteria such as we have investigated in ancient phosphorites and high carbon rocks (e.g. oil shales). Energy Dispersive Spectroscopy (EDS) analysis and 2D elemental maps shows enhanced carbon content in the bodies superimposed upon the elemental distributions characteristic of the chondritic matrix. The size, distribution, composition, and indications of cell walls, reproductive and life cycle developmental stages of these bodies are strongly suggestive of biology' These bodies appear to be mineralized and embedded within the meteorite matrix, and can not be attributed to recent surface contamination effects. Consequently, we have interpreted these in-situ microstructures to represent the lithified remains of prokaryotes and filamentous cyanobacteria. We also detected in Orgueil microstructures morphologically similar to fibrous kerite crystals. We present images of many biomorphic microstructures and possible microfossils found in the Murchison, Efremovka, and Orgueil chondrites and compare these forms with known microfossils from the Cambrian phosphate-rich rocks (phosphorites) of Khubsugul, Northern Mongolia.

  17. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  18. Distribution and diagenesis of microfossils from the lower Proterozoic Duck Creek Dolomite, Western Australia

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Strother, P. K.; Rossi, S.

    1988-01-01

    Two distinct generations of microfossils occur in silicified carbonates from a previously undescribed locality of the Lower Proterozoic Duck Creek Dolomite, Western Australia. The earlier generation occurs in discrete organic-rich clasts and clots characterized by microquartz anhedra; it contains a variety of filamentous and coccoidal fossils in varying states of preservation. Second generation microfossils consist almost exclusively of well-preserved Gunflintia minuta filaments that drape clasts or appear to float in clear chalcedony. These filaments appear to represent an ecologically distinct assemblage that colonized a substrate containing the partially degraded remains of the first generation community. The two assemblages differ significantly in taxonomic frequency distribution from previously described Duck Creek florules. Taken together, Duck Creek microfossils exhibit a range of assemblage variability comparable to that found in other Lower Proterozoic iron formations and ferruginous carbonates. With increasing severity of post-mortem alteration, Duck Creek microfossils appear to converge morphologically on assemblages of simple microstructures described from early Archean cherts. Two new species are described: Oscillatoriopsis majuscula and O. cuboides; the former is among the largest septate filamentous fossils described from any Proterozoic formation.

  19. Recent progress in Precambrian paleobiology

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1986-01-01

    Ongoing studies at UCLA include the following: (1) investigations in Archean and Proterozoic sequences of various locations; (2) laboratory and field studies of modern microbial biocoenoses (analogues of Precambrian microbial communities) especially those at Laguna Mormona, Baja California, Mexico; (3) development of new laboratory techniques for the separation and concentration of minute cellularly preserved fossils for isotopic and organic geochemical analyses; and (4) assembly of a computerized database for assessment of the timing and nature of major events occurring during Precambrian biotic evolution, and of the potential applicability of ancient microbiotas to problems of global biostratigraphy and biogeography.

  20. Precambrian evolution of the climate system.

    PubMed

    Walker, J C

    1990-01-01

    Climate is an important environmental parameter of the early Earth, likely to have affected the origin and evolution of life, the composition and mineralogy of sedimentary rocks, and stable isotope ratios in sedimentary minerals. There is little observational evidence constraining Precambrian climates. Most of our knowledge is at present theoretical. Factors that must have affected the climate include reduced solar luminosity, enhanced rotation rate of the Earth, an area of land that probably increased with time, and biological evolution, particularly as it affected the composition of the atmosphere and the greenhouse effect. Cloud cover is a major uncertainty about the early Earth. Carbon dioxide and its greenhouse effect are the factors that have been most extensively studied. This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  1. Microfossils of Cyanobacteria in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of

  2. The development and diversification of Precambrian life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1974-01-01

    The temporal relationships among various prominent events occurring in the evolution of life are considered. It is seen that the Precambrian encompasses an enormous segment of geologic time and includes more than 80% of the history of life on this planet. As a result of the studies of the past decade it appears that living systems were probably extant as early as 3300 m.y. ago. Photoautotrophs, apparently including blue-green algae, originated earlier than 3000 m.y. ago. Blue-green algae were the dominant components of earth's biota for the period extending from about 3000 to 1000 m.y. ago. The nucleated, eukaryotic cell type had become established at least as early as 900, and possibly prior to 1300 m.y. ago.

  3. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  4. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1994-01-01

    Over the past quarter century, detailed genus- and species-level similarities in cellular morphology between described taxa of Precambrian microfossils and extant cyanobacteria have been noted and regarded as biologically and taxonomically significant by numerous workers world-wide. Such similarities are particularly well documented for members of the Oscillatoriaceae and Chroococcaceae, the two most abundant and widespread Precambrian cyanobacterial families. For species of two additional families, the Entophysalidaceae and Pleurocapsaceae, species-level morphologic similarities are supported by in-depth fossil-modern comparisons of environment, taphonomy, development, and behavior. Morphologically and probably physiologically as well, such cyanobacterial "living fossils" have exhibited an extraordinarily slow (hypobradytelic) rate of evolutionary change, evidently a result of the broad ecologic tolerance characteristic of many members of the group and a striking example of G. G. Simpson's [Simpson, G.G. (1944) Tempo and Mode in Evolution (Columbia Univ. Press, New York)] "rule of the survival of the relatively unspecialized." In both tempo and mode of evolution, much of the Precambrian history of life--that dominated by microscopic cyanobacteria and related prokaryotes--appears to have differed markedly from the more recent Phanerozoic evolution megascopic, horotelic, adaptationally specialized eukaryotes.

  5. Paleobiology of a Precambrian Shale: Geology, organic geochemistry, and paleontology are applied to the problem of detection of ancient life.

    PubMed

    Barghoorn, E S; Meinschein, W G; Schopf, J W

    1965-04-23

    Investigations have been made of crude oil, pristane, phytane, steranetype and optically active alkanes, porphyrins, microfossils, and the stable isotopes of carbon and of sulfur found in the Nonesuch shale of Precambrian age from Northern Michigan. These sediments are approximately 1 billion years old. Geologic evidence indicates that they were deposited in a nearshore deltaic environment. Porphyrins are found in the siltstones but not in the crude oils of the Nonesuch formation-evidence that these chemical fossils are adsorbed or absorbed and immobile. This immobility makes it highly unlikely that these porphyrins could have moved from younger formations into the Nonesuch sediments, and the widely disseminated particulate organic matters and fossils in this Precambrian shale are certainly indigenous.

  6. Raman Hyperspectral Imaging of Microfossils: Potential Pitfalls

    PubMed Central

    Olcott Marshall, Alison

    2013-01-01

    Abstract Initially, Raman spectroscopy was a specialized technique used by vibrational spectroscopists; however, due to rapid advancements in instrumentation and imaging techniques over the last few decades, Raman spectrometers are widely available at many institutions, allowing Raman spectroscopy to become a widespread analytical tool in mineralogy and other geological sciences. Hyperspectral imaging, in particular, has become popular due to the fact that Raman spectroscopy can quickly delineate crystallographic and compositional differences in 2-D and 3-D at the micron scale. Although this rapid growth of applications to the Earth sciences has provided great insight across the geological sciences, the ease of application as the instruments become increasingly automated combined with nonspecialists using this techique has resulted in the propagation of errors and misunderstandings throughout the field. For example, the literature now includes misassigned vibration modes, inappropriate spectral processing techniques, confocal depth of laser penetration incorrectly estimated into opaque crystalline solids, and a misconstrued understanding of the anisotropic nature of sp2 carbons. Key Words: Raman spectroscopy—Raman imaging—Confocal Raman spectroscopy—Disordered sp2 carbons—Hematite—Microfossils. Astrobiology 13, 920–931. PMID:24088070

  7. Meteoritic Microfossils in Eltanin Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn, Gerhard

    2006-01-01

    We report the unique occurrence of microfossils composed largely of meteoritic ejecta particles from the late Pliocene (2.5 Ma) Eltanin impact event. These deposits are unique, recording the only known km-sized asteroid impact into a deep-ocean (5 km) basin. First discovered as in Ir anomaly in sediment cores that were collected in 1965, the deposits contain nun-sized shock-melted asteroidal material, unmelted meteorite fragments (named the Eltanin meteorite), and trace impact spherules. Two oceanographic expeditions by the FS Polarstern in 1995 and 2001 explored approximately 80,000 sq-km. of the impact region, mapping the distribution of meteoritic ejecta, disturbance of seafloor sediments by the impact, and collected 20 new cores with impact deposits in the vicinity of the Freeden Seamounts (57.3S, 90.5W). Analyses of sediment cores show that the impact disrupted sediments on the ocean floor, redepositing them as a chaotic jumble of sediment fragments overlain by a sequence of laminated sands, silts and clays deposited from the water column. Overprinted on this is a pulse of meteoritic ejecta, likely transported ballistically, then settled through the water column. At some localities, meteoritic ejecta was as much as 0.4 to 2.8 g/cm2. This is the most meteorite-rich locality known on Earth.

  8. History and Evolution of Precambrian plate tectonics

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental

  9. A palaeomagnetic perspective of Precambrian tectonic styles

    NASA Technical Reports Server (NTRS)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  10. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  11. Biologically agglutinated eukaryotic microfossil from Cryogenian cap carbonates.

    PubMed

    Moore, K R; Bosak, T; Macdonald, F A; Lahr, D J G; Newman, S; Settens, C; Pruss, S B

    2017-07-01

    Cryogenian cap carbonates that overlie Sturtian glacial deposits were formed during a post-glacial transgression. Here, we describe microfossils from the Kakontwe Formation of Zambia and the Taishir Formation of Mongolia-both Cryogenian age, post-Sturtian cap carbonates-and investigate processes involved in their formation and preservation. We compare microfossils from these two localities to an assemblage of well-documented microfossils previously described in the post-Sturtian Rasthof Formation of Namibia. Microfossils from both new localities have 10 ± 1 μm-thick walls composed of carbonaceous matter and aluminosilicate minerals. Those found in the Kakontwe Formation are spherical or ovoid and 90 ± 5 μm to 200 ± 5 μm wide. Structures found in the Taishir Formation are mostly spherical, 50 ± 5 μm to 140 ± 5 μm wide, with distinct features such as blunt or concave edges. Chemical and mineralogical analyses show that the walled structures and the clay fraction extracted from the surrounding sediments are composed of clay minerals, especially muscovite and illite, as well as quartz, iron and titanium oxides, and some dolomite and feldspar. At each locality, the mineralogy of the microfossil walls matched that of the clay fractions of the surrounding sediment. The abundance of these minerals in the walled microfossils relative to the surrounding carbonate matrix and microbial laminae, and the presence of minerals that cannot precipitate from solution (titanium oxide and feldspar), suggests that the composition represents the original mineralogy of the structures. Furthermore, the consistency in mineralogy of both microfossils and sediments across the three basins, and the uniformity of size and shape among mineral grains in the fossil walls indicate that these organisms incorporated these minerals by primary biological agglutination. The discovery of new, mineral-rich microfossil assemblages in microbially laminated and other fine

  12. Precambrian organic geochemistry - Preservation of the record

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Wedeking, K. W.; Kaplan, I. R.

    1983-01-01

    A review of earlier studies is presented, and new results in Precambrian organic geochemistry are discussed. It is pointed out that two lines of evidence can be developed. One is based on structural organic chemistry, while the other is based on isotopic analyses. In the present investigation, the results of both structural and isotopic investigations of Precambrian organic matter are discussed. Processes and products related to organic geochemistry are examined, taking into account the carbon cycle, an approximate view of the principal pathways of carbon cycling associated with organic matter in the present global ecosystem, processes affecting sedimentary organic matter, and distribution and types of organic matter. Attention is given to chemical fossils in Precambrian sediments, kerogen analyses, the determination of the structural characteristics of kerogen, and data concerning the preservation of the Precambrian organic geochemical record.

  13. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits.

    PubMed

    Javaux, Emmanuelle J; Marshall, Craig P; Bekker, Andrey

    2010-02-18

    Although the notion of an early origin and diversification of life on Earth during the Archaean eon has received increasing support in geochemical, sedimentological and palaeontological evidence, ambiguities and controversies persist regarding the biogenicity and syngeneity of the record older than Late Archaean. Non-biological processes are known to produce morphologies similar to some microfossils, and hydrothermal fluids have the potential to produce abiotic organic compounds with depleted carbon isotope values, making it difficult to establish unambiguous traces of life. Here we report the discovery of a population of large (up to about 300 mum in diameter) carbonaceous spheroidal microstructures in Mesoarchaean shales and siltstones of the Moodies Group, South Africa, the Earth's oldest siliciclastic alluvial to tidal-estuarine deposits. These microstructures are interpreted as organic-walled microfossils on the basis of petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as a lack of abiotic explanation falsifying a biological origin. These are the oldest and largest Archaean organic-walled spheroidal microfossils reported so far. Our observations suggest that relatively large microorganisms cohabited with earlier reported benthic microbial mats in the photic zone of marginal marine siliciclastic environments 3.2 billion years ago.

  14. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    1992-01-01

    Sedimentary rocks of the Scotia Group, Prins Karls Forland, Svalbard, have been metamorphosed to lower greenschist facies. Yet Scotia chert nodules contain abundant organic-walled microfossils belonging to at least seventeen taxa. Their black colour indicates that the fossils underwent substantial thermal alteration. However, it is suggested that preservation in a matrix of early diagenetic silica shielded them from the most destructive mechanical and chemical effects of metamorphism. Microbial mats and large acanthomorphic acritarchs suggest a coastal marine depositional environment; the acritarchs further indicate an early Vendian age for the sediments. The Scotia fossils bear a close resemblance to assemblages described from the Doushantuo Formation, China and elsewhere, demonstrating the broad geographical distribution of biostratigraphically important Vendian taxa. Briareus and Echinosphaeridium are described as new genera; Briareus borealis is described as a new species, while Echinosphaeridium maximum is proposed as a new combination.

  15. Archean microfossils: a reappraisal of early life on Earth.

    PubMed

    Altermann, Wladyslaw; Kazmierczak, Józef

    2003-11-01

    The oldest fossils found thus far on Earth are c. 3.49- and 3.46-billion-year-old filamentous and coccoidal microbial remains in rocks of the Pilbara craton, Western Australia, and c. 3.4-billion-year-old rocks from the Barberton region, South Africa. Their biogenicity was recently questioned and they were reinterpreted as contaminants, mineral artefacts or inorganic carbon aggregates. Morphological, geochemical and isotopic data imply, however, that life was relatively widespread and advanced in the Archean, between 3.5 and 2.5 billion years ago, with metabolic pathways analogous to those of recent prokaryotic organisms, including cyanobacteria, and probably even eukaryotes at the terminal Archean.

  16. Microfossil biostratigraphy of prograding Neogene platform-margin carbonates, Bahamas: Age constraints and alternatives

    USGS Publications Warehouse

    Lidz, B.H.; Bralower, T.J.

    1994-01-01

    Benthic and planktic foraminifera and calcareous nannofossils were recovered in shallow-water carbonate rock cores from two continuous boreholes drilled 7.5 km apart on the west platform margin of the Great Bahama Bank. The microfossils define six biostratigraphic units in each hole. One unit in each hole represents a correlative condensed section. Seven foraminiferal biozones are recognized in 11 of the units between the holes: middle Miocene Globorotalia fohsi robusta Zone N12, late Miocene G. acostaensis Zone N16 and G. humerosa Zone N17, early Pliocene G. margaritae evoluta Subzone N19, late Pliocene G. exilis Subzone N21 and, tentatively, G. tosaensis tosaensis Zone N21, and early Pleistocene G. crassaformis viola Subzone N22. The twelfth unit is inferred to be of G. crassaformis viola Subzone N22 age. The oldest unit is onshore, the youngest is offshore. As presently interpreted, the nannofossil and foraminiferal zonations are partially correlative. Although the microfossils unequivocally constrain the series ages of the sediments, the incompleteness of the fossil record allows for alternative biozonal age models within the series. The Miocene and Pliocene biozones are common to both holes, but the greatest similarities between the holes are the significant mixing of middle and late Miocene, and late Miocene-early Pliocene faunas, the greatly condensed intervals at the Miocene/Pliocene boundary, and the early Pliocene influx of deep-water benthic and pelagic foraminifera. Of particular importance is the tentative recognition of late Pliocene G. tosaensis tosaensis Zone N21 in one borehole. Subsequent data not available to this phase of the study indicate that much of the zone is likely missing. Its absence will lend support to speculations of a regional unconformity in the Bahamas. The microfossils indicate that (1) several transgressions occurred from the middle Miocene to at least the earliest Pleistocene (> 11.5-> 0.46 Ma), during which banktop

  17. A pan-Precambrian link between deglaciation and environmental oxidation

    USGS Publications Warehouse

    Raub, T.J.; Kirschvink, J.L.

    2007-01-01

    Despite a continuous increase in solar luminosity to the present, Earth’s glacial record appears to become more frequent, though less severe, over geological time. At least two of the three major Precambrian glacial intervals were exceptionally intense, with solid evidence for widespread sea ice on or near the equator, well within a “Snowball Earth” zone produced by ice-albedo runaway in energy-balance models. The end of the first unambiguously low-latitude glaciation, the early Paleoproterozoic Makganyene event, is associated intimately with the first solid evidence for global oxygenation, including the world’s largest sedimentary manganese deposit. Subsequent low-latitude deglaciations during the Cryogenian interval of the Neoproterozoic Era are also associated with progressive oxidation, and these young Precambrian ice ages coincide with the time when basal animal phyla were diversifying. However, specifically testing hypotheses of cause and effect between Earth’s Neoproterozoic biosphere and glaciation is complicated because large and rapid True Polar Wander events appear to punctuate Neoproterozoic time and may have episodically dominated earlier and later intervals as well, rendering geographic reconstruction and age correlation challenging except for an exceptionally well-defined global paleomagnetic database.

  18. Precambrian evolution and the rock record

    NASA Technical Reports Server (NTRS)

    Awramik, S.

    1985-01-01

    The Precambrian time which refers to geological time prior to the first appearance of animals with mineralized hard parts was investigated. Best estimates for this event are around 570 million years ago. Because the rock record begins some 3,800 million years ago the Precambrian encompasses about 84% of geologic time. The fossil record for this immense span of time is dominated by prokaryotes and the sedimentary structures produced by them. The first fossil remains that are considered eukaryotic are found in 1,000 million year old rocks. The first animals may be as old as 700 million years. The fossil records of the first 84% of the Earth's history are collected and described.

  19. Historical trends of hypoxia in Changjiang River estuary: Applications of chemical biomarkers and microfossils

    USGS Publications Warehouse

    Li, X.; Bianchi, T.S.; Yang, Z.; Osterman, L.E.; Allison, M.A.; DiMarco, Steven F.; Yang, G.

    2011-01-01

    Over the past two decades China has become the largest global consumer of fertilizers, which has enhanced river nutrient fluxes and caused eutrophication and hypoxia in the Yangtze (Changjiang) large river delta-front estuary (LDE). In this study, we utilized plant pigments, lignin-phenols, stable isotopes (δ13C and δ15N) and foraminiferal microfossils in 210Pb dated cores to examine the history of hypoxia in the Changjiang LDE. Two sediment cores were collected onboard R/V Dong Fang Hong 2 using a stainless-steel box-corer; one at a water depth of 24.7 m on Jun. 15, 2006 and the other at 52 m on Nov. 20, 2007, both in the hypoxic region off the Changjiang LDE. There has been a significant increase in the abundance of plant pigments after 1979 that are indicators of enhanced diatom and cyanobacterial abundance, which agrees with post-1980 record of increasing nutrient loads in the Changjiang River. The increased inputs of terrestrially derived materials to the LDE are largely woody plant sources and most likely due to deforestation that began in the early 1950s. However, post-1960 lignin data did not reflect enhanced loading of woody materials despite continued deforestation possibly due to increased trapping from greater dam construction, a reduction of deforestation in the drainage basin since the last 1990s, and soil conservation practices. The lack of linkages between bulk indices (stable isotopes, % OC, molar C/N ratios) and microfossil/chemical biomarkers may reflect relative differences in the amount of carbon tracked by these different proxies. Although NO3− is likely responsible for most of the changes in phytoplankton production (post 1970s), historical changes in N loading from the watershed and hypoxia on the LDE shelf may not be as well linked in East China Sea (ECS) sediments due to possible denitrification/ammonification processes; finally, increases in low-oxygen tolerant foraminiferal microfossils indicate there has been an increase in the

  20. Life Detection on the Early Earth

    NASA Technical Reports Server (NTRS)

    Runnegar, B.

    2004-01-01

    Finding evidence for first the existence, and then the nature of life on the early Earth or early Mars requires both the recognition of subtle biosignatures and the elimination of false positives. The history of the search for fossils in increasingly older Precambrian strata illustrates these difficulties very clearly, and new observational and theoretical approaches are both needed and being developed. At the microscopic level of investigation, three-dimensional morphological characterization coupled with in situ chemical (isotopic, elemental, structural) analysis is the desirable first step. Geological context is paramount, as has been demonstrated by the controversies over AH84001, the Greenland graphites, and the Apex chert microfossils . At larger scales, the nature of sedimentary bedforms and the structures they display becomes crucial, and here the methods of condensed matter physics prove most useful in discriminating between biological and non-biological constructions. Ultimately, a combination of geochemical, morphological, and contextural evidence may be required for certain life detection on the early Earth or elsewhere.

  1. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils.

    PubMed

    Pang, K; Tang, Q; Schiffbauer, J D; Yao, J; Yuan, X; Wan, B; Chen, L; Ou, Z; Xiao, S

    2013-11-01

    The well-known debate on the nature and origin of intracellular inclusions (ICIs) in silicified microfossils from the early Neoproterozoic Bitter Springs Formation has recently been revived by reports of possible fossilized nuclei in phosphatized animal embryo-like fossils from the Ediacaran Doushantuo Formation of South China. The revisitation of this discussion prompted a critical and comprehensive investigation of ICIs in some of the oldest indisputable eukaryote microfossils-the ornamented acritarchs Dictyosphaera delicata and Shuiyousphaeridium macroreticulatum from the Paleoproterozoic Ruyang Group of North China-using a suite of characterization approaches: scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM). Although the Ruyang acritarchs must have had nuclei when alive, our data suggest that their ICIs represent neither fossilized nuclei nor taphonomically condensed cytoplasm. We instead propose that these ICIs likely represent biologically contracted and consolidated eukaryotic protoplasts (the combination of the nucleus, surrounding cytoplasm, and plasma membrane). As opposed to degradational contraction of prokaryotic cells within a mucoidal sheath-a model proposed to explain the Bitter Springs ICIs-our model implies that protoplast condensation in the Ruyang acritarchs was an in vivo biologically programmed response to adverse conditions in preparation for encystment. While the discovery of bona fide nuclei in Paleoproterozoic acritarchs would be a substantial landmark in our understanding of eukaryote evolution, the various processes (such as degradational and biological condensation of protoplasts) capable of producing nuclei-mimicking structures require that interpretation of ICIs as fossilized nuclei be based on comprehensive investigations. © 2013 John Wiley & Sons Ltd.

  2. A model for the biological precipitation of Precambrian iron-formation

    NASA Technical Reports Server (NTRS)

    Laberge, G. L.

    1986-01-01

    A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.

  3. New Evidence for the Presence of Indigenous Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Yu.

    2004-01-01

    We present additional evidence for the presence of indigenous microfossils in carbonaceous meteorites scanning electron micrograph studies of freshly fractured interior surfaces of pristine samples of the Murchison CM2 carbonaceous meteorite have revealed forms in-situ that are recognizable as biofilms as well as complex and highly structured forms similar to calcareous and siliceous microfossils. Some of the forms encountered are very well-preserved and exhibit complex associated microstructures similar to bacterial flagella. New images will be presented of forms recently encountered in carbonaceous meteorites and they will be compared with those of known microbial extremophiles. KEYWORDS: carbonaceous chondrites, Murchison, microfossils, extremophiles

  4. Precambrian Secular Evolution of Oceanic Nickel Concentrations: An Update

    NASA Astrophysics Data System (ADS)

    Konhauser, K.; Pecoits, E.; Peacock, C.; Robbins, L. J.; Kappler, A.; Lalonde, S.

    2014-12-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to address nutrient limitations on early biological productivity. In 2009 we reported that secular trends in IF Ni/Fe ratios record a reduced flux of Ni to the oceans ca. 2.7 billion years ago, which we attribute to decreased eruption of Ni-rich ultramafic rocks1. We determined that dissolved Ni concentrations may have reached ~400 nM throughout much of the Archean, but dropped below ~200 nM by 2.5 Ga and to modern day values (~9 nM) by ~550 Ma. As Ni is a key metal cofactor in several enzymes of methanogens, its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. Here we provide an updated compilation of Ni concentrations and Ni/Fe ratios in Precambrian iron formations based on a greatly expanded (>3 fold) dataset. We frame our rock record compilation in the context of new experiments examining the partitioning and mobility of Ni during simulated diagenesis of Ni-doped iron formation mineral precursors, as well as a fresh look at Ni-Fe scaling relationships in IF vs. modern Fe-rich chemical sediments. While its potential effects on atmospheric oxygenation remains to be fully resolved2, our new results reaffirm the Paleoproterozoic Ni famine, whereby the enzymatic reliance of methanogens on a diminishing supply of volcanic Ni links mantle cooling to the trajectory of Earth surface biogeochemical evolution. Konhauser KO, et al. (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458: 750-753. Kasting JE (2013) What caused the rise of atmospheric O2? Chemical Geology 362: 13-25.

  5. Testing the GAD throughout the Precambrian

    NASA Astrophysics Data System (ADS)

    Veikkolainen, T.; Pesonen, L. J.; Korhonen, K.

    2013-05-01

    A long tradition has emerged in using the inclination frequency analysis to study the functionality of the Geocentric Axial Dipole (GAD) hypothesis in paleomagnetism. Here a test is presented, based on 3016 records of the Earth's Precambrian geomagnetic field as acquired from a novel catalogue maintained by University of Helsinki, and Yale University. The technique is based on fitting zonal (axial) dipolar (GAD), quadrupolar (G2) and octupolar (G3) harmonics to find the best-fitting inclination distribution. The influence of various factors, such as the geologic age, rock type, magnetic polarity, quality of data and its spatial distribution has been tested. Finally, the most plausible estimates for the zonal non-dipolar contributions of the field have been determined as 0 % for G2 and 6 % for G3. Another way to analyze the zonal harmonics of the geomagnetic field and the validity of GAD is based on the asymmetry between the normal and reversed polarities. To get an insight to the morphology of the field in the late Paleoproterozoic, we have also run a reversal simulation using data mainly from the 1.88 Ga Stark Formation, Canada, revealing the both stable polarity directions (N, R) and also transitional directions between them. In the global Precambrian perspective, an overall moderate dependence of the inclination asymmetry on paleolatitude is visible with a distinct mid-latitude peak. However, the required values to account for the observed deviation from GAD are less than 5 % for G2 and less than 10 % for G3. Alternatively, paleosecular variation (PSV) can be used to shed light to processes in the geodynamo and to model the growth of the inner core. We have applied the CALS3K model of the field as a basis of a time simulation of declination-inclination pairs around a grid on the Earth and by this way in estimating PSV. Our approach is based on calculating S vs latitude curves at different time instances in the validity period of the model, and comparing them

  6. Thermal thickness and evolution of Precambrian lithosphere: A global study

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2001-01-01

    The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ???300 blocks with sizes varying from 1?? ?? 1?? to about 5?? ?? 5?? in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300??C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200-220 km and 300-350 km. In general, thin (???220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200 ?? 50 km in early Proterozoic lithosphere, to about 140 ?? 50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the

  7. The Role of Microfossils in the Compression of Marine Sediments: Implications for Submarine Slope Failure

    NASA Astrophysics Data System (ADS)

    Reece, J. S.; Shackleton, T.

    2016-12-01

    The influence of microfossils on engineering properties has long been recognized. However, most experimental studies have been conducted on diatomites, which are almost exclusively composed of diatom fossils. Here, instead, we analyze the impact of varying amounts of microfossils in natural marine sediments on the macro-scale mechanical behavior. We use foraminifera as an example for microfossils, which, in contrast to diatoms, have been understudied. We uniformly mix foraminifera with natural mudstone from Site C0011 in the Nankai Trough, offshore Japan, obtained during Integrated Ocean Drilling Program (IODP) Expedition 322, at three different microfossil concentrations: 0 wt%, 5 wt%, and 10 wt%. The foraminifera, extracted by washing and sieving, originated from IODP Site U1338 in the Equatorial Pacific. We use resedimentation to prepare the homogeneous microfossil-rich mudstone samples and uniaxially compress them to 100 kPa. Additionally, we use scanning electron microscopy to investigate microstructural changes during compression as a function of microfossil content. Microfossil-rich sediments are known to initially not consolidate to as low porosities as other marine clays owing to microfossil shells acting as structural components. But they show a delayed compressibility when the yield stress is overcome and microfossil shells collapse resulting in an increase in porosity and compressibility. Here, we investigate the 1) threshold microfossil content at which the microfabric significantly changes during compression and 2) stress at which foraminifera chambers start to break. We anticipate to observe an increase in compressibility and microstructural changes in the vicinity of the yield stress with increasing microfossil content attributed to the crushing of foraminifera and particle rearrangement. But the total axial stress of 100 kPa at the end of the resedimentation experiments may not be large enough to have a significant effect on the macroscopic

  8. Early precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia.

    PubMed

    Glikson, Andrew Y

    2004-01-01

    Pioneering studies of Precambrian impact fallout units and associated tsunami deposits in the Hamersley Basin, Pilbara Craton, Western Australia, by B.M. Simonson and S.W. Hassler, document a range of tsunami deposits associated with impact fallout units whose impact connection is identified by associated microtektites and microkrystites (condensation spherules). The impact connection of these particles is demonstrated by iridium anomalies, unique platinum group elements patterns, and Ni-rich mineral phases. Densely packed tsunami-transported fragments and boulders overlie microkrystite units of the >2629 +/- 5 Ma top Jeerinah Impact Layer (JIL). Tsunami events closely follow spherule settling associated with the 2561 +/- 8 Ma Spherule Marker Bed SMB-1 and SMB-2 impact events, Bee Gorge Member, Wittenoom Formation. The two impact cycles are separated by a stratigraphically consistent silicified black siltstone, representing a "Quiet Interval." The SMB turbidites display turbulence eddies, climbing ripples, conglomerate pockets, slumps, and waterlogged sediment deformation features. Consequences of tsunami in the probably contemporaneous Carawine Dolomite (Pb-Pb carbonate ages of approximately 2.56-2.54 Ga), eastern Hamersley Basin, include sub-autochthonous below-wave base excavation and megabrecciation of sea floor substrata, resulting in a unique 10-30-m-thick spherule-bearing megabreccia marker mapped over a nearly 100-km north-south strike distance in the east Hamersley Basin. The field relations suggest a pretsunami settling of the bulk of the spherules. Tsunami wave effects include: (1). dispersal of the spherule-rich soft upper sea floor sediments as a subaqueous mud cloud and (2). excavation of consolidated substrata below the soft sediment zone. Excavation and megabrecciation included injection of liquefied spherule-bearing microbreccia into dilated fractures in the disrupted underlying carbonates. Near-perfect preservation of the spherules within the

  9. The late Precambrian greening of the Earth.

    PubMed

    Knauth, L Paul; Kennedy, Martin J

    2009-08-06

    Many aspects of the carbon cycle can be assessed from temporal changes in the (13)C/(12)C ratio of oceanic bicarbonate. (13)C/(12)C can temporarily rise when large amounts of (13)C-depleted photosynthetic organic matter are buried at enhanced rates, and can decrease if phytomass is rapidly oxidized or if low (13)C is rapidly released from methane clathrates. Assuming that variations of the marine (13)C/(12)C ratio are directly recorded in carbonate rocks, thousands of carbon isotope analyses of late Precambrian examples have been published to correlate these otherwise undatable strata and to document perturbations to the carbon cycle just before the great expansion of metazoan life. Low (13)C/(12)C in some Neoproterozoic carbonates is considered evidence of carbon cycle perturbations unique to the Precambrian. These include complete oxidation of all organic matter in the ocean and complete productivity collapse such that low-(13)C/(12)C hydrothermal CO(2) becomes the main input of carbon. Here we compile all published oxygen and carbon isotope data for Neoproterozoic marine carbonates, and consider them in terms of processes known to alter the isotopic composition during transformation of the initial precipitate into limestone/dolostone. We show that the combined oxygen and carbon isotope systematics are identical to those of well-understood Phanerozoic examples that lithified in coastal pore fluids, receiving a large groundwater influx of photosynthetic carbon from terrestrial phytomass. Rather than being perturbations to the carbon cycle, widely reported decreases in (13)C/(12)C in Neoproterozoic carbonates are more easily interpreted in the same way as is done for Phanerozoic examples. This influx of terrestrial carbon is not apparent in carbonates older than approximately 850 Myr, so we infer an explosion of photosynthesizing communities on late Precambrian land surfaces. As a result, biotically enhanced weathering generated carbon-bearing soils on a large

  10. Biomarkers and Microfossils in the Murchison, Rainbow, and Tagish Lake meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Jerman, Gregory A.; Rozanov, Alexei Y.; Davies, Paul C.

    2003-02-01

    During the past six years, we have conducted extensive scanning electron and optical microscopy investigations and x-ray analysis to determine the morphology, life cycle processes, and elemental distributions in living and fossil cyanobacteria, bacteria, archaea, fungi, and algae sampled from terrestrial environments relevant to Astrobiology. Biominerals, pseudomorphs and microfossils have been studied for diverse microbial groups in various states of preservation in many types of rocks (e.g., oil shales, graphites, shungites, bauxites, limestones, pyrites, phosphorites, and hydrothermal vent chimneys). Results of these studies have been applied to the search for biosignatures in carbonaceous chondrites, stony, and nickel iron meteorites. We review important biomarkers found in terrestrial rocks and meteorites and present additional evidence for the existence of indigenous bacterial microfossils in-situ in freshly fractured surfaces of the Murchison, Rainbow and Tagish Lake carbonaceous meteorites. We provide secondary and backscatter electron images and spectral data obtained with Field Emission and Environmental Scanning Electron Microscopes of biominerals and microfossils. We discuss techniques for discriminating indigenous microfossils from recent terrestrial contaminants. Images are provided of framboidal magnetites in oil shales and meteorites and images and 2D x-ray maps are shown of bacterial microfossils embedded in the mineral matrix of the Murchison, Rainbow and Tagish Lake Carbonaceous Meteorites. These microfossils exhibit characteristics that preclude their interpretation as post-arrival contaminants and we interpret them as indigenous biogenic remains.

  11. Exceptionally well-preserved Cretaceous microfossils reveal new biomineralization styles.

    PubMed

    Wendler, Jens E; Bown, Paul

    2013-01-01

    Calcareous microplankton shells form the dominant components of ancient and modern pelagic sea-floor carbonates and are widely used in palaeoenvironmental reconstructions. The efficacy of these applications, however, is dependent upon minimal geochemical alteration during diagenesis, but these modifying processes are poorly understood. Here we report on new biomineralization architectures of previously unsuspected complexity in calcareous cell-wall coverings of extinct dinoflagellates (pithonellids) from a Tanzanian microfossil-lagerstätte. These Cretaceous 'calcispheres' have previously been considered biomineralogically unremarkable but our new observations show that the true nature of these tests has been masked by recrystallization. The pristine Tanzanian fossils are formed from fibre-like crystallites and show archeopyles and exquisitely constructed opercula, demonstrating the dinoflagellate affinity of pithonellids, which has long been uncertain. The interwoven fibre-like structures provide strength and flexibility enhancing the protective function of these tests. The low-density wall fabrics may represent specific adaptation for oceanic encystment life cycles, preventing the cells from rapid sinking.

  12. Microfossils in the Antarctic cold desert: Possible implications for Mars

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.; Ocampo-Friedmann, R.

    1986-01-01

    In the Ross Desert of Antarctica, the principal life form is the cryptoendolithic microbial community in the near-surface layers of porous sandstone rocks. Biological, geological, and climatic factors interact in a complex and precarious balance, making life possible in an otherwise hostile environment. Once this balance is tipped, fossilization sets in. In the reverse case, new colonization of the rock surface may be initiated. As a result, fossilization is contemporary with modern life and both may be simultaneously present in a mosaic pattern. Also, different stages of fossilization are present. The process of fossilization takes place in a nonaquatic environment. If primitive life ever appeared on Mars, it is possible that with increasing aridity, life withdrew into an endolithic niche similar to that in the Antarctic desert. Fossilization in a nonaquatic environment may have set in with the result that traces of past life could be preserved. If such was the case, the study of the fossilization process in Antarctica may hold useful information for the analysis of Martian samples for microfossils.

  13. Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean

    USGS Publications Warehouse

    Marzen, Rachel; DeNinno, Lauren H.; Cronin, Thomas M.

    2016-01-01

    Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.

  14. Reconnaissance geology of the Precambrian rocks in the Ayn Qunay quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Whitlow, Jesse William; Ankary, Abdullah O.

    1972-01-01

    The Aya Qunay quadrangle covers an area of 2833 sq km in central Saudi Arabia, Only the western edge of the quadrangle is underlain by Precambrian rocks, which were the subject of this investigation. Toward the east the Precambrian rocks are unconformably overlain by Permian and younger sedimentary rocks. The Permian rocks at the west edge of the Ayn Qunay quadrangle consist mainly of a granitic intrusive complex of batholithic dimensions. Parts of the eastern edge of the granitic complex are exposed just west of the overlying Khuff Formation of Permian age, where biotite-hornblende granite of the complex intrudes chlorite-sericite schist of the Precambrian Bi'r Khountina Group. The biotite-hornblende granite of the complex also intrudes plutons of diorite, gabbro, and pyroxenite and is itself intruded by granite porphyry, thereby indicating some difference in age between the granitic rocks in the complex. A sequence of metamorphosed volcanic rocks composed mainly of andesite, rhyolite, and kindred rocks, and called the Halaban Group, is older than the Bi'r Khountina Group. Relations between the Halaban and a gray hornblende-biotite granite gneiss are uncertain, but the gneiss may be older than the Halaban. The few observed contacts disclosed parallel foliation in the two units, but the foliation may have been imposed after the Halaban was deposited on the granite gneiss. Two major left-lateral faults extend west-northwest across the Precambrian rocks but are not in the Permian rocks. These faults parallel to the Najd fault zone found farther south. Seemingly they correlate in time with early movements on the Najd fault zone, but not with the latest. Saprolitic material-of variable thickness is present on the upper surface of the Precambrian rocks beneath the Khuff Formation at many places. Where the Khuff Formation has been removed by erosion, the saprolite is also stripped away. The weathering probably took place in pre-Khuff time. No ancient mines or prospects

  15. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota.

    PubMed

    Campbell, S E

    1979-09-01

    A cyanophyte dominated mat, desert crust, forms the ground cover in areas measuring hundreds of square meters in Utah and smaller patches in Colorado. The algal mat shows stromatolitic features such as sediment trapping and accretion, a convoluted surface, and polygonal cracking. Sand and clay particles are immobilized by a dense network of filaments of the two dominating cyanophyte species, Microcoleus vaginatus and M. chthonoplastes, which secrete sheaths to which particles adhere. These microorganisms can tolerate long periods of desiccation and are capable of instant reactivation and migration following wetting. Migration occurs in two events: 1. immediately following wetting of dry mat, trichomes are mechanically expelled from the sheath as it swells during rehydration, and 2. subsequently, trichomes begin a self-propelled gliding motility which is accompanied by further production of sheath. The maximum distance traveled on solid agar by trichomes of Microcoleus vaginatus during a 12 hour period of light was 4.8 cm. This corresponds to approximately 500 times the length of the fastest trichome, and provides a measure of the potential for spreading of the mat in nature via the motility of the trichomes. Dehydration resistence of the sheath modifies the extracellular environment of the trichomes and enables their transition to dormancy. Following prolonged wetting and evaporative drying of the mat in the laboratory, a smooth wafer-like crust is formed by the sheaths of Microcleus trichomes that have migrated to the surface. Calcium carbonate precipitates among the algal filaments under experimental conditions, indicating a potential for mat lithification and fossilization in the form of a caliche crust. It is suggested that limestones containing tubular microfossils may, in part, be of such an origin. The formation of mature Precambrian soils may be attributable to soil accretion, stabilization, and biogenic modification by blue-green algal land mats similar to

  16. New constraints on Precambrian ocean composition

    NASA Technical Reports Server (NTRS)

    Grotzinger, J. P.; Kasting, J. F.

    1993-01-01

    The Precambrian record of carbonate and evaporite sedimentation is equivocal. In contrast to most previous interpretations, it is possible that Archean, Paleoproterozoic, and to a lesser extent, Meso to Neoproterozoic seawater favored surplus abiotic carbonate precipitation, as aragonite and (hi-Mg?) calcite, in comparison to younger times. Furthermore, gypsum/anhydrite may have been only rarely precipitated prior to halite precipitation during evaporation prior to about 1.8 Ga. Two effects may have contributed to these relationships. First, sulfate concentration of seawater may have been critically low prior to about 1.9 Ga so the product mCa++ x mSO4-- would not have produced gypsum before halite, as in the Mesoproterozoic to modern ocean. Second, the bicarbonate to calcium ratio was sufficiently high so that during progressive evaporation of seawater, calcium would have been exhausted before the gypsum field was reached. The pH of the Archean and Paleoproterozoic ocean need not have been significantly different from the modern value of 8.1, even at CO2 partial pressures of a tenth of an atmosphere. Higher CO2 partial pressures require somewhat lower pH values.

  17. The Precambrian crustal structure of East Africa

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Tugume, F.; Nyblade, A.; Julia, J.; Mulibo, G.

    2011-12-01

    We present new results on crustal structure from East Africa from analyzing P wave receiver functions. The data for this study come from temporary AfricaArray broadband seismic stations deployed between 2007 and 2011 in Uganda, Tanzania and Zambia. Receiver functions have been computed using an iterative deconvolution method. Crustal structure has been imaged using the H-k stacking method and by jointly inverting the receiver functions and surface wave phase and group velocities. The results show remarkably uniform crust throughout the Archean and Proterozoic terrains that comprise the Precambrian tectonic framework of the region. Crustal thickness for most terrains is between 37 and 40 km, and Poisson's ratio is between 0.25 and 0.27. Results from the joint inversion yield average crustal Vs values of 3.6 to 3.7 km/s. For most terrains, a thin (1-5 km) thick high velocity (Vs>4.0 km/s) is found at the base of the crust.

  18. Heat flow from the Liberian precambrian shield

    SciTech Connect

    Sass, J.H.; Behrendt, J.C.

    1980-06-10

    Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m/sup -2/. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m/sup -2/. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42 +- 8 mW m/sup -2/) and Nigeria (38 +- 2 mW /sup -2/) but are somewhat higher than values from Niger (20 mW m/sup -2/)more » and neighboring Sierra Leone (26 mW m/sup -2/). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58 +- 8 mW m/sup -2/), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 ..mu..W m/sup -3/. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a 'characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m/sup -2/ is consistent with that from other Precambrian shields.« less

  19. Heat flow from the Liberian Precambrian Shield

    NASA Astrophysics Data System (ADS)

    Sass, J. H.; Behrendt, J. C.

    1980-06-01

    Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m-2. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m-2. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42±8 mW m-2) and Nigeria (38±2 mW m-2) but are somewhat higher than values from Niger (20 mW m-2) and neighboring Sierra Leone (26 mW m-2). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58±8 m W m-2), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 /μW m-3. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a `characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m-2 is consistent with that from other Precambrian shields.

  20. A Precambrian microcontinent in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Amundsen, Hans; Hartz, Ebbe H.; Corfu, Fernando; Kusznir, Nick; Gaina, Carmen; Doubrovine, Pavel V.; Steinberger, Bernhard; Ashwal, Lewis D.; Jamtveit, Bjørn

    2013-03-01

    The Laccadive-Chagos Ridge and Southern Mascarene Plateau in the north-central and western Indian Ocean, respectively, are thought to be volcanic chains formed above the Réunion mantle plume over the past 65.5 million years. Here we use U-Pb dating to analyse the ages of zircon xenocrysts found within young lavas on the island of Mauritius, part of the Southern Mascarene Plateau. We find that the zircons are either Palaeoproterozoic (more than 1,971 million years old) or Neoproterozoic (between 660 and 840 million years old). We propose that the zircons were assimilated from ancient fragments of continental lithosphere beneath Mauritius, and were brought to the surface by plume-related lavas. We use gravity data inversion to map crustal thickness and find that Mauritius forms part of a contiguous block of anomalously thick crust that extends in an arc northwards to the Seychelles. Using plate tectonic reconstructions, we show that Mauritius and the adjacent Mascarene Plateau may overlie a Precambrian microcontinent that we call Mauritia. On the basis of reinterpretation of marine geophysical data, we propose that Mauritia was separated from Madagascar and fragmented into a ribbon-like configuration by a series of mid-ocean ridge jumps during the opening of the Mascarene ocean basin between 83.5 and 61 million years ago. We suggest that the plume-related magmatic deposits have since covered Mauritia and potentially other continental fragments.

  1. Plant microfossil record of the terminal Cretaceous event in the western United States and Canada

    NASA Technical Reports Server (NTRS)

    Nichols, D. J.; Fleming, R. F.

    1988-01-01

    Plant microfossils, principally pollen grains and spores produced by land plants, provide an excellent record of the terminal Cretaceous event in nonmarine environments. The record indicates regional devastation of the latest Cretaceous vegetation with the extinction of many groups, followed by a recolonization of the earliest Tertiary land surface, and development of a permanently changed land flora. The regional variations in depositional environments, plant communities, and paleoclimates provide insight into the nature and effects of the event, which were short-lived but profound. The plant microfossil data support the hypothesis that an abruptly initiated, major ecological crisis occurred at the end of the Cretaceous. Disruption of the Late Cretaceous flora ultimately contributred to the rise of modern vegetation. The plant microfossils together with geochemical and mineralogical data are consistent with an extraterrestrial impact having been the cause of the terminal Cretaceous event.

  2. Recalibrating the concentration of Precambrian seawater sulfate

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Bradley, A. S.; Hoarfrost, A.; Girguis, P. R.

    2010-12-01

    The isotopic offset between sulfate sulfur and sulfide sulfur (δ34Ssulfate-sulfide) is widely used in the Precambrian as a paleo-indicator of seawater sulfate concentrations. Popularized by experimental work proposing an increase in seawater sulfate at the Archean - Proterozoic boundary, the concept of using a calibrated physiological process (dissimilatory sulfate reduction) to extract environmental information holds the potential to unlock numerous geological questions. To that end, the interpretability of sulfur isotope records relies on the degree to which strict quantitative constraints have been placed on the relationship between sulfate concentrations and sulfate reducing bacteria. Our work serves to extend those constraints. Here we present data from a series of replicate quasi-chemostat microbial reactors, inoculated with marine sediment from Monterey Bay and incubated with artificial seawater ([SO42-]< 5 mM). Our experimental design continuously removes sulfide and allows for systematic tracking of the dependence of δ34Ssulfate-sulfide on seawater sulfate concentration. In addition to expanding the existing δ34S context, we target high-precision multiple sulfur isotope data, which allows for a greater interpretability of both the overall result and its mapping onto environmental records. Further, we use natural abundance and δ18O spiked water within our experiments to assay rates of cellular re-oxidation (within the sulfate reduction pathway) and to constrain natural δ18O effects within these systems. Finally, we use modern molecular biological techniques to track community structure as a function of time and environmental conditions. Together, these data provide an integrated metric with which to interpret complex natural sulfur isotope records.

  3. Microfossils from the Local Marine Environment. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 219. [Project COAST].

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Education.

    This unit on fossils is designed for junior high school students. Students collect a sediment sample, process the sample, and examine it for microfossils. The scientific classification and naming of microfossils is not stressed. Included in the materials are evaluation items, background materials for teachers, lists of needed materials, vocabulary…

  4. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?

    NASA Technical Reports Server (NTRS)

    Grotzinger, J. P.; Knoll, A. H.

    1995-01-01

    Late Permian reefs of the Capitan complex, west Texas; the Magnesian Limestone, England; Chuenmuping reef, south China; and elsewhere contain anomalously large volumes of aragonite and calcite marine cements and sea-floor crusts, as well as abundant microbial precipitates. These components strongly influenced reef growth and may have been responsible for the construction of rigid, open reefal frames in which bryozoans and sponges became encrusted and structurally reinforced. In some cases, such as the upper biostrome of the Magnesian Limestone, precipitated microbialites and inorganic crusts were the primary constituents of the reef core. These microbial and inorganic reefs do not have modern marine counterparts; on the contrary, their textures and genesis are best understood through comparison with the older rock record, particularly that of the early Precambrian. Early Precambrian reefal facies are interpreted to have formed in a stratified ocean with anoxic deep waters enriched in carbonate alkalinity. Upwelling mixed deep and surface waters, resulting in massive seafloor precipitation of aragonite and calcite. During Mesoproterozoic and early Neoproterozoic time, the ocean became more fully oxidized, and seafloor carbonate precipitation was significantly reduced. However, during the late Neoproterozoic, sizeable volumes of deep ocean water once again became anoxic for protracted intervals; the distinctive "cap carbonates" found above Neoproterozoic tillites attest to renewed upwelling of anoxic bottom water enriched in carbonate alkalinity and 12C. Anomalous late Permian seafloor precipitates are interpreted as the product, at least in part, of similar processes. Massive carbonate precipitation was favored by: 1) reduced shelf space for carbonate precipitation, 2) increased flux of Ca to the oceans during increased continental erosion, 3) deep basinal anoxia that generated upwelling waters with elevated alkalinities, and 4) further evolution of ocean water in

  5. Revisiting the Si Isotope Record of Precambrian Cherts and Banded Iron Formations Using New Experimental Results

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Satkoski, A.; Beard, B. L.; Reddy, T. R.; Beukes, N. J.; Johnson, C.

    2017-12-01

    Precambrian Banded iron formations (BIFs) and cherts provide a record of Fe and Si biogeochemical cycling in early Earth marine environments. Much of the focus on BIFs has been the origin and pathways for Fe, but Si is intimately tied to BIF genesis through its connection to Fe minerals, either through direct structural bonding or through sorption. In the Precambrian ocean, aqueous Si contents were high, and it is increasingly recognized that Fe(III)-Si gels were the most likely precursor to BIFs [1]. It is known that Fe-Si bonding affects stable Fe isotope fractionations [2], and our recent experimental work shows this to be true for stable Si isotope fractionations [3, 4]. Silicon isotope fractionations in the Fe-Si system vary from 0‰ to nearly 4‰ in 30Si/28Si ratios with the solid phase being isotopically light depending on Fe:Si ratio [3, 4, and this study], a range far larger than that of 56Fe/54Fe ratios, highlighting the fact that Si isotopes are a highly sensitive tracer of the Fe-Si cycle. This range in Si isotope fractionation factors for the Fe-Si system can explain the full range of δ30Si values measured in Precambrian BIFs, providing a new framework to interpret Precambrian δ30Si records. Our results provide strong support for a model where Fe(III)-Si gels are the precursor phase for BIFs, which in turn affects estimates for the aqueous Fe and Si contents of the Precambrian oceans through changes in Fe-Si gel solubility. Our experiments also showed that microbial dissimilatory iron reduction (DIR) of Fe(III)-Si gel can easily produce a solid with Fe(II)-Fe(III) stoichiometry equal to magnetite, in marked contrast to abiotic incorporation of Fe(II) into Fe(III)-Si gel that resulted in a solid with Fe(II)-Fe(III) stoichiometry much lower than magnetite. Moreover, this DIR process produces a unique, negative δ30Si signature that should be eventually preserved in quartz closely associated with magnetite upon phase transformation of Fe-Si gel, and

  6. An ultraviolet light induced bacteriophage in Beneckea gazogenes. [organism growth on precambrian earth

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1979-01-01

    The effects of UV and high intensity irradiation on microorganisms growing under conditions prevalent during the early Precambrian Aeon are examined. The study employed the anaerobic red pigmented marine vibrio, Beneckea gazogenes (Harwood, 1978), using an extreme UV sensitivity of 2537 A, extensive cell lysis, and commitant production of bacteriophage induced by the UV light. Three types of white mutant, pink colony mutant, and red wild type isolates of B gazogenes were grown showing differential irradiation sensitivity and phage particles from all three lysates were collected and examined.

  7. Testing the survival of microfossils in an artificial martian sedimentary meteorite: the STONE 6 Experiment

    NASA Astrophysics Data System (ADS)

    Foucher, Frédéric; Westall, Frances; Brandstaetter, Franz; Demets, Rene; Parnell, John; Cockell, Charles; Edwards, Howell; Jean-Michel, B.; Brack, André; Kurat, Gero

    Conditions on early Mars during the Noachian (-4.5 to -3.5 Ga) were possibly suitable for the emergence of life [1,3] even though water bodies were probably not permanent and could have been destroyed by frequent impacts. Since Mars does not appear to have had plate tectonics, the remains of this hypothetic life could be found within Noachian sediments. In addition to proving the existence of extraterrestrial life, such a discovery would be very helpful for studies related to the origin and early evolution of life on Earth. Indeed, although life most likely appeared on Earth before 4 Ga ago, no suitable (i.e. well-preserved) rocks containing traces of life older than 3.5 billion years exist; older rocks are either too metamorphosed or have been destroyed by plate tectonics. Because of the harsh conditions on Noachian Mars compared to those of the early Earth, the martian organisms are likely to have remained in a very primitive state of evolution and will thus be very difficult to observe in situ. One way to investigate potential traces of life in martian rocks would be to study sedimentary meteorites from Mars. However, all the 54 martian meteorites found so far are volcanic rocks [4]. Is this because sedimentary rocks do not survive the original impact to escape Mars, or the stresses of entry into the Earth's atmosphere? In order to test the latter effects, a series of experiments were devised to test the survivability of different types of sediments during Earth atmosphere entry, the STONE experiments. In particular, the present experiment STONE 6 tested a Noachian sedimentary analogue that consisted of a 3.45 Ga-old silicified volcanic sand containing ancient traces of life [5]. The volcanic sand (chert) from the Pilbara, Australia, containing organic microfossils [6] was embedded in the heat shield of a FOTON space capsule that underwent atmospheric entry on the 26th September, 2007. After landing, the first observation was the white colour of the fusion crust

  8. The chemical structure of Gloeocapsomorpha prisca microfossils: implications for their origin

    NASA Astrophysics Data System (ADS)

    Blokker, Peter; van Bergen, Pim; Pancost, Rich; Collinson, Margaret E.; de Leeuw, Jan W.; Sinninghe Damste, Jaap S.

    2001-03-01

    Two Estonian Kukersites (Ordovician) and two samples from the Guttenberg Member (Ordovician) of the Decorah formation (North America) containing botryoidal aggregates of Gloeocapsomorpha prisca were investigated by RuO 4 chemical degradation, FTIR, and flash pyrolysis-GC/MS to obtain information about the polymeric structure of these microfossils. The products formed upon oxidation by RuO 4 were analysed by GC/MS and revealed the presence of a wide range of carboxyl and/or carbonyl moiety containing compounds with carbon skeletons ranging from C 5 to C 20. The Estonian Kukersites reveal the presence of a characteristic set of mono-, di-, and tricarboxylic acids. These compounds suggest that the Estonian Kukersites are composed of a polymer consisting of mainly C 21 and C 23n-alkenyl resorcinol building blocks. Similarly, although the tricarboxylic acids are not present, the RuO 4 degradation product mixtures of the Guttenberg Member samples, suggest a poly( n-alkyl resorcinol) structure. The higher thermal maturity is most likely responsible for the different chemistry and morphology of the G. prisca microfossils in these samples. Because compounds like n-alkenyl resorcinols are known to polymerise under oxygenated conditions even in an aqueous environment, it is not per se necessary that these microfossils are composed of a selectively preserved biopolymeric cell wall. It is also possible that G. prisca microfossils are composed of a cell wall or sheath component that polymerised during senescence or diagenesis of the organism.

  9. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model.

    PubMed

    Yasuhara, Moriaki; Tittensor, Derek P; Hillebrand, Helmut; Worm, Boris

    2017-02-01

    There is growing interest in the integration of macroecology and palaeoecology towards a better understanding of past, present, and anticipated future biodiversity dynamics. However, the empirical basis for this integration has thus far been limited. Here we review prospects for a macroecology-palaeoecology integration in biodiversity analyses with a focus on marine microfossils [i.e. small (or small parts of) organisms with high fossilization potential, such as foraminifera, ostracodes, diatoms, radiolaria, coccolithophores, dinoflagellates, and ichthyoliths]. Marine microfossils represent a useful model system for such integrative research because of their high abundance, large spatiotemporal coverage, and good taxonomic and temporal resolution. The microfossil record allows for quantitative cross-scale research designs, which help in answering fundamental questions about marine biodiversity, including the causes behind similarities in patterns of latitudinal and longitudinal variation across taxa, the degree of constancy of observed gradients over time, and the relative importance of hypothesized drivers that may explain past or present biodiversity patterns. The inclusion of a deep-time perspective based on high-resolution microfossil records may be an important step for the further maturation of macroecology. An improved integration of macroecology and palaeoecology would aid in our understanding of the balance of ecological and evolutionary mechanisms that have shaped the biosphere we inhabit today and affect how it may change in the future. © 2015 Cambridge Philosophical Society.

  10. Precambrian basement geology of North and South Dakota.

    USGS Publications Warehouse

    Klasner, J.S.; King, E.R.

    1986-01-01

    Combined analysis of drill-hole, gravity and magnetic data indicates that the Precambrian rocks in the basement of the Dakotas may be divided into a series of lithotectonic terrains. On the basis of an analysis of geological and geophysical data in the Dakotas and from the surrounding states and Canada, it is shown how the exposed Precambrian rocks of the adjacent shield areas project into the study area. Brief comments are made on the tectonic implications of this study. Geological and geophysical characteristics of 11 terrains are tabulated. -P.Br.

  11. Excess europium content in Precambrian sedimentary rocks and continental evolution

    NASA Technical Reports Server (NTRS)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  12. Facilitating Identification of Poorly Preserved Marine Microfossils through 3D Printing

    NASA Astrophysics Data System (ADS)

    Christensen, R. V.; Robinson, M. M.; Sessa, J.

    2016-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a period of sudden and intense global warming that occurred 56 Myr, and is widely considered a possible analogue for future climatic changes. Marine microfossils are important proxies used in the reconstruction of PETM paleoenvironments and paleoclimate. The correct species-level identification of foraminifera and pteropod specimens is necessary to understand ocean temperature, chemistry, nutrient availability, and ecosystem structure during this hyperthermal event. During periods of extreme or rapid environmental perturbations foraminifera can be poorly preserved. Pteropod identification is equally challenging as aragonitic shells are vulnerable to changing ocean acidity and often only internal molds are left to be identified. The macroscopic rendering of the internal and external test morphology of marine microfossils via 3D printing allows for a more experiential species-recognition education, especially of difficult to identify specimens. A selected microfossil specimen is scanned using computerized tomography (CT), creating x-ray slices of the specimen that are then processed into a digital model. The digitized fossil can then be analyzed using 3D software and subsequently printed using a wide variety of materials. The magnified model can be easily manipulated in a student's hand, and thus can be studied in a more visible and tactile way than traditional methods allow. This invaluable teaching tool physically manifests what was previously limited to textbook images and illustrations or the view field of a microscope. We show the step-by-step 3-D printing process of several PETM marine microfossil specimens from CT scans and demonstrate their advantage over 2-D SEM images for learning to identify microfossils to the species level. In addition, we provide samples to demonstrate the utility of 3-D models in identifying poorly preserved foraminifer specimens and species of pteropods from internal molds.

  13. Late Precambrian-Cambrian sediments of Huqf group, Sultanate of Oman

    SciTech Connect

    Gorin, G.E.; Racz, L.G.; Walter, M.R.

    1982-12-01

    The Huqf Group is the oldest known sedimentary sequence overlying crystalline basement in the Sultanate of Oman. It crops out on a broad regional high, the Huqf Axis, which forms a dominating structural element on the southeastern edge of the Arabian peninsula. Subsurface and outcrop evidence within and outside of Oman suggests that the sediments of the Huqf Group lie within the age span of late Precambrian to Early-Middle Cambrian. The Huqf Group is subdivided into five formations corresponding to an alternation of clastics (Abu Mahara and Shuram Formations) and carbonates (Khufai and Buah Formations) deposited in essentially shallow marinemore » to supratidal (or fluviatile) conditions and terminated by an evaporitic sequence (Ara Formation). Evaporites are absent on the Huqf Axis, but they are thickly developed to the west over a large part of southern and central Oman, where they acted as the major structure former of most of Oman's fields, and even locally pierced up to the surface. Regional correlations suggest that the predominantly carbonate-evaporitic facies of the Huqf Group was widely distributed in late Precambrian-Early Cambrian time: the Huqf basin is tentatively considered part of a belt of evaporitic basins and intervening carbonate platforms, which stretched across the Pangea landmass from the Indian subcontinent (Salt Range of Pakistan) through South Yemen, Oman, and Saudi Arabia into the gulf states and Iran (Hormuz Series and carbonate platform north of the Zagros).« less

  14. Some perisphinctoid ammonites of the Štramberk Limestone and their dating with associated microfossils (Tithonian to Lower Berriasian, Outer Western Carpathians, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Vašíček, Zdeněk; Reháková, Daniela; Skupien, Petr

    2017-08-01

    The present contribution deals with the taxonomy of seven species of perisphinctoid ammonite from the Štramberk Limestone (Outer Western Carpathians, Czech Republic) deposited in Moravian-Silesian museums. The age of these studied ammonites is compared with that of index microfossils contained in the matrix adhering to or infilling the studied specimens. The ammonites document a stratigraphic range from earliest Tithonian to early Berriasian. In addition to taxonomy and new ontogenetic data on some species, we also present data on their palaeogeographic distribution. The occurrence of Subboreal himalayitids in the Štramberk Limestone of an early Berriasian age is determined by both the microfauna and accompanying ammonites, which indicate connection of the Silesian-part of the Tethyan Carpathian area with the Subboreal Russian Platform Basin. These records also suggest an early Berriasian age (Jacobi Chron) for the lowermost part of the Ryazanian stage in its type area.

  15. Some perisphinctoid ammonites of the Štramberk Limestone and their dating with associated microfossils (Tithonian to Lower Berriasian, Outer Western Carpathians, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Vašíček, Zdeněk; Reháková, Daniela; Skupien, Petr

    2016-08-01

    The present contribution deals with the taxonomy of seven species of perisphinctoid ammonite from the Štramberk Limestone (Outer Western Carpathians, Czech Republic) deposited in Moravian-Silesian museums. The age of these studied ammonites is compared with that of index microfossils contained in the matrix adhering to or infilling the studied specimens. The ammonites document a stratigraphic range from earliest Tithonian to early Berriasian. In addition to taxonomy and new ontogenetic data on some species, we also present data on their palaeogeographic distribution. The occurrence of Subboreal himalayitids in the Štramberk Limestone of an early Berriasian age is determined by both the microfauna and accompanying ammonites, which indicate connection of the Silesian-part of the Tethyan Carpathian area with the Subboreal Russian Platform Basin. These records also suggest an early Berriasian age (Jacobi Chron) for the lowermost part of the Ryazanian stage in its type area.

  16. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  17. Fossil Record of Precambrian Life on Land

    NASA Technical Reports Server (NTRS)

    Knauth, Paul

    2000-01-01

    The argument that the earth's early ocean was up to two times modern salinity was published in 'Nature' and presented at the 1998 Annual Meeting of the Geological Society of America in Toronto. The argument is bolstered by chemical data for fluid inclusions in Archean black smokers. The inclusions were 1.7 times the modern salinity causing the authors to interpret the parent fluids as evaporite brines (in a deep marine setting). I reinterpreted the data in terms of the predicted value of high Archean salinities. If the arguments I presented are on track, early life was either halophilic or non-marine. Halophiles are not among the most primitive organisms based on RNA sequencing, so here is an a priori argument that non-marine environments may have been the site of most early biologic evolution. This result carries significant implications for the issue of past life on Mars or current life on the putative sub-ice oceans on Europa and possibly Callisto. If the Cl/H2O ratio on these objects is similar to that of the earth, then oceans and oceanic sediments are probably not the preferred sites for early life. On Mars, this means that non-marine deposits such as caliche in basalt may be an overlooked potential sample target.

  18. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    Rb-Sr and K-Ar mineral ages are obtained on rocks of the metamorphic complex and on the granite. These ages range from about 2,400 to 1,420 million years and are part of a regional pattern of lowered mineral ages of Precambrian W rocks of southern Wyoming. A major discontinuity in these mineral ages occurs along a line extending from the northern Laramie Range, through the northern part of the Granite Mountains, to the southeastern Wind River Mountains. North of this line, Rb-Sr and K-Ar biotite ages are 2,300 million years or greater, whereas to the south, the biotite ages decrease drastically over a short distance, to a common range of 1,600-1,400 million years. We suggest that these lowered ages represent regional cooling below the 300 0 C isotherm as a consequence of uplift and erosion of the large crustal block occurring south of the age discontinuity. In this interpretation, the westerly-trending age discontinuity would be a zone of major crustal dislocation that resulted from vertical tectonics in late Precambrian X or early Precambrian Y time.

  19. The First Evidence of the Precambrian Basement in the Fore Range Zone of the Great Caucasus.

    NASA Astrophysics Data System (ADS)

    Latyshev, A.; Kamzolkin, V.; Vidjapin, Y.; Somin, M.; Ivanov, S.

    2017-12-01

    Within the Great Caucasus fold-thrust belt, the Fore Range zone has the most complicated structure, and the highest degree of metamorphism was found there. This zone consists of several salients with the different composition and the structural and metamorphic evolution. The largest Blyb salient includes the metamorphic basement covered by the pack of thrusts. According to the recent isotopic data the upper levels of the Blyb metamorphic complex (BMC) are supposed to be Middle-Paleozoic (Somin, 2011). We studied zircons from the granitic intrusions located in the metamorphic rocks of the BMC. The U-Pb dating (SHRIMP II, VSEGEI, Russia) of zircons from the large Balkan metadiorite massif yielded the ages of 549±7,4, 574,1±6,7, and 567,9±6,9 Ma. All studied zircons show the high Th/U ratios and likely have the magmatic origin. This data is the first confirmation of the presence of the Precambrian basement and Vendian magmatic activity in the Fore Range zone. Zircons from the Unnamed granodiorite massif from the south of the Blyb salient yielded the age of 319±3.8 Ma (the Early Carboniferous). This fact taken together with the low grade of metamorphism in this intrusion reveals the Late Paleozoic magmatic event in the Fore Range zone. We also suggest that the Precambrian basement of the BMC, including the Balkan intrusion, is covered by so-called Armovsky nappe. This is confirmed by the field data, Middle-Paleozoic U-Pb ages and the higher degree of metamorphism of the Armovsky gneisses and schists. Thus, the BMC is not uniform but includes the blocks of the different age and metamorphic grades. Finally, we measured the anisotropy of magnetic susceptibility (AMS) of the Balkan metadiorites. The axes of AMS ellipsoid fix the conditions of the north-east compression, as well as the strain field reconstructed from the macrostructures orientation, which corresponds to the thrusts propagation. Therefore, the emplacement of the Balkan massif happened before the thrust

  20. Digital database of microfossil localities in Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    McDougall, Kristin; Block, Debra L.

    2014-01-01

    The eastern San Francisco Bay region (Contra Costa and Alameda Counties, California) is a geologically complex area divided by faults into a suite of tectonic blocks. Each block contains a unique stratigraphic sequence of Tertiary sediments that in most blocks unconformably overlie Mesozoic sediments. Age and environmental interpretations based on analysis of microfossil assemblages are key factors in interpreting geologic history, structure, and correlation of each block. Much of this data, however, is distributed in unpublished internal reports and memos, and is generally unavailable to the geologic community. In this report the U.S. Geological Survey microfossil data from the Tertiary sediments of Alameda and Contra Costa counties are analyzed and presented in a digital database, which provides a user-friendly summary of the micropaleontologic data, locality information, and biostratigraphic and ecologic interpretations.

  1. The palaeoecologic and biostratigraphic evaluation of Middle Miocene freshwater sediments and microfossils near Denkendorf (Bavaria)

    NASA Astrophysics Data System (ADS)

    Pirkenseer, C.; Reichenbacher, B.

    2009-04-01

    Isolated freshwater sediments that partially cover the Jurassic limestones of the Swabian and Franconian Alb represent the northernmost expansion of the Molasse sediments. These sediments represent the analogue to the Brackish Molasse and part of the Upper Freshwater Molasse (Ottnangian to Badenian). Samples of six drillcores from the vicinity of Denkendorf (Franconian Alb, Bavaria) yielded ostracods of the superfamily Cypridoidea, frequent oogonia of charophytes, otoliths of the family Gobiidae, teeth of several taxa of micromammals as well as abundant material of amphibians, reptiles and gastropods. The sediments show a general trend from basal, more clastic influenced deposits to uniformly developed marly sediments with freshwater carbonate intercalations. The acme of microfossil occurrences is associated with the latter section. The palaeoecologic analysis characterises the environment as structured littoral zone (e.g. Pseudocandona steinheimensis, Gyraulus sp., Planorbarius sp., Rana ridibunda, Triturus sp.) of a larger oligo- to mesotrophic (Chara spp., Nitellopsis spp.) low-energy freshwater system under a warm subtropical to tropical climate (Diplocynodon cf. D. styriacus, Channa sp.). The cooccurrence of suboxia- and oligotrophy-tolerant species like Palaeocarassius sp. and Channa sp. may indicate short intervals of regional depletion of oxygene and raise of nutrient content. Mediocypris candonaeformis and Gobius latiformis represent relict species of the preceding Brackwassermolasse. Terrestrial elements include Proboscidea (phalanx), Cervidae (astragalus), land turtles (Testudo sp.) and gastropods (Clausiliidae, Pupillidae, Cepaea sp.). The occurrence of Jurassic xenoclasts and bean iron ore indicate the presence of a tributary system. The faunal and floral assemblages show close affinities to other localities of the Molasse Basin (e.g., Sandelzhausen). In accordance with the depositional history this indicates a palaeogeographic connection with the

  2. Using Soft Sculpture Microfossils and Other Crafted Models to Teach Geoscience

    NASA Astrophysics Data System (ADS)

    Spinak, N. R.

    2017-12-01

    For the past 5 years, the International Ocean Discovery Program (IODP) has been using the author's sewn models of microfossils to help learners understand the shapes and design of these tiny fossils. These tactile objects make the study of ancient underwater life more tangible. Multiple studies have shown that interactive models can help many learners understand science. The Montessori and Waldorf education programs are based in large part on earlier insights into meeting these needs. The act of drawing has been an essential part of medical education. The STEAM (Science, Technology, Engineering, Arts and Math) movement has advocated for STEM supporters to recognize the inseparability of science and art. This presentation describes how the author's knitted or sewn models of microfossils incorporate art and design into geoscience education. The geoscience research and art processes used in developing and creating these educational soft sculptures will be described. In multiple entry points to science study, specific reciprocal benefits to boundary crossing among the arts and sciences for those who have primary talents in a particular area of study will be discussed. Geoscience education can benefit from using art and craft items such as models. Many websites now offer soft sculptures for biology study such as organs and germs (e.g. (https://www.giantmicrobes.com/us/main/nasty-germs). The Wortheim project involving community and crochet is another approach (http://crochetcoralreef.org/). These tactile artifacts give learners an entry-level experience with biology. Three dimensional models are multisensory. The enlarged manipulative microfossil models invite learners to make comparisons and gain insights when microscopes are not available or appropriate for the audience. Adding the physical involvement of creating a microfossil yourself increases the multi-sensory experience even further. Learning craft skills extends the cross-cutting concepts of the NGSS to a mutual

  3. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation.

    PubMed

    Lepot, Kevin; Addad, Ahmed; Knoll, Andrew H; Wang, Jian; Troadec, David; Béché, Armand; Javaux, Emmanuelle J

    2017-03-23

    Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500-600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe 2+ toxicity during the Palaeoproterozoic.

  4. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation

    PubMed Central

    Lepot, Kevin; Addad, Ahmed; Knoll, Andrew H.; Wang, Jian; Troadec, David; Béché, Armand; Javaux, Emmanuelle J.

    2017-01-01

    Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500–600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe2+ toxicity during the Palaeoproterozoic. PMID:28332570

  5. The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park

    PubMed Central

    Siefert, Janet L.; Escalante, Ana E.; Elser, James J.; Eguiarte, Luis E.

    2012-01-01

    Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a “Precambrian Park” for astrobiology. Key Words: Microbial mats—Stromatolites—Early Earth—Extremophilic microorganisms—Microbial ecology. Astrobiology 12, 641–647. PMID:22920514

  6. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  7. A key role for green rust in the Precambrian oceans and the genesis of iron formations

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Alesker, M.; Schuster, E. M.; Popovitz-Biro, R.; Feldman, Y.

    2017-01-01

    Iron formations deposited in marine settings during the Precambrian represent large sinks of iron and silica, and have been used to reconstruct environmental conditions at the time of their formation. However, the observed mineralogy in iron formations, which consists of iron oxides, silicates, carbonates and sulfides, is generally thought to have arisen from diagenesis of one or more mineral precursors. Ferric iron hydroxides and ferrous carbonates and silicates have been identified as prime candidates. Here we investigate the potential role of green rust, a ferrous-ferric hydroxy salt, in the genesis of iron formations. Our laboratory experiments show that green rust readily forms in early seawater-analogue solutions, as predicted by thermodynamic calculations, and that it ages into minerals observed in iron formations. Dynamic models of the iron cycle further indicate that green rust would have precipitated near the iron redoxcline, and it is expected that when the green rust sank it transformed into stable phases within the water column and sediments. We suggest, therefore, that the precipitation and transformation of green rust was a key process in the iron cycle, and that the interaction of green rust with various elements should be included in any consideration of Precambrian biogeochemical cycles.

  8. Analysis of a Precambrian resonance-stabilized day length

    NASA Astrophysics Data System (ADS)

    Bartlett, Benjamin C.; Stevenson, David J.

    2016-06-01

    During the Precambrian era, Earth's decelerating rotation would have passed a 21 h period that would have been resonant with the semidiurnal atmospheric thermal tide. Near this point, the atmospheric torque would have been maximized, being comparable in magnitude but opposite in direction to the lunar torque, halting Earth's rotational deceleration, maintaining a constant day length, as detailed by Zahnle and Walker (1987). We develop a computational model to determine necessary conditions for formation and breakage of this resonant effect. Our simulations show the resonance to be resilient to atmospheric thermal noise but suggest a sudden atmospheric temperature increase like the deglaciation period following a possible "snowball Earth" near the end of the Precambrian would break this resonance; the Marinoan and Sturtian glaciations seem the most likely candidates for this event. Our model provides a simulated day length over time that resembles existing paleorotational data, though further data are needed to verify this hypothesis.

  9. Paleobiologic Studies of the Antiquity and Precambrian Evolution of Life

    NASA Technical Reports Server (NTRS)

    Schopf, J. William

    1998-01-01

    This paper presents a final technical report on Paleobiologic Studies of the Antiquity and Precambrian Evolution of Life from 1 January 1990 - 30 September 1997. The topics include: 1) Major Research Accomplishments Supported By NAGW-2147 (Research Results Communicated in Edited Books, Research Results Communicated in Journal Articles and Book Chapters, and References Cited); and 2) Published Contributions Supported by NAGW-2147 (Edited Books, Journal Articles and Book Chapters, Book-Related Items, Miscellaneous Publications, Abstracts, and In Press).

  10. Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications

    NASA Technical Reports Server (NTRS)

    Altermann, W.; Schopf, J. W.

    1995-01-01

    The oldest filament- and colonial coccoid-containing microbial fossil assemblage now known is described here from drill core samples of stromatolitic cherty limestones of the Neoarchean, approximately 2600-Ma-old Campbell Group (Ghaap Plateau Dolomite, Lime Acres Member) obtained at Lime Acres, northern Cape Province, South Africa. The assemblage is biologically diverse, including entophysalidacean (Eoentophysalis sp.), probable chroococcacean (unnamed colonial coccoids), and oscillatoriacean cyanobacteria (Eomycetopsis cf. filiformis, and Siphonophycus transvaalensis), as well as filamentous fossil bacteria (Archaeotrichion sp.); filamentous possible microfossils (unnamed hematitic filaments) also occur. The Campbell Group microorganisms contributed to the formation of stratiform and domical to columnar stromatolitic reefs in shallow subtidal to intertidal environments of the Transvaal intracratonic sea. Although only moderately to poorly preserved, they provide new evidence regarding the paleoenvironmental setting of the Campbell Group sediments, extend the known time-range of entophysalidacean cyanobacteria by more than 400 million years, substantiate the antiquity and role in stromatolite formation of Archean oscillatoriacean cyanobacteria, and document the exceedingly slow (hypobradytelic) evolutionary rate characteristic of this early evolving prokaryotic lineage.

  11. A hypothesis linking chrysophyte microfossils to lake carbon dynamics on ecological and evolutionary time scales

    NASA Astrophysics Data System (ADS)

    Wolfe, Alexander P.; Siver, Peter A.

    2013-12-01

    Chrysophyte algae are common in the plankton of oligotrophic lakes and produce a rich microfossil record of siliceous cysts and scales. Paleolimnological investigations and phytoplankton records suggest that chrysophyte populations are increasing in a wide range of boreal and arctic lakes, ultimately representing one component of the limnological response to contemporary global changes. However, the exact mechanisms responsible for widespread increases of chrysophyte populations remain elusive. We hypothesize that recent increases in chrysophytes are related to rising pCO2 in lakes, in part because these algae lack carbon concentrating mechanisms and therefore rely on diffusive entry of CO2 to Rubisco during photosynthesis. We assessed the abundance of modern sediment chrysophyte microfossils in relation to summer CO2 relative saturation in 46 New England (USA) lakes, revealing significant positive relationships for both cysts and scales. These observations imply that correlations between chrysophytes and limnological conditions including low pH, oligotrophy, and elevated dissolved organic matter are ultimately underscored by the high pCO2 associated with these conditions. In lakes where chrysophyte populations have expanded over recent decades, we infer that increasingly heterotrophic conditions with respect to CO2 have stimulated production by these organisms. This linkage is supported by the remarkable abundance and diversity of chrysophytes from middle Eocene lake sediments, deposited under atmospheric CO2 concentrations significantly higher than present. The Eocene assemblages suggest that any chrysophyte-CO2 connection borne out of results from modern and sub-recent sediments also operated on evolutionary time scales, and thus the absence of carbon concentrating mechanisms appears to be an ancient feature within the group. Chrysophyte microfossils may potentially provide important insights concerning the temporal dynamics of carbon cycling in aquatic

  12. Thermal maturity of Tasmanites microfossils from confocal laser scanning fluorescence microscopy

    USGS Publications Warehouse

    Hackley, Paul C.; Kus, Jolanta

    2015-01-01

    We report here, for the first time, spectral properties of Tasmanites microfossils determined by confocal laser scanning fluorescence microscopy (CLSM, using Ar 458 nm excitation). The Tasmanites occur in a well-characterized natural maturation sequence (Ro 0.48–0.74%) of Devonian shale (n = 3 samples) from the Appalachian Basin. Spectral property λmax shows excellent agreement (r2 = 0.99) with extant spectra from interlaboratory studies which used conventional fluorescence microscopy techniques. This result suggests spectral measurements from CLSM can be used to infer thermal maturity of fluorescent organic materials in geologic samples. Spectra of regions with high fluorescence intensity at fold apices and flanks in individual Tasmanites are blue-shifted relative to less-deformed areas in the same body that have lower fluorescence intensity. This is interpreted to result from decreased quenching moiety concentration at these locations, and indicates caution is needed in the selection of measurement regions in conventional fluorescence microscopy, where it is common practice to select high intensity regions for improved signal intensity and better signal to noise ratios. This study also documents application of CLSM to microstructural characterization of Tasmanites microfossils. Finally, based on an extant empirical relation between conventional λmax values and bitumen reflectance, λmax values from CLSM of Tasmanites microfossils can be used to calculate a bitumen reflectance equivalent value. The results presented herein can be used as a basis to broaden the future application of CLSM in the geological sciences into hydrocarbon prospecting and basin analysis.

  13. Detection of large prehistoric earthquakes in the pacific northwest by microfossil analysis.

    PubMed

    Mathewes, R W; Clague, J J

    1994-04-29

    Geologic and palynological evidence for rapid sea level change approximately 3400 and approximately 2000 carbon-14 years ago (3600 and 1900 calendar years ago) has been found at sites up to 110 kilometers apart in southwestern British Columbia. Submergence on southern Vancouver Island and slight emergence on the mainland during the older event are consistent with a great (magnitude M >/= 8) earthquake on the Cascadia subduction zone. The younger event is characterized by submergence throughout the region and may also record a plate-boundary earthquake or a very large crustal or intraplate earthquake. Microfossil analysis can detect small amounts of coseismic uplift and subsidence that leave little or no lithostratigraphic signature.

  14. Methane as a Climate Driver During the Precambrian Eon (Invited)

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2013-12-01

    Methane is an important greenhouse gas today even at a relatively low concentration of ~1.7 ppmv. Prior to 2.4 Ga, atmospheric O2 concentrations were low, and CH4 could have been much more abundant, perhaps 500-1000 ppmv (1,2). When supplemented by elevated CO2, CH4 could have played a major role in offsetting reduced solar luminosity and keeping the early Earth habitable. Calculations using both 1-D (3) and 3-D (4) climate models suggest that near-modern surface temperatures could have been maintained at 2.8 Ga at 80% solar luminosity by ~0.02 bar CO2 and 1000 ppmv CH4. Such CO2 levels are near the upper limit derived for that period from analysis of paleosols (5). Some 10-12 K of the calculated surface warming in these models comes from CH4; hence, if CH4 concentrations decreased as O2 levels rose, the climate could have suddenly become much colder. This hypothesis can thus explain the timing of the Paleoproterozoic glaciations at 2.2-2.45 Ga, which may have been global in nature (6). An earlier glaciation at ~2.9 Ga might also have been related to CH4, possibly by the development of a thick, anti-greenhouse organic haze layer (7). Alternatively, the recent realization that, at high concentrations, H2 is an even better greenhouse gas than CH4 (8), suggests that the 2.9-Ga glaciation might have been caused by the appearance of methanogens, which would have drawn down atmospheric H2 by converting it to CH4. In either case, the Archean climate control mechanism would have had a distinctly 'Gaian' nature (9). Finally, the initial rise of O2 at 2.4 Ga need not have spelled the end of CH4 as a major climate driver. If the deep oceans remained anoxic throughout most of the Proterozoic (10), marine sediments could have been strong sources of CH4, unlike today. Calculations (11,12) suggest that CH4 concentrations of 100 ppmv are still possible during this time period, and that the combined greenhouse effect of CH4 and N2O could have approached 10 K. A second rise in O2

  15. Recognition of late Precambrian glaciogenic sediments in Liberia

    NASA Astrophysics Data System (ADS)

    Magee, A. W.; Culver, S. J.

    1986-11-01

    Late Precambrian glaciation in West Africa is now suggested to have extended as far south as Gibi Mountain in west-central Liberia, 200 km farther south than previously recognized glacial deposits in central Sierra Leone. The Gibi Mountain Formation includes a basal diamictite, interpreted as a probable tillite, and overlying shallow-marine laminites containing isolated, ice-rafted dropstones and dropgrains. These rocks rest on Late Archean age gneisses and are overlain by Late Archean? age quartzite klippen emplaced during the pan-African orogeny (ca. 550 Ma). *Present address: School of Geography, University of Oxford, Mansfield Road, Oxford OKI 3TB, England

  16. Selective dissolution of siliceous microfossils observed in a box core from the north-east equatorial Pacific

    USGS Publications Warehouse

    Kadko, D.; Blueford, J.R.; Burckle, L.H.; Barron, J.

    1983-01-01

    A box core taken at 11??50.3??? N and 137??28.2??? W in the Central Pacific manganese nodule province was studied to determine the pattern of diatom and radiolarian preservation with depth in the sediment, as well as to observe downcore variations in clay mineralogy. We observed marked deterioration of the siliceous microfossils within the upper 30 cm of this sediment; over this depth interval the Quaternary diatoms disappear first, followed deeper downcore by the dissolution of Quaternary radiolarians. Tertiary microfossils in general were the most corrosion resistant, and the residual microfossil assemblage in the lower part of the core consisted of fragmented, robust Tertiary forms. Consequently, the apparent biostratigraphical age of the sediment appeared much greater than the age suggested by mineralogical and radioisotopic data. ?? 1983 Nature Publishing Group.

  17. Precambrian crystalline basement map of Idaho-an interpretation of aeromagnetic anomalies

    USGS Publications Warehouse

    Sims, P.K.; Lund, Karen; Anderson, E.

    2005-01-01

    Idaho lies within the northern sector of the U.S. Cordillera astride the boundary between the Proterozoic continent (Laurentia) to the east and the Permian to Jurassic accreted terranes to the west. The continental basement is mostly covered by relatively undeformed Mesoproterozoic metasedimentary rocks and intruded or covered by Phanerozoic igneous rocks; accordingly, knowledge of the basement geology is poorly constrained. Incremental knowledge gained since the pioneering studies by W. Lindgren, C.P. Ross, A.L. Anderson, A. Hietanen, and others during the early- and mid-1900's has greatly advanced our understanding of the general geology of Idaho. However, knowledge of the basement geology remains relatively poor, partly because of the remoteness of much of the region plus the lack of a stimulus to decipher the complex assemblage of high-grade gneisses and migmatite of central Idaho. The availability of an updated aeromagnetic anomaly map of Idaho (North American Magnetic Anomaly Group, 2002) provides a means to determine the regional Precambrian geologic framework of the State. The combined geologic and aeromagnetic data permit identification of previously unrecognized crystalline basement terranes, assigned to Archean and Paleoproterozoic ages, and the delineation of major shear zones, which are expressed in the aeromagnetic data as linear negative anomalies (Finn and Sims, 2004). Limited geochronologic data on exposed crystalline basement aided by isotopic studies of zircon inheritance, particularly Bickford and others (1981) and Mueller and others (1995), provide much of the geologic background for our interpretation of the basement geology. In northwestern United States, inhomogeneities in the basement inherited from Precambrian tectogenesis controlled many large-scale tectonic features that developed during the Phanerozoic. Two basement structures, in particular, provided zones of weakness that were repeatedly rejuvenated: (1) northeast-trending ductile

  18. Ted Irving and the Precambrian continental drift of (within?) the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Hoffman, P. F.

    2014-12-01

    Ted Irving was no stranger to the Precambrian when he began paleomagnetic studies in the Canadian Shield (CS) that would dominate his research in the early and mid-1970's. Twenty years before, his graduate work on billion-year-old strata in Scotland established paleomagnetic methodologies applicable to sedimentary rocks generally. In 1958, he and Ronald Green presented an 'Upper Proterozoic' APW path from Australia as evidence for pre-Carboniferous drift relative to Europe and North America (the poles actually range in age from 1.2 to 2.7 Ga). His first published CS poles were obtained from the Franklin LIP of the Arctic platform and demonstrate igneous emplacement across the paleoequator. Characteristically, his 1971 poles are statistically indistinguishable from the most recent grand mean paleopole of 2009. His main focus, however, was on the question of Precambrian continental drift. He compared APW paths with respect to Laurentia with those obtained from other Precambrian shields, and he compared APW paths from different tectonic provinces within the CS. He was consistently antagonistic to the concept of a single long-lived Proterozoic supercontinent, but he was on less certain ground regarding motions within the CS due to inadequate geochronology. With Ron Emslie, he boldly proposed rapid convergence between parts of the Grenville Province and Interior Laurentia (IL) ~1.0 Ga. This was controversial given the uncertain ages of multiple magnetic components in high-grade metamorphic rocks. With John McGlynn and John Park, he developed a Paleoproterozoic APW path for the Slave Province from mafic dikes and red clastics, encompassing the time of consolidation of IL during 2.0-1.8 Ga orogenesis. Before 1980, he constructed Paleoproterozoic APW paths for IL as a whole, finding little evidence for significant internal displacement. He recognized that the Laurentian APW path describes a series of straight tracks linked by hairpins, the latter corresponding in age to

  19. Investigation of the Geochemical Preservation of ca. 3.0 Ga Permineralized and Encapsulated Microfossils by Nanoscale Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Delarue, Frédéric; Robert, François; Sugitani, Kenichiro; Tartèse, Romain; Duhamel, Rémi; Derenne, Sylvie

    2017-12-01

    Observations of Archean organic-walled microfossils suggest that their fossilization took place through both encapsulation and permineralization. In this study, we investigated microfossils from the ca. 3.0 Ga Farrel Quartzite (Pilbara, Western Australia) using transmitted light microscopy, scanning electron microscopy, Raman microspectrometry, and nanoscale secondary ion mass spectrometry (NanoSIMS) ion microprobe analyses. In contrast to previous studies, we demonstrated that permineralized microfossils were not characterized by the micrometric spatial relationships between Si and C-N as observed in thin sections. Permineralized microfossils are composed of carbonaceous globules that did not survive the acid treatment, whereas encapsulated microfossils were characterized due to their resistance to the acid maceration procedure. We also investigated the microscale relationship between the 12C14N- and 12C2- ion emission as a proxy of the N/C atomic ratio in both permineralized and encapsulated microfossils. After considering any potential matrix and microtopography effects, we demonstrate that the encapsulated microfossils exhibit the highest level of geochemical preservation. This finding shows that the chemical heterogeneity of the microfossils, observed at a spatial resolution of a few hundreds of micrometers, can be related to fossilization processes.

  20. Paleobiology of distinctive benthic microfossils from the upper Proterozoic Limestone-Dolomite "Series," central East Greenland

    NASA Technical Reports Server (NTRS)

    Green, J. W.; Knoll, A. H.; Golubic, S.; Swett, K.

    1987-01-01

    Populations of Polybessurus bipartitus Fairchild ex Green et al., a large morphologically distinctive microfossil, occur in silicified carbonates of the Upper Proterozoic (700-800 Ma) Limestone-Dolomite "Series," central East Greenland. Large populations of well-preserved individuals permit reconstruction of P. bipartitus as a coccoidal unicell that "jetted" upward from the sediment by the highly unidirectional secretion of extracellular mucopolysaccharide envelopes. Reproduction by baeocyte formation is inferred on the basis of clustered envelope stalks produced by small cells. Sedimentological evidence indicates that P. bipartitus formed surficial crusts locally within a shallow peritidal carbonate platform. Among living microorganisms a close morphological, reproductive, and behavioral counterpart to Polybessurus is provided by populations of an as yet underscribed cyanobacterium found in coastal Bahamian environments similar to those in which the Proterozoic fossils occur. In general morphology and "jetting" behavior, this population resembles species of the genus Cyanostylon, Geitler (1925), but reproduces via baeocyte formation. Polybessurus is but one of the more than two dozen taxa in the richly fossiliferous biota of the Limestone-Dolomite "Series." This distinctive population, along with co-occurring filamentous cyanobacteria and other microfossils, contributes to an increasingly refined picture of ecological heterogeneity in late Proterozoic oceans.

  1. Paleobiology of distinctive benthic microfossils from the upper Proterozoic Limestone-Dolomite "Series," central East Greenland.

    PubMed

    Green, J W; Knoll, A H; Golubic, S; Swett, K

    1987-01-01

    Populations of Polybessurus bipartitus Fairchild ex Green et al., a large morphologically distinctive microfossil, occur in silicified carbonates of the Upper Proterozoic (700-800 Ma) Limestone-Dolomite "Series," central East Greenland. Large populations of well-preserved individuals permit reconstruction of P. bipartitus as a coccoidal unicell that "jetted" upward from the sediment by the highly unidirectional secretion of extracellular mucopolysaccharide envelopes. Reproduction by baeocyte formation is inferred on the basis of clustered envelope stalks produced by small cells. Sedimentological evidence indicates that P. bipartitus formed surficial crusts locally within a shallow peritidal carbonate platform. Among living microorganisms a close morphological, reproductive, and behavioral counterpart to Polybessurus is provided by populations of an as yet underscribed cyanobacterium found in coastal Bahamian environments similar to those in which the Proterozoic fossils occur. In general morphology and "jetting" behavior, this population resembles species of the genus Cyanostylon, Geitler (1925), but reproduces via baeocyte formation. Polybessurus is but one of the more than two dozen taxa in the richly fossiliferous biota of the Limestone-Dolomite "Series." This distinctive population, along with co-occurring filamentous cyanobacteria and other microfossils, contributes to an increasingly refined picture of ecological heterogeneity in late Proterozoic oceans.

  2. Generation, migration, and entrapment of Precambrian oils in the Eastern Flank Heavy Oil province, south Oman

    SciTech Connect

    Konert, G.; Van Den Brink, H.A.; Visser, W.

    1991-08-01

    The prolific Eastern Flank Heavy Oil province east of the South Oman Salt basin is unique because of the widespread occurrence of Precambrian source rocks from which the hydrocarbons originated. Fission-track analysis and burial studies suggest that most of these source rocks became mature and generated hydrocarbons in the Ordovician; subsequently, the source beds were uplifted and did not re-enter the oil window. Its uniqueness is also based on the all-important role played by Precambrian salt. The traps in Palaeozoic clastics were initially structured by halokinesis, and subsequently by salt dissolution. The latter process gradually removed the salt from themore » area is largely responsible for the present-day structure with palaeo-withdrawal basins inverted in present-day turtles. Present-day traps are mainly post-Late Jurassic in age, significantly post-dating the time of oil generation. Detailed field studies indicate that charge phases appear to correlate with periods of increased salt dissolution in the Late Jurassic-Early Cretaceous, Late Cretaceous, and Tertiary. Oil was probably stored in intermediate traps below and within the salt. It was gradually released upon progressive tilting of the basin flank; it migrated updip toward the basinward retreating salt edge, and subsequently (back) spilled into the stratigraphically younger traps. Also, removal of the top seal of intra-salt and sub-salt traps by salt dissolution allowed upward remigration. It follows that charge concepts in the Eastern Flank Heavy Oil province depend on defining salt-edge-related hydrocarbon release areas, rather than on kitchen modeling.« less

  3. Microfossil measures of rapid sea-level rise: Timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia

    USGS Publications Warehouse

    Horton, B.P.; Milker, Yvonne; Dura, T.; Wang, Kelin; Bridgeland, W.T.; Brophy, Laura S.; Ewald, M.; Khan, Nicole; Engelhart, S.E.; Nelson, Alan R.; Witter, Robert C.

    2017-01-01

    Comparisons of pre-earthquake and post-earthquake microfossils in tidal sequences are accurate means to measure coastal subsidence during past subduction earthquakes, but the amount of subsidence is uncertain, because the response times of fossil taxa to coseismic relative sea-level (RSL) rise are unknown. We measured the response of diatoms and foraminifera to restoration of a salt marsh in southern Oregon, USA. Tidal flooding following dike removal caused an RSL rise of ∼1 m, as might occur by coseismic subsidence during momentum magnitude (Mw) 8.1–8.8 earthquakes on this section of the Cascadia subduction zone. Less than two weeks after dike removal, diatoms colonized low marsh and tidal flats in large numbers, showing that they can record seismically induced subsidence soon after earthquakes. In contrast, low-marsh foraminifera took at least 11 months to appear in sizeable numbers. Where subsidence measured with diatoms and foraminifera differs, their different response times may provide an estimate of postseismic vertical deformation in the months following past megathrust earthquakes.

  4. Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic?

    PubMed

    Shapiro, R S; Konhauser, K O

    2015-05-01

    Microfossils belonging to the 1.88-billion-year-old 'Gunflint-biota' are preserved as carbonaceous and hematitic filaments and spheres that are believed to represent ancient chemolithoautotrophic Fe(II) oxidizing bacteria that grew above a chemocline where ferruginous seawater upwelled into shallow, oxygenated waters. This 'biological' model posits that hematite formed during burial from dewatering of the precursor ferric oxyhydroxides that encrusted Fe(II)-oxidizing bacteria. Here, we present an alternate 'taphonomic' model in which iron-rich groundwaters discharged into buried stromatolites; thus, the mineralization reactions are more informative of diagenetic processes than they are for primary marine conditions. We sampled centimeter-scale columnar stromatolites from both the lower and upper stromatolite horizons of the Biwabik and Gunflint formations, across a range of metamorphic gradients including unaltered to prehnite-pumpellyite taconite, supergene altered ore, and amphibolite-pyroxene grade contact-metamorphic zones. Fossils are rare to very rare and comprise curved filaments that exist in clusters with similar orientations. The filaments from throughout the Biwabik are similar to well-preserved carbonaceous Gunflintia from Ontario. Spheres of Huroniospora are also found in both formations. Microfossils from the least altered sections are preserved as carbon. Prehnite-pumpellyite samples are composed of either carbon or hematite (Fe2 O3 ). Within the contact aureole, filaments are densely coated by magnetite (Fe3 O4 ); the highest grade samples are secondarily oxidized to martite. The consistency in stromatolite microstructure and lithofacies throughout the metamorphic grades suggests they formed under similar environmental conditions. Post-depositional alteration led to replacement of the carbon by iron oxide. The facies association, filament distribution, and lack of branching and attached spherical cells argue against Gunflintia being a direct

  5. De novo active sites for resurrected Precambrian enzymes

    NASA Astrophysics Data System (ADS)

    Risso, Valeria A.; Martinez-Rodriguez, Sergio; Candel, Adela M.; Krüger, Dennis M.; Pantoja-Uceda, David; Ortega-Muñoz, Mariano; Santoyo-Gonzalez, Francisco; Gaucher, Eric A.; Kamerlin, Shina C. L.; Bruix, Marta; Gavira, Jose A.; Sanchez-Ruiz, Jose M.

    2017-07-01

    Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.

  6. Evolution of major metabolic innovations in the Precambrian

    NASA Technical Reports Server (NTRS)

    Barnabas, J.; Schwartz, R. M.; Dayhoff, M. O.

    1982-01-01

    A combination of information on the metabolic capabilities of prokaryotes with a composite phylogenetic tree depicting an overview of prokaryote evolution based on the sequences of bacterial ferredoxin, 2Fe-2S ferredoxin, 5S ribosomal RNA, and c-type cytochromes shows three zones of major metabolic innovation in the Precambrian. The middle of these, which reflects the genesis of oxygen-releasing photosynthesis and aerobic respiration, links metabolic innovations of the anaerobic stem on the one hand and, on the other, proliferation of aerobic bacteria and the symbiotic associations leading to the eukaryotes. Those pathways where information on the structure of the enzymes is known are especially considered. Halobacterium and Thermoplasma (archaebacteria) do not belong to a totally independent line on the basis of the composite tree but branch from the eukaryote cytoplasmic line.

  7. Maps of upper Mississippi embayment Paleozoic and Precambrian rocks

    USGS Publications Warehouse

    Dart, Richard L.

    1995-01-01

    The Mississippi Embayment regional seismic hazard (Fuller, 1912; Nuttli, 1973, 1982, 1983), associated with the New Madrid seismic zone (NMSZ) is attributed to displacement on seismogenic structures primarily within the failed Reelfoot rift (Burke and Dewey, 1973; Ervin and McGinnis, 1975; Hildenbrand, 1977; Johnston and Shedlock, 1992). Hildenbrand and others (1977) and Hildenbrand (1985) used potential field data to show the northeast trend of the buried rift and the existence of related intrusive bodies. The Mississippi Valley graben (Hildenbrand and others, 1977; Kane and others, 1981; Hildenbrand, 1985; Wheeler and others, 1993), also referred to as the Reelfoot graben (Hildenbrand and Hendricks, 1995), is here considered to be the structural expression of the Reelfoot rift at the Precambrian basement surface.

  8. Hydrology of some deep mines in Precambrian rocks

    SciTech Connect

    Yardley, D.H.

    1975-10-01

    A number of underground mines were investigated during the summer of 1975. All of them are in Precambrian rocks of the Lake Superior region. They represent a variety of geologic settings. The purpose of the investigations was to make a preliminary study of the dryness, or lack of dryness of these rocks at depth. In other words, to see if water was entering the deeper workings through the unmined rock by some means such as fracture or fault zones, joints or permeable zones. Water entering through old mine workings extending to, or very near to the surface, or from themore » drilling equipment, was of interest only insofar as it might mask any water whose source was through the hanging or footwall rocks. No evidence of running, seeping or moving water was seen or reported at depths exceeding 3,000 feet. At depths of 3,000 feet or less, water seepages do occur in some of the mines, usually in minor quantities but increased amounts occur as depth becomes less. Others are dry at 2,000 feet of depth. Rock movements associated with extensive mining should increase the local secondary permeability of the rocks adjoining the mined out zones. Also most ore bodies are located where there has been a more than average amount of faulting, fracturing, and folding during the geologic past. They tend to cluster along crustal flows. In general, Precambrian rocks of similar geology, to those seen, well away from zones that have been disturbed by extensive deep mining, and well away from the zones of more intense geologic activity ought to be even less permeable than their equivalents in a mining district.« less

  9. Precambrian plate tectonic setting of Africa from multidimensional discrimination diagrams

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.

    2017-01-01

    New multi-dimensional discrimination diagrams have been used to identify plate tectonic setting of Precambrian terrains. For this work, nine sets of new discriminant-function based multi-dimensional discrimination diagrams were applied for thirteen case studies of Precambrian basic, intermediate and acid magmas from Africa to highlight the application of these diagrams and probability calculations. The applications of these diagrams indicated the following results: For northern Africa: to Wadi Ghadir ophiolite, Egypt indicated an arc setting for Neoproterozoic (746 ± 19 Ma). For South Africa: Zandspruit greenstone and Bulai pluton showed a collision and a transitional continental arc to collision setting at about Mesoarchaean and Neoarchaean (3114 ± 2.3 Ma and 2610-2577 Ma); Mesoproterozoic (1109 ± 0.6 Ma and 1100 Ma) ages for Espungabera and Umkondo sills were consistent with an island arc setting. For eastern Africa, Iramba-Sekenke greenstone belt and Suguti area, Tanzania showed an arc setting for Neoarchaean (2742 ± 27 Ma and 2755 ± 1 Ma). Chila, Bulbul-Kenticha domain, and Werri area indicated a continental arc setting at about Neoproterozoic (800-789 Ma); For western Africa, Sangmelima region and Ebolowa area, southern Cameroon indicated a collision and continental arc setting, respectively for Neoarchaean (∼2800-2900 Ma and 2687-2666 Ma); Finally, Paleoproterozoic (2232-2169 Ma) for Birimian supergroup, southern Ghana a continental arc setting; and Paleoproterozoic (2123-2108 Ma) for Katiola-Marabadiassa, Côte d'Ivoire a transitional continental arc to collision setting. Although there were some inconsistencies in the inferences, most cases showed consistent results of tectonic settings. These inconsistencies may be related to mixed ages, magma mixing, crustal contamination, degree of mantle melting, and mantle versus crustal origin.

  10. Vibracore, Radiocarbon, Microfossil, and Grain-Size Data from Apalachicola Bay, Florida

    USGS Publications Warehouse

    Twichell, D.C.; Pendleton, E.A.; Poore, R.Z.; Osterman, L.E.; Kelso, K.W.

    2009-01-01

    In 2007, the U.S. Geological Survey collected 24 vibracores within Apalachicola Bay, Florida. The vibracores were collected by using a Rossfelder electric percussive (P-3) vibracore system during a cruise on the Research Vessel (R/V) G.K. Gilbert. Selection of the core sites was based on a geophysical survey that was conducted during 2005 and 2006 in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) Coastal Services Center (CSC) and the Apalachicola Bay National Estuarine Research Reserve. This report contains the vibracore data logs, photographs, and core-derived data including grain-size analyses, radiocarbon ages, microfossil counts, and sedimentological interpretations. The long-term goal of this study is to provide maps, data, and assistance to the Apalachicola Bay National Estuarine Research Reserve in their effort to monitor and understand the geology and ecology of Apalachicola Bay Estuary. These data will inform coastal managers charged with the responsibility for resource preservation.

  11. An Ecometric Study of Recent Microfossils using High-throughput Imaging

    NASA Astrophysics Data System (ADS)

    Elder, L. E.; Hull, P. M.; Hsiang, A. Y.; Kahanamoku, S.

    2016-02-01

    The era of Big Data has ushered in the potential to collect population level information in a manageable time frame. Taxon-free morphological trait analysis, referred to as ecometrics, can be used to examine and compare ecological dynamics between communities with entirely different species compositions. Until recently population level studies of morphology were difficult because of the time intensive task of collecting measurements. To overcome this, we implemented advances in imaging technology and created software to automate measurements. This high-throughput set of methods collects assemblage-scale data, with methods tuned to foraminiferal samples (e.g., light objects on a dark background). Methods include serial focused dark-field microscopy, custom software (Automorph) to batch process images, extract 2D and 3D shape parameters and frames, and implement landmark-free geometric morphometric analyses. Informatics pipelines were created to store, catalog and share images through the Yale Peabody Museum(YPM; peabody.yale.edu). We openly share software and images to enhance future data discovery. In less than a year we have generated over 25TB of high resolution semi 3D images for this initial study. Here, we take the first step towards developing ecometric approaches for open ocean microfossil communities with a calibration study of community shape in recent sediments. We will present an overview of the `shape' of modern planktonic foraminiferal communities from 25 Atlantic core top samples (23 sites in the North and Equatorial Atlantic; 2 sites in the South Atlantic). In total, more than 100,000 microfossils and fragments were imaged from these sites' sediment cores, an unprecedented morphometric sample set. Correlates of community shape, including diversity, temperature, and latitude, will be discussed. These methods have also been applied to images of limpets and fish teeth to date, and have the potential to be used on modern taxa to extract meaningful

  12. Analysis of a Precambrian Resonance-Stabilized Day Length

    NASA Astrophysics Data System (ADS)

    Bartlett, B. C.; Stevenson, D. J.

    2014-12-01

    Calculations indicate the average rate of decrease of Earth's angular momentum must have been less than its present value in the past; otherwise, the Earth should have a longer day length. Existing stromatolite data suggests the Earth's rotational frequency would have been near that of the atmospheric resonance frequency toward the end of the Precambrian era, approximately 600Ma. The semidiurnal atmospheric tidal torque would have reached a maximum near this day length of 21hr. At this point, the atmospheric torque would have been comparable in magnitude but opposite in direction to the lunar torque, creating a stabilizing effect which could preserve a constant day length while trapped in this resonant state, as suggested by Zahnle and Walker (1987). We examine the hypothesis that this resonant stability was encountered and sustained for a large amount of time during the Precambrian era and was broken by a large and relatively fast increase in global temperature, possibly in the deglaciation period following a snowball event. Computational simulations of this problem were performed, indicating that a persistent increase in temperature larger than around 10K over a period of time less than 107 years will break resonance (though these values vary with Q), but that the resonant stability is not easily broken by random high-amplitude high-frequency atmospheric temperature fluctuation or other forms of thermal noise. Further work also indicates it is possible to escape resonance simply by increasing the lunar tidal torque on the much longer timescale of plate tectonics, particularly for low atmospheric Q-factors, or that resonance could have never formed in the first place, had the lunar torque been very high or Q been very low when the Earth's rotational frequency was near the atmospheric resonance frequency. However, the need to explain the present day length given the current lunar torque favors the interpretation we offer, in which Earth's length of day was

  13. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    SciTech Connect

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrianmore » age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.« less

  14. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  15. Role of Precambrian compositions and fabrics in the development of foreland structures, southern Front Range, Colorado

    SciTech Connect

    Chase, R.B.

    1985-01-01

    The Front Range terminates to the south as three basement-cored uplifts located north and west of the Canon City embayment. Precambrian units consist of foliated and non-foliated granitic rocks, augen gneiss, interlayered schist and gneiss, amphibolite, quartzite, and pegmatite. Precambrian deformations include at least three phases of folding, two phases of crenulation cleavage development, and local mylonitization. Metamorphic conditions reached those of cordierite-sillimanite grade. Paleozoic and Mesozoic sediments surround and overlap the exposed uplifts to form south-plunging arches. Excellent three-dimensional exposure of structural relationships between Precambrian rocks and overlying Phanerozoic sediments is present. Deformation styles in the sedimentary cover aremore » strongly influenced by underlying Precambrian lithologies and structural orientations. Where the crystalline units are granitic, with steeply-dipping foliation or no directional fabric, uplifts are bounded by high angle faults. Some such faults show evidence of repeated movements and reversals dating back to Precambrian time. The boundary between mechanical basement and suprastructure is clearly not defined as the base of the sedimentary section. Balanced cross-sections constructed through the southern Front Range must include contemporaneous flexural folds and thrusts in Precambrian schistose and gneissic rocks as well as in Phanerozoic sedimentary layers.« less

  16. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    USGS Publications Warehouse

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  17. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.

    2004-05-01

    The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.

  18. Keivy Paraschists (Archean-Early Proterozoic): Nanobacteria and Life

    NASA Astrophysics Data System (ADS)

    Astafieva, M. M.; Balaganskii, V. V.

    2018-05-01

    Nanobacteria, buried in situ, were discovered in the Early Precambrian paraschists (Keivy, Kola Peninsula). It is suggested that occurrence of nanobacteria indicates that a biological factor played a role in the formation of enclosing rocks.

  19. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    NASA Astrophysics Data System (ADS)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  20. Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, Central East Greenland

    NASA Technical Reports Server (NTRS)

    Green, J. W.; Knoll, A. H.; Swett, K.

    1988-01-01

    Silicified oolites and pisolites from Bed 18 of the Upper Proterozoic (about 700-800 Ma) Limestone-Dolomite "Series" of the Eleonore Bay Group, central East Greenland, contain a diverse suite of organically preserved microfossils that is, for the most part. [Of the] assemblages previously described from Proterozoic cherts and shales. Three principal assemblages occur in these rocks: 1) a class bound assemblage found in detrital carbonate grains (now silicified) that served as nuclei for ooid and pisoid growth, as well as in uncoated mud and mat clasts that were carried into the zone of ooid and pisoid deposition; 2) an epilithic and interstitial assemblage consisting of microorganisms that occurred on top of and between grains; and 3) a euendolithic assemblage composed of microbes that actively bored into coated grains. The Upper Proterozoic euendolithic assemblage closely resembles a community of euendolithic cyanobacteria found today in shallow marine ooid sands of the Bahama Banks. Thirteen species are described, of which eight are new, five representing new genera: Eohyella dichotoma n. sp., Eohyella endoatracta n. sp., Eohyella rectoclada n. sp., Thylacocausticus globorum n. gen. and sp., Cunicularius halleri n. gen. and sp., Graviglomus incrustus n. gen. and sp., Perulagranum obovatum n. gen. and sp., and Parenchymodiscus endolithicus n. gen. and sp.

  1. Tectonics of Precambrian basement along the Pacific margin of Antarctica and relation to western North America

    SciTech Connect

    Goodge, J.W.; Hansen, V.L.; Walker, N.W.

    1993-02-01

    High-grade metamorphic rocks of the Precambrian Nimrod Group (NG) constitute one of few cratonal basement exposures in the Transantarctic Mountains. These rocks represent an outlier of the East Antarctic craton, evolved as part of Gondwana and pre-Gondwana (Rodinia) supercontinents. Despite pervasive, high-strain ductile deformation at T [>=] 650 C, they preserve petrologic and geochronologic evidence of an earlier history. Sm-Nd model ages from several NG lithologies, including that of a [approximately]1.7 Ga orthogneiss, range from about 2.7--2.9 Ga; these ages reflect both sedimentary and magmatic derivation from Archean crust. Individual detrital zircon U-Pb ages (about 1.7--2.6 Ga) from NG quartzitesmore » indicate clastic input from Archean to Paleoproterozoic source terrains. The Sm-Nd and U-Pb ages are reminiscent of both the Yavapai-Mazatzal (1.6--1.8 Ga) and Wyoming (> 2.5 Ga) provinces in western North America. U-Pb ages from syn-tectonic metaigneous and pelitic NG tectonites indicate that this basement complex was re-worked by the major ductile deformation in latest neoproterozoic to Early Cambrian time. Supracrustal assemblages that lie outboard of the Nimrod craton include Neoproterozoic graywacke, impure carbonate, and minor mafic volcanics (Beardmore Group), and Cambrian to Lower Ordovician carbonate and siliciclastic rocks (Byrd Group). Neoproterozoic ([approximately]750 Ma) rifting along the proto-Pacific margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism. Latest Neoproterozoic to early Paleozoic orogenesis occurred along a left-oblique convergent plate margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism.« less

  2. Early Life on Earth and the Search for Extraterrestrial Biosignatures

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; House, Christopher

    2014-01-01

    In the last 2 years, scientists within the ARES Directorate at JSC have applied the technology of Secondary Ion Mass Spectrometry (SIMS) to individual organic structures preserved in Archean (approximately 3 billion years old) sediments on Earth. These organic structures are among the oldest on Earth that may be microfossils - structurally preserved remnants of ancient microbes. The SIMS work was done to determine the microfossils' stable carbon isotopic composition (delta C-13 values). This is the first time that such ancient, potential microfossils have been successfully analyzed for their individual delta C-13 values. The results support the interpretation that these structures are remnants of early life on Earth and that they may represent planktonic organisms that were widely distributed in the Earth's earliest oceans. This study has been accepted for publication in the journal Geology.

  3. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  4. Microfossils and biomolecules in carbonaceous meteorites: possibility of life in water-bearing asteroids and comets

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2014-09-01

    It is well established that carbonaceous meteorites contain water, carbon, biogenic elements and a host of organic chemicals and biomolecules. Several independent lines of evidence indicate that the parent bodies of the CI1 and CM2 carbonaceous meteorites are most probably the C-type asteroids or cometary nuclei. Several of the protein amino acids detected in the meteorites exhibit chirality and have an excess of the L-enantiomer -- such as in the amino acids present in the proteins of all known life forms on Earth. Isotopic studies have established that the amino acids and nucleobases in the CI1 and CM2 carbonaceous meteorites are both indigenous and extraterrestrial. Optical and Scanning Electron Microscopy studies carried out by researchers during the past half century have revealed the presence of complex biogenic microstructures embedded in the rock-matrix of many of carbonaceous meteorites similar to extinct life-forms known as acritarchs and hystrichospheres. Carbonaceous meteorites also contain a wide variety of large filaments that exhibit the complex morphologies and correct size ranges of known genera and species of photosynthetic microorganisms such as cyanobacteria and diatoms. However, EDAX investigations have shown that these carbon-rich filaments typically have nitrogen content below the level of detection (<0.5% atomic) of the instrument. EDAX studies of living and dead terrestrial biological materials have shown that nitrogen can be detected in ancient mummies and tissue, hair and teeth of Pleistocene Mammoths. Hence, the absence of detectable nitrogen in the filaments provides direct evidence that they do not represent recent biological contaminants that invaded these meteorite stones after they were observed to fall to Earth. The spectral and fluorescence properties of pigments found in several species of terrestrial cyanobacteria which are similar to some microfossils found in carbonaceous meteorites may provide valuable clues to help search

  5. A geological synthesis of the Precambrian shield in Madagascar

    USGS Publications Warehouse

    Tucker, Robert D.; Roig, J.Y.; Moine, B.; Delor, C.; Peters, S.G.

    2014-01-01

    Available U–Pb geochronology of the Precambrian shield of Madagascar is summarized and integrated into a synthesis of the region’s geological history. The shield is described in terms of six geodynamic domains, from northeast to southwest, the Bemarivo, Antongil–Masora, Antananarivo, Ikalamavony, Androyan–Anosyan, and Vohibory domains. Each domain is defined by distinctive suites of metaigneous rocks and metasedimentary groups, and a unique history of Archean (∼2.5 Ga) and Proterozoic (∼1.0 Ga, ∼0.80 Ga, and ∼0.55 Ga) reworking. Superimposed within and across these domains are scores of Neoproterozoic granitic stocks and batholiths as well as kilometer long zones of steeply dipping, highly strained rocks that record the effects of Gondwana’s amalgamation and shortening in latest Neoproterozoic time (0.560–0.520 Ga). The present-day shield of Madagascar is best viewed as part of the Greater Dharwar Craton, of Archean age, to which three exotic terranes were added in Proterozoic time. The domains in Madagascar representing the Greater Dharwar Craton include the Antongil–Masora domain, a fragment of the Western Dharwar of India, and the Neoarchean Antananarivo domain (with its Tsaratanana Complex) which is broadly analogous to the Eastern Dharwar of India. In its reconstructed position, the Greater Dharwar Craton consists of a central nucleus of Paleo-Mesoarchean age (>3.1 Ga), the combined Western Dharwar and Antongil–Masora domain, flanked by mostly juvenile “granite–greenstone belts” of Neoarchean age (2.70–2.56 Ga). The age of the accretionary event that formed this craton is approximately 2.5–2.45 Ga. The three domains in Madagascar exotic to the Greater Dharwar Craton are the Androyan–Anosyan, Vohibory, and Bemarivo. The basement to the Androyan–Anosyan domain is a continental terrane of Paleoproterozoic age (2.0–1.78 Ga) that was accreted to the southern margin (present-day direction) of the Greater Dharwar Craton in pre

  6. Flow of ultra-hot Precambrian orogens and the making of crustal layering in Phanerozoic orogenic plateaux

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques

    2010-05-01

    Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen

  7. The Role of Noble Gases in Defining the Mean Residence Times of Fluids within Precambrian Crustal Systems

    NASA Astrophysics Data System (ADS)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.

    2015-12-01

    Brines rich in N2, H2, CH4 and He hosted within Precambrian crustal rocks are known to sustain microbial life [1]. The geological systems containing these brines have the potential to isolate organisms over planetary timescales and so can provide unique insight into the diversity and evolution of terrestrial life [1-3]. Long considered geological outliers, the prevalence of systems containing these ancient, deep fracture waters is only now being revealed. Recent studies demonstrate the Precambrian crust which accounts for ~70% of total crustal surface area has a global hydrogen production comparable to marine systems [2]. In addition to H2-producing reactions (e.g. radiolysis and serpentinization), a diversity of CH4-producing reactions also occur in these systems through both microbial and water-rock interactions [1, 2]. However, the role these Precambrian systems have in global hydrogen and carbon cycles is poorly understood. For this we need good constraints on the origins, residence times and degree of microbial activity of the fluids within these systems as well as the degree of interaction with external systems. Fortunately, noble gases are ideal for this role [1,3]. Previous noble gas analysis of N2, H2, CH4 and He-rich fluid samples collected at 2.4 km depth from a Cu-Zn mine in Timmins, Ontario, identified isolated fracture fluids with the oldest residence times ever observed (>1.1 Ga) [3]. This study has been significantly expanded now to fluids from an even greater depth (3 km) at Timmins, and from two new mines in the Sudbury Basin. Preliminary data from the deeper Timmins level indicate a new closed system with 136Xe/130Xe ratios 93% above modern air values (20% at 2.4 km) and an early atmosphere 124Xe/130Xe signal approaching the age of the host rock (~2.7 Ga) [4]. In comparison, the Sudbury system indicates exchange with an external source, being highly enriched in helium (30% gas volume) but with a low fissiogenic 136Xe/130Xe excess (10-38% above

  8. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism

    NASA Astrophysics Data System (ADS)

    Fedonkin, Mikhail A.; Waggoner, Benjamin M.

    1997-08-01

    The fossil Kimberella quadrata was originally described from late Precambrian rocks of southern Australia. Reconstructed as a jellyfish, it was later assigned to the cubozoans (`box jellies'), and has been cited as a clear instance of an extant animal lineage present before the Cambrian. Until recently, Kimberella was known only from Australia, with the exception of some questionable north Indian specimens. We now have over thirty-five specimens of this fossil from the Winter Coast of the White Sea in northern Russia. Our study of the new material does not support a cnidarian affinity. We reconstruct Kimberella as a bilaterally symmetrical, benthic animal with a non-mineralized, univalved shell, resembling a mollusc in many respects. This is important evidence for the existence of large triploblastic metazoans in the Precambrian and indicates that the origin of the higher groups of protostomes lies well back in the Precambrian.

  9. The contribution of the Precambrian continental lithosphere to global H2 production.

    PubMed

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  10. Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust

    NASA Astrophysics Data System (ADS)

    Korja, T.; Hjelt, S.-E.

    1993-12-01

    Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of

  11. Detecting the transport of toxic pesticides from golf courses into watersheds in the Precambrian Shield region of Ontario, Canada.

    PubMed

    Metcalfe, Tracy L; Dillon, Peter J; Metcalfe, Chris D

    2008-04-01

    Golf courses impact the environment through alterations to habitat and through the release of nutrients and pesticides. The Precambrian Shield region of central Ontario, Canada, which is a major recreational area, is especially susceptible to the impacts of golf courses as a result of the geology and hydrology of the region. In a monitoring program at two golf courses in the Muskoka region conducted during the spring, summer, and fall of 2002, semipermeable membrane devices (SPMDs) were deployed into streams that drain the golf courses. The extracts from the SPMDs were tested for toxicity using bioassays with early life stages of an aquarium fish, the Japanese medaka (Oryzias latipes). Toxicity was assessed using a scoring system developed for the present study. The bioassays with medaka indicated that toxicity was highest in extracts from SPMDs deployed during the spring and the fall. The peaks in toxicity for the SPMDs deployed at the two golf courses corresponded with the presence in the SPMD extracts of pentachloronitrobenzene (PCNB) at concentrations up to 334 ng/SPMD. Quintozene is the turfgrass fungicide in which PCNB is the active ingredient. Pentachlorothioanisole, an anaerobic degradation product of PCNB, also was detected in the SPMDs deployed during the spring. Extracts prepared from SPMDs with high toxicity contained residues of a surfactant used in pesticide formulations, nonylphenol, at concentrations up to approximately 20 microg/SPMD. Overall, these data indicate that some pesticides applied to golf courses in the Precambrian Shield of central Ontario may have the potential to cause toxic impacts to aquatic organisms in adjacent watersheds.

  12. Multiple High-Frequency Carbon Isotope Excursions Across the Precambrian-Cambrian Boundary: Implications for Correlations and Environmental Change

    NASA Astrophysics Data System (ADS)

    Smith, E. F.; Macdonald, F. A.; Schrag, D. P.; Laakso, T.

    2014-12-01

    The GSSP Precambrian-Cambrian boundary in Newfoundland is defined by the first appearance datum (FAD) of Treptichnus pedum, which is considered to be roughly coincident with the FAD of small shelly fossils (SSFs) and a large negative carbon isotope excursion. An association between the FAD of T. pedum and a negative carbon isotope excursion has previously been documented in Northwest Canada (Narbonne et al., 1994) and Death Valley (Corsetti and Hagadorn, 2000), and since then has been used as an chronostratigraphic marker of the boundary, particularly in siliciclastic poor sections that do not preserve T. pedum. Here we present new high-resolution carbon isotope (δ13C ) chemostratigraphy from multiple sections in western Mongolia and the western United States that span the Ediacaran-Cambrian transition. High-resolution sampling (0.2-1 m) reveals that instead of one large negative excursion, there are multiple, high-frequency negative excursions with an overall negative trend during the latest Ediacaran. These data help to more precisely calibrate changes in the carbon cycle across the boundary as well as to highlight the potential problem of identifying the boundary with just a few negative δ13C values. We then use a simple carbon isotope box model to explore relationships between phosphorous delivery to the ocean, oxygenation, alkalinity, and turnovers in carbonate secreting organisms. Corsetti, F.A., and Hagadorn, J.W., 2000, Precambrian-Cambrian transition: Death Valley, United States: Geology, v. 28, no. 4, p. 299-302. Narbonne, G.M., Kaufman, A.J., and Knoll, A.H., 1994, Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals: Geological Society of America Bulletin, v. 106, no. 10, p. 1281-1292.

  13. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora

    USGS Publications Warehouse

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.

    2005-01-01

    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  14. A model of precambrian geology of Kansas derived from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Xia, Jianghai; Sprowl, Donald R.; Steeples, Don W.

    1996-10-01

    The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension.

  15. A model of Precambrian geology of Kansas derived from gravity and magnetic data

    USGS Publications Warehouse

    Xia, J.; Sprowl, D.R.; Steeples, D.W.

    1996-01-01

    The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension. Copyright ?? 1996 Elsevier Science Ltd.

  16. Intensity of geomagnetic field in the Precambrian and evolution of the Earth's deep interior

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.

    2017-09-01

    Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively "young" Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth's internal structure, such as the age of the Earth's solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth's inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth's core. The data are

  17. A model for diurnal patterns of carbon fixation in a Precambrian microbial mat based on a modern analog

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1991-01-01

    Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using a modern microbial mat as an analog for Precambrian stromatolites, a study of carbon fixation during a diurnal cycle under ambient conditions was undertaken. The rate of carbon fixation depends primarily on the availability of light (consistent with photosynthetic carbon fixation) and inorganic carbon, and not nitrogen or phosphorus. Atmospheric PCO2 is thought to have decreased from 10 bars at 4 Ga (10(9) years before present) to approximately 10(-4) bars today, implying a change in the availability of inorganic carbon for carbon fixation. Experimental manipulation of levels of inorganic carbon to levels that may have been available to Precambrian mat communities resulted in increased levels of carbon fixation during daylight hours. Combining these data with models of daylength during the Precambrian, models are derived for diurnal patterns of photosynthetic carbon fixation in a Precambrian microbial mat community. The models suggest that, even in the face of shorter daylengths during the Precambrian, total daily carbon fixation has been declining over geological time, with most of the decrease having occurred during the Precambrian.

  18. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    PubMed

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  19. Control of Precambrian basement deformation zones on emplacement of the Laramide Boulder batholith and Butte mining district, Montana, United States

    USGS Publications Warehouse

    Berger, Byron R.; Hildenbrand, Thomas G.; O'Neill, J. Michael

    2011-01-01

    What are the roles of deep Precambrian basement deformation zones in the localization of subsequent shallow-crustal deformation zones and magmas? The Paleoproterozoic Great Falls tectonic zone and its included Boulder batholith (Montana, United States) provide an opportunity to examine the importance of inherited deformation fabrics in batholith emplacement and the localization of magmatic-hydrothermal mineral deposits. Northeast-trending deformation fabrics predominate in the Great Falls tectonic zone, which formed during the suturing of Paleoproterozoic and Archean cratonic masses approximately 1,800 mega-annum (Ma). Subsequent Mesoproterozoic to Neoproterozoic deformation fabrics trend northwest. Following Paleozoic through Early Cretaceous sedimentation, a Late Cretaceous fold-and-thrust belt with associated strike-slip faulting developed across the region, wherein some Proterozoic faults localized thrust faulting, while others were reactivated as strike-slip faults. The 81- to 76-Ma Boulder batholith was emplaced along the reactivated central Paleoproterozoic suture in the Great Falls tectonic zone. Early-stage Boulder batholith plutons were emplaced concurrent with east-directed thrust faulting and localized primarily by northwest-trending strike-slip and related faults. The late-stage Butte Quartz Monzonite pluton was localized in a northeast-trending pull-apart structure that formed behind the active thrust front and is axially symmetric across the underlying northeast-striking Paleoproterozoic fault zone, interpreted as a crustal suture. The modeling of potential-field geophysical data indicates that pull-apart?stage magmas fed into the structure through two funnel-shaped zones beneath the batholith. Renewed magmatic activity in the southern feeder from 66 to 64 Ma led to the formation of two small porphyry-style copper-molybdenum deposits and ensuing world-class polymetallic copper- and silver-bearing veins in the Butte mining district. Vein orientations

  20. From a collage of microplates to stable continental crust - an example from Precambrian Europe

    NASA Astrophysics Data System (ADS)

    Korja, Annakaisa

    2013-04-01

    Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive

  1. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions

    NASA Astrophysics Data System (ADS)

    Schopf, J. William; Kitajima, Kouki; Spicuzza, Michael J.; Kudryavtsev, Anatoliy B.; Valley, John W.

    2018-01-01

    Analyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ˜3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δ13C compositions to vary systematically taxon to taxon from ‑31‰ to ‑39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δ13C values of each of the five taxa are lower than those of bulk samples of Apex kerogen (‑27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (‑27.6‰), and those typical of modern prokaryotic phototrophs (‑25 ± 10‰). The SIMS data for the two highest δ13C Apex taxa are consistent with those of extant phototrophic bacteria; those for a somewhat lower δ13C taxon, with nonbacterial methane-producing Archaea; and those for the two lowest δ13C taxa, with methane-metabolizing γ-proteobacteria. Although the existence of both methanogens and methanotrophs has been inferred from bulk analyses of the carbon isotopic compositions of pre-2,500 Ma kerogens, these in situ SIMS analyses of individual microfossils present data interpretable as evidencing the cellular preservation of such microorganisms and are consistent with the near-basal position of the Archaea in rRNA phylogenies.

  2. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions.

    PubMed

    Schopf, J William; Kitajima, Kouki; Spicuzza, Michael J; Kudryavtsev, Anatoliy B; Valley, John W

    2018-01-02

    Analyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ∼3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δ 13 C compositions to vary systematically taxon to taxon from -31‰ to -39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δ 13 C values of each of the five taxa are lower than those of bulk samples of Apex kerogen (-27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (-27.6‰), and those typical of modern prokaryotic phototrophs (-25 ± 10‰). The SIMS data for the two highest δ 13 C Apex taxa are consistent with those of extant phototrophic bacteria; those for a somewhat lower δ 13 C taxon, with nonbacterial methane-producing Archaea; and those for the two lowest δ 13 C taxa, with methane-metabolizing γ-proteobacteria. Although the existence of both methanogens and methanotrophs has been inferred from bulk analyses of the carbon isotopic compositions of pre-2,500 Ma kerogens, these in situ SIMS analyses of individual microfossils present data interpretable as evidencing the cellular preservation of such microorganisms and are consistent with the near-basal position of the Archaea in rRNA phylogenies.

  3. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    NASA Technical Reports Server (NTRS)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  4. Precambrian Basement Structure Map of the Continental United States - An Interpretation of Geologic and Aeromagnetic Data

    USGS Publications Warehouse

    Sims, Paul K.; Saltus, Richard W.; Anderson, Eric D.

    2008-01-01

    The Precambrian basement rocks of the continental United States are largely covered by younger sedimentary and volcanic rocks, and the availability of updated aeromagnetic data (NAMAG, 2002) provides a means to infer major regional basement structures and tie together the scattered, but locally abundant, geologic information. Precambrian basement structures in the continental United States have strongly influenced later Proterozoic and Phanerozoic tectonism within the continent, and there is a growing awareness of the utility of these structures in deciphering major younger tectonic and related episodes. Interest in the role of basement structures in the evolution of continents has been recently stimulated, particularly by publications of the Geological Society of London (Holdsworth and others, 1998; Holdsworth and others, 2001). These publications, as well as others, stress the importance of reactivation of basement structures in guiding the subsequent evolution of continents. Knowledge of basement structures is an important key to understanding the geology of continental interiors.

  5. Depositional environments and paleocurrent directions in the Precambrian Moeda Formation, Minas Gerais, Brazil

    USGS Publications Warehouse

    Lindsey, David A.

    1975-01-01

    The middle Precambrian Moeda Formation of Minas Gerais, Brazil, contains uranium and other minerals believed to be of detrital origin. Two areas of anomalously high concentrations of uranium have been discovered in conglomeratic zones that are interpreted as paleochannels. Because the distribution of uranium is believed to be controlled at least in part by sedimentation, a reconnaissance study was undertaken to assess the depositional environment and sediment dispersal pattern of the Moeda Formation.

  6. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China

    NASA Technical Reports Server (NTRS)

    Chen, J. Y.; Oliveri, P.; Li, C. W.; Zhou, G. Q.; Gao, F.; Hagadorn, J. W.; Peterson, K. J.; Davidson, E. H.

    2000-01-01

    Putative fossil embryos and larvae from the Precambrian phosphorite rocks of the Doushantuo Formation in Southwest China have been examined in thin section by bright field and polarized light microscopy. Although we cannot completely exclude a nonbiological or nonmetazoan origin, we identified what appear to be modern cnidarian developmental stages, including both anthozoan planula larvae and hydrozoan embryos. Most importantly, the sections contain a variety of small (

  7. Geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary sequence, Easton quadrangle, PA

    SciTech Connect

    Thomas, D.M.; Malinconico, L.L. Jr.

    1993-03-01

    This project involves the geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary cover rocks near Easton, Pennsylvania. The Precambrian rocks have generally been assumed to have been emplaced on the Paleozoic sequence along a shallow thrust fault. However, at present time the attitude of the faults bordering the Precambrian terranes are all very steeply dipping. This was explained by the subsequent folding of the whole sequence during later orogenic activity. The objective of this work is to determine the attitude and depth of the fault contact between the Precambrian crystalline rocks andmore » the Paleozoic sedimentary rocks. A series of traverses (each separated by approximately one mile) were established perpendicular to the strike of the Precambrian rocks. Along each traverse both gravity and magnetic readings were taken at 0.2 kilometer intervals. The data were reduced and presented as profiles and contour maps. Both the magnetic and gravity data show positive anomalies that correlate spatially with the location of the Precambrian rocks. The gravity data have a long wavelength regional trend increasing to the north with a shorter wavelength anomaly of 2 milligals which coincides with the Precambrian rocks. The magnetic data have a single positive anomaly of almost 1,000 gammas which also coincides with the Precambrian terrane. These data will now be used to develop two dimensional density and susceptibility models of the area. From these models, the thickness of each formation and the structural relationships between them, as well as the attitude and depth of the fault contact will be determined.« less

  8. Evidence for hydrous high-MgO melts in the Precambrian

    NASA Astrophysics Data System (ADS)

    Stone, William E.; Deloule, Etienne; Larson, Michelle S.; Lesher, C. Michael

    1997-02-01

    Prevailing petrogenetic models for Precambrian high-MgO melts such as komatiites invoke crystallization from nearly anhydrous melts (≪0.5% H2O) generated by partial melting of mantle peridotite at temperatures of (≤ 1900 °C and pressures of (18 GPa. However, ultramafic cumulate and gabbro zones of komatiitic and other high-MgO units in Precambrian greenstone belts contain vesicles and minor to major amounts (≤ 25%) of igneous amphibole. The textures (oikocrysts, rims on intercumulate pyroxene, and mineral inclusions within orthocumulate olivine) and the water-rich compositions (1.00% 2.50% H2O) of igneous amphiboles from the Archean Abitibi belt indicate crystallization in situ from significantly hydrous melts while the melt fraction was still as high as 40% 50%. Comparisons to experimental phase equilibria suggest that the residual melts from which the amphiboles crystallized contained 3% 4% H2O, and adjustments for fractional crystallization suggest that the initial melts may have contained as much as 2% H2O. H2O contents of this magnitude would require substantial revision of the nearly anhydrous models for Precambrian high-MgO melts, possibly permitting generation at lower temperatures and pressures, lowering their densities and viscosities, increasing their eruptibility, and enhancing the formation of spinifex textures.

  9. Quantifying precambrian crustal extraction: The root is the answer

    USGS Publications Warehouse

    Abbott, D.; Sparks, D.; Herzberg, C.; Mooney, W.; Nikishin, A.; Zhang, Y.-S.

    2000-01-01

    We use two different methods to estimate the total amount of continental crust that was extracted by the end of the Archean and the Proterozoic. The first method uses the sum of the seismic thickness of the crust, the eroded thickness of the crust, and the trapped melt within the lithospheric root to estimate the total crustal volume. This summation method yields an average equivalent thickness of Archean crust of 49 ?? 6 km and an average equivalent thickness of Proterozoic crust of 48 ?? 9 km. Between 7 and 9% of this crust never reached the surface, but remained within the continental root as congealed, iron-rich komatiitic melt. The second method uses experimental models of melting, mantle xenolith compositions, and corrected lithospheric thickness to estimate the amount of crust extracted through time. This melt column method reveals that the average equivalent thickness of Archean crust was 65 ?? 6 km. and the average equivalent thickness of Early Proterozoic crust was 60 ?? 7 km. It is likely that some of this crust remained trapped within the lithospheric root. The discrepancy between the two estimates is attributed to uncertainties in estimates of the amount of trapped, congealed melt, overall crustal erosion, and crustal recycling. Overall, we find that between 29 and 45% of continental crust was extracted by the end of the Archean, most likely by 2.7 Ga. Between 51 and 79% of continental crust was extracted by the end of the Early Proterozoic, most likely by 1.8-2.0 Ga. Our results are most consistent with geochemical models that call upon moderate amounts of recycling of early extracted continental crust coupled with continuing crustal growth (e.g. McLennan, S.M., Taylor, S.R., 1982. Geochemical constraints on the growth of the continental crust. Journal of Geology, 90, 347-361; Veizer, J., Jansen, S.L., 1985. Basement and sedimentary recycling - 2: time dimension to global tectonics. Journal of Geology 93(6), 625-643). Trapped, congealed, iron

  10. Geochemistry of Precambrian carbonates. V - Late Paleoproterozoic seawater

    NASA Technical Reports Server (NTRS)

    Veizer, Jan; Plumb, K. A.; Clayton, R. N.; Hinton, R. W.; Grotzinger, J. P.

    1992-01-01

    A study of mineralogy, chemistry, and isotopic composition of the Coronation Supergroup (about 1.9 Ga, NWT), Canada, and the McArthur Group (about 1.65 NT), Australia, is reported in order to obtain better constrained data for the first- and second-order variations in the isotopic composition of late Paleoproterozoic (1.9 +/- 0.2 Ga) seawater. Petrologically, both carbonate sequences are mostly dolostones. The McArthur population contains more abundant textural features that attest to the former presence of sulfates and halite, and the facies investigated represent ancient equivalents of modern evaporitic sabkhas and lacustrine playa lakes. It is suggested that dolomitization was an early diagenetic event and that the O-18 depletion of the Archean to late Paleoproterozoic carbonates is not an artifact of postdepositional alteration.

  11. Revisiting the Swaziland Supergroup: New Approaches to Examining Evidence for Early Life on Earth

    NASA Technical Reports Server (NTRS)

    Walsh, M. M.; Westall, F.

    2000-01-01

    The re-examination by SEM of 3.4 Ga fossiliferous carbonaceous cherts reveals fungal contaminants in addition to indigenous microfossils. Weathered volcanic flows associated with fossiliferous chert layers offer a promising area for further study of early life on Earth.

  12. The Precambrian terranes of Yemen and their correlation with those of Saudi Arabia and Somalia: Implications for the accretion of Gondwana

    USGS Publications Warehouse

    Windley, B.F.; Whitehouse, M.J.; Stoeser, D.B.; Al-Khirbash, S.; Ba-Bttat, M. A. O.; Al-Ghotbah, A.

    2001-01-01

    Most of the basement of Yemen consists of early Precambrian continental high-grade terranes and Neoproterozoic low-grade island arcs that were accreted together to form an arc-continent collage during the Pan-African orogeny (Windley et al., 1996; Whitehouse et al., 1998; Whitehouse et al., in press). The suture zones between the arc and gneiss terranes are major crustal- scale tectonic boundaries. The terranes are situated east of the Nabitah suture and of the collage of low-grade, mainly island arc terranes of the Arabian Shield, but they have been reworked by a Neoproterozoic event associated with island arc accretion. Further east in Yemen are mostly unconformable, very weakly deformed and very low-grade or unmetamorphosed sediments. Thus Yemen provides key information on the broad zone of Neoproterozoic reworking associated with the collisional boundary between western and eastern Gondwana. 

  13. Mid to late-Holocene diatom microfossils and geochemical proxies as evidence for paleoclimate in the Hudson River estuary, New York

    NASA Astrophysics Data System (ADS)

    Gurung, D.; McHugh, C. M.; Kenna, T. C.; Burckle, L.

    2009-05-01

    New methodologies that combine the use of microfossil diatom assemblages, and elemental geochemistry (bromine (Br)) are being developed to assess late Holocene climatic variability in estuaries. The main idea is that in an estuary the saltwater wedge fluctuates in response to the volume of fluvial discharge that depends on surface runoff from precipitation and melting of snow (spring freshet). During times of high precipitation the saltwater wedge is pushed seaward. In contrast, during times of drought the saltwater wedge moves landward into the estuary. The Hudson River estuary in New York was flooded by marine waters in the early Holocene and at present its sedimentation patterns are in a state of dynamic equilibrium. Guided by high-resolution multibeam bathymetry, sediment cores (˜6 m in length) were recovered from the oligohaline parts of the estuary where discharge and precipitation changes have more impact on the saltwater wedge fluctuations. In those cores that showed continuous sedimentation, diatom assemblages and Br (ppm) were studied and used as proxies for salinity. Diatom assemblages (marine, freshwater and brackish) were identified and counted and Br (ppm) was measured by X-ray fluorescence spectrometry with an Innov-X portable system. The results were calibrated to an Pb-210 age model and compared with instrumental data of precipitation, river discharge, and Palmer Drought Severity Index (PDSI), The results obtained from two different locations show that marine diatom abundance and Br content correlate with periods of high precipitation during 1992-1988; 1985-1980; 1976-1968; 1962-1958; and increase with periods of low precipitation or droughts in 1987-1985; 1980-1975; 1967-1962; 1943-1938. The mid to late Holocene record shows a variability on the scale of ˜300 to 400 years similar to that obtained by Cronin et al. (2003) for Chesapeake Bay and related to the North Atlantic Oscillation. From 1992 to the present, both marine diatoms and Br ppm

  14. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  15. Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases

    PubMed Central

    Veikkolainen, Toni H.; Biggin, Andrew J.; Pesonen, Lauri J.; Evans, David A.; Jarboe, Nicholas A.

    2017-01-01

    State-of-the-art measurements of the direction and intensity of Earth’s ancient magnetic field have made important contributions to our understanding of the geology and palaeogeography of Precambrian Earth. The PALEOMAGIA and PINT(QPI) databases provide thorough public collections of important palaeomagnetic data of this kind. They comprise more than 4,100 observations in total and have been essential in supporting our international collaborative efforts to understand Earth's magnetic history on a timescale far longer than that of the present Phanerozoic Eon. Here, we provide an overview of the technical structure and applications of both databases, paying particular attention to recent improvements and discoveries. PMID:28534869

  16. Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT(QPI) databases.

    PubMed

    Veikkolainen, Toni H; Biggin, Andrew J; Pesonen, Lauri J; Evans, David A; Jarboe, Nicholas A

    2017-05-23

    State-of-the-art measurements of the direction and intensity of Earth's ancient magnetic field have made important contributions to our understanding of the geology and palaeogeography of Precambrian Earth. The PALEOMAGIA and PINT( QPI ) databases provide thorough public collections of important palaeomagnetic data of this kind. They comprise more than 4,100 observations in total and have been essential in supporting our international collaborative efforts to understand Earth's magnetic history on a timescale far longer than that of the present Phanerozoic Eon. Here, we provide an overview of the technical structure and applications of both databases, paying particular attention to recent improvements and discoveries.

  17. Rutile and topaz in Precambrian gneiss, Jefferson and Clear Creek Counties, Colorado

    USGS Publications Warehouse

    Sheridan, Douglas M.; Taylor, Richard B.; Marsh, Sherman P.

    1968-01-01

    Disseminated rutile and major amounts of topaz have been identified in Precambrian topaz-quartz gneiss northwest of Evergreen, Colo. The rutile occurs in quartz-topaz-sillimanite gneiss that forms a stratigraphic unit which is 11 to 100 feet thick and is identified along strike for more than 7,000 feet. Three composite chip samples taken across this unit contain 2.2 to 4.2 percent of rutile, by weight, in grains averaging from 0.1 to 0.3 millimeter in size. The topaz content, by weight, in the same samples ranges from 23 to 67 percent.

  18. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  19. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts.

    PubMed

    Robert, François; Chaussidon, Marc

    2006-10-26

    The terrestrial sediment record indicates that the Earth's climate varied drastically in the Precambrian era (before 550 million years ago), ranging from surface temperatures similar to or higher than today's to global glaciation events. The most continuous record of sea surface temperatures of that time has been derived from variations in oxygen isotope ratios of cherts (siliceous sediments), but the long-term cooling of the oceans inferred from those data has been questioned because the oxygen isotope signature could have been reset through the exchange with hydrothermal fluids after deposition of the sediments. Here we show that the silicon isotopic composition of cherts more than 550 million years old shows systematic variations with age that support the earlier conclusion of long-term ocean cooling and exclude post-depositional exchange as the main source of the isotopic variations. In agreement with other lines of evidence, a model of the silicon cycle in the Precambrian era shows that the observed silicon isotope variations imply seawater temperature changes from about 70 degrees C 3,500 million years ago to about 20 degrees C 800 million years ago.

  20. Index to selected machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas

    USGS Publications Warehouse

    Spinazola, J.M.; Hansen, C.V.; Underwood, E.J.; Kenny, J.F.; Wolf, R.J.

    1987-01-01

    Machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas were compiled as part of the USGS Central Midwest Regional Aquifer System Analysis. The geohydrologic data include log, water quality, water level, hydraulics, and water use information. The log data consist of depths to the top of selected geologic formations determined from about 275 sites with geophysical logs and formation lithologies from about 190 sites with lithologic logs. The water quality data consist of about 10,800 analyses, of which about 1 ,200 are proprietary. The water level data consist of about 4 ,480 measured water levels and about 4,175 equivalent freshwater hydraulic heads, of which about 3,745 are proprietary. The hydraulics data consist of results from about 30 specific capacity tests and about 20 aquifer tests, and interpretations of about 285 drill stem tests (of which about 60 are proprietary) and about 75 core-sample analyses. The water use data consist of estimates of freshwater withdrawals from Precambrian through Cretaceous geohydrologic units for each of the 105 counties in Kansas. Average yearly withdrawals were estimated for each decade from 1940 to 1980. All the log and water use data and the nonproprietary parts of the water quality , water level, and hydraulics data are available on magnetic tape from the USGS office in Lawrence, Kansas. (Author 's abstract)

  1. Modeling Continental Rifts and Melting Under Precambrian Mantle Conditions: Effects of Mantle Potential Temperature and Rheology

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Moucha, R.; Rooney, T. O.; Stein, S.; Stein, C. A.

    2016-12-01

    The Mid-Continent Rift System (MCRS) is a 2000 kilometer-long failed rift which formed within the Precambrian continent of Laurentia ca. 1.1 Ga. The MCRS is part of the Keweenaw large igneous province (LIP), and is dominantly composed of flood basalts, with subordinate rhyolite. While continental rifts and LIPs are frequently spatially related, it is unusual for a rift to be filled with flood basalts. Existing work has suggested that the presence of large volumes of flood basalts within the MCRS is the result of the rift interacting with anomalously hot mantle material, possibly a mantle plume. However, ambient mantle conditions were much hotter during the late Proterozoic than in the modern mantle. This raises the question - could rifting alone generate the significant volume of decompressive melt from the ambient atmosphere without the need for a mantle plume? In this contribution, we utilize a 2D particle-in-cell thermomechanical visco-elasto-plastic code (e.g. Gerya, 2010; & references therein) to numerically explore the parameter space: specifically, the mantle potential temperature, plume excess temperature and volume, extension rates and rheology, and estimate the amount of melt produced in a Precambrian continental rift setting. *This submission is a result of Hansen's participation in GLADE, a nine week summer REU program directed by Dave Stegman (SIO/UCSD).

  2. NanoSIMS Reveals New Structural and Elemental Signatures of Early Life

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; Robert, Francois; McKay, David S.

    2006-01-01

    The young technology of NanoSIMS is unlocking new information from organic matter in ancient sediments. We have used this technique to characterize sub-micron scale element composition of Proterozoic organics that are clearly biogenic as a guide for interpreting problematic structures in terrestrial or extraterrestrial samples. We used the NanoSIMS 50 of the National Museum of Natural History in Paris to map carbon, nitrogen (as CN), and sulfur in organic structures from the approximately 0.8 Ga Bitter Springs Formation. We analyzed spheroidal and filamentous microfossils as well as organic laminae that appeared amorphous by optical and scanning electron microscopy. In clear-cut microfossils, a coincidence between optical images and NanoSIMS element maps suggests a biological origin for the mapped carbon, sulfur, and nitrogen; this conclusion is supported by high resolution NanoSIMS maps showing identical spatial distributions of C, CN and S. High resolution images also demonstrate distinctive nano structure of the filaments and spheroids. In the amorphous laminae, NanoSIMS reveals morphologies reminiscent of compressed microfossils. Distinct CN/C ratios of the spheroids, filaments, and laminae may reflect their biological precursors (cell walls, cyanobacterial sheaths, and microbial communities/biofilms, respectively). Similar amorphous laminae comprise a preponderance of the organic matter in many Precambrian deposits. Thus it is possible that NanoSIMS will provide fresh insight into a large body of previously uninterpretable material. Additionally, NanoSIMS analysis may establish new biosignatures that will be helpful for assessing the origin and biogenicity of controversial Archean structures and any organic materials that may occur in Martian or other extraterrestrial samples.

  3. Did opening of the South China Sea impact development of the Asian Monsoon? Results from Oligocene microfossils, IODP Site U1435, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Kulhanek, Denise K.; Su, Xin; Li, Qianyu; Gregory, Mitch; Warny, Sophie; Clift, Peter D.

    2016-04-01

    Development of the Asian Monsoon is linked to uplift of the Himalayas and Tibetan Plateau in the Cenozoic, with good evidence for a strong monsoon system by the late Oligocene to early Miocene (e.g., Guo et al., 2002; Clift et al., 2008). However, Licht et al. (2014) suggested the presence of an Asian Monsoon in the late Eocene. Recent scientific ocean drilling in the Indian Ocean and surrounding marginal seas gives us the opportunity to test this hypothesis with newly recovered Paleogene sediment cores. International Ocean Discovery Program Expedition 349 to the South China Sea recovered a 30 m section of primarily lower Oligocene nannofossil-rich claystone at Site U1435, located near the northern continent/ocean boundary. A thick sandstone unit devoid of typical marine microfossils underlies the marine claystone. The sandstone is interpreted as a deltaic or restricted marine deposit and is dated to the Eocene based on the presence of organic-walled palynomorphs, suggesting that a hiatus of several million years likely separates the sandstone below from the Oligocene marine claystone. This hiatus is interpreted as the breakup unconformity, with paleodepths in the South China Sea increasing during the Oligocene. Thus, this claystone should record if opening of the South China Sea during the early Oligocene influenced development of the Asian Monsoon. Combined calcareous nannofossil and planktonic foraminifer biostratigraphy indicates that the 30 m section is primarily early Oligocene in age (~33.5-30 Ma) and was deposited on the middle slope, with paleodepths >500 m. Stable oxygen isotopes from planktonic foraminifers become heavier up-hole, suggestive of cooling/deepening in the region, whereas carbon isotopes record variable conditions with no distinct maxima or minima. Calcareous nannoplankton primarily live in the upper 50 m of the ocean and are sensitive to sea-surface temperature and nutrient conditions, thus making them useful recorders of paleoceanographic

  4. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciTech Connect

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less

  5. Anoxygenic growth of cyanobacteria on Fe(II) and their associated biosignatures: Implications for biotic contributions to Precambrian Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.

    2011-12-01

    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C

  6. Using a microfossil-based approach to constrain megathrust-induced coseismic land displacement in coastal Oregon, USA

    NASA Astrophysics Data System (ADS)

    Hawkes, A. D.; Horton, B. P.

    2007-05-01

    Paleoseismologists infer the amount of coseismic subsidence during plate-boundary earthquakes from stratigraphic changes in microfossils across sharp peat-mud and peat-sand contacts. However, the use of lithostratigraphic-based reconstructions is associated with a number of limitations, and these become particularly significant when examining low amplitude, short period variations that occur during a plate-boundary earthquake. To address this, paleoecologists working in the coastal zone have recently adopted a transfer- function approach to environmental reconstruction. Continuing subduction of the Juan de Fuca plate beneath the North America plate constitutes a major seismic hazard in the Pacific Northwest. The subduction zone interface presently lacks seismicity. The timing of the last great earthquake along the Cascadia subduction zone (1700AD) is now well refined by Japanese records of an orphan tsunami (no causal earthquake was felt in Japan) that was generated from an earthquake off the Pacific Northwest on the evening of January 26th 1700AD. I will apply the transfer function to modern foraminiferal datasets along coastal Oregon to analyze the fossil record and quantitatively determine the amount of vertical land movement associated with the 1700AD earthquake event. To date, we have collected 7 modern transects totaling 132 samples from the intertidal zone to the upland. We have also collected 9 cores recording the 1700AD earthquake. Furthermore, a 4m vibracore was collected and contains between 3 and 5 potential earthquake horizons. The 1700AD earthquake in the vibracore shows a distinct litho- and biostratigraphical change representing an instantaneous episode of subsidence of approximately 1m. However, development and application of the transfer function to such events will provide quantitative constrained estimates of coseismic land movement. Measurements that are more accurate are necessary to help modelers develop simulations that are more realistic in

  7. Diatom microfossils from cretaceous and eocene sediments contain native silica precipitating long-chain polyamines.

    PubMed

    Bridoux, M C; Ingalls, A E

    2013-05-01

    Organic molecules from known biological sources (biomarkers) that are preserved over geological time are critical tools in the study of past conditions and events on earth. Polar molecules are typically recycled rapidly in marine environments and do not survive burial within aquatic sediments in unambiguously recognizable form. As such, geological biomarkers are formed almost exclusively from precursor biomolecules that have been altered, limiting their utility as paleoproxies. Here, we report that nitrogen-rich aliphatic long-chain polyamines (LCPAs), biosynthesized by diatoms in species-specific assemblages for the precipitation of nanopatterned siliceous cell walls (frustules), are preserved unaltered in the oldest available diatom fossils dating to the Lower Cretaceous (early Albian, 115-110 Ma). We further show that the cumulative LCPA pool accounts for 60% of the total C and 80% of the total N preserved in the Cretaceous age sediments. We suggest that silica glass formation by diatoms constitutes an important preservation mechanism for source-specific, polar biomolecules, protecting them indefinitely by encapsulation within the silicified frustule. LCPAs are a unique, source-specific carbon and nitrogen archive of diatom biomass, offering a promising tool for reconstruction of global cycles of carbon and nitrogen over geological timescales. © 2013 Blackwell Publishing Ltd.

  8. Modern stromatolites in a saline maar in the Western District of Victoria, Australia: a possible analogue for Precambrian marine carbonates

    NASA Astrophysics Data System (ADS)

    Lynch, J. E.; Wallace, M. W.

    2011-12-01

    Stromatolites and thrombolites are microbially-mediated, sedimentary structures of various size and morphology, found throughout the rock record. Although they do not always contain fossils of microbial cells, ancient stromatolitic structures are considered biogenic in origin and, therefore, evidence of early life. Modern, living stromatolites are found in lacustrine and marine environments and can provide a window in which to observe some of Earth's earliest biological processes. However, secular variation in marine chemistry over geological time means that modern marine settings are not always the best analogues for ancient carbonates. This study describes the occurrence of modern stromatolites in a saline, alkaline maar in Victoria, Australia. Dolomite is a principle carbonate mineral precipitating from this lake, an unusual and poorly understood occurrence in modern environments, but one that was common in the Precambrian. The peculiar lacustrine chemistry in this volcanic region may, therefore, provide a better analogue for Precambrian marine carbonates than modern marine environments. Several types of stromatolites/thrombolites are observed occurring around this maar. Living thrombolites grow just below the shoreline to ~60 cm below the surface of the water. They are nucleating on the cemented surfaces of older lake carbonates, as well as cattle skulls and fence wires that have become submerged. Distinct microbial mats are observed, the uppermost being cyanobacteria, followed by purple sulfur bacteria, and underlain by sulfate reducing bacteria. Older exposed stromatolites are more consolidated and have a more clearly defined laminated and columnar morphology. The thickness ranges from a few to 15 cm and each column is up to a centimeter in diameter. Together these give the surface of the rock a "bubbly" appearance. Along the shore, a sandy-gravel composed of stromatolite remnants has formed, indicating that wind-generated surface waves of substantial

  9. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  10. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    SciTech Connect

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind.more » Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.« less

  11. Stratigraphic and microfossil evidence for hydroclimate changes over the middle to late Holocene in the northern Bahamas from an inland saline lake

    NASA Astrophysics Data System (ADS)

    van Hengstum, P. J.; Maale, G. E.; Donnelly, J. P.; Onac, B. P.; Sullivan, R.; Winkler, T. S.; Albury, N. A.

    2016-12-01

    No Man's Land is one of the largest inland lakes on the Little Bahama Bank in the northern Bahamas, so its paleoenvironmental history may provide insight into how the regional hydroclimate developed over the Holocene. In its modern state, the site is shallow (<3 m), brackish (20.6 psu), 170 m in diameter, and located 700 m from the coastline. Prior to 6400 Cal yrs BP, the accumulation of peat deposits and no aquatic invertebrates (e.g., ostracodes, foraminifera, aquatic mollusks) indicate that the site was a terrestrial ecosystem. However, the site transitioned into a subaqueous freshwater environment at 6400 Cal yrs BP, and the site became a palustrine-lacustrine setting thereafter until 4200 Cal yrs BP. During this time, widespread palustrine-lacustrine carbonate deposition and the appearance of freshwater to low mesohaline microfossils indicates that the lake's salinity was likely oligohaline (charophytes, ostracodes: Candona annae, Cypridopsis vidua, foraminifera: Helenina davescottensis, mollusks: Planorbis, Hydrobia). A salinity increase at 4200 Cal yrs BP is inferred from the appearance of the ostracode Cyprideis americana that typically prefers salinities exceeding 10 psu, and deposition of laminated microbial mats. Thereafter, an organic- rich, algal sapropel unit accumulated that was devoid of any microfossils or mollusks. This unit suggests that the lake hosted a stratified water column, where surface waters supported phytoplankton primary productivity and corrosive or anoxic bottom water conditions either hampered microfossil growth or precluded their preservation. The transition to the modern environment ( 20 psu) at 2600 cal yrs BP is characterized by diversification of brackish ostracodes (Aurila floridana, Dolerocypria inopinata, and Hemicyprideis setipunctata), foraminifera (Elphidium spp., Ammonia beccarii, Triloculina oblonga) and mollusks (Anomalocardia, Cerithidea). Over the middle to late Holocene, it appears that the stratigraphic development

  12. Structural analysis of Precambrian rocks at the Hot Dry Rock Site at Fenton Hill, New Mexico

    SciTech Connect

    Burns, K.L.; Potter, R.M.

    1995-01-01

    The subcrop of basement rock at Fenton HIll comprises Precambrian gneiss, schist, amphibolite, pegmatite, and granitoids with affinities in metamorphic and structural history to surface outcrops in the Tusas and Picuris Ranges. Televiewer measurements of structures were analyzed by taking advantage of the spatial continuity of foliations. Folds in the foliation are predominantly conical forms due to interference between structures formed in F2 and F3 tectonic events. Field observations of outcrops in the Picuris Range show that the fractures are predominantly an X-T network controlled by the lithological layering, and statistical evidence indicates that this layer-controlled network persists to depthmore » at Fenton Hill.« less

  13. Petrography and geochemistry of precambrian rocks from GT-2 and EE-1

    SciTech Connect

    Laughlin, A.W.; Eddy, A.

    1977-08-01

    During the drilling of GT-2 and EE-1, 27 cores totaling about 35 m were collected from the Precambrian section. Samples of each different lithology in each core were taken for petrographic and whole-rock major- and trace-element analyses. Whole-rock analyses are now completed on 37 samples. From these data four major Precambrian units were identified at the Fenton Hill site. Geophysical logs and cuttings were used to extrapolate between cores. The most abundant rock type is an extremely variable gneissic unit comprising about 75% of the rock penetrated. This rock is strongly foliated and may range compositionally from syenogranitic to tonaliticmore » over a few centimeters. The bulk of the unit falls within the monzogranite field. Interlayered with the gneiss is a ferrohastingsite-biotite schist which compositionally resembles a basaltic andesite. A fault contact between the schist and gneiss was observed in one core. Intrusive into this metamorphic complex are two igneous rocks. A leucocratic monzogranite occurs as at least two 15-m-thick dikes, and a biotite-granodiorite body was intercepted by 338 m of drill hole. Both rocks are unfoliated and equigranular. The biotite granodiorite is very homogeneous and is characterized by high modal contents of biotite and sphene and by high K/sub 2/O, TiO/sub 2/, and P/sub 2/O/sub 5/ contents. Although all of the cores examined show fractures, most of these are tightly sealed or healed. Calcite is the most abundant fracture filling mineral, but epidote, quartz, chlorite, clays or sulfides have also been observed. The degree of alteration of the essential minerals normally increases as these fractures are approached. The homogeneity of the biotite granodiorite at the bottom of GT-2 and the high degree of fracture filling ensure an ideal setting for the Hot Dry Rock Experiment.« less

  14. Precambrian evolution of the Salalah Crystalline Basement from structural analysis and 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Al-Doukhi, Hanadi Abulateef

    The Salalah Crystalline Basement (SCB) is the largest Precambrian exposure in Oman located on the southern margin of the Arabian Plate at the Arabian Sea shore. This work used remote sensing, detailed structural analysis and the analysis of ten samples using 40Ar/39Ar age dating to establish the Precambrian evolution of the SCB by focusing on its central and southwestern parts. This work found that the SCB evolved through four deformational events that shaped its final architecture: (1) Folding and thrusting event that resulted in the emplacement of the Sadh complex atop the Juffa complex. This event resulted in the formation of possibly N-verging nappe structure; (2) Regional folding event around SE- and SW-plunging axes that deformed the regional fabric developed during the N-verging nappe structure and produced map-scale SE- and SW-plunging antiforms shaping the complexes into a semi-dome structure; (3) Strike-slip shearing event that produced a conjugate set of NE-trending sinistral and NW-trending dextral strike-slip shear zones; and (4) Localized SE-directed gravitational collapse manifested by top-to-the-southeast kinematic indicators. Deformation within the SCB might have ceased by 752.2+/-2.7 Ma as indicated by an age given by an undeformed granite. The thermochron of samples collected throughout the SCB complexes shows a single cooling event that occurred between about 800 and 760 Ma. This cooling event could be accomplished by crustal exhumation resulting in regional collapse following the prolonged period of the contractional deformation of the SCB. This makes the SCB a possible metamorphic core complex.

  15. Precambrian Field Camp at the University of Minnesota Duluth - Teaching Skills Applicable to Mapping Glaciated Terranes of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Hudak, G. J.; Peterson, D.

    2011-12-01

    Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has

  16. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    USGS Publications Warehouse

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  17. EBSD characterization of pre-Cambrian deformations in conglomerate pebbles (Sierra de la Demanda, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio

    2010-05-01

    Pre-Cambrian and unconformable earliest Cambrian rocks from the Sierra de la Demanda (N Spain) exhibit field and microstructural relationships that attest to orogenic events recorded by concealed basement rocks. Neoproterozoic foliated slates ("Anguiano Schists") crop out under up to 300 m thick, unfoliated quartz-rich conglomerates ("Anguiano Conglomerates") and quartzites which are stratigraphically ca. 600 m below the oldest, paleontologically dated, pre-trilobitic Cambrian layers (likely older than 520 Ma). The Anguiano Conglomerates contain mm to cm grainsized well-rounded pebbles of various types including monocrystalline quartz, detrital zircon and tourmaline-bearing sandstones, black cherts and metamorphic poly-crystalline quartz aggregates. The undeformed matrix is made of much smaller (diagenetically overgrown) monocrystaline quartz grains and minor amounts of accesory zircon, tourmaline and mica. Black chert pebbles exhibit microstructural evidence of brittle deformation (microfaults and thin veins of syntaxial fibrous quartz). These and the fine-grained sandstone pebbles can also exhibit ductile deformations (microfolds with thickened hinges and axial planar continuous foliations), too. Polycrystalline quartz pebbles exhibit a variety of microstructures that resulted from syn-metamorphic ductile deformations. These are recognisable under the petrographic microscope and include continuous foliations, quartz shape fabrics, various types of subgrain or recrystallized new grain microtextures, and lattice preferred orientations (LPOs). Conventional characterization of quartz fabrics (after oriented structural sections) is challenged in conglomerate pebble thin sections by the difficulty of unraveling in them the complete structural reference framework provided by foliation (whose trace can be unraveled) and lineation orientation (which cannot be directly identified). Quartz in various metamorphic polycrystalline pebbles was studied with the Electron Back

  18. An REU Project on the Precambrian Rocks of Yellowstone National Park: Some lessons learned

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Mueller, P. A.; Foster, D. A.

    2014-12-01

    An NSF-funded REU project (2011-2013), based in Yellowstone National Park (YNP), was designed to characterize the geology, geochemistry and geochronology of Precambrian rocks in northern YNP. Over two field seasons two cadres of 12 students (12 women and 12 men) were chosen from small-to-large state universities and private colleges. REU students participated in three major activities constituting a complete research experience: Field studies involved geologic mapping and sampling of Precambrian basement; formulation of testable research questions by smaller working groups; and mapping and sampling projects to address research questions; Analytical studies, sample preparation immediately followed field work with petrographic analysis at students' home institutions and a week-long visit to analytical laboratories to conduct follow-up studies by small research groups during the academic year (Univ. Florida - geochemistry and geochronology; Univ. Minnesota - EMPA analysis); Communicating results, each working group submitted an abstract and collectively presented 13 posters at the 2011 and 2012 GSA Rocky Mountain sectional meetings. We used directed discovery to engage students in a community of practice in the field and found that a long apprenticeship (2-3 weeks) is optimal for novice-master interactions in exploring natural setting. Initial group hikes were used to normalize methods and language of the discipline. Students developed a sense of ownership of the overall project and assumed personal responsibility for directed research projects. Training was provided to: guide students in selection and appropriate use of tools; develop sampling strategies; discuss communal ethics, values, and expectations; develop efficient work habits; stimulate independent thinking; and engage decision-making. It was important to scaffold the field experience to students' level of development to lead to mastery. Analytical activities were designed from rock to analysis so that each

  19. Mechanisms of iron-silica aqueous interaction and the genesis of Precambrian iron formation

    NASA Astrophysics Data System (ADS)

    Chemtob, S. M.; Catalano, J. G.; Moynier, F.; Pringle, E. A.

    2015-12-01

    Iron formations (IFs), Fe- and Si-rich chemical sediments common in Precambrian successions, preserve key information about the compositional, biological, and oxidative evolution of the Precambrian ocean. Stable Si isotopes (δ30Si) of IF have been used to infer paleo-oceanic composition, and secular variations in δ30Si may reflect ancient biogeochemical cycles. The δ30Si of primary Fe-Si precipitates that formed IF depends not only on the δ30Si of aqueous silica but also on the precipitation mechanism. Multiple formation mechanisms for these primary precipitates are plausible. Aqueous Si may have adsorbed on newly precipitated iron oxyhydroxide surfaces; alternatively, Fe and Si may have coprecipitated as a single phase. Here we explore variations in the Si isotope fractionation factor (ɛ) with Fe-Si aqueous interaction mechanism (adsorption vs. coprecipitation). In adsorption experiments, sodium silicate solutions (pH 8.1, 125-2000 µM Si) were reacted with iron oxide particles (hematite, ferrihydrite, goethite, and magnetite) for 24 to 72 hours. Resultant solutions had δ30Si between 0 and +6‰. Calculated ɛ varied significantly with oxide mineralogy and morphology. For ferrihydrite, ɛ = -1.7‰; for hematite, ɛ = -2 to -5‰, depending on particle morphology. Apparent ɛ decreased upon surface site saturation, implying a smaller isotope effect for polymeric Si adsorption than monomeric adsorption. In coprecipitation experiments, solutions of Na-silicate and Fe(II) chloride (0.4-10 mM) were prepared anaerobically, then air-oxidized for 3 days to induce precipitation. At low Si concentrations, magnetite formed; near silica saturation, lepidocrocite and ferrihydrite formed. The Si isotope fractionation factor for coprecipitation was within the range of ɛ observed for adsorption (ɛ = -2.3 ± 1.0‰). These results indicate that the mechanism of Fe-Si interaction affects ɛ, presumably due to varying silicate coordination environments. These isotopic

  20. Exploring the deep, ancient hydrogeosphere within Precambrian crystalline rocks using noble gases

    NASA Astrophysics Data System (ADS)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.

    2016-12-01

    Serpentinization is a key long-term water-rock interaction occurring within isolated fractures in Precambrian crystalline rocks and is a significant source of global H2 production. Highly saline fracture fluids, containing in-situ produced dissolved gases (e.g. percent level He, abiogenic CH4 and mM H2), have revealed microbial ecosystems isolated from the surface photosphere for millions of years. Noble gases can provide crucial physical and temporal constraints on these serpentinizing and life-supporting environments via radiogenic-derived fluid residence times, while also providing evidence of isolation. New noble gas data is presented here from four locations on the Canadian Shield. Kidd Creek Mine in Ontario, where fluids with a mean residence time ≥ 1.1 Ga were identified in 2013, was revisited with resampling of the waters from 2.4 km bls (below land surface), and new samples collected from 2.9 km bls. The study was also expanded to include two mines from Sudbury, Ontario at 1.7 (Mine 1) and 1.4 (Mine 2) km bls. The radiogenic excesses within the fluids were greatest for the 2.9 km Kidd Creek samples and provided an average residence time of 1.6 Ga. Consistent with our hypothesis, the resampling of the 2.4 km fluids (80 months after the original study) reveal significantly reduced residence times (1.1 Ga to 390 Ma) due to stress-induced opening of younger, though nonetheless old, fractures. This is supported by recent sulphur isotope, and 2H & 18O data. Additional hydrogeological constraints are provided by the 129Xe & 136Xe data, which suggest distinct fracture networks feed the 2.4 km, and the 2.9 km systems. Fracture fluids in the Sudbury Basin were targeted to investigate the influence of a later 1.8 Ga bolide impact which formed major fractures in the underlying basement. As hypothesised the fluids in the Sudbury Archean basement are younger than those at Kidd Creek, with mean residence times of 313 and 544 Ma for Mine 1 and 2 respectively. Our

  1. SIR-B analysis of the Precambrian shield of Sudan and Egypt: Penetration studies and subsurface mapping

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Roth, L.; Stern, R. J.; Almond, D. C.; Kroner, A.; Elshazly, E. M.

    1984-01-01

    A shuttle imaging radar-B (SIR-B) study is proposed for the Precambrian shield in southeast Egypt and northeast Sudan in an area east of the Nile. The phenomenon of radar penetration of thin, dry eolian/alluvial cover is to be confirmed and quantified. The penetration phenomenon is to be used to map structural and lithologic features. Field work to be done in conjunction with image acquisition is discussed.

  2. Carbon isotope discrepancy between precambrian stromatolites and their modern analogs: Inferences from hypersaline microbial mats of the sinai coast

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred

    1985-12-01

    The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.

  3. Solution to Darwin's dilemma: Discovery of the missing Precambrian record of life

    PubMed Central

    Schopf, J. William

    2000-01-01

    In 1859, in On the Origin of Species, Darwin broached what he regarded to be the most vexing problem facing his theory of evolution—the lack of a rich fossil record predating the rise of shelly invertebrates that marks the beginning of the Cambrian Period of geologic time (≈550 million years ago), an “inexplicable” absence that could be “truly urged as a valid argument” against his all embracing synthesis. For more than 100 years, the “missing Precambrian history of life” stood out as one of the greatest unsolved mysteries in natural science. But in recent decades, understanding of life's history has changed markedly as the documented fossil record has been extended seven-fold to some 3,500 million years ago, an age more than three-quarters that of the planet itself. This long-sought solution to Darwin's dilemma was set in motion by a small vanguard of workers who blazed the trail in the 1950s and 1960s, just as their course was charted by a few pioneering pathfinders of the previous century, a history of bold pronouncements, dashed dreams, search, and final discovery. PMID:10860955

  4. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  5. Solution to Darwin's dilemma: discovery of the missing Precambrian record of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    2000-01-01

    In 1859, in On the Origin of Species, Darwin broached what he regarded to be the most vexing problem facing his theory of evolution-the lack of a rich fossil record predating the rise of shelly invertebrates that marks the beginning of the Cambrian Period of geologic time ( approximately 550 million years ago), an "inexplicable" absence that could be "truly urged as a valid argument" against his all embracing synthesis. For more than 100 years, the "missing Precambrian history of life" stood out as one of the greatest unsolved mysteries in natural science. But in recent decades, understanding of life's history has changed markedly as the documented fossil record has been extended seven-fold to some 3,500 million years ago, an age more than three-quarters that of the planet itself. This long-sought solution to Darwin's dilemma was set in motion by a small vanguard of workers who blazed the trail in the 1950s and 1960s, just as their course was charted by a few pioneering pathfinders of the previous century, a history of bold pronouncements, dashed dreams, search, and final discovery.

  6. Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids

    NASA Astrophysics Data System (ADS)

    Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja

    2016-05-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.

  7. The keystone species of Precambrian deep bedrock biosphere belong to Burkholderiales and Clostridiales

    NASA Astrophysics Data System (ADS)

    Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M.

    2015-11-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180-2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.

  8. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  9. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    USGS Publications Warehouse

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  10. Structure Of The Elevated Precambrian Terranes Rising Above The Brahmaputra Plains In Northeastern India.

    NASA Astrophysics Data System (ADS)

    Gaur, V. K.; Hazarika, N. K.; Mitra, S.; Priestley, K.

    2007-12-01

    We present new evidence for a thinner crust beneath most of the Shillong plateau as well as its northeast extension in Mikir Hills of northeastern India.Both these Precambrian terranes rise above the Brahmaputra plains whose crust is thicker in comparison by atleast 4~km. Although Bouger gravity over the Mikir Hills still remains to be determined, its near zero value over the ~1 km high plateau and the near normal upper mantle beneath the region, require that these elevated terranes must have been uplifted between reversed faults and continue to be supported by them under compression. The southern edge of the Shillong plateau is indeed marked by the prominent Dauki fault which swerves northeastward at the south eastern margin of the plateau to merge with the Naga thrusts that bound the Mikir Hills on the east. A similar fault bounding the plateau on the north as hypothesized by Bilham et al (2000) -the Oldham fault- is therfore required to swerve northeastward near the northeastern margin of the plateau to demarcate the Mikir Hills from the thicker crust Brahmaputra plains to its north and west. This could be explained by a strike slip offset of the Oldham fault caused by the as yet obsure but active tectonics of the NNW trending Kopili lineament that ensues from the inflexion in the Dauki-Naga thrust fault system.

  11. A Test of the Biogenicity Criteria Established for Microfossils and Stromatolites on Quaternary Tufa and Speleothem Materials Formed in the "Twilight Zone" at Caerwys, UK.

    PubMed

    Brasier, A T; Rogerson, M R; Mercedes-Martin, R; Vonhof, H B; Reijmer, J J G

    2015-10-01

    The ability to distinguish the features of a chemical sedimentary rock that can only be attributed to biology is a challenge relevant to both geobiology and astrobiology. This study aimed to test criteria for recognizing petrographically the biogenicity of microbially influenced fabrics and fossil microbes in complex Quaternary stalactitic carbonate rocks from Caerwys, UK. We found that the presence of carbonaceous microfossils, fabrics produced by the calcification of microbial filaments, and the asymmetrical development of tufa fabrics due to the more rapid growth of microbially influenced laminations could be recognized as biogenic features. Petrographic evidence also indicates that the development of "speleothem-like" laminae was related to episodes of growth interrupted by intervals of nondeposition and erosion. The lack of any biogenic characteristics in these laminae is consistent with their development as a result of variation in the physicochemical parameters that drive calcite precipitation from meteoric waters in such environmental settings.

  12. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    NASA Astrophysics Data System (ADS)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  13. Paleomagnetism and Geochronology of the Precambrian Dikes in NE Fennoscandia, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Samsonov, A.; Stepanova, A.

    2017-12-01

    Paleomagnetism of Proterozoic dikes of Scandinavia, Karelia, and southern part of the Kola Peninsula is extensively explored in many studies (Veikkolainen et al., 2014). In particular, the paleomagnetism of intrusive formations in the southern part of the Kola Peninsula is thoroughly scrutinized in the study authored by Alexey Khramov and his colleagues (Khramov et al., 1997). However, information about the systematic paleomagnetic studies of the Archaean and Proterozoic dikes of the Central Kola block and, especially, Murmansk block are absent. Based on the results of preliminary paleomagnetic investigation of 57 Precambrian dikes of the Kola Peninsula, in 31 of them a stable monopolar component of natural remanent magnetization is revealed. The peculiarities of distribution of this magnetization component within the Kola Peninsula and the rock magnetic characteristics of the dikes in which this component is isolated suggest its secondary nature and relate the mechanism and formation time to the remagnetization processes which took place in the northwest of Fennoscandia about 1.8 Ga during the Svecofennian orogeny. The corresponding geomagnetic pole of Fennoscandia is located in the immediate vicinity of the known Paleoproterozoic (1.9-1.7 Ga) poles of Baltica (Khramov et al., 1997; Veikkolainen et al., 2014). We also present the new geochronological Ar/Ar, Sm-Nd, Rb-Sr and U-Pb data which allow to determine the age of remagnetization as 1.86 Ga. The studies were supported by the Russian Science Foundation (project no. 16-17-10260), partially supported by the Russian Federation Government (project no. 14.Z50.31.0017) and Russian Foundation for Basic Research (project no. 17-05-01121a).

  14. Early Proterozoic (2.04 GA) Phoshorites of Pechenga Greenstone Belt and Their Origin

    NASA Technical Reports Server (NTRS)

    Rozanov, Alexei Yu.; Astafieva, Marina M.; Hoover, Richard B.

    2007-01-01

    No principal differences have been found between microfossils described from Cambrian and Phanerozoic and the 2000 Ma phosphorites. Numerous samples revealed diverse microbial microstructures interpreted as cyanobacterial mats consisting of filamentous (1-3 microns in diameter, 20 microns in length), coccoidal (0.8-1.0 microns) and ellipsoidal or rod-shaped microfossils (0.8 microns in diameter, around 2 microns in length) which morphologically resemble modern Microcoleus and Siphonophycus, Thiocapsa, and Rhabdoderma, respectively, reported from alkali ne or saline environment_ The sequence of the early Palaeoproterozoic events which point to a significant oxidation of the hydrosphere, including the formation of phosphorites and changes in the phosphorous cycle, mimics the sequence which was repeated at the Neoproterozoic-Cembrian transition, implying that oxidation of the terrestrial atmosphere-hydrosphere system experienced an irregular cyclic development.

  15. Iodine-to-calcium ratios in carbonates suggest a primary origin for the Precambrian Lomagundi and Shuram carbon isotope excursions

    NASA Astrophysics Data System (ADS)

    Hardisty, D. S.; Lu, Z.; Planavsky, N. J.; Osburn, M. R.; Bekker, A.; Lyons, T. W.

    2013-12-01

    Systematic increases in iodine-to-calcium ratios (I/Ca) in carbonates from both the Precambrian Lomagundi and Shuram carbonate carbon isotope (δ13Ccarb) excursion intervals suggest primary origins for these events. Iodate (IO3-), the oxidized iodine species, is the exclusive species incorporated into carbonates. The high redox sensitivity of IO3- to deoxygenation requires highly oxidizing fluids for IO3- production, making I/Ca in platform carbonates a simple indicator of the presence of oxidizing fluids in the surface ocean. Similarly, redox sensitivity makes the proxy host susceptible to diagenetic iodine loss during carbonate recrystallization in reducing pore fluids. Recent work has shown carbonates to experience near-complete iodine loss during dolomitization in the Permian, and work from our group evaluating modern and recent carbonates demonstrate the potential for diagenetic iodine loss during carbonate recrystallization. In some cases, however, such as meteoric aragonite-to-calcite transitions, oxidizing pore fluids have the potential to buffer IO3- concentrations, causing negligible alteration to primary I/Ca despite negative shifts in δ13Ccarb. These results highlight that diagenetic alterations to I/Ca and δ13Ccarb need not always be coupled, but importantly, no observed scenario promotes post-depositional addition of iodine to carbonates. This means that, independent of δ13Ccarb, systematic, stratigraphic increases in I/Ca ratios observed in the carbonate record are most easily interpreted as resulting from depositional controls such as surface ocean redox or shifts in the total marine iodine reservoir. From this, increasing I/Ca ratios coincident with rising and falling δ13Ccarb trends for the Paleoproterozic Lomagundi and Neoproterozoic Shuram events, respectively, support suggestions of a primary origin for the δ13Ccarb excursions. Significant increase in I/Ca in dolomites deposited during the Lomagundi excursion, rising from blank values in

  16. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  17. Reconnaissance geology of the Precambrian rocks in the Bi'r Ghamrah quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Whitlow, Jesse William

    1972-01-01

    Three sequences of volcanic and sedimentary rocks are identified in the Precambrian rocks of the Bi'r Ghamrah quadrangle at the eastern edge of the Precambrian Shield in central Saudi Arabia. The oldest sequence is called the Bi'r Khountina Group. It consists of conglomerate marble, andesite, and graywacke. Unconformably overlying this group is a sequence of graywacke with minor lava called the Murdama Group. In a small area in the southern part of the quadrangle, these rocks are unconformably overlain by rhyolitic tuff and rhyolite tentatively correlated with the Shammar Rhyolite. The older of these sedimentary and volcanic rocks were intruded by diorite and gabbro and by a large pluton of alkalic granite. A contact metamorphic aureole was formed in the Bi'r Khountina and Murdama Groups adjacent to the granite, and feeder dikes of the Sbmmmar Rhyolite(?) intrude the granite. The Bi'r Khountina Group is folded into a south-plunging asymmetrical anticlinorium, the west limb of which is repeated across northwest-trending faults. The Murdama Group appears to have been folded along the same axes, but the contact aureole against the alkalic granite and the imprint of the west-northwest striking Najd fault zone cause the rocks of the Murdama Group to appear to trend westward. Results of spectrographic and chemical analyses of wadi sand, heavy-mineral concentrates, and detrital magnetite show small anomalies. The ultramafic rocks intruded prior to the deposition of the Murdama Group are the source of anomalous chromium and lanthanum and of threshold nickel, scandium, and vanadium. The intrusive rocks younger than the Murdama Group are sources for anomalous lead and threshold silver, boron, barium, beryllium, zirconium, lanthanum, and tin. One small ancient working, probably opened for gold, is present, and at least four places in the Precambrian part of the quadrangle ere potentially favorable for gold, silver, and lead. Chromite is a potential resource in the

  18. An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    NASA Technical Reports Server (NTRS)

    Hastings, D. A. (Principal Investigator)

    1982-01-01

    The problems associated with the use of an interactive magnetic modeling program are reported and a publication summarizing the MAGSAT anomaly results for Africa and the possible tectonic associations of these anomalies is provided. An overview of the MAGSAT scalar anomaly map for Africa suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Results indicate that the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.

  19. Modeling the Precambrian Topography of Columbia County, Wisconsin Using Two-Dimensional Models of Gravity and Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Skalbeck, J.; Stewart, E.

    2017-12-01

    The deep sandstone and dolomite aquifer of Wisconsin is the primary source of water in the central, southern, and western portions of the state, as well as a supplier for many high-capacity wells in the eastern portion. This prominent groundwater system is highly impacted by the underlying Precambrian basement, which includes the doubly plunging Baraboo Syncline in Columbia and Sauk Counties. This project is a continuation of previous work done in Dodge and Fond du Lac Counties by the University of Wisconsin-Parkside (UW-P) and the Wisconsin Geological & Natural History Survey (WGNHS). The goal of this project was to produce of an updated Precambrian topographic map of southern Wisconsin, by adding Gravity and Aeromagnetic data to the existing map which is based mainly on sparse outcrop and well data. Gravity and Aeromagnetic data from the United States Geological Survey (USGS) was processed using GM-SYS 3D modeling software in Geosoft Oasis Montaj. Grids of subsurface layers were created from the data and constrained by well and drilling records. The Columbia County basement structure is a complex network of Precambrian granites and rhyolites which is non-conformably overlain by quartzite, slate, and a layer of iron rich sedimentary material. Results from previously collected cores as well as drilling done in neighboring Dodge County, show that the iron rich layer was draped over much of the Baraboo area before being subject to the multitude of folding and faulting events that happened in the region during the late Precambrian. This layer provides telltale signatures that aided in construction of the model due to having an average density of 3.7 g/cm3 and a magnetic susceptibility of 8000 x 10-6 cgs, compared to the average density and susceptibility of the rest of the bedrock being 2.8 g/cm3 and 1500 x 10-6 cgs, respectively. The research done on the Columbia County basement is one part of a larger project aimed at improving groundwater management efforts of the

  20. Early Precambrian mantle derived rocks in the southern Prince Charles Mountains, East Antarctica: age and isotopic constraints

    USGS Publications Warehouse

    Mikhalsky, E.V.; Henjes-Kunst, F.; Roland, N.W.

    2007-01-01

    Mafic and ultramafic rocks occurring as lenses, boudins, and tectonic slabs within metamorphic units in the southern Mawson Escarpment display mantle characteristics of either a highly enriched, or highly depleted nature. Fractionation of these mantle rocks from their sources may be as old as Eoarchaean (ca 3850 Ma) while their tectonic emplacement probably occurred prior to 2550 Ma (U-Pb SHRIMP data). These results provide for the first time evidence for Archaean suturing within East Antarctica. Similar upper mantle sources are likely present in the northern Mawson Escarpment. A younger age limit of these rocks is 2200 Ma, as indicated by presumably metamorphic zircon ages while their magmatic age may be constrained by single zircon dates at 2450-2250 Ma. The area of the northern Mawson Escarpment is most likely of ensimatic origin and includes mafic rocks which were derived from distinct mantle source(s) during Palaeoproterozoic time.

  1. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    SciTech Connect

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob

    We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in

  2. Abiogenic and Microbial Controls on Volatile Fatty Acids in Precambrian Crustal Fracture Waters

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Heuer, V.; Tille, S.; Moran, J.; Slater, G.; Sutcliffe, C. N.; Glein, C. R.; Hinrichs, K. U.; Sherwood Lollar, B.

    2015-12-01

    Saline fracture waters within the Precambrian Shield rocks of Canada and South Africa have been sequestered underground over geologic timescales up to 1.1-1.8 Ga [1, 2]. These fluids are rich in H2 derived from radiolysis and hydration of mafic and ultramafic rocks [1, 2, 3] and host a low-biomass, low-diversity microbial ecosystem at some sites [2]. The abiogenic or biogenic nature of geochemical processes has important implications for bioavailable carbon sources and the role played by abiotic organic synthesis in sustaining a chemosynthetic deep biosphere. Volatile fatty acids (VFAs) are simple carboxylic acids that may support microbial communities in such environments, such as those found in terrestrial [4] and deep-sea [5] hot springs. We present abundance and δ13C analysis for VFAs in a spectrum of Canadian Shield fluids characterized by varying dissolved H2, CH4, and C2+ n-alkane compositions. Isotope mass balance indicates that microbially mediated fermentation of carbon-rich graphitic sulfides may produce the elevated levels of acetate (39-273 μM) found in Birchtree and Thompson mine. In contrast, thermodynamic considerations and isotopic signatures of the notably higher acetate (1.2-1.9 mM), as well as formate and propionate abundances (371-816 μM and 20-38 μM, respectively) found at Kidd Creek mine suggest a role for abiogenic production via reduction of dissolved inorganic carbon with H2 for formate, and oxidation of C2+ n-alkanes for acetate and propionate, along with possible microbial cycling. VFAs comprise the bulk of dissolved and total organic carbon in the mines surveyed, and as such represent a potential key substrate for life. [1] Holland et al. (2013) Nature 497: 367-360. [2] Lin et al. (2006) Science 314: 479-482. [3] Sherwood Lollar et al. (2014) Nature 516: 379-382. [4] Windman et al. (2007) Astrobiology 7(6): 873-890. [5] Lang et al. (2010) Geochim. Cosmochim. Acta 92: 82-99.

  3. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    DOE PAGES

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; ...

    2018-02-19

    We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in

  4. Sp and Ps Receiver Function Imaging of the Cenozoic and Precambrian US

    NASA Astrophysics Data System (ADS)

    Keenan, James; Thurner, Sally; Levander, Alan

    2013-04-01

    Using teleseismic USArray data we have made Ps and Sp receiver function common conversion point stacked image volumes that extend from the Pacific coast to approximately the Mississippi River. We have used iterative time-domain deconvolution, water-level frequency-domain deconvolution, and least squares inverse filtering to form receiver functions in various frequency bands (Ps: 1.0 and, 0.5 Hz, Sp: 0.2 and 0.1 Hz). The receiver functions were stacked to give an image volume for each frequency band using a hybrid velocity model made by combining Crust2.0 (Bassin et al., 2000) and finite-frequency P and S wave tomography models (Schmandt and Humphreys, 2010; and Schmandt, unpublished). We contrast the lithospheric and asthenospheric structure of the western U.S., modified by Cenozoic tectonism, with that of the Precambrian central U.S. Here we describe 2 notable features: (1) In the Sp image volumes the upper mantle beneath the western U.S. differs dramatically from that to the east of the Rocky Mountain front. In the western U.S. the lithosphere is either thin, or highly variable in thickness (40-140 km) with neither the lithosphere nor asthenosphere having much internal structure (e.g., Levander and Miller, 2012). In contrast, east of the Rocky Mountain front the lithosphere steadily deepens to > 150 km and shows relatively strong internal layering. Individual positive and negative conversions are coherent over 100's of kilometers, suggesting the thrust stacking model of cratonic formation. (2) Beneath parts of the Archean Wyoming Province (Henstock et al, 1998; Snelson et al., 1998; Gorman et al., 2002; Mahan et al, 2012), much of the Great Plains and part of the Midwest lies a vast variable thickness (up to ~25 km) high velocity crustal layer. This layer lies roughly north of the Grenville Front, underlying much of the Yavapai-Mazatzal Province east of the Rockies, parts of the Superior Province, and possibly parts of the Trans-Hudson province.

  5. Unraveling the redox evolution of the Yangtze Block across the Precambrian/Cambrian transition

    NASA Astrophysics Data System (ADS)

    Diamond, C. W.; Zhang, F.; Chen, Y.; Lyons, T. W.

    2016-12-01

    Rocks preserved on the South China Craton have played a critical role in refining our understanding of the co-evolution of life and Earth's surface environments in the Late Neoproterozoic and earliest Paleozoic. From the earliest metazoan embryos to the many examples of exceptional preservation throughout the Cambrian Explosion, South China has preserved an outstanding record of animal evolution across this critical transition. Similarly, rocks preserved in South China hold key insights into the changing ocean chemistry that accompanied this extraordinary time. Recent work form Sahoo and others (2016, Geobiology) used redox sensitive metal enrichments in the Ediacaran Doushantuo Formation to demonstrate that the redox state of the Latest Neoproterozoic oceans was highly dynamic, rather than stably oxygenated or anoxic as had both been suggested previously. In an attempt to follow on from this and other studies, we have examined samples from a drill core taken in eastern Guizhou capturing deep-water facies of the Liuchapo and Jiumenchong formations, which contain the Precambrian/Cambrian boundary. In addition to containing the boundary, the sampled interval contains an enigmatic, widespread horizon that is strongly enriched in Ni and Mo. We have taken a multi-proxy approach in our investigation of this layer, the possible implications it has for the strata above and below (i.e., how its presence affects their utility as archives of paleo-redox conditions), and what those strata can tell us about local and global redox conditions during this pivotal time in Earth's history. Our Fe speciation data indicate that conditions were sulfidic at this location throughout the majority of the sampled interval. While redox sensitive metal concentrations are dramatically enriched in the Ni/Mo interval, their concentrations return to modest enrichments above it and continue to decrease upward. This trend suggests that while the conditions that favored extreme enrichment during the

  6. The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil

    NASA Astrophysics Data System (ADS)

    Linhares, Ana Paula; Gaia, Valber do Carmo de Souza; Ramos, Maria Inês Feijó

    2017-11-01

    Micropalaeontological studies of borehole cores 1AS-7D-AM and 1AS-8-AM, from Atalaia do Norte, Amazonas state, Brazil, support previous evidence for Miocene marine ingressions in Western Amazonia. Three marine incursion events are recorded: the first in the Early/early Middle Miocene (in both cores), the second in the late Middle/early Late Miocene (1AS-8-AM), and the third in the Late Miocene (1AS-7D-AM). The first event is characterized by exclusively mangrove taxa, and the last two present a mixture of marine, fresh, and brackish water taxa. However, at the end of the third event an increase of fluvial influence is demonstrated by the predominance of freshwater taxa. These marine incursions reached the study area through narrow and geographically limited connections, controlled by the tectonic setting, at a time between the Early/early Middle Miocene and late Middle/Late Miocene. Thereafter, fluvial conditions were reestablished before Pliocene times.

  7. Stratigraphic and microfossil evidence for a 4500-year history of Cascadia subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, USA

    USGS Publications Warehouse

    Graehl, Nicholas A; Kelsey, Harvey M.; Witter, Robert C.; Hemphill-Haley, Eileen; Engelhart, Simon E.

    2015-01-01

    The Sallys Bend swamp and marsh area on the central Oregon coast onshore of the Cascadia subduction zone contains a sequence of buried coastal wetland soils that extends back ∼4500 yr B.P. The upper 10 of the 12 soils are represented in multiple cores. Each soil is abruptly overlain by a sandy deposit and then, in most cases, by greater than 10 cm of mud. For eight of the 10 buried soils, times of soil burial are constrained through radiocarbon ages on fine, delicate detritus from the top of the buried soil; for two of the buried soils, diatom and foraminifera data constrain paleoenvironment at the time of soil burial.We infer that each buried soil represents a Cascadia subduction zone earthquake because the soils are laterally extensive and abruptly overlain by sandy deposits and mud. Preservation of coseismically buried soils occurred from 4500 yr ago until ∼500–600 yr ago, after which preservation was compromised by cessation of gradual relative sea-level rise, which in turn precluded drowning of marsh soils during instances of coseismic subsidence. Based on grain-size and microfossil data, sandy deposits overlying buried soils accumulated immediately after a subduction zone earthquake, during tsunami incursion into Sallys Bend. The possibility that the sandy deposits were sourced directly from landslides triggered upstream in the Yaquina River basin by seismic shaking was discounted based on sedimentologic, microfossil, and depositional site characteristics of the sandy deposits, which were inconsistent with a fluvial origin. Biostratigraphic analyses of sediment above two buried soils—in the case of two earthquakes, one occurring shortly after 1541–1708 cal. yr B.P. and the other occurring shortly after 3227–3444 cal. yr B.P.—provide estimates that coseismic subsidence was a minimum of 0.4 m. The average recurrence interval of subduction zone earthquakes is 420–580 yr, based on an ∼3750–4050-yr-long record and seven to nine interearthquake

  8. Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis

    NASA Astrophysics Data System (ADS)

    Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi

    2015-07-01

    New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.

  9. Diet Reconstructed From an Analysis of Plant Microfossils in Human Dental Calculus From the Bronze Age Site of Shilinggang, Southwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Dong, G.; Yang, X.; Zuo, X.; Kang, L.; Ren, L.; Liu, H.; Li, H.; Min, R.; Liu, X.; Zhang, D.; Chen, F.

    2017-12-01

    The extracted microfossils from the dental calculus of ancient teeth are a new form of archaeological evidence which can provide direct information on the plant diet of a population. Here, we present the results of analyses of starch grains and phytoliths trapped in the dental calculus of humans who occupied the Bronze Age site of Shilinggang ( 2500 cal yr BP) in Yunnan Province, southwestern China. The results demonstrate that the inhabitants consumed a wide range of plants, including rice, millet, and palms, together with other food plants which have not previously been detected in Yunnan. The discovery of various underground storage organs (USOs; tubers, roots, bulbs, and rhizomes) and acorns complements the application of conventional macrofossil and isotope studies to understand the diet of the Bronze Age human population of Yunnan. The wide variety of plant foods consumed suggests that the inhabitants adopted a broad-spectrum strategy of gathering food and cultivating crops in northwest Yunnan Province in the late Bronze Age at a time when agricultural societies were developed in the central plains of China.

  10. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut

  11. Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.

    2006-12-01

    The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly

  12. Lithospheric Expressions of the Precambrian Shield, Mesozoic Rifting, and Cenozoic Subduction and Mountain Building in Venezuela

    NASA Astrophysics Data System (ADS)

    Levander, A.; Masy, J.; Niu, F.

    2013-05-01

    reflecting the signatures of the Precambrian craton in the south, Mesozoic rifting in central Venezuela, and Neogene subduction and orogenesis in both the northeast and northwest. Specifically, LAB depth varies from 110-130 km beneath the Guayana Shield, in agreement with finite-frequency body wave tomography (Bezada et al., 2010b). To the north beneath the Serrania del Interior and Maturin Basin the Rayleigh waves image two high velocity features to depths of 200 km. The northernmost, beneath the Serrania, corresponds to the top of the subducting Atlantic plate, in agreement with P-wave tomography that images the Atlantic plate to transition zone depths. Another localized high velocity feature extending to ~200 km depth lies to the south. We speculate that this is a lithospheric drip caused by destabilization of the SA lithospheric caused by Atlantic subduction. Immediately to the west beneath the Cariaco basin the LAB is at ~50 km, marking the top of a pronounced low velocity zone. The thin lithosphere extends southwestward from the Cariaco Basin beneath the Mesozoic Espino Graben to the craton. To the west the LAB deepens to ~80 km beneath the Barinas Apure Basin and then to ~90 km beneath the Neogene Merida Andes and Maracaibo block.

  13. Precambrian-Cambrian provenance of Matinde Formation, Karoo Supergroup, northwestern Mozambique, constrained from detrital zircon U-Pb age and Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Jelinek, Andrea Ritter; Philipp, Ruy Paulo; de Carvalho Lana, Cristiano; Alkmim, Ana Ramalho

    2018-02-01

    The Permian-Triassic time interval was a period of high sedimentation rates in the intracontinental Karoo rift basin of northwestern Mozambique, reflecting high exhumation rates in the surrounding high ground Precambrian-Cambrian basement and juxtaposed nappes. U-Pb LA-MC-ICPMS dating and Lu-Hf isotopic analysis of detrital zircons from the Late Permian-Early Triassic Matinde Formation of the Karoo Supergroup is used as a reliable proxy to map denudation patterns of source regions. Data allow discrimination of U-Pb age populations of ca. 1250-900 Ma, a secondary population between ca. 900-700 and a major contribution of ages around ca. 700-490 Ma. Zircon grains of the Mesoproterozoic age population present Mesoproterozoic (1000-1500 Ma) to Paleoproterozoic (1800-2300 Ma) Hf TDM ages, with positive (0 to +11) and negative εHf values (-3 to -15), respectively. The younger U-Pb age population also presents two different groups of zircon grains according to Lu-Hf isotopes. The first group comprise Paleoproterozoic (1800-2300 Ma) ages, with highly negative εHf values, between -10 and -22, and the second group exhibits Mesoproterozoic ages (1200-1500 Ma), with increased juvenile εHf values (ca. 0 to -5). These Hf isotopes reinforce the presence of unexposed ancient crust in this region. The oldest U-Pb age population resembles the late stages of Grenville Orogeny and the Rodinia Supercontinent geotectonic activity mostly represented by magmatic rocks, which are widely present in the basement of northern Mozambique. The juvenile Hf-isotope signature with an older age component is associated to rocks generated from subduction processes with crust assimilation by continental arcs, which we correlate to rocks of the Nampula Complex, south and east of the Moatize-Minjova Basin. The U-Pb ages between 900 and 700 Ma were correlated to the calc-alkaline magmatism registered in the Guro Suite, related to the breakup phase of Rodinia, and mark the western limit of the Moatize

  14. Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2 1.9 Ga Waterberg Group, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus

    2006-08-01

    Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to

  15. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.

    PubMed

    Ries, J B; Anderson, M A; Hill, R T

    2008-03-01

    A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well

  16. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    USGS Publications Warehouse

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  17. Fission-track ages of apatites from the Precambrian of Rwanda and Burundi - Relationship to East African rift tectonics

    NASA Astrophysics Data System (ADS)

    van den Haute, P.

    1984-11-01

    Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.

  18. Precambrian accretionary history and phanerozoic structures-A unified explanation for the tectonic architecture of the nebraska region, USA

    USGS Publications Warehouse

    Carlson, M.P.

    2007-01-01

    The Phanerozoic history in Nebraska and adjacent regions contains many patterns of structure and stratigraphy that can be directly related to the history of the Precambrian basement rocks of the area. A process is proposed that explains the southward growth of North America during the period 1.8-1.6 Ga. A series of families of accretionary events during the Proterozoic emplaced sutures that remained as fundamental basement weak zones. These zones were rejuvenated in response to a variety of continental stress events that occurred during the Phanerozoic. By combining the knowledge of basement history with the history of rejuvenation during the Phanerozoic, both the details of Proterozoic accretionary growth and an explanation for the patterns of Phanerozoic structure and stratigraphy is provided. ?? 2007 The Geological Society of America. All rights reserved.

  19. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    SciTech Connect

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leadsmore » to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.« less

  20. Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation

    NASA Astrophysics Data System (ADS)

    Trouwborst, Robert E.; Johnston, Anne; Koch, Gretchen; Luther, George W.; Pierson, Beverly K.

    2007-10-01

    We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O 2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O 2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O 2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O 2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO 2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.

  1. Interpreting Precambrian δ15N: lessons from a new modern analogue, the volcanic crater lake Dziani Dzaha

    NASA Astrophysics Data System (ADS)

    Ader, M.; Cadeau, P.; Jezequel, D.; Chaduteau, C.; Fouilland, E.; Bernard, C.; Leboulanger, C.

    2017-12-01

    Precambrian nitrogen biogeochemistry models rely on δ15N signatures in sedimentary rocks, but some of the underlying assumptions still need to be more robustly established. Especially when measured δ15N values are above 3‰. Several processes have been proposed to explain these values: non-quantitative reduction of nitrate to N2O/N2 (denitrification), non-quantitative oxidation of ammonium to N2O/N2, or ammonia degassing to the atmosphere. The denitrification hypothesis implies oxygenation of part the water column, allowing nitrate to accumulate. The ammonium oxidation hypothesis implies a largely anoxic water column, where ammonium can accumulates, with limited oxygenation of surface waters. This hypothesis is currently lacking modern analogues to be supported. We propose here that the volcanic crater lake Dziani Dzaha (Mayotte, Indian Ocean) might be one of them, on the basis of several analogies including: permanently anoxic conditions at depth in spite of seasonal mixing; nitrate content below detection limit in the oxic surface waters; accumulation of ammonium at depth during the stratified season; primary productivity massively dominated by cyanobacteria. One aspect may restrict the analogy: the pH value of 9-9.5. In this lake, δ15N values of primary producers and ammonium range from 6 to 9‰ and are recorded with a positive offset in the sediments (9<δ15N<13‰). Because N-sources to the system present more negative δ15N values, such positive values can only be achieved if 14N-enriched N is lost from the lake. Although NH3 degassing might play a small role, the main pathway envisaged for this N-loss is NH4+ oxidation to N2O/N2. If confirmed, this would provide strong support for the hypothesis that positive δ15N values in Precambrian rocks may indicate dominantly anoxic oceans, devoid of nitrate, in which ammonium was partly oxidized to N2O/N2.

  2. An early Cambrian greenhouse climate.

    PubMed

    Hearing, Thomas W; Harvey, Thomas H P; Williams, Mark; Leng, Melanie J; Lamb, Angela L; Wilby, Philip R; Gabbott, Sarah E; Pohl, Alexandre; Donnadieu, Yannick

    2018-05-01

    The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures-a key component of the early Cambrian marine environment-remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (δ 18 O) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust δ 18 O signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S) between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Mesozoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental controls on Cambrian animal diversification.

  3. The Rae craton of Laurentia/Nuna: a tectonically unique entity providing critical insights into the concept of Precambrian supercontinental cyclicity

    NASA Astrophysics Data System (ADS)

    Bethune, K. M.

    2015-12-01

    Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.

  4. An earthquake history derived from stratigraphic and microfossil evidence of relative sea-level change at Coos Bay, southern coastal Oregon

    USGS Publications Warehouse

    Nelson, A.R.; Jennings, A.E.; Kashima, K.

    1996-01-01

    Much of the uncertainty in determining the number and magnitude of past great earthquakes in the Cascadia subduction zone of western North America stems from difficulties in using estuarine stratigraphy to infer the size and rate of late Holocene relative sea-level changes. A sequence of interbedded peaty and muddy intertidal sediment beneath a small, protected tidal marsh in a narrow inlet of Coos Bay, Oregon, records ten rapid to instantaneous rises in relative sea level. Each rise is marked by a contact that records an upward transition from peaty to muddy sediment. But only two contacts, dating from about 1700 and 2300 yr ago, show the site-wide extent and abrupt changes in lithology and foraminiferal and diatom assemblages that can be used to infer at least half a meter of sudden coseismic subsidence. Although the characteristics of a third, gradual contact do not differ from those of some contacts produced by nonseismic processes, regional correlation with other similar sequences and high-precision 14C dating suggest that the third contact records a great plate-boundary earthquake about 300 yr ago. A fourth contact formed too slowly to have been caused by coseismic subsidence. Because lithologic and microfossil data are not sufficient to distinguish a coseismic from a nonseismic origin for the other six peatmud contacts, we cannot determine earthquake recurrence intervals at this site. Similar uncertainties in great earthquake recurrence and magnitude prevail at similar sites elsewhere in the Cascadia subduction zone, except those with sequences showing changes in fossils indicative of > 1 m of sudden subsidence, sand sheets deposited by tsunamis, or liquefaction features.

  5. Paleo-hydrological changes in the Chew Bahir area during the past 50 ka inferred from isotope signatures in aquatic microfossils

    NASA Astrophysics Data System (ADS)

    Junginger, Annett

    2017-04-01

    A major challenge in paleo-anthropology is to understand the impact of climatic changes on human evolution. The Hominin Sites and Paleo-lakes Drilling Project (HSPDP) is currently meeting that challenge by providing records that cover the last 3.7 Ma of paleoenvironmental change all located in close proximity to key paleo-anthropological findings in East Africa. One of the cored climatic archives comes from the Chew Bahir basin in southern Ethiopia, where duplicate sediment cores provide valuable insights about East African environmental variability during the last 550 ka. The lake basins in the eastern branch of the East African Rift System today contain mainly shallow and alkaline lakes. However, paleo-shorelines in the form of wave cut notches, shell beds, and beach ridges are common morphological evidences for deep freshwater lakes that have filled the basins up to their overflow level during pronounced humid episodes, such as the African Humid Period (15-5 ka). Unfortunately, further back in time, many of those morphological features disappear due to erosion and the estimation of paleo-water depths depend merely on qualitative proxies from core analyses. We here present a method that shows high potential to translate qualitative proxy signals from sediment core analyses to quantitative climate signals in the Ethiopian Rift. The method aims at water level reconstruction in the Chew Bahir basin using strontium isotope ratios (87Sr/86Sr, SIR) in lacustrine microfossils. SIR reflect the lithology of the drained catchment. SIR have changed pronouncedly when higher elevated paleo-lakes Abaya, Chamo and Awassa were overflowing into paleo-lake Chew Bahir. This new method may help to quantify paleo-lake levels beyond the past 20 ka and may also detect migrational barriers or routes due to the occurrence of synchronous large, connected and deep paleo-lakes.

  6. A New Morphological Phylogeny of the Ophiuroidea (Echinodermata) Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics

    PubMed Central

    Thuy, Ben; Stöhr, Sabine

    2016-01-01

    Ophiuroid systematics is currently in a state of upheaval, with recent molecular estimates fundamentally clashing with traditional, morphology-based classifications. Here, we attempt a long overdue recast of a morphological phylogeny estimate of the Ophiuroidea taking into account latest insights on microstructural features of the arm skeleton. Our final estimate is based on a total of 45 ingroup taxa, including 41 recent species covering the full range of extant ophiuroid higher taxon diversity and 4 fossil species known from exceptionally preserved material, and the Lower Carboniferous Aganaster gregarius as the outgroup. A total of 130 characters were scored directly on specimens. The tree resulting from the Bayesian inference analysis of the full data matrix is reasonably well resolved and well supported, and refutes all previous classifications, with most traditional families discredited as poly- or paraphyletic. In contrast, our tree agrees remarkably well with the latest molecular estimate, thus paving the way towards an integrated new classification of the Ophiuroidea. Among the characters which were qualitatively found to accord best with our tree topology, we selected a list of potential synapomorphies for future formal clade definitions. Furthermore, an analysis with 13 of the ingroup taxa reduced to the lateral arm plate characters produced a tree which was essentially similar to the full dataset tree. This suggests that dissociated lateral arm plates can be analysed in combination with fully known taxa and thus effectively unlocks the extensive record of fossil lateral arm plates for phylogenetic estimates. Finally, the age and position within our tree implies that the ophiuroid crown-group had started to diversify by the Early Triassic. PMID:27227685

  7. Influx of Dissolved Silica in Shallow Marine Environments in the Early Rhaetian (Late Triassic): Implications for Timing of Supercontinental Rifting

    NASA Astrophysics Data System (ADS)

    Tackett, L.

    2017-12-01

    The Rhaetian Stage of the Late Triassic terminated with a mass extinction, but the late Norian-early Rhaetian paleoecological and geochemical transitions and their relationship to events leading up to the End-Triassic mass extinction are poorly understood. To address this issue, presented here is a multi-proxy dataset from New York Canyon, Nevada (USA) relating isotope chemostratigraphy (Sr, C, O), shallow marine benthic macrofossils, and microfossils. At this Panthalassan locality the Norian-Rhaetian boundary is characterized by a negative strontium isotope excursion that facilitates correlation with Tethyan deposits. In sedimentary horizons immediately below and above this excursion, siliceous demosponge spicules (desmids) are abundant components of the microfossil populations, and silicification of calcareous microfossils becomes common. In the sedimentary beds marking the main excursion, hexactinellid sponge spicules are abundant. These results indicate a large input of dissolved silica in shallow marine environments, while the negative strontium values are consistent with increased seafloor spreading and hydrothermal vent activity or basalt weathering, either scenario being a plausible silica source for the typically silica-limited sponges that proliferated during this interval. The biosedimentary features observed across the Norian-Rhaetian boundary are similar to those observed in the earliest Jurassic in marine sections around the world following the End-Triassic mass extinction, but no clear biotic turnover is observed across the Norian-Rhaetian boundary in this succession. Thus, biosedimentary shifts across the Norian-Rhaetian boundary may add important geochemical context to the end-Triassic mass extinction event.

  8. 'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Mostefaoui, S.; Meibom, A.; Selo, M.; McKay, D. S.; Robert, F.

    2006-01-01

    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia.

  9. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wang, He; Wang, Min

    2017-10-01

    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  10. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    SciTech Connect

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre,more » and drill site geologic maps and cross-sections from most of the holes.« less

  11. Revision of species of Minerisporites, Azolla and associated plant microfossils from deposits of the Upper Palaeocene and Palaeocene/Eocene transition in the Netherlands, Belgium and the USA.

    PubMed

    Batten, D J.; Collinson, M E.

    2001-05-01

    Species of the megaspore genus Minerisporites Potonié, megaspore apparatuses of species of the water fern Azolla Lamarck, and some associated organic-walled microfossils recovered from deposits of the Upper Palaeocene and Palaeocene/Eocene transition in the southern part of the Netherlands and neighbouring Belgium are redescribed on the basis of an examination of specimens under scanning and transmission electron microscopes. Originally studied about 40 years ago by S.J. Dijkstra, the re-examination has enabled emended diagnoses to be produced for six taxa: Minerisporites glossoferus (Dijkstra) Tschudy, M. mirabilis (Miner) Potonié, M. mirabilissimus (Dijkstra) Potonié, Azolla schopfii Dijkstra, A. teschiana Florschütz, and A. velus (Dijkstra) Jain and Hall. In addition, a revised description is provided for massulae of Salvinia Séguier that were originally thought to be megaspores and, hence, named by Dijkstra as Triletes? exiguus. The gross morphology and construction of the exospore of the species of Minerisporites are similar, but nevertheless sufficiently distinct for them to be maintained as separate taxa. Monolete microspores are preserved in hollows in the reticulate surface of some of the specimens of M. mirabilissimus. This is consistent with the presumed isoetalean affinity of Minerisporites. An apparent stratigraphic morphocline from M. glossoferus to M. mirabilis, suggested previously, is confirmed following our reassessment of their characteristics. The species of Azolla are all multi-floated, but they differ from each other in several ways, in particular with respect to the ultrastructure of the megaspore wall. They are also distinct from all other species that have been considered in sufficient detail for satisfactory comparisons to be made. The massulae of A. teschiana are described for the first time. The floats in A. velus are attached to the proximal part of the megaspore only by suprafilosal hairs. There are no maniculae. It is argued that

  12. Cordilleran hingeline: Late Precambrian rifted margin of the North American craton and its impact on the depositional and structural history, Utah and Nevada

    NASA Astrophysics Data System (ADS)

    Picha, Frank; Gibson, Richard I.

    1985-07-01

    The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074

  13. A Geophysical Study in Grand Teton National Park and Vicinity, Teton County, Wyoming: With Sections on Stratigraphy and Structure and Precambrian Rocks

    USGS Publications Warehouse

    Behrendt, John Charles; Tibbetts, Benton L.; Bonini, William E.; Lavin, Peter M.; Love, J.D.; Reed, John C.

    1968-01-01

    An integrated geophysical study - comprising gravity, seismic refraction, and aeromagnetic surveys - was made of a 4,600-km2 area in Grand Teton National Park and vicinity, Wyoming, for the purpose of obtaining a better understanding of the structural relationships in the region. The Teton range is largely comprised of Precambrian crystalline rocks and layered metasedimentary gneiss, but it also includes granitic gneiss, hornblende-plagioclase gneiss, granodiorite, and pegmatite and diabase dikes. Elsewhere, the sedimentary section is thick. The presence of each system except Silurian provides a chronological history of most structures. Uplift of the Teton-Gros Ventre area began in the Late Cretaceous; most of the uplift occurred after middle Eocene time. Additional uplift of the Teton Range and downfaulting of Jackson Hole began in the late Pliocene and continues to the present. Bouguer anomalies range from -185 mgal over Precambrian rocks of the Teton Range to -240 mgal over low-density Tertiary and Cretaceous sedimentary rocks of Jackson Hole. The Teton fault (at the west edge of Jackson Hole), as shown by steep gravity gradients and seismic-refraction data, trends north-northeast away from the front of the Teton Range in the area of Jackson Lake. The Teton fault either is shallowly inclined in the Jenny Lake area, or it consists of a series of fault steps in the fault zone; it is approximately vertical in the Arizona Creek area. Seismic-refraction data can be fitted well by a three-layer gravity model with velocities of 2.45 km per sec for the Tertiary and Cretaceous rocks above the Cloverly Formation, 3.9 km per sec for the lower Mesozoic rocks, and 6.1 km per sec for the Paleozoic (limestone and dolomite) and Precambrian rocks. Gravity models computed along two seismic profiles are in good agreement (sigma=+- 2 mgal) if density contrasts with the assumed 2.67 g per cm2 Paleozoic and Precambrian rocks are assumed to be -0.35 and -0.10 g per cm2 for the 2

  14. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.

    PubMed

    Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood

    2016-10-27

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.

  15. Possible detachment zone in Precambrian rocks of Kanjamalai Hills, Cauvery Suture Zone, Southern India: Implications to accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Mohanty, D. P.; Chetty, T. R. K.

    2014-07-01

    Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction-accretion-collision tectonic history of the Neoproterozoic Gondwana suture.

  16. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks

    PubMed Central

    Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood

    2016-01-01

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346

  17. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1987-01-01

    Simple (one-dimensional) climate models suggest that carbon dioxide concentrations during the Archean must have been at least 100-1000 times the present level to keep the Earth's surface temperature above freezing in the face of decreased solar luminosity. Such models provide only lower bounds on CO2, so it is possible that CO2 levels were substantially higher than this and that the Archean climate was much warmer than today. Periods of extensive glaciation during the early and late Proterozoic, on the other hand, indicate that the climate at these times was relatively cool. To be consistent with climate models CO2 partial pressures must have declined from approximately 0.03 to 0.3 bar around 2.5 Ga ago to between 10(-3) and 10(-2) bar at 0.8 Ga ago. This steep decrease in carbon dioxide concentrations may be inconsistent with paleosol data, which implies that pCO2 did not change appreciably during that time. Oxygen was essentially absent from the Earth's atmosphere and oceans prior to the emergence of a photosynthetic source, probably during the late Archean. During the early Proterozoic the atmosphere and surface ocean were apparently oxidizing, while the deep ocean remained reducing. An upper limit of 6 x 10(-3) bar for pO2 at this time can be derived by balancing the burial rate of organic carbon with the rate of oxidation of ferrous iron in the deep ocean. The establishment of oxidizing conditions in the deep ocean, marked by the disappearance of banded iron formations approximately 1.7 Ga ago, permitted atmospheric oxygen to climb to its present level. O2 concentrations may have remained substantially lower than today, however, until well into the Phanerozoic.

  18. Early Life on Earth: the Ancient Fossil Record

    NASA Astrophysics Data System (ADS)

    Westall, F.

    2004-07-01

    The evidence for early life and its initial evolution on Earth is lin= ked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modern standards: hot (50-80=B0C), volcanically and hydrothermally active, a= noxic, high UV flux, and a high flux of extraterrestrial impacts. Habitats = for life were more limited until continent-building processes resulted in= the formation of stable cratons with wide, shallow, continental platforms= in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the exist= ence of organisms fractionating carbon in ~3.8 Ga rocks from the Isua greenst= one belt in Greenland are tenuous. Well-preserved microfossils and micro= bial mats (in the form of tabular and domical stromatolites) occur in 3.5-= 3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Afri= ca) and Pilbara (Australia) greenstone belts. They document life forms that = show a relatively advanced level of evolution. Microfossil morphology inclu= des filamentous, coccoid, rod and vibroid shapes. Colonial microorganism= s formed biofilms and microbial mats at the surfaces of volcaniclastic = and chemical sediments, some of which created (small) macroscopic microbi= alites such as stromatolites. Anoxygenic photosynthesis may already have developed. Carbon, nitrogen and sulphur isotopes ratios are in the r= ange of those for organisms with anaerobic metabolisms, such as methanogenesi= s, sulphate reduction and photosynthesis. Life was apparently distribute= d widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in t= he early Archaean was restricted owing to the limited amount of energy t= hat could be produced by anaerobic metabolisms. Microfossils resembling o= xygenic photosynthesisers, such as cyanobacteria, probably first occurred in

  19. Environmental investigations using diatom microfossils

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Flocks, James G.

    2010-01-01

    Diatoms are unicellular phytoplankton (microscopic plant-like organisms) with cell walls made of silica (called a frustule). They live in both freshwater and saltwater and can be found in just about every place on Earth that is wet. The shape and morphology of the diatom frustule unique to each species are used for identification. Due to the microscopic size of diatoms, high-power microscopy is required for diatom identification. Diatoms are vital to life on Earth. They are photosynthetic primary producers, using sunlight to create oxygen and organic carbon from carbon dioxide and water. They are a significant source of the oxygen we breathe, have a major impact on the global carbon cycle (Smetacek, 1999), and are a food source for many aquatic organisms (Mann, 1993). Diatom abundance has even been demonstrated to have an influence on the diversity of larger marine mammals, including whales (Marx and Uhen, 2010). Data on diatom abundance and diversity are extremely useful in environmental studies.

  20. Highly alkaline lavas in a Proterozoic rift zone: Implications for Precambrian mantle metasomatic processes

    NASA Astrophysics Data System (ADS)

    Gaonac'h, H.; Ludden, J. N.; Picard, C.; Francis, D.

    1992-03-01

    An occurrence of Proterozoic nephelinite and basanite lavas and pyroclastic rocks and associated phonolites indicates that the processes that generate modern alkaline magmas in intraplate settings were operative in the Early Proterozoic. These lavas occur near the top of a 1.9 Ga continental-margin sequence in the Cape Smith fold and thrust belt of northern Quebec. The lavas are classified as nephelinites, basanites, and phonolites on the basis of high field strength and rare earth element contents, although large ion lithophile elements, including alkalis, appear to have been strongly depleted by greenschist facies metamorphism and alteration. Certain major elements define trends consistent with low-pressure fractionation dominated by clinopyroxene, which is the only mafic phenocryst present in the lavas. The mafic and felsic lavas have identical 143Nd/144Nd ratios, consistent with consanguinity and a lack of contamination by older crust of the Superior province. Values for ɛNd (1.96 Ga) of +2 represent an enriched mantle source relative to +4 to +5 for the contemporaneous mid-oceanic-ridge basalt reservoir.

  1. Development of the Earth's early crust: Implications from the Beartooth Mountains

    NASA Technical Reports Server (NTRS)

    Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.

    1983-01-01

    The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.

  2. Morphological and ecological complexity in early eukaryotic ecosystems.

    PubMed

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  3. Early Archean stromatolites: Paleoenvironmental setting and controls on formation

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1991-01-01

    The earliest record of terrestrial life is contained in thin, silicified sedimentary layers within enormously thick, predominantly volcanic sequences in South Africa and Western Australia. This record includes bacteria-like microfossils, laminated carbonaceous structures resembling flat bacterial mats and stromatolites, and a morphologically diverse assemblage of carbonaceous particles. These structures and particles and their host sediments provide the only direct source of information on the morphology, paleoecology, and biogeochemistry of early life; the nature of interactions between organisms and surface systems on the early earth; and possible settings within which life might have evolved. The three known occurrences of 3.5 to 3.2 billion-year-old stromalites were evaluated in terms of depositional setting and biogenicity.

  4. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  5. Contemporary Rigidity of Precambrian and Paleosoic Platform on the Area of Poland on the Base of GPS Data

    NASA Astrophysics Data System (ADS)

    Kontny, B.; Grzempowski, P.; Bogusz, J.; Jarosinski, M.; Klos, A.

    2012-12-01

    Now it became obvious in the world literature that Cenozoic intraplate deformations of the Northwestern Eurasia were connected with the Alpine plate collision. However, relations of the Cenozoic intraplate deformations with the contemporary spreading in the north and transcontinental shears along the Tornquist line and Urals must be taken into account as well. On the contrary, in East Europe, periods of the activity being coincident with those in the Caucasus and the phases of the Red Sea opening. It is also evidence that the southern East European craton belongs to the Periarabian collision area. A compression axis orientation was sub latitudinal there, this allows suggestion that the deformations were originated under pressure of the adjacent Urals. According to some authors the present view of unity and rigidity of the Cenozoic Eurasian plate is correct only at the first approximation. In reality, the Eurasian plate represented a time varying kaleidoscope of sub plates that moved at different velocities from the Atlantic-Arctic spreading axis. Contemporary image of the intraplate deformation can be verified on the basis of observations of permanent stations GPS at present. Density the IGS and EPN station on the North-East Eurasian area isn't sufficient to the credible estimation of geokinematics parameters of every sub plates (platforms). But national networks of the GBAS stations, as for example a Polish network ASG-EUPOS, are ensuring the much higher density of measuring stations (average distance between stations of the c 70 km). Stations are located on both sides of the Teisseyre - Tornquist zone, both on East-European Precambrian platform (East European Craton) as well as on West-European Paleozoic platform. Three-year period of permanent GPS observation on ASG-EUPOS stations enabled the estimation of the velocities of the stations with the sufficing accuracy for the geodynamic purposes. It gave the possibility of the evaluation of contemporary rigidity of

  6. Impacts of hydrogeochemical processes and anthropogenic activities on groundwater quality in the Upper Precambrian sedimentary aquifer of northwestern Burkina Faso

    NASA Astrophysics Data System (ADS)

    Sako, A.; Yaro, J. M.; Bamba, O.

    2018-06-01

    This study investigates the hydrogeochemical and anthropogenic factors that control groundwater quality in an Upper Precambrian sedimentary aquifer in the northwestern Burkina Faso. The raw data and statistical and geochemical modeling results were used to identify the sources of major ions in dug well, private borewell and tap water samples. Tap waters were classified as Ca-HCO3 and Ca-Mg-HCO3 types, reflecting the weathering of the local dolomitic limestones and silicate minerals. Dug well waters, with a direct contact with various sources of contamination, were classified as Ca-Na-K-HCO3 type. Two factors that explain 94% of the total variance suggested that water-rock interaction was the most important factor controlling the groundwater chemistry. Factor 1 had high loadings on pH, Ca2+, Mg2+, HCO3 -, SO4 2- and TDS. These variables were also strongly correlated indicating their common geogenic sources. Based on the HCO3 -/(HCO3 - + SO4 2-) ratios (0.8-0.99), carbonic acid weathering appeared to control Ca2+, Mg2+, HCO3 - and SO4 2- acquisition in the groundwater. With relatively lower Ca2+ and Mg2+ concentrations, the majority of dug well and borewell waters were soft to moderately hard, whereas tap waters were considered very hard. Thus, the dug well and, to a lesser extent, borewell waters are likely to have a low buffering capacity. Factor 2 had high loadings on Na+, NO3 - and Cl-. The strong correlation between Na+ and NO3 - and Cl- implied that factor 2 represented the anthropogenic contribution to the groundwater chemistry. In contrast, K+ had moderate loadings on factors 1 and 2, consistent with its geogenic and anthropogenic sources. The study demonstrated that waters from dug wells and borewells were bacteriologically unsafe for human consumption, and their low buffering capacity may favor mobility of potentially toxic heavy metals in the aquifer. Not only very hard tap waters have aesthetic inconvenient, but their consumption may also pose health

  7. Paleomagnetism and alteration of lower Paleozoic rocks and Precambrian basement in the SHADS No. 4 drill core, Oklahoma

    NASA Astrophysics Data System (ADS)

    Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.

    2017-12-01

    The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement

  8. What lies beneath: geophysical mapping of a concealed Precambrian intrusive complex along the Iowa–Minnesota border

    USGS Publications Warehouse

    Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.

    2015-01-01

    Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that

  9. P-T evolution of the Precambrian mafic rocks hosting the Varena iron ore deposit in SE Lithuania

    NASA Astrophysics Data System (ADS)

    Šiliauskas, Laurynas; Skridlaitė, Gražina; Prusinskiene, Sabina

    2017-04-01

    The Precambrian Varena iron ore deposit in the western East European Craton, near the Latvian-East Lithuanian and Middle Lithuanian domain boundary, is buried beneath 210-500 m thick sediments. It consists of variable metasomatic rocks, mostly Mg-Fe skarns, associated with dolomitic marbles, magnetite and other ores. Metasomatites are hosted by metamorphosed igneous (mostly mafic) and sedimentary rocks and crosscut by later granites and diabase dikes. Three samples of altered mafic rocks (D8-3, D8-4 and D8-6) were chosen for PT estimations. D8-3 sample (582.5 m) is a coarse-grained metagabbro near a metasomatic K-Mg hastingsite rock. It consists of diopsidic pyroxene, edenitic and actinolitic hornblende, plagioclase (An22-15) and scapolite with minor titanite, chlorite, apatite and talc. Diopside compositions range from iron richer (Mg# 0.64, jadeite component of 0.027) to magnesium richer (Mg# 0.89, jadeite less than 0.01). Amphiboles vary from primary Mg-hastingsitic (AlVI 0.38 apfu, Mg# 0.70) to secondary edenitic (AlVI 0.25, Mg# 0.72) hornblende. Plagioclase is slightly zoned, cores more calcium-rich (An22-20) than rims (An18-15). Sample D8-4 (588 m) has similar mineral and chemical compositions, but is somewhat more altered than the D8-3 sample. Plagioclase in diopside is more anorthitic (An32-30), while matrix plagioclase is more albitic (An27-20). Sample D8-6 (710 m) is composed of diopside, plagioclase, scapolite, Mg-hornblende and actinolite. Diopside has Mg# of 0.77-0.84 and jadeite component of 0.01-0.02. Amphibole compositions range from Mg-hornblende (Mg# 0.64-0.7, Al VI 0.2-0.17 apfu) to actinolite (Mg# 0.76-0.83, Al VI 0.12-0.10 apfu). Plagioclases are An18 in cores and An10 at rims. Diopsides with the lowest Mg# and highest jadeite components, together with plagioclase cores were used for PT calculations by the winTWQ software (Berman, 1991). Temperatures of 530° C and 550° C and pressures of 6.3 and 6.1 kbar were estimated for the D8-3 and D8

  10. The early evolution of eukaryotes - A geological perspective

    NASA Technical Reports Server (NTRS)

    Knoll, Andrew H.

    1992-01-01

    This paper examines the goodness of fit between patterns of biological and environmental history implied by molecular phylogenies of eukaryotic organisms and the geological records of early eukaryote evolution. It was found that Precambrian geological records show evidence that episodic increases in biological diversity roughly coincided with episodic environmental changes and by sharp increases in atmospheric oxygen concentrations which significantly changed the earth surface environments. Although the goodness of fit among physical and biological changes is gratifyingly high, the records of these changes do not always coincide in time. The additional information in these fields that is needed for complete integration of geological and phylogenic records is suggested.

  11. On the possibility of life on early Mars

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Fogleman, G.

    1990-01-01

    Prebiotic reactants, liquid water, and temperatures low enough for organic compounds to be stable are requirements for the origination of life as we know it. Prebiotic reactants and sufficiently low temperatures were present on Mars before liquid water vanished. Early in this time period, however, large planetesimal impacts may have periodically sterilized Mars, pyrolyzed organic compounds, and interrupted chemical origination of life. However, the calculated time interval between such impacts on Mars was larger just before liquid water vanished 3.8 Gyr (billion years) ago than it was on earth just before life originated. Therefore, there should have been sufficient time for life to originate on Mars. Ideal sites to search for microfossils are in the heavily cratered terrain of Upper Noachian age. Craters and channels in this terrain may have been the sites of ancient lakes and streams that could have provided habitats for the first microorganisms.

  12. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2

  13. Cognitive Factors that Impact Learning in the Field: Observations from an REU Project on Precambrian Rocks of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Goodwin, C.

    2011-12-01

    Field work requires cognitive processing on many different levels, and constitutes a powerful and important learning environment. To be effective and meaningful, the context of field work must be fully understood in terms of key research questions, earlier published work, regional geology, geologic history, and geologic processes. Scale(s) of observation and sample selection methods and strategies must be defined. Logistical decisions must be made about equipment needed, points of access, and navigation in the field. Professional skills such as field note-taking, measuring structural data, and rock descriptions must be employed, including appropriate use of field tools. Interpretations of geologic features in the field must be interpreted through recall of concepts from the geologic knowledge base (e.g. crystallization history of igneous rocks interpreted through phase diagrams). Field workers need to be able to self-monitor and self-regulate their actions (metacognitively), and make adjustments to daily plans as needed. The results of field work must be accurately and effectively communicated to other geoscientists. Personal and professional ethics and values are brought to bear as decisions are made about whether or not the work has been satisfactorily completed at a field site. And, all of this must be done against a back drop of environmental factors that affect the ability to do this work (e.g. inclement weather, bears, impassable landscapes). The simultaneous relevance of all these factors creates a challenging, but rewarding environment for learning on many different scales. During our REU project to study the Precambrian rocks in the back country of Yellowstone National Park (YNP), we considered these cognitive factors in designing our project curriculum. To reduce the "novelty space" of the project a website was developed that described the project goals and expected outcomes, introduced primary literature, and alerted students about the physical demands

  14. Constraining a Precambrian Wilson Cycle lifespan: An example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland

    NASA Astrophysics Data System (ADS)

    Nicoli, Gautier; Thomassot, Emilie; Schannor, Mathias; Vezinet, Adrien; Jovovic, Ivan

    2018-01-01

    In the Phanerozoic, plate tectonic processes involve the fragmentation of the continental mass, extension and spreading of oceanic domains, subduction of the oceanic lithosphere and lateral shortening that culminate with continental collision (i.e. Wilson cycle). Unlike modern orogenic settings and despite the collection of evidence in the geological record, we lack information to identify such a sequence of events in the Precambrian. This is why it is particularly difficult to track plate tectonics back to 2.0 Ga and beyond. In this study, we aim to show that a multidisciplinary approach on a selected set of samples from a given orogeny can be used to place constraints on crustal evolution within a P-T-t-d-X space. We combine field geology, petrological observations, thermodynamic modelling (Theriak-Domino) and radiogenic (U-Pb, Lu-Hf) and stable isotopes (δ18O) to quantify the duration of the different steps of a Wilson cycle. For the purpose of this study, we focus on the Proterozoic Nagssugtoqidian Orogenic Belt (NOB), in the Tasiilaq area, South-East Greenland. Our study reveals that the Nagssugtoqidian Orogen was the result of a complete three stages juvenile crust production (Xjuv) - recycling/reworking sequence: (I) During the 2.60-2.95 Ga period, the Neoarchean Skjoldungen Orogen remobilised basement lithologies formed at TDM 2.91 Ga with progressive increase of the discharge of reworked material (Xjuv from 75% to 50%; δ18O: 4-8.5‰). (II) After a period of crustal stabilization (2.35-2.60 Ga), discrete juvenile material inputs (δ18O: 5-6‰) at TDM 2.35 Ga argue for the formation of an oceanic lithosphere and seafloor spreading over a period of 0.2 Ga (Xjuv from < 25% to 70%). Lateral shortening is set to have started at ca. 2.05 Ga with the accretion of volcanic/magmatic arcs (i.e. Ammassalik Intrusive Complex) and by subduction of small oceanic domains (M1: 520 ± 60 °C at 6.6 ± 1.4 kbar). (III) Continental collision between the North Atlantic

  15. Criteria for the recognition and correlation of sandstone units in the Precambrian and Paleozoic-Mesozoic clastic sequence in the near east

    NASA Astrophysics Data System (ADS)

    Weissbrod, T.; Perath, I.

    A systematic study of the Precambrian and Paleozoic-Mesozoic clastic sequences (Nubian Sandstone) in Israel and Sinai, and a comparative analysis of its stratigraphy in neighbouring countries, has shown that besides the conventional criteria of subdivision (lithology, field appearance, photogeological features, fossil content), additional criteria can be applied, which singly or in mutual conjuction enable the recognition of widespread units and boundaries. These criteria show lateral constancy, and recurrence of a similar vertical sequence over great distances, and are therefore acceptable for the identification of synchronous, region-wide sedimentary units (and consequently, major unconformities). They also enable, once the units are established, to identify detached (not in situ) samples, samples from isolated or discontinous outcrops, borehole material or archive material. The following rock properties were tested and found to be usefuls in stratigraphic interpretation, throughout large distribution areas of the clastic sequence: Landscape, which is basically the response of a particular textural-chemic al aggregate to atmospheric weathering. Characteristic outcrop feature — styles of roundness or massivity, fissuring or fliatin, slope profile, bedding — express a basic uniformity of these platform-type clastics. Colors are often stratigraphically constant over hundreds of kilometers, through various climates and topographies, and express some intrinsic unity of the rock bodies. Grain size and sorting, when cross-plotted, enable to differentiate existing unit. The method requires the analysis of representative numbers of samples. Vertical trends of median grain size and sorting show reversals, typically across unconformities. Feldstar content diminishes from 15-50% in Precambrian-Paleozoic rocks to a mere 5% or less in Mesozoic sandstones — a distinctive regionwide time trend. Dominance of certain feldstar types characterizes Precambrian and Paleozoic

  16. Stratigraphic and Paleomagnetic Comparisons of Mesoproterozoic Strata and Sills from the Belt Basin, NW Montana, USA, and NW Anabar Shield, Russia: Testing a Precambrian Plate Reconstruction

    NASA Astrophysics Data System (ADS)

    Sears, J. W.; Pavlov, V.; Veselovskiy, R.; Khudoley, A.

    2008-12-01

    Mesoproterozoic sedimentary strata and mafic sills overlie Archean and Paleoproterozoic basement rocks with profound unconformity in NW Montana and along the NW margin of the Anabar Shield in northern Siberia. The two localities plot adjacent to one another on a Precambrian plate reconstruction proposed by Sears and Price (2003) that places the NE margin of the Siberian craton against the SW margin of the North American craton. The plate reconstruction predicts that these strata occupied contiguous parts of an intracratonic basin prior to late Neoproterozoic breakup of Rodinia. Here we show that the Mesoproterozoic stratigraphic sequences, sedimentary structures, and lithologies of the NW Anabar margin closely match the Neihart, Chamberlain, and Newland formations of the Little Belt Mountains of Montana. They may predate opening of the Belt Supergroup rift basin at ca. 1500 Ma, when a major mafic magmatic episode occurred in both regions. Preliminary paleomagnetic data from the Siberian section will be compared with the Laurentian APWP to evaluate the reconstruction.

  17. Fluvial channel-belts, floodbasins, and aeolian ergs in the Precambrian Meall Dearg Formation (Torridonian of Scotland): Inferring climate regimes from pre-vegetation clastic rock records

    NASA Astrophysics Data System (ADS)

    Lebeau, Lorraine E.; Ielpi, Alessandro

    2017-07-01

    The interpretation of climate regimes from facies analysis of Precambrian clastic rocks has been challenging thus far, hindering full reconstructions of landscape dynamics in pre-vegetation environments. Yet, comparisons between different and co-active sedimentary realms, including fluvial-channelised, floodplain, and aeolian hold the potential to shed further light on this thematic. This research discusses a fluvial-aeolian record from the 1.2 Ga Meall Dearg Formation, part of the classic Torridonian succession of Scotland. Tentatively considered to date as a braided-fluvial deposit, this unit is here reappraised as the record of fluvial channel-belts, floodbasins, and aeolian ergs. Fluvial deposits with abundant transitional- to upper-flow regime structures (mostly cross-beds with tangential sets and plane/antidunal beds) and simple, low-relief sediment bars indicate a low-sinuosity, ephemeral style. Floodbasin deposits consist of plane and cross-beds ubiquitously bounded by symmetrical ripples, and rare sediment bars related to the progradation of splay complexes in temporary flooded depressions. Aeolian deposits occur nearby basement topography, and are dominated by large-scale, pin-stripe laminated cross-beds, indicative of intermountain ergs. Neither ephemeral-fluvial nor intermountain aeolian systems can be considered as reliable indicators of local climate, since their sedimentary style is respectively controlled by catchment size and shape, and basin topography relative to groundwater tables. Contrarily, the occurrence of purely clastic - rather than carbonate or evaporitic - floodplain strata can be more confidently related to humid regimes. In brief, this study provides new insight into an overlooked portion of the Torridonian succession of Scotland, and discusses climate inferences for Precambrian clastic terrestrial rocks.

  18. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars.

    PubMed

    Sherwood Lollar, B; Voglesonger, K; Lin, L-H; Lacrampe-Couloume, G; Telling, J; Abrajano, T A; Onstott, T C; Pratt, L M

    2007-12-01

    Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.

  19. Deep structure of the Texas Gulf passive margin and its Ouachita-Precambrian basement: Results of the COCORP San Marcos arch survey

    SciTech Connect

    Culotta, R.; Latham, T.; Oliver, J.

    1992-02-01

    This COCORP deep seismic survey provides a comprehensive image of the southeast-Texas part of the Gulf passive margin and its accreted Ouachita arc foundation. Beneath the updip limit of the Cenozoic sediment wedge, a prominent antiformal structure is imaged within the interior zone of the buried late Paleozoic Ouachita orogen. The structure appears to involve Precambrian Grenville basement. The crest of the antiform is coincident with the Cretaceous-Tertiary Luling-Mexia-Talco fault zone. Some of these faults dip to the northwest, counter to the general regional pattern of down-to-the-basin faulting, and appear to sole into the top of the antiform, suggesting thatmore » the Ouachita structure has been reactivated as a hingeline to the subsiding passive margin. The antiform may be tied via this fault system and the Ouachita gravity gradient to the similar Devils River, Waco, and Benton uplifts, interpreted as Precambrian basement-cored massifs. Above the Paleozoic sequence, a possible rift-related graben is imaged near the updip limit of Jurassic salt. Paleoshelf edges of the major Tertiary depositional sequences are marked by expanded sections disrupted by growth faults and shale diapirs. Within the Wilcox Formation, the transect crosses the mouth of the 900-m-deep Yoakum Canyon, a principal pathway of sediment delivery from the Laramide belt to the Gulf. Beneath the Wilcox, the Comanchean (Lower Cretaceous) shelf edge, capped by the Stuart City reef, is imaged as a pronounced topographic break onlapped by several moundy sediment packages. Because this segment of the line parallels strike, the topographic break may be interpreted as a 2,000-m-deep embayment in the Cretaceous shelf-edge, and possibly a major submarine canyon older and deeper than the Yoakum Canyon.« less

  20. Eocene melting of Precambrian lithospheric mantle: Analcime-bearing volcanic rocks from the Challis-Kamloops belt of south central British Columbia

    NASA Astrophysics Data System (ADS)

    Dostal, J.; Breitsprecher, K.; Church, B. N.; Thorkelson, D.; Hamilton, T. S.

    2003-08-01

    Potassic silica-undersaturated mafic volcanic rocks form a minor portion of the predominantly calc-alkaline Eocene Challis-Kamloops volcanic belt, which extends from the northwestern United States into central British Columbia (Canada). Their major occurrence is in the Penticton Group in south central British Columbia, where they reach a thickness of up to 500 m and form the northwestern edge of the Montana alkaline province. These analcime-bearing rocks (˜53-52 Ma old) are typically rhomb porphyries of ternary feldspar (An 28Ab 52Or 20). Additional phenocryst phases include clinopyroxene, analcime, phlogopite and rare olivine. The rocks are characterized by high total alkalis, particularly K 2O (>4.5 wt%) as well as by a distinct enrichment of large-ion lithophile elements versus heavy rare-earth elements and high-field-strength elements. They have unusual isotopic compositions compared to most other rocks of the Challis-Kamloops belt, particularly high negative ɛNd values and elevated but relatively uniform initial 87Sr/ 86Sr ratios (˜0.7065). The potassic silica-undersaturated rocks overlie Precambrian crust and lithosphere and were at least in part derived from ancient metasomatized subcontinental mantle lithosphere, which was modified in a Precambrian subduction setting. The alkaline rocks of the Challis-Kamloops belt are related to a slab-window environment. In particular, they were formed above the southern edge of the Kula plate adjacent to the Kula-Farallon slab window, whereas the Montana alkaline province situated well to the southeast was formed directly above the Kula-Farallon slab window. Upwelling of the hotter asthenospheric mantle may have been the thermal trigger necessary to induce melting of fertile and metasomatized lithospheric mantle.

  1. Isotopic and chemical studies of early crustal metasedimentary rocks

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  2. Petrology, geochemistry and zirconology of impure calcite marbles from the Precambrian metamorphic basement at the southeastern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Can; Zhang, Pin-Gang; Wang, Cheng-Cheng; Groppo, Chiara; Rolfo, Franco; Yang, Yang; Li, Yuan; Deng, Liang-Peng; Song, Biao

    2017-10-01

    Impure calcite marbles from the Precambrian metamorphic basement of the Wuhe Complex, southeastern margin of the North China Craton, provide an exceptional opportunity to understand the depositional processes during the Late Archean and the subsequent Palaeoproterozoic metamorphic evolution of one of the oldest cratons in the world. The studied marbles are characterized by the assemblage calcite + clinopyroxene + plagioclase + K-feldspar + quartz + rutile ± biotite ± white mica. Based on petrography and geochemistry, the marbles can be broadly divided into two main types. The first type (type 1) is rich in REE with a negative Eu anomaly, whereas the second type (type 2) is relatively poor in REE with a positive Eu anomaly. Notably, all marbles exhibit remarkably uniform REE patterns with moderate LREE/HREE fractionation, suggesting a close genetic relationship. Cathodoluminescence imaging, trace elements and mineral inclusions reveal that most zircons from two dated samples display distinct core-rim structures. Zircon cores show typical igneous features with oscillatory growth zoning and high Th/U ratios (mostly in the range 0.3-0.7) and give ages of 2.53 - 2.48 Ga, thus dating the maximum age of deposition of the protolith. Zircon rims overgrew during granulite-facies metamorphism, as evidenced by calcite + clinopyroxene + rutile + plagioclase + quartz inclusions, by Ti-in-zircon temperatures in the range 660-743 °C and by the low Th/U (mostly < 0.1) and Lu/Hf (< 0.001) ratios. Zircon rims from two dated samples yield ages of 1839 ± 7 Ma and 1848 ± 23 Ma, respectively, suggesting a Palaeoproterozoic age for the granulite-facies metamorphic event. These ages are consistent with those found in other Precambrian basement rocks and lower-crustal xenoliths in the region, and are critical for the understanding of the tectonic history of the Wuhe Complex. Positive Eu anomalies and high Sr and Ba contents in type 2 marbles are ascribed to syn-depositional felsic

  3. Tidal control on gas flux from the Precambrian continental bedrock revealed by gas monitoring at the Outokumpu Deep Drill Hole, Finland

    NASA Astrophysics Data System (ADS)

    Kietäväinen, Riikka; Ahonen, Lasse; Wiersberg, Thomas; Korhonen, Kimmo; Pullinen, Arto

    2017-04-01

    Deep groundwaters within Precambrian shields are characteristically enriched in non-atmospheric gases. High concentrations of methane are frequently observed especially in graphite bearing metasedimentary rocks and accumulation of hydrogen and noble gases due to water-rock interaction and radioactive decay within the U, Th and K containing bedrock takes place. These gases can migrate not only through fractures and faults, but also through tunnels and boreholes, thereby potentially mobilizing hazardous compounds for example from underground nuclear waste repositories. Better understanding on fluid migration may also provide tools to monitor changes in bedrock properties such as fracture density or deterioration and failure of engineered barriers. In order to study gas migration mechanisms and variations with time, we conducted a gas monitoring campaign in eastern Finland within the Precambrian Fennoscandian Shield. At the study site, the Outokumpu Deep Drill Hole (2516 m), spontaneous bubbling of gases at the well head has been on-going since the drilling was completed in 2005, i.e. over a decade. The drill hole is open below 39 m. In the experiment an inflatable packer was placed 15 cm above the water table inside the collar (Ø 32.4 cm), gas from below the packer was collected and the gas flow in the pipe line carefully assisted by pumping (130 ml/min). Composition of gas was monitored on-line for one month using a quadrupole mass spectrometer (QMS) with measurement interval of one minute. Changes in the hydraulic head and in situ temperature were simultaneously recorded with two pressure sensors which were placed 1 m apart from each other below the packer such that they remained above and below the water table. In addition, data was compared with atmospheric pressure data and theoretical effect of Earth tides at the study site. Methane was the dominant gas emanating from the bedrock, however, relative gas composition fluctuated with time. Subsurface derived gases

  4. Formation of biogenic sheath-like Fe oxyhydroxides in a near-neutral pH hot spring: Implications for the origin of microfossils in high-temperature, Fe-rich environments

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Chen, Shun; Xu, Hengchao

    2013-12-01

    small hot spring that is informally called "Fe-waterfall spring" and is located in the Rehai geothermal area discharges hot (42 to 73°C), near-neutral (pH = 7.65) Fe-rich water. Submerged reddish precipitates are composed largely of ferrihydrite, goethite, lepidocrocite, opal-A, quartz, and anorthite, as revealed by X-ray diffraction (XRD) and Mössbauer spectroscopy. Molecular phylogenetic analysis demonstrates that the bacterial community in these precipitates is mainly composed of Cyanobacteria, Planctomycetes, β-proteobacteria, Deinococci-Thermus, and Chlorobi. Scanning electron microscopy and high-resolution transmission electron microscopy examinations show that abundant sheath-like Fe oxyhydroxides, which exhibit different morphologies and sizes, are present in Fe-rich precipitates. These sheath-like structures are composed of ferrihydrite rather than more crystalline lepidocrocite or goethite. Energy-dispersive X-ray spectrometer, scanning transmission electron microscopy, and nano secondary ion mass spectrometry reveal that they are mainly composed of Fe, Si, and O, together with some trace elements. Most of the sheath-like structures are not morphologically comparable to biogenic Fe oxyhydroxides produced by known chemolithotrophic Fe oxidizers, which is consistent with the fact that no chemolithotrophic Fe oxidizers were identified by molecular analysis in the precipitates. We suggest that the sheath-like Fe oxyhydroxides are formed through passive Fe sorption and nucleation onto the cell walls of various thermophiles rather than by the direct metabolic activities of chemolithotrophic Fe oxidizers. Biogenic sheath-like Fe oxyhydroxides in Fe-waterfall spring have important implications for geochemical cycles driven by microorganisms, the origin of microfossils, and the formation of banded iron formations (BIFs) in the Archean ocean.

  5. Three-dimensional morphological and textural complexity of Archean putative microfossils from the Northeastern Pilbara Craton: indications of biogenicity of large (>15 microm) spheroidal and spindle-like structures.

    PubMed

    Sugitani, Kenichiro; Grey, Kathleen; Nagaoka, Tsutomu; Mimura, Koichi

    2009-09-01

    We recently reported a diverse assemblage of carbonaceous structures (thread-like, film-like, spheroidal, and spindle-like) from chert in the ca. 3.0 Ga Farrel Quartzite of the Gorge Creek Group in the Pilbara Craton, Western Australia. Results from a rigorous examination of occurrence, composition, morphological complexity, size distributions, and taphonomy provided presumptive evidence for biogenicity. In this study, we present new data of morphological and textural complexity of large (>15 microm) spheroidal and spindle-like structures, using an in-focus, 3-D image reconstruction system, which further raises the scale of credibility that these structures are microfossils. While many of the large spheroids are single-walled, and the wall is irregularly folded, a few specimens are partially blistered, double walled, or have a dimpled wall. The wall-surface texture varies from smooth and homogeneous (hyaline) to patchy, granular or reticulate. Such variation is best explained as resulting from taphonomic processes. Additionally, an inner solitary body, present in some large spheroids, is hollow and partially broken, which indicates a primary origin for this substructure. Spindle-like structures have two types of flange-like appendage; one is attached at the equatorial plane of the body, whereas the other appears to be attached peripherally. In both cases, the appendage tends to have a flat geometry, a tapering thickness, and constancy in shape, proportions, and dimensions. Spindle-wall surfaces are variously textured and heterogeneous. These morphological and textural complexities and heterogeneity refute potential abiogenic formation models for these structures, such as crystals coated with organic matter, fenestrae, and the diagenetic redistribution of carbonaceous matter. When coupled with other data from Raman spectroscopy, NanoSIMS analysis, and palynology, the evidence that these large carbonaceous structures are biogenic appears compelling, though it is

  6. Assessing the fidelity of marine vertebrate microfossil δ18O signatures and their potential for palaeo-ecological and -climatic reconstructions

    SciTech Connect

    Roelofs, Brett; Barham, Milo; Cliff, John

    Conodont biogenic apatite has become a preferred analytical target for oxygen isotope studies investigating ocean temperature and palaeoclimate change in the Palaeozoic. Despite the growing application in geochemical based palaeoenvironmental reconstructions, the paucity or absence of conodont fossils in certain facies necessitates greater flexibility in selection of robust oxygen bearing compounds for analysis. Microvertebrates offer a potential substitute for conodonts from the middle Palaeozoic. Microvertebrate bioapatite is particularly advantageous given a fossil record extending to the present with representatives across freshwater to fully marine environments, thus widening the scope of oxygen isotope studies on bioapatite. However, significant tissue heterogeneity withinmore » vertebrates and differential susceptibility of these tissues to diagenetic alteration have been raised as potential problems affecting the reliability of the oxygen isotope ratios as palaeoclimate proxies. Pristine microvertebrate and co-occurring conodont fossils from the Late Devonian and Early Carboniferous of the Lennard Shelf, Canning Basin, Western Australia, were analysed using bulk (gas isotope ratio mass spectrometry) and in-situ (secondary ion mass spectrometry) methodologies, with the latter technique allowing investigation of specific tissues within vertebrate elements. The δ18Oconodont results may be interpreted in terms of palaeolatitudinally and environmentally sensible palaeotemperatures and provide a baseline standard for comparison against δ18Omicrovertebrate values. Despite an absence of obvious diagenetic influences, GIRMS of microvertebrate denticles yielded δ18O values depleted by 2-4 ‰ relative to co-occurring conodonts. SIMS analysis of hypermineralised tissues in both scales and teeth produced δ18O values comparable with those of associated conodonts. The susceptibility of porous phosphatic fossil tissues to microbial activity, fluid interaction and

  7. The simulated silicification of bacteria--new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils.

    PubMed

    Toporski, Jan K W; Steele, Andrew; Westall, Frances; Thomas-Keprta, Kathie L; McKay, David S

    2002-01-01

    Evidence of microbial life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification. The degree of silicification of individual cells of the same sample varied, though such variations decreased with increasing exposure time. High Si concentration resulted in better preservation of cellular detail; the Si concentration was more important than the duration in Si solution. Even though no evidence of amorphous silica precipitation was observed, bacterial cells became permineralized. High-resolution TEM analysis revealed nanometer-sized crystallites characterized by lattice fringe-spacings that match the (10-11) d-spacing of quartz formed within bacterial cell walls after 1 week in 5,000 ppm silica solution. The mechanisms of silicification under controlled laboratory conditions and the implication for silicification in natural environments are discussed, along with the relevance of our findings in the search for early life on Earth and extraterrestrial life.

  8. Quantitative investigations of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone

    USGS Publications Warehouse

    Hildenbrand, T.G.; Griscom, A.; Van Schmus, W. R.; Stuart, W.D.

    1996-01-01

    Analysis of gravity and magnetic anomaly data helps characterize the geometry and physical properties of the source of the Missouri gravity low, an important cratonic feature of substantial width (about 125 km) and length (> 600 km). Filtered anomaly maps show that this prominent feature extends NW from the Reelfoot rift to the Midcontinent Rift System. Geologic reasoning and the simultaneous inversion of the gravity and magnetic data lead to an interpretation that the gravity anomaly reflects an upper crustal, 11-km-thick batholith with either near vertical or outward dipping boundaries. Considering the modeled characteristics of the batholith, structural fabric of Missouri, and relations of the batholith with plutons and regions of alteration, a tectonic model for the formation of the batholith is proposed. The model includes a mantle plume that heated the crust during Late Precambrian and melted portions of lower and middle crust, from which the low-density granitic rocks forming the batholith were partly derived. The batholith, called the Missouri batholith, may be currently related to the release of seismic energy in the New Madrid seismic zone (earthquake concentrations occur at the intersection of the Missouri batholith and the New Madrid seismic zone). Three qualitative mechanical models are suggested to explain this relationship with seismicity. Copyright 1996 by the American Geophysical Union.

  9. The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria

    NASA Astrophysics Data System (ADS)

    Afolagboye, Lekan Olatayo; Talabi, Abel Ojo; Oyelami, Charles Adebayo

    2017-05-01

    This study assessed the possibility of using index tests to determine the mechanical properties of crushed aggregates. The aggregates used in this study were derived from major Precambrian basement rocks in Ado-Ekiti, Nigeria. Regression analyses were performed to determine the empirical relations that mechanical properties of the aggregates may have with the point load strength (IS(50)), Schmidt rebound hammer value (SHR) and unconfined compressive strength (UCS) of the rocks. For all the data, strong correlation coefficients were found between IS(50), SHR, UCS, and mechanical properties of the aggregates. The regression analysis conducted on the different rocks separately showed that correlations coefficients obtained between the IS(50), SHR, UCS and mechanical properties of the aggregates were stronger than those of the grouped rocks. The T-test and F-test showed that the derived models were valid. This study has shown that the mechanical properties of the aggregates can be estimated from IS(50), SHR and USC but the influence of rock type on the relationships should be taken into consideration.

  10. Correlation of Late Precambrian and Paleozoic events in the East European platform and the adjacent paleooceanic domains

    NASA Astrophysics Data System (ADS)

    Kheraskova, T. N.; Volozh, Yu. A.; Antipov, M. P.; Bykadorov, V. A.; Sapozhnikov, R. B.

    2015-01-01

    The correlation of geological events and structure-forming processes occurring contemporaneously in the inner parts of cratons and the adjacent paleooceanic basins is discussed in order to understand the effects of these processes on sedimentation and structural rearrangements. For this purpose, a series of paleodynamic reconstructions of the Riphean, Vendian, and Paleozoic epicontinental basins of the East European Platform and zones of their transition to marginal basins of the same age once situated in the Ural, Timan, Caucasus, Scandinavian fold regions and in the Scythian-Turan Plate have been performed on the basis of the available original and published data combined with interpretation of seismic profiles. As a result, a set of structural-facies maps of this territory have been compiled for several time intervals from the Late Riphean to Early Permian.

  11. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    USGS Publications Warehouse

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  12. Early Silurian Foraminifera from Gondwana - an early origin of the multichambered globothalamids?

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael

    2017-04-01

    Early Silurian foraminifera until now have been regarded to consist of simple single-chambered monothalamids and two-chambered tubothalamids with an agglutinated wall. Although pseudo-multichambered agglutinated foraminifera first appeared in the mid-Ordovician (Kaminski et al. 2009), the origin of true multichambered forms was not believed to have taken place until the early or middle Devonian at the earliest (Holcová, 2002). New discoveries from the Lower Silurian Qusaiba Shale Member in Saudi Arabia point to an earlier origin of the multichambered globothalamid Foraminifera than the currently accepted estimate of 350 Ma (Pawlowski et al. 2003). The agglutinated foraminiferal genera Ammobaculites and Sculptobaculites have been recovered from dark graptolite-bearing claystones of Telychian age, from the transitional facies between the Qusaiba and Sharawa Members of the Qasim Formation at the type locality near Qusaiba town, Saudi Arabia. The multichambered lituolids occur as rare components in a foraminiferal assemblage consisting mostly of monothalamids. This new finding revises our understanding of the early evolution of the multichambered globothalamid foraminifera. The fossil record now shows that the globothalamids were already present in Gondwana by 435 m.y. Holcová, K. 2002. Silurian and Devonian foraminifers and other acid-resistant microfossils from the Barrandian area. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 58 (3-4), 83-140. Kaminski, M.A., Henderson, A.S., Cetean, C.G. & Waskowska-Oliwa, A. 2009. A new family of agglutinated foraminifera: the Ammolagenidae n.fam., and the evolution of multichambered tests. Micropaleontology, 55 (5), 487-494. Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J.F., Gooday, Aj., Cedhagen, T., Habura, A., & Bowser, SS. 2003. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences, 100 (20), 11494-11498

  13. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  14. Evolution Process and Structural Analysis of Precambrian Jirisan Metamorphic and Sancheong Anorthosite Complexes in the Jirisan Province, Yeongnam Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Lee, D. S.

    2016-12-01

    The Jirisan metamorphic complex consists mainly of schist, blastoporphyritic granite gneiss, granitic gneiss, leucocratic gneiss, biotite gneiss, banded gneiss, migmatitic gneiss and granite gneiss. The Paleoproterozoic (1.87 1.79 Ga) Sancheong anorthosite complex, which intrude it, is classified into massive-type and foliation-type Sancheong anorthosite, Fe-Ti ore body, and mafic granulite which were formed from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma. These complexes went at least through three times of ductile deformation during Early Proterozoic Late Paleozoic. The D1 deformation formed sheath or "A" type folds and its characteristic orientation was uncertain due to the intensive multi-deformation superimposed after that. The D2 deformation occurred under the EW- or WNW-directed tectonic compression, and formed a regional NS or NNE trend of isoclinal and intrafolial folds and an extensive ductile shear zone accompanied by mylonitization. The D3 deformation occurred under the NS- or NNW-directed tectonic compression environment, and formed an EW or ENE trend of open and tight folds and a partial semibrittle shear zone accompanied by mylonitization, and rearranged the NS-trend pre-D3 structural elements into (E)NE or (W)NW direction. The D2 deformation generally increases from the center toward the margin of Sancheong anorthosite complex but is more intensive in the eastern than western parts of Sancheong anorthosite complex. While the D3 deformation is inversely more intensive in the its western than eastern parts. The D2 and D3 deformations are closely related to the distribution features of Sancheong anorthosite complex. These three tectonic events are expected to give important information in understanding and reconstructing the tectonic movement after the formation of Columbia Supercontinent as well as the present NS-trend tectonic frame of the Jirisan province of the Yeongnam massif, the Korean Peninsula.

  15. Significance of the precambrian basement and late Cretaceous thrust nappes on the location of tertiary ore deposits in the Oquirrh Mountains, Utah

    USGS Publications Warehouse

    Tooker, Edwin W.

    2005-01-01

    The Oquirrh Mountains are located in north central Utah, in the easternmost part of the Basin and Range physiographic province, immediately south of the Great Salt Lake. The range consists of a northerly trending alignment of peaks 56 km long. Tooele and Rush Valleys flank the Oquirrh Mountains on the western side and Salt Lake and Cedar Valleys lie on the eastern side. The world class Bingham mine in the central part of the range hosts disseminated copper-bearing porphyry, skarn, base-and precious-metal vein and replacement ore deposits. The district includes the outlying Barneys Canyon disseminated-gold deposits. Disseminated gold in the Mercur mining district in the southern part of the range has become exhausted. The Ophir and Stockton base- and precious-metal mining districts in the range north of Mercur also are inactive. A geologic map of the range (Tooker and Roberts, 1998), available at a scale of 1:50,000, is a summation of U.S. Geological Survey (USGS) studies. Information about the range and its mining areas is scattered. This report summarizes map locations, new stratigraphic and structural data, and reexamined data from an extensive published record. Unresolved controversial geological interpretations are considered, and, for the first time, the complete geological evidence provides a consistent regional basis for the location of the ore deposits in the range. The geological setting and the siting of mineral deposits in the Oquirrh Mountains began with the formation of a Precambrian craton. Exposures of folded Proterozoic basement rocks of the craton, in the Wasatch Mountains east of Salt Lake City, were accreted and folded onto an Archean crystalline rock terrane. The accretion suture lies along the north flank of the Uinta Mountains. The western part of the accreted block was offset to northern Utah along a north-trending fault lying approximately along the Wasatch Front (Nelson and others, 2002), thereby creating a prominant basement barrier or

  16. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    USGS Publications Warehouse

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    heat-balance constraints, we can utilize the 18O 16O data on natural mineral assemblages to calculate the kinetic rate constants (k's) and the effective diffusion constants (D's) for mineral-H2O exchange: these calculated values (kqtz ??? 10-14, kfeld ??? 10-13-10-12) agree with experimental determinations of such constants. In nature, once the driving force or energy source for the external infiltrating fluid phase is removed, the disequilibrium mineral-pair arrays will either: (1) remain "frozen" in their existing state, if the temperatures are low enough, or (2) re-equilibrate along specific closed-system exchange vectors determined solely by the temperature path and the mineral modal proportions. Thus, modal mineralogical information is a particularly important parameter in both the open- and closed-system scenarios, and should in general always be reported in stable-isotopic studies of mineral assemblages. These concepts are applied to an analysis of 18O 16O systematics of gabbros (Plagioclase-clinopyroxene and plagioclase-amphibole pairs), granitic plutons (quartz-feldspar pairs), and Precambrian siliceous iron formations (quartz-magnetite pairs). In all these examples, striking regularities are observed on ??-?? and ??-?? plots, but we point out that ??-?? plots have many advantages over their equivalent ??-?? diagrams, as the latter are more susceptible to misinterpretation. Using the equations developed in this study, these regularities can be interpreted to give semiquantitative information on the exchange histories of these rocks subsequent to their formation. In particular, we present a new interpretation indicating that Precambrian cherty iron formations have in general undergone a complex fluid exchange history in which the iron oxide (magnetite precursor?) has exchanged much faster with low-temperature (< 400??C) fluids than has the relatively inert quartz. ?? 1989.

  17. Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America

    NASA Astrophysics Data System (ADS)

    D'Agrella-Filho, Manoel S.; Tohver, Eric; Santos, João O. S.; Elming, Sten-Åke; Trindade, Ricardo I. F.; Pacca, Igor I. G.; Geraldes, Mauro C.

    2008-03-01

    We apply a new diagenetic dating technique to determine the age of magnetization for Precambrian sedimentary rocks in the SW Amazon craton. Two new paleomagnetic poles are reported from the rocks of the Aguapeí Gp.: red beds of the Fortuna Fm. (Plat = 59.8°N, Plon = 155.9°E, A95 = 9.5, K = 14, 18 sites, N/n 128/115, Q = 5) and the reverse-polarity mudstones of the overlying Vale da Promissão Formation (Plat = 49.5°N, Plon = 89.3°E, A95 = 12.5, K = 30, 6 sites, N/n = 94/80, Q = 4). The Fortuna Fm. magnetization is hosted by massive, interstitial hematite cement and constitutes a post-depositional remanence. The age of diagenesis of the red beds is well-constrained by the 1149 ± 7 Ma U-Pb age of authigenic xenotime rims on detrital zircons determined by SHRIMP analysis. The magnetite-hosted remanence of the Vale da Promissão Fm. may be detrital in origin, but the age of deposition is poorly constrained. The reliable and precisely-dated Fortuna Fm. paleomagnetic pole fixes the paleogeographic position of the Amazon craton near the SE Appalachians portion of North America at 1.15 Ga. These data demonstrate a mobile Grenvillian link between these two cratons, and support the recent identification of Amazon crust in the Blue Ridge province region of North America.

  18. Geophysically inferred structural and lithologic map of the precambrian basement in the Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    USGS Publications Warehouse

    McCafferty, Anne E.; Cordell, Lindrith E.

    1992-01-01

    This report is an analysis of regional gravity and aeromagnetic data that was carried out as part of a Conterminuous United States Mineral Assessment Program (CUSMAP) study of the Joplin 1° X 2° quadrangle, Kansas and Missouri. It is one in a series of reports representing a cooperative effort between the U.S. Geological Survey, Kansas Geological Survey, and Missouri Department of Natural Resources, Division of Geology and Land Survey. The work presented here is part of a larger project whose goal is to assess the mineral resource potential of the Paleozoic sedimentary section and crystalline basement within the quadrangle. Reports discussing geochemical, geological, and various other aspects of the study area are included in this Miscellaneous Field Studies Map series as MF-2125-A through MF-2125-E. Geophysical interpretation of Precambrian crystalline basement lithology and structure is the focus of this report. The study of the crystalline basement is complicated by the lack of exposures due to the presence of a thick sequence of Phanerozoic sedimentary cover. In areas where there are no outcrops, the geologist must turn to other indirect methods to assist in an understanding of the basement. Previous investigations of the buried basement in this region used available drill hole data, isotope age information, and regional geophysical data (Sims, 1990; Denison and others, 1984; Bickford and others, 1986). These studies were regional in scope and were presented at state and multistate scales. The work documented here used recently collected detailed gravity and aeromagnetic data to enhance the regional geologic knowledge of the area. Terrace-density and terrace-magnetization maps were calculated from the gravity and aeromagnetic data, leading directly to inferred physical-property (density and magnetization) maps. Once these maps were produced, the known geology and drill-hole data were reconciled with the physical-property maps to form a refined structural and

  19. Biomass recycling and Earth’s early phosphorus cycle

    PubMed Central

    Kipp, Michael A.; Stüeken, Eva E.

    2017-01-01

    Phosphorus sets the pace of marine biological productivity on geological time scales. Recent estimates of Precambrian phosphorus levels suggest a severe deficit of this macronutrient, with the depletion attributed to scavenging by iron minerals. We propose that the size of the marine phosphorus reservoir was instead constrained by muted liberation of phosphorus during the remineralization of biomass. In the modern ocean, most biomass-bound phosphorus gets aerobically recycled; but a dearth of oxidizing power in Earth’s early oceans would have limited the stoichiometric capacity for remineralization, particularly during the Archean. The resulting low phosphorus concentrations would have substantially hampered primary productivity, contributing to the delayed rise of atmospheric oxygen. PMID:29202032

  20. Eocene cooling linked to early flow across the Tasmanian Gateway.

    PubMed

    Bijl, Peter K; Bendle, James A P; Bohaty, Steven M; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E; McKay, Robert M; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk

    2013-06-11

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.

  1. Eocene cooling linked to early flow across the Tasmanian Gateway

    PubMed Central

    Bijl, Peter K.; Bendle, James A. P.; Bohaty, Steven M.; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E.; McKay, Robert M.; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Williams, Trevor; Carr, Stephanie A.; Dunbar, Robert B.; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Passchier, Sandra; Pekar, Stephen F.; Riesselman, Christina; Sakai, Toyosaburo; Shrivastava, Prakash K.; Sugisaki, Saiko; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako

    2013-01-01

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling. PMID:23720311

  2. Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Birks, S. J.; Jeffries, D.; Yi, Y.

    2017-01-01

    Stable isotopes of water, oxygen-18 and deuterium, were measured in water samples collected from a network of 300 lakes sampled in six ∼100 km2 blocks (centred at 49.72°N, 91.46°W; 48.49°N, 91.58°W; 50.25°N, 86.62°W; 49.78°N, 83.98°W; 48.24°N, 85.49°W; 47.73, 84.52°W) within Precambrian shield drainages in the vicinity of Lake Superior, northern Ontario, Canada. Additional sampling was also conducted within the Turkey Lakes watershed (47.03°N, 84.38°W), a research basin situated in the Algoma region located 50 km north of Sault Saint Marie, Ontario. The studies were undertaken to gain a better understanding of hydrology and geochemistry of watersheds in the region in order to better predict acid sensitivity of lakes. The main objective of this paper is to describe the hydrologic variations observed based on stable isotope results. Evaporative isotopic enrichment of lake water was found to be systematic across the region, and its deviation from the isotopic composition of precipitation was used to estimate the evaporation/inflow to the lakes as well as runoff (or water yield) based on a simple isotope mass balance model. The analysis illustrates significant variability in the water yield to lakes and reveals a pattern of positively skewed distributions in all six widely spaced blocks, suggesting that a high proportion of lakes have relatively limited runoff whereas relatively few have greater runoff. Such basic information on the drainage structure of an area can be valuable for site-specific hydrologic assessments but also has significant implications for critical loads assessment, as low runoff systems tend to be less buffered and therefore are more sensitive to acidification. Importantly, the Turkey Lakes sampling program also suggests that isotope-based water yield is comparable in magnitude to hydrometric gauging estimates, and also establishes that uncertainty related to stratification can be as high as ±20% or more for individual lakes

  3. Integrated Analysis of Airborne Geophysical Data to Understand the Extent, Kinematics and Tectonic Evolution of the Precambrian Aswa Shear Zone in East Africa.

    NASA Astrophysics Data System (ADS)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2014-12-01

    The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts

  4. Geochemical and isotopic study of impact melts and spherules from the Lonar impact crater, India, indicate melting of the Precambrian basement beneath the 'target' Deccan basalts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Goderis, S.; Banerjee, A.; Gupta, R. D.; Claeys, P.; Vanhaecke, F. F.

    2016-12-01

    The 1.88 km diameter Lonar impact Crater, with age estimates ranging from 52 -570 ka, is located in the Buldana district of Maharashtra, India. It is an almost circular depression hosted entirely in the 65Ma old basalt flows of the Deccan Traps and is the best-known terrestrial analogue for impact craters in the Inner Solar System. Isotopic studies indicate that the basalts around Lonar correlate with the Poladpur suite, one of the mid-section volcano-stratigraphic units of the Deccan traps. Recently collected samples of the host basalt and impact melts, were analyzed for major and trace element concentrations using ICPMS, as well as for Nd and Sr isotope ratios using TIMS. Relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the melt rocks compared to earlier measurements of similar rocks from Lonar are consistent with melting of the Precambrian basement beneath the Deccan basalt. Spherules ranging in size from 100 mm to 1 mm, were hand-picked under a binocular microscope from unconsolidated soil samples, collected from the south-eastern rim of the crater. Thirty-five spherule samples, screened for surface alteration using SEM were analyzed for major and trace element concentrations including PGEs using LA-ICPMS. The spherules were further classified into two groups using the Chemical Index of Alteration(CIA). Iridium and Cr concentrations of the spherules are consistent with mixing of a chondritic impactor (with 2-8% contribution) with the target rock(s). On a Nb (fluid immobile) -normalized binary plot of Th versus Cr, the composition of the spherules can be explained by mixing between the host basalt and a chondritic impactor with a definite, but minor contribution of the basement beneath Lonar, the composition of which is approximated using the average composition of the upper continental crust (UCC). Variability in the light-REE fractionation of the spherules (La/Sm(N)) can also be explained by a similar three component mixing. Overall

  5. Late Precambrian (740 Ma) charnockite, enderbite, and granite from Jebel Moya, Sudan: A link between the Mozambique Belt and the Arabian-Nubian Shield

    SciTech Connect

    Stern, R.J.; Dawoud, A.S.

    1991-09-01

    New Rb-Sr and whole rock and U-Pb zircon data are reported for deep-seated igneous rocks from Jebel Moya in east-central Sudan. This exposure is important because it may link the high-grade metamorphic and deep-seated igneous rocks of the Mozambique Belt with the greenschist-facies and ophiolitic assemblages of the Arabian-Nubian Shield, both of Pan-African (ca. 900-550 Ma) age. The rocks of Jebel Moya consist of pink granite, green charnockite, and dark enderbite. A twelve-point Rb-Sr whole rock isochron for all three lithologies yields an age of 730 {plus minus} 31 Ma and an initial {sup 87}Sr/{sup 86}Sr of 0.7031 {plus minus}more » 1. Nearly concordant zircon ages for granite, charnockite, and enderbite are 744 {plus minus} 2,742 {plus minus} 2, and 739 {plus minus} 2 Ma, respectively. Initial {epsilon}-Nd for these rocks are indistinguishable at 3.0 {plus minus} 0.4. The data suggest that the charnockite, enderbite, and granite are all part of a deep-seated igneous complex. The initial isotopic compositions of Sr and Nd indicate that Jebel Moya melts were derived from a mantle source that experienced significantly less time-integrated depletion of LRE and LIL elements than the source of Arabian-Nubian Shield melts. The ages for Jebel Moya deep-seated igneous rocks are in accord with data from elsewhere in the Mozambique Belt indicating that peak metamorphism occurred about 700-750 Ma. The northward extension of the Mozambique Belt to the Arabian-Nubian Shield defines a single east Pan-African orogen. The principal difference between the northern and southern sectors of this orogen may be the greater degree of thickening and subsequent erosion experienced in the south during the late Precambrian, perhaps a result of continental collision between East (Australia-India) and West Gondwanaland (S. America-Africa) about 750 Ma.« less

  6. Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe

    NASA Astrophysics Data System (ADS)

    Wilde-Piórko, Monika; Świeczak, Marzena; Grad, Marek; Majdański, Mariusz

    2010-01-01

    The structure and evolution of the Trans-European Suture zone (TESZ), contact between Precambrian Europe to the northeast and Phanerozoic terranes to the southwest is one of the main tectonic questions in Europe. The knowledge of the crustal structure, lithosphere-asthenosphere boundary and mantle transition zone between two seismic discontinuities at depths "410" and "660" km, is one of the most important issues to understand the Earth's dynamics. To create a mantle model of the TESZ and surroundings we used different seismic data collected along the 950 km long POLONAISE'97 profile P4. Previous results of 2-D ray-tracing and P-wave travel time modelling and new results of P-wave travel time residuals methods and receiver function sections provide facts about the seismic structure from the surface down to 900 km depth. In the TESZ a large basin, about 125 km wide, is filled with sedimentary strata (Vp < 6.0 km s - 1 ) to about 20 km depth. This basin is asymmetric with its northeast margin being most abrupt. The crystalline crust under this basin is only about 20 km thick today indicating that the lithosphere of Baltica was either thinned drastically or terminated along the northeast margin of the basin. The East European craton (EEC) has a ~ 45 km thick three-layered crust. The crust of the accreted terranes to the southwest is relatively thin (~ 30 km) and similar to that found in other non-cratonal areas of Western Europe. The lower crust is relatively fast (Vp > 7.0 km s - 1 ) along most of the P4 profile. However, lower values to the southwest may indicate the termination of Baltica. High velocity (~ 8.35 km s - 1 ) uppermost mantle lies beneath the Avalonia/Variscan terranes, and may be due to rifting and/or subduction. The seismic lithosphere thickness for the EEC is about 200 km, while it is only 90 km in the Palaeozoic platform (PP). The mantle transition zone is shallower and about 30 km thicker under the EEC, which could be due to thermal conditions

  7. NanoSIMS Sheds Light on the Origin and Significance of Early Archean Organic Microstructures from the Pilbara of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Meibom, Anders; Mostefaoui, Smail; Selo, Madeleine; Walter, Malcolm, R.; Sugitani, Kenichiro; Allwood, Abigail; Gibson, Everett K.

    2008-01-01

    NanoSIMS was used to characterize sub-micron scale morphology and elemental composition (C, N, S, Si, O) of organic microstructures in Early Archean (3 - 3.4 Ga) charts from the Pilbara of Western Australia. Three categories of structures were analyzed: small spheroids in clusters; spindle-shaped remains; and large spheroids. All are relatively poorly preserved and occur within the chert matrix of the samples. Carbonaceous material in a secondary hydrothermal vein also was analyzed, as an example of non-indigenous organic matter. Comparisons were made of NanoSIMS characteristics of the Archean samples and those from well-preserved, biogenic microfossils in the 0.8 Ga Bitter Springs Formation. The comparisons show that the Pilbara microstructures are generally distinct from material in the hydrothermal vein but similar in morphology and elemental composition to the Bitter Springs microfossils. In addition, the Pilbara structures exhibit a spatial relationship to silicon and oxygen that seemingly reflects silica nucleation on organic surfaces; this argues that the organic frameworks of the Archean structures were present in the sediment during crystallization of the silica matrix. The structures are thus interpreted as being indigenous to the enclosing sediment. While these results are suggestive of Early Archean biogenicity and are consistent with a growing body of data suggesting that life on Earth was well established by 3 to 3.4 Ga, work is continuing to determine the N/C and 13C ratios of individual forms, and this should provide additional insight into the derivation and significance of these ancient organic remains.

  8. Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.

    2006-01-01

    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  9. Early Intervention.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1992-01-01

    This theme issue focuses on early intervention. The four articles presented on this theme are: (1) "Deaf Infants, Hearing Mothers: A Research Report" (Kathryn P. Meadow-Orlans, and others), reporting findings on effects of auditory loss on early development; (2) "Maintaining Involvement of Inner City Families in Early Intervention Programs through…

  10. Evidence for a chondritic impactor, evaporation-condensation effects and melting of the Precambrian basement beneath the 'target' Deccan basalts at Lonar crater, India

    NASA Astrophysics Data System (ADS)

    Das Gupta, Rahul; Banerjee, Anupam; Goderis, Steven; Claeys, Philippe; Vanhaecke, Frank; Chakrabarti, Ramananda

    2017-10-01

    of Th relative to that of the average basalt) as well as fractionated La/Sm(N), and higher large ion lithophile element (LILE) concentrations compared to the basalts. The relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the impact breccia and non-spherical impact glasses compared to the target basalts are consistent with melting and mixing of the Precambrian basement beneath the Deccan basalt with up to 15 wt% contribution of the basement to these samples. Variations in the moderately siderophile element (MSE) concentration ratios of the impact breccia as well as all the spherules are best explained by contributions from three components - a chondritic impactor, the basaltic target rocks at Lonar and the basement underlying the Deccan basalts. The large variations in concentrations of volatile elements like Zn and Cu and correlated variations of EFCu-EFZn, EFPb-EFZn, EFK-EFZn and EFNa-EFZn, particularly in the Group 1a spherules, are best explained by evaporation-condensation effects during impact. While most spherules, irrespective of their general major and trace element composition, show a loss in volatile elements (e.g., Zn and Cu) relative to the target basalts, some spherules, mainly of Group 1, display enrichments in these elements that are interpreted to reflect the unique preservation of volatile-rich vapour condensates resulting from geochemical fractionation in a vertical direction within the vapour cloud.

  11. Mass Independent Fractionation of Sulphur Isotopes in Precambrian Sedimentary Rocks: Indicator for Changes in Atmospheric Composition and the Operation of the Global Sulphur Cycle

    NASA Astrophysics Data System (ADS)

    Peters, M.; Farquhar, J.; Strauss, H.

    2005-12-01

    mass independent fractionation of sulphur isotopes. In Palaeoproterozoic sediments of the Brockman Iron Fm., just prior to the proposed Great Oxidation Event, we determined predominantly negative Δ33S values between -1.07 and +0.08 ‰, which is atypical for sulphides. We interpret this negative MIF signal as a product of microbial reduction of atmospheric sulphate with an original negative MIF signature. This observation may indicate a higher concentration of sulphate in the ocean. Mass independent sulphur isotope data presented here provide a deeper insight into the major steps in atmospheric evolution and the Precambrian sulfur cycle. Ohmoto, H., Watanabe, Y., Ikemi, H. (2005) Geochim. Cosmochim. Acta 69, A 450 (abstr.). Pavlov, A.A., Kasting, J.F., Brown, L.L. (2001) JGR 106, 23267-23287.

  12. Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The ˜1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times

    NASA Astrophysics Data System (ADS)

    Piper, John D. A.; Jiasheng, Zhang; Huang, Baochung; Roberts, Andrew P.

    2011-06-01

    The North China Shield (NCS) is cut by a laterally-extensive dyke swarm emplaced at 1.78-1.76 Ga when an extensional regime succeeded regional metamorphism and completion of cratonisation by ˜1.85 Ga. Palaeomagnetic study of these dykes and adjoining metamorphic country rocks identifies a dominant shallow axis comprising a contiguous population with NE to N declinations and rare opposite polarity. Dykes with NE shallow magnetic declination (A1, D/ I = 36/-1°) recognised from previous study and emplaced in granulite terranes in the north are displaced by more northerly declinations (A2, D/ I = 8/2°) in lower grade metamorphic terranes to the south. Contact tests indicate a primary cooling-related origin to these magnetisations although tests are in part ambiguous because magnetisations in the granulite basement are comparable. Petrologic and rock magnetic considerations imply that magnetisation of the dykes occurred during uplift from depths as deep as 20 km following the peak of metamorphism at ˜1.85 Ga. A temporal migration A2 → A1 is implied by the higher crustal level and earlier acquisition of the former, and the deeper source and later acquisition of the latter. A third population of dyke magnetisations (A3, D/ I = 18/43°) is distributed towards steeper inclinations and close to the Mesozoic-Recent palaeofield. These are either partial or complete overprints of A1-A2 magnetisations with greater degrees of alteration indicated by demagnetisation and thermomagenetic spectra, or are much younger dykes of Mesozoic-Tertiary age. A minority fourth (later Precambrian but presently undated) dual polarity population has a magnetisation (11 dykes, D/ I = 108/7°) with contact tests indicating a primary cooling-related origin. The ˜1.78-1.76 Ga time of emplacement of the dominant dyke swarms in this study is widely represented by contemporaneous igneous rocks in other major shields linked to major Large Igneous Province (LIP)-related events. The new definition of

  13. Distinguishing major lithologic types in rocks of precambrian age in central Wyoming using multilevel sensing, with a chapter on possible economic significance of iron formation discovered by use of aircraft images in the Granite Mountains of Wyoming

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Information obtained by remote sensing from three altitude levels: ERTS-1 (565 miles), U-2 (60,000 feet), and C-130 aircraft (15,000 feet) illustrates the possible application of multilevel sensing in mineral exploration. Distinction can be made between rocks of greenstone belts and rocks of granite-granite gneiss areas by using ERTS-1 imagery in portions of the Precambrian of central Wyoming. Study of low altitude color and color infrared photographs of the mafic terrain revealed the presence of metasedimentary rocks with distinct layers that were interpreted as amphibolite by photogeologic techniques. Some of the amphibolite layers were found to be iron formation when examined in the field. To our knowledge this occurrence of iron formation has not been previously reported in the literature.

  14. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    1994-01-01

    In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of "higher" eukaryotic phyla. Observed diversity levels for protistan microfossils increased significantly at this time, as did turnover rates. Coincident with the Cambrian radiation of marine invertebrates, protistan microfossils again doubled in diversity and rates of turnover increased by an order of magnitude. Evidently, the Cambrian diversification of animals strongly influenced evolutionary rates, within clades already present in marine communities, implying an important role for ecology in fueling a Cambrian explosion that extends across kingdoms.

  15. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo.

    PubMed Central

    Knoll, A H

    1994-01-01

    In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of "higher" eukaryotic phyla. Observed diversity levels for protistan microfossils increased significantly at this time, as did turnover rates. Coincident with the Cambrian radiation of marine invertebrates, protistan microfossils again doubled in diversity and rates of turnover increased by an order of magnitude. Evidently, the Cambrian diversification of animals strongly influenced evolutionary rates, within clades already present in marine communities, implying an important role for ecology in fueling a Cambrian explosion that extends across kingdoms. Images PMID:8041692

  16. Late Paleogene-early Neogene dinoflagellate cyst biostratigraphy of the eastern Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Awad, Walaa K.; Oboh-Ikuenobe, Francisca E.

    2018-04-01

    Six dinoflagellate cyst biozones (zone 1-zone 5, subzones 1a and 1b) are recognized in the late Paleogene-early Neogene interval of the Ocean Drilling Program (ODP) Site 959 (Hole 959 A), Côte d'Ivoire-Ghana Transform Margin in the eastern Equatorial Atlantic. The biozones are based on palynological analysis of 30 samples covering a 273.2-m interval with generally fair preservation and good to poor recovery. We propose a new age of Late Eocene (Priabonian) for subunit IIB as opposed to the previously published mid-Early Oligocene age (middle Rupelian). This age assignment is mainly based on the presence of Late Eocene marker taxa, such as Hemiplacophora semilunifera and Schematophora speciosa in the lower part of the studied interval. We also document for the first time a hiatus event within dinoflagellate cyst zone 3, based on the last occurrences of several taxa. This interval is assigned to an Early Miocene age and is barren of other microfossils. Furthermore, we propose new last occurrences for two species. The last occurrence of Cerebrocysta bartonensis is observed in the late Aquitanian-early Burdigalian in this study vs. Priabonian-early Rupelian in mid and high latitude regions. Also, the last occurrence of Chiropteridium galea extends to the latest Early Miocene (Burdigalian) in ODP Hole 959 A; this event was previously identified in other studies as Chattian in equatorial regions, and Aquitanian in the Northern Hemisphere mid-latitudes. We suspect that these differences are due to physical (offshore vs. nearshore) and latitudinal locations of the areas studied.

  17. Early Rockets

    NASA Image and Video Library

    2004-04-15

    In addition to Dr. Robert Goddard's pioneering work, American experimentation in rocketry prior to World War II grew, primarily in technical societies. This is an early rocket motor designed and developed by the American Rocket Society in 1932.

  18. Origin of the Early Sial Crust and U-Pb Isotope-Geochemical Heterogeneity of the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Mishkin, M. A.; Nozhkin, A. D.; Vovna, G. M.; Sakhno, V. G.; Veldemar, A. A.

    2018-02-01

    It is shown that presence of the Early Precambrian sial crust in the Indo-Atlantic segment of the Earth and its absence in the Pacific has been caused by geochemical differences in the mantle underlying these segments. These differences were examined on the basis of Nd-Hf and U-Pb isotopes in modern basalts. The U-Pb isotope system is of particular interest, since uranium is a member of a group of heat-generating radioactive elements providing heat for plumes. It is shown that in the Indo-Atlantic segment, a distribution of areas of the modern HIMU type mantle is typical, while it is almost completely absent in the Pacific segment. In the Archean, in the upper HIMU type paleo-mantle areas, plume generation and formation of the primordial basic crust occurred; this was followed by its remelting resulting in the appearance of an early sial crust forming cratons of the Indo-Atlantic segment.

  19. Paleobiological Perspectives on Early Eukaryotic Evolution

    PubMed Central

    Knoll, Andrew H.

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600–1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ∼800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon. PMID:24384569

  20. Paleobiological perspectives on early eukaryotic evolution.

    PubMed

    Knoll, Andrew H

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600-1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ~800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon.

  1. Extent and character of early tertiary penetrative deformation, Sonora, Northwest Mexico

    NASA Technical Reports Server (NTRS)

    Anderson, T. H.

    1985-01-01

    Reconnaissance field work has led to the recognition of extensive Early Tertiary gneiss and schist which are distinguished by weakly developed to highly conspicous northeast to east-trending stretching lineation commonly accompanied by low-dipping foliation. This structural fabric has been imposed on Precambrian to Paleogene rocks. Regionally, minimum ages of deformation are based upon interpreted U-Pb isotopic ages from suites of cogenetic zircon from the Paleogene orthogneiss. Locally, the interpreted ages indicate that ductile deformation continued as late as Oligocene (Anderson and others, 1980; Silver and Anderson, 1984). The consistency of the deformational style is such that, although considerable variation in intensity exists, the fabric can be recognized and correlated in rocks away from the Paleogene orthogneiss.

  2. Reconstruction of early Cambrian ocean chemistry from Mo isotopes

    NASA Astrophysics Data System (ADS)

    Wen, Hanjie; Fan, Haifeng; Zhang, Yuxu; Cloquet, Christophe; Carignan, Jean

    2015-09-01

    The Neoproterozoic-Cambrian transition was a key time interval in the history of the Earth, especially for variations in oceanic and atmospheric chemical composition. However, two conflicting views exist concerning the nature of ocean chemistry across the Precambrian-Cambrian boundary. Abundant geochemical evidence suggests that oceanic basins were fully oxygenated by the late Ediacaran, while other studies provide seemingly conflicting evidence for anoxic deep waters, with ferruginous conditions [Fe(II)-enriched] persisting into the Cambrian. Here, two early Cambrian sedimentary platform and shelf-slope sections in South China were investigated to trace early Cambrian ocean chemistry from Mo isotopes. The results reveal that early Cambrian sediments deposited under oxic to anoxic/euxinic conditions have δ98/95Mo values ranging from -0.28‰ to 2.29‰, which suggests that early Cambrian seawater may have had δ98/95Mo values of at least 2.29‰, similar to modern oceans. The heaviest and relatively homogeneous δ98/95Mo values were recorded in siltstone samples formed under completely oxic conditions, which is considered that Mn oxide-free shuttling was responsible for such heavy δ98/95Mo value. Further, combined with Fe species data and the accumulation extent of Mo and U, the variation of δ98/95Mo values in the two studied sections demonstrate a redox-stratified ocean with completely oxic shallow water and predominantly anoxic (even euxinic) deeper water having developed early on, which eventually became completely oxygenated. This suggests that oceanic circulation at the time became reorganized, and such changes in oceanic chemistry may have been responsible for triggering the "Cambrian Explosion" of biological diversity.

  3. Early Holocene groundwater table fluctuations in relation to rice domestication in the middle Yangtze River basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Liu, Yan; Sun, Qianli; Zong, Yongqiang; Finlayson, Brian; Chen, Zhongyuan

    2017-01-01

    The early Holocene environmental amelioration stimulated the trajectory of Neolithic farming cultures and specific geographic settings played a role in determining the nature of these cultures. Using microfossil evidence, the present study reveals that the fluctuations of the groundwater table substantially influenced rice domestication in the Dongting Lake area of the middle Yangtze River basin in the early Holocene. Our 14C-dated sediment core taken from the Bashidang (BSD) Neolithic site contains evidence that the site was a floodplain prior to human occupation ca. 8600 years ago. Poaceae, which contained wild rice (Oryza sp.) as indicated by combined pollen and phytolith evidence, and low counts of freshwater algae indicated a moist site condition. The area then gradually evolved into wetlands as the water table rose, in response to the increasing monsoon precipitation during the early Holocene. This favored rice domestication, assisted by firing and clearing, that continued to flourish for several hundred years. Finally, rice domestication declined during the late stage of the Pengtoushan culture, accompanied by evidence of the expansion of wetlands reflecting the effects of a rising groundwater table that had caused the cessation of rice farming at the Bashidang site after ca. 8000-7900 cal yr BP. This study shows that there are local effects at particular sites that may differ from the trend at the regional scale, necessitating a careful interpretation of the available evidence.

  4. Early Rockets

    NASA Image and Video Library

    2004-04-15

    During the 19th century, rocket enthusiasts and inventors began to appear in almost every country. Some people thought these early rocket pioneers were geniuses, and others thought they were crazy. Claude Ruggieri, an Italian living in Paris, apparently rocketed small animals into space as early as 1806. The payloads were recovered by parachute. As depicted here by artist Larry Toschik, French authorities were not always impressed with rocket research. They halted Ruggieri's plans to launch a small boy using a rocket cluster. (Reproduced from a drawing by Larry Toschik and presented here courtesy of the artist and Motorola Inc.)

  5. A micropalaeontological and palynological insight into Early Carboniferous floodplain environments

    NASA Astrophysics Data System (ADS)

    Bennett, Carys; Kearsey, Timothy; Davies, Sarah; Millward, David; Marshall, John; Reeves, Emma

    2016-04-01

    Romer's Gap, the interval following the end Devonian mass extinction, is traditionally considered to be depauperate in tetrapod and fish fossils. A major research project (TW:eed -Tetrapod World: early evolution and diversification) focusing on the Tournaisian Ballagan Formation of Scotland is investigating how early Carboniferous ecosystems rebuilt following the extinction. A multi-proxy approach, combining sedimentology, micropalaeontology and palynology, is used to investigate the different floodplain environments in which tetrapods, fish, arthropods and molluscs lived. The formation is characterised by an overbank facies association of siltstone, sandstone and palaeosols, interbedded with dolostone and evaporite units, and cut by fluvial sandstone facies associations of fining-upwards conglomerate lags, cross-bedded sandstone and rippled siltstone. Macrofossils are identified from 326 horizons within a 520 metre thick Ballagan Formation field section at Burnmouth, near Berwick-upon-Tweed, Scottish Borders. Common fauna are ostracods, bivalves, arthropods, sarcopterygians, dipnoans, acanthodians, tetrapods and chondrichthyans. Quantitative microfossil picking of the three sedimentary rock types in which tetrapods occur was undertaken to gain further insight into the palaeoecology. The sediments are; 1) laminated grey siltstones, deposited in floodplain lakes; 2) sandy siltstones, grey siltstones with millimetre size clasts. 71% of these beds overlie palaeosols or desiccated surfaces and are formed in small-scale flooding events; 3) conglomerates, mostly lags at the base of thick sandstones, with centimetre sized siltstone, sandstone and dolostone clasts. Grey siltstones contain a microfauna of common plant fragments, megaspores and sparse actinopterygian and rhizodont fragments. Sandy siltstones have the highest fossil diversity and contain microfossil fragments of plants, megaspores, charcoal, ostracods, actinopterygians, rhizodonts, eurypterids and rarer non

  6. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.

    PubMed

    Li, Yi-Liang

    2012-12-01

    Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.

  7. Early Rockets

    NASA Image and Video Library

    1950-01-01

    Test firing of a Redstone Missile at Redstone Test Stand in the early 1950's. The Redstone was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the von Braun Team under the management of the U.S. Army. The Redstone was the first major rocket development program in the United States.

  8. Early Math.

    ERIC Educational Resources Information Center

    Van Nuys, Ute Elisabeth

    1986-01-01

    Presents reviews of the following mathematics software designed to teach young children counting, number recognition, visual discrimination, matching, addition, and subtraction skills; Stickybear Numbers, Learning with Leeper, Getting Ready to Read and Add, Counting Parade, Early Games for Young Children, Charlie Brown's 1,2,3's, Let's Go Fishing,…

  9. Early Childhood.

    ERIC Educational Resources Information Center

    Peters, Donald L.; Willis, Sherry L.

    This book summarizes theory and discusses major issues pertaining to child development in the early childhood years. Chapter I provides an introduction to the conceptual framework and major theories of child development. Chapter II deals with motor, sensory, and perceptual development. Chapter III focuses on the cognitive-developmental theory of…

  10. Early Rockets

    NASA Image and Video Library

    2004-04-15

    During the early introduction of rockets to Europe, they were used only as weapons. Enemy troops in India repulsed the British with rockets. Later, in Britain, Sir William Congreve developed a rocket that could fire to about 9,000 feet. The British fired Congreve rockets against the United States in the War of 1812.

  11. Early Rockets

    NASA Image and Video Library

    2004-04-15

    In the 19th Century, experiments in America, Europe, and elsewhere attempted to build postal rockets to deliver mail from one location to another. The idea was more novel than successful. Many stamps used in these early postal rockets have become collector's items.

  12. Paleomagnetism of Devonian dykes in the northern Kola Peninsula and its bearing on the apparent polar wander path of Baltica in the Precambrian

    NASA Astrophysics Data System (ADS)

    Veselovskiy, Roman V.; Bazhenov, Mikhail L.; Arzamastsev, Andrey A.

    2016-04-01

    Mafic dykes and large alkaline and carbonatite intrusions of Middle-Late Devonian age are widespread on the Kola Peninsula in NE Fennoscandia. These magmatic rocks are well characterized with petrographic, geochemical and geochronological data but no paleomagnetic results have been reported yet. We studied dolerite dykes from the northern part of the Peninsula and isolated three paleomagnetic components in these rocks. A low-temperature component is aligned along the present-day field, while a major constituent of natural remanent magnetization is an intermediate-temperature component (Decl. = 79.6°, Inc. = 78.5°, α95 = 5,9°, N = 17 sites) that is present in most Devonian dykes but is found in some baked metamorphic rocks and Proterozoic dykes too. Finally, a primary Devonian component could be reliably isolated from two dykes only. Rock-magnetic studies point to presumably primary low-Ti titanomagnetite and/or pure magnetite as the main remanence carriers but also reveal alteration of the primary minerals and the formation of new magnetic phases. The directions of a major component differ from the Middle Paleozoic reference data for Baltica but closely match those for the 190 ± 10 Ma interval recalculated from the apparent polar wander path of the craton. We assume that this Early Jurassic component is a low-temperature overprint of chemical origin. The main impact of the new results is not to mid-Paleozoic or Early Mesozoic times but to much older epochs. Analysis of paleomagnetic data shows that the directionally similar remanences are present in objects with the ages ranging from 500 Ma to 2 Ga over entire Fennoscandia. Hence we argue that an Early Jurassic remagnetization is of regional extent but cannot link it to a certain process and a certain tectonic event. If true, this hypothesis necessitates a major revision of the APWP for Baltica over a wide time interval.

  13. Siderophilic Cyanobacteria: Implications for Early Earth.

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Sarkisova, S.; Shen, G.; Bryant, D. A.; Lindsay, J.; Garrison, D.; McKay, D. S.

    2006-01-01

    Of all extant environs, iron-depositing hot springs (IDHS) may exhibit the greatest similarity to late Precambrian shallow warm oceans in regards to temperature, O2 gradients and dissolved iron and H2S concentrations. Despite the insights into the ecology, evolutionary biology, paleogeobiochemistry, and astrobiology examination of IDHS could potentially provide, very few studies dedicated to the physiology and diversity of cyanobacteria (CB) inhabiting IDHS have been conducted. Results. Here we describe the phylogeny, physiology, ultrastructure and biogeochemical activity of several recent CB isolates from two different greater Yellowstone area IDHS, LaDuke and Chocolate Pots. Phylogenetic analysis of 16S rRNA genes indicated that 6 of 12 new isolates examined couldn't be placed within established CB genera. Some of the isolates exhibited pronounced requirements for elevated iron concentrations, with maximum growth rates observed when 0.4-1 mM Fe(3+) was present in the media. In light of "typical" CB iron requirements, our results indicate that elevated iron likely represents a salient factor selecting for "siderophilicM CB species in IDHS. A universal feature of our new isolates is their ability to produce thick EPS layers in which iron accumulates resulting in the generation of well preserved signatures. In parallel, siderophilic CB show enhanced ability to etch the analogs of iron-rich lunar regolith minerals and impact glasses. Despite that iron deposition by CB is not well understood mechanistically, we recently obtained evidence that the PS I:PS II ratio is higher in one of our isolates than for other CB. Although still preliminary, this finding is in direct support of the Y. Cohen hypothesis that PSI can directly oxidize Fe(2+). Conclusion. Our results may have implications for factors driving CB evolutionary relationships and biogeochemical processes on early Earth and probably Mars.

  14. Results of paleomagnetic study of Early Proterozoic rocks in the Baikal Range of the Siberian craton

    NASA Astrophysics Data System (ADS)

    Vodovozov, V. Yu.; Didenko, A. N.; Gladkochub, D. P.; Mazukabzov, A. M.; Donskaya, T. V.

    2007-10-01

    This paper presents paleomagnetic results obtained from the study of Early Proterozoic rocks in the Baikal Range of the Siberian craton, namely, the 1850 1880-Ma volcanicalstic rocks of the Akitkanskian series of the North Baikal volcanic-plutonic belt) and 1674-Ma basic dikes of the Chaya complex within the massif. The data of this work are used to reconstruct the development of the Siberian craton structure in the Early Precambrian. The projections of the inferred paleomagnetic directions onto a sphere form S (southern) and W (western) groups of vectors of characteristic magnetization components. The S group consists of three clusters representing primary magnetization components belonging to different time levels of the end of the Early Proterozoic. The W group is represented by directions associated with a metachronous magnetization probably acquired during the Riphean. Four paleomagnetic poles are obtained. Two of them that can be regarded as key poles correspond to time levels of 1875 and 1670 Ma (the Early Proterozoic). The two other poles can be used for a detailed reconstruction of the Proterozoic segment of the Siberian apparent polar wander path. The data presented in the paper indicate that the formation of the southern Siberian craton structure was accomplished at the end of the Early Proterozoic, which resulted in a synchronous motion of different blocks composing the southern flank of the craton (in particular, the Sharyzhalgai and Baikal Ranges).

  15. Geology of Seward Peninsula and Saint Lawrence Island

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.

    1994-01-01

    Seward Peninsula (Fig. 1) may be divided into two geologic terranes (Fig. 2) on the basis of stratigraphy, structure, and metamorphic history. The Seward terrane, an area 150 by 150 km in the central and eastern peninsula, is dominated by Precambrian(?) and early Paleozoic blueschist-, greenschist-, and amphibolite-facies schist and marble, and intruded by three suites of granitic rocks. The York terrane, roughly 100 by 75 km, occupies western Seward Peninsula and the Bering Straits region; it is composed of Ordovician, Silurian, Devonian, Mississippian, and possibly older limestone, argillaceous limestone, dolostone, and phyllite, which are cut by a suite of Late Cretaceous tin-bearing granites. The boundary between the Seward and York terranes is poorly exposed but is thought to be a major thrust fault because of its sinuous map trace, a discontinuity in metamorphic grade, and differences in stratigraphy across the boundary (Travis Hudson, oral communication, 1984). The boundary between the Seward terrane and the Yukon-Koyukuk province to the east is complicated by vertical faults (the Kugruk fault Zone of Sainsbury, 1974) and obscured by Cretaceous and Tertiary cover.The Seward Peninsula heretofore was thought to consist largely of rocks of Precambrian age (Sainsbury, 1972, 1974, 1975; Hudson, 1977), Microfossil data, however, indicate that many of the rocks considered to be Precambrian are early Paleozoic in age (Till and others, 1986; Dumoulin and Harris, 1984; Dumoulin and Till, 1985; Till and others, 1983; Wandervoort, 1985). It is likely that Precambrian rocks are a minor part of the stratigraphy of the Seward Peninsula.

  16. Map showing the potential for mineral deposits associated with Precambrian mafic and ultramafic rocks in the Blacktail and Henrys Lake mountains and the Greenhorn and Ruby ranges of southwestern Montana

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Van Gosen, Bradley S.; Carlson, Robert R.; Kulik, Dolores M.

    1998-01-01

    In response to requests from the Bureau of Land Management (BLM) and the U.S. Forest Service (USFS), the U.S. Geological Survey (USGS) conducted a mineral resource assessment in the Dillon BLM Resource Area in Beaverhead and Madison Counties, southwestern Montana. These agencies use mineral resource data in creating and updating land-use management plans for federal lands for the reasonably foreseeable future. Mineral resources that have not been developed in the past may be developed in the future, based on changing commodity demands and market conditions. Therefore, federal land managers need geologic information on known mineral occurrences as well as on areas that are permissive for the occurrence of undiscovered mineral resources. This map was prepared to provide this type of geologic information for mineral deposits that can be associated with ultramafic rocks. Areas of exposed Precambrian ultramafic rocks are labeled with uppercase letters (A-F). Sources of geologic maps used to compile this map are shown on the smaller index map ("Index to Geologic Mapping"); lowercase letters (a-m) on the index map are keyed to the reference list.

  17. Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation through apatite fission-track analysis in Precambrian areas of southeast Brazil: association with the opening of the south Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Tello Saenz, C. A.; Hackspacher, P. C.; Hadler Neto, J. C.; Iunes, P. J.; Guedes, S.; Ribeiro, L. F. B.; Paulo, S. R.

    2003-01-01

    Apatite fission-track analysis was used for the determination of thermal histories and ages in Precambrian areas of southeast Brazil. Together with geological and geomorphologic information, these ages enable us to quantify the thermal histories and timing of Mesozoic and Cenozoic epirogenic and tectonic processes. The collected samples are from different geomorphologic blocks: the high Mantiqueira mountain range (HMMR) with altitude above 1000 m, the low Mantiqueira mountain range (LMMR) under 1000 m, the Serra do Mar mountain range (SMMR), the Jundiaí and Atlantic Plateaus, and the coastline, all of which have distinct thermal histories. During the Aptian (˜120 Ma), there was an uplift of the HMMR, coincident with opening of the south Atlantic Ocean. Its thermal history indicates heating (from ˜60 to ˜80 °C) until the Paleocene, when rocks currently exposed in the LMMR reached temperatures of ˜100 °C. In this period, the Serra do Mar rift system and the Japi erosion surface were formed. The relief records the latter. During the Late Cretaceous, the SMMR was uplifted and probably linked to its origin; in the Tertiary, it experienced heating from ˜60 to ˜90 °C, then cooling that extends to the present. The SMMR, LMMR, and HMMR were reactivated mainly in the Paleocene, and the coastline during the Paleogene. These processes are reflected in the sedimentary sequences and discordances of the interior and continental margin basins.

  18. Early Risers

    ERIC Educational Resources Information Center

    Asquith, Chistina

    2002-01-01

    In this article, the author features Bard High School Early College, the first public school in the country to offer a free, full-time college curriculum--and all the credits that go with it--to high schoolers. In Bard's four-year program, students race through high school requirements in 9th and 10th grades, then take college courses in 11th and…

  19. Workshop on Early Crustal Genesis: The World's Oldest Rocks

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor)

    1986-01-01

    Topics addressed include: a general review of Precambrain crustal evolution; geology and geochemistry of the Archean Craton in Greenland and Labrador; Precambrian crustal evolution in North and South America; and the field excursion to the Ameralik Fjord.

  20. Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga -Santa Marta Fault

    NASA Astrophysics Data System (ADS)

    Piraquive Bermúdez, Alejandro; Pinzón, Edna; Bernet, Matthias; Kammer, Andreas; Von Quadt, Albrecht; Sarmiento, Gustavo

    2016-04-01

    Plate interaction between Caribbean and Nazca plates with Southamerica gave rise to an intricate pattern of tectonic blocks in the Northandean realm. Among these microblocks the Sierra Nevada de Santa Marta (SNSM) represents a fault-bounded triangular massif composed of a representative crustal section of the Northandean margin, in which a Precambrian to Late Paleozoic metamorphic belt is overlain by a Triassic to Jurassic magmatic arc and collateral volcanic suites. Its western border fault belongs to the composite Bucaramanga - Santa Marta fault with a combined left lateral-normal displacement. SE of Santa Marta it exposes remnants of an Oligocene marginal basin, which attests to a first Cenoizoic activation of this crustal-scale lineament. The basin fill consists of a sequence of coarse-grained cobble-pebble conglomerates > 1000 m thick that unconformably overlay the Triassic-Jurassic magmatic arc. Its lower sequence is composed of interbedded siltstones; topwards the sequence becomes dominated by coarser fractions. These sedimentary sequences yields valuable information about exhumation and coeval sedimentation processes that affected the massif's western border since the Upper Eocene. In order to analyse uplifting processes associated with tectonics during early Neogene we performed detrital zircon U-Pb geochronology, detrital thermochronology of zircon and apatites coupled with the description of a stratigraphic section and its facies composition. We compared samples from the Aracataca basin with analog sequences found at an equivalent basin at the Oca Fault at the northern margin of the SNSM. Our results show that sediments of both basins were sourced from Precambrian gneisses, along with Mesozoic acid to intermediate plutons; sedimentation started in the Upper Eocene-Oligocene according to palynomorphs, subsequently in the Upper Oligocene a completion of Jurassic to Cretaceous sources was followed by an increase of Precambrian input that became the dominant

  1. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks.

    PubMed

    Orange, F; Westall, F; Disnar, J-R; Prieur, D; Bienvenu, N; Le Romancer, M; Défarge, Ch

    2009-09-01

    Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5-3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.

  2. Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes, Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew Y.

    2008-03-01

    The role of asteroid and comet impacts as triggers of mantle-crust processes poses one of the fundamental questions in Earth science. I present direct field evidence for close associations between impact ejecta/fallout units, major unconformities and lithostratigraphic boundaries in Archaean and early Proterozoic terrains, including abrupt changes in the composition of volcanic and sedimentary assemblages across stratigraphic impact boundaries, with implications for the nature and composition of their provenance terrains. As originally observed by D.R. Lowe and G.R. Byerly, in the Barberton Greenstone Belt, eastern Kaapvaal Craton, South Africa, 3.26-3.24 Ga asteroid mega-impact units are closely associated with the abrupt break between an underlying simatic mafic-ultramafic volcanic crust and an overlying association of turbidites, banded iron formations, felsic tuff and conglomerates of continental affinities. Contemporaneous stratigraphic relationships are identified in the Pilbara Craton, Western Australia. Evidence for enrichment of seawater in ferrous iron in the wake of major asteroid impacts reflects emergence of new source terrains, likely dominated by mafic compositions, attributed to impact-triggered oceanic volcanic activity. Relationships between impact and volcanic activity are supported by the onset of major mafic dyke systems associated with ~ 2.48 Ga and possibly the 2.56 Ga mega-impact events.

  3. A palaeomagnetic and 40Ar/39Ar study of late precambrian sills in the SW part of the Amazonian craton: Amazonia in the Rodinia reconstruction

    NASA Astrophysics Data System (ADS)

    Elming, S.-Å.; D'Agrella-Filho, M. S.; Page, L. M.; Tohver, E.; Trindade, R. I. F.; Pacca, I. I. G.; Geraldes, M. C.; Teixeira, W.

    2009-07-01

    A new key palaeomagnetic pole (Plat. = 64.3°S, Plon. = 271.0°E, N = 14, A95 = 9.2° Q = 5) is calculated from a primary magnetization isolated in early Neoproterozoic Aguapei basic sills and dykes hosted by 1.3-1.0 Ga sedimentary rocks from the southwestern part of the Amazon craton. The characteristic remanence carried by stable, pseudo-single domain titanomagnetite shows two antipodal polarities that pass a reversals test. Magnetic anisotropy for most sites shows fabric orientations that are typical of sills, with horizontal magnetic foliations concordant to the flat-lying bedding of the host sedimentary rocks. 40Ar/39Ar analyses for one of the sills reveal a well-defined plateau age at 981 +/- 2 Myr. A tectonic reconstruction for Amazonia relative Laurentia based on this new pole `is consistent with' a position of the present northwestern part of Amazonia attached with eastern Laurentia close to Greenland at ca. 981 Ma. On basis of palaeomagnetic and geological data, we propose a scenario where Amazonia moved northeastwards along the present southeast coast of Laurentia from ca. 1200 to 980 Ma. By 980 Ma, Amazonia is placed alongside Laurentia and Baltica, in a position similar to other reconstructions of Rodinia but with a significantly different orientation.

  4. Early Cambrian origin of modern food webs: evidence from predator arrow worms.

    PubMed

    Vannier, J; Steiner, M; Renvoisé, E; Hu, S-X; Casanova, J-P

    2007-03-07

    Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540-520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey-predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian-Cambrian transition, thus laying the foundations of present-day marine food chains.

  5. The formation of magnetite in the early Archean oceans

    NASA Astrophysics Data System (ADS)

    Li, Y. L.

    2017-12-01

    Banded iron formations are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. It is generally accepted that biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that vented directly into the photic zone. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions led to the formation of a metastable green rust phase that within hours transformed into magnetite at relatively high temperatures. At lower temperatures magnetite does not form. Our model further posits that with the progressive cooling of the Earth's oceans through Archean, the above reaction shut off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  6. The formation of magnetite in the early Archean oceans

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang; Konhauser, Kurt O.; Zhai, Mingguo

    2017-05-01

    Banded iron formations (BIFs) are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. The biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that existed in the deeper waters. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions lead to the formation of a metastable green rust phase that within hours transformed into magnetite. Our model further posits that with the progressive cooling and oxidation of the Earth's oceans, the above reaction shuts off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  7. Extraterrestrial Impact Episodes and Archaean to Early Proterozoic (3.8 2.4 Ga) Habitats of Life

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    The terrestrial record is punctuated by major clustered asteroid and comet impacts, which affected the appearance, episodic extinction, radiation, and reemergence of biogenic habitats. Here I examine manifest and potential extraterrestrial impact effects on the onset and evolution of Archaean to early Proterozoic (3.8- 2.4-Ga) habitats, with reference to the Pilbara (Western Australia) and Kaapvaal (eastern Transvaal) Cratons. The range of extraterrestrial connections of microbial habitats includes cometary contribution of volatiles and amino acids, sterilization by intense asteroid and comet bombardment, supernova and solar flares, and impacttriggered volcanic and hydrothermal activity, tectonic modifications, and tsunami effects. Whereas cometary dusting of planetary atmosphere may contribute littlemodi fied extraterrestrial organic components, large impact effects result in both incineration of organic molecules and shock synthesis of new components. From projected impact incidence, ~1.3% of craters >100 km and ~3.8% of craters >250 km have to date been identified for post-3.8-Ga events, due to the mm-scale of impact spherules and the difficulty in their identification in the field - only the tip of the iceberg is observed regarding the effects of large impacts on the Precambrian biosphere, to date no direct or genetic relations between impacts and the onset or extinction of early Precambrian habitats can be confirmed. However, potential relations include (1) ~3.5-3.43 Ga - intermittent appearance of stromatolite-like structures of possible biogenic origin on felsic volcanic shoals representing intervals between mafic volcanic episodes in rapidly subsiding basins, a period during which asteroid impacts are recorded; (2) ~3.26-3.225 Ga - impact-triggered crustal transformation from mafic-ultramafic volcanic environments to rifted troughs dominated by felsic volcanics and turbidites, marked by a major magmatic peak, resulting in extensive hydrothermal activity and

  8. Alternative marine and fluvial models for the non-fossiliferous quartzitic sandstones of the Early Proterozoic Daspoort Formation, Transvaal Sequence of southern Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Schreiber, U. M.; van der Neut, M.; Labuschagne, H.; Van Der Schyff, W.; Potgieter, G.

    1993-04-01

    This paper discusses some of the problems related to the palaeoenvironmental interpretation of non-fossiliferous, early Precambrian, recrystallised quartzitic sandstones, using the Early Proterozoic Daspoort Formation, Transvaal Sequence of southern Africa as a case study. These cross-bedded and planar stratified rocks have been interpreted previously as shallow marine deposits, based on limited studies of areas with well-exposed, relatively undeformed outcrops. This postulate rests largely on the apparently mature nature of the recrystallised sandstones and their thin bedding. Examination of outcrops throughout the preserved basin, including those which have been deformed and metamorphosed, reveals the presence of subordinate immature sandstones. Lateral facies relationships permit an alternative distal fan-fluvial braidplain model to be proposed. This is compatible with collected palaeocurrent data, thicknes trends and results of thin section petrography.

  9. Early Rockets

    NASA Image and Video Library

    2004-04-15

    This photograph is of the engine for the Redstone rocket. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and the production was begun in 1952. Redstone rockets became the "reliable workhorse" for America's early space program. As an example of its versatility, the Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile.

  10. Early Rockets

    NASA Image and Video Library

    2004-04-15

    The image depicts Redstone missile being erected. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and the production was begun in 1952. Redstone rockets became the "reliable workhorse" for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  11. Early Rockets

    NASA Image and Video Library

    1958-05-15

    Redstone missile No. 1002 on the launch pad at Cape Canaveral, Florida, on May 16, 1958. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and production was begun in 1952. Redstone rockets became the "reliable workhorse" for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  12. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen

    USGS Publications Warehouse

    Carlson, R.W.; Irving, A.J.; Schulze, D.J.; Hearn, B.C.

    2004-01-01

    Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm-Nd and Lu-Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic-a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths. The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous-early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm-Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger "ages" suggesting

  13. Terrestrial Biomarkers for Early Life on Earth as Analogs for Possible Martian Life Forms: Examples of Minerally Replaced Bacteria and Biofilms From the 3.5 - 3.3-Ga Barberton Greenstone Belt, South Africa

    NASA Technical Reports Server (NTRS)

    Westall, F.; McKay, D. S.; Gibson, E. K.; deWit, M. J.; Dann, J.; Gerneke, D.; deRonde, C. E. J.

    1998-01-01

    The search for extraterrestrial life and especially martian life hinges on a variety of methods used to identify vestiges of what we could recognize as life, including chemical signatures, morphological fossils, and biogenic precipitates. Although the possibility of extant life on Mars (subsurface) is being considered, most exploration efforts may be directed toward the search for fossil life. Geomorphological evidence points to a warmer and wetter Mars early on in its history, a scenario that encourages comparison with the early Earth. For this reason, study of the early terrestrial life forms and environment in which they lived may provide clues as to how to search for extinct martian life. As a contribution to the early Archean database of terrestrial microfossils, we present new data on morphological fossils from the 3.5-3.3-Ga Barberton greenstone belt (BGB), South Africa. This study underlines the variety of fossil types already present in some of the oldest, best-preserved terrestrial sediments, ranging from minerally replaced bacteria and bacteria molds of vaRious morphologies (coccoid, coccobacillus, bacillus) to minerally replaced biofilm. Biofilm or extracellular polymeric substance (EPS) is produced by bacteria and appears to be more readily fossilisable than bacteria themselves. The BGB fossils occur in shallow water to subaerial sediments interbedded with volcanic lavas, the whole being deposited on oceanic crust. Penecontemporaneous silicification of sediments and volcanics resulted in the chertification of the rocks, which were later subjected to low-grade metamorphism (lower greenschist).

  14. Oceanography, bathymetry and syndepositional tectonics of a Precambrian intracratonic basin: integrating sediments, storms, earthquakes and tsunamis in the Belt Supergroup (Helena Formation, ca. 1.45 Ga), western North America

    NASA Astrophysics Data System (ADS)

    Pratt, Brian R.

    2001-06-01

    The carbonate-dominated Helena Formation of the Mesoproterozoic Belt Supergroup of western North America provides an instructive example of how a range of regional depositional and environmental characteristics of an ancient sea can be deduced on the basis of micron- to metre-scale features. Particularly revealing is the window opened by the presence of abundant molar-tooth structure onto the paleoceanography, paleobathymetry, paleoclimate and tectonic regime of this intracratonic Precambrian basin. The facies hosting molar-tooth structure is composed dominantly of lime mud with substantial subangular quartz and feldspar silt and clay derived from the western and southwestern side of the basin. These are low-energy tempestites deposited on a remarkably flat sea bottom at the limit of storm-wave base, at about 50 m. Sporadic domical, stromatolite patch reefs confirm that the sea bottom was normally within the photic zone. The ubiquity of molar-tooth structure suggests frequent, near-field seismic activity during subsidence, which generated ground motion sufficient to liquefy granular lime mud and terrigenous silt. Sporadic tsunamis from major submarine faults far to the west pounded the shallow-water platform to the east. Tsunami off-surge swept ooids and rounded, coarse-grained, feldspathic quartz sand westward into deeper water, and created strongly erosive currents that left gutter casts composed of lags of preferentially cemented molar-tooth structure in otherwise relatively low-energy facies. Mineralogical and geochemical evidence, confirms that the Belt basin was marine. Organic matter was essentially fully oxidized in the water column. Original high-Mg composition and cementation of lime mud in molar-tooth structure indicate that calcite precipitated above the thermocline in supersaturated seawater under tropical conditions. Scattered bimineralic ooids in allochthonous grainstones indicate that shoals on the platform to the east were intermittently above a

  15. Chapter G: Tentative Correlation Between CIPW Normin pl (Total Plagioclase) and Los Angeles Wear in Precambrian Midcontinental Granites-Examples from Missouri and Oklahoma, with Applications and Limitations for Use

    USGS Publications Warehouse

    Davis, George H.

    2004-01-01

    The normative chemical classification of Cross, Iddings, Pirsson, and Washington (CIPW) is commonly used in igneous petrology to distinguish igneous rocks by comparing their magmatic chemistries for similar and dissimilar components. A potential use for this classification other than in petrologic studies is in the rapid assessment of aggregate sources, possibly leading to an economic advantage for an aggregate producer or user, by providing the opportunity to determine whether further physical testing of an aggregate is warranted before its use in asphalt or concrete pavement. However, the CIPW classification currently should not be substituted for the physical testing required in specifications by State departments of transportation. Demands for physical testing of aggregates have increased nationally as users seek to maximize the quality of the aggregate they purchase for their pavements. Concrete pavements are being laid with increased thicknesses to withstand increasing highway loads. New pavement mixes, most notably Superior Performance Asphalt Pavement ('Superpave'), are designed for additional service life. For both concrete and asphalt, the intent is to generate a durable pavement with a longer service life that should decrease overall life-cycle costs. Numerous aggregate producers possess chemical-composition data available for examination to answer questions from the potential user. State geological surveys also possess chemical-composition data for stone sources. Paired with the results of physical testing, chemical- composition data provide indicative information about stone durability and aggregate strength. The Missouri Department of Transportation has noted a possible relation among coarse-grained Precambrian granites of the midcontinental region, correlating the results of abrasion testing with the contents of normative minerals, also known as normins, calculated from chemical composition data. Thus, normin pl ( total plagioclase) can predict, by

  16. Petrology and diagenetic history of the upper shale member of the Late Devonian-Early Mississippian Bakken Formation, Williston Basin, North Dakota

    USGS Publications Warehouse

    Neil S. Fishman,; Sven O. Egenhoff,; Boehlke, Adam; Lowers, Heather A.

    2015-01-01

    The organic-rich upper shale member of the upper Devonian–lower Mississippian Bakken Formation (Williston Basin, North Dakota, USA) has undergone significant diagenetic alteration, irrespective of catagenesis related to hydrocarbon generation. Alteration includes precipitation of numerous cements, replacement of both detrital and authigenic minerals, multiple episodes of fracturing, and compaction. Quartz authigenesis occurred throughout much of the member, and is represented by multiple generations of microcrystalline quartz. Chalcedonic quartz fills radiolarian microfossils and is present in the matrix. Sulfide minerals include pyrite and sphalerite. Carbonate diagenesis is volumetrically minor and includes thin dolomite overgrowths and calcite cement. At least two generations of fractures are observed. Based on the authigenic minerals and their relative timing of formation, the evolution of pore waters can be postulated. Dolomite and calcite resulted from early postdepositional aerobic oxidation of some of the abundant organic material in the formation. Following aerobic oxidation, conditions became anoxic and sulfide minerals precipitated. Transformation of the originally opaline tests of radiolaria resulted in precipitation of quartz, and quartz authigenesis is most common in more distal parts of the depositional basin where radiolaria were abundant. Because quartz authigenesis is related to the distribution of radiolaria, there is a link between diagenesis and depositional environment. Furthermore, much of the diagenesis in the upper shale member preceded hydrocarbon generation, so early postdepositional processes were responsible for occlusion of significant original porosity in the member. Thus, diagenetic mineral precipitation was at least partly responsible for the limited ability of these mudstones to provide porosity for storage of hydrocarbons.

  17. Deep questions about the nature of early-life signals: a commentary on Lister (1673) ‘A description of certain stones figured like plants’

    PubMed Central

    Brasier, Martin

    2015-01-01

    In 1673, Martin Lister explored the preservation of ‘St Cuthbert's beads’ plus other fossil crinoid remains from approximately 350 Ma Carboniferous limestone in northern England. He used taphonomic evidence (transport, disarticulation, burial and cementation) to infer an origin as petrified plant remains, in contrast with his views expressed elsewhere that fossil mollusc shells could have formed abiogenically, by ‘plastic forces’ within rock. Lister also observed pentagonal symmetry, now seen as characteristic of living echinoderm skeletons. A postscript from John Ray supports Lister's ‘taphonomic’ observations and accepts the biogenicity of these fossil ‘vegetables’. Ray then concluded with a prophecy, predicting the discovery of comparable living fossils in remote ocean waters. These early discussions compare with current debates about the character of candidate microfossils from the early Earth and Mars. Interesting biomorphs are now tested against the abiogenic null hypotheses, making use of features such as those pioneered by Lister, including evidence for geological context, rules for growth and taphonomy. Advanced techniques now allow us to extend this list of criteria to include the nanoscale mapping of biology-like behaviour patterns plus metabolic pathways. Whereas the science of palaeobiology once began with tests for biogenicity, the same is now true for geobiology and astrobiology. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750150

  18. Precambrian Surface Temperatures and Molecular Phylogeny

    NASA Astrophysics Data System (ADS)

    Schwartzman, David; Lineweaver, Charles H.

    2004-06-01

    The timing of emergence of major organismal groups is consistent with the climatic temperature being equal to their upper temperature limit of growth (T_{max}), implying a temperature constraint on the evolution of each group, with the climatic temperature inferred from the oxygen isotope record of marine cherts. Support for this constraint comes from the correlation of T_{max} with the rRNA molecular phylogenetic distance from the last common ancestor (LCA) for both thermophilic Archaea and Bacteria. In particular, this correlation for hyperthermophilic Archaea suggests a climatic temperature of about 120°C at the time of the LCA, likely in the Hadean.

  19. Microbial contributions to the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Bermudes, D.; Obar, R.

    1986-01-01

    Life has existed on Earth for approximately 3.5 billion years. For most of this time, prokaryotic communities provided the major biological forces changing the Earth. Many changes in atmospheric gas composition occurred during the Archean and Proterozoic eons as a result of microbial activity. Extant microbial communities were used to help understand the dynamics which contributed to these atmospheric changes. The microbial mat communities were characterized according to the organismic constituents. Symbiosis in microbial communities is recognized as a major force in cell evolution. Among the evolutinary enigmas investigated is the problem of the origin of the undulipodia. Undulipodial microtubules are still deployed for major cellular processes such as mitosis and meiosis. Several prokaryotes were tested for the presence of the S1-type protein, so far only spirochetes were found to possess it. The S1-type protein is being sought in cyanobacteria reported to contain microtubules.

  20. Meridiani Planum Hematite Deposit: Potential for Preservation of Microfossils

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Westall, F.; Longazo, T. G.; Schelble, R. T.; Probst, L. W.; Flood, B. F.

    2003-01-01

    Christensen et al., using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Meridiani Planum. The deposit corresponds closely to the low-albedo highlands unit sm, mapped as a wind-eroded, ancient, subaqueous sedimentary deposit. Christensen et al. interpreted the Meridiani Planum deposit to be an in-place, rock-stratigraphic sedimentary unit characterized by smooth, friable layers composed primarily of basaltic sediments with approximately 10 to 15% crystalline gray hematite. The Meridiani Planum hematite deposit has recently been designated as the prime landing site for one of the two Mars Exploration Rover (MER) spacecraft. The MER landings are scheduled for January, 2004. Christensen et al. discussed five possible mechanisms for the formation of this deposit: direct precipitation from standing, oxygenated, Fe-rich water; precipitation from Fe-rich hydrothermal fluids; low-temperature dissolution and precipitation through mobile groundwater leaching; surface weathering and coatings; thermal oxidation of magnetite-rich lavas. Four of these mechanisms involve the interactions of rock with water, and thus have implications in the search for evidence of microbial life.

  1. Mars Hematite Site: Potential for Preservation of Microfossils

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Westall, Frances; Longazo, Teresa; Schelble, Rachel; Probst, Luke; Flood, Beverly

    2003-01-01

    Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of pre-biotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3) have been identified from orbit by thermal emission spectrometry. The largest such deposit, in Sinus Meridiani, is a strong candidate landing site for one of the twin Mars Exploration Rovers, scheduled to launch in 2003. The Martian hematite site may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists for preserving microscopic evidence of life in ecosystems that deposit iron oxides. Terrestrial hematite deposits proposed as possible analogs for the hematite sites on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We are engaged in a systematic effort to document the evidence of life preserved in iron oxide deposits from each of these environments.

  2. Permian-Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Philipp, Ruy Paulo; Jelinek, Andrea Ritter; Ketzer, João Marcelo Medina; dos Santos Scherer, Claiton Marlon; Jamal, Daúd Liace; dos Reis, Adriano Domingos

    2017-06-01

    The Gondwana continent was the base of great basin inception, sedimentation and magmatism throughout the Cambrian to Middle Jurassic periods. The northwestern Mozambique igneous and metamorphic basement assemblages host the NW-trending Moatize Minjova Basin, which has great economic potential for coal and gas mining. This rift basin was activated by an S-SW stress field during the Early Permian period, as constrained by regional and field scale structural data. Tectonically induced subsidence in the basin, from the reactivation of NW-SE and NNE-SSW regional structures is well recorded by faults, folds and synsedimentary fractures within the Early Late Permian Moatize Formation. NW-SE, N-S and NE-SW field structures consist of post-Karoo reactivation patterns related to a NNE-SSW extension produced by the Pangea breakup and early inception stages of the Great East African Rift System. The Early Late Permian sequences of the Moatize-Minjova Basin are composed of fluvial meandering, coal-bearing beds of the Moatize Formation, which comprises mostly floodplain, crevasse splay and fluvial channel lithofacies associations, deposited in a cyclic pattern. This sequence was overlapped by a multiple-story, braided fluvial plain sequence of the Matinde Formation (Late Permian - Early Triassic). Lithofacies associations in the Matinde Formation and its internal relationships suggest deposition of poorly channelized braided alluvial plain in which downstream and probably lateral accretion macroforms alternate with gravity flow deposits. NW paleoflow measurements suggest that Permian fluvial headwaters were located somewhere southeast of the study area, possibly between the African and Antarctic Precambrian highlands.

  3. Early Childhood Systems: Transforming Early Learning

    ERIC Educational Resources Information Center

    Kagan, Sharon Lynn, Ed.; Kauertz, Kristie, Ed.

    2012-01-01

    In this seminal volume, leading authorities strategize about how to create early childhood systems that transcend politics and economics to serve the needs of all young children. The authors offer different interpretations of the nature of early childhood systems, discuss the elements necessary to support their development, and examine how…

  4. Middle to Upper Jurassic sedimentary sequences and marine biota of the early Indian Ocean (Southwest Madagascar): some biostratigraphic, palaeoecologic and palaeobiogeographic conclusions

    NASA Astrophysics Data System (ADS)

    Mette, Wolfgang

    2004-03-01

    As part of an intradisciplinary project which was concerned with the early rifting processes between Madagascar and East Africa, the Middle to Upper Jurassic sedimentary sequences of the Morondava Basin in Southwest Madagascar has been investigated with respect to biostratigraphy, sedimentary facies and palaeoecology. The transgressive sedimentary sections in the Bajocian and Callovian-Oxfordian yield rich macro- and microfossil assemblages which improved the biostratigraphic framework and gave some important information about the palaeoenvironments. Palaeogeographic distribution patterns of the Bajocian ostracod Paradoxorhyncha are suggestive of a migration along the southern shores of Gondwana between Madagascar, Australia and South America. The Callovian ostracods show strong affinities to the Indian faunas, indicating existence of a free migration route for shallow marine benthic organisms between Madagascar and India. Significant faunal differences between Madagascar and Tanzania suggest a physical or environmental migration barrier between Madagascar and East Africa during the Callovian to Kimmeridgian interval. The Upper Jurassic ostracods from the northern and eastern margin of Gondwana show a very high degree of endemism and they can be assigned to two faunal provinces in North Gondwana (Arabia, Near East, North Africa) and South Gondwana (India, Madagascar, East Africa).

  5. Reframing Early Childhood Leadership

    ERIC Educational Resources Information Center

    Stamopoulos, Elizabeth

    2012-01-01

    Rapid changes in Australian education have intensified the role of early childhood leaders and led to unprecedented challenges. The Australian Curriculum (ACARA, 2011), mandated Australian "National Quality Framework" (NQF) for Early Childhood Education & Care (DEEWR, 2010b) and the "National Early Years Learning Framework"…

  6. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  7. Geology of the Sierra de Fiambala, northwestern Argentina: implications for Early Palaeozoic Andean tectonics

    USGS Publications Warehouse

    Grissom, G.C.; DeBari, S.M.; Snee, L.W.

    1998-01-01

    This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Field mapping in conjunction with structural, metamorphic, and geochronological data document the tectono-thermal history of exhumed deep crustal rocks in the Sierra de Fiambala, NW Argentina. The range consists of two structural blocks distinguished by different metasedimentary sequences and different grades of metamorphism. Orthogneiss and paragneiss in the northern structural block may have a Precambrian history. Greenschist- to amphibolite-facies metamorphism, intrusion, and injection magmatization affected all rocks at 540-550 Ma. A subsequent event in the Late Cambrian to Ordovician (c.515 to 470 Ma) involved amphibolite- to granulite-facies metamorphism, mafic intrusion, and deformation, followed by cooling through mid-Palaeozoic time. The emplacement of Carboniferous (325-350 Ma) post-tectonic granites caused reheating and retrogression that was strongest toward the northeast part of the range. The Cambrian, Ordovician, and Carboniferous events in the Sierra de Fiambala were of regional extent as indicated by temporal correlations with events reported for other deep crustal rocks of the northern Sierras Pampeanas. Correlations between periods of intrusion and high-grade metamorphism in the northern Sierras Pampeanas and volcanic-sedimentary events in the adjacent supracrustal exposures confirm that rocks in the northern Sierras Pampeanas formed at deep (10-25 km) structural levels in the early Palaeozoic continental margin of Gondwana.

  8. Mafic dykes intrusive into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt (Parnaíba Province), north-northeastern Brazil: Geochemistry, Sr-Nd-Pb-O isotopes, 40Ar/39Ar geochronology, and relationships to CAMP magmatism

    NASA Astrophysics Data System (ADS)

    Klein, Evandro L.; Angélica, Rômulo S.; Harris, Chris; Jourdan, Fred; Babinski, Marly

    2013-07-01

    Dykes of diabase and microgabbro intruded into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt, which are tectonic and erosive windows of the Parnaíba Basin in north-northeastern Brazil. Ar-Ar ages were determined, and major, trace element, and Nd-Sr-Pb-O isotopic compositions of these dykes were measured to provide insights into their age, and into the nature of their mantle sources and petrogenetic processes. The data have also been used to compare the chemical and isotopic signatures of the dykes with those of the Central Atlantic Magmatic Province (CAMP). Four chemical groups of mafic dykes have been identified. These comprise two subtypes of high-Ti rocks (i) HTi-1 (TiO2 < 2.3 wt.%; SiO2 > 47 wt.%), (ii) HTi-2 (TiO2 > 2.7 wt.%; SiO2 > 47 wt.%), in addition to (iii) evolved high-Ti (TiO2 > 4 wt.%; SiO2 of ~ 46 wt.%) and (iv) low-Si (TiO2 > 2.2 wt.%; SiO2 < 45 wt.%) rocks. 40Ar/39Ar geochronology of plagioclase returned ages of 201 ± 4 Ma and 193 ± 10 Ma for the HTi-2 subtype, and of 201 ± 2 Ma and 207 ± 9 Ma for the evolved high-Ti group. The HTi-1 and low-Si groups presented highly disturbed age spectra, and did not allow the definition of their emplacement ages. The Argon data indicate an age > 200 Ma for the low-Si group and are dubious with respect to the age of theHTi-1 subtype, if coeval with (i.e., ~ 200 Ma), or older than, the HTi-2 and evolved high-Ti types. All groups present δ18O values of pyroxene that are compatible with uncontaminated mantle-derived magmas. The HTi-1 subtype (average 143Nd/144Nd200 = 0.512644; 87Sr/86Sr200 = 0.7035; 206Pb/204Pb of 17.86) shows the less enriched and less fractionated (more primitive) trace element distribution of all groups. The HTi-2 subtype shows enriched trace element pattern and depleted Nd-Sr signature (143Nd/144Nd200 = 0.512610; 87Sr/86Sr200 = 0.7037) and average 206Pb/204Pb ratios of 17.23. The evolved high-Ti chemical group shows average ratios of 143Nd/144Nd200 = 0.512558, 87Sr

  9. Paleobiological Perspectives on Early Microbial Evolution

    PubMed Central

    Knoll, Andrew H.

    2015-01-01

    Microfossils, stromatolites, and chemical biosignatures indicate that Earth became a biological planet more than 3.5 billion years ago, making most of life's history microbial. Proterozoic rocks preserve a rich record of cyanobacteria, including derived forms that differentiate multiple cell types. Stromatolites, in turn, show that microbial communities covered the seafloor from tidal flats to the base of the photic zone. The Archean record is more challenging to interpret, particularly on the question of cyanobacterial antiquity, which remains to be resolved. In the late Neoproterozoic Era, increasing oxygen and radiating eukaryotes altered the biosphere, with planktonic algae gaining ecological prominence in the water column, whereas seaweeds and, eventually, animals spread across shallow seafloors. From a microbial perspective, however, animals, algae, and, later, plants simply provided new opportunities for diversification, and, to this day, microbial metabolisms remain the only essential components of biogeochemical cycles. PMID:26134315

  10. Waterford Early Reading Program.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of the Waterford Early Reading Program (WERP), which is designed to shift teaching and learning away from remediation and failure to prevention, early achievement, and sustained growth for every student. WERP includes three levels of instruction: emergent, beginning, and fluent readers. It targets pre-K through…

  11. Early College High Schools

    ERIC Educational Resources Information Center

    Dessoff, Alan

    2011-01-01

    For at-risk students who stand little chance of going to college, or even finishing high school, a growing number of districts have found a solution: Give them an early start in college while they still are in high school. The early college high school (ECHS) movement that began with funding from the Bill and Melinda Gates Foundation 10 years ago…

  12. Early Childhood Education.

    ERIC Educational Resources Information Center

    Elkind, David

    In five sections, this paper explores dimensions of early childhood education: schooling generally construed as nonparental instruction in knowledge, values, and skills. Section 1 looks at some of the factors which have contributed to the rapid growth of early childhood education in modern times. Section 2 briefly highlights the contributions of…

  13. Rethinking Early Childhood Education

    ERIC Educational Resources Information Center

    Pelo, Ann, Ed.

    2008-01-01

    "Rethinking Early Childhood Education" is alive with the conviction that teaching young children involves values and vision. This anthology collects inspiring stories about social justice teaching with young children. Included here is outstanding writing from childcare teachers, early-grade public school teachers, scholars, and parents.…

  14. Early Retirement Payoff

    ERIC Educational Resources Information Center

    Fitzpatrick, Maria D.; Lovenheim, Michael F.

    2014-01-01

    As public budgets have grown tighter over the past decade, states and school districts have sought ways to control the growth of spending. One increasingly common strategy employed to rein in costs is to offer experienced teachers with high salaries financial incentives to retire early. Although early retirement incentive (ERI) programs have been…

  15. Early Pregnancy Loss

    MedlinePlus

    ... known pregnancies. What causes early pregnancy loss? About one half of cases of early pregnancy loss are caused by a ... do not show any signs of an infection, one option is to wait and let the ... may take longer in some cases. Another option is to take medication that helps ...

  16. Rethinking Early Education

    ERIC Educational Resources Information Center

    Celeste, Eric

    2017-01-01

    The National Association for the Education of Young Children (NAEYC) says in its current policy paper that, for high-quality early education to exist outside of tiny islands across the country, the following must be addressed: (1) teacher preparation; (2) ongoing professional learning; and (3) disparity in early education teacher pay. To achieve…

  17. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  18. Seeking new potential in the early-late Permian Gharif Play, West Central Oman

    SciTech Connect

    Guit, F.; Al-Lawati, M.; Nederlof, P.

    1995-08-01

    West Central Oman is a relatively underexplored area where the hydrocarbons found to date occur mainly within the Early-Late Permian Gharif Formation. Structural definition of the low relief closures is hampered by seismic velocity variations caused by dune terrain. Recent exploration activity resulted in several Gharif discoveries, but highlighted reservoir distribution problems. The Gharif Formation, which consists of fluvio-marine sediments, conformably overlies the glacio-lacustine sediments of the Early Permian Al Khlata Formation. It is overlain by shallow marine carbonates of the Late Permian Khuff Formation, the main regional seal. The area is located distally from the main sediment sources tomore » the east. Reservoir development and lateral continuity are seen as the main risk. Most reservoirs are beyond seismic resolution, only the stacked sandstones of the incised valley fills could provide sufficient acoustic contrast to be recognized on seismic. Geochemical typing indicates that the hydrocarbons in the Gharif can be grouped in two main families: the Huqf and Q-hydrocarbons, which are believed to originate from Cambrian to Precambrian source rocks. Although the two hydrocarbon families are sometimes found in one well, they have very different spatial distributions. The Q-oils form continuous strings of accumulations below the main regional seal, whereas the Huqf hydrocarbons occur scattered throughout the area. Mixed accumulations are found where cross-faults or salt domes intercept a Q-oil fairway. Future exploration activities will be guided by refined sedimentological, stratigraphical and hydrocarbon migration models and by the continued efforts to recognize incised valley fills on seismic.« less

  19. Bacterial Paleontology and Studies of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Gerasimenko, L. M.; Hoover, Richard B.; Rozanov, Alexei Y.; Zhegallo, E. A.; Zhmur, S. I.

    1999-01-01

    The study of the fossilization processes of modern cyanobacteria provides insights needed to recognize bacterial microfossils. The fossilization of cyanobacteria is discussed and images of recent and fossil bacteria and cyanobacteria from the Early Proterozoic to Neogene carbonaceous rocks (kerites, shungites, and black shales) and phosphorites are provided. These are compared with biomorphic microstructures and possible microfossils encountered in-situ in carbonaceous meteorites.

  20. Earth's early biosphere

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  1. Supporting Early Learning Act

    THOMAS, 113th Congress

    Rep. Himes, James A. [D-CT-4

    2014-02-03

    House - 06/13/2014 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Early Learning Innovation Act

    THOMAS, 111th Congress

    Rep. Himes, James A. [D-CT-4

    2009-10-29

    House - 12/08/2009 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. Early Life Stages

    EPA Pesticide Factsheets

    Childhood should be viewed as a sequence of lifestages, from birth through infancy and adolescence. When assessing early life risks, consideration is given to risks resulting from fetal exposure via the pregnant mother, as well as postnatal exposures.

  4. Mercury's Early Geologic History

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  5. Early Learning Alignment Act

    THOMAS, 111th Congress

    Rep. Altmire, Jason [D-PA-4

    2010-09-29

    House - 11/18/2010 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Colorado Early Childhood Study.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Planning and Evaluation Unit.

    The Colorado State Board of Education allocated Title IV-V funds in 1975 for a study of the status of early childhood education in Colorado. The purposes of the study were to: (1) gather data relevant to early childhood education on the status of all children from birth through age 5; (2) identify needs of children of this age within the state;…

  7. Earth's magnetic field strength in the Early Cambrian: Thellier paleointensity estimates of Itabaiana mafic dykes, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Trindade, R. I. F.; Macouin, M.; Poitou, C.; Chauvin, A.; Hill, M.

    2012-04-01

    Thellier's paleointensity and microwave paleointensity experiments were carried out in Early Cambrian dykes from Itabaiana (NE Brazil) dated at 525 ±5 Ma. A previous paleomagnetic study on these dykes reveals a very stable characteristic component, whose thermoremanent nature is confirmed by positive baked contact tests performed in three different dykes. The main magnetic carrier is Ti-poor to pure magnetite in the PSD to SD domain state. Hysteresis parameters and first-order reversal curve (FORC) diagrams will be presented in order to apprehend the two different behaviors that characterize the samples during paleointensity experiments. From the 96 samples (from 13 dykes) analyzed in two laboratories using slightly different Thellier's experimental protocols, we have retained 12 samples (3 dykes) for paleointensity estimates. Paleointensity values range from 18.1 up to 40 μΤ. This corresponds to equivalent VDMs of 4.3 ± 0.5, 4.4 ± 1.4 and 5.3 ± 0.9 x 1022 Am2, for the three dykes respectively. These results, the first obtained for rapidly cooled Cambrian rocks, document a moderate Earth field in the Precambrian-Cambrian transition.

  8. Early Jurassic extensional inheritance in the Lurestan region of the Zagros fold-and-thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Parente, Mariano; Vitale, Stefano; Puzone, Francesco; Erba, Elisabetta; Bottini, Cinzia; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    It has long been recognized that the tectonic architecture of the Zagros mountain belt was strongly controlled by inherited structures previously formed within the Arabian plate. These preexisting features span in age from the pre-Cambrian to the Mesozoic, showing different trends and deformation styles. Yet, these structures are currently not fully understood. This uncertainty is partly related with the paucity of exposures, which rarely allows a direct observation of these important deformation features. The Lurestan Province of Iran provides a remarkable exception, since it is one of the few places of the Zagros mountain belt where exposures of Triassic and Jurassic rocks are widespread. In this area we carried out structural observations on Mesozoic extensional structures developed at the southern margin of the Neo-Tethyan basin. Syn-sedimentary extensional faults are hosted within the Triassic-Cretaceous succession, being particularly abundant in the Jurassic portion of the stratigraphy. Early to Middle Jurassic syn-sedimentary faults are observed in different paleogeographic domains of the area, and their occurrence is coherent with the subsequent transition from shallow-water to deep-sea basin environments, observed in a wide portion of the area. Most of the thrusts exposed in the area may indeed be interpreted as reactivated Jurassic extensional faults, or as reverse faults whose nucleation was controlled by the location of preexisting normal faults, as a result of positive inversion during crustal shortening and mountain building.

  9. Redefining early gastric cancer.

    PubMed

    Barreto, Savio G; Windsor, John A

    2016-01-01

    The problem is that current definitions of early gastric cancer allow the inclusion of regional lymph node metastases. The increasing use of endoscopic submucosal dissection to treat early gastric cancer is a concern because regional lymph nodes are not addressed. The aim of the study was thus to critically evaluate current evidence with regard to tumour-specific factors associated with lymph node metastases in "early gastric cancer" to develop a more precise definition and improve clinical management. A systematic and comprehensive search of major reference databases (MEDLINE, EMBASE, PubMed and the Cochrane Library) was undertaken using a combination of text words "early gastric cancer", "lymph node metastasis", "factors", "endoscopy", "surgery", "lymphadenectomy" "mucosa", "submucosa", "lymphovascular invasion", "differentiated", "undifferentiated" and "ulcer". All available publications that described tumour-related factors associated with lymph node metastases in early gastric cancer were included. The initial search yielded 1494 studies, of which 42 studies were included in the final analysis. Over time, the definition of early gastric cancer has broadened and the indications for endoscopic treatment have widened. The mean frequency of lymph node metastases increased on the basis of depth of infiltration (mucosa 6% vs. submucosa 28%), presence of lymphovascular invasion (absence 9% vs. presence 53%), tumour differentiation (differentiated 13% vs. undifferentiated 34%) and macroscopic type (elevated 13% vs. flat 26%) and tumour diameter (≤2 cm 8% vs. >2 cm 25%). There is a need to re-examine the diagnosis and staging of early gastric cancer to ensure that patients with one or more identifiable risk factor for lymph node metastases are not denied appropriate chemotherapy and surgical resection.

  10. Large-scale removal of lithosphere underneath the North China Craton in the Early Cretaceous: Geochemical constraints from volcanic lavas in the Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Zheng; Zhang, Shuai; Li, Xiaoguang; Qi, Jiafu

    2017-11-01

    Cratons are generally considered as the most stable tectonic units on the Earth. Rare magmatism, seismic activity, and intracrustal ductile deformation occur in them. However, several cratons experienced entirely different fates, including the North China Craton (NCC), and were subsequently destroyed. Geodynamic mechanisms and timing of the cratonic destruction are strongly debated. In this paper, we investigate a suite of Mesozoic intermediate to felsic volcanic rocks which are collected from boreholes in the Liaohe Depression of the Bohai Bay Basin the eastern NCC. These volcanic rocks have Precambrian basement-like Sr-Nd isotopic characteristics, consistent with derivation from the lower continental crust underneath the NCC. The Late Jurassic ( 165 Ma) intermediate volcanic rocks don't exhibit markedly negative Eu anomalies, which require a source beyond the plagioclase stability field. And the low heavy rare earth elements (HREEs) contents of these samples indicate that their source has garnet as residue. The Early Cretaceous ( 122 Ma) felsic volcanic rocks are depleted in HREEs but with remarkable Eu anomalies, suggesting that their source have both garnet and plagioclase. The crust thicknesses, estimated from the geochemistry of the intermediate and felsic rocks, are ≥ 50 km at 165 Ma and 30-50 km at 122 Ma, respectively. The crustal thinning is attributed to lithospheric delamination beneath the NCC. Our results combined with previous studies imply that the large-scale lithospheric removal occurred in the Early Cretaceous, between 140 and 120 Ma.

  11. Early cosmology constrained

    NASA Astrophysics Data System (ADS)

    Verde, Licia; Bellini, Emilio; Pigozzo, Cassio; Heavens, Alan F.; Jimenez, Raul

    2017-04-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter ΩMR < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < Neff < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is rs = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to rs = 150 ± 5 Mpc.

  12. Early maize agriculture and interzonal interaction in southern Peru.

    PubMed

    Perry, Linda; Sandweiss, Daniel H; Piperno, Dolores R; Rademaker, Kurt; Malpass, Michael A; Umire, Adán; de la Vera, Pablo

    2006-03-02

    Over the past decade, increasing attention to the recovery and identification of plant microfossil remains from archaeological sites located in lowland South America has significantly increased knowledge of pre-Columbian plant domestication and crop plant dispersals in tropical forests and other regions. Along the Andean mountain chain, however, the chronology and trajectory of plant domestication are still poorly understood for both important indigenous staple crops such as the potato (Solanum sp.) and others exogenous to the region, for example, maize (Zea mays). Here we report the analyses of plant microremains from a late preceramic house (3,431 +/- 45 to 3,745 +/- 65 14C bp or approximately 3,600 to 4,000 calibrated years bp) in the highland southern Peruvian site of Waynuna. Our results extend the record of maize by at least a millennium in the southern Andes, show on-site processing of maize into flour, provide direct evidence for the deliberate movement of plant foods by humans from the tropical forest to the highlands, and confirm the potential of plant microfossil analysis in understanding ancient plant use and migration in this region.

  13. Evidence for early life in Earth's oldest hydrothermal vent precipitates.

    PubMed

    Dodd, Matthew S; Papineau, Dominic; Grenne, Tor; Slack, John F; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T S

    2017-03-01

    Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite-haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago.

  14. Early Intervention in Psychosis

    PubMed Central

    McGorry, Patrick D.

    2015-01-01

    Abstract Early intervention for potentially serious disorder is a fundamental feature of healthcare across the spectrum of physical illness. It has been a major factor in the reductions in morbidity and mortality that have been achieved in some of the non-communicable diseases, notably cancer and cardiovascular disease. Over the past two decades, an international collaborative effort has been mounted to build the evidence and the capacity for early intervention in the psychotic disorders, notably schizophrenia, where for so long deep pessimism had reigned. The origins and rapid development of early intervention in psychosis are described from a personal and Australian perspective. This uniquely evidence-informed, evidence-building and cost-effective reform provides a blueprint and launch pad to radically change the wider landscape of mental health care and dissolve many of the barriers that have constrained progress for so long. PMID:25919380

  15. [Early flat colorectal cancer].

    PubMed

    Castelletto, R H; Chiarenza, C; Ottino, A; Garay, M L

    1991-01-01

    We report three cases of flat early colorectal carcinoma which were detected during the examination of 51 surgical specimens of colorectal resection. Two of them were endoscopically diagnosed, but the smallest one was not seen in the luminal instrumental examination. From the bibliographic analysis and our own experience we deduce the importance of flat lesions in the development of early colorectal carcinoma, either originated from pre-existent adenoma or de novo. Flat variants of adenoma, and presumably flush or depressed ones, must be considered as important factors in the early sequence adenoma-cancer. An appropriate endoscopic equipment with employment of additional staining techniques (such as carmine indigo and methylene blue) and the correct investigation during inflation-deflation procedures facilitates the identification of small lesions, their eradication and prevention from advanced forms of colorectal carcinoma.

  16. Petrology and geochronology of Mesoproterozoic basement of the Mount Rogers area of southwestern Virginia and northwestern North Carolina: Implications for the Precambrian tectonic evolution of the southern Blue Ridge province

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Dickin, Alan P.; Radwany, Molly S.; Southworth, C. Scott; Fanning, C. Mark

    2017-01-01

    Results from new geologic mapping, SHRIMP U-Pb geochronology, and petrologic studies indicate that Mesoproterozoic basement in the northern French Broad massif near Mount Rogers consists of multiple, mostly granitic plutons, map- and outcrop-scale xenoliths of pre-existing crustal rocks, and remnants of formerly overlying meta-sedimentary lithologies. Zircon and titanite ages demonstrate that these rocks collectively record nearly 350 m.y. of tectonic evolution including periods of igneous intrusion at ca. 1190 to 1130 Ma (Early Magmatic Suite) and ca. 1075 to 1030 Ma (Late Magmatic Suite) and three episodes of regional metamorphism at ca. 1170 to 1140, 1070 to 1020, and 1000 to 970 Ma. The existence of ca. 1.3 Ga age crust is indicated by (1) orthogranofels of ca. 1.32 Ga age in a map-scale xenolith, (2) inherited zircons of ca. 1.33 to 1.29 Ga age in Early Magmatic Suite plutons, and (3) ca. 1.36 to 1.30 Ga age detrital zircons in meta-sedimentary lithologies. Mineral assemblages developed in amphibolites and granofelses indicate that metamorphism during both Mesoproterozoic episodes occurred at upper amphibolite- to lower granulite-facies conditions. Syn-orogenic Early Magmatic Suite plutons emplaced at ca. 1190 to 1145 Ma are characterized by high-K, variably magnesian, dominantly calc-alkalic compositions, and have trace-element characteristics indicative of continental-arc magmatic origin involving melting of thick continental crust. In contrast, ca. 1140 Ma age quartz syenite displays A-type features indicating derivation from depleted crustal sources with increased mantle input during waning stages of regional contraction. Plutons of the compositionally bimodal Late Magmatic Suite include (1) ca. 1060 Ma meta-granite with geochemical characteristics transitional between silicic rocks of arc systems and post-collisional granites of A-type lineage, and (2) ca. 1055 Ma monzodioritic rocks with A-type compositional characteristics that likely reflect

  17. Cognitive Development in Early Readers.

    ERIC Educational Resources Information Center

    Briggs, Chari; Elkind, David

    Some studies of early readers are discussed. It is pointed out that study of early readers has relevance for practical and theoretical issues in psychology and education. Of interest in this document are the following questions: (1) Are there any special talents or traits distinguishing early from non-early readers? (2) Do children who read early…

  18. Early College Entrance in Australia

    ERIC Educational Resources Information Center

    Jung, Jae Yup; Young, Marie; Gross, Miraca U. M.

    2015-01-01

    Early college entry is an educational intervention that is being increasingly used in Australia. Following a review of the current Australian literature on early college entry, an overview is provided of the characteristics of, and the procedures associated with, one formal Australian early college entry program (the Early Admission for…

  19. Early Adolescent Ego Development.

    ERIC Educational Resources Information Center

    James, Michael A.

    1980-01-01

    Presented are the theoretical characteristics of social identity in early adolescence (ages 10 to 15). It is suggested that no longer is identity thought to begin with adolescence, but may have its beginnings in the preteen years. The article draws heavily on Eriksonian concepts. (Editor/KC)

  20. Early Childhood Development.

    ERIC Educational Resources Information Center

    Koh, Edgar, Ed.

    1989-01-01

    Focused on early childhood development, this "UNICEF Intercom" asserts that developmental programs should aim to give children a fair chance at growth beyond survival. First presented are moral, scientific, social equity, economic, population, and programatic arguments for looking beyond the fundamental objective of saving young lives.…

  1. Early Screening Inventory (ESI).

    ERIC Educational Resources Information Center

    Welge-Crow, Patricia; And Others

    1990-01-01

    The Early Screening Inventory is designed to identify English- or Spanish-speaking children, ages 4-6, who may need special education services. The instrument measures the ability to acquire new skills in the areas of visual-motor/adaptive, language/cognition, and gross-motor/body-awareness. This paper describes administration, summation of data,…

  2. Preventing Early Learning Failure.

    ERIC Educational Resources Information Center

    Sornson, Bob, Ed.

    Noting that thousands of young children with the capacity to experience school success do not because they are unprepared for school learning activities, have experienced physical or emotional setbacks that cause them to be at risk for early learning failure, have never experienced limits on their behavior, or have mild sensory or motor deficits,…

  3. Early Program Development

    NASA Image and Video Library

    1971-01-01

    This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.

  4. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle docked to an Orbital Propellant Depot and an early Space Shuttle. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle, in either manned or unmanned mode, would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additonal missions.

  5. Early Childhood Trauma

    ERIC Educational Resources Information Center

    National Child Traumatic Stress Network, 2010

    2010-01-01

    Early childhood trauma generally refers to the traumatic experiences that occur to children aged 0-6. Because infants' and young children's reactions may be different from older children's, and because they may not be able to verbalize their reactions to threatening or dangerous events, many people assume that young age protects children from the…

  6. Early Program Development

    NASA Image and Video Library

    1969-01-01

    As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.

  7. Early Developments, 1998.

    ERIC Educational Resources Information Center

    Little, Loyd, Ed.

    1998-01-01

    This document consists of the two 1998 issues of a journal reporting new research in early child development conducted by the Frank Porter Graham Child Development Center at the University of North Carolina at Chapel Hill. In the Spring 1998 issue, articles highlight the Center's diverse cross-cultural projects and global research, training and…

  8. Creativity: The Early Years

    ERIC Educational Resources Information Center

    Shade, Rick; Shade, Patti Garrett

    2016-01-01

    There is a myth that some people are creative and others are not. However, all children are born creative. They love to explore, ask questions, and are incredibly imaginative. Parents are key in nurturing their child's creativity in the early years. This article offers resources and strategies parents can use at different ages and stages (newborn,…

  9. Early malignant syphilis*

    PubMed Central

    Ortigosa, Yara Martins; Bendazzoli, Paulo Salomão; Barbosa, Angela Marques; Ortigosa, Luciena Cegatto Martins

    2016-01-01

    Early malignant syphilis is a rare and severe variant of secondary syphilis. It is clinically characterized by lesions, which can suppurate and be accompanied by systemic symptoms such as high fever, asthenia, myalgia, and torpor state. We report a diabetic patient with characteristic features of the disease showing favorable evolution of the lesions after appropriate treatment. PMID:28300925

  10. Early Childhood Military Education?

    ERIC Educational Resources Information Center

    Pelo, Ann

    2011-01-01

    Does the country's national security rely on top-quality early childhood education? Yes, say the military leaders of Mission: Readiness, an organization led by retired military commanders that promotes investment in education, child health, and parenting support. Actually, the generals are right, but for all the wrong reasons. The generals' aim is…

  11. Early Childhood Education.

    ERIC Educational Resources Information Center

    Advocate, 1995

    1995-01-01

    This special theme issue of the journal "The Advocate," offers articles on early interventions for preschoolers with special needs, including three articles in Spanish. Contents include: "Providing An Orientation for Life" (Galen D. Kirkland); "AFC Fights Cuts in Education at 'Speak Out' Rally" (Nadine Renazile);…

  12. Early Humour Production

    ERIC Educational Resources Information Center

    Hoicka, Elena; Akhtar, Nameera

    2012-01-01

    The current studies explored early humour as a complex socio-cognitive phenomenon by examining 2- and 3-year-olds' humour production with their parents. We examined whether children produced novel humour, whether they cued their humour, and the types of humour produced. Forty-seven parents were interviewed, and videotaped joking with their…

  13. Understanding Early Years Policy

    ERIC Educational Resources Information Center

    Baldock, Peter; Fitzgerald, Damien; Kay, Janet

    2005-01-01

    The book is about policy in the area of early years services and that phrase may need some clarification. For the most part, therefore, this book deals with nursery schools and classes and with services provided by full day care nurseries, pre-schools, creches, childminders, after-school clubs and holiday play schemes. This book begins with…

  14. Early Childhood Indicators.

    ERIC Educational Resources Information Center

    Bartlett, Kathy; Zimanyi, Louise

    2001-01-01

    Recognizing the need to identify the level, nature, and impact of Early Childhood Care and Development (ECCD) programs on children and their families, this theme issue of "Coordinators' Notebook" seeks to complement and further the international efforts at collecting information on ECCD for use at national and international levels.…

  15. Early Indian People.

    ERIC Educational Resources Information Center

    Doermann, Elisabeth

    1979-01-01

    Using bits and pieces of the past such as charred bits of wood from campfires, broken pieces of clay pots, stone spearpoints and arrowheads, and shell or copper ornaments, the archaeologist tries to put together the story of early Indian people in the Minnesota region. A short story, one of eight articles, re-creates the kill of an Itasca bison…

  16. Early Identification of Autism

    PubMed Central

    Webb, Sara Jane; Jones, Emily J.H.

    2016-01-01

    In the first year of life, infants who later go on to develop autistic spectrum disorders (ASD) may exhibit subtle disruptions in social interest and attention, communication, temperament, and head circumference growth that occur prior to the onset of clinical symptoms. These disruptions may reflect the early course of ASD development and may also contribute to the later development of clinical symptoms through alterations in the child’s experience of his or her environment. By age 2, developmental precursors of autism symptoms can be used to diagnose children reliably, and by age 3, the diagnosis is thought to be relatively stable. The downward extension of the autism diagnosis poses important questions for therapists in designing interventions that are applicable for infants who demonstrate early risk factors. We review current knowledge of the early signs of ASD in the infancy period (0–12 months) and the manifestation of symptoms in toddlerhood (12– 36 months), noting the importance of considering the variability in onset and trajectory of ASD. Finally, we consider the implications of this emerging research for those who work or interact with young children, including the importance of early monitoring and the development and evaluation of age-appropriate interventions. PMID:28090148

  17. Early cosmology constrained

    SciTech Connect

    Verde, Licia; Jimenez, Raul; Bellini, Emilio

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraintsmore » thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.« less

  18. Igneous activity, metamorphism, and deformation in the Mount Rogers area of SW Virginia and NW North Carolina: A geologic record of Precambrian tectonic evolution of the southern Blue Ridge Province

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Mundil, Roland; Southworth, C. Scott; Cosca, Michael A.; Rankin, Douglas W.; Rubin, Allison E.; Kentner, Adrienne; Parendo, Christopher A.; Ray, Molly S.

    2012-01-01

    Mesoproterozoic basement in the vicinity of Mount Rogers is characterized by considerable lithologic variability, including major map units composed of gneiss, amphibolite, migmatite, meta-quartz monzodiorite and various types of granitoid. SHRIMP U-Pb geochronology and field mapping indicate that basement units define four types of occurrences, including (1) xenoliths of ca. 1.33 to ≥1.18 Ga age, (2) an early magmatic suite including meta-granitoids of ca. 1185–1140 Ma age that enclose or locally intrude the xenoliths, (3) metasedimentary rocks represented by layered granofels and biotite schist whose protoliths were likely deposited on the older meta-granitoids, and (4) a late magmatic suite composed of younger, ca. 1075–1030 Ma intrusive rocks of variable chemical composition that intruded the older rocks. The magmatic protolith of granofels constituting part of a layered, map-scale xenolith crystallized at ca. 1327 Ma, indicating that the lithology represents the oldest, intact crust presently recognized in the southern Appalachians. SHRIMP U-Pb data indicate that periods of regional Mesoproterozoic metamorphism occurred at 1170–1140 and 1070–1020 Ma. The near synchroneity in timing of regional metamorphism and magmatism suggests that magmas were emplaced into crust that was likely at near-solidus temperatures and that melts might have contributed to the regional heat budget. Much of the area is cut by numerous, generally east- to northeast-striking Paleozoic fault zones characterized by variable degrees of ductile deformation and recrystallization. These high-strain fault zones dismember the terrane, resulting in juxtaposition of units and transformation of basement lithologies to quartz- and mica-rich tectonites with protomylonitic and mylonitic textures. Mineral assemblages developed within such zones indicate that deformation and recrystallization likely occurred at greenschist-facies conditions at ca. 340 Ma.

  19. Paleolakes and life on early Mars

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Wharton, Robert A., Jr.; Mckay, C. P.

    1991-01-01

    Two distinct directions have begun to elucidate key parameters in the search for extinct life on Mars. Carbonate sediments, deposited about 10,000 years ago in association with biological activity, have been sampled from the paleolake beds of Lake Vanda and Meirs in the McMurdo Dry Valleys in Antarctica. These samples are being analyzed for simple biological signatures that remain in cold and dry paleolake sediments, namely microfossils, percent carbonate, and total organic carbon. Our second initiative is the study of Colour Lake, in the Canadian Arctic, that periodically maintains a perennial ice cover. Physical measurements started this year will be used to determine one end point for ice covered lake environments and will be compared to continuous measurements from Antarctic lakes started in November 1985. Interestingly, Colour Lake also supports benthic mat communities, but the low pH precludes carbonate deposition. This research will broaden our knowledge base for what conditions are necessary for ice covered lake formation and what biological signatures will remain in paleolake deposits.

  20. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview

    NASA Astrophysics Data System (ADS)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.

    2010-07-01

    OT1 assemblage, possibly corresponds to a specific, localised ecosystem within the Kem Kem beds compound assemblage. Microfossils and facies from the Aoufous Formation, corresponding to the top of the compound assemblage, provide evidence of extremely abiotic conditions (hypersalinity), and thus of great environmental instability. At the base of the Akrabou Formation the first ammonite bioevent, Neolobites, corresponds to the onset of the marine transgression in the early Late Cenomanian while the Agoult assemblage (Late Cenomanian?) contains a variety of small fish species that have Central Tethyan affinities. Finally, the youngest Mammites bioevent in the late Early Turonian corresponds to a deepening of the marine environment: this sequence is isochronous with the Goulmima assemblage, a diverse collection of fish and other marine taxa, and shows affinities with taxa from the South Atlantic, the Central Tethys and the Western Interior seaway of North America, and further highlights the biogeographical importance of these North African Late Cretaceous assemblages.

  1. Samuel Goudsmit - Early Influences

    NASA Astrophysics Data System (ADS)

    Goudsmit, Esther

    2010-03-01

    Samuel Goudsmit, born in 1902 in The Hague, Netherlands, earned his Ph.D. at the University of Leiden in 1926 with Paul Ehrenfest. The present talk will describe some aspects of his background and early formative years in order to provide context for the broad range of his professional life. Sam belonged to a large tribe of paternal and maternal uncles, aunts and first cousins; including his parents, grandparents and sister Ro, they numbered forty. Sam was the first of the tribe to be educated beyond high school. Early interests as a child and later as a university student in the Netherlands prefigured his significant and diverse contributions in several realms including not only physics but also teaching, Egyptology and scientific Intelligence. Bibliographic sources will include: The American Institute of Physics' Oral History Transcripts and photographs from the Emilio Segre visual archives, memoirs and conversations of those who knew Sam and also letters to his daughter, Esther.

  2. Early Childhood Caries

    PubMed Central

    Kawashita, Yumiko; Kitamura, Masayasu; Saito, Toshiyuki

    2011-01-01

    Dental caries is one of the most common childhood diseases, and people continue to be susceptible to it throughout their lives. Although dental caries can be arrested and potentially even reversed in its early stages, it is often not self-limiting and progresses without proper care until the tooth is destroyed. Early childhood caries (ECC) is often complicated by inappropriate feeding practices and heavy infection with mutans streptococci. Such children should be targeted with a professional preventive program that includes oral hygiene instructions for mothers or caregivers, along with fluoride and diet counseling. However, these strategies alone are not sufficient to prevent dental caries in high-risk children; prevention of ECC also requires addressing the socioeconomic factors that face many families in which ECC is endemic. The aim of this paper is to systematically review information about ECC and to describe why many children are suffering from dental caries. PMID:22007218

  3. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  4. PHOBOS, the Early Years

    NASA Astrophysics Data System (ADS)

    Stephans, George S. F.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2002-06-01

    The PHOBOS detector, one of the two small experiments at RHIC, focuses on measurements of charged particle multiplicity over almost the full phase space and identified particles near mid-rapidity. Results will be presented from the early RHIC gold--gold runs at nucleon--nucleon center of mass energies of 56 and 130 GeV as well as the recently concluded run at the full RHIC energy of 200 GeV.

  5. Coaching in Early Mathematics.

    PubMed

    Germeroth, Carrie; Sarama, Julie

    2017-01-01

    Falling scores in math have prompted a renewed interest in math instruction at early ages. By their own admission, early childhood educators are generally underprepared and not always comfortable teaching math. Professional development (PD) in early mathematics is widely considered a main way to increase teachers' skills and efficacy (e.g., Guskey, 2000; Hyson & Woods, 2014; Munby, Russell, & Martin, 2001; Piasta, Logan, Pelatti, Capps, & Petrill, 2015; Richardson & Placier, 2001; Sarama, Clements, Wolfe, & Spitler, 2016; Sarama & DiBiase, 2004; Zaslow, 2014). However, it has been documented that stand-alone PD is not as effective in changing practice (e.g., Biancarosa & Bryk, 2011; Garet et al., 2008; Guskey, 2000; Hyson & Woods, 2014; Institute of Medicine and National Research Council, 2015; Joyce & Showers, 2002; Zaslow, 2014). Site-embedded ongoing support in the form of coaching or mentoring has been shown to be critical for successful implementation (Neuman & Cunningham, 2009; Powell, Diamond, Burchinal, & Koehler, 2010). In this chapter, we describe coaching models and abstract characteristics of effective coaching from the research. With this background, we provide an in-depth view of the coaching aspect of two large empirical studies in early mathematics. We introduce the theoretical framework from which the coaching models for these projects were developed and describe the research on which they were based. We then summarize how the planned models were instantiated and challenges to their implementation within each project. In the final section, we summarize what we have learned and described implications and challenges for the field. © 2017 Elsevier Inc. All rights reserved.

  6. Hands of early primates.

    PubMed

    Boyer, Doug M; Yapuncich, Gabriel S; Chester, Stephen G B; Bloch, Jonathan I; Godinot, Marc

    2013-12-01

    Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in

  7. Guideline for Early Interventions

    DTIC Science & Technology

    2006-04-01

    desensitization and reprocessing ( EMDR ) as a early mental health intervention, following mass violence and disasters, is a treatment of choice over other...village. Military operations take place under the eye of the world and are surrounded by high political attention. International missions far exceed...consistently reduce risks of later post-traumatic stress disorder or related adjustment difficulties. • There is no evidence that eye movement

  8. Early anaerobic metabolisms

    PubMed Central

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  9. Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.

    2007-12-01

    The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.

  10. Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Fru, Ernest Chi; Kilias, Stephanos; Ivarsson, Magnus; Rattray, Jayne E.; Gkika, Katerina; McDonald, Iain; He, Qian; Broman, Curt

    2018-05-01

    An early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on a basement consisting of andesites in a ˜ 150 m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF) sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ˜ -25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ṡ nH2O) while crystalline quartz (SiO2) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean-atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.

  11. Early intervention for psychosis

    PubMed Central

    Marshall, Max; Rathbone, John

    2014-01-01

    Background Proponents of early intervention have argued that outcomes might be improved if more therapeutic efforts were focused on the early stages of schizophrenia or on people with prodromal symptoms. Early intervention in schizophrenia has two elements that are distinct from standard care: early detection, and phase-specific treatment (phase-specific treatment is a psychological, social or physical treatment developed, or modified, specifically for use with people at an early stage of the illness). Early detection and phase-specific treatment may both be offered as supplements to standard care, or may be provided through a specialised early intervention team. Early intervention is now well established as a therapeutic approach in America, Europe and Australasia. Objectives To evaluate the effects of: (a) early detection; (b) phase-specific treatments; and (c) specialised early intervention teams in the treatment of people with prodromal symptoms or first-episode psychosis. Search methods We searched the Cochrane Schizophrenia Group Trials Register (March 2009), inspected reference lists of all identified trials and reviews and contacted experts in the field. Selection criteria We included all randomised controlled trials (RCTs) designed to prevent progression to psychosis in people showing prodromal symptoms, or to improve outcome for people with first-episode psychosis. Eligible interventions, alone and in combination, included: early detection, phase-specific treatments, and care from specialised early intervention teams. We accepted cluster-randomised trials but excluded non-randomised trials. Data collection and analysis We reliably selected studies, quality rated them and extracted data. For dichotomous data, we estimated relative risks (RR), with the 95% confidence intervals (CI). Where possible, we calculated the number needed to treat/harm statistic (NNT/H) and used intention-to-treat analysis (ITT). Main results Studies were diverse, mostly small

  12. Les séries du carbonifère inférieur de la région d'Adarouch, NE du Maroc central: lithologie et biostratigraphieEarly carboniferous series of the Adarouch area, northeast central Morocco: lithology and biostratigraphy

    NASA Astrophysics Data System (ADS)

    Berkhli, M.; Vachard, D.; Paicheler, J.-C.

    2001-05-01

    The early Carboniferous series of the Adarouch area (northeast central Morocco) are subdivided into three sedimentological and biostratigraphical units. The first unit, which belongs to the Late Visean zones V3bβ and V3bγ, was deposited on shallow carbonate platforms. The second unit belongs to the Late Visean zone, V3c, and incudes terrigenous deposits, such as turbidites, shales and olistostromes. The third unit belongs to the Serpukhovian stage and consists of sandstones and limestones. A new biostratigraphical analysis, which is based on foraminiferal, algae and pseudoalgae, allows an accurate dating of the units. The deposits of the zones V3bβ and V3bγ contain characteristic calcareous microfossils, such as Stacheoides sp., Pseudoendothyra sp. and Ungdarella uralica. The V3c zone (300-400 m) is shown in two oolitic beds of the Mouarhaz and Akerchi Formations, respectively, with Janischewskina sp. and Asteroarchaediscus sp. The Serpukhovian stage is characterised by the disappearance of the algae Koninckopora and the appearance of the brachiopod Titanaria. The new data from the Adarouch area confirm the Moroccan biostratigraphical scale of the Moroccan meseta.

  13. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    NASA Astrophysics Data System (ADS)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  14. Late Cambrian - Early Ordovician turbidites of Gorny Altai (Russia): Compositions, sources, deposition settings, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Kruk, Nikolai N.; Kuibida, Yana V.; Shokalsky, Sergey P.; Kiselev, Vladimir I.; Gusev, Nikolay I.

    2018-06-01

    The Cambrian-Ordovician transition was the time of several key events in the history of Central Asia. They were the accretion of Mariana-type island arc systems to the Siberian continent, the related large-scale orogeny and intrusions of basaltic and granitic magma and the formation of a huge turbidite basin commensurate with the Bengal Gulf basin in the western part of the Central Asian orogenic belt (CAOB). The structure of the basin, as well as the sources and environments of deposition remain open to discussion. This paper presents new major- and trace-element data on Late-Cambrian-Early Ordovician turbidites from different parts of the Russian Altai and a synthesis of Nd isotope composition and ages of detrital zircons. The turbidites share chemical similarity with material shed from weathered continental arcs. Broad variations of CIA (39-73) and ICV (0.63-1.66) signatures in sandstones suggest origin from diverse sources and absence of significant sorting. Trace elements vary considerably and have generally similar patterns in rocks from different terranes. On the other hand, there are at least two provinces according to Nd isotope composition and age of detrital zircons. Samples from eastern Russian Altai contain only Phanerozoic zircons and have Nd isotope ratios similar to those in Early Cambrian island arcs (εNdt + 4.4… + 5.4; TNd(DM)-2-st = 0.8-0.9 Ga). Samples from central, western, and southern parts of Russian Altai contain Precambrian zircons (some as old as Late Archean) and have a less radiogenic Nd composition (εNdt up to -3.6; TNd(DM)-2-st up to 1.5 Ga). The chemical signatures of Late Cambrian to Early Ordovician turbidites indicate a provenance chemically more mature than the island arc rocks, and the presence of zircons with 510-490 Ma ages disproves their genetic relation with island arcs. The turbidite basin formed simultaneously with peaks of granitic and alkali-basaltic magmatism in the western Central Asian orogen and resulted from

  15. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Bracciali, Laura; Najman, Yani; Parrish, Randall R.; Akhter, Syed H.; Millar, Ian

    2015-04-01

    The Himalayan orogen provides a type example on which a number of models of the causes and consequences of crustal deformation are based and it has been suggested that it is the site of a variety of feedbacks between tectonics and erosion. Within the broader orogen, fluvial drainages partly reflect surface uplift, different climatic zones and a response to crustal deformation. In the eastern Himalaya, the unusual drainage configuration of the Yarlung Tsangpo-Brahmaputra River has been interpreted either as antecedent drainage distorted by the India-Asia collision (and as such applied as a passive strain marker of lateral extrusion), latest Neogene tectonically-induced river capture, or glacial damming-induced river diversion events. Here we apply a multi-technique approach to the Neogene paleo-Brahmaputra deposits of the Surma Basin (Bengal Basin, Bangladesh) to test the long-debated occurrence and timing of river capture of the Yarlung Tsangpo by the Brahmaputra River. We provide U-Pb detrital zircon and rutile, isotopic (Sr-Nd and Hf) and petrographic evidence consistent with river capture of the Yarlung Tsangpo by the Brahmaputra River in the Early Miocene. We document influx of Cretaceous-Paleogene zircons in Early Miocene sediments of the paleo-Brahmaputra River that we interpret as first influx of material from the Asian plate (Transhimalayan arc) indicative of Yarlung Tsangpo contribution. Prior to capture, the predominantly Precambrian-Paleozoic zircons indicate that only the Indian plate was drained. Contemporaneous with Transhimalayan influx reflecting the river capture, we record arrival of detrital material affected by Cenozoic metamorphism, as indicated by rutiles and zircons with Cenozoic U-Pb ages and an increase in metamorphic grade of detritus as recorded by petrography. We interpret this as due to a progressively increasing contribution from the erosion of the metamorphosed core of the orogen. Whole rock Sr-Nd isotopic data from the same samples

  16. Infusing Early Childhood Mental Health into Early Intervention Services

    ERIC Educational Resources Information Center

    Grabert, John C.

    2009-01-01

    This article describes the process of enhancing early childhood mental health awareness and skills in non-mental health staff. The author describes a pilot training model, conducted the U.S. Army's Early Intervention Services, that involved: (a) increasing early childhood mental health knowledge through reflective readings, (b) enhancing…

  17. Early Life Exposures and Cancer

    Cancer.gov

    Early-life events and exposures have important consequences for cancer development later in life, however, epidemiological studies of early-life factors and cancer development later in life have had significant methodological challenges.

  18. Why Recruits Separate Early

    DTIC Science & Technology

    1991-01-01

    our sample were reportedly unable to adjust to the military environment due to social or emotional immaturity. This problem was especially prevalent...Table 9. Table 9 REASONS FOR EARLY SEPARATION 1. Mental health. Phobias , suicide threats and attempts, emotional immaturity, and personality and...hliurfl’lutf t’ htrtiuug tht .’ plinittol piioL’m.9 evIn’ thfll I b’ r i’lli. vre’.Ilv ifao~ , ýI ll.tv ill it](- rv ’: 111nil tln1 (i~..󈧏 4 P A W4.11

  19. Early Childhood Home Visiting.

    PubMed

    Duffee, James H; Mendelsohn, Alan L; Kuo, Alice A; Legano, Lori A; Earls, Marian F

    2017-09-01

    High-quality home-visiting services for infants and young children can improve family relationships, advance school readiness, reduce child maltreatment, improve maternal-infant health outcomes, and increase family economic self-sufficiency. The American Academy of Pediatrics supports unwavering federal funding of state home-visiting initiatives, the expansion of evidence-based programs, and a robust, coordinated national evaluation designed to confirm best practices and cost-efficiency. Community home visiting is most effective as a component of a comprehensive early childhood system that actively includes and enhances a family-centered medical home. Copyright © 2017 by the American Academy of Pediatrics.

  20. Treat early, treat appropriately.

    PubMed

    Liebl, Andreas; Rutten, Guy; Abraira, Carlos

    2010-04-01

    The treatment of type 2 diabetes is shifting from secondary specialist centres to the primary care setting. However, for this shift to be sustainable and successful, primary care physicians (PCPs) must effectively provide aspects of diabetes care traditionally supplied by specialists. In particular, the early and appropriate use of insulin in type 2 diabetes will increasingly become the responsibility of PCPs. This review examines how patients with type 2 diabetes are currently managed across several European countries, and explores the evidence around insulin use in type 2 diabetes and the implications for primary care. 2010 Primary Care Diabetes Europe. Published by Elsevier Ltd.. All rights reserved.

  1. Early modern mathematical instruments.

    PubMed

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  2. Early Program Development

    NASA Image and Video Library

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  3. Crowdsourced earthquake early warning

    PubMed Central

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing. PMID:26601167

  4. Crowdsourced earthquake early warning.

    PubMed

    Minson, Sarah E; Brooks, Benjamin A; Glennie, Craig L; Murray, Jessica R; Langbein, John O; Owen, Susan E; Heaton, Thomas H; Iannucci, Robert A; Hauser, Darren L

    2015-04-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an M w (moment magnitude) 7 earthquake on California's Hayward fault, and real data from the M w 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  5. Early Psoriatic Arthritis.

    PubMed

    McHugh, Neil John

    2015-11-01

    Skin psoriasis is a major risk factor for the development of psoriatic arthritis. Recent studies have shown that delayed diagnosis is associated with long-term adverse outcomes. Screening questionnaires have revealed a potential burden of undiagnosed disease. Lifestyle factors and genetic and soluble biomarkers have come under scrutiny as risk factors. Imaging modalities may have an important role in detecting early change. With more effective treatments, it may be possible to prevent significant joint damage and associated disability. However, the precise nature of accurate and cost-effective screening strategies remains to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Crowdsourced earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  7. Early Childhood Workforce Index, 2016

    ERIC Educational Resources Information Center

    Whitebook, Marcy; McLean, Caitlin; Austin, Lea J. E.

    2016-01-01

    The State of the Early Childhood Workforce (SECW) Initiative is a groundbreaking multi-year project to shine a steady spotlight on the nation's early childhood workforce. The SECW Initiative is designed to challenge entrenched ideas and policies that maintain an inequitable and inadequate status quo for early educators and for the children and…

  8. Value-Added Early Learning

    ERIC Educational Resources Information Center

    Dichter, Harriet

    2011-01-01

    Elected state leaders often prioritize economic prosperity and competitiveness, which provides an important opportunity too rarely taken for investing in early education. In 2003, Pennsylvania recognized the connection between early education and the economy, and smartly embraced early learning as part of its economic prosperity and…

  9. Early Reading and Concrete Operations.

    ERIC Educational Resources Information Center

    Polk, Cindy L. Howes; Goldstein, David

    1980-01-01

    Indicated that early readers are more likely to be advanced in cognitive development than are nonearly-reading peers. After one year of formal reading instruction, early readers maintained their advantage in reading achievement. Measures of concrete operations were found to predict reading achievement for early and nonearly readers. (Author/DB)

  10. The Effectiveness of Early Intervention.

    ERIC Educational Resources Information Center

    Guralnick, Michael J., Ed.

    This book reviews research on the effectiveness of early intervention for children with disabilities or who are at risk. Program factors for children at risk and with disabilities, the effects of early intervention on different types of disabilities, and the outcomes of early intervention are explored. Chapters include: "Second-Generation Research…

  11. Early Attrition among Suicidal Clients

    ERIC Educational Resources Information Center

    Surgenor, P. W. G.; Meehan, V.; Moore, A.

    2016-01-01

    The study aimed to identify the level of suicidal ideation in early attrition clients and their reasons for the early termination of their therapy. The cross-sectional design involved early attrition clients (C[subscript A]) who withdrew from therapy before their second session (n = 61), and continuing clients who (C[subscript C]) progressed…

  12. Early Childhood Special Music Education

    ERIC Educational Resources Information Center

    Darrow, Alice-Ann

    2011-01-01

    The process of early intervention is a critical component of Early Childhood Special Music Education. Early intervention is the process of providing services, education, and support to young children who have disabilities or to children who are at-risk of developing needs that may affect their physical, cognitive, or emotional development. The…

  13. Early diagnosis in glaucoma.

    PubMed

    Garway-Heath, David F

    2008-01-01

    This chapter reviews the evidence for the clinical application of vision function tests and imaging devices to identify early glaucoma, and sets out a scheme for the appropriate use and interpretation of test results in screening/case-finding and clinic settings. In early glaucoma, signs may be equivocal and the diagnosis is often uncertain. Either structural damage or vision function loss may be the first sign of glaucoma; neither one is consistently apparent before the other. Quantitative tests of visual function and measurements of optic-nerve head and retinal nerve fiber layer anatomy are useful to either raise or lower the probability that glaucoma is present. The posttest probability for glaucoma may be calculated from the pretest probability and the likelihood ratio of the diagnostic criterion, and the output of several diagnostic devices may be combined to achieve a final probability. However, clinicians need to understand how these diagnostic devices make their measurements, so that the validity of each test result can be adequately assessed. Only then should the result be used, together with the patient history and clinical examination, to derive a diagnosis.

  14. Early Earth slab stagnation

    NASA Astrophysics Data System (ADS)

    Agrusta, R.; Van Hunen, J.

    2016-12-01

    At present day, the Earth's mantle exhibits a combination of stagnant and penetrating slabs within the transition zone, indicating a intermittent convection mode between layered and whole-mantle convection. Isoviscous thermal convection calculations show that in a hotter Earth, the natural mode of convection was dominated by double-layered convection, which may imply that slabs were more prone to stagnate in the transition zone. Today, slab penetration is to a large extent controlled by trench mobility for a plausible range of lower mantle viscosity and Clapeyron slope of the mantle phase transitions. Trench mobility is, in turn, governed by slab strength and density and upper plate forcing. In this study, we systematically investigate the slab-transition zone internation in the Early Earth, using 2D self-consistent numerical subduction models. Early Earth's higher mantle temperature facilitates decoupling between the plates and the underlying asthenosphere, and may result in slab sinking almost without trench retreat. Such behaviour together with a low resistance of a weak lower mantle may allow slabs to penetrate. The ability of slab to sink into the lower mantle throughout Earth's history may have important implications for Earth's evolution: it would provide efficient mass and heat flux through the transition zone therefore provide an efficient way to cool and mix the Earth's mantle.

  15. Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics

    NASA Astrophysics Data System (ADS)

    Pande, Kanchan; Cucciniello, Ciro; Sheth, Hetu; Vijayan, Anjali; Sharma, Kamal Kant; Purohit, Ritesh; Jagadeesan, K. C.; Shinde, Sapna

    2017-07-01

    The Mundwara alkaline plutonic complex (Rajasthan, north-western India) is considered a part of the Late Cretaceous-Palaeogene Deccan Traps flood basalt province, based on geochronological data (mainly 40Ar/39Ar, on whole rocks, biotite and hornblende). We have studied the petrology and mineral chemistry of some Mundwara mafic rocks containing mica and amphibole. Geothermobarometry indicates emplacement of the complex at middle to upper crustal levels. We have obtained new 40Ar/39Ar ages of 80-84 Ma on biotite separates from mafic rocks and 102-110 Ma on whole-rock nepheline syenites. There is no evidence for excess 40Ar. The combined results show that some of the constituent intrusions of the Mundwara complex are of Deccan age, but others are older and unrelated to the Deccan Traps. The Mundwara alkaline complex is thus polychronous and similar to many alkaline complexes around the world that show recurrent magmatism, sometimes over hundreds of millions of years. The primary biotite and amphibole in Mundwara mafic rocks indicate hydrous parental magmas, derived from hydrated mantle peridotite at relatively low temperatures, thus ruling out a mantle plume. This hydration and metasomatism of the Rajasthan lithospheric mantle may have occurred during Jurassic subduction under Gondwanaland, or Precambrian subduction events. Low-degree decompression melting of this old, enriched lithospheric mantle, due to periodic diffuse lithospheric extension, gradually built the Mundwara complex from the Early Cretaceous to Palaeogene time.

  16. Planetary biology and microbial ecology. Biochemistry of carbon and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L. (Editor); Nealson, K. H. (Editor); Taylor, I. (Editor)

    1983-01-01

    Experiments made with cyanobacteria, phototrophic bacteria, and methanogenic bacteria are detailed. Significant carbon isotope fractionation data is included. Taken from well documented extant microbial communities, this data provides a basis of comparison for isotope fractionation values measured in Archean and Proterozoic (preCambrian) rocks. Media, methods, and techniques used to acquire data are also described.

  17. [In-patient (early) rehabilitation].

    PubMed

    Wallesch, Claus-W; Lautenschläger, Sindy

    2017-04-01

    It is difficult to dev