Sample records for early preliminary design

  1. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  2. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  3. A Preliminary Evaluation of Reach: Training Early Childhood Teachers to Support Children's Social and Emotional Development

    ERIC Educational Resources Information Center

    Conners-Burrow, Nicola A.; Patrick, Terese; Kyzer, Angela; McKelvey, Lorraine

    2017-01-01

    This paper describes the development, implementation and preliminary evaluation of the Reaching Educators and Children (REACH) program, a training and coaching intervention designed to increase the capacity of early childhood teachers to support children's social and emotional development. We evaluated REACH with 139 teachers of toddler and…

  4. Preliminary design study of the TMT Telescope structure system: overview

    NASA Astrophysics Data System (ADS)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  5. Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred

    2008-01-01

    Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.

  6. Preliminary design package for Sunair SEC-601 solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of the Owens-Illinois model Sunair SEC-601 tubular air solar collector is presented. Information in this package includes the subsystem design and development approaches, hazard analysis, and detailed drawings available as the preliminary design review.

  7. 4MOST systems engineering: from conceptual design to preliminary design review

    NASA Astrophysics Data System (ADS)

    Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland

    2016-08-01

    The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.

  8. Preliminary design study for an atomospheric science facility

    NASA Technical Reports Server (NTRS)

    Hutchison, R.

    1972-01-01

    The activities and results of the Atmospheric Science Facility preliminary design study are reported. The objectives of the study were to define the scientific goals, to determine the range of experiment types, and to develop the preliminary instrument design requirements for a reusable, general purpose, optical research facility for investigating the earth's atmosphere from a space shuttle orbital vehicle.

  9. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Astrophysics Data System (ADS)

    Vaughan, W. W.; Green, C. E.

    1985-03-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  10. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.; Green, C. E.

    1985-01-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  11. Preliminary Design of ArchE: A Software Architecture Design Assistant

    DTIC Science & Technology

    2003-09-01

    This report presents a procedure for moving from a set of quality attribute scenarios to an architecture design that satisfies those scenarios. This...procedure is embodied in a preliminary design for an architecture design assistant named ArchE (Architecture Expert), which will be implemented on a

  12. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.

  13. Preliminary Opto-Mechanical Design for the X2000 Transceiver

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Page, N. A.

    2000-01-01

    Preliminary optical design and mechanical conceptual design for a 30 cm aperture transceiver are described. A common aperture is used for both transmit and receive. Special attention was given to off-axis and scattered light rejection and isolation of the receive channel from the transmit channel. Requirements, details of the design and preliminary performance analysis of the transceiver are provided.

  14. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, Ron; Demoss, Shane; Dirkzwager, AB; Evans, Darryl; Gomer, Charles; Keiter, Jerry; Knipp, Darren; Seier, Glen; Smith, Steve; Wenninger, ED

    1991-01-01

    The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance.

  15. Preliminary design report for OTEC stationkeeping subsystems (SKSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-12

    Lockheed Ocean Systems with IMODCO prepared these preliminary designs for OTEC Stationkeeping Subsystems (SKSS) under contract to NOAA in support of the Department of Energy OTEC program. The results of Tasks III, V, and VI are presented in this design report. The report consists of five sections: introduction, preliminary designs for the multiple anchor leg (MAL) and tension anchor leg (TAL), costs and schedule, and conclusions. Extensive appendixes provide detailed descriptions of design methodology and include backup calculations and data to support the results presented. The objective of this effort is to complete the preliminary designs for the barge-MAL andmore » Spar-TAL SKSS. A set of drawings is provided for each which show arrangements, configuration, component details, engineering description, and deployment plan. Loads analysis, performance assessment, and sensitivity to requirements are presented, together with the methodology employed to analyze the systems and to derive the results presented. Life cycle costs and schedule are prepared and compared on a common basis. Finally, recommendations for the Commercial Plant SKSS are presented for both platform types.« less

  16. System Synthesis in Preliminary Aircraft Design using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).

  17. PWR PRELIMINARY DESIGN FOR PL-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, G. E.

    1962-02-28

    The pressurized water reactor preliminary design, the preferred design developed under Phase I of the PL-3 contract, is presented. Plant design criteria, summary of plant selection, plant description, reactor and primary system description, thermal and hydraulic analysis, nuclear analysis, control and instrumentatlon description, shielding description, auxiliary systems, power plant equipment, waste dispusal, buildings and tunnels, services, operation and maintenance, logistics, erection, cost information, and a training program outline are given. (auth)

  18. Study on the Preliminary Design of ARGO-M Operation System

    NASA Astrophysics Data System (ADS)

    Seo, Yoon-Kyung; Lim, Hyung-Chul; Rew, Dong-Young; Jo, Jung Hyun; Park, Jong-Uk; Park, Eun-Seo; Park, Jang-Hyun

    2010-12-01

    Korea Astronomy and Space Science Institute has been developing one mobile satellite laser ranging system named as accurate ranging system for geodetic observation-mobile (ARGO-M). Preliminary design of ARGO-M operation system (AOS) which is one of the ARGO-M subsystems was completed in 2009. Preliminary design results are applied to the following development phase by performing detailed design with analysis of pre-defined requirements and analysis of the derived specifications. This paper addresses the preliminary design of the whole AOS. The design results in operation and control part which is a key part in the operation system are described in detail. Analysis results of the interface between operation-supporting hardware and the control computer are summarized, which is necessary in defining the requirements for the operation-supporting hardware. Results of this study are expected to be used in the critical design phase to finalize the design process.

  19. A robust optimization methodology for preliminary aircraft design

    NASA Astrophysics Data System (ADS)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.

  20. ISSA/TSS power preliminary design

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1996-01-01

    A projected power shortfall during the initial utilization flights of the International Space Station Alpha (ISSA) has prompted an inquiry into the use of the Tethered Satellite System (TSS) to provide station power. The preliminary design of the combined ISSA/TSS system is currently underway in the Preliminary Design Office at the Marshall Space Flight Center. This document focuses on the justification for using a tether system on space station, the physical principles behind such a system, and how it might be operated to best utilize its capabilities. The basic components of a simple DC generator are a magnet of some type and a conductive wire. Moving the wire through the magnetic field causes forces to be applied to the electric charges in the conductor, and thus current is induced to flow. This simple concept is the idea behind generating power with space-borne tether systems. The function of the magnet is performed by the earth's magnetic field, and orbiting a conductive tether about the earth effectively moves the tether through the field.

  1. Preliminary design approach for large high precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  2. NSLS-II Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configurationmore » to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the

  3. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  4. Technology User Groups and Early Childhood Education: A Preliminary Study

    ERIC Educational Resources Information Center

    Parette, Howard P.; Hourcade, Jack J.; Blum, Craig; Watts, Emily H.; Stoner, Julia B.; Wojcik, Brian W.; Chrismore, Shannon B.

    2013-01-01

    This article presents a preliminary examination of the potential of Technology User Groups as a professional development venue for early childhood education professionals in developing operational and functional competence in using hardware and software components of a Technology toolkit. Technology user groups are composed of varying numbers of…

  5. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    PubMed

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    PubMed Central

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870

  7. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton A.

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including amore » summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.« less

  8. Some experiences in aircraft aeroelastic design using Preliminary Aeroelastic Design of Structures (PAD)

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1984-01-01

    The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.

  9. Preliminary design of a solar central receiver for site-specific repowering application (Saguaro Power Plant). Volume II. Preliminary design. Final report, October 1982-September 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1983-09-01

    The solar central receiver technology, site, and specific unit for repowering were selected in prior analyses and studies. The objectives of this preliminary design study were to: develop a solar central receiver repowering design for Saguaro that (1) has potential to be economically competitive with fossil fueled plants in near and long term applications, (2) has the greatest chance for completion without further government funding, (3) will further define technical and economic feasibility of a 66 MWe gross size plant that is adequate to meet the requirements for utility and industrial process heat applications, (4) can potentially be constructed andmore » operated within the next five years, and (5) incorporates solar central receiver technology and represents state-of-the-art development. This volume on the preliminary design includes the following sections: executive summary; introduction; changes from advanced conceptual design; preliminary design; system characteristics; economic analysis; and development plan.« less

  10. Prenatal Exposure Effects on Early Adolescent Substance Use: Preliminary Evidence From a Genetically Informed Bayesian Approach.

    PubMed

    Bidwell, L Cinnamon; Marceau, Kristine; Brick, Leslie A; Karoly, Hollis C; Todorov, Alexandre A; Palmer, Rohan H; Heath, Andrew C; Knopik, Valerie S

    2017-09-01

    Given the controversy surrounding the question of whether there are direct or causal effects of exposure to maternal smoking during pregnancy (SDP) on offspring outcomes such as substance use during the adolescent years, we sought to test, on a preliminary basis, within- and between-family associations of SDP and initiation of substance use early in adolescence (by age 15 years) using a discordant sibling design. We used a sibling-comparison approach in a sample of 173 families drawn from the state of Missouri, wherein mothers were discordant for smoking behaviors between two different pregnancies, to test for associations of SDP and initiation of substance use in a younger adolescent cohort. The discordant sibling comparison approach allows for disentangling familial effects from direct effects of SDP through the purposeful collection of data from siblings within the same family with differential exposure. There were no between- or within-family effects of SDP on initiation of any type of substance use (alcohol, marijuana, smoking, and other drug classes), suggesting that SDP does not exert a direct effect on substance use in early adolescence. Preliminary findings did not support an association of SDP and initiation of substance use in this younger adolescent sample. Studies such as this one can help build a body of evidence to explain whether associations of SDP and adolescent outcomes reflect a direct effect of SPD or may instead be attributable to familial confounders that are controlled in the discordant sibling design.

  11. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  12. Preliminary System Design of the SWRL Financial System.

    ERIC Educational Resources Information Center

    Ikeda, Masumi

    The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…

  13. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.

    1986-01-01

    A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  14. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  15. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  16. Preliminary design package for prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  17. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary design review on the development of a prototype solar heating system for single family dwellings is presented. The collector, storage, transport, control, and site data acquisition subsystems are described.

  18. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  19. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  20. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  1. A system level model for preliminary design of a space propulsion solid rocket motor

    NASA Astrophysics Data System (ADS)

    Schumacher, Daniel M.

    Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.

  2. Preliminary design of a satellite observation system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cabe, Greg (Editor); Gallagher, Chris; Wilson, Brian; Rehfeld, James; Maurer, Alexa; Stern, Dan; Nualart, Jaime; Le, Xuan-Trang

    1992-01-01

    Degobah Satellite Systems (DSS), in cooperation with the University Space Research Association (USRA), NASA - Johnson Space Center (JSC), and the University of Texas, has completed the preliminary design of a satellite system to provide inexpensive on-demand video images of all or any portion of Space Station Freedom (SSF). DSS has narrowed the scope of the project to complement the work done by Mr. Dennis Wells at Johnson Space Center. This three month project has resulted in completion of the preliminary design of AERCAM, the Autonomous Extravehicular Robotic Camera, detailed in this design report. This report begins by providing information on the project background, describing the mission objectives, constraints, and assumptions. Preliminary designs for the primary concept and satellite subsystems are then discussed in detail. Included in the technical portion of the report are detailed descriptions of an advanced imaging system and docking and safing systems that ensure compatibility with the SSF. The report concludes by describing management procedures and project costs.

  3. AOTV Low L/D Preliminary Aeroheating Design Environment

    NASA Technical Reports Server (NTRS)

    Engel, C. D.

    1983-01-01

    The aerothermal environment to a configuration with a brake face which exhibits a low lift to drag ratio (L/D) of below 0.75 is emphasized. The five times geosynchronous (5 x Geo) orbit entry was selected as the design trajectory. The available data base and math model is discussed. The resulting preliminary design environment is documented. Recommendations as to how the design environment may be improved through technological advances are given.

  4. Earthquake Early Warning: User Education and Designing Effective Messages

    NASA Astrophysics Data System (ADS)

    Burkett, E. R.; Sellnow, D. D.; Jones, L.; Sellnow, T. L.

    2014-12-01

    The U.S. Geological Survey (USGS) and partners are transitioning from test-user trials of a demonstration earthquake early warning system (ShakeAlert) to deciding and preparing how to implement the release of earthquake early warning information, alert messages, and products to the public and other stakeholders. An earthquake early warning system uses seismic station networks to rapidly gather information about an occurring earthquake and send notifications to user devices ahead of the arrival of potentially damaging ground shaking at their locations. Earthquake early warning alerts can thereby allow time for actions to protect lives and property before arrival of damaging shaking, if users are properly educated on how to use and react to such notifications. A collaboration team of risk communications researchers and earth scientists is researching the effectiveness of a chosen subset of potential earthquake early warning interface designs and messages, which could be displayed on a device such as a smartphone. Preliminary results indicate, for instance, that users prefer alerts that include 1) a map to relate their location to the earthquake and 2) instructions for what to do in response to the expected level of shaking. A number of important factors must be considered to design a message that will promote appropriate self-protective behavior. While users prefer to see a map, how much information can be processed in limited time? Are graphical representations of wavefronts helpful or confusing? The most important factor to promote a helpful response is the predicted earthquake intensity, or how strong the expected shaking will be at the user's location. Unlike Japanese users of early warning, few Californians are familiar with the earthquake intensity scale, so we are exploring how differentiating instructions between intensity levels (e.g., "Be aware" for lower shaking levels and "Drop, cover, hold on" at high levels) can be paired with self-directed supplemental

  5. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    NASA Astrophysics Data System (ADS)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  6. Advanced solar concentrator: Preliminary and detailed design

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Maraschin, R. A.; Matsushita, M. T.; Erskine, D.; Carlton, R.; Jakovcevic, A.; Yasuda, A. K.

    1981-01-01

    A single reflection point focusing two-axis tracking paraboloidal dish with a reflector aperture diameter of approximately 11 m has a reflective surface made up of 64 independent, optical quality gores. Each gore is a composite of a thin backsilvered mirror glass face sheet continuously bonded to a contoured substrate of lightweight, rigid cellular glass. The use of largely self-supporting gores allows a significant reduction in the weight of the steel support structure as compared to alternate design concepts. Primary emphasis in the preliminary design package for the low-cost, low-weight, mass producible concentrator was placed on the design of the higher cost subsystems. The outer gore element was sufficiently designed to allow fabrication of prototype gores.

  7. Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design

    NASA Technical Reports Server (NTRS)

    Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult -- in both cost and schedule -- to enact. Indeed, the current capability-based paradigm that has emerged because of the constrained economic environment calls for the infusion of knowledge acquired during later design phases into earlier design phases, i.e. bring knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture as the need for more economically viable access to space solutions are needed in today's constrained economic environment. The problem of ascent trajectory optimization is not a new one. There are several programs that are widely used in industry that allows trajectory analysts to, based on detailed vehicle and insertion orbit parameters, determine the optimal ascent trajectory. Yet, little information is known about the launch vehicle early in the design phase - information that is required of many different disciplines in order to successfully optimize the ascent trajectory. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi

  8. Overview of the preliminary design of the ITER plasma control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.

    An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less

  9. Overview of the preliminary design of the ITER plasma control system

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2017-12-01

    An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.

  10. Overview of the preliminary design of the ITER plasma control system

    DOE PAGES

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; ...

    2017-09-11

    An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less

  11. Preliminary design of the Space Station internal thermal control system

    NASA Technical Reports Server (NTRS)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  12. Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1995-01-01

    An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.

  13. Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  14. Automated CPX support system preliminary design phase

    NASA Technical Reports Server (NTRS)

    Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.

    1984-01-01

    The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.

  15. Overview of the Preliminary Design of the Optical Communication Demonstration and High-Rate Link Facility

    NASA Technical Reports Server (NTRS)

    Sandusky, John V.; Jeganathan, M.; Ortiz, G.; Biswas, A.; Lee, S.; Parker, G.; Liu, B.; Johnson, D.; DePew, J.; Lesh, J. R.

    2000-01-01

    Tlis paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-Rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory-model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.

  16. Preliminary design for a maglev development facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.T.; He, J.L.; Chang, S.L.

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less

  17. Preliminary design polymeric materials experiment. [for space shuttles and Spacelab missions

    NASA Technical Reports Server (NTRS)

    Mattingly, S. G.; Rude, E. T.; Marshner, R. L.

    1975-01-01

    A typical Advanced Technology Laboratory mission flight plan was developed and used as a guideline for the identification of a number of experiment considerations. The experiment logistics beginning with sample preparation and ending with sample analysis are then overlaid on the mission in order to have a complete picture of the design requirements. The results of this preliminary design study fall into two categories. First specific preliminary designs of experiment hardware which is adaptable to a variety of mission requirements. Second, identification of those mission considerations which affect hardware design and will require further definition prior to final design. Finally, a program plan is presented which will provide the necessary experiment hardware in a realistic time period to match the planned shuttle flights. A bibliography of all material reviewed and consulted but not specifically referenced is provided.

  18. Preliminary design of flight hardware for two-phase fluid research

    NASA Technical Reports Server (NTRS)

    Hustvedt, D. C.; Oonk, R. L.

    1982-01-01

    This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.

  19. Preliminary design of a supercritical CO2 wind tunnel

    NASA Astrophysics Data System (ADS)

    Re, B.; Rurale, A.; Spinelli, A.; Guardone, A.

    2017-03-01

    The preliminary design of a test-rig for non-ideal compressible-fluid flows of carbon dioxide is presented. The test-rig is conceived to investigate supersonic flows that are relevant to the study of non-ideal compressible-fluid flows in the close proximity of the critical point and of the liquid-vapor saturation curve, to the investigation of drop nucleation in compressors operating with supercritical carbon dioxide and and to the study of flow conditions similar to those encountered in turbines for Organic Rankine Cycle applications. Three different configurations are presented and examined: a batch-operating test-rig, a closed-loop Brayton cycle and a closed-loop Rankine cycle. The latter is preferred for its versatility and for economic reasons. A preliminary design of the main components is reported, including the heat exchangers, the chiller, the pumps and the test section.

  20. An approach to quantitative sustainability assessment in the early stages of process design.

    PubMed

    Tugnoli, Alessandro; Santarelli, Francesco; Cozzani, Valerio

    2008-06-15

    A procedure was developed for the quantitative assessment of key performance indicators suitable for the sustainability analysis of alternative processes, mainly addressing the early stages of process design. The methodology was based on the calculation of a set of normalized impact indices allowing a direct comparison of the additional burden of each process alternative on a selected reference area. Innovative reference criteria were developed to compare and aggregate the impact indicators on the basis of the site-specific impact burden and sustainability policy. An aggregation procedure also allows the calculation of overall sustainability performance indicators and of an "impact fingerprint" of each process alternative. The final aim of the method is to support the decision making process during process development, providing a straightforward assessment of the expected sustainability performances. The application of the methodology to case studies concerning alternative waste disposal processes allowed a preliminary screening of the expected critical sustainability impacts of each process. The methodology was shown to provide useful results to address sustainability issues in the early stages of process design.

  1. Energy efficient engine: Preliminary design and integration studies

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Hirschkron, R.; Koch, C. C.; Neitzel, R. E.; Vinson, P. W.

    1978-01-01

    Parametric design and mission evaluations of advanced turbofan configurations were conducted for future transport aircraft application. Economics, environmental suitability and fuel efficiency were investigated and compared with goals set by NASA. Of the candidate engines which included mixed- and separate-flow, direct-drive and geared configurations, an advanced mixed-flow direct-drive configuration was selected for further design and evaluation. All goals were judged to have been met except the acoustic goal. Also conducted was a performance risk analysis and a preliminary aerodynamic design of the 10 stage 23:1 pressure ratio compressor used in the study engines.

  2. Preliminary design data package, appendix C. [hybrid electric vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The data and documentation required to define the preliminary design of a near term hybrid vehicle and to quantify its operational characteristics are presented together with the assumptions and rationale behind the design decisions. Aspects discussed include development requirements for the propulsion system, the chassis system, the body, and the vehicle systems. Particular emphasis is given to the controls, the heat engine, and the batteries.

  3. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  4. OPDOT: A computer program for the optimum preliminary design of a transport airplane

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.; Arbuckle, P. D.

    1980-01-01

    A description of a computer program, OPDOT, for the optimal preliminary design of transport aircraft is given. OPDOT utilizes constrained parameter optimization to minimize a performance index (e.g., direct operating cost per block hour) while satisfying operating constraints. The approach in OPDOT uses geometric descriptors as independent design variables. The independent design variables are systematically iterated to find the optimum design. The technical development of the program is provided and a program listing with sample input and output are utilized to illustrate its use in preliminary design. It is not meant to be a user's guide, but rather a description of a useful design tool developed for studying the application of new technologies to transport airplanes.

  5. Preliminary design of turbopumps and related machinery

    NASA Technical Reports Server (NTRS)

    Wislicenus, George F.

    1986-01-01

    Pumps used in large liquid-fuel rocket engines are examined. The term preliminary design denotes the initial, creative phases of design, where the general shape and characteristics of the machine are determined. This compendium is intended to provide the design engineer responsible for these initial phases with a physical understanding and background knowledge of the numerous special fields involved in the design process. Primary attention is directed to the pumping part of the turbopump and hence is concerned with essentially incompressible fluids. However, compressible flow principles are developed. As much as possible, the simplicity and reliability of incompressible flow considerations are retained by treating the mechanics of compressible fluids as a departure from the theory of incompressible fluids. Five areas are discussed: a survey of the field of turbomachinery in dimensionless form; the theoretical principles of the hydrodynamic design of turbomachinery; the hydrodynamic and gas dynamic design of axial flow turbomachinery; the hydrodynamic and gas dynamic design of radial and mixed flow turbomachinery; and some mechanical design considerations of turbomachinery. Theoretical considerations are presented with a relatively elementary mathematical treatment.

  6. Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design

    NASA Technical Reports Server (NTRS)

    Harmon, T. J.; Roschak, E.

    1993-01-01

    A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.

  7. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  8. Modular space station phase B extension, preliminary system design. Volume 4: Subsystems analyses

    NASA Technical Reports Server (NTRS)

    Antell, R. W.

    1972-01-01

    The subsystems tradeoffs, analyses, and preliminary design results are summarized. Analyses were made of the structural and mechanical, environmental control and life support, electrical power, guidance and control, reaction control, information, and crew habitability subsystems. For each subsystem a summary description is presented including subsystem requirements, subsystem description, and subsystem characteristics definition (physical, performance, and interface). The major preliminary design data and tradeoffs or analyses are described in detail at each of the assembly levels.

  9. Preliminary design of a mini-Brayton Compressor-Alternator-Turbine (CAT)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary design of a mini-Brayton compressor-alternator-turbine system is discussed. The program design goals are listed. The optimum system characteristics over the entire range of power output were determined by performing a wide-range parametric study. The ability to develop the required components to the degree necessary within the limitations of present technology is evaluated. The sensitivity of the system to various individual design parameters was analyzed.

  10. Preliminary Quality Control System Design for the Pell Grant Program.

    ERIC Educational Resources Information Center

    Advanced Technology, Inc., Reston, VA.

    A preliminary design for a quality control (QC) system for the Pell Grant Program is proposed, based on the needs of the Office of Student Financial Assistance (OSFA). The applicability of the general design for other student aid programs administered by OSFA is also considered. The following steps included in a strategic approach to QC system…

  11. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  12. Preliminary design of the HARMONI science software

    NASA Astrophysics Data System (ADS)

    Piqueras, Laure; Jarno, Aurelien; Pécontal-Rousset, Arlette; Loupias, Magali; Richard, Johan; Schwartz, Noah; Fusco, Thierry; Sauvage, Jean-François; Neichel, Benoît; Correia, Carlos M.

    2016-08-01

    This paper introduces the science software of HARMONI. The Instrument Numerical Model simulates the instrument from the optical point of view and provides synthetic exposures simulating detector readouts from data-cubes containing astrophysical scenes. The Data Reduction Software converts raw-data frames into a fully calibrated, scientifically usable data cube. We present the functionalities and the preliminary design of this software, describe some of the methods and algorithms used and highlight the challenges that we will have to face.

  13. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less

  14. Advanced space engine preliminary design

    NASA Technical Reports Server (NTRS)

    Cuffe, J. P. B.; Bradie, R. E.

    1973-01-01

    A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.

  15. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  16. A bootstrap lunar base: Preliminary design review 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  17. Alchemical poetry in medieval and early modern Europe: a preliminary survey and synthesis. Part I--Preliminary survey.

    PubMed

    Kahn, Didier

    2010-11-01

    This article provides a preliminary description of medieval and early modern alchemical poetry composed in Latin and in the principal vernacular languages of western Europe. It aims to distinguish the various genres in which this poetry flourished, and to identify the most representative aspects of each cultural epoch by considering the medieval and early modern periods in turn. Such a distinction (always somewhat artificial) between two broad historical periods may be justified by the appearance of new cultural phenomena that profoundly modified the character of early modern alchemical poetry: the ever-increasing importance of the prisca theologia, the alchemical interpretation of ancient mythology, and the rise of neo-Latin humanist poetry. Although early modern alchemy was marked by the appearance of new doctrines (notably the alchemical spiritus mundi and Paracelsianism), alchemical poetry was only superficially modified by criteria of a scientific nature, which therefore appear to be of lesser importance. This study falls into two parts. Part I provides a descriptive survey of extant poetry, and in Part II the results of the survey are analysed in order to highlight such distinctive features as the function of alchemical poetry, the influence of the book market on its evolution, its doctrinal content, and the question of whether any theory of alchemical poetry ever emerged. Part II is accompanied by an index of the authors and works cited in both parts.

  18. Preliminary design of Viking Armored Gun System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogolewski, R.P.; Cunningham, B.J.

    We have completed the preliminary design of our third lightweight armored fighting vehicle -- the Viking Armored Gun System (AGS). The AGS vehicle features a two-man crew, the Ares 75mm Universal Turret System, and the John Deere 4026R Rotary Engine. In the spirit of our earlier AFV designs, our primary concern is to provide the AGS with sufficient firepower and survivability while utilizing off-the-shelf'' sub-systems and components in order to reduce developmental time and acquisition cost. We still envision that prototypic vehicles could be built within a thirty (30) month developmental/demonstration program. We still believe that vehicles of this classmore » should be built and tested soon to assess their full tactical, operational, and strategic utilities.« less

  19. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    NASA Astrophysics Data System (ADS)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  20. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    NASA Technical Reports Server (NTRS)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1990-01-01

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  1. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  2. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  3. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's

  4. Preliminary thermal design of the COLD-SAT spacecraft

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  5. NASA/Navy life/cruise fan preliminary design report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Preliminary design studies were performed to define a turbotip lift/cruise fan propulsion system for a Navy multimission aircraft. The fan is driven by the exhausts of the YJ97-GE-100 turbojet or a 20 percent Growth J97 configuration as defined during the studies. The LCF459 fan configuration defined has a tip diameter of 1.50 meters (59.0 inches) and develops a design point thrust of 75,130 N (16,890 lbs) at a fan pressure ratio of 1.319. The fan has an estimated weight of 386 kg (850 lbs). Trade studies performed to define the selected configuration are described.

  6. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for

  7. Internet-Delivered, Family-Based Treatment for Early-Onset OCD: A Preliminary Case Series

    PubMed Central

    Comer, Jonathan S.; Furr, Jami M.; Cooper-Vince, Christine E.; Kerns, Caroline E.; Chan, Priscilla T.; Edson, Aubrey L.; Khanna, Muniya; Franklin, Martin E.; Garcia, Abbe M.; Freeman, Jennifer B.

    2014-01-01

    Given the burdens of early-onset obsessive-compulsive disorder (OCD), limitations in the broad availability and accessibility of evidence-based care for affected youth present serious public health concerns. The growing potential for technological innovations to transform care for the most traditionally remote and underserved families holds enormous promise. This article presents the rationale, key considerations, and a preliminary case series for a promising behavioral telehealth innovation in the evidence-based treatment of early-onset OCD. We developed an Internet-based format for the delivery of family-based treatment for early-onset OCD directly to families in their homes, regardless of their geographic proximity to a mental health facility. Videoteleconferencing (VTC) methods were used to deliver real-time cognitive-behavioral therapy centering on exposure and response prevention to affected families. Participants in the preliminary case series included 5 children between the ages of 4 and 8 (MAge = 6.5) who received the Internet-delivered treatment format. All youth completed a full treatment course, all showed OCD symptom improvements and global severity improvements from pre- to posttreatment, all showed at least partial diagnostic response, and 60% no longer met diagnostic criteria for OCD at posttreatment. No participants got worse, and all mothers characterized the quality of services received as “excellent.” The present work adds to a growing literature supporting the potential of VTC and related computer technology for meaningfully expanding the reach of supported treatments for OCD and lays the foundation for subsequent controlled evaluations to evaluate matters of efficacy and engagement relative to standard in-office evidence-based care. PMID:24295036

  8. APEX 3D Propeller Test Preliminary Design

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2002-01-01

    A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.

  9. Individualization for Education at Scale: MIIC Design and Preliminary Evaluation

    ERIC Educational Resources Information Center

    Brinton, Christopher G.; Rill, Ruediger; Ha, Sangtae; Chiang, Mung; Smith, Robert; Ju, William

    2015-01-01

    We present the design, implementation, and preliminary evaluation of our Adaptive Educational System (AES): the Mobile Integrated and Individualized Course (MIIC). MIIC is a platform for personalized course delivery which integrates lecture videos, text, assessments, and social learning into a mobile native app, and collects clickstream-level…

  10. Preliminary Design Program: Vapor Compression Distillation Flight Experiment Program

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Boyda, R. B.

    1995-01-01

    This document provides a description of the results of a program to prepare a preliminary design of a flight experiment to demonstrate the function of a Vapor Compression Distillation (VCD) Wastewater Processor (WWP) in microgravity. This report describes the test sequence to be performed and the hardware, control/monitor instrumentation and software designs prepared to perform the defined tests. the purpose of the flight experiment is to significantly reduce the technical and programmatic risks associated with implementing a VCD-based WWP on board the International Space Station Alpha.

  11. Radiology workstation for mammography: preliminary observations, eyetracker studies, and design

    NASA Astrophysics Data System (ADS)

    Beard, David V.; Johnston, Richard E.; Pisano, Etta D.; Hemminger, Bradley M.; Pizer, Stephen M.

    1991-07-01

    For the last four years, the UNC FilmPlane project has focused on constructing a radiology workstation facilitating CT interpretations equivalent to those with film and viewbox. Interpretation of multiple CT studies was originally chosen because handling such large numbers of images was considered to be one of the most difficult tasks that could be performed with a workstation. The authors extend the FilmPlane design to address mammography. The high resolution and contrast demands coupled with the number of images often cross- compared make mammography a difficult challenge for the workstation designer. This paper presents the results of preliminary work with workstation interpretation of mammography. Background material is presented to justify why the authors believe electronic mammographic workstations could improve health care delivery. The results of several observation sessions and a preliminary eyetracker study of multiple-study mammography interpretations are described. Finally, tentative conclusions of what a mammographic workstation might look like and how it would meet clinical demand to be effective are presented.

  12. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  13. The ASTRO-1 preliminary design review coupled load analysis

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1984-01-01

    Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

  14. Preliminary design of a radiator shading device for a lunar outpost

    NASA Technical Reports Server (NTRS)

    Barron, Carlos; Castro, Norma I.; Phillips, Brian

    1991-01-01

    The National Aeronautics and Space Administration is designing a thermal control system for an outpost to be placed permanently on the Moon. One of the functions of the thermal control system is to reject waste heat, which can be accomplished through a radiator. At the lunar equator and during the lunar midday, an unshaded radiator absorbs more heat than it rejects. This problem can be solved by using a shading device to reduce radiation incident on the radiator. The design team was asked to develop concepts for reducing the radiation incident on the radiator and for deploying the radiator and shade system for a 10 kW and a 25 kW heat rejection system. The design team was also asked to develop the best concepts into preliminary design. From the several alternatives developed by the design team, the best one was selected using a decision matrix. Preliminary design of the best concept include support structure, stress analyses, and thermal performance. In addition, the team developed ideas for removing lunar dust from the shading device. The final design solution consisted of a winged radiator shading system with a rail support structure and a scissors mechanism for deployment. The total radiator area required was calculated to be 389 sq m for the 10 kW heat rejection system and 973 sq m for the 25 kW heat rejection system.

  15. Preliminary design of a high speed civil transport: The Opus 0-001

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Based on research into the technology and issues surrounding the design, development, and operation of a second generation High Speed Civil Transport, HSCT, the Opus 0-001 team completed the preliminary design of a sixty passenger, three engine aircraft. The design of this aircraft was performed using a computer program which the team wrote. This program automatically computed the geometric, aerodynamic, and performance characteristic of an aircraft whose preliminary geometry was specified. The Opus 0-001 aircraft was designed for a cruise Mach number of 2.2, a range of 4,700 nautical miles and its design was based in current or very near term technology. Its small size was a consequence of an emphasis on a profitable, low cost program, capable of delivering tomorrow's passengers in style and comfort at prices that make it an attractive competitor to both current and future subsonic transport aircraft. Several hundred thousand cases of Cruise Mach number, aircraft size and cost breakdown were investigated to obtain costs and revenues for which profit was calculated. The projected unit flyaway cost was $92.0 million per aircraft.

  16. ICT and UD: Preliminary Study for Recommendations to Design Accessible University Courses.

    PubMed

    Pagliara, Silvio Marcello; Sánchez Utgé, Marta; De Anna, Lucia

    2017-01-01

    Starting from the Universal Design in the educational context principles, the experiences gained during the FIRB project "Net@ccessibility" and the high-education courses for teachers' specialization on special education, this research will focus on preliminary studies in order to define the recommendations for designing accessible university courses.

  17. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  18. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review.

  19. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information contained in this report includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition.

  20. Quiet Clean Short-haul Experimental Engine (QCSEE) UTW fan preliminary design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High bypass geared turbofan engines and propulsion systems designed for short-haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is emphasized. The aerodynamic and mechanical preliminary design of the QCSEE under the wing 1.34 pressure ratio fan with variable blade pitch is presented. Design information is given for two pitch change actuation systems which will provide reverse thrust.

  1. Design aids of NU I-girders bridges.

    DOT National Transportation Integrated Search

    2010-05-01

    Precast prestressed concrete I-Girder bridges have become the most dominant bridge system in the United States. In the early design : stages, preliminary design becomes a vital first step in designing an economical bridge. Within the state of Nebrask...

  2. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  3. Preliminary design of a long-endurance Mars aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1990-01-01

    The preliminary design requirements of a long endurance aircraft capable of flight within the Martian environment was determined. Both radioisotope/heat engine and PV solar array power production systems were considered. Various cases for each power system were analyzed in order to determine the necessary size, weight and power requirements of the aircraft. The analysis method used was an adaptation of the method developed by Youngblood and Talay of NASA-Langley used to design a high altitude earth based aircraft. The analysis is set up to design an aircraft which, for the given conditions, has a minimum wingspan and maximum endurance parameter. The results showed that, for a first approximation, a long endurance aircraft is feasible within the Martian environment. The size and weight of the most efficient solar aircraft were comparable to the radioisotope powered one.

  4. A preliminary 6 DOF attitude and translation control system design for Starprobe

    NASA Technical Reports Server (NTRS)

    Mak, P.; Mettler, E.; Vijayarahgavan, A.

    1981-01-01

    The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.

  5. Preliminary design package for maxi-therm heat exchanger module

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Heat exchangers were developed for use in a solar heating and cooling system installed in a single family dwelling. Each of the three exchangers consisted of a heating and cooling module and a submersed electric water heating element. Information necessary to evaluate the preliminary design of the heat exchanger is presented in terms of the development and verification plans, performance specifications, installation and maintenance, and hazard analysis.

  6. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  7. A Preliminary Study on Gender Differences in Studying Systems Analysis and Design

    ERIC Educational Resources Information Center

    Lee, Fion S. L.; Wong, Kelvin C. K.

    2017-01-01

    Systems analysis and design is a crucial task in system development and is included in a typical information systems programme as a core course. This paper presented a preliminary study on gender differences in studying a systems analysis and design course of an undergraduate programme. Results indicated that male students outperformed female…

  8. Sediment Export from Forest Road Turn-outs: A Study Design and Preliminary Results

    Treesearch

    Johnny M. Grace

    1998-01-01

    This paper reports the design and preliminary results of a study that evaluates the effects of commonly prescribed forest road runoff control treatments. A study design which utilizes runoff samplers, runoff diversion walls, sediment filter bags, and erosion stakes to evaluate sediment transport through runoff control treatments is documented. The study design will...

  9. Preliminary design of nine high speed civil transports

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  10. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations, or GSDO, Program completed its preliminary design review which allows development of the ground systems to proceed to detailed design. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  11. An Early Years Toolbox for Assessing Early Executive Function, Language, Self-Regulation, and Social Development: Validity, Reliability, and Preliminary Norms

    PubMed Central

    Howard, Steven J.; Melhuish, Edward

    2016-01-01

    Several methods of assessing executive function (EF), self-regulation, language development, and social development in young children have been developed over previous decades. Yet new technologies make available methods of assessment not previously considered. In resolving conceptual and pragmatic limitations of existing tools, the Early Years Toolbox (EYT) offers substantial advantages for early assessment of language, EF, self-regulation, and social development. In the current study, results of our large-scale administration of this toolbox to 1,764 preschool and early primary school students indicated very good reliability, convergent validity with existing measures, and developmental sensitivity. Results were also suggestive of better capture of children’s emerging abilities relative to comparison measures. Preliminary norms are presented, showing a clear developmental trajectory across half-year age groups. The accessibility of the EYT, as well as its advantages over existing measures, offers considerably enhanced opportunities for objective measurement of young children’s abilities to enable research and educational applications. PMID:28503022

  12. Preliminary Surface Thermal Design of the Mars 2020 Rover

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep

    2015-01-01

    The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.

  13. Preliminary design study of advanced multistage axial flow core compressors

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.

    1977-01-01

    A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.

  14. Preliminary Design of Nano Satellite for Regional Navigation System

    NASA Astrophysics Data System (ADS)

    Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.

    2018-04-01

    A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.

  15. Preliminary design of a family of three close air support aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Darrah, Paul; Lussier, Wayne; Mills, Nikos

    1989-01-01

    A family of three Close Air Support aircraft is presented. These aircraft are designed with commonality as the main design objective to reduce the life cycle cost. The aircraft are low wing, twin-boom, pusher turbo-prop configurations. The amount of information displayed to the pilot was reduced to a minimum to greatly simplify the cockpit. The aircraft met the mission specifications and the performance and cost characteristics compared well with other CAS aircraft. The concept of a family of CAS aircraft seems viable after preliminary design.

  16. Space station preliminary design report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.

  17. Modeling Temporal Processes in Early Spacecraft Design: Application of Discrete-Event Simulations for Darpa's F6 Program

    NASA Technical Reports Server (NTRS)

    Dubos, Gregory F.; Cornford, Steven

    2012-01-01

    While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".

  18. Preliminary Process Design of ITER ELM Coil Bracket Brazing

    NASA Astrophysics Data System (ADS)

    LI, Xiangbin; SHI, Yi

    2015-03-01

    With the technical requirement of the International Thermonuclear Experimental Reactor (ITER) project, the manufacture and assembly technology of the mid Edge Localized Modes (ELM) coil was developed by the Institute of Plasma Physics, Chinese Academy of Science (ASIPP). As the gap between the bracket and the Stainless Steel jacketed and Mineral Insulated Conductor (SSMIC) can be larger than 0.5 mm instead of 0.01 mm to 0.1 mm as in normal industrial cases, the process of mid ELM coil bracket brazing to the SSMICT becomes quiet challenging, from a technical viewpoint. This paper described the preliminary design of ELM coil bracket brazing to the SSMIC process, the optimal bracket brazing curve and the thermal simulation of the bracket furnace brazing method developed by ANSYS. BAg-6 foil (Bag50Cu34Zn16) plus BAg-1a paste (Bag45CuZnCd) solders were chosen as the brazing filler. By testing an SSMICT prototype, it is shown that the average gap between the bracket and the SSMIC could be controlled to 0.2-0.3 mm, and that there were few voids in the brazing surface. The results also verified that the preliminary design had a favorable heat conducting performance in the bracket.

  19. Photodetection of early cancer by laser-induced fluorescence of a tumor-selective dye: apparatus design and realization

    NASA Astrophysics Data System (ADS)

    Wagnieres, Georges A.; Depeursinge, Christian D.; Monnier, Philippe; Savary, Jean-Francois; Cornaz, Piet F.; Chatelain, Andre; van den Bergh, Hubert

    1990-07-01

    An apparatus is designed and realized to detect "early" cancer at the surface of the hollow organs in the human body by endoscopic means. The tumor is localized by the laser induced fluorescence of a dye (HPD) which concentrates selectively in the neoplastic tissue after intravenous injection. Fluorescence contrast between the tumor and its normal surroundings is enhanced by subtracting the background autofluorescence which occurs in both types of tissue. This is done by means of 2-color digital images manipulation in real-time. Preliminary clinical tests of the apparatus demonstrated the detection of carcinoma in situ in the esophagus.

  20. A functionally optimized hot-mix asphalt wearing course : part I : preliminary results.

    DOT National Transportation Integrated Search

    2009-01-01

    The purpose of this report was to highlight the preliminary findings of the design, production, placement, and early life performance of a new generation open-graded surface course (also referred to as porous friction course [PFC]) for use in Virgini...

  1. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  2. The Preliminary Design of a Universal Martian Lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David; Adkins, Sean; MacDonnell, David; Ross, Enoch; Hashimoto, Kouichi; Miller, Loran; Sarick, John; Hicks, Jonathan; Parlock, Andrew; hide

    1993-01-01

    As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules are assembled to form a Martian base where scientific experiments are performed. The mission also incorporates hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psycho-logical effects of living on Mars. In situ fuel production for the Martian Ascent and Rendezvous Vehicle (MARV) is produced From gases in the Martian atmosphere. Following surface operations, the eight member crew uses the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  3. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation.

    PubMed

    Lee, Kiju; Jeong, Donghwa; Schindler, Rachael C; Hlavaty, Laura E; Gross, Susan I; Short, Elizabeth J

    2018-01-01

    Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games) for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach. Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept) were also administered. Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously.

  4. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation

    PubMed Central

    Lee, Kiju; Jeong, Donghwa; Schindler, Rachael C.; Hlavaty, Laura E.; Gross, Susan I.; Short, Elizabeth J.

    2018-01-01

    Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games) for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach. Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept) were also administered. Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously. PMID:29868520

  5. Early Combination of Material Characteristics and Toxicology Is Useful in the Design of Low Toxicity Carbon Nanofiber

    PubMed Central

    Jensen, Ellen K.; Larsen, Sten Y.; Nygaard, Unni C.; Marioara, Calin D.; Syversen, Tore

    2012-01-01

    This paper describes an approach for the early combination of material characterization and toxicology testing in order to design carbon nanofiber (CNF) with low toxicity. The aim was to investigate how the adjustment of production parameters and purification procedures can result in a CNF product with low toxicity. Different CNF batches from a pilot plant were characterized with respect to physical properties (chemical composition, specific surface area, morphology, surface chemistry) as well as toxicity by in vitro and in vivo tests. A description of a test battery for both material characterization and toxicity is given. The results illustrate how the adjustment of production parameters and purification, thermal treatment in particular, influence the material characterization as well as the outcome of the toxic tests. The combination of the tests early during product development is a useful and efficient approach when aiming at designing CNF with low toxicity. Early quality and safety characterization, preferably in an iterative process, is expected to be efficient and promising for this purpose. The toxicity tests applied are preliminary tests of low cost and rapid execution. For further studies, effects such as lung inflammation, fibrosis and respiratory cancer are recommended for the more in-depth studies of the mature CNF product.

  6. A comprehensive method for preliminary design optimization of axial gas turbine stages

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1982-01-01

    A method is presented that performs a rapid, reasonably accurate preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; (3) predictions of expected turbine performance. The method uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with four existing single stage turbines.

  7. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  8. Preliminary Design of Low-Thrust Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Flanagan, Steve N.

    1997-01-01

    For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.

  9. Preliminary design of the cavity-end deformable mirror of the megajoule laser

    NASA Astrophysics Data System (ADS)

    Bozec, Xavier; Mercier-Ythier, Renaud; Carel, Jean-Louis; Coustal, Pierre; Michelin, Jean L.

    1999-07-01

    This paper describes a preliminary design to realize a 400 X 400 mm2 active deformable mirror in the framework of the LaserMegajoule French program. The proposed design is based on a force control strategy. Forces are generated by specific designed electromechanical actuators and transmitted to a Zerodur mirror through an annular soft pad. This pad is optimized to filter high frequency ripple generated by the spatial sampling of the efforts at the back of the mirror in order to decrease the needed number of actuators, and thus the cost of the deformable mirror, a specific optimization method has been developed and is applied to determine the best actuator pattern fitted on the wavefront aberrations to be corrected. Analysis, calculations, finite elements models, preliminary test and validations on breadboard models have shown that the proposed design in compliant with the functional and operation requirements. A design description and the main justifications, as the guidelines of mirror integration are given in this paper. Due to the simplicity of the concept and the use of validate and mastered technologies at SFIM Industries and REOSC, the design present a good reliability. Furthermore, a complete and very easy to work maintainability is favored by this deformable mirror definition. Each parts of the system is easily removable and replaceable on the laser line without carrying out a heavy procedure and complex tools.

  10. Wayside energy storage study. Volume 4 : dual-mode locomotive : preliminary design study

    DOT National Transportation Integrated Search

    1979-02-01

    A preliminary design study was conducted to confirm the technical viability and economic attractiveness of the dual-mode locomotive concept based on the most common U.S. road locomotive, the SD40-2. The study examined the existing characteristics of ...

  11. Design Criteria for X-CRV Honeycomb Panels: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Caccese, Vincent; Verinder, Irene

    1997-01-01

    The objective of this project is to perform the first step in developing structural design criteria for composite sandwich panels that are to be used in the aeroshell of the crew return vehicle (X-CRV). The preliminary concept includes a simplified method for assessing the allowable strength in the laminate material. Ultimately, it is intended that the design criteria be extended to address the global response of the vehicle. This task will require execution of a test program as outlined in the recommendation section of this report. The aeroshell of the X-CRV is comprised of composite sandwich panels consisting of fiberite face sheets and a phenolic honeycomb core. The function of the crew return vehicle is to enable the safe return of injured or ill crewpersons from space station, the evacuation of crew in case of emergency or the return of crew if an orbiter is not available. A significant objective of the X-CRV project is to demonstrate that this vehicle can be designed, built and operated at lower cost and at a significantly faster development time. Development time can be reduced by driving out issues in both structural design and manufacturing concurrently. This means that structural design and analysis progresses in conjunction with manufacturing and testing. Preliminary tests results on laminate coupons are presented in the report. Based on these results a method for detection material failure in the material is presented. In the long term, extrapolation of coupon data to large scale structures may be inadequate. Test coupons used to develop failure criteria at the material scale are typically small when compared to the overall structure. Their inherent small size indicates that the material failure criteria can be used to predict localized failure of the structure, however, it can not be used to predict failure for all failure modes. Some failure modes occur only when the structure or one of its sub-components are studied as a whole. Conversely, localized

  12. Mixed-Reality Prototypes to Support Early Creative Design

    NASA Astrophysics Data System (ADS)

    Safin, Stéphane; Delfosse, Vincent; Leclercq, Pierre

    The domain we address is creative design, mainly architecture. Rooted in a multidisciplinary approach as well as a deep understanding of architecture and design, our method aims at proposing adapted mixed-reality solutions to support two crucial activities: sketch-based preliminary design and distant synchronous collaboration in design. This chapter provides a summary of our work on a mixed-reality device, based on a drawing table (the Virtual Desktop), designed specifically to address real-life/business-focused issues. We explain our methodology, describe the two supported activities and the related users’ needs, detail the technological solution we have developed, and present the main results of multiple evaluation sessions. We conclude with a discussion of the usefulness of a profession-centered methodology and the relevance of mixed reality to support creative design activities.

  13. Formative Evaluation of the Understanding the Early Years Initiative. Final Report

    ERIC Educational Resources Information Center

    Human Resources and Skills Development Canada, 2009

    2009-01-01

    This report presents the findings of the formative evaluation of the Understanding the Early Years (UEY) Initiative. The evaluation was conducted to examine issues of implementation and design, early progress in achieving immediate objectives, and issues related to accountability. The evaluation team was also asked to provide preliminary guidance…

  14. Preliminary design of 1 kW bipolar Ni-MH battery for LEO-satellite application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.H.; Reisner, D.E.; Klein, M.G.

    1996-12-31

    Electro Energy, Inc. (EEI) is developing a bipolar nickel-metal hydride rechargeable battery based upon the use of stackable wafer cells. The key to viable bipolar operation has been this unique modular (unitized) approach. The patented unit wafer-cell construct exploits the chemical and thermal properties of a proprietary electrically conductive plastic film. Characteristic of bipolar batteries, current flows across the cell interfaces-perpendicular to the electrode plane. EEI has recently contracted with NASA Lewis Research Center (LeRC) to develop an optimized design 1 kW flightweight battery, for low-earth-orbit (LEO) satellite applications, over a 4-year period with a deliverable flightweight design package. Themore » contract includes an option for EEI to deliver up to three flight quality batteries in an 18-month follow-on program. NASA LeRC has promulgated that the program steps include the design, fabrication, and evaluation of four evolutionary stages of the final battery design which have been designated Preliminary, Improved, Optimized, and Flightweight Design. Initial results from the Preliminary Stage are presented including a 1 kW battery design, thermal design, parameter study, and component development in subscale bipolar batteries.« less

  15. Preliminary design of a mobile lunar power supply

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Kenny, Barbara H.; Fulmer, Christopher R.

    1991-01-01

    A preliminary design for a Stirling isotope power system for use as a mobile lunar power supply is presented. Performance and mass of the components required for the system are estimated. These estimates are based on power requirements and the operating environment. Optimizations routines are used to determine minimum mass operational points. Shielding for the isotope system are given as a function of the allowed dose, distance from the source, and the time spent near the source. The technologies used in the power conversion and radiator systems are taken from ongoing research in the Civil Space Technology Initiative (CSTI) program.

  16. The Advanced Technology Solar Telescope: design and early construction

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Keil, Stephen L.; Warner, Mark; Barden, Samuel; Bulau, Scott; Craig, Simon; Goodrich, Bret; Hansen, Eric; Hegwer, Steve; Hubbard, Robert; McBride, William; Shimko, Steve; Wöger, Friedrich; Ditsler, Jennifer

    2012-09-01

    The National Solar Observatory’s (NSO) Advanced Technology Solar Telescope (ATST) is the first large U.S. solar telescope accessible to the worldwide solar physics community to be constructed in more than 30 years. The 4-meter diameter facility will operate over a broad wavelength range (0.35 to 28 μm ), employing adaptive optics systems to achieve diffraction limited imaging and resolve features approximately 20 km on the Sun; the key observational parameters (collecting area, spatial resolution, spectral coverage, polarization accuracy, low scattered light) enable resolution of the theoretically-predicted, fine-scale magnetic features and their dynamics which modulate the radiative output of the sun and drive the release of magnetic energy from the Sun’s atmosphere in the form of flares and coronal mass ejections. In 2010, the ATST received a significant fraction of its funding for construction. In the subsequent two years, the project has hired staff and opened an office on Maui. A number of large industrial contracts have been placed throughout the world to complete the detailed designs and begin constructing the major telescope subsystems. These contracts have included the site development, AandE designs, mirrors, polishing, optic support assemblies, telescope mount and coudé rotator structures, enclosure, thermal and mechanical systems, and high-level software and controls. In addition, design development work on the instrument suite has undergone significant progress; this has included the completion of preliminary design reviews (PDR) for all five facility instruments. Permitting required for physically starting construction on the mountaintop of Haleakalā, Maui has also progressed. This paper will review the ATST goals and specifications, describe each of the major subsystems under construction, and review the contracts and lessons learned during the contracting and early construction phases. Schedules for site construction, key factory testing of

  17. Preliminary design methods for fiber reinforced composite structures employing a personal computer

    NASA Technical Reports Server (NTRS)

    Eastlake, C. N.

    1986-01-01

    The objective of this project was to develop a user-friendly interactive computer program to be used as an analytical tool by structural designers. Its intent was to do preliminary, approximate stress analysis to help select or verify sizing choices for composite structural members. The approach to the project was to provide a subroutine which uses classical lamination theory to predict an effective elastic modulus for a laminate of arbitrary material and ply orientation. This effective elastic modulus can then be used in a family of other subroutines which employ the familiar basic structural analysis methods for isotropic materials. This method is simple and convenient to use but only approximate, as is appropriate for a preliminary design tool which will be subsequently verified by more sophisticated analysis. Additional subroutines have been provided to calculate laminate coefficient of thermal expansion and to calculate ply-by-ply strains within a laminate.

  18. Early signs of osteoarthritis in professional ballet dancers: a preliminary study.

    PubMed

    Angioi, Manuela; Maffulli, Gayle D; McCormack, Moira; Morrissey, Dylan; Chan, Otto; Maffulli, Nicola

    2014-09-01

    To investigate a cohort of professional ballet dancers for evidence of early signs of osteoarthritis (OA). One radiologist and 1 orthopedic surgeon specialized in musculoskeletal disorders analyzed magnetic resonance imaging scans independently. University Teaching Hospital. Fifteen professional ballet dancers (4 males and 11 females; age range, 19-36 years) experiencing chronic pain in the hip, knee, spine, ankle, or foot joints. Presence of osteophytes, subchondral sclerosis, joint space narrowing, cysts, and bone marrow changes; the Kellgren and Lawrence scale was used to quantify the knee OA. In the knee, there was thinning and irregularity of the articular cartilage over the medial femoral condyle and bone marrow changes within the lateral femoral condyle. In the hip, there was a loss of joint space and a frayed labrum with deep recess. The first metatarsophalangeal joint showed evidence of osteophytic development. Early signs of OA, in different joints, were present in a small but highly selected cohort of professional ballet dancers. In future, prospective studies among a number of ballet companies should control for medical and natural history alongside the visual analysis of images and plain radiographs to confirm these preliminary results.

  19. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  20. Brayton cycle heat exchanger and duct assembly (HXDA, preliminary design and technology tests

    NASA Technical Reports Server (NTRS)

    Coombs, M. G.; Morse, C. J.; Graves, R. F.; Gibson, J. C.

    1972-01-01

    A preliminary design of the heat exchanger and duct assembly (HXDA) for a 60 kwe, closed loop, Brayton cycle space power system is presented. This system is weight optimized within the constraints imposed by the defined structural and operational requirements. Also presented are the results of several small scale tests, directed to obtaining specific design data and/or the resolution of a design approach for long life Brayton cycle heat exchanger systems.

  1. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  2. Intelligent redundant actuation system requirements and preliminary system design

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Geiger, L. J.; Harris, J.

    1985-01-01

    Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.

  3. Notification: Preliminary Research on EPA's Design for the Environment Product Labeling Program OIG

    EPA Pesticide Factsheets

    Project #OPE-FY14-4012, November 06, 2013. The Office of Inspector General (OIG) is starting preliminary research on the U.S. Environmental Protection Agency’s (EPA’s) Design for the Environment (DfE) Product Labeling Program.

  4. The Transition into the Workforce by Early-Career Geoscientists, a Preliminary Investigation

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C.

    2017-12-01

    The American Geosciences Institute's Geoscience Student Exit Survey asks recent graduates about their immediate plans after graduation. Though some respondents indicate their employment or continuing education intention, many of the respondents are still in the process of looking for a job in the geosciences. Recent discussions about geoscience workforce development have focused on the critical technical and professional skills that graduates need to be successful in the workforce, but there is little data about employment success and skills development as early-career geoscientists. AGI developed a short preliminary survey to follow up with past participants in AGI's Exit Survey investigating their career path, their skills development after entering the workforce, and their opinions on skills and knowledge they wished they had prior to entering the workforce. The results from this survey will begin to indicate the occupation availability for early-career geoscientists, the continuing education completed by these recent graduates, and the possible attrition away from the geoscience workforce. This presentation presents the results from this short survey and the implications for further research in this area of workforce development and preparation.

  5. Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described.

  6. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of anymore » cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.« less

  7. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Matthew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.

  8. A knowledge-based design framework for airplane conceptual and preliminary design

    NASA Astrophysics Data System (ADS)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  9. An Assessment of CFD Effectiveness for Vortex Flow Simulation to Meet Preliminary Design Needs

    NASA Technical Reports Server (NTRS)

    Raj, P.; Ghaffari, F.; Finley, D. B.

    2003-01-01

    The low-speed flight and transonic maneuvering characteristics of combat air vehicles designed for efficient supersonic flight are significantly affected by the presence of free vortices. At moderate-to-high angles of attack, the flow invariably separates from the leading edges of the swept slender wings, as well as from the forebodies of the air vehicles, and rolls up to form free vortices. The design of military vehicles is heavily driven by the need to simultaneously improve performance and affordability.1 In order to meet this need, increasing emphasis is being placed on using Modeling & Simulation environments employing the Integrated Product & Process Development (IPPD) concept. The primary focus is on expeditiously providing design teams with high-fidelity data needed to make more informed decisions in the preliminary design stage. Extensive aerodynamic data are needed to support combat air vehicle design. Force and moment data are used to evaluate performance and handling qualities; surface pressures provide inputs for structural design; and flow-field data facilitate system integration. Continuing advances in computational fluid dynamics (CFD) provide an attractive means of generating the desired data in a manner that is responsive to the needs of the preliminary design efforts. The responsiveness is readily characterized as timely delivery of quality data at low cost.

  10. Preliminary Design Study of a National Program for Training Skilled Aviation Personnel.

    ERIC Educational Resources Information Center

    Arizona State Univ., Tempe.

    This study supplementing a 1967 study of Arizona State University, recommends preliminary plans for the design of a national training center capable of accommodating 2,200 fliers and aviation technicians and the steps that should be taken to complete the facility by September 1972. Specific recommendations are: (1) negotiations between the…

  11. Ultraviolet Free Electron Laser Facility preliminary design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, butmore » have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).« less

  12. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  13. Metacognitive Reflection and Insight Therapy for Early Psychosis: A preliminary study of a novel integrative psychotherapy.

    PubMed

    Vohs, Jenifer L; Leonhardt, Bethany L; James, Alison V; Francis, Michael M; Breier, Alan; Mehdiyoun, Nikki; Visco, Andrew C; Lysaker, Paul H

    2018-05-01

    Poor insight impedes treatment in early phase psychosis (EPP). This manuscript outlines preliminary findings of an investigation of the novel metacognitively oriented integrative psychotherapy, Metacognitive Reflection and Insight Therapy, for individuals with early phase psychosis (MERIT-EP). Twenty adults with EPP and poor insight were randomized to either six months of MERIT-EP or treatment as usual (TAU). Therapists were trained and therapy was successfully delivered under routine, outpatient conditions. Insight, assessed before and after treatment, revealed significant improvement for the MERIT-EP, but not TAU, group. These results suggest MERIT-EP is feasible to deliver, accepted by patients, and leads to clinically significant improvements in insight. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Early Years: Integrating Design

    ERIC Educational Resources Information Center

    Ashbrook, Peggy; Nellor, Sue

    2015-01-01

    Engineering is such a common part of children's work in early childhood programs that teachers can simply look around the room to identify examples where students have engaged in engineering practices. This article presents a classroom activity that integrates engineering design by building on the everyday problems that young children encounter in…

  15. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – Mike Bolger, program manager for the Ground Systems Development and Operations, or GSDO, Program speaks to participants during completion of the preliminary design review in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  16. Heat recovery and seed recovery development project: preliminary design report (PDR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  17. Simulation and Preliminary Design of a Cold Stream Experiment on Omega EP

    NASA Astrophysics Data System (ADS)

    Coffing, Shane; Angulo, Adrianna; Trantham, Matt; Malamud, Guy; Kuranz, Carolyn; Drake, R. P.

    2017-10-01

    Galaxies form within dark matter halos, accreting gas that may clump and eventually form stars. Infalling matter gradually increases the density of the halo, and, if cooling is insufficient, rising pressure forms a shock that slows the infalling gas, reducing star formation. However, galaxies with sufficient cooling become prolific star formers. A recent theory suggests that so called ``stream fed galaxies'' are able to acquire steady streams of cold gas via galactic ``filaments'' that penetrate the halo. The cold, dense filament flowing into a hot, less dense environment is potentially Kelvin-Helmholtz unstable. This instability may hinder the ability of the stream to deliver gas deeply enough into the halo. To study this process, we have begun preliminary design of a well-scaled laser experiment on Omega EP. We present here early simulation results and the physics involved. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through the Laboratory for Laser Energetics, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944.

  18. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  19. Biomechanics of injury prediction for anthropomorphic manikins - preliminary design considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engin, A.E.

    1996-12-31

    The anthropomorphic manikins are used in automobile safety research as well as in aerospace related applications. There is now a strong need to advance the biomechanics knowledge to determine appropriate criteria for injury likelihood prediction as functions of manikin-measured responses. In this paper, three regions of a manikin, namely, the head, knee joint, and lumbar spine are taken as examples to introduce preliminary design considerations for injury prediction by means of responses of theoretical models and strategically placed sensing devices.

  20. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  1. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  2. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  3. Parental Substance Abuse As an Early Traumatic Event. Preliminary Findings on Neuropsychological and Personality Functioning in Young Drug Addicts Exposed to Drugs Early

    PubMed Central

    Parolin, Micol; Simonelli, Alessandra; Mapelli, Daniela; Sacco, Marianna; Cristofalo, Patrizia

    2016-01-01

    Parental substance use is a major risk factor for child development, heightening the risk of drug problems in adolescence and young adulthood, and exposing offspring to several types of traumatic events. First, prenatal drug exposure can be considered a form of trauma itself, with subtle but long-lasting sequelae at the neuro-behavioral level. Second, parents' addiction often entails a childrearing environment characterized by poor parenting skills, disadvantaged contexts and adverse childhood experiences (ACEs), leading to dysfunctional outcomes. Young adults born from/raised by parents with drug problems and diagnosed with a Substance Used Disorder (SUD) themselves might display a particularly severe condition in terms of cognitive deficits and impaired personality function. This preliminary study aims to investigate the role of early exposure to drugs as a traumatic event, capable of affecting the psychological status of young drug addicts. In particular, it intends to examine the neuropsychological functioning and personality profile of young adults with severe SUDs who were exposed to drugs early in their family context. The research involved three groups, each consisting of 15 young adults (aged 18–24): a group of inpatients diagnosed with SUDs and exposed to drugs early, a comparison group of non-exposed inpatients and a group of non-exposed youth without SUDs. A neuropsychological battery (Esame Neuropsicologico Breve-2), an assessment procedure for personality disorders (Shedler-Westen Assessment Procedure-200) and the Symptom CheckList-90-Revised were administered. According to present preliminary results, young drug addicts exposed to drugs during their developmental age were characterized by elevated rates of neuropsychological impairments, especially at the expense of attentive and executive functions (EF); personality disorders were also common but did not differentiate them from non-exposed youth with SUDs. Alternative multi-focused prevention and

  4. Preliminary design of a universal Martian lander

    NASA Astrophysics Data System (ADS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  5. Preliminary design of a universal Martian lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    1993-01-01

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  6. Preliminary design of the thermal protection system for solar probe

    NASA Technical Reports Server (NTRS)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  7. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  8. Energy efficient engine: Flight propulsion system, preliminary analysis and design update

    NASA Technical Reports Server (NTRS)

    Stearns, E. M.

    1982-01-01

    The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.

  9. Preliminary power train design for a state-of-the-art electric vehicle (executive summary)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of a state-of-the-art electric power train is part of a national effort to reap the potential benefit of useful urban electric passenger vehicles. Outlined in a detailed presentation are: (1) assessment of the state-of-the-art in electric vehicle technology; (2) state-of-the-art power train design; (3) improved power train; and (4) summary and recommendations.

  10. Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak

    2010-01-01

    Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to

  11. Conceptual and Preliminary Design of a Low-Cost Precision Aerial Delivery System

    DTIC Science & Technology

    2016-06-01

    test results. It includes an analysis of the failure modes encountered during flight experimentation , methodology used for conducting coordinate...and experimentation . Additionally, the current and desired end state of the research is addressed. Finally, this chapter outlines the methodology ...preliminary design phases are utilized to investigate and develop a potentially low-cost alternative to existing systems. Using an Agile methodology

  12. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  13. Preliminary structural design of composite main rotor blades for minimum weight

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1987-01-01

    A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.

  14. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a Spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.

  15. Preliminary Evaluation of a Social Skills Training and Facilitated Play Early Intervention Programme for Extremely Shy Young Children in China

    ERIC Educational Resources Information Center

    Li, Yan; Coplan, Robert J.; Wang, Yuemin; Yin, Jingtong; Zhu, Jingjing; Gao, Zhuqing; Li, Linhui

    2016-01-01

    The goal of this study was to provide a preliminary evaluation of a social skills and facilitated play early intervention programme to promote social interaction, prosocial behaviours and socio-communicative skills among young extremely shy children in China. Participants were a sample of n = 16 extremely shy young children attending kindergarten…

  16. A preliminary design of the collinear dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  17. Cascade Optimization Strategy with Neural Network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2000-01-01

    A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.

  18. Preliminary design study of a lateral-directional control system using thrust vectoring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1985-01-01

    A preliminary design of a lateral-directional control system for a fighter airplane capable of controlled operation at extreme angles of attack is developed. The subject airplane is representative of a modern twin-engine high-performance jet fighter, is equipped with ailerons, rudder, and independent horizontal-tail surfaces. Idealized bidirectional thrust-vectoring engine nozzles are appended to the mathematic model of the airplane to provide additional control moments. Optimal schedules for lateral and directional pseudo control variables are calculated. Use of pseudo controls results in coordinated operation of the aerodynamic and thrust-vectoring controls with minimum coupling between the lateral and directional airplane dynamics. Linear quadratic regulator designs are used to specify a preliminary flight control system to improve the stability and response characteristics of the airplane. Simulated responses to step pilot control inputs are stable and well behaved. For lateral stick deflections, peak stability axis roll rates are between 1.25 and 1.60 rad/sec over an angle-of-attack range of 10 deg to 70 deg. For rudder pedal deflections, the roll rates accompanying the sideslip responses can be arrested by small lateral stick motions.

  19. Preliminary power train design for a state-of-the-art electric vehicle

    NASA Technical Reports Server (NTRS)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  20. Preliminary shuttle structural dynamics modeling design study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.

  1. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  2. Apparatus analysis and preliminary design of low gravity porous solids experiment for STS Orbiter mid-deck

    NASA Technical Reports Server (NTRS)

    Fleeter, R. D.; Kropp, J. L.

    1983-01-01

    The apparatus analysis laboratory equipment design and fabrication and the preliminary design of the Combustion of Porous Solids Experiment for operation in the mid-deck area of the Shuttle are described. The apparatus analysis indicated that the mid-deck region of the STS was a feasible region of the Shuttle for operation. A sixteen tube concept was developed with tubes of 75 cm length and up to 5.6 cm accommodated. The experiment is viewed by IR sensors and a 16 mm camera. Laboratory equipment was designed and fabricated to test the parible injection, mixing and venting concepts. This equipment was delivered to NASA/LeRC. A preliminary design was made for the experiment based upon the apparatus analysis. The design incorporated results from the Phase ""O'' Safety Review. This design utilizes a closed tube concept in which the particles are stored, injected and burned with no coupling to the Shuttle environment. Drawings of the major components and an assembly are given. The electronics are described for the experiment. An equipment list is presented and an experiment weight estimate is determined. The mission operation requirements are outlined.

  3. Design Support of an Above Cap-rock Early Detection Monitoring System using Simulated Leakage Scenarios at the FutureGen2.0 Site

    DOE PAGES

    Williams, Mark D.; USA, Richland Washington; Vermuel, Vince R.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO 2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to evaluate CO 2 mass balance and detect any unforeseen loss in CO 2 containment. The monitoring program will include direct monitoring of the reservoir, and early-leak-detection monitoring directly above the primary confining zone. This preliminary modeling study described here focuses on hypotheticalmore » leakage scenarios into the first permeable unit above the primary confining zone (Ironton Sandstone) and is used to support assessment of early-leak detection capabilities. Future updates of the model will be used to assess potential impacts on the lowermost underground source of drinking water (Saint Peter Sandstone) for a range of theoretical leakage scenarios. This preliminary modeling evaluation considers both pressure response and geochemical signals in the overlying Ironton Sandstone. This model is independent of the FutureGen 2.0 reservoir model in that it does not simulate caprock discontinuities, faults, or failure scenarios. Instead this modeling effort is based on theoretical, volumetric-rate based leakage scenarios. The scenarios include leakage of 1% of the total injected CO 2 mass, but spread out over different time periods (20, 100, and 500 years) with each case yielding a different mass flux (i.e., smaller mass fluxes for longer duration leakage cases]. A brine leakage scenario using a volumetric leakage similar to the 20 year 1% CO 2 case was also considered. A framework for the comparison of the various cases was developed based on the exceedance of selected pressure and geochemical thresholds at different distances from the point of leakage and

  4. Preliminary design study of quiet integral fan lift engines for VTOL transport applications in the 1980s

    NASA Technical Reports Server (NTRS)

    Rabone, G. R.; Paulson, E.

    1973-01-01

    Preliminary designs of three integral lift fan engines suitable for commercial certification in the 80's were completed. Emphasis was placed on low cost, simplicity, low noise, low emissions, minimum weight, and design features meeting all commercial standards for fire safety and containment.

  5. A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1998-01-01

    This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.

  6. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    NASA Technical Reports Server (NTRS)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  7. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  8. Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

  9. Structural analysis for preliminary design of High Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    Bhatia, Kumar G.

    1992-01-01

    In the preliminary design environment, there is a need for quick evaluation of configuration and material concepts. The simplified beam representations used in the subsonic, high aspect ratio wing platform are not applicable for low aspect ratio configurations typical of supersonic transports. There is a requirement to develop methods for efficient generation of structural arrangement and finite element representation to support multidisciplinary analysis and optimization. In addition, empirical data bases required to validate prediction methods need to be improved for high speed civil transport (HSCT) type configurations.

  10. Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Finlayson, Paul A.; Rinderle, Edward A.; Vavrina, Matthew A.; Kowalkowski, Theresa D.

    2006-01-01

    A tool developed for the preliminary design of low-thrust trajectories is described. The trajectory is discretized into segments and a nonlinear programming method is used for optimization. The tool is easy to use, has robust convergence, and can handle many intermediate encounters. In addition, the tool has a wide variety of features, including several options for objective function and different low-thrust propulsion models (e.g., solar electric propulsion, nuclear electric propulsion, and solar sail). High-thrust, impulsive trajectories can also be optimized.

  11. Development of an agility assessment module for preliminary fighter design

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Bauer, Brent; Biezad, Daniel; Hahn, Andrew

    1996-01-01

    A FORTRAN computer program is presented to perform agility analysis on fighter aircraft configurations. This code is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. FORTRAN programs were developed for two specific metrics, CCT (Combat Cycle Time) and PM (Pointing Margin), as part of the agility module. The validity of the code was evaluated by comparing with existing flight test data. Example trade studies using the agility module along with ACSYNT were conducted using Northrop F-20 Tigershark and McDonnell Douglas F/A-18 Hornet aircraft models. The sensitivity of thrust loading and wing loading on agility criteria were investigated. The module can compare the agility potential between different configurations and has the capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements.

  12. Pilot study assessing the feasibility of applying bilateral subthalamic nucleus deep brain stimulation in very early stage Parkinson's disease: study design and rationale.

    PubMed

    Charles, David; Tolleson, Christopher; Davis, Thomas L; Gill, Chandler E; Molinari, Anna L; Bliton, Mark J; Tramontana, Michael G; Salomon, Ronald M; Kao, Chris; Wang, Lily; Hedera, Peter; Phibbs, Fenna T; Neimat, Joseph S; Konrad, Peter E

    2012-01-01

    Deep brain stimulation provides significant symptomatic benefit for people with advanced Parkinson's disease whose symptoms are no longer adequately controlled with medication. Preliminary evidence suggests that subthalamic nucleus stimulation may also be efficacious in early Parkinson's disease, and results of animal studies suggest that it may spare dopaminergic neurons in the substantia nigra. We report the methodology and design of a novel Phase I clinical trial testing the safety and tolerability of deep brain stimulation in early Parkinson's disease and discuss previous failed attempts at neuroprotection. We recently conducted a prospective, randomized, parallel-group, single-blind pilot clinical trial of deep brain stimulation in early Parkinson's disease. Subjects were randomized to receive either optimal drug therapy or deep brain stimulation plus optimal drug therapy. Follow-up visits occurred every six months for a period of two years and included week-long therapy washouts. Thirty subjects with Hoehn & Yahr Stage II idiopathic Parkinson's disease were enrolled over a period of 32 months. Twenty-nine subjects completed all follow-up visits; one patient in the optimal drug therapy group withdrew from the study after baseline. Baseline characteristics for all thirty patients were not significantly different. This study demonstrates that it is possible to recruit and retain subjects in a clinical trial testing deep brain stimulation in early Parkinson's disease. The results of this trial will be used to support the design of a Phase III, multicenter trial investigating the efficacy of deep brain stimulation in early Parkinson's disease.

  13. A preliminary design of interior structure and foundation of an inflatable lunar habitat

    NASA Technical Reports Server (NTRS)

    Yin, Paul K.

    1989-01-01

    A preliminary structural design and analysis of an inflatable habitat for installation on the moon was completed. The concept takes the shape of a sphere with a diameter of approximately 16 meters. The interior framing provides five floor levels and is enclosed by a spherical air-tight membrane holding an interior pressure of 14.7 psi (101.4kpa). The spherical habitat is to be erected on the lunar surface with the lower one third below grade and the upper two thirds covered with a layer of lunar regolith for thermal insulation and shielding against radiation and meteoroids. The total dead weight (earth weight) of the structural aluminum, which is of vital interest for the costly space transportation, is presented. This structural dead weight represents a preliminary estimate without including structural details. The design results in two versions: one supports the weight of the radiation shielding in case of deflation of the fabric enclosure and the other assumes that the radiation shielding is self supporting. To gain some indication of the amount of structural materials needed if the identical habitat were installed on Mars and Earth, three additional design versions were generated where the only difference is in gravity. These additional design versions are highly academic since the difference will be much more than in gravity alone. The lateral loading due to dust storms on Mars and wind loads on Earth are some examples. The designs under the lunar gravity are realistic. They may not be adequate for final material procurement and fabrication, however, as the connection details, among other reasons, may effect the sizes of the structural members.

  14. Software requirements flow-down and preliminary software design for the G-CLEF spectrograph

    NASA Astrophysics Data System (ADS)

    Evans, Ian N.; Budynkiewicz, Jamie A.; DePonte Evans, Janet; Miller, Joseph B.; Onyuksel, Cem; Paxson, Charles; Plummer, David A.

    2016-08-01

    The Giant Magellan Telescope (GMT)-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, precision radial velocity (PRV) optical echelle spectrograph that will be the first light instrument on the GMT. The G-CLEF instrument device control subsystem (IDCS) provides software control of the instrument hardware, including the active feedback loops that are required to meet the G-CLEF PRV stability requirements. The IDCS is also tasked with providing operational support packages that include data reduction pipelines and proposal preparation tools. A formal, but ultimately pragmatic approach is being used to establish a complete and correct set of requirements for both the G-CLEF device control and operational support packages. The device control packages must integrate tightly with the state-machine driven software and controls reference architecture designed by the GMT Organization. A model-based systems engineering methodology is being used to develop a preliminary design that meets these requirements. Through this process we have identified some lessons that have general applicability to the development of software for ground-based instrumentation. For example, tasking an individual with overall responsibility for science/software/hardware integration is a key step to ensuring effective integration between these elements. An operational concept document that includes detailed routine and non- routine operational sequences should be prepared in parallel with the hardware design process to tie together these elements and identify any gaps. Appropriate time-phasing of the hardware and software design phases is important, but revisions to driving requirements that impact software requirements and preliminary design are inevitable. Such revisions must be carefully managed to ensure efficient use of resources.

  15. Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates

    ERIC Educational Resources Information Center

    Im, Piljae

    2009-01-01

    A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the…

  16. Space Launch Systems Block 1B Preliminary Navigation System Design

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  17. 14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Design and test requirements for Early... Aircraft Engines § 33.201 Design and test requirements for Early ETOPS eligibility. An applicant seeking type design approval for an engine to be installed on a two-engine airplane approved for ETOPS without...

  18. Preliminary engineering report for design of a subscale ejector/diffuser system for high expansion ratio space engine testing

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Kurzius, S. C.; Doktor, M. F.

    1984-01-01

    The design of a subscale jet engine driven ejector/diffuser system is examined. Analytical results and preliminary design drawings and plans are included. Previously developed performance prediction techniques are verified. A safety analysis is performed to determine the mechanism for detonation suppression.

  19. Energy efficient engine flight propulsion system preliminary analysis and design report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.

  20. Board and card games for studying electrochemistry: Preliminary research and early design

    NASA Astrophysics Data System (ADS)

    Kurniawan, Rizmahardian Ashari; Kurniasih, Dedeh; Jukardi

    2017-12-01

    Games in the chemistry classroom can offer engaging and fun alternative method of learning. However, only a few games in chemistry, especially in electrochemistry subject are available commercially. In this research, we developed board and card games for studying electrochemistry. We surveyed chemistry teacher and students from 10 different senior high schools in Pontianak to decide content and characteristic of the game. We have designed the game that can be played by four students or four group of students, either as a specific instruction in the classroom or as a supplementary learning material. The game was designed to help students understanding the voltaic cell configuration and its voltaic potential.

  1. Preliminary Study of Late Pleistocene to Early Holocene Plant Food Strategies in China

    NASA Astrophysics Data System (ADS)

    Hayashi Tang, M.; Liu, X.; Fritz, G.; Zhao, Z.

    2017-12-01

    In recent decades, studies on the domestication and early cultivation of seed crops have contributed significantly to how we understand human-plant interactions, and their impact on human social organisation and the environment. It is becoming clear, however, that plants have been critical to the human diet for much longer and in more diverse ways than previously assumed. This paper is a preliminary attempt at identifying and addressing early prehistoric plant food strategies in China. In particular, very little is known about the use of vegetatively propagated plants, despite their significant representation in modern crops. Many ingredients of Chinese medicine are also roots and tubers (or vegetative storage organs, VSOs). Unlike seed crops, however, we lack a systematic criterion for examining diagnostic characters of different VSO taxa in the archaeological record. To address this issue, we characterized commonly consumed and historically significant VSOs in China, by studying experimentally charred modern samples under the optical microscope and scanning electron microscope. We then compared the characteristics of these modern VSO samples against plant remains from Late Pleistocene to early Holocene archaeological sites in China, such as Zengpiyan (Guangxi), Zhaoguodong (Guizhou), and Jiahu (Henan) sites. We found that different taxa of VSOs can be differentiated by using multiple lines of evidence, including: shape and size of various cells, texture and arrangement of cell walls, as well as anatomical arrangements of organs, especially the vascular bundles. Though identification can be difficult when fragile cell structures have collapsed or deteriorated, more robust features are often preserved for diagnosis. Our results suggest that the potential for studying the role of vegetatively propagated plants in early human-environmental interactions is overlooked, and can be expanded significantly with further investment in their systematic identification.

  2. Global precipitation measurement (GPM) preliminary design

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2008-10-01

    The overarching Earth science mission objective of the Global Precipitation Measurement (GPM) mission is to develop a scientific understanding of the Earth system and its response to natural and human-induced changes. This will enable improved prediction of climate, weather, and natural hazards for present and future generations. The specific scientific objectives of GPM are advancing: Precipitation Measurement through combined use of active and passive remote-sensing techniques, Water/Energy Cycle Variability through improved knowledge of the global water/energy cycle and fresh water availability, Climate Prediction through better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release, Weather Prediction through improved numerical weather prediction (NWP) skills from more accurate and frequent measurements of instantaneous rain rates with better error characterizations and improved assimilation methods, Hydrometeorological Prediction through better temporal sampling and spatial coverage of highresolution precipitation measurements and innovative hydro-meteorological modeling. GPM is a joint initiative with the Japan Aerospace Exploration Agency (JAXA) and other international partners and is the backbone of the Committee on Earth Observation Satellites (CEOS) Precipitation Constellation. It will unify and improve global precipitation measurements from a constellation of dedicated and operational active/passive microwave sensors. GPM is completing the Preliminary Design Phase and is advancing towards launch in 2013 and 2014.

  3. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology andmore » the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.« less

  4. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, Alexander

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m 2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientificmore » and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.« less

  5. Preliminary design trade-offs for a multi-mission stored cryogen cooler

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1978-01-01

    Preliminary design studies were performed for a multi-mission solid cryogen cooler having a wide range of application for both the shuttle sortie and free flyer missions. This multi-mission cooler (MMC) is designed to be utilized with various solid cryogens to meet a wide range of instrument cooling from 10 K (with solid hydrogen) to 90 K. The baseline cooler utilizes two stages of solid cryogen and incorporates an optional, higher temperature third stage which is cooled by either a passive radiator or a thermoelectric cooler. The MMC has an interface which can accommodate a wide variety of instrument configurations. A shrink fit adapter is incorporated which allows a drop-in instrument integration. The baseline design provides cooling of approximately 1 watt over a 60 to 100 K temperature range and about 0.5 watts from 15 to 60 K for a one year lifetime. For low cooling loads and with use of the optional radiator shield, cooling lifetimes as great as 8 years are predicted.

  6. Telescopio San Pedro Mártir Observatory preliminary design and project approach

    NASA Astrophysics Data System (ADS)

    Teran, Jose; Lee, William H.; Richer, Michael G.; Sánchez, Beatriz S.; Urdaibay, David; Hill, Derek; Adriaanse, David; Hernandez-Limonchi, Regina

    2016-07-01

    The Instituto de Astronomia of the Universidad Nacional Autónoma de México (UNAM) along with Instituto Nacional de Astrofisica, Optica y Electronica, the University of Arizona and the Smithsonian Astrophysical Observatory are developing the Telescopio San Pedro Mártir (TSPM) project, a 6.5m diameter optical telescope. M3 Engineering and Technology Corp. (M3) is the design and construction management firm responsible for all site infrastructure, enclosure and support facilities. The Telescopio San Pedro Mártir project (TSPM) will be located within the San Pedro Mártir National Park in Baja California, Mexico at 2,830 m. above sea level, approximately 65 km. east of the Pacific Ocean, 55km west of the Sea of Cortes (Gulf of California) and 180km south of the United States and México border. The aim of the paper is to present the preliminary design of the site infrastructure, enclosure and support facilities to date and share the design and construction approach.

  7. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer.

    PubMed

    Ghanbarzadeh Dagheyan, Ashkan; Molaei, Ali; Obermeier, Richard; Westwood, Andrew; Martinez, Aida; Martinez Lorenzo, Jose Angel

    2018-01-25

    Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients' overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1) missing newly formed or small tumors; and (2) false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH) indicates that using Digital Breast Tomosynthesis (DBT) can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1%) between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10%) between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS) that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1) imaging a bearing ball immersed in sunflower oil and (2) computing the heat Specific Absorption Rate (SAR) due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  8. Preliminary aerodynamic design considerations for advanced laminar flow aircraft configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Yip, Long P.; Jordan, Frank L., Jr.

    1986-01-01

    Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.

  9. Preliminary control law and hardware designs for a ride quality augmentation system for commuter aircraft. Phase 2

    NASA Technical Reports Server (NTRS)

    Davis, D. J.; Linse, D. J.; Suikat, R.; Entz, D. P.

    1986-01-01

    The continued investigation of the design of Ride Quality Augmentation Systems (RQAS) for commuter aircraft is described. The purpose of these RQAS is the reduction of the vertical and lateral acceleration response of the aircraft due to atmospheric turbulence by the application of active control. The current investigations include the refinement of the sample data feedback control laws based on the control-rate-weighting and output-weighting optimal control design techniqes. These control designs were evaluated using aircraft time simulations driven by Dryden spectra turbulence. Fixed gain controllers were tested throughout the aircrft operating envelope. The preliminary design of the hardware modifications necessary to implement and test the RQAS on a commuter aircraft is included. These include a separate surface elevator and the flap modifications to provide both direct lift and roll control. A preliminary failure mode investigation was made for the proposed configuration. The results indicate that vertical acceleration reductions of 45% and lateral reductions of more than 50% are possible. A fixed gain controller appears to be feasible with only minor response degradation.

  10. Alchemical poetry in medieval and early modern Europe: a preliminary survey and synthesis. Part II - Synthesis.

    PubMed

    Kahn, Didier

    2011-03-01

    This article provides a preliminary description of medieval and early modern alchemical poetry composed in Latin and in the principal vernacular languages of western Europe. It aims to distinguish the various genres in which this poetry flourished, and to identify the most representative aspects of each cultural epoch by considering the medieval and early modern periods in turn. Such a distinction (always somewhat artificial) between two broad historical periods may be justified by the appearance of new cultural phenomena that profoundly modified the character of early modern alchemical poetry: the ever-increasing importance of the prisca theologia, the alchemical interpretation of ancient mythology, and the rise of neo-Latin humanist poetry. Although early modern alchemy was marked by the appearance of new doctrines (notably the alchemical spiritus mundi and Paracelsianism), alchemical poetry was only superficially modified by criteria of a scientific nature, which therefore appear to be of lesser importance. This study falls into two parts. Part I provides a descriptive survey of extant poetry, and in Part II the results of the survey are analysed in order to highlight such distinctive features as the function of alchemical poetry, the influence of the book market on its evolution, its doctrinal content, and the question of whether any theory of alchemical poetry ever emerged. Part II is accompanied by an index of the authors and works cited in both parts.

  11. Pedagogy and Space: Design Inspirations for Early Childhood Classrooms

    ERIC Educational Resources Information Center

    Zane, Linda M.

    2015-01-01

    The intersection of design and learning is a new and burgeoning area of interest in all levels of education. "Pedagogy and Space" combines architectural design information with early childhood theory to enhance children's learning and educators' experience within the space. Filled with colorful, inspiring photographs of intentionally…

  12. Iteration in Early-Elementary Engineering Design

    NASA Astrophysics Data System (ADS)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  13. Preliminary Design of a Digital Holography PFC Erosion Diagnostic for MPEX

    NASA Astrophysics Data System (ADS)

    Thomas, C. E. (Tommy), Jr.; Biewer, T. M.; Shaw, G. C.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rapp, J.; Hillis, D. L.; Granstedt, E. M.; Majeski, R.; Kaita, R.

    2015-11-01

    Preliminary design of a Digital Holography (DH) in-situ Plasma Facing Component (PFC) erosion diagnostic to be used on the proto-MPEX/MPEX experiment is presented. Design trade-offs are discussed including the selection of CO2 laser frequencies and whether/where to use reflective or refractive optical components. The costs and benefits of using a high-speed (expensive) infrared (IR) camera or a lower speed (inexpensive) IR camera, and whether to use simultaneous or sequential acquisition of DH exposures for the dual wavelength system are also described. Expected layout, resolution, and noise figures will be discussed, along with resolution and noise data from previous work at ORNL and PPPL. Partial Support from USDOE Contract DE-AC02-09CH11466 and USDOE Grant DE-FG02-07ER84724 for previous Digital Holography work done at ORNL and PPPL is gratefully acknowledged.

  14. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Daniel P

    2009-01-12

    commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.« less

  15. Pilot Study Assessing the Feasibility of Applying Bilateral Subthalamic Nucleus Deep Brain Stimulation in Very Early Stage Parkinson's Disease: Study design and rationale

    PubMed Central

    Charles, David; Tolleson, Christopher; Davis, Thomas L.; Gill, Chandler E.; Molinari, Anna L.; Bliton, Mark J.; Tramontana, Michael G.; Salomon, Ronald M.; Kao, Chris; Wang, Lily; Hedera, Peter; Phibbs, Fenna T.; Neimat, Joseph S.; Konrad, Peter E.

    2014-01-01

    Background Deep brain stimulation provides significant symptomatic benefit for people with advanced Parkinson's disease whose symptoms are no longer adequately controlled with medication. Preliminary evidence suggests that subthalamic nucleus stimulation may also be efficacious in early Parkinson's disease, and results of animal studies suggest that it may spare dopaminergic neurons in the substantia nigra. Objective We report the methodology and design of a novel Phase I clinical trial testing the safety and tolerability of deep brain stimulation in early Parkinson's disease and discuss previous failed attempts at neuroprotection. Methods We recently conducted a prospective, randomized, parallel-group, single-blind pilot clinical trial of deep brain stimulation in early Parkinson's disease. Subjects were randomized to receive either optimal drug therapy or deep brain stimulation plus optimal drug therapy. Follow-up visits occurred every six months for a period of two years and included week-long therapy washouts. Results Thirty subjects with Hoehn & Yahr Stage II idiopathic Parkinson's disease were enrolled over a period of 32 months. Twenty-nine subjects completed all follow-up visits; one patient in the optimal drug therapy group withdrew from the study after baseline. Baseline characteristics for all thirty patients were not significantly different. Conclusions This study demonstrates that it is possible to recruit and retain subjects in a clinical trial testing deep brain stimulation in early Parkinson's disease. The results of this trial will be used to support the design of a Phase III, multicenter trial investigating the efficacy of deep brain stimulation in early Parkinson's disease. PMID:23938229

  16. The CRAF/Cassini power subsystem - Preliminary design update

    NASA Technical Reports Server (NTRS)

    Atkins, Kenneth L.; Brisendine, Philip; Clark, Karla; Klein, John; Smith, Richard

    1991-01-01

    A chronology is provided of the rationale leading from the early Mariner spacecraft to the CRAF/Cassini Mariner Mark II power subsystem architecture. The display pathway began with a hybrid including a solar photovoltaic array, a radioisotope thermoelectric generator (RTG), and a battery supplying a power profile with a peak loading of about 300 W. The initial concept was to distribute power through a new solid-state, programmable switch controlled by an embedded microprocessor. As the overall mission, science, and project design matured, the power requirements increased. The design evolved from the hybrid to two RTG plus batteries to meet peak loadings of near 500 W in 1989. Later that year, circumstances led to abandonment of the distributed computer concept and a return to centralized control. Finally, as power requirements continued to grow, a third RTG was added to the design and the battery removed, with the return to the discharge-controller for transients during fault recovery procedures.

  17. Safety Performance of Airborne Separation: Preliminary Baseline Testing

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Wing, David J.; Baxley, Brian T.

    2007-01-01

    The Safety Performance of Airborne Separation (SPAS) study is a suite of Monte Carlo simulation experiments designed to analyze and quantify safety behavior of airborne separation. This paper presents results of preliminary baseline testing. The preliminary baseline scenario is designed to be very challenging, consisting of randomized routes in generic high-density airspace in which all aircraft are constrained to the same flight level. Sustained traffic density is varied from approximately 3 to 15 aircraft per 10,000 square miles, approximating up to about 5 times today s traffic density in a typical sector. Research at high traffic densities and at multiple flight levels are planned within the next two years. Basic safety metrics for aircraft separation are collected and analyzed. During the progression of experiments, various errors, uncertainties, delays, and other variables potentially impacting system safety will be incrementally introduced to analyze the effect on safety of the individual factors as well as their interaction and collective effect. In this paper we report the results of the first experiment that addresses the preliminary baseline condition tested over a range of traffic densities. Early results at five times the typical traffic density in today s NAS indicate that, under the assumptions of this study, airborne separation can be safely performed. In addition, we report on initial observations from an exploration of four additional factors tested at a single traffic density: broadcast surveillance signal interference, extent of intent sharing, pilot delay, and wind prediction error.

  18. Evaluating markers for the early detection of cancer: overview of study designs and methods.

    PubMed

    Baker, Stuart G; Kramer, Barnett S; McIntosh, Martin; Patterson, Blossom H; Shyr, Yu; Skates, Steven

    2006-01-01

    The field of cancer biomarker development has been evolving rapidly. New developments both in the biologic and statistical realms are providing increasing opportunities for evaluation of markers for both early detection and diagnosis of cancer. To review the major conceptual and methodological issues in cancer biomarker evaluation, with an emphasis on recent developments in statistical methods together with practical recommendations. We organized this review by type of study: preliminary performance, retrospective performance, prospective performance and cancer screening evaluation. For each type of study, we discuss methodologic issues, provide examples and discuss strengths and limitations. Preliminary performance studies are useful for quickly winnowing down the number of candidate markers; however their results may not apply to the ultimate target population, asymptomatic subjects. If stored specimens from cohort studies with clinical cancer endpoints are available, retrospective studies provide a quick and valid way to evaluate performance of the markers or changes in the markers prior to the onset of clinical symptoms. Prospective studies have a restricted role because they require large sample sizes, and, if the endpoint is cancer on biopsy, there may be bias due to overdiagnosis. Cancer screening studies require very large sample sizes and long follow-up, but are necessary for evaluating the marker as a trigger of early intervention.

  19. Preliminary design studies on a nuclear seawater desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibisono, A. F.; Jung, Y. H.; Choi, J.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less

  20. Treatment of Early-Onset Schizophrenia Spectrum Disorders (TEOSS): Rationale, Design, and Methods

    ERIC Educational Resources Information Center

    McClellan, Jon; Sikich, Linmarie; Findling, Robert L.; Frazier, Jean A.; Vitiello, Benedetto; Hlastala, Stefanie A.; Williams, Emily; Ambler, Denisse; Hunt-Harrison, Tyehimba; Maloney, Ann E.; Ritz, Louise; Anderson, Robert; Hamer, Robert M.; Lieberman, Jeffrey A.

    2007-01-01

    Objective: The Treatment of Early Onset Schizophrenia Spectrum Disorders Study is a publicly funded clinical trial designed to compare the therapeutic benefits, safety, and tolerability of risperidone, olanzapine, and molindone in youths with early-onset schizophrenia spectrum disorders. The rationale, design, and methods of the Treatment of Early…

  1. Global Experience: The Development and Preliminary Evaluation of a Programme Designed to Enhance Students' Global Engagement

    ERIC Educational Resources Information Center

    Feast, Vicki; Collyer-Braham, Sarah; Bretag, Tracey

    2011-01-01

    This paper reports on the development and preliminary evaluation of "Global Experience", an innovative programme at the University of South Australia designed to broaden students' intercultural engagement through a range of international experiential activities. The paper provides the rationale for the establishment of the programme…

  2. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer †

    PubMed Central

    Molaei, Ali; Obermeier, Richard; Westwood, Andrew; Martinez, Aida; Martinez Lorenzo, Jose Angel

    2018-01-01

    Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients’ overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1) missing newly formed or small tumors; and (2) false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH) indicates that using Digital Breast Tomosynthesis (DBT) can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1%) between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10%) between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS) that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1) imaging a bearing ball immersed in sunflower oil and (2) computing the heat Specific Absorption Rate (SAR) due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  3. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  4. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    NASA Astrophysics Data System (ADS)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  5. Status of Progress Made Toward Preliminary Design Concepts for the Inventory in Select Media for DOE-Managed HLW/SNF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteo, Edward N.; Hardin, Ernest L.; Hadgu, Teklu

    As the title suggests, this report provides a summary of the status and progress for the Preliminary Design Concepts Work Package. Described herein are design concepts and thermal analysis for crystalline and salt host media. The report concludes that thermal management of defense waste, including the relatively small subset of high thermal output waste packages, is readily achievable. Another important conclusion pertains to engineering feasibility, and design concepts presented herein are based upon established and existing elements and/or designs. The multipack configuration options for the crystalline host media pose the greatest engineering challenges, as these designs involve large, heavy wastemore » packages that pose specific challenges with respect to handling and emplacement. Defense-related Spent Nuclear Fuel (DSNF) presents issues for post-closure criticality control, and a key recommendation made herein relates to the need for special packaging design that includes neutron-absorbing material for the DSNF. Lastly, this report finds that the preliminary design options discussed are tenable for operational and post-closure safety, owing to the fact that these concepts have been derived from other published and well-studied repository designs.« less

  6. Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.

  7. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.

    PubMed

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-10-15

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage. 2010 Elsevier B.V. All rights reserved.

  8. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    NASA Astrophysics Data System (ADS)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  9. Army gas-cooled reactor systems program. Preliminary design report off-normal scram system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushnell, W.H.; Malmstrom, S.A.

    1965-06-01

    The maximum allowable ML-1 fuel element cladding (hot spot) temperature is established by ANTS 201 at 1750/sup 0/F. The existing ML-1 design makes no provision for automatic scram when this limit is reached. Operating experience has indicated a requirement for such an automatic system during plant startup and a revised hot spot envelope (generated during conceptual design of the scram system) established the desirability of extending this protection to operation at full power conditions. It was also determined that the scram system should include circuitry to initiate an automatic scram if reactor ..delta..T exceeded 450/sup 0/F (the limit established inmore » ANTS 201) and if reactor power exceeded 6 kw(t) without coolant flow in the main loop. The preliminary design of the scram system (designated off-normal scram system) which will provide the required protection is described.« less

  10. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    NASA Astrophysics Data System (ADS)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  11. Formal Verification Toolkit for Requirements and Early Design Stages

    NASA Technical Reports Server (NTRS)

    Badger, Julia M.; Miller, Sheena Judson

    2011-01-01

    Efficient flight software development from natural language requirements needs an effective way to test designs earlier in the software design cycle. A method to automatically derive logical safety constraints and the design state space from natural language requirements is described. The constraints can then be checked using a logical consistency checker and also be used in a symbolic model checker to verify the early design of the system. This method was used to verify a hybrid control design for the suit ports on NASA Johnson Space Center's Space Exploration Vehicle against safety requirements.

  12. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  13. Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    NASA Technical Reports Server (NTRS)

    Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.

    1972-01-01

    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.

  14. EXECUTIVE SUMMARY FOR FULL-SCALE DUAL-ALKALI DEMONSTRATION AT LOUISVILLE GAS AND ELECTRIC CO. - PRELIMINARY DESIGN AND COST ESTIMATE

    EPA Science Inventory

    The report is the executive summary for the preliminary design of the dual-alkali system, designed by Combustion Equipment Associates, Inc./Arthur D. Little, Inc. and being installed to control SO2 emissions from Louisville Gas and Electric Company's Cane Run Unit No. 6 boiler. T...

  15. Early maladaptive schemas and aggressive sexual behavior: a preliminary study with male college students.

    PubMed

    Sigre-Leirós, Vera Lúcia; Carvalho, Joana; Nobre, Pedro

    2013-07-01

    The influence of adverse early attachment experiences on the development of aggressive sexual behavior has been demonstrated. Nonetheless, there is a gap in the literature regarding the conceptualization of this behavior according to developmental psychopathology models. The purpose of the present study was to investigate a potential association between Early Maladaptive Schemas (EMSs) and aggressive sexual behavior. A total of 166 male college students participated in the study. Participants were divided into two comparative groups according to data from the Sexual Experiences Survey-Short Form Perpetration (SES-SFP): Group of individuals with history of aggressive sexual behavior (N = 37) and Group of individuals without history of aggressive sexual behavior (N = 129). Aggressive sexual behavior was measured by the SES-SFP, and EMSs were measured by the Young Schema Questionnaire (YSQ-S3). Results showed that students who have committed any form of sexually aggressive behavior exhibited significantly higher levels of EMSs from the Disconnection and Rejection domain (namely, Mistrust/Abuse schema), from the Impaired Autonomy and Performance domain (namely, Dependence/Incompetence schema), and from the Overvigilance and Inhibition domain (namely, Negativity/Pessimism schema). These preliminary findings suggest that the EMSs were associated with aggressive sexual behavior, but further investigation is warranted. © 2012 International Society for Sexual Medicine.

  16. Preliminary design of the cryogenic cooled limb scanning interferometer radiometer (CLIR)

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1978-01-01

    The preliminary design of the cryogenic cooling system for the Cryogenic Cooled Limb Scanning Interferometer Radiometer (CLIR) instrument to be flown on the Atmospheric Magnetospheric Physics Satellite (AMPS) was studied. The top level trade studies were extensive due to the instrument requirement for cooling at three temperature levels as opposed to the two levels initially described for the instrument. Approximately 12 different combinations of cryogens were investigated. The basic lifetime requirement for the instrument was 30 days. However, studies were also conducted for a follow-up mission requiring a 1 year lifetime. The top level trades led to the selection of a single stage supercritical helium baseline.

  17. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade: Preliminary design test report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Results of tests conducted on preliminary design polymeric-composite fan blade for the under the wing (UTW) OCSEE engine are presented. During this phase of the program a total of 17preliminary OCSEE UTW composite fan blades were manufactured for various component tests including frequency characteristics, strain distribution, bench fatigue, dovetail pull, whirligig overspeed and whirligig impact. All tests were successfully completed with the exception of whirligig impact tests. Improvements in local impact capability are being evaluated for the OCSEE blade under other NASA and related programs.

  18. Space Station Furnace Facility. Volume 2: Requirements Definition and Conceptual Design Study. Appendix 3: Environment Analysis. Volume 2; Appendix 3

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns.

  19. A selective egocentric topographical working memory deficit in the early stages of Alzheimer's disease: a preliminary study.

    PubMed

    Bianchini, F; Di Vita, A; Palermo, L; Piccardi, L; Blundo, C; Guariglia, C

    2014-12-01

    The aim of this study was to determine whether an egocentric topographical working memory (WM) deficit is present in the early stages of Alzheimer's disease (AD) with respect to other forms of visuospatial WM. Further, we would investigate whether this deficit could be present in patients having AD without topographical disorientation (TD) signs in everyday life assessed through an informal interview to caregivers. Seven patients with AD and 20 healthy participants performed the Walking Corsi Test and the Corsi Block-Tapping Test. The former test requires memorizing a sequence of places by following a path and the latter is a well-known visuospatial memory task. Patients with AD also performed a verbal WM test to exclude the presence of general WM impairments. Preliminary results suggest that egocentric topographical WM is selectively impaired, with respect to visuospatial and verbal WM, even without TD suggesting an important role of this memory in the early stages of AD. © The Author(s) 2014.

  20. Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.

  1. A preliminary design for flight testing the FINDS algorithm

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.

    1986-01-01

    This report presents a preliminary design for flight testing the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a target flight computer. The FINDS software was ported onto the target flight computer by reducing the code size by 65%. Several modifications were made to the computational algorithms resulting in a near real-time execution speed. Finally, a new failure detection strategy was developed resulting in a significant improvement in the detection time performance. In particular, low level MLS, IMU and IAS sensor failures are detected instantaneously with the new detection strategy, while accelerometer and the rate gyro failures are detected within the minimum time allowed by the information generated in the sensor residuals based on the point mass equations of motion. All of the results have been demonstrated by using five minutes of sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment.

  2. AIRNOISE: A Tool for Preliminary Noise-Abatement Terminal Approach Route Design

    NASA Technical Reports Server (NTRS)

    Li, Jinhua; Sridhar, Banavar; Xue, Min; Ng, Hok

    2016-01-01

    Noise from aircraft in the airport vicinity is one of the leading aviation-induced environmental issues. The FAA developed the Integrated Noise Model (INM) and its replacement Aviation Environmental Design Tool (AEDT) software to assess noise impact resulting from all aviation activities. However, a software tool is needed that is simple to use for terminal route modification, quick and reasonably accurate for preliminary noise impact evaluation and flexible to be used for iterative design of optimal noise-abatement terminal routes. In this paper, we extend our previous work on developing a noise-abatement terminal approach route design tool, named AIRNOISE, to satisfy this criterion. First, software efficiency has been significantly increased by over tenfold using the C programming language instead of MATLAB. Moreover, a state-of-the-art high performance GPU-accelerated computing module is implemented that was tested to be hundreds time faster than the C implementation. Secondly, a Graphical User Interface (GUI) was developed allowing users to import current terminal approach routes and modify the routes interactively to design new terminal approach routes. The corresponding noise impacts are then calculated and displayed in the GUI in seconds. Finally, AIRNOISE was applied to Baltimore-Washington International Airport terminal approach route to demonstrate its usage.

  3. ERIS: preliminary design phase overview

    NASA Astrophysics Data System (ADS)

    Kuntschner, Harald; Jochum, Lieselotte; Amico, Paola; Dekker, Johannes K.; Kerber, Florian; Marchetti, Enrico; Accardo, Matteo; Brast, Roland; Brinkmann, Martin; Conzelmann, Ralf D.; Delabre, Bernard A.; Duchateau, Michel; Fedrigo, Enrico; Finger, Gert; Frank, Christoph; Rodriguez, Fernando G.; Klein, Barbara; Knudstrup, Jens; Le Louarn, Miska; Lundin, Lars; Modigliani, Andrea; Müller, Michael; Neeser, Mark; Tordo, Sebastien; Valenti, Elena; Eisenhauer, Frank; Sturm, Eckhard; Feuchtgruber, Helmut; George, Elisabeth M.; Hartl, Michael; Hofmann, Reiner; Huber, Heinrich; Plattner, Markus P.; Schubert, Josef; Tarantik, Karl; Wiezorrek, Erich; Meyer, Michael R.; Quanz, Sascha P.; Glauser, Adrian M.; Weisz, Harald; Esposito, Simone; Xompero, Marco; Agapito, Guido; Antichi, Jacopo; Biliotti, Valdemaro; Bonaglia, Marco; Briguglio, Runa; Carbonaro, Luca; Cresci, Giovanni; Fini, Luca; Pinna, Enrico; Puglisi, Alfio T.; Quirós-Pacheco, Fernando; Riccardi, Armando; Di Rico, Gianluca; Arcidiacono, Carmelo; Dolci, Mauro

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1' patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the

  4. Early Design Energy Analysis Using Building Information Modeling Technology

    DTIC Science & Technology

    2011-11-01

    building, (a) floor plan and (b) 3D image. ....................................... 50 Figure 28. Comparison of different energy estimates...when they make the biggest impact on building life-cycle costs. Traditionally, most building energy analyses have been conducted late in design, by...complete energy analysis. This method enables project teams to make energy conscious decisions early in design when they impact building life-cycle

  5. Statistical controversies in clinical research: early-phase adaptive design for combination immunotherapies.

    PubMed

    Wages, N A; Slingluff, C L; Petroni, G R

    2017-04-01

    In recent years, investigators have asserted that the 3 + 3 design lacks flexibility, making its use in modern early-phase trial settings, such as combinations and/or biological agents, inefficient. More innovative approaches are required to address contemporary research questions, such as those posed in trials involving immunotherapies. We describe the implementation of an adaptive design for identifying an optimal treatment regimen, defined by low toxicity and high immune response, in an early-phase trial of a melanoma helper peptide vaccine plus novel adjuvant combinations. Operating characteristics demonstrate the ability of the method to effectively recommend optimal regimens in a high percentage of trials with reasonable sample sizes. The proposed design is a practical, early-phase, adaptive method for use with combined immunotherapy regimens. This design can be applied more broadly to early-phase combination studies, as it was used in an ongoing study of two small molecule inhibitors in relapsed/refractory mantle cell lymphoma. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Maximizing Launch Vehicle and Payload Design Via Early Communications

    NASA Technical Reports Server (NTRS)

    Morris, Bruce

    2010-01-01

    The United States? current fleet of launch vehicles is largely derived from decades-old designs originally made for payloads that no longer exist. They were built primarily for national security or human exploration missions. Today that fleet can be divided roughly into small-, medium-, and large-payload classes based on mass and volume capability. But no vehicle in the U.S. fleet is designed to accommodate modern payloads. It is usually the payloads that must accommodate the capabilities of the launch vehicles. This is perhaps most true of science payloads. It was this paradigm that the organizers of two weekend workshops in 2008 at NASA's Ames Research Center sought to alter. The workshops brought together designers of NASA's Ares V cargo launch vehicle (CLV) with scientists and payload designers in the astronomy and planetary sciences communities. Ares V was still in a pre-concept development phase as part of NASA?s Constellation Program for exploration beyond low Earth orbit (LEO). The space science community was early in a Decadal Survey that would determine future priorities for research areas, observations, and notional missions to make those observations. The primary purpose of the meetings in April and August of 2008, including the novel format, was to bring vehicle designers together with space scientists to discuss the feasibility of using a heavy lift capability to launch large observatories and explore the Solar System. A key question put to the science community was whether this heavy lift capability enabled or enhanced breakthrough science. The meetings also raised the question of whether some trade-off between mass/volume and technical complexity existed that could reduce technical and programmatic risk. By engaging the scientific community early in the vehicle design process, vehicle engineers sought to better understand potential limitations and requirements that could be added to the Ares V from the mission planning community. From the vehicle

  7. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  8. Euler Technology Assessment program for preliminary aircraft design employing SPLITFLOW code with Cartesian unstructured grid method

    NASA Technical Reports Server (NTRS)

    Finley, Dennis B.

    1995-01-01

    This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  9. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  10. Mirror Material Properties Compiled for Preliminary Design of the Next Generation Space Telescope (30 to 294 Kelvin)

    NASA Technical Reports Server (NTRS)

    Luz, P. L.; Rice, T.

    1998-01-01

    This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) Study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the pre-phase A program for it. After finishing some initial studies and concepts development work on the NGST, MFSC's Program Development Directorate handed this work to the Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC's Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in Support of NASA GSFC. It contains material properties for 9 mirror Substrate materials, using information from at least 6 industrial Suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.

  11. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    NASA Astrophysics Data System (ADS)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  12. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  13. Preliminary neutronics design of china lead-alloy cooled demonstration reactor (CLEAR-III) for nuclear waste transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Southwest Science and Technology Univ., No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031; Chen, Y.

    2012-07-01

    China Lead-Alloy cooled Demonstration Reactor (CLEAR-III), which is the concept of lead-bismuth cooled accelerator driven sub-critical reactor for nuclear waste transmutation, was proposed and designed by FDS team in China. In this study, preliminary neutronics design studies have primarily focused on three important performance parameters including Transmutation Support Ratio (TSR), effective multiplication factor and blanket thermal power. The constraint parameters, such as power peaking factor and initial TRU loading, were also considered. In the specific design, uranium-free metallic dispersion fuel of (TRU-Zr)-Zr was used as one of the CLEAR-III fuel types and the ratio between MA and Pu was adjustedmore » to maximize transmutation ratio. In addition, three different fuel zones differing in the TRU fraction of the fuel were respectively employed for this subcritical reactor, and the zone sizes and TRU fractions were determined such that the linear powers of these zones were close to each other. The neutronics calculations and analyses were performed by using Multi-Functional 4D Neutronics Simulation System named VisualBUS and nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library). In the preliminary design, the maximum TSRLLMA was {approx}11 and the blanket thermal power was {approx}1000 MW when the effective multiplication factor was 0.98. The results showed that good performance of transmutation could be achieved based on the subcritical reactor loaded with uranium-free fuel. (authors)« less

  14. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  15. Development of a preliminary design of a method to measure the effectiveness of virus exclusion during water process reclamation at zero-G

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.; Linnecke, C. B.

    1976-01-01

    Organon Diagnostics has developed, under NASA sponsorship, a monitoring system to test the capability of a water recovery system to reject the passage of viruses into the recovered water. In this system, a non-pathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. An engineering preliminary design has been performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings present a preliminary instrument design of a fully functional laboratory prototype capable of zero-G operation.

  16. 28 CFR 2.48 - Revocation: Preliminary interview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Revocation: Preliminary interview. 2.48....48 Revocation: Preliminary interview. (a) Interviewing officer. A parolee who is retaken on a warrant issued by a Commissioner shall be given a preliminary interview by an official designated by the Regional...

  17. Research on the Reform of the Preliminary Course of Architectural Design Based on Innovation & Practice Ability Training

    ERIC Educational Resources Information Center

    Yuping, Cai; Shuang, Liang

    2017-01-01

    The traditional undergraduate education mode of architecture has been unable to adapt to the rapid development of society. Taking the junior professional course of architecture--the preliminary course of architectural design as an example, this paper analyzes the problems existing in the current professional courses of lower grades, puts forward…

  18. Devising an endoluminal bimodal probe which combines autofluorescence and reflectance spectroscopy with high resolution MRI for early stage colorectal cancer diagnosis: technique, feasibility and preliminary in-vivo (rabbit) results

    NASA Astrophysics Data System (ADS)

    Ramgolam, A.; Sablong, R.; Bou-Saïd, B.; Bouvard, S.; Saint-Jalmes, H.; Beuf, O.

    2011-07-01

    Conventional white light endoscopy (WLE) is the most widespread technique used today for colorectal cancer diagnosis and is considered as the gold standard when coupled to biopsy and histology. However for early stage colorectal cancer diagnosis, which is very often characterised by flat adenomas, the use of WLE is quite difficult due to subtle or quasiinvisible morphological changes of the colonic lining. Figures worldwide point out that diagnosing colorectal cancer in its early stages would significantly reduce the death toll all while increasing the 5-year survival rate. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where High spatial Resolution MRI (HR-MRI) is coupled to optical spectroscopy (autofluorescence and reflectance) in a bimodal endoluminal probe to extract morphological data and biochemical information respectively. The design and conception of the endoluminal probe along with the preliminary results obtained with an organic phantom and in-vivo (rabbit) are presented and discussed.

  19. Rape-related cognitive distortions: Preliminary findings on the role of early maladaptive schemas.

    PubMed

    Sigre-Leirós, Vera; Carvalho, Joana; Nobre, Pedro J

    2015-01-01

    Despite the important focus on the notion of cognitive distortions in the sexual offending area, the relevance of underlying cognitive schemas in sexual offenders has also been suggested. The aim of the present study was to investigate a potential relationship between Early Maladaptive Schemas (EMSs) and cognitive distortions in rapists. A total of 33 men convicted for rape completed the Bumby Rape Scale (BRS), the Young Schema Questionnaire - Short form-3 (YSQ-S3), the Brief Symptom Inventory (BSI), and the Socially Desirable Response Set Measure (SDRS-5). Results showed a significant relationship between the impaired limits schematic domain and the Justifying Rape dimension of the BRS. Specifically, after controlling for psychological distress levels and social desirability tendency, the entitlement/grandiosity schema from the impaired limits domain was a significant predictor of cognitive distortions related to Justifying Rape themes. Overall, despite preliminary, there is some evidence that the Young's Schema-Focused model namely the impaired limits dimension may contribute for the conceptualization of cognitive distortions in rapists and further investigation is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Assessment of Social Information Processing in early childhood: development and initial validation of the Schultz Test of Emotion Processing-Preliminary Version.

    PubMed

    Schultz, David; Ambike, Archana; Logie, Sean Kevin; Bohner, Katherine E; Stapleton, Laura M; Vanderwalde, Holly; Min, Christopher B; Betkowski, Jennifer A

    2010-07-01

    Crick and Dodge's (Psychological Bulletin 115:74-101, 1994) social information processing model has proven very useful in guiding research focused on aggressive and peer-rejected children's social-cognitive functioning. Its application to early childhood, however, has been much more limited. The present study responds to this gap by developing and validating a video-based assessment tool appropriate for early childhood, the Schultz Test of Emotion Processing-Preliminary Version (STEP-P). One hundred twenty-five Head Start preschool children participated in the study. More socially competent children more frequently attributed sadness to the victims of provocation and labeled aggressive behaviors as both morally unacceptable and less likely to lead to positive outcomes. More socially competent girls labeled others' emotions more accurately. More disruptive children more frequently produced physically aggressive solutions to social provocations, and more disruptive boys less frequently interpreted social provocations as accidental. The STEP-P holds promise as an assessment tool that assesses knowledge structures related to the SIP model in early childhood.

  1. Investigating Analytic Tools for e-Book Design in Early Literacy Learning

    ERIC Educational Resources Information Center

    Roskos, Kathleen; Brueck, Jeremy; Widman, Sarah

    2009-01-01

    Toward the goal of better e-book design to support early literacy learning, this study investigates analytic tools for examining design qualities of e-books for young children. Three research-based analytic tools related to e-book design were applied to a mixed genre collection of 50 e-books from popular online sites. Tool performance varied…

  2. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  3. Critical early mission design considerations for lunar data systems architecture

    NASA Technical Reports Server (NTRS)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  4. Designing Effective EPO Products for Museums: Preliminary Evaluation Findings from the Interstellar Boundary Explorer (IBEX) EPO Program

    NASA Astrophysics Data System (ADS)

    Nichols, M.; Bartolone, L.; Baldassari, C.; Hoyer-Winfield, S.

    2011-09-01

    The Interstellar Boundary Explorer (IBEX) mission includes a comprehensive EPO program in astronomy and heliophysics that is overseen and implemented by the Adler Planetarium in Chicago, Illinois. Several EPO components were developed specifically for informal institutions, especially museums and planetaria. The program includes an internationally distributed planetarium show with accompanying informal educational materials. Our evaluator, the Program Evaluation and Research Group (PERG) at Lesley University, Cambridge, Massachusetts, assesses the effectiveness of the EPO program. In late 2009 through early 2010, more than 70 planetaria worldwide received the IBEX planetarium show. Of the many U.S. planetaria, the first 25 received the IBEX planetarium show and were offered the opportunity to receive, at no charge, accompanying informal education materials, including posters, lithographs, demonstration materials, lesson plans, and more. In Spring 2010, PERG staff conducted a study designed to gauge the effectiveness of the distribution process for the planetarium show, gather information on the professional development needs of the organizations, and document reactions of museum staff to the IBEX informal education materials and their usefulness as companion pieces to the planetarium show. In this paper, we will present preliminary findings of this particular study, in the hopes that future EPO work can make use of data in this report.

  5. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  6. Early experiences building a software quality prediction model

    NASA Technical Reports Server (NTRS)

    Agresti, W. W.; Evanco, W. M.; Smith, M. C.

    1990-01-01

    Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.

  7. Flexibility in Early Stage Design of U. S. Navy Ships: An Analysis of Options

    DTIC Science & Technology

    2011-01-01

    Flexibility in Early Stage Design of US Navy Ships: An Analysis of Options by Jonathan Page B.S., Systems Engineering, US Naval Academy, 2002...8217C/ v = (;!;!: ;: Pat Hale Director, Systems Design and Ma~ement Fellows Program E~i_yfering.S~~pivi~i~ Acceptedby...2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Flexibility in Early Stage Design of U. S. Navy Ships: An

  8. Knowledge based systems: A preliminary survey of selected issues and techniques

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu

    1984-01-01

    It is only recently that research in Artificial Intelligence (AI) is accomplishing practical results. Most of these results can be attributed to the design and use of expert systems (or Knowledge-Based Systems, KBS) - problem-solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. But many computer systems designed to see images, hear sounds, and recognize speech are still in a fairly early stage of development. In this report, a preliminary survey of recent work in the KBS is reported, explaining KBS concepts and issues and techniques used to construct them. Application considerations to construct the KBS and potential KBS research areas are identified. A case study (MYCIN) of a KBS is also provided.

  9. The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.; Sabiers, Ralph; Schneider, Judy

    1994-01-01

    This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure. Reservations are detailed on the feasibility of a tank head start, but the design incorporates low speed turbopumps to mitigate the problem. The mechanically separate high speed turbopumps use hydrostatic bearings to meet engine life requirements, and operate at sub-critical speed for better throttling ability. All components were successfully packaged in the restricted envelope set by the clearances for the extendible/retractable nozzle. Gimbal design uses an innovative primary and engine out gimbal system to meet the +/- 20 deg gimbal requirement. The hydrogen regenerator and LOX/GH2 heat exchanger uses the Aerojet platelet structures approach for a highly compact component design. The extendible/retractable nozzle assembly uses an electric motor driven jack-screw design and a one segment carbon-carbon or silicide coated columbium nozzle with an area ratio, when extended, of 1430:1. A reliability analysis and risk assessment concludes the report.

  10. Exploring a Comprehensive Model for Early Childhood Vocabulary Instruction: A Design Experiment

    ERIC Educational Resources Information Center

    Wang, X. Christine; Christ, Tanya; Chiu, Ming Ming

    2014-01-01

    Addressing a critical need for effective vocabulary practices in early childhood classrooms, we conducted a design experiment to achieve three goals: (1) developing a comprehensive model for early childhood vocabulary instruction, (2) examining the effectiveness of this model, and (3) discerning the contextual conditions that hinder or facilitate…

  11. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    NASA Astrophysics Data System (ADS)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  12. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  13. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  14. Enhancing Research and Practice in Early Childhood through Formative and Design Experiments

    ERIC Educational Resources Information Center

    Bradley, Barbara A.; Reinking, David

    2011-01-01

    This article describes formative and design experiments and how they can advance research and instructional practices in early childhood education. We argue that this relatively new approach to education research closes the gap between research and practice, and it addresses limitations that have been identified in early childhood research. We…

  15. Preliminary design of a solar heat receiver for a Brayton cycle space power system

    NASA Technical Reports Server (NTRS)

    Cameron, H. M.; Mueller, L. A.; Namkoong, D.

    1972-01-01

    The preliminary design of a solar heat receiver for use as a heat source for an earth-orbiting 11-kWe Brayton-cycle engine is described. The result was a cavity heat receiver having the shape of a frustum of a cone. The wall of the cone is formed by 48 heat-transfer tubes, each tube containing pockets of lithium fluoride for storing heat for as much as 38 minutes of fullpower operation in the shade. Doors are provided in order to dump excess heat especially during operation in orbits with full sun exposure. The receiver material is predominantly columbium - 1-percent-zironium (Cb-1Zr) alloy. Full-scale testing of three heat-transfer tubes for more than 2000 hours and 1250 sun-shade cycles verified the design concept.

  16. Preliminary design of an auxiliary power unit for the space shuttle. Volume 4: Selected system supporting studies

    NASA Technical Reports Server (NTRS)

    Hamilton, M. L.; Burriss, W. L.

    1972-01-01

    Selected system supporting analyses in conjunction with the preliminary design of an auxiliary power unit (APU) for the space shuttle are presented. Both steady state and transient auxiliary power unit performance, based on digital computer programs, were examined. The selected APU provides up to 400 horsepower out of the gearbox, weighs 227 pounds, and requires 2 pounds per shaft horsepower hour of propellants.

  17. Designing Studies to Test Causal Questions About Early Math: The Development of Making Pre-K Count.

    PubMed

    Mattera, Shira K; Morris, Pamela A; Jacob, Robin; Maier, Michelle; Rojas, Natalia

    2017-01-01

    A growing literature has demonstrated that early math skills are associated with later outcomes for children. This research has generated interest in improving children's early math competencies as a pathway to improved outcomes for children in elementary school. The Making Pre-K Count study was designed to test the effects of an early math intervention for preschoolers. Its design was unique in that, in addition to causally testing the effects of early math skills, it also allowed for the examination of a number of additional questions about scale-up, the influence of contextual factors and the counterfactual environment, the mechanism of long-term fade-out, and the role of measurement in early childhood intervention findings. This chapter outlines some of the design considerations and decisions put in place to create a rigorous test of the causal effects of early math skills that is also able to answer these questions in early childhood mathematics and intervention. The study serves as a potential model for how to advance science in the fields of preschool intervention and early mathematics. © 2017 Elsevier Inc. All rights reserved.

  18. A preliminary design of the Ti:LiNbO3 optical channel waveguide

    NASA Astrophysics Data System (ADS)

    Choi, Yat

    1992-03-01

    One of the goals of technology-based activities within the Electronic Warfare Division is to facilitate the development within Australia, of facilities and a capability to manufacture sophisticated, highspeed electro-optic devices, in particular, the integrated optical amplitude modulator and integrated optical switch, for use in microwave and millimetre-wave systems for the Australian Defense Force (ADF). An initial step towards this goal would be to produce a low-loss and single-mode propagation optical channel waveguide using titanium-indiffused lithium niobate (Ti:LiNbO3). As no dimensions and fabrication parameters have yet been optimized, this technical report provides preliminary design data which optimizes these parameters.

  19. Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.

  20. The early growth and development study: a prospective adoption design.

    PubMed

    Leve, Leslie D; Neiderhiser, Jenae M; Ge, Xiaojia; Scaramella, Laura V; Conger, Rand D; Reid, John B; Shaw, Daniel S; Reiss, David

    2007-02-01

    The Early Growth and Development Study is a prospective adoption study of birth parents, adoptive parents, and adopted children (N=359 triads) that was initiated in 2003. The primary study aims are to examine how family processes mediate or moderate the expression of genetic influences in order to aid in the identification of specific family processes that could serve as malleable targets for intervention. Participants in the study are recruited through adoption agencies located throughout the United States, following the birth of a child. Assessments occur at 6-month intervals until the child reaches 3 years of age. Data collection includes the following primary constructs: infant and toddler temperament, social behavior, and health; birth and adoptive parent personality characteristics, psychopathology, competence, stress, and substance use; adoptive parenting and marital relations; and prenatal exposure to drugs and maternal stress. Preliminary analyses suggest the representativeness of the sample and minimal confounding effects of current trends in adoption practices, including openness and selective placement. Future plans are described.

  1. The Early Growth and Development Study: A Prospective Adoption Design

    PubMed Central

    Leve, Leslie D.; Neiderhiser, Jenae M.; Ge, Xiaojia; Scaramella, Laura V.; Conger, Rand D.; Reid, John B.; Shaw, Daniel S.; Reiss, David

    2014-01-01

    The Early Growth and Development Study is a prospective adoption study of birth parents, adoptive parents, and adopted children (N = 350 triads) that was initiated in 2003. The primary study aims are to examine how family processes mediate or moderate the expression of genetic influences in order to aid in the identification of specific family processes that could serve as malleable targets for intervention. Participants in the study were recruited following the birth of the child through adoption agencies located throughout the United States. Assessments occur at 6-month intervals until child age 3 years. Data collection includes the following primary constructs: infant/toddler temperament, social behavior, and health; birth and adoptive parent personality characteristics, psychopathology, competence, stress, and substance use; adoptive parenting and marital relations; and prenatal exposure to drugs and maternal stress. Preliminary analyses suggest the representativeness of the sample and minimal confounding effects of current trends in adoption practices, including openness and selective placement. Future plans are described. PMID:17539368

  2. Preliminary design and economic investigations of Diffuser Augmented Wind Turbines (DAWT)

    NASA Astrophysics Data System (ADS)

    Foreman, K. M.

    1981-12-01

    A preferred design and configuration approach for the diffuser augmented wind turbines (DAWT) innovative wind energy conversion system is proposed. A preliminary economic assessment for limited production rates of units between 5 and 150 kw rated output was made. It is estimated that for farm and REA cooperative end users, the COE can range between 2 and 3.5 cents/kWh for sites with annual average wind speeds of 16 and 12 mph respectively and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units the COE ranges between 4.0 and 6.5 cents/kWh for 16 and 12 mph sites. These estimates in 1979 dollars are lower than DOE goals set in 1978 for the rating size and end applications.

  3. Treatment of early-onset schizophrenia spectrum disorders (TEOSS): rationale, design, and methods.

    PubMed

    McClellan, Jon; Sikich, Linmarie; Findling, Robert L; Frazier, Jean A; Vitiello, Benedetto; Hlastala, Stefanie A; Williams, Emily; Ambler, Denisse; Hunt-Harrison, Tyehimba; Maloney, Ann E; Ritz, Louise; Anderson, Robert; Hamer, Robert M; Lieberman, Jeffrey A

    2007-08-01

    The Treatment of Early Onset Schizophrenia Spectrum Disorders Study is a publicly funded clinical trial designed to compare the therapeutic benefits, safety, and tolerability of risperidone, olanzapine, and molindone in youths with early-onset schizophrenia spectrum disorders. The rationale, design, and methods of the Treatment of Early Onset Schizophrenia Spectrum Disorders Study are described. Using a randomized, double-blind, parallel-group design at four sites, youths with EOSS (ages 8-19 years) were assigned to an 8-week acute trial of risperidone (0.5-6.0 mg/day), olanzapine (2.5-20 mg/day), or molindone (10-140 mg/day). Responders continued double-blind treatment for 44 weeks. The primary outcome measure was responder status at 8 weeks, defined by a 20% reduction in baseline Positive and Negative Symptom Scale scores plus ratings of significant improvement on the Clinical Global Impressions. Secondary outcome measures included assessments of psychopathology, functional impairment, quality of life, and medication safety. An intent-to-treat analytic plan was used. From February 2002 to May 2006, 476 youths were screened, 173 were further evaluated, and 119 were randomized. Several significant study modifications were required to address safety, the use of adjunctive medications, and the termination of the olanzapine treatment arm due to weight gain. The Treatment of Early Onset Schizophrenia Spectrum Disorders Study will inform clinical practice regarding the use of antipsychotic medications for youths with early-onset schizophrenia spectrum disorders. Important safety concerns emerged during the study, including higher than anticipated rates of suicidality and problems tapering thymoleptic agents before randomization.

  4. Preliminary design-lift/cruise fan research and technology airplane flight control system

    NASA Technical Reports Server (NTRS)

    Gotlieb, P.; Lewis, G. E.; Little, L. J.

    1976-01-01

    This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.

  5. The preliminary design of a lift-cruise fan airplane flight control system

    NASA Technical Reports Server (NTRS)

    Gotlieb, P.

    1977-01-01

    This paper presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling-quality levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a modified T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft that interconnects three variable-pitch fans and three powerplants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.

  6. Design, delivery, and evaluation of early interventions for children exposed to acute trauma

    PubMed Central

    Kassam-Adams, Nancy

    2014-01-01

    Background Exposure to acute, potentially traumatic events is an unfortunately common experience for children and adolescents. Posttraumatic stress (PTS) responses following acute trauma can have an ongoing impact on child development and well-being. Early intervention to prevent or reduce PTS responses holds promise but requires careful development and empirical evaluation. Objectives The aims of this review paper are to present a framework for thinking about the design, delivery, and evaluation of early interventions for children who have been exposed to acute trauma; highlight targets for early intervention; and describe next steps for research and practice. Results and conclusions Proposed early intervention methods must (1) have a firm theoretical grounding that guides the design of intervention components; (2) be practical for delivery in peri-trauma or early post-trauma contexts, which may require creative models that go outside of traditional means of providing services to children; and (3) be ready for evaluation of both outcomes and mechanisms of action. This paper describes three potential targets for early intervention—maladaptive trauma-related appraisals, excessive early avoidance, and social/interpersonal processes—for which there is theory and evidence suggesting an etiological role in the development or persistence of PTS symptoms in children. PMID:25018860

  7. Preliminary design of a low-cost greenhouse for salt production in Indonesia

    NASA Astrophysics Data System (ADS)

    Jaziri, A. A.; Guntur; Setiawan, W.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    Salt is an assential material of industry, not only in food industry point of view but also in various industries such as chemical, oil drilling, and animal feed industries, even less than half of salt needs used to household consumption. It is crucial to ensure salt production in Indonesia reaches the national target (3.7 million tons) due to relatively low technology and production level. Thus salt production technology is developed to facilitate farmers consisted of geomembrane and filtering-threaded technology. However, the use of those technologies in producing salt was proved less effective due to unpredictable weather conditions. Therefore, greenhouse technology is proposed to be used for salt production for several good reasons. This paper describes the preliminary design of a low-cost greenhouse designed as a pyramid model that uses bamboo, mono-layer and high density polyethylene plastics. The results confirmed that the yield of salt produced by greenhouse significantly incresed compared with prior technology and the NaCl content increased as well. The cost of greenhouse was IDR 5,688,000 and easy to assembly.

  8. Improving website accessibility for people with early-stage dementia: a preliminary investigation.

    PubMed

    Freeman, E D; Clare, Linda; Savitch, Nada; Royan, Lindsay; Litherland, Rachael; Lindsay, Margot

    2005-09-01

    This study, conducted collaboratively with five men who have a diagnosis of early-stage Alzheimer's disease (AD), is the first stage of a formative research project aimed at developing a new website for people with dementia. Recommendations derived from a literature review of the implications of dementia-related cognitive changes for website design were combined with general web accessibility guidelines to provide a basis for the initial design of a new website. This website was compared with an equivalent site, containing the same information but based on an existing design, in terms of accessibility, ease of use, and user satisfaction. Participants were very satisfied with both sites, but responses did indicate some specific areas where one site was preferred over another. Observational data highlighted significant strengths of the new site as well as some limitations, and resulted in clear recommendations for enhancing the design. In particular, the study suggested that limiting the size of web pages to the amount of information that can be displayed on a computer screen at any one time could reduce the level of difficulty encountered by the participants. The results also suggested the importance of reducing cognitive load through limiting the number of choices required at any one time, the very opposite of the ethos of much website design.

  9. Design of a scientific probe for obtaining Mars surface material

    NASA Technical Reports Server (NTRS)

    1990-01-01

    With the recent renewed interest in interplanetary and deep space exploratory missions, the Red Planet, Mars, which has captured people's imagination for centuries, has again become a center of attention. In the late 1960s and early 1970s, a series of Mariner missions performed fly-by investigations of the Mars surface and atmosphere. Later, in the mid 1970s, the data gathered by these earlier Mariner missions provided the basis of the much-publicized Viking missions, whose main objective was to determine the possibility of extraterrestrial life on Mars. More recently, with the dramatic changes in international politics, ambitious joint manned missions between the United States and the Soviet Union have been proposed to be launched in the early 21st century. In light of these exciting developments, the Spacecraft Design course, which was newly established at UCLA under NASA/USRA sponsorship, has developed its curriculum around a design project: the synthesis of an unmanned Martian landing probe. The students are required to conceive a preliminary design of a small spacecraft that is capable of landing at a designated site, collecting soil samples, and then returning the samples to orbit. The goal of the project is to demonstrate the feasibility of such a mission. This preliminary study of an interplanetary exploration mission has shown the feasibility of such a mission. The students have learned valuable lessons about the complexity of spacecraft design, even though the mission is relatively simple.

  10. Design process and preliminary psychometric study of a video game to detect cognitive impairment in senior adults.

    PubMed

    Valladares-Rodriguez, Sonia; Perez-Rodriguez, Roberto; Facal, David; Fernandez-Iglesias, Manuel J; Anido-Rifon, Luis; Mouriño-Garcia, Marcos

    2017-01-01

    Assessment of episodic memory has been traditionally used to evaluate potential cognitive impairments in senior adults. Typically, episodic memory evaluation is based on personal interviews and pen-and-paper tests. This article presents the design, development and a preliminary validation of a novel digital game to assess episodic memory intended to overcome the limitations of traditional methods, such as the cost of its administration, its intrusive character, the lack of early detection capabilities, the lack of ecological validity, the learning effect and the existence of confounding factors. Our proposal is based on the gamification of the California Verbal Learning Test (CVLT) and it has been designed to comply with the psychometric characteristics of reliability and validity. Two qualitative focus groups and a first pilot experiment were carried out to validate the proposal. A more ecological, non-intrusive and better administrable tool to perform cognitive assessment was developed. Initial evidence from the focus groups and pilot experiment confirmed the developed game's usability and offered promising results insofar its psychometric validity is concerned. Moreover, the potential of this game for the cognitive classification of senior adults was confirmed, and administration time is dramatically reduced with respect to pen-and-paper tests. Additional research is needed to improve the resolution of the game for the identification of specific cognitive impairments, as well as to achieve a complete validation of the psychometric properties of the digital game. Initial evidence show that serious games can be used as an instrument to assess the cognitive status of senior adults, and even to predict the onset of mild cognitive impairments or Alzheimer's disease.

  11. Design process and preliminary psychometric study of a video game to detect cognitive impairment in senior adults

    PubMed Central

    Perez-Rodriguez, Roberto; Facal, David; Fernandez-Iglesias, Manuel J.; Anido-Rifon, Luis; Mouriño-Garcia, Marcos

    2017-01-01

    Introduction Assessment of episodic memory has been traditionally used to evaluate potential cognitive impairments in senior adults. Typically, episodic memory evaluation is based on personal interviews and pen-and-paper tests. This article presents the design, development and a preliminary validation of a novel digital game to assess episodic memory intended to overcome the limitations of traditional methods, such as the cost of its administration, its intrusive character, the lack of early detection capabilities, the lack of ecological validity, the learning effect and the existence of confounding factors. Materials and Methods Our proposal is based on the gamification of the California Verbal Learning Test (CVLT) and it has been designed to comply with the psychometric characteristics of reliability and validity. Two qualitative focus groups and a first pilot experiment were carried out to validate the proposal. Results A more ecological, non-intrusive and better administrable tool to perform cognitive assessment was developed. Initial evidence from the focus groups and pilot experiment confirmed the developed game’s usability and offered promising results insofar its psychometric validity is concerned. Moreover, the potential of this game for the cognitive classification of senior adults was confirmed, and administration time is dramatically reduced with respect to pen-and-paper tests. Limitations Additional research is needed to improve the resolution of the game for the identification of specific cognitive impairments, as well as to achieve a complete validation of the psychometric properties of the digital game. Conclusion Initial evidence show that serious games can be used as an instrument to assess the cognitive status of senior adults, and even to predict the onset of mild cognitive impairments or Alzheimer’s disease. PMID:28674661

  12. Early stage design decisions: the way to achieve sustainable buildings at lower costs.

    PubMed

    Bragança, Luís; Vieira, Susana M; Andrade, Joana B

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle.

  13. A preliminary design for the GMT-Consortium Large Earth Finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Bigelow, Bruce; Bouchez, Antonin; Chun, Moo-Young; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Frebel, Anna; Furesz, Gabor; Glenday, Alex; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jeong, Ueejong; Jordan, Andres; Kim, Kang-Min; Kim, Jihun; Li, Chih-Hao; Lopez-Morales, Mercedes; McCracken, Kenneth; McLeod, Brian; Mueller, Mark; Nah, Jakyung; Norton, Timothy; Oh, Heeyoung; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Phillips, David; Plummer, David; Podgorski, William; Rodler, Florian; Seifahrt, Andreas; Tak, Kyung-Mo; Uomoto, Alan; Van Dam, Marcos A.; Walsworth, Ronald; Yu, Young Sam; Yuk, In-Soo

    2014-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an optical-band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general-purpose, high dispersion spectrograph that is fiber fed and capable of extremely precise radial velocity measurements. The G-CLEF Concept Design (CoD) was selected in Spring 2013. Since then, G-CLEF has undergone science requirements and instrument requirements reviews and will be the subject of a preliminary design review (PDR) in March 2015. Since CoD review (CoDR), the overall G-CLEF design has evolved significantly as we have optimized the constituent designs of the major subsystems, i.e. the fiber system, the telescope interface, the calibration system and the spectrograph itself. These modifications have been made to enhance G-CLEF's capability to address frontier science problems, as well as to respond to the evolution of the GMT itself and developments in the technical landscape. G-CLEF has been designed by applying rigorous systems engineering methodology to flow Level 1 Scientific Objectives to Level 2 Observational Requirements and thence to Level 3 and Level 4. The rigorous systems approach applied to G-CLEF establishes a well defined science requirements framework for the engineering design. By adopting this formalism, we may flexibly update and analyze the capability of G-CLEF to respond to new scientific discoveries as we move toward first light. G-CLEF will exploit numerous technological advances and features of the GMT itself to deliver an efficient, high performance instrument, e.g. exploiting the adaptive optics secondary system to increase both throughput and radial velocity measurement precision.

  14. Preliminary optical design of PANIC, a wide-field infrared camera for CAHA

    NASA Astrophysics Data System (ADS)

    Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.

    2008-07-01

    In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.

  15. Design, Modeling and Simulations in the RACE Project: Preliminary study for the development of a transport line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209

    2007-02-12

    As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.

  16. Participatory design of a preliminary safety checklist for general practice

    PubMed Central

    Bowie, Paul; Ferguson, Julie; MacLeod, Marion; Kennedy, Susan; de Wet, Carl; McNab, Duncan; Kelly, Moya; McKay, John; Atkinson, Sarah

    2015-01-01

    Background The use of checklists to minimise errors is well established in high reliability, safety-critical industries. In health care there is growing interest in checklists to standardise checking processes and ensure task completion, and so provide further systemic defences against error and patient harm. However, in UK general practice there is limited experience of safety checklist use. Aim To identify workplace hazards that impact on safety, health and wellbeing, and performance, and codesign a standardised checklist process. Design and setting Application of mixed methods to identify system hazards in Scottish general practices and develop a safety checklist based on human factors design principles. Method A multiprofessional ‘expert’ group (n = 7) and experienced front-line GPs, nurses, and practice managers (n = 18) identified system hazards and developed and validated a preliminary checklist using a combination of literature review, documentation review, consensus building workshops using a mini-Delphi process, and completion of content validity index exercise. Results A prototype safety checklist was developed and validated consisting of six safety domains (for example, medicines management), 22 sub-categories (for example, emergency drug supplies) and 78 related items (for example, stock balancing, secure drug storage, and cold chain temperature recording). Conclusion Hazards in the general practice work system were prioritised that can potentially impact on the safety, health and wellbeing of patients, GP team members, and practice performance, and a necessary safety checklist prototype was designed. However, checklist efficacy in improving safety processes and outcomes is dependent on user commitment, and support from leaders and promotional champions. Although further usability development and testing is necessary, the concept should be of interest in the UK and internationally. PMID:25918338

  17. Kentucky's Individualized Kindergartens: A State Network Design for Early Intervention.

    ERIC Educational Resources Information Center

    Bright, B.; Cansler, D. P.

    The KIK (Kentucky Individualized Kindergartens) project, a collaborative project between Kentucky's Department of Education and the Chapel Hill (NC) Training-Outreach project, is designed to serve high risk children. KIK provides early identification of high risk kindergarteners, development of individualized education programs, and implementation…

  18. Study design and early result of a phase I study of SABR for early-stage glottic cancer.

    PubMed

    Yu, Tosol; Wee, Chan Woo; Choi, Noorie; Wu, Hong-Gyun; Kang, Hyun-Cheol; Park, Jong Min; Kim, Jung-In; Kim, Jin Ho; Kwon, Tack-Kyun; Chung, Eun-Jae

    2018-05-14

    Avoidance of organs at risk has become possible with advances in image-guided volumetric-modulated arc therapy (VMAT) techniques. This study was designed to evaluate the safety and feasibility of stereotactic ablative radiotherapy (SABR) for early stage glottic cancer. This report presents the preliminary result of the first and second dose level. Fraction size was increased from 3.5 gray (Gy) (total dose 59.5 Gy) to 9 Gy (total dose 45 Gy). Dose-limiting toxicities were defined as grade 3 or higher treatment-related toxicities. Voice outcome was assessed with electroglottography, and quality of life (QoL) was measured with the Head and Neck Cancer Inventory (HNCI). Seven patients received 59.5 Gy at 3.5 Gy per fraction as the first dose level, and five patients received 55 Gy at 5 Gy per fraction as the second dose level. None of the patients developed grade 3+ toxicity throughout a median follow-up of 17.5 months (range, 1.7-30.6 months). One patient in the second dose level recurred in the primary site at 4 months after radiotherapy (RT) and received total laryngectomy. The rest of participants were disease-free at locoregional and distant sites. Jitter, shimmer, mean phonation time, and noise-to-harmony ratio did not change significantly at 6 months after RT. HNCI scores between pretreatment and posttreatment were not significantly different (P = 0.221). This study revealed acceptable toxicity, voice outcome, and QoL in patients treated with hypofractionated VMAT of 3.5 Gy and 5 Gy per fraction. This phase I study is currently ongoing with a dose of 55 Gy in 11 fractions and 45 Gy in five fractions. 2b. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  19. An experimental study of stratospheric gravity waves - Design and preliminary results

    NASA Astrophysics Data System (ADS)

    Talagrand, O.; Ovarlez, H.

    1984-02-01

    The design of balloon-borne experimental apparatus for long-term gravitational-wave measurements in the stratosphere is reported, and preliminary results of a first test flight are presented. Two gondolas (each containing a pressure sensor; a temperature sensor; horizontal and vertical sonic anemometers; a fin equipped with crossed magnetometers; and data-processing, data-transmission, and control electronics) are suspended 100 and 300 m below a solar/terrestrial-IR-absorption-heated hot-air balloon drifting between altitudes 22 km (night) and 28 km (day); power is supplied by NiCd batteries recharged by solar cells. The path of the first flight, a circumnavigation beginning in Pretoria, South Africa and crossing South America and northern Australia, from December 11, 1982, to February 2, 1983 (when transmission ceased over southern Africa) is shown on a map, and sample data for a 36-h period are summarized in a graph.

  20. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  1. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    NASA Astrophysics Data System (ADS)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  2. Underwater Munitions Expert System: Preliminary Design Report

    DTIC Science & Technology

    2015-08-21

    coral   reefs ,  can  be  added  to  future  versions  of  UnMES.     For  this  preliminary  UnMES...Depth           3.3. Input  Nodes:   Wave  Forcing     3.3.1. Shallow  Water   Wave  Transformation     3.3.2...Discretization  of   Wave  Height  and  Period       3.3.3. Wave  Direction  

  3. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    EPA Science Inventory

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  4. Reducing Work Content in Early Stage Naval Ship Designs (Briefing Charts)

    DTIC Science & Technology

    2014-05-14

    criticizes US naval ships for: • early design decisions that lock in density • poor arrangements of piping and ventilation 8 An overly dense ship with...Thresholds Update Save As Exit T45 #1 T45 #2 T45 #3 HPC Enables Exhaustive Exploration by: and Visualization Exploring The Space Evaluating The Space From...design points such as traditional design spiral method 30 SHIP AVG Weighted Qty (Qty) by Cost 1980s Reagan Build-up 14 10% 1% 1990/2000s Low Rate

  5. 7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...

  6. 7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...

  7. 7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...

  8. 7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...

  9. 7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...

  10. Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1986-01-01

    The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.

  11. Preliminary design of a redundant strapped down inertial navigation unit using two-degree-of-freedom tuned-gimbal gyroscopes

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This redundant strapdown INS preliminary design study demonstrates the practicality of a skewed sensor system configuration by means of: (1) devising a practical system mechanization utilizing proven strapdown instruments, (2) thoroughly analyzing the skewed sensor redundancy management concept to determine optimum geometry, data processing requirements, and realistic reliability estimates, and (3) implementing the redundant computers into a low-cost, maintainable configuration.

  12. Preliminary numerical simulations of the 27 February 2010 Chile tsunami: first results and hints in a tsunami early warning perspective

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Tonini, R.; Armigliato, A.; Zaniboni, F.; Pagnoni, G.; Gallazzi, Sara; Bressan, Lidia

    2010-05-01

    The tsunamigenic earthquake (M 8.8) that occurred offshore central Chile on 27 February 2010 can be classified as a typical subduction-zone earthquake. The effects of the ensuing tsunami have been devastating along the Chile coasts, and especially between the cities of Valparaiso and Talcahuano, and in the Juan Fernandez islands. The tsunami propagated across the entire Pacific Ocean, hitting with variable intensity almost all the coasts facing the basin. While the far-field propagation was quite well tracked almost in real-time by the warning centres and reasonably well reproduced by the forecast models, the toll of lives and the severity of the damage caused by the tsunami in the near-field occurred with no local alert nor warning and sadly confirms that the protection of the communities placed close to the tsunami sources is still an unresolved problem in the tsunami early warning field. The purpose of this study is two-fold. On one side we perform numerical simulations of the tsunami starting from different earthquake models which we built on the basis of the preliminary seismic parameters (location, magnitude and focal mechanism) made available by the seismological agencies immediately after the event, or retrieved from more detailed and refined studies published online in the following days and weeks. The comparison with the available records of both offshore DART buoys and coastal tide-gauges is used to put some preliminary constraints on the best-fitting fault model. The numerical simulations are performed by means of the finite-difference code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna, Italy, which can solve both the linear and non-linear versions of the shallow-water equations on nested grids. The second purpose of this study is to use the conclusions drawn in the previous part in a tsunami early warning perspective. In the framework of the EU-funded project DEWS (Distant Early Warning System), we will

  13. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.

    1993-01-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  14. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Swift, Walter L.

    1993-12-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  15. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-12-31

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow frommore » NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in

  16. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    NASA Technical Reports Server (NTRS)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  17. Design space exploration for early identification of yield limiting patterns

    NASA Astrophysics Data System (ADS)

    Li, Helen; Zou, Elain; Lee, Robben; Hong, Sid; Liu, Square; Wang, JinYan; Du, Chunshan; Zhang, Recco; Madkour, Kareem; Ali, Hussein; Hsu, Danny; Kabeel, Aliaa; ElManhawy, Wael; Kwan, Joe

    2016-03-01

    In order to resolve the causality dilemma of which comes first, accurate design rules or real designs, this paper presents a flow for exploration of the layout design space to early identify problematic patterns that will negatively affect the yield. A new random layout generating method called Layout Schema Generator (LSG) is reported in this paper, this method generates realistic design-like layouts without any design rule violation. Lithography simulation is then used on the generated layout to discover the potentially problematic patterns (hotspots). These hotspot patterns are further explored by randomly inducing feature and context variations to these identified hotspots through a flow called Hotspot variation Flow (HSV). Simulation is then performed on these expanded set of layout clips to further identify more problematic patterns. These patterns are then classified into design forbidden patterns that should be included in the design rule checker and legal patterns that need better handling in the RET recipes and processes.

  18. Efficient runner safety assessment during early design phase and root cause analysis

    NASA Astrophysics Data System (ADS)

    Liang, Q. W.; Lais, S.; Gentner, C.; Braun, O.

    2012-11-01

    Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics. Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for

  19. An Analysis of Risk and Function Information in Early Stage Design

    NASA Technical Reports Server (NTRS)

    Barrientos, Francesca; Tumer, Irem; Grantham, Katie; VanWie, Michael; Stone, Robert

    2005-01-01

    The concept of function offers a high potential for thinking and reasoning about designs as well as providing a common thread for relating together other design information. This paper focuses specifically on the relation between function and risk by examining how this information is addressed for a design team conducting early stage design for space missions. Risk information is decomposed into a set of key attributes which are then used to scrutinize the risk information using three approaches from the pragmatics sub-field of linguistics: i) Gricean, ii) Relevance Theory, and Functional Analysis. Results of this linguistics-based approach descriptively account for the context of designer communication with respect to function and risk, and offer prescriptive guidelines for improving designer communication.

  20. Early Stage Design Decisions: The Way to Achieve Sustainable Buildings at Lower Costs

    PubMed Central

    Bragança, Luís; Vieira, Susana M.; Andrade, Joana B.

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle. PMID:24578630

  1. Requirements analysis and preliminary design of a robotic assistant for reconstructive microsurgery.

    PubMed

    Vanthournhout, L; Herman, B; Duisit, J; Château, F; Szewczyk, J; Lengelé, B; Raucent, B

    2015-08-01

    Microanastomosis is a microsurgical gesture that involves suturing two very small blood vessels together. This gesture is used in many operations such as avulsed member auto-grafting, pediatric surgery, reconstructive surgery - including breast reconstruction by free flap. When vessels have diameters smaller than one millimeter, hand tremors make movements difficult to control. This paper introduces our preliminary steps towards robotic assistance for helping surgeons to perform microanastomosis in optimal conditions, in order to increase gesture quality and reliability even on smaller diameters. A general needs assessment and an experimental motion analysis were performed to define the requirements of the robot. Geometric parameters of the kinematic structure were then optimized to fulfill specific objectives. A prototype of the robot is currently being designed and built in order to providing a sufficient increase in accuracy without prolonging the duration of the procedure.

  2. A Policymaker's Guide to Early College Designs: Expanding a Strategy for Achieving College Readiness for All

    ERIC Educational Resources Information Center

    Hoffman, Nancy; Vargas, Joel

    2010-01-01

    Today, states and the federal government recognize the potential of early college designs to improve the economic prospects of future generations. But individuals are just beginning to put in place public policies that promote and support early college designs on a significant scale. Jobs for the Future (JFF) prepared this guide to help…

  3. The Early Growth and Development Study: Using the Prospective Adoption Design to Examine Genotype–Environment Interplay

    PubMed Central

    Leve, Leslie D.; Neiderhiser, Jenae M.; Scaramella, Laura V.; Reiss, David

    2009-01-01

    The Early Growth and Development Study (EGDS) is a prospective adoption design consisting of 360 linked sets of birth parents, adoptive parents, and adopted children followed from 3 months postpartum through child age 7 years, and an additional 200 linked sets for whom recruitment is underway. The EGDS brings together the study of genotype–environment correlation (rGE) and Genotype x Environment (GxE) interaction to inform intervention development by examining mechanisms whereby family processes mediate or moderate the expression of genetic influences. Participants in the EGDS are recruited through domestic adoption agencies located throughout the United States of America. The assessments occur at 6-month intervals until child age 4-½ years and at ages 6 and 7, when the children are in their 1st and 2nd years of formal schooling (kindergarten and first grade). The data collection includes measures of child characteristics, birth and adoptive parent characteristics, adoptive parenting, prenatal exposure to drugs and maternal stress, birth parent and adopted child salivary cortisol reactivity, and DNA from all participants. The preliminary analyses suggest evidence for GxE interaction beginning in infancy. An intervention perspective on future developments in the field of behavioral genetics is described. PMID:19458782

  4. The Early Growth and Development Study: Using the Prospective Adoption Design to Examine Genotype–Environment Interplay

    PubMed Central

    Neiderhiser, Jenae M.; Scaramella, Laura V.; Reiss, David

    2017-01-01

    The Early Growth and Development Study (EGDS) is a prospective adoption design consisting of 360 linked sets of birth parents, adoptive parents, and adopted children followed from 3 months postpartum through child age 7 years and an additional 200 linked sets for whom recruitment is underway. The EGDS brings together the study of genotype–environment correlation and Genotype × Environment (G × E) interaction to inform intervention development by examining mechanisms whereby family processes mediate or moderate the expression of genetic influences. Participants in the EGDS are recruited through domestic adoption agencies located throughout the United States of America. The assessments occur at 6-month intervals until child age 4-½ years and at ages 6 and 7, when the children are in their 1st and 2nd years of formal schooling (kindergarten and first grade). The data collection includes measures of child characteristics, birth and adoptive parent characteristics, adoptive parenting, prenatal exposure to drugs and maternal stress, birth parent and adopted child salivary cortisol reactivity, and DNA from all participants. The preliminary analyses suggest evidence for G×E interaction beginning in infancy. An intervention perspective on future developments in the field of behavioral genetics is described. PMID:20358398

  5. 10 CFR 2.110 - Filing and administrative action on submittals for standard design approval or early review of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR... or early review of site suitability issues. (a)(1) A submittal for a standard design approval under... provisions of appendix Q to parts 50 of this chapter, a submittal for early review of site suitability issues...

  6. 10 CFR 2.110 - Filing and administrative action on submittals for standard design approval or early review of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR... or early review of site suitability issues. (a)(1) A submittal for a standard design approval under... provisions of appendix Q to parts 50 of this chapter, a submittal for early review of site suitability issues...

  7. Preliminary Design of the Brazilian's National Institute for Space Research Broadband Radiometer for Solar Observations

    NASA Astrophysics Data System (ADS)

    Berni, L. A.; Vieira, L. E. A.; Savonov, G. S.; Dal Lago, A.; Mendes, O.; Silva, M. R.; Guarnieri, F.; Sampaio, M.; Barbosa, M. J.; Vilas Boas, J. V.; Branco, R. H. F.; Nishimori, M.; Silva, L. A.; Carlesso, F.; Rodríguez Gómez, J. M.; Alves, L. R.; Vaz Castilho, B.; Santos, J.; Silva Paula, A.; Cardoso, F.

    2017-10-01

    The Total Solar Irradiance (TSI), which is the total radiation arriving at Earth's atmosphere from the Sun, is one of the most important forcing of the Earths climate. Measurements of the TSI have been made employing instruments on board several space-based platforms during the last four solar cycles. However, combining these measurements is still challenging due to the degradation of the sensor elements and the long-term stability of the electronics. Here we describe the preliminary efforts to design an absolute radiometer based on the principle of electrical substitution that is under development at Brazilian's National Institute for Space Research (INPE).

  8. Subthalamic nucleus deep brain stimulation in early stage Parkinson's disease.

    PubMed

    Charles, David; Konrad, Peter E; Neimat, Joseph S; Molinari, Anna L; Tramontana, Michael G; Finder, Stuart G; Gill, Chandler E; Bliton, Mark J; Kao, Chris; Phibbs, Fenna T; Hedera, Peter; Salomon, Ronald M; Cannard, Kevin R; Wang, Lily; Song, Yanna; Davis, Thomas L

    2014-07-01

    Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinson's disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50-75, on medication ≥6 months but ≤4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n = 15) or DBS + ODT (n = 15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. Medication requirements in the DBS + ODT group were lower at all time points with a maximal difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS + ODT group suffered serious adverse events; remaining adverse events were mild or transient. This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Preliminary digital geologic map of the Penokean (early Proterozoic) continental margin in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, W.F.; Ottke, Doug

    1999-01-01

    The data on this CD consist of geographic information system (GIS) coverages and tabular data on the geology of Early Proterozoic and Archean rocks in part of the Early Proterozoic Penokean orogeny. The map emphasizes metasedimentary and metavolcanic rocks that were deposited along the southern margin of the Superior craton and were later deformed during continental collision at about 1850 Ma. The area includes the famous iron ranges of the south shore region of the Lake Superior district. Base maps, both as digital raster graphics (DRG) and digital line graphs (DLG) are also provided for the convenience of users. The map has been compiled from many individual studies, mostly by USGS researchers, completed during the past 50 years, including many detailed (1:24,000 scale) geologic maps. Data was compiled at 1:100,000 scale and preserves most of the details of source materials. This product is a preliminary release of the geologic map data bases during ongoing studies of the geology and metallogeny of the Penokean continental margin. Files are provided in three formats: Federal Spatial Data Transfer format (SDTS), Arc export format (.e00) files, and Arc coverages. All files can be accessed directly from the CD-ROM using either ARC/INFO 7.1.2 or later or Arc View 3.0 or later software. ESRI's Arc Explorer, a free GIS data viewer available at the web site: http://www.esri.com/software/arcexplorer/index.html also provides display and querying capability for these files.

  10. 78 FR 39736 - Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ..., choosing a study population, using a control group and blinding, dose selection, treatment plans...] Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular... document entitled ``Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

  11. A preliminary study on the short-term efficacy of chairside computer-aided design/computer-assisted manufacturing- generated posterior lithium disilicate crowns.

    PubMed

    Reich, Sven; Fischer, Sören; Sobotta, Bernhard; Klapper, Horst-Uwe; Gozdowski, Stephan

    2010-01-01

    The purpose of this preliminary study was to evaluate the clinical performance of chairside-generated crowns over a preliminary time period of 24 months. Forty-one posterior crowns made of a machinable lithium disilicate ceramic for full-contour crowns were inserted in 34 patients using a chairside computer-aided design/computer-assisted manufacturing technique. The crowns were evaluated at baseline and after 6, 12, and 24 months according to modified United States Public Health Service criteria. After 2 years, all reexamined crowns (n = 39) were in situ; one abutment exhibited secondary caries and two abutments received root canal treatment. Within the limited observation period, the crowns revealed clinically satisfying results.

  12. Design, integration and preliminary results of the IXV Catalysis experiment

    NASA Astrophysics Data System (ADS)

    Viladegut, Alan; Panerai, F.; Chazot, O.; Pichon, T.; Bertrand, P.; Verdy, C.; Coddet, C.

    2017-06-01

    The CATalytic Experiment (CATE) is an in-flight demonstration of catalysis effects at the surface of thermal protection materials. A high-catalytic coating was applied over the baseline ceramic material on the windward side of the intermediate experimental vehicle (IXV). The temperature jump due to different catalytic activities was detected during re-entry through measurements made with near-surface thermocouples on the windward side of the vehicle. The experiment aimed at contributing to the development and validation of gas/surface interaction models for re-entry applications. The present paper summarizes the design of CATE and its integration on the windward side of the IXV. Results of a qualification campaign at the Plasmatron facility of the von Karman Institute for Fluid Dynamics are presented. They provided an experimental evidence of the temperature jump at the low-to-high catalytic interface of the heat shield under aerothermal conditions relevant to the actual IXV flight. These tests also gave confidence so that the high-catalytic patch would not endanger the integrity of the vehicle and the safety of the mission. A preliminary assessment of flight data from the thermocouple measurements shows consistency with results of the qualification tests.

  13. Specification and preliminary design of an array processor

    NASA Technical Reports Server (NTRS)

    Slotnick, D. L.; Graham, M. L.

    1975-01-01

    The design of a computer suited to the class of problems typified by the general circulation of the atmosphere was investigated. A fundamental goal was that the resulting machine should have roughly 100 times the computing capability of an IBM 360/95 computer. A second requirement was that the machine should be programmable in a higher level language similar to FORTRAN. Moreover, the new machine would have to be compatible with the IBM 360/95 since the IBM machine would continue to be used for pre- and post-processing. A third constraint was that the cost of the new machine was to be significantly less than that of other extant machines of similar computing capability, such as the ILLIAC IV and CDC STAR. A final constraint was that it should be feasible to fabricate a complete system and put it in operation by early 1978. Although these objectives were generally met, considerable work remains to be done on the routing system.

  14. Design, synthesis and preliminary biological evaluation of indoline-2,3-dione derivatives as novel HDAC inhibitors.

    PubMed

    Jin, Kang; Li, Shanshan; Li, Xiaoguang; Zhang, Jian; Xu, Wenfang; Li, Xuechen

    2015-08-01

    Histone deacetylases (HDACs) are zinc-dependent or NAD(+) dependent enzymes and play a critical role in the process of tumor development. Herein a series of indoline-2,3-dione derivatives have been designed and synthesized as potential HDACs inhibitors. The preliminary biological evaluation showed that most compounds synthesized have exhibited moderate Hela cell nuclear extract inhibitory activities, among which compound 25a (IC50=10.13 nM) has shown the best efficacy. The anti-proliferative activities of some of these compounds were also discussed. Copyright © 2015. Published by Elsevier Ltd.

  15. Preliminary Design, Feasibility and Cost Evaluation of 1- to 15-Kilometer Height Steel Towers

    NASA Technical Reports Server (NTRS)

    Shanker, Ajay

    2003-01-01

    Design and construction of tall towers is an on-going research program of NASA. The agency has already done preliminary review in this area and has determined that multi-kilometer height towers are technically and economically feasible. The proposed towers will provide high altitude launch platforms reaching above eighty percent of Earth's atmosphere and provide tremendous gains in the potential energy as well as substantial reduction in aerodynamic drag. NASA has also determined that a 15-KM tower will have many useful applications in: (i)Meteorology,(ii)Oceanography, (iii)Astronomy, (iv)High Altitude Launch, (v)Physics Drop Tower, (vi) Biosphere Research, (vii) Nanotechnology, (viii) Energy/Power, (ix)Broadband Wireless Technology, (x)Space Transportation and (xi)Space Tourism.

  16. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.

    2014-11-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less

  17. Design and Development of a Miniaturized Percutaneously Deployable Wireless Left Ventricular Assist Device: Early Prototypes and Feasibility Testing.

    PubMed

    Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod

    The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.

  18. Title I preliminary engineering for: A. S. E. F. solid waste to methane gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-01-01

    An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec.more » 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.« less

  19. Development of Environmental Load Estimation Model for Road Drainage Systems in the Early Design Phase

    NASA Astrophysics Data System (ADS)

    Park, Jin-Young; Lee, Dong-Eun; Kim, Byung-Soo

    2017-10-01

    Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and LCA (life cycle assessment) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review in the early design phase where it is difficult to obtain such information. In this study, computation system for construction quantity based on standard cross section of road drainage facilities was developed to compute construction quantity required for LCA using only information available in the early design phase to develop and verify the effectiveness of a model that can perform environmental load estimation. The result showed that it is an effective model that can be used in the early design phase as it revealed a 13.39% mean absolute error rate.

  20. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  1. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  2. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  3. Preliminary Feasibility Testing of the BRIC Brine Water Recovery Concept

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart J.; Pickering, Karen D.

    2012-01-01

    The Brine Residual In-Containment (BRIC) concept is being developed as a new technology to recover water from spacecraft wastewater brines. Such capability is considered critical to closing the water loop and achieving a sustained human presence in space. The intention of the BRIC concept is to increase the robustness and efficiency of the dewatering process by performing drying inside the container used for the final disposal of the residual brine solid. Recent efforts in the development of BRIC have focused on preliminary feasibility testing using a laboratory- assembled pre-prototype unit. Observations of the drying behavior of actual brine solutions processed under BRIC-like conditions has been of particular interest. To date, experiments conducted with three types of analogue spacecraft wastewater brines have confirmed the basic premise behind the proposed application of in-place drying. Specifically, the dried residual mass from these solutions have tended to exhibit characteristics of adhesion and flow that are expected to continue to challenge process stream management designs typically used in spacecraft systems. Yet, these same characteristics may favor the development of capillary- and surface-tension-based approaches currently envisioned as part of an ultimate microgravity-compatible BRIC design. In addition, preliminary feasibility testing of the BRIC pre-prototype confirmed that high rates of water recovery, up to 98% of the available brine water, may be possible while still removing the majority of the brine contaminants from the influent brine stream. These and other early observations from testing are reported.

  4. Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson’s Disease

    PubMed Central

    Charles, David; Konrad, Peter E.; Neimat, Joseph S.; Molinari, Anna L.; Tramontana, Michael G.; Finder, Stuart G.; Gill, Chandler E.; Bliton, Mark J.; Kao, Chris C.; Phibbs, Fenna T.; Hedera, Peter; Salomon, Ronald M.; Cannard, Kevin R.; Wang, Lily; Song, Yanna; Davis, Thomas L.

    2014-01-01

    Background Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinson’s disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. Methods Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50–75, on medication ≥ 6 months but < 4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n=15) or DBS+ODT (n=15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. Results As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. The DBS+ODT group took less medication at all time points, and this reached maximum difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS+ODT group suffered serious adverse events; remaining adverse events were mild or transient. Conclusions This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD. PMID:24768120

  5. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    ERIC Educational Resources Information Center

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  6. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  7. Multi-Attribute Tradespace Exploration in Space System Design

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Hastings, D. E.

    2002-01-01

    The complexity inherent in space systems necessarily requires intense expenditures of resources both human and monetary. The high level of ambiguity present in the early design phases of these systems causes long, highly iterative, and costly design cycles. This paper looks at incorporating decision theory methods into the early design processes to streamline communication of wants and needs among stakeholders and between levels of design. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows a more thorough exploration of the design tradespace. Multi-Attribute Tradespace Exploration (MATE), an evolving process incorporating decision theory into model and simulation- based design, has been applied to several space system case studies at MIT. Preliminary results indicate that this process can improve the quality of communication to more quickly resolve project ambiguity, and enable the engineer to discover better value designs for multiple stakeholders. MATE is also being integrated into a concurrent design environment to facilitate the transfer knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs (e.g. scientists, engineers, managers, etc). MATE with concurrent design couples decision makers more closely to the design, and most importantly, maintains their presence between formal reviews.

  8. A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Swinford, G. R.

    1976-01-01

    The results of an aircraft wing design study are reported. The selected study airplane configuration is defined. The suction surface, ducting, and compressor systems are described. Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined. Leading and trailing edge structures of composite construction are described. Control surfaces, engine installation, and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing, weight, operations, and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built, and that such a wing will be lighter than an equivalent metal wing. As a result, a program of suction surface evaluation and other studies of configuration, aerodynamics, structural design and manufacturing, and suction systems are recommended.

  9. Preliminary design and economic investigations of Diffuser-Augmented Wind Turbines (DAWT). Executive summary

    NASA Astrophysics Data System (ADS)

    Foreman, K. M.

    1981-12-01

    A preferred design and configuration approach for the diffuser augmented wind turbine (DAWT) innovative wind energy conversion system is suggested. A preliminary economic assessment is made for limited production rates of units between 5 and 150 kW rated outputs. Nine point designs are used to arrive at the conclusions regarding best construction material for the diffuser and busbar cost of electricity (COE). It is estimated that for farm and cooperative end users, the COE can range between 2 and 3.5 cents pr kWh for sites with annual average wind speeds of 16 and 12 mph (25.7 and 19.3 km/h) respectively, and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units, the COE ranges between 4.0 and 6.5 cents per kWh for 16 and 12 mph sites. These estimates in 1971 dollars are lower than department of energy goals set in 1978 for the rating size and end applications. Recommendations are made for future activities to maintain steady, systematic progress toward mature development of the DAWT.

  10. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouradian, E. M.

    1983-12-31

    Thermal analyses for the preliminary design phase of the Receiver of the Carrizo Plains Solar Power Plant are presented. The sodium reference operating conditions (T/sub in/ = 610/sup 0/F, T/sub out/ = 1050/sup 0/F) have been considered. Included are: Nominal flux distribution on receiver panal, Energy input to tubes, Axial temperature distribution; sodium and tubes, Sodium flow distribution, Sodium pressure drop, orifice calculations, Temperature distribution in tube cut (R-0), Backface structure, and Nonuniform sodium outlet temperature. Transient conditions and panel front face heat losses are not considered. These are to be addressed in a subsequent design phase. Also to bemore » considered later are the design conditions as variations from the nominal reference (operating) condition. An addendum, designated Appendix C, has been included describing panel heat losses, panel temperature distribution, and tube-manifold joint thermal model.« less

  11. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    NASA Astrophysics Data System (ADS)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  12. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  13. Exploring the Role of Social Memory of Floods for Designing Flood Early Warning Operations

    NASA Astrophysics Data System (ADS)

    Girons Lopez, Marc; Di Baldassarre, Giuliano; Grabs, Thomas; Halldin, Sven; Seibert, Jan

    2016-04-01

    Early warning systems are an important tool for natural disaster mitigation practices, especially for flooding events. Warnings rely on near-future forecasts to provide time to take preventive actions before a flood occurs, thus reducing potential losses. However, on top of the technical capacities, successful warnings require an efficient coordination and communication among a range of different actors and stakeholders. The complexity of integrating the technical and social spheres of warning systems has, however, resulted in system designs neglecting a number of important aspects such as social awareness of floods thus leading to suboptimal results. A better understanding of the interactions and feedbacks among the different elements of early warning systems is therefore needed to improve their efficiency and therefore social resilience. When designing an early warning system two important decisions need to be made regarding (i) the hazard magnitude at and from which a warning should be issued and (ii) the degree of confidence required for issuing a warning. The first decision is usually taken based on the social vulnerability and climatic variability while the second one is related to the performance (i.e. accuracy) of the forecasting tools. Consequently, by estimating the vulnerability and the accuracy of the forecasts, these two variables can be optimized to minimize the costs and losses. Important parameters with a strong influence on the efficiency of warning systems such as social awareness are however not considered in their design. In this study we present a theoretical exploration of the impact of social awareness on the design of early warning systems. For this purpose we use a definition of social memory of flood events as a proxy for flood risk awareness and test its effect on the optimization of the warning system design variables. Understanding the impact of social awareness on warning system design is important to make more robust warnings that can

  14. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    DOE PAGES

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less

  15. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbin, G.; Wollenberg, H.; Wilson, C.

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce themore » duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.« less

  16. Preliminary GN&C Design for the On-Orbit Autonomous Assembly of Nanosatellite Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Walsh, Matt; Roithmayr, Carlos; Karlgaard, Chris; Peck, Mason; Murchison, Luke

    2017-01-01

    Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.

  17. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  18. Estimating Basic Preliminary Design Performances of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Alexander, Reginald

    2004-01-01

    Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.

  19. Sampling design for aquatic invasive species early detection in Great Lakes ports

    EPA Science Inventory

    From 2006-2012, we evaluated a pilot aquatic invasive species (AIS) early detection monitoring program in Lake Superior that was designed to detect newly introduced fishes. We established survey protocols for three major ports (Duluth-Superior, Sault Ste. Marie, Thunder Bay) and ...

  20. Designs for Living and Learning: Transforming Early Childhood Environments, Second Edition

    ERIC Educational Resources Information Center

    Carter, Margie; Curtis, Deb

    2015-01-01

    You likely have dreams for your early childhood environment that are greater than rating scales, regulations, and room arrangements. "Designs for Living and Learning" has been a favorite resource among educators and caregivers for more than a decade, and this new edition is packed with even more ideas that can be used as you create…

  1. The Clinical/Practicum Experience in Professional Preparation: Preliminary Findings

    ERIC Educational Resources Information Center

    Ralph, Edwin George; Walker, Keith; Wimmer, Randy

    2008-01-01

    The authors synthesize preliminary findings from an interdisciplinary study of the practicum/clinical phase of undergraduate pre-service education in the professions. Early data analysis identified similarities and differences across disciplines in terms of: (a) the terminology describing each practicum program, (b) the programs' key…

  2. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  3. Finite element based N-Port model for preliminary design of multibody systems

    NASA Astrophysics Data System (ADS)

    Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice

    2018-02-01

    This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.

  4. The MELiSSA GreenMOSS Study: Preliminary Design Considerations for a Greenhouse Module on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare; Paille, Christel; Lamantea, Matteo Maria; Boscheri, Giorgio; Rossetti, Vittorio

    Extended human presence on an extraterrestrial planetary surface will be made possible by the development of life support systems affordable in the long term. The key elements to support the goal will be the maximization of closure of air and water cycles, as well as the development of cost-effective and reliable hardware, including a careful strategic effort toward reduction of spare parts and consumables. Regenerative life support systems likely represent the final step toward long term sustainability of a space crew, allowing in situ food production and regeneration of organic waste. Referring to the MELiSSA loop, a key element for food production is the Higher Plant Compartment. The paper focuses on the preliminary design of a Greenhouse at the lunar South Pole, as performed within the “Greenhouse Module for Space System” (GreenMOSS) study, under a contract from the European Space Agency. The greenhouse is in support to a relatively small crew for provision of an energetic food complement. Resources necessary for the greenhouse such as water, carbon dioxide and nitrogen are assumed available, as required. The relevant mass and energy balances for incoming resources should be part of future studies, and should help integrate this element with the interfacing MELISSA compartments. Net oxygen production and harvested crop biomass from the greenhouse system will be quantified. This work presents the results of the two major trade-offs performed as part of this study: artificial vs natural illumination and monocrop vs multicrop solutions. Comparisons among possible design solutions were driven by the ALiSSE metric as far as practicable within this preliminary stage, considering mass and power parameters. Finally, the paper presents the mission duration threshold for determining the convenience of the designed solution with respect to other resources provision strategies

  5. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  6. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  7. Preliminary design of a space system operating a ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    D'Errico, Marco; Ponte, Salvatore; Grassi, Michele; Moccia, Antonio

    2005-12-01

    Ground-penetrating radars (GPR) are currently used only in ground campaigns or in few airborne installations. A feasibility analysis of a space mission operating a GPR for archaeological applications is presented in this work with emphasis on spacecraft critical aspects: antenna dimension and power required for achieving adequate depth and accuracy. Sensor parametric design is performed considering two operating altitudes (250 and 500 km) and user requirements, such as minimum skin depth, vertical and horizontal resolution. A 500-km altitude, 6 a.m.-6 p.m. sun-synchronous orbit is an adequate compromise between atmospheric drag and payload transmitted average power (12 kW) to achieve a 3-m penetration depth. The satellite bus preliminary design is then performed, with focus on critical subsystems and technologies. The payload average power requirement can be kept within feasible limits (1 kW) by using NiH2 batteries to supply the radar transmitter, and with a strong reduction of the mission duty cycle ( 40km×1100km are observed per orbit). As for the electric power subsystem, a dual-voltage strategy is adopted, with the battery charge regulator supplied at 126 V and the bus loads at 50 V. The overall average power (1.9 kW), accounting for both payload and bus needs, can be supplied by a 20m2 GaAs solar panel for a three-year lifetime. Finally, the satellite mass is kept within reasonable limits (1.6 tons) using inflatable-rigidisable structure for both the payload antenna and the solar panels.

  8. Application of membrane bioreactors in the preliminary treatment of early planetary base wastewater for long-duration space missions.

    PubMed

    Zhang, Kai; Choi, Hyeok; Dionysiou, Dionysios D; Oerther, Daniel B

    2008-12-01

    Membrane bioreactors (MBRs) are the preferred technology for the preliminary treatment of Early Planetary Base Wastewater (EPBW) because of their compact configuration and promising treatment performance. For long-duration space missions, irreversible membrane biofouling resulting from the strong attachment of biomass and the formation of biofilms are major concerns for the MBR process. In this study, a MBR was operated for 230 days treating synthetic EPBW. The reactor demonstrated excellent treatment performance, in terms of chemical oxygen demand removal and nitrification. Filtration resistance is mainly caused by concentration polarization, reversible fouling, and irreversible fouling. Analysis of the microbial communities in the planktonic and corresponding sessile biomass suggested that the microbial community of the planktonic biomass was significantly different from the one of the sessile biomass. This study provides valuable information for the development of the water reuse component in the National Aeronautics and Space Administration's (Washington, D.C.) Advanced Life Support system for long-term space missions.

  9. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  10. Heliogyro Preliminary Design, Phase 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    There are 12 blades in the Heliogyro design, and each blade is envisioned to be 8 meters in width and 7,500 meters in length. The blades are expected to be composed primarily of a thin membrane constructed of material such as Kapton film with an aluminum reflective coating on one side and an infrared emissive coating on the other. The present Phase 2 Final Report covers work done on the following six topics: (1) Design and analysis of a stowable circular lattice batten for the Heliogyro blade. (2) Design and analysis of a biaxially tensioned blade panel. (3) Definition of a research program for micrometeoroid damage to tendons. (4) A conceptual design for a flight test model of the Heliogyro. (5) Definition of modifications to the NASTRAN computer program required to provide improved analysis of the Heliogyro. (6) A User's Manual covering applications of NASTRAN to the Heliogyro.

  11. Universal Design for Learning: Cognitive Theory into Practice for Facilitating Comprehension in Early Literacy

    ERIC Educational Resources Information Center

    Brand, Susan Trostle; Dalton, Elizabeth M.

    2012-01-01

    Addressing the unique needs of children of all ages and abilities, Universal Design for Learning (UDL) is gaining momentum in schools and preschools around the nation and the globe. This article explores Universal Design for Learning and its promising applications to a variety of reading and language arts experiences in the Early Childhood…

  12. Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry

    1990-01-01

    The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.

  13. Mindfulness-based stress reduction for people living with HIV/AIDS: preliminary review of intervention trial methodologies and findings.

    PubMed

    Riley, Kristen E; Kalichman, Seth

    2015-01-01

    In the context of successful antiretroviral therapy (ART) for the management of HIV infection, the harmful effects of stress remain a significant threat. Stress may increase viral replication, suppress immune response, and impede adherence to ART. Stressful living conditions of poverty, facing a chronic life-threatening illness and stigma all exacerbate chronic stress in HIV-affected populations. Stress-reduction interventions are urgently needed for the comprehensive care of people living with HIV. Mindfulness-based stress reduction (MBSR) is one approach that has shown promise as an intervention for patients facing other medical conditions for reducing disease progression, psychological distress and maladaptive behaviours. In this systematic review, we identified 11 studies that have examined MBSR as an intervention for HIV-positive populations. Of the studies, six were randomised designs, one was a quasi-experimental design, and the remaining four were pre- and post-test designs. The preliminary outcomes support MBSR to decrease emotional distress with mixed evidence for impact on disease progression. Effect sizes were generally small to moderate in magnitude. The early findings from this emerging literature must be considered preliminary and support moving forward with more rigorous controlled trials, evaluated with objective assessments in longer-term follow-ups to determine the efficacy of MBSR for people living with HIV.

  14. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [ODSP-3 code; OTEC Steady-State Analysis Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-12-04

    The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)

  15. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  16. Simple uncertainty propagation for early design phase aircraft sizing

    NASA Astrophysics Data System (ADS)

    Lenz, Annelise

    Many designers and systems analysts are aware of the uncertainty inherent in their aircraft sizing studies; however, few incorporate methods to address and quantify this uncertainty. Many aircraft design studies use semi-empirical predictors based on a historical database and contain uncertainty -- a portion of which can be measured and quantified. In cases where historical information is not available, surrogate models built from higher-fidelity analyses often provide predictors for design studies where the computational cost of directly using the high-fidelity analyses is prohibitive. These surrogate models contain uncertainty, some of which is quantifiable. However, rather than quantifying this uncertainty, many designers merely include a safety factor or design margin in the constraints to account for the variability between the predicted and actual results. This can become problematic if a designer does not estimate the amount of variability correctly, which then can result in either an "over-designed" or "under-designed" aircraft. "Under-designed" and some "over-designed" aircraft will likely require design changes late in the process and will ultimately require more time and money to create; other "over-designed" aircraft concepts may not require design changes, but could end up being more costly than necessary. Including and propagating uncertainty early in the design phase so designers can quantify some of the errors in the predictors could help mitigate the extent of this additional cost. The method proposed here seeks to provide a systematic approach for characterizing a portion of the uncertainties that designers are aware of and propagating it throughout the design process in a procedure that is easy to understand and implement. Using Monte Carlo simulations that sample from quantified distributions will allow a systems analyst to use a carpet plot-like approach to make statements like: "The aircraft is 'P'% likely to weigh 'X' lbs or less, given the

  17. The human early-life exposome (HELIX): project rationale and design.

    PubMed

    Vrijheid, Martine; Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R; Granum, Berit; Gražulevičienė, Regina; Gutzkow, Kristine B; Julvez, Jordi; Keun, Hector C; Kogevinas, Manolis; McEachan, Rosemary R C; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J; Zeman, Florence; Nieuwenhuijsen, Mark J

    2014-06-01

    Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.

  18. Preliminary Design Study of a Hybrid Airship for Flight Research

    NASA Technical Reports Server (NTRS)

    Browning, R. G. E.

    1981-01-01

    The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.

  19. Phase 1 of the near team hybrid passenger vehicle development program. Appendix C: Preliminary design data package, volume 1

    NASA Technical Reports Server (NTRS)

    Piccolo, R.

    1979-01-01

    The methodology used for vehicle layout and component definition is described as well as techniques for system optimization and energy evaluation. The preliminary design is examined with particular attention given to body and structure; propulsion system; crash analysis and handling; internal combustion engine; DC motor separately excited; Ni-Zn battery; transmission; control system; vehicle auxiliarries; weight breakdown, and life cycle costs. Formulas are given for the quantification of energy consumption and results are compared with the reference vehicle.

  20. Advanced multi-frequency radar: Design, preliminary measurements and particle size distribution retrieval

    NASA Astrophysics Data System (ADS)

    Majurec, Ninoslav

    lower output power of klystron amplifiers (comparing to magnetrons) is compensated by use of pulse compression (linear FM). The problem of range sidelobes (pulse compression artifacts) has been solved by using appropriate windowing functions in the receiver. Satisfactory sidelobe suppression level of 45 dB has been demonstrated in the lab. The currently best achievable range resolution of the AMFR system is 30 m (corresponds to 5 MHz receiver BW, set by the sampling rate of the Analog-to-Digital card). During the design stage, various polarization schemes have been investigated. The polarization scheme analysis showed the switching polarization scheme to be the best suited for the AMFR system. The AMFR subsystems were partially finished in the winter of 2005. Some preliminary tests were conducted in January 2006. Antenna platform was fabricated in summer 2006. The final assembly took place in the fall of 2006. Early results are presented in the dissertation. These results were helpful in revealing of certain problems in the radar system (i.e. immediate processing computer synchronization) that needed to be addressed during system development. Stratiform rain event occurred on December 18 2006 has been analyzed in detail. A number of commonly used theoretical particle size distributions is presented. Furthermore, it is shown that a fully calibrated multi-frequency radar system has capability of separating scattering and attenuation effects. This was accomplished by fitting the theoretical models into the measured data. An alternative method of estimating rain rate that relies on the dual wavelength ratios is also presented. Although not as powerful as theoretical model fitting, it has its merits for off-zenith observations. During January 2007, AMFR system participated in the C3VP experiment (Canadian CloudSat/CALIPSO Validation Project) in south Ontario, Canada. Some of the data obtained during C3VP experiment has been analyzed and presented. Analysis of these two

  1. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NASA Astrophysics Data System (ADS)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-08-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R 20,000) and two medium resolution (R 5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey.

  2. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  3. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    NASA Astrophysics Data System (ADS)

    Waris, A.; Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K.; Basar, K.

    2016-03-01

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  4. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  5. Designing a Measurement Framework for Response to Intervention in Early Childhood Programs

    ERIC Educational Resources Information Center

    McConnell, Scott R.; Wackerle-Hollman, Alisha K.; Roloff, Tracy A.; Rodriguez, Michael

    2014-01-01

    The overall architecture and major components of a measurement system designed and evaluated to support Response to Intervention (RTI) in the areas of language and literacy in early childhood programs are described. Efficient and reliable measurement is essential for implementing any viable RTI system, and implementing such a system in early…

  6. Enhancing the Design Process for Complex Space Systems through Early Integration of Risk and Variable-Fidelity Modeling

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri; Osburg, Jan

    2005-01-01

    An important enabler of the new national Vision for Space Exploration is the ability to rapidly and efficiently develop optimized concepts for the manifold future space missions that this effort calls for. The design of such complex systems requires a tight integration of all the engineering disciplines involved, in an environment that fosters interaction and collaboration. The research performed under this grant explored areas where the space systems design process can be enhanced: by integrating risk models into the early stages of the design process, and by including rapid-turnaround variable-fidelity tools for key disciplines. Enabling early assessment of mission risk will allow designers to perform trades between risk and design performance during the initial design space exploration. Entry into planetary atmospheres will require an increased emphasis of the critical disciplines of aero- and thermodynamics. This necessitates the pulling forward of EDL disciplinary expertise into the early stage of the design process. Radiation can have a large potential impact on overall mission designs, in particular for the planned nuclear-powered robotic missions under Project Prometheus and for long-duration manned missions to the Moon, Mars and beyond under Project Constellation. This requires that radiation and associated risk and hazards be assessed and mitigated at the earliest stages of the design process. Hence, RPS is another discipline needed to enhance the engineering competencies of conceptual design teams. Researchers collaborated closely with NASA experts in those disciplines, and in overall space systems design, at Langley Research Center and at the Jet Propulsion Laboratory. This report documents the results of this initial effort.

  7. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    NASA Astrophysics Data System (ADS)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  8. Preliminary consideration of CFETR ITER-like case diagnostic system.

    PubMed

    Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X

    2016-11-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  9. Preliminary consideration of CFETR ITER-like case diagnostic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. S.; Liu, Y. K.; Gao, X.

    2016-11-15

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basicmore » control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.« less

  10. The design of composite monitoring scheme for multilevel information in crop early diseases

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Meng, Qinglong; Shang, Jing

    2018-02-01

    It is difficult to monitor and predict the crops early diseases in that the crop disease monitoring is usually monitored by visible light images and the availabilities in early warning are poor at present. The features of common nondestructive testing technology applied to the crop diseases were analyzed in this paper. Based on the changeable characteristics of the virus from the incubation period to the onset period of crop activities, the multilevel composite information monitoring scheme were designed by applying infrared thermal imaging, visible near infrared hyperspectral imaging, micro-imaging technology to the monitoring of multilevel information of crop disease infection comprehensively. The early warning process and key monitoring parameters of compound monitoring scheme are given by taking the temperature, color, structure and texture of crops as the key monitoring characteristics of disease. With overcoming the deficiency that the conventional monitoring scheme is only suitable for the observation of diseases with naked eyes, the monitoring and early warning of the incubation and early onset of the infection crops can be realized by the composite monitoring program as mentioned in this paper.

  11. Sampling design for early detection of aquatic invasive species in Great Lakes ports

    EPA Science Inventory

    We evaluated a pilot adaptive monitoring program for aquatic invasive species (AIS) early detection in Lake Superior. The monitoring program is designed to detect newly-introduced fishes, and encompasses the lake’s three major ports (Duluth-Superior, Sault Ste. Marie, Thund...

  12. Preliminary Inventory in the Early Coma of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Calmonte, Ursina; Altwegg, Kathrin; Le Roy, Léna; Rubin, Martin; Berthelier, Jean-Jacques; De Keyser, Johan; Fiethe, Björn; Fuselier, Steve A; Combi, Mike

    2014-11-01

    After a 10-year journey, the European Space Agency’s Rosetta mission encountered its target comet Churyumov-Gerasimenko. Rosetta will accompany the comet to perihelion and beyond. On board the Rosetta spacecraft is the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) experiment. ROSINA consists of a pressure sensor and two complementary mass spectrometers. One is the Double Focusing Mass Spectrometer, which has high dynamic range and a mass resolution m/Δm = 3000 at 1% peak height (m/Δm = 9000 at 50% peak height) at mass 28 amu/q. It is therefore well suited to detect minor species in the lower mass range up to mass 140 amu [1].ROSINA has been taking data since May 2014 and first signals of the comet were detected at the beginning of August. We will present a preliminary inventory of species seen by ROSINA in the early coma of comet Churyumov-Gerasimenko.References[1] Balsiger, H., Altwegg, K., Bochsler, P., Eberhardt, P., Fischer, J., Graf, S., Jäckel, A., Kopp, E., Langer, U., Mildner, M., Müller, J., Riesen, T., Rubin, M., Scherer, S., Wurz, P., Wüthrich, S., Arijs, E., Delanoye, S., de Keyser, J., Neefs, E., Nevejans, D., Rème, H., Aoustin, C., Mazelle, C., Médale, J.-L., Sauvaud, J.A., Berthelier, J.-J., Bertaux, J.-L., Duvet, L., Illiano, J.-M., Fuselier, S.A., Ghielmetti, A.G., Magoncelli, T., Shelley, E.G., Korth, A., Heerlein, K., Lauche, H., Livi, S., Loose, A., Mall, U., Wilken, B., Gliem, F., Fiethe, B., Gombosi, T.I., Block, B., Carignan, G.R., Fisk, L.A., Waite, J.H., Young, D.T. and Wollnik, H.,. Rosina Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews 128, pp745-801, 2007.

  13. Rethinking Instructional Technology to Improve Pedagogy for Digital Literacy: A Design Case in a Graduate Early Childhood Education Course

    ERIC Educational Resources Information Center

    Langub, Lee Woodham; Lokey-Vega, Anissa

    2017-01-01

    Digital literacy is an important aspect to consider within teacher education as a way to address twenty-first century learner needs, particularly in early childhood contexts where developmental concerns should be paramount in making instructional design decisions. This article is a design case of a graduate level early childhood education…

  14. Early results from Magsat. [studies of near-earth magnetic fields

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.; Mayhew, M. A.

    1981-01-01

    Papers presented at the May 27, 1981 meeting of the American Geophysical Union concerning early results from the Magsat satellite program, which was designed to study the near-earth magnetic fields originating in the core and lithosphere, are discussed. The satellite was launched on October 30, 1979 into a sun-synchronous (twilight) orbit, and re-entered the atmosphere on June 11, 1980. Instruments carried included a cesium vapor magnetometer to measure field magnitudes, a fluxgate magnetometer to measure field components and an optical system to measure fluxgate magnetometer orientation. Early results concerned spherical harmonic models, fields due to ionospheric and magnetospheric currents, the identification and interpretation of fields from lithospheric sources. The preliminary results confirm the possibility of separating the measured field into core, crustal and external components, and represent significant developments in analytical techniques in main-field modelling and the physics of the field sources.

  15. Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban

    2008-01-01

    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.

  16. Managing Risks? Early Warning Systems for Climate Change

    NASA Astrophysics Data System (ADS)

    Sitati, A. M.; Zommers, Z. A.; Habilov, M.

    2014-12-01

    Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.

  17. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  18. Simplified spacecraft vulnerability assessments at component level in early design phase at the European Space Agency's Concurrent Design Facility

    NASA Astrophysics Data System (ADS)

    Kempf, Scott; Schäfer, Frank K.; Cardone, Tiziana; Ferreira, Ivo; Gerené, Sam; Destefanis, Roberto; Grassi, Lilith

    2016-12-01

    During recent years, the state-of-the-art risk assessment of the threat posed to spacecraft by micrometeoroids and space debris has been expanded to the analysis of failure modes of internal spacecraft components. This method can now be used to perform risk analyses for satellites to assess various failure levels - from failure of specific sub-systems to catastrophic break-up. This new assessment methodology is based on triple-wall ballistic limit equations (BLEs), specifically the Schäfer-Ryan-Lambert (SRL) BLE, which is applicable for describing failure threshold levels for satellite components following a hypervelocity impact. The methodology is implemented in the form of the software tool Particle Impact Risk and vulnerability Analysis Tool (PIRAT). During a recent European Space Agency (ESA) funded study, the PIRAT functionality was expanded in order to provide an interface to ESA's Concurrent Design Facility (CDF). The additions include a geometry importer and an OCDT (Open Concurrent Design Tool) interface. The new interface provides both the expanded geometrical flexibility, which is provided by external computer aided design (CAD) modelling, and an ease of import of existing data without the need for extensive preparation of the model. The reduced effort required to perform vulnerability analyses makes it feasible for application during early design phase, at which point modifications to satellite design can be undertaken with relatively little extra effort. The integration of PIRAT in the CDF represents the first time that vulnerability analyses can be performed in-session in ESA's CDF and the first time that comprehensive vulnerability studies can be applied cost-effectively in early design phase in general.

  19. Human Factors in the Design of the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina

    2007-01-01

    NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.

  20. Launch vehicle design and GNC sizing with ASTOS

    NASA Astrophysics Data System (ADS)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  1. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to

  2. A Taxonomy of Instructional Strategies in Early Childhood Education; Toward a Developmental Theory of Instructional Design.

    ERIC Educational Resources Information Center

    Vance, Barbara

    This paper suggests two steps in instructional deisgn for early childhood that can be derived from a recent major paper on instructional strategy taxonomy. These steps, together with the instructional design variables involved in each step, are reviewed relative to current research in child development and early education. The variables reviewed…

  3. Energy efficient engine: Flight propulsion system preliminary analysis and design

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.

    1980-01-01

    The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.

  4. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  5. The practical application of adaptive study design in early phase clinical trials: a retrospective analysis of time savings.

    PubMed

    Lorch, U; Berelowitz, K; Ozen, C; Naseem, A; Akuffo, E; Taubel, J

    2012-05-01

    The interest in adaptive study design is evident from the growing amount of clinical research employing this model in the mid to later stages of medicines development. Little has been published on the practical application and merits of adaptive study design in early phase clinical research. This paper describes a retrospective analysis performed on a sample of 29 industry lead adaptive early phase studies commencing between 1 January 2006 and 31 December 2010 in a clinical trials unit in London, England. All studies containing at least one adaptive feature in the original protocol were included in the analysis. The scope of the analysis was to assess whether the use of adaptive study designs provided tangible benefits over the use of conventional study designs using time savings as the main measure. We conclude that the use of adaptive study design saves time in early phase research programs. This is achieved by abolishing the need for substantial amendments or by mitigating their impact on timelines and by using adaptive scheduling efficiencies.

  6. Design of early warning system for nuclear preparedness case study at Serpong

    NASA Astrophysics Data System (ADS)

    Farid, M. M.; Prawito, Susila, I. P.; Yuniarto, A.

    2017-07-01

    One effort to protect the environment from the increasing of potentially environmental radiation hazards as an impact of radiation discharge around nuclear facilities is by a continuous monitoring of the environmental radiation in real time It is important to disclose the dose rate information to public or authorities for radiological protection. In this research, we have designed a nuclear preparedness early warning system around the Serpong nuclear facility. The design is based on Arduino program, general packet radio service (GPRS) shield, and radio frequencies technology to transmit environmental radiation result of the measurement and meteorological data. Data was collected at a certain location at The Center for Informatics and Nuclear Strategic Zone Utilization BATAN Serpong. The system consistency models are defined by the quality of data and the level of radiation exposure in the deployed environment. Online users can access the website which displays the radiation dose on the environment marked on Google Map. This system is capable to issue an early warning emergency when the dose reaches three times of the background radiation exposure value, 250 nSv/hour.

  7. SPECTIX, a PETAL+ X-ray spectrometer: design, calibration and preliminary tests

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Bastiani, S.; Batani, D.; Brambrink, E.; Boutoux, G.; Duval, A.; Hulin, S.; Jakubowska, K.; Koenig, M.; Lantuéjoul-Thfoin, I.; Lecherbourg, L.; Szabo, C. I.; Vauzour, B.

    2018-01-01

    The present article describes the design, the calibration and preliminary tests of the X-ray transmission crystal spectrometer SPECTIX (Spectromètre PEtal à Cristaux en Transmission X) built in the framework of the PETAL (PETawatt Aquitaine Laser) project and located in the Laser MégaJoule (LMJ) facility [1,2]. SPECTIX aims at characterizing the hard x-ray Kα emission generated by the interaction of the PETAL ps ultra high-energy laser with a target. The broad spectral range covered by this spectrometer (7 to 150 keV) is achieved by using two measurement channels composed by two distinct crystals. Due to the harsh environment experienced by the spectrometer during a LMJ-PETAL shot, passive detection with image plates is used. Shielding has been dimensioned in order to protect the detector against PETAL shot products. It includes a magnetic dipole to remove electrons entering the spectrometer, a 20 mm thick tungsten frontal collimation and a 6 mm thick lead housing. The SPECTIX performances, including the shielding efficiency, have been tested during an experimental campain performed at the PICO 2000 laser facility at LULI. Improvements inferred from these tests are currently being implemented. Full commissioning of SPECTIX is planned on PETAL shots at the end of 2017.

  8. MOD-2 wind turbine system concept and preliminary design report. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The configuration development of the MOD-2 wind turbine system (WTS) is documented. The MOD-2 WTS project is a continuation of DOE programs to develop and achieve early commercialization of wind energy. The MOD-2 is design optimized for commercial production rates which, in multiunit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than four cents per kilowatt hour.

  9. Preliminary Impacts of North Carolina's Rural Innovative Schools Project

    ERIC Educational Resources Information Center

    Naumenko, Oksana; Henson, Robert; Hutchins, Bryan

    2016-01-01

    Funded by an Investing in Innovation (i3) Validation grant, the Rural Innovative Schools (RIS) Project is the first widespread effort to scale up the early college model by implementing it in comprehensive high schools. This paper will present preliminary findings from the evaluation of this project. The impact study uses a quasi-experimental…

  10. Early College Designs: An Increasingly Popular College-Readiness Strategy for School Districts to Reach More Traditionally Underserved Students

    ERIC Educational Resources Information Center

    Vargas, Joel H.; Miller, Marc S.

    2011-01-01

    Once a radical concept, early college high schools are flying soundly today. The challenge today--and the excitement of those involved--centers on learning from this successful innovation and bringing the early college design to many more young people. Expansion is taking place through the creation of early college districts covering all students…

  11. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waris, A., E-mail: awaris@fi.itb.ac.id; Basar, K.; Kusumawati, Y.

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination ofmore » Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.« less

  12. Design of flood early warning system with wifi network based on smartphone

    NASA Astrophysics Data System (ADS)

    Supani, Ahyar; Andriani, Yuli; Taqwa, Ahmad

    2017-11-01

    Today, the development using internet of things enables activities surrounding us to be monitored, controlled, predicted and calculated remotely through connections to the internet network such as monitoring activities of long-distance flood warning with information technology. Applying an information technology in the field of flood early warning has been developed in the world, either connected to internet network or not. The internet network that has been done in this paper is the design of WiFi network to access data of rainfall, water level and flood status at any time with a smartphone coming from flood early warning system. The results obtained when test of data accessing with smartphone are in form of rainfall and water level graphs against time and flood status indicators consisting of 3 flood states: Standby 2, Standby 1 and Flood. It is concluded that data are from flood early warning system has been able to accessed and displayed on smartphone via WiFi network in any time and real time.

  13. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  14. Constructing a Professional Identity: Some Preliminary Findings from Students of Early Years Education

    ERIC Educational Resources Information Center

    Egan, Bridget A.

    2004-01-01

    In this article some preliminary data from an ongoing exploration of student teachers' development of professional identities are explored. This project uses hermeneutic techniques to develop a set of categories which characterise students' articulation of their understanding. This is related to the Aristotelian categories of "praxis",…

  15. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  16. WE-EF-210-07: Development of a Minimally Invasive Photo Acoustic Imaging System for Early Prostate Cancer Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, M; Yousefi, S; Xing, L

    Purpose: The objective of this work is to design, implement and characterize a catheter-based ultrasound/photoacoustic imaging probe for early-diagnosis of prostate cancer and to aid in image-guided radiation therapy. Methods: The need to image across 6–10cm of tissue to image the whole prostate gland limits the resolution achievable with a transrectal ultrasound approach. In contrast, the urethra bisects the prostate gland, providing a minimally invasive pathway for deploying a high resolution ultrasound transducer. Utilizing a high-frequency (20MHz) ultrasound/photoacoustic probe, high-resolution structural and molecular imaging of the prostate tissue is possible. A custom 3D printed probe containing a high-frequency single-element ultrasoundmore » transducer is utilized. The diameter of the probe is designed to fit inside a Foley catheter and the probe is rotated around the central axis to achieve a circular B-scan. A custom ultrasound amplifier and receiver was set up to trigger the ultrasound pulse transmission and record the reflected signal. The reconstructed images were compared to images generated by traditional 5 MHz ultrasound transducers. Results: The preliminary results using the high-frequency ultrasound probe show that it is possible to resolve finely detailed information in a prostate tissue phantom that was not achievable with previous low-frequency ultrasound systems. Preliminary ultrasound imaging was performed on tissue mimicking phantom and sensitivity and signal-to-noise ratio of the catheter was measured. Conclusion: In order to achieve non-invasive, high-resolution, structural and molecular imaging for early-diagnosis and image-guided radiation therapy of the prostate tissue, a transurethral catheter was designed. Structural/molecular imaging using ultrasound/photoacoustic of the prostate tissue will allow for localization of hyper vascularized areas for early-stage prostate cancer diagnosis.« less

  17. Euler Technology Assessment for Preliminary Aircraft Design-Unstructured/Structured Grid NASTD Application for Aerodynamic Analysis of an Advanced Fighter/Tailless Configuration

    NASA Technical Reports Server (NTRS)

    Michal, Todd R.

    1998-01-01

    This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.

  18. HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Berkowitz, Brian M.

    1988-01-01

    A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.

  19. Trauma-Focused Early Intensive Cognitive Behavioral Intervention (TF-EICBI) in children and adolescent survivors of suicide bombing attacks (SBAs). A preliminary study.

    PubMed

    Leor, Agnes; Dolberg, Orna T; Eshel, Shira Pagorek; Yagil, Yaron; Schreiber, Shaul

    2013-01-01

    To describe and evaluate the impact of an early intervention (Trauma-Focused Early Intensive Cognitive Behavioral Intervention, TF-EICBI) in children and adolescents who were victims of suicide bombing attacks (SBAs) in Israel. Description of an intervention and preliminary experience in its use. An acute trauma center of a Child and Adolescent Psychiatric Unit in a Department of Psychiatry of a university-affiliated medical center. Ten children and adolescents who were victims of SBAs and underwent early interventions (EIG) were compared to 11 adolescent victims who received no intervention (NEIG). The EIG included all the children and adolescent survivors of various SBAs that had occurred during 1 year who presented to our hospital after the TF-EICBI was implemented (June 2001). The NEIG comprised all adolescents girls <18 years of age at follow-up who survived one SBA (at the "Dolphinarium" Discotheque) before the TF-EICBI was available. At the time of the 1-year post-SBA follow-up, all 21 subjects were assessed by the Structured Clinical Interview for Axis 1 DSMIII R Disorders (SCID), and the Child Behavior Checklist (CBCL). One (10 percent) EI subject and four (36.4 percent) NEI subjects had post-traumatic stress disorder. The mean CBCL total score and most of the mean CBCL behavior problem scores were significantly higher (p < 0.021) among the NEI group members. Intervention was effective in preventing and lowering mental morbidity of children and adolescents after SBAs.

  20. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  1. Preliminary design of a prototype particulate stack sampler. [For stack gas temperature under 300/sup 0/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elder, J.C.; Littlefield, L.G.; Tillery, M.I.

    1978-06-01

    A preliminary design of a prototype particulate stack sampler (PPSS) has been prepared, and development of several components is under way. The objective of this Environmental Protection Agency (EPA)-sponsored program is to develop and demonstrate a prototype sampler with capabilities similar to EPA Method 5 apparatus but without some of the more troublesome aspects. Features of the new design include higher sampling flow; display (on demand) of all variables and periodic calculation of percent isokinetic, sample volume, and stack velocity; automatic control of probe and filter heaters; stainless steel surfaces in contact with the sample stream; single-point particle size separationmore » in the probe nozzle; null-probe capability in the nozzle; and lower weight in the components of the sampling train. Design considerations will limit use of the PPSS to stack gas temperatures under approximately 300/sup 0/C, which will exclude sampling some high-temperature stacks such as incinerators. Although need for filter weighing has not been eliminated in the new design, introduction of a variable-slit virtual impactor nozzle may eliminate the need for mass analysis of particles washed from the probe. Component development has shown some promise for continuous humidity measurement by an in-line wet-bulb, dry-bulb psychrometer.« less

  2. A class 2 weight assessment for the implementation of commonality and preliminary structural designs for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Creighton, Tom; Dragush, George; Hendrich, Louis; Hensley, Doug; Morgan, Louise; Oxendine, Charles; Remen, John; Robinson, Terry; Russell, Mark; Swift, Jerry

    1987-01-01

    The feasibility of commonality objectives are determined. Commonality is discussed in terms of weight penalties that increase the take-off weight of several members of the family of airplanes. Preliminary designs of fuselage structural members and a discussion of weight penalties due to implementation of common fuselage structure throughout the family is examined. Wing torque box designs are discussed along with structural weight penalties incurred. A landing gear design study is contained along with the weight penalties that a common gear system will impose. Implementation of common power plants throughout the family and the weight penalties that occur are discussed. The weight penalties imposed by commonality on all the airplanes in the family are summarized. Class 2 breakdowns are also presented. The feasibility of commonality based on a percentage of take-off weight increase over the Class 2 baseline weights is then assessed.

  3. The Problem of Size in Robust Design

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri

    1997-01-01

    To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.

  4. Designing Studies That Would Address the Multilayered Nature of Health Care

    PubMed Central

    Pennell, Michael; Rhoda, Dale; Hade, Erinn M.; Paskett, Electra D.

    2010-01-01

    We review design and analytic methods available for multilevel interventions in cancer research with particular attention to study design, sample size requirements, and potential to provide statistical evidence for causal inference. The most appropriate methods will depend on the stage of development of the research and whether randomization is possible. Early on, fractional factorial designs may be used to screen intervention components, particularly when randomization of individuals is possible. Quasi-experimental designs, including time-series and multiple baseline designs, can be useful once the intervention is designed because they require few sites and can provide the preliminary evidence to plan efficacy studies. In efficacy and effectiveness studies, group-randomized trials are preferred when randomization is possible and regression discontinuity designs are preferred otherwise if assignment based on a quantitative score is possible. Quasi-experimental designs may be used, especially when combined with recent developments in analytic methods to reduce bias in effect estimates. PMID:20386057

  5. Preliminary engineering cost trends for highway projects.

    DOT National Transportation Integrated Search

    2011-10-21

    Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...

  6. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    NASA Astrophysics Data System (ADS)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  7. Design of impact-resistant boron/aluminum large fan blade

    NASA Technical Reports Server (NTRS)

    Salemme, C. T.; Yokel, S. A.

    1978-01-01

    The technical program was comprised of two technical tasks. Task 1 encompassed the preliminary boron/aluminum fan blade design effort. Two preliminary designs were evolved. An initial design consisted of 32 blades per stage and was based on material properties extracted from manufactured blades. A final design of 36 blades per stage was based on rule-of-mixture material properties. In Task 2, the selected preliminary blade design was refined via more sophisticated analytical tools. Detailed finite element stress analysis and aero performance analysis were carried out to determine blade material frequencies and directional stresses.

  8. Going on Safari: The Design and Development of an Early Years Literacy iPad Application to Support Letter-Sound Learning

    ERIC Educational Resources Information Center

    McKenzie, Sophie; Spence, Aaron; Nicholas, Maria

    2018-01-01

    This paper explores the design, development and evaluation of an early childhood literacy iPad application, focusing on the English Alphabet, called "A to Z Safari" trialled in Australian classrooms. A to Z Safari was designed to assist students in the early years of schooling with learning the alphabet and building on their knowledge of…

  9. Preliminary posttest analysis of LOFT loss-of-coolant experiment L2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.R.; Grush, W.H.; Keeler, C.D.

    A preliminary posttest analysis of Loss-of-Coolant Experiment (LOCE) L2-2, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed to gain an understanding of the cause of the disparity between predicted and measured fuel rod cladding temperature responses in the LOFT core. LOCE L2-2 is the first experiment in the LOFT Power Ascension Series L2 (first series of LOFT nuclear experiments), which was designed to investigate the response of the LOFT nuclear core to the blowdown, refill, and reflood transients during LOCEs conducted at gradually increasing power levels. LOCE L2-2 was conducted at 50% power (25 MW, 26.38 kW/m).more » Results show that a core-wide rewet occurred early in the transient (during blowdown starting at about 7 s after rupture) which was not calculated in the pretest prediction analysis. This early core-wide rewet resulted in the peak fuel rod cladding temperatures being lower (by a mean value of 166/sup 0/K for 24 thermocouples) than had been calculated. This preliminary posttest analysis was concerned solely with determining why the early core-wide rewet was not predicted by the RELAP4/MOD6 pretest analysis and be no means is it a complete posttest analysis of LOCE L2-2 results. However, during this analysis, several errors made in the prettest analysis were found, and their impact on the predicted results is assessed. Three factors were postulated to have caused the disparity between predicted and measured fuel rod cladding temperatures for LOCE L2-2: (a) the initial fuel rod stored energy, (b) the heat transfer surface, and (c) the hydraulics calculation. These factors were examined and are discussed in this report. It was determined that core hydraulics, as influenced by the calculation of broken loop cold leg break flow, was the major factor causing the disparity.« less

  10. Characterizing problematic hypoglycaemia: iterative design and preliminary psychometric validation of the Hypoglycaemia Awareness Questionnaire (HypoA-Q).

    PubMed

    Speight, J; Barendse, S M; Singh, H; Little, S A; Inkster, B; Frier, B M; Heller, S R; Rutter, M K; Shaw, J A M

    2016-03-01

    To design and conduct preliminary validation of a measure of hypoglycaemia awareness and problematic hypoglycaemia, the Hypoglycaemia Awareness Questionnaire. Exploratory and cognitive debriefing interviews were conducted with 17 adults (nine of whom were women) with Type 1 diabetes (mean ± sd age 48 ± 10 years). Questionnaire items were modified in consultation with diabetologists/psychologists. Psychometric validation was undertaken using data from 120 adults (53 women) with Type 1 diabetes (mean ± sd age 44 ± 16 years; 50% with clinically diagnosed impaired awareness of hypoglycaemia), who completed the following questionnaires: the Hypoglycaemia Awareness Questionnaire, the Gold score, the Clarke questionnaire and the Problem Areas in Diabetes questionnaire. Iterative design resulted in 33 items eliciting responses about awareness of hypoglycaemia when awake/asleep and hypoglycaemia frequency, severity and impact (healthcare utilization). Psychometric analysis identified three subscales reflecting 'impaired awareness', 'symptom level' and 'symptom frequency'. Convergent validity was indicated by strong correlations between the 'impaired awareness' subscale and existing measures of awareness: (Gold: rs =0.75, P < 0.01; Clarke: rs =0.76, P < 0.01). Divergent validity was indicated by weaker correlations with diabetes-related distress (Problem Areas in Diabetes: rs =0.25, P < 0.01) and HbA1c (rs =-0.05, non-significant). The 'impaired awareness' subscale and other items discriminated between those with impaired and intact awareness (Gold score). The 'impaired awareness' subscale and other items contributed significantly to models explaining the occurrence of severe hypoglycaemia and hypoglycaemia when asleep. This preliminary validation shows the Hypoglycaemia Awareness Questionnaire has robust face and content validity; satisfactory structure; internal reliability; convergent, divergent and known groups validity. The impaired awareness subscale and other

  11. Preliminary Design of a Galactic Cosmic Ray Shielding Materials Testbed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.

    2012-01-01

    The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.

  12. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.

  13. 75 FR 54117 - Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Response to Comments on Previous Analysis C. Summary of the Comparative Analysis 1. Quantitative Analysis 2... preliminary quantitative analysis are specific building designs, in most cases with specific spaces defined... preliminary determination. C. Summary of the Comparative Analysis DOE carried out both a broad quantitative...

  14. The role of dental implant abutment design on the aesthetic outcome: preliminary 3-month post-loading results from a multicentre split-mouth randomised controlled trial comparing two different abutment designs.

    PubMed

    Esposito, Marco; Cardaropoli, Daniele; Gobbato, Luca; Scutellà, Fabio; Fabianelli, Andrea; Mascellani, Saverio; Delli Ficorelli, Gianluca; Mazzocco, Fabio; Sbricoli, Luca; Trullenque-Eriksson, Anna

    To evaluate whether there are aesthetic and clinical benefits to using a newly designed abutment (Curvomax), over a conventional control abutment (GingiHue). A total of 49 patients, who required at least two implants, had two sites randomised according to a split-mouth design to receive one abutment of each type at seven different centres. The time of loading (immediate, early or delayed) and of prosthesis (provisional crowns of fixed prosthesis) was decided by the clinicians, but they had to restore both implants in a similar way. Provisional prostheses were replaced by definitive ones 3 months after initial loading, when the follow-up for the initial part of this study was completed. Outcome measures were: prosthesis failures, implant failures, complications, pink esthetic score (PES), peri-implant marginal bone level changes, and patient preference. In total, 49 Curvomax and 49 GingiHue abutments were delivered. Two patients dropped out. No implant failure, prosthesis failure or complication was reported. There were no differences at 3 months post-loading for PES (difference = -0.15, 95% CI -0.55 to 0.25; P (paired t test) = 0.443) and marginal bone level changes (difference = -0.02 mm, 95% CI -0.20 to 0.16; P (paired t test) = 0.817). The majority of the patients (30) had no preference regarding the two abutment designs; 11 patients preferred the Curvomax, while five patients preferred the GingiHue abutments (P (McNemar test) = 0.210). The preliminary results of the comparison between two different abutment designs did not disclose any statistically significant differences between the evaluated abutments. However the large number of missing radiographs and clinical pictures casts doubt on the reliability of the results. Longer follow-ups of wider patient populations are needed to better understand whether there is an effective advantage with one of the two abutment designs. Conflict of interest statement: This research project was originally partially funded by

  15. New shipyard layout design for the preliminary phase & case study for the green field project

    NASA Astrophysics Data System (ADS)

    Song, Young Joo; Woo, Jong Hun

    2013-03-01

    For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.

  16. Systems design study of the Pioneer Venus spacecraft. Volume 2. Preliminary program development plan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary development plan for the Pioneer Venus program is presented. This preliminary plan treats only developmental aspects that would have a significant effect on program cost. These significant development areas were: master program schedule planning; test planning - both unit and system testing for probes/orbiter/ probe bus; ground support equipment; performance assurance; and science integration Various test planning options and test method techniques were evaluated in terms of achieving a low-cost program without degrading mission performance or system reliability. The approaches studied and the methodology of the selected approach are defined.

  17. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... Combined Cycle Project; Preliminary Staff Assessment and Draft Environmental Impact Statement AGENCY... Combined Cycle Project Preliminary Staff Assessment/Draft Environmental Impact Statement (PSA/DEIS) (DOE... Gasification Combined Cycle Project, which would be designed, constructed, and operated by HECA, LLC. HECA's...

  18. MSFC integrated experiments preliminary report. [for the Skylab program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Skylab experiments are described and their preliminary results are reported. The types of experiments described include medical, earth resources, space physics, space manufacturing, and spacecraft design.

  19. LWS design replacement study: Optimum design and tradeoff analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design for two long-wavelength (LW) focal-plane and cooler assemblies, including associated preamplifiers and post-amplifiers is presented. The focal-planes and associated electronic assemblies are intended as direct replacement hardware to be installed into the existing 24-channel multispectral scanner used with the NASA Earth Observations Aircraft Program. An organization skilled in the art of LWIR systems can fabricate and deliver the two long-wavelength focal-plane assemblies described in this report when provided with the data and drawings developed during the performance of this contract. The concepts developed during the study including the alternative approaches and selection of components are discussed. Modifications to the preliminary design as reported in a preliminary design review meeting have also been included.

  20. Preliminary Structural Design - Defining the Design Space

    DTIC Science & Technology

    1993-02-01

    York, 1949 7. Rosenblatt, R., Prnciples of Neurodynamics , New York, Spartan Books, 1959 8. Swift, R.,"Structural Design Using Neural Networks," Ph.D...Explorations in the Microstructure of Cognition . Vol. 1 Foundations D. E. Rumelhart and J.L. McClelland Editors, MIT Press, 1986 40. Parker, D. B...Processing: Explorations in the Microstructure of Cognition , MIT Press 1986 45. Schittkowski, K., Nonlinear o a gmi codes Lecture Notes in Economics and

  1. AVION: A detailed report on the preliminary design of a 79-passenger, high-efficiency, commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Mayfield, William; Perkins, Brett; Rogan, William; Schuessler, Randall; Stockert, Joe

    1990-01-01

    The Avion is the result of an investigation into the preliminary design for a high-efficiency commercial transport aircraft. The Avion is designed to carry 79 passengers and a crew of five through a range of 1,500 nm at 455 kts (M=0.78 at 32,000 ft). It has a gross take-off weight of 77,000 lb and an empty weight of 42,400 lb. Currently there are no American-built aircraft designed to fit the 60 to 90 passenger, short/medium range marketplace. The Avion gathers the premier engineering achievements of flight technology and integrates them into an aircraft which will challenge the current standards of flight efficiency, reliability, and performance. The Avion will increase flight efficiency through reduction of structural weight and the improvement of aerodynamic characteristics and propulsion systems. Its design departs from conventional aircraft design tradition with the incorporation of a three-lifting-surface (or tri-wing) configuration. Further aerodynamic improvements are obtained through modest main wing forward sweeping, variable incidence canards, aerodynamic coupling between the canard and main wing, leading edge extensions, winglets, an aerodynamic tailcone, and a T-tail empennage. The Avion is propelled by propfans, which are one of the most promising developments for raising propulsive efficiencies at high subsonic Mach numbers. Special attention is placed on overall configuration, fuselage layout, performance estimations, component weight estimations, and planform design. Leading U.S. technology promises highly efficient flight for the 21st century; the Avion will fulfill this promise to passenger transport aviation.

  2. Use of Taguchi design of experiments to optimize and increase robustness of preliminary designs

    NASA Technical Reports Server (NTRS)

    Carrasco, Hector R.

    1992-01-01

    The research performed this summer includes the completion of work begun last summer in support of the Air Launched Personnel Launch System parametric study, providing support on the development of the test matrices for the plume experiments in the Plume Model Investigation Team Project, and aiding in the conceptual design of a lunar habitat. After the conclusion of last years Summer Program, the Systems Definition Branch continued with the Air Launched Personnel Launch System (ALPLS) study by running three experiments defined by L27 Orthogonal Arrays. Although the data was evaluated during the academic year, the analysis of variance and the final project review were completed this summer. The Plume Model Investigation Team (PLUMMIT) was formed by the Engineering Directorate to develop a consensus position on plume impingement loads and to validate plume flowfield models. In order to obtain a large number of individual correlated data sets for model validation, a series of plume experiments was planned. A preliminary 'full factorial' test matrix indicated that 73,024 jet firings would be necessary to obtain all of the information requested. As this was approximately 100 times more firings than the scheduled use of Vacuum Chamber A would permit, considerable effort was needed to reduce the test matrix and optimize it with respect to the specific objectives of the program. Part of the First Lunar Outpost Project deals with Lunar Habitat. Requirements for the habitat include radiation protection, a safe haven for occasional solar flare storms, an airlock module as well as consumables to support 34 extra vehicular activities during a 45 day mission. The objective for the proposed work was to collaborate with the Habitat Team on the development and reusability of the Logistics Modules.

  3. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  4. An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues

  5. Development of a multiple-parameter nonlinear perturbation procedure for transonic turbomachinery flows: Preliminary application to design/optimization problems

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1983-01-01

    An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.

  6. Designing Reading Instruction for Cultural Minorities: The Case of the Kamehameha Early Education Program.

    ERIC Educational Resources Information Center

    Calfee, Robert C.; And Others

    This is a report on the Kamehameha Early Education Program (KEEP), a research and development project designed to find ways of improving the school performance of educationally disadvantaged Hawaiian children. The project, implemented in a laboratory school setting and continuously monitored, is described as a reading instruction program for…

  7. Euler Technology Assessment for Preliminary Aircraft Design: Compressibility Predictions by Employing the Cartesian Unstructured Grid SPLITFLOW Code

    NASA Technical Reports Server (NTRS)

    Finley, Dennis B.; Karman, Steve L., Jr.

    1996-01-01

    The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  8. Optimized smith waterman processor design for breast cancer early diagnosis

    NASA Astrophysics Data System (ADS)

    Nurdin, D. S.; Isa, M. N.; Ismail, R. C.; Ahmad, M. I.

    2017-09-01

    This paper presents an optimized design of Processing Element (PE) of Systolic Array (SA) which implements affine gap penalty Smith Waterman (SW) algorithm on the Xilinx Virtex-6 XC6VLX75T Field Programmable Gate Array (FPGA) for Deoxyribonucleic Acid (DNA) sequence alignment. The PE optimization aims to reduce PE logic resources to increase number of PEs in FPGA for higher degree of parallelism during alignment matrix computations. This is useful for aligning long DNA-based disease sequence such as Breast Cancer (BC) for early diagnosis. The optimized PE architecture has the smallest PE area with 15 slices in a PE and 776 PEs implemented in the Virtex - 6 FPGA.

  9. Improving the Design and Implementation of In-Service Professional Development in Early Childhood Intervention

    ERIC Educational Resources Information Center

    Dunst, Carl J.

    2015-01-01

    A model for designing and implementing evidence-­based in­-service professional development in early childhood intervention as well as the key features of the model are described. The key features include professional development specialist (PDS) description and demonstration of an intervention practice, active and authentic job-­embedded…

  10. Preliminary design review report - sludge offload system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwethy, L.M. Westinghouse Hanford

    1996-06-05

    This report documents the conceptual design review of the sludge offload system for the Spent Nuclear Fuel Project. The design description, drawings, available analysis, and safety analysis were reviewed by a peer group. The design review comments and resolutions are documented.

  11. Early Social Interaction Project for Children with Autism Spectrum Disorders Beginning in the Second Year of Life: A Preliminary Study

    ERIC Educational Resources Information Center

    Wetherby, Amy M.; Woods, Juliann J.

    2006-01-01

    The Early Social Interaction (ESI) Project (Woods & Wetherby, 2003) was designed to apply the recommendations of the National Research Council (2001) to toddlers with autism spectrum disorders (ASD) by using a parent-implemented intervention that (a) embeds naturalistic teaching strategies in everyday routines and (b) is compatible with the…

  12. Preliminary performances measured on a CMOS long linear array for space application

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Artinian, Armand; Dantes, Didier; Lepage, Gérald; Diels, Wim

    2017-11-01

    This paper presents the design and the preliminary performances of a CMOS linear array, resulting from collaboration between Alcatel Alenia Space and Cypress Semiconductor BVBA, which takes advantage of emerging potentialities of CMOS technologies. The design of the sensor is presented: it includes 8000 panchromatic pixels with up to 25 rows used in TDI mode, and 4 lines of 2000 pixels for multispectral imaging. Main system requirements and detector tradeoffs are recalled, and the preliminary test results obtained with a first generation prototype are summarized and compared with predicted performances.

  13. Euler technology assessment for preliminary aircraft design employing OVERFLOW code with multiblock structured-grid method

    NASA Technical Reports Server (NTRS)

    Treiber, David A.; Muilenburg, Dennis A.

    1995-01-01

    The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.

  14. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affectingmore » the public.« less

  15. Sympathetic activity and early mobilization in patients in intensive and intermediate care with severe brain injuries: a preliminary prospective randomized study.

    PubMed

    Rocca, A; Pignat, J-M; Berney, L; Jöhr, J; Van de Ville, D; Daniel, R T; Levivier, M; Hirt, L; Luft, A R; Grouzmann, E; Diserens, K

    2016-09-13

    Patients who experience severe brain injuries are at risk of secondary brain damage, because of delayed vasospasm and edema. Traditionally, many of these patients are kept on prolonged bed rest in order to maintain adequate cerebral blood flow, especially in the case of subarachnoid hemorrhage. On the other hand, prolonged bed rest carries important morbidity. There may be a clinical benefit in early mobilization and our hypothesis is that early gradual mobilization is safe in these patients. The aim of this study was to observe and quantify the changes in sympathetic activity, mainly related to stress, and blood pressure in gradual postural changes by the verticalization robot (Erigo®) and after training by a lower body ergometer (MOTOmed-letto®), after prolonged bed rest of minimum 7 days. Thirty patients with severe neurological injuries were randomized into 3 groups with different protocols of mobilization: Standard, MOTOmed-letto® or Erigo® protocol. We measured plasma catecholamines, metanephrines and blood pressure before, during and after mobilization. Blood pressure does not show any significant difference between the 3 groups. The analysis of the catecholamines suggests a significant increase in catecholamine production during Standard mobilization with physiotherapists and with MOTOmed-letto® and no changes with Erigo®. This preliminary prospective randomized study shows that the mobilization of patients with severe brain injuries by means of Erigo® does not increase the production of catecholamines. It means that Erigo® is a well-tolerated method of mobilization and can be considered a safe system of early mobilization of these patients. Further studies are required to validate our conclusions. The study was registered in the ISRCTN registry with the trial registration number ISRCTN56402432 . Date of registration: 08.03.2016. Retrospectively registered.

  16. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  17. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  18. The Impact of Early Design Phase Risk Identification Biases on Space System Project Performance

    NASA Technical Reports Server (NTRS)

    Reeves, John D., Jr.; Eveleigh, Tim; Holzer, Thomas; Sarkani, Shahryar

    2012-01-01

    Risk identification during the early design phases of complex systems is commonly implemented but often fails to result in the identification of events and circumstances that truly challenge project performance. Inefficiencies in cost and schedule estimation are usually held accountable for cost and schedule overruns, but the true root cause is often the realization of programmatic risks. A deeper understanding of frequent risk identification trends and biases pervasive during space system design and development is needed, for it would lead to improved execution of existing identification processes and methods.

  19. RAD hard PROM design study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of a preliminary study on the design of a radiation hardened fusible link programmable read-only memory (PROM) are presented. Various fuse technologies and the effects of radiation on MOS integrated circuits are surveyed. A set of design rules allowing the fabrication of a radiation hardened PROM using a Si-gate CMOS process is defined. A preliminary cell layout was completed and the programming concept defined. A block diagram is used to describe the circuit components required for a 4 K design. A design goal data sheet giving target values for the AC, DC, and radiation parameters of the circuit is presented.

  20. Assessing the add value of ensemble forecast in a drought early warning

    NASA Astrophysics Data System (ADS)

    Calmanti, Sandro; Bosi, Lorenzo; Fernandez, Jesus; De Felice, Matteo

    2015-04-01

    The EU-FP7 project EUPORIAS is developing a prototype climate service to enhance the existing food security drought early warning system in Ethiopia. The Livelihoods, Early Assessment and Protection (LEAP) system is the Government of Ethiopia's national food security early warning system, established with the support of WFP and the World Bank in 2008. LEAP was designed to increase the predictability and timeliness of response to drought-related food crises in Ethiopia. It combines early warning with contingency planning and contingency funding, to allow the government, WFP and other partners to provide early assistance in anticipation of an impending catastrophes. Currently, LEAP uses satellite based rainfall estimates to monitor drought conditions and to compute needs. The main aim of the prototype is to use seasonal hindcast data to assess the added value of using ensemble climate rainfall forecasts to estimate the cost of assistance of population hit by major droughts. We outline the decision making process that is informed by the prototype climate service, and we discuss the analysis of the expected and skill of the available rainfall forecast data over Ethiopia. One critical outcome of this analysis is the strong dependence of the expected skill on the observational estimate assumed as reference. A preliminary evaluation of the full prototype products (drought indices and needs estimated) using hindcasts data will also be presented.

  1. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  2. Preliminary aerosol generator design studies

    NASA Technical Reports Server (NTRS)

    Stampfer, J. F., Jr.

    1976-01-01

    The design and construction of a prototype vaporization generator for highly dispersed sodium chloride aerosols is described. The aerosol generating system is to be used in the Science Simulator of the Cloud Physics Laboratory Project and as part of the Cloud Physics Laboratory payload to be flown on the shuttle/spacelab.

  3. Preliminary Design of a Lightning Optical Camera and ThundEr (LOCATE) Sensor

    NASA Technical Reports Server (NTRS)

    Phanord, Dieudonne D.; Koshak, William J.; Rybski, Paul M.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The preliminary design of an optical/acoustical instrument is described for making highly accurate real-time determinations of the location of cloud-to-ground (CG) lightning. The instrument, named the Lightning Optical Camera And ThundEr (LOCATE) sensor, will also image the clear and cloud-obscured lightning channel produced from CGs and cloud flashes, and will record the transient optical waveforms produced from these discharges. The LOCATE sensor will consist of a full (360 degrees) field-of-view optical camera for obtaining CG channel image and azimuth, a sensitive thunder microphone for obtaining CG range, and a fast photodiode system for time-resolving the lightning optical waveform. The optical waveform data will be used to discriminate CGs from cloud flashes. Together, the optical azimuth and thunder range is used to locate CGs and it is anticipated that a network of LOCATE sensors would determine CG source location to well within 100 meters. All of this would be accomplished for a relatively inexpensive cost compared to present RF lightning location technologies, but of course the range detection is limited and will be quantified in the future. The LOCATE sensor technology would have practical applications for electric power utility companies, government (e.g. NASA Kennedy Space Center lightning safety and warning), golf resort lightning safety, telecommunications, and other industries.

  4. Preliminary Safeguards Assessment for the Pebble-Bed Fluoride High-Temperature Reactor (PB-FHR) Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disser, Jay; Arthur, Edward; Lambert, Janine

    2016-09-01

    This report examines a preliminary design for a pebble bed fluoride salt-cooled high temperature reactor (PB-FHR) concept, assessing it from an international safeguards perspective. Safeguards features are defined, in a preliminary fashion, and suggestions are made for addressing further nuclear materials accountancy needs.

  5. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  6. Preliminary Study of a Piston Pump for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E.; Kohl, Robert C.

    1959-01-01

    Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.

  7. Development of Cold-Formed Steel Seismic Design Recommendations

    DTIC Science & Technology

    2015-08-01

    applied loads, so the impact on design would be minimal. However, had the test been carried out to larger panel deformations without loss of capacity... test shear panels and development of preliminary design recommendations 6. Definition of material properties and coupon test results 7. Pretest of...predicted panel response based on preliminary design model and coupon test results 8. Definition of test configuration, procedures, and

  8. Computerized Design Synthesis (CDS), A database-driven multidisciplinary design tool

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Bolukbasi, A. O.

    1989-01-01

    The Computerized Design Synthesis (CDS) system under development at McDonnell Douglas Helicopter Company (MDHC) is targeted to make revolutionary improvements in both response time and resource efficiency in the conceptual and preliminary design of rotorcraft systems. It makes the accumulated design database and supporting technology analysis results readily available to designers and analysts of technology, systems, and production, and makes powerful design synthesis software available in a user friendly format.

  9. Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1978-01-01

    Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.

  10. KEEP Reading Research 1974: Overall Strategy and Preliminary Results. Technical Report No. 23.

    ERIC Educational Resources Information Center

    Tharp, Roland G.; And Others

    Reading research is an important aspect of the Kamehameha Early Education Program. This report describes the overall strategy of the reading research program, which is based on a conceptual framework that divides lines of inquiry into motivation, linguistics, instructional procedures, and correlational analysis. Preliminary results for each of…

  11. A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning

    2014-01-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  12. Preliminary design of a solar central receiver for a site-specific repowering application (Saguaro Power Plant). Volume 1. Executive summary. Final report, October 1982-September 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1983-09-01

    The preliminary design of a solar central receiver repowered gas/oil fired steam-Rankine cycle electric power generation plant was completed. The design is based on a central receiver technology using molten salt (60% NaNO/sub 3/, 40% KNO/sub 3/, by weight) for the heat transport and thermal storage fluid. Unit One of APS's Saguaro power plant located 43 km (27 mi) northwest of Tucson, AZ, is to be repowered. The selection of both the site and the molten salt central receiver promotes a near-term feasibility demonstration and cost-effective power production from an advanced solar thermal technology. The recommended system concept is tomore » repower the existing electric power generating system at the minimum useful level (66 MW/sub e/ gross) using a field of 4850 Martin Marietta second-generation (58.5 m/sup 2/) heliostats and a storage capacity of 4.0 hours. The storage capacity will be used to optimize dispatch of power to the utility system. The preliminary design was based on the use of the systems approach to design where the overall project was divided into systems, each of which is clearly bounded, and performs specific functions. The total project construction cost was estimated to be 213 million in 1983 dollars. The plant will be capable of displacing fossil energy equivalent to 2.4 million barrels of No. 6 oil in its first 10 years of operation.« less

  13. Maximum Oxygen Uptake During Long-Duration Space Flight: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, A. D., Jr.; Evetts, S. N.; Feiveson, A.H.; Lee, S. M. C.; McCleary, F. A.; Platts, S. H.; Ploutz-Snyder, L.

    2010-01-01

    INTRODUCTION: Maximum oxygen uptake (VO2max) is maintained during space flight lasting <15 d, but has not been measured during long-duration missions. This abstract describes pre-flight and in-flight preliminary findings from the International Space Station (ISS) VO2max experiment. METHODS: Seven astronauts (4 M, 3 F: 47 +/- 5 yr, 174 +/- 7 cm, 74.1 +/- 14.7 kg [mean +/- SD]) performed cycle exercise tests to volitional maximum approx.45 d before flight and tests were scheduled every 30 d during flight beginning on flight day (FD) 14. Tests consisted of three 5-min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W/min increases. VO2 and heart rate (HR) were measured using the ISS Portable Pulmonary Function System (PPFS) (Damec, Odense, DK). Unfortunately the PPFS did not arrive at the ISS in time to support early test sessions for 3 crewmembers. Descriptive statistics are presented for pre-flight vs. late-flight (FD 147 +/- 33 d) comparisons for all subjects (n=7); and pre-flight, early (FD 18 +/- 3) and late-flight (FD 156 +/- 5) data are presented for subjects (n=4) who completed all of these test sessions. RESULTS: When all subjects are considered, average VO2max decreased from pre- to late in-flight (2.98 +/- 0.85 vs. 2.57 +/- 0.50 L/min) while maximum HR late-flight seemed unchanged (178 +/- 9 vs. 175 +/- 8 beats/min). Similarly, for subjects who completed pre-, early, and late flight measurements (n=4), mean VO2max declined from 3.19 +/- 0.75 L/min preflight to 2.43 +/- 0.43 and 2.62 +/- 0.38 L/min early and late-flight, respectively. Maximum HR was 183 +/- 8, 174 +/- 8, and 179 +/- 6 beats/min pre-, early- and late-flight. DISCUSSION: Average VO2max declined during flight and did not appreciably recover as flight duration increased; however much inter-subject variation occurred in these changes.

  14. Designer's unified cost model

    NASA Technical Reports Server (NTRS)

    Freeman, William T.; Ilcewicz, L. B.; Swanson, G. D.; Gutowski, T.

    1992-01-01

    A conceptual and preliminary designers' cost prediction model has been initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a data base and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. The approach, goals, plans, and progress is presented for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).

  15. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results.

    PubMed

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  16. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  17. Design Study for A Low-Cost LH2 Turbopump

    NASA Technical Reports Server (NTRS)

    Japikse, David; Baines, Nicholas; Platt, Michael J.

    2000-01-01

    A preliminary design study, focusing on potential component selections and design for manufacturing and assembly (DFMAR1) analysis, is presented in this study. The investigation focused on a nominal cost liquid hydrogen turbopump suitable for a private launch class vehicle. Utilizing a "turbocharger-like" design philosophy, preliminary feasibility studies of the basic pump design class, the rotordynamic design class, and the turbine design class were conducted with associated DFMA evaluations. Reasonable cost levels and sensible levels of product assurance have been established.

  18. Preliminary design study of a baseline MIUS

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.; Shields, V. E.; Rippey, J. O.; Roberts, H. L.; Wadle, R. C.; Wallin, S. P.; Gill, W. L.; White, E. H.; Monzingo, R.

    1977-01-01

    Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix.

  19. Natural Channel Design Review Checklist

    EPA Pesticide Factsheets

    This document presents a brief description of the checklist items by the following sections: Watershed and Geomorphic Assessment, Preliminary Design, Final Design, and Maintenance and Monitoring Plans.

  20. RS-84 Engine Completes Design Review

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is an artist's concept of the kerosene-fueled RS-84 engine, one of several technologies competing to power NASA's next generation of launch vehicles. The RS-84 has successfully completed its preliminary design review as a reusable, liquid kerosene booster engine that will deliver a thrust level of 1 million pounds of force. The preliminary design review is a lengthy technical analysis that evaluates engine design according to stringent system requirements. The review ensures development is on target to meet Next Generation Launch Technology goals: Improved safety, reliability, and cost.

  1. A Systems Analysis of the Library and Information Science Statistical Data System: The Preliminary Study. Interim Report.

    ERIC Educational Resources Information Center

    Hamburg, Morris; And Others

    The long-term goal of this investigation is to design and establish a national model for a system of library statistical data. This is a report on The Preliminary Study which was carried out over an 11-month period ending May, 1969. The objective of The Preliminary Study was to design and delimit The Research Investigation in the most efficient…

  2. Engaging Struggling Early Readers to Promote Reading Success: A Pilot Study of Reading by Design

    ERIC Educational Resources Information Center

    Mendez, Linda M. Raffaele; Pelzmann, Catherine A.; Frank, Michael J.

    2016-01-01

    In this study, we piloted a Tier 2 intervention designed to improve reading skills among struggling early readers using an intervention that included SRA Reading Mastery, listening-while-reading activities, strategies to increase motivation and engagement in reading, and parent involvement in reading homework. The study included 6 students in…

  3. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer

    NASA Astrophysics Data System (ADS)

    Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Black, John; Utzinger, Urs; Barton, Jennifer

    2014-12-01

    The five year survival rate for ovarian cancer is over 90% if early detection occurs, yet no effective early screening method exists. We have designed and are constructing a dual modality Optical Coherence Tomography (OCT) and Multispectral Fluorescence Imaging (MFI) endoscope to optically screen the Fallopian tube and ovary for early stage cancer. The endoscope reaches the ovary via the natural pathway of the vagina, cervix, uterus and Fallopian tube. In order to navigate the Fallopian tube the endoscope must have an outer diameter of 600 μm, be highly flexible, steerable, tracking and nonperforating. The imaging systems consists of six optical subsystems, two from OCT and four from MFI. The optical subsystems have independent and interrelated design criteria. The endoscope will be tested on realistic tissue models and ex vivo tissue to prove feasibility of future human trials. Ultimately the project aims to provide women the first effective ovarian cancer screening technique.

  4. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA report no. 6

    NASA Astrophysics Data System (ADS)

    Engen, I. A.

    1981-11-01

    This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.

  5. Preliminary source rock evaluation and hydrocarbon generation potential of the early Cretaceous subsurface shales from Shabwah sub-basin in the Sabatayn Basin, Western Yemen

    NASA Astrophysics Data System (ADS)

    Al-Matary, Adel M.; Hakimi, Mohammed Hail; Al Sofi, Sadam; Al-Nehmi, Yousif A.; Al-haj, Mohammed Ail; Al-Hmdani, Yousif A.; Al-Sarhi, Ahmed A.

    2018-06-01

    A conventional organic geochemical study has been performed on the shale samples collected from the early Cretaceous Saar Formation from the Shabwah oilfields in the Sabatayn Basin, Western Yemen. The results of this study were used to preliminary evaluate the potential source-rock of the shales in the Saar Formation. Organic matter richness, type, and petroleum generation potential of the analysed shales were assessed. Total organic carbon content and Rock- Eval pyrolysis results indicate that the shale intervals within the early Cretaceous Saar Formation have a wide variation in source rock generative potential and quality. The analysed shale samples have TOC content in the range of 0.50 and 5.12 wt% and generally can be considered as fair to good source rocks. The geochemical results of this study also indicate that the analysed shales in the Saar Formation are both oil- and gas-prone source rocks, containing Type II kerogen and mixed Types II-III gradient to Type III kerogen. This is consistent with Hydrogen Index (HI) values between 66 and 552 mg HC/g TOC. The temperature-sensitive parameters such as vitrinite reflectance (%VRo), Rock-Eval pyrolysis Tmax and PI reveal that the analysed shale samples are generally immature to early-mature for oil-window. Therefore, the organic matter has not been altered by thermal maturity thus petroleum has not yet generated. Therefore, exploration strategies should focus on the known deeper location of the Saar Formation in the Shabwah-sub-basin for predicting the kitchen area.

  6. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    DTIC Science & Technology

    1982-07-01

    the administrative or operational requirements of CAT and presented - # k*----.,ku nh-n.-utu (IPOI efi~g.2me (PMU tQ7q. vim NPRDC TR 82-52 July 1982...design model for a computerized adaptive testing ( CAT ) system was developed and presented through a series of hierarchy plus input-process-output (HIPO...physical system was addressed through brief discussions of hardware, software, interfaces, and personnel requirements. Further steps in CAT system

  7. Identification of Emerging Self-Injurious Behavior in Young Children: A Preliminary Study

    ERIC Educational Resources Information Center

    Kurtz, Patricia F.; Chin, Michelle D.; Huete, John M.; Cataldo, Michael F.

    2012-01-01

    Self-injurious behavior (SIB) is a chronic disorder that often begins in early childhood; however, few studies have examined the onset of SIB in young children. This preliminary study reports on the identification, assessment, and observation of SIB in 32 children who had begun to engage in SIB within the previous 6 months. Participants were under…

  8. Computer Guided Instructional Design.

    ERIC Educational Resources Information Center

    Merrill, M. David; Wood, Larry E.

    1984-01-01

    Describes preliminary efforts to create the Lesson Design System, a computer-guided instructional design system written in Pascal for Apple microcomputers. Its content outline, strategy, display, and online lesson editors correspond roughly to instructional design phases of content and strategy analysis, display creation, and computer programing…

  9. Rescripting Early Memories Linked to Negative Images in Social Phobia: A Pilot Study

    ERIC Educational Resources Information Center

    Wild, Jennifer; Hackmann, Ann; Clark, David M.

    2008-01-01

    Negative self-images are a maintaining factor in social phobia. A retrospective study (Hackmann, A., Clark, D.M., McManus, F. (2000). Recurrent images and early memories in social phobia. Behaviour Research and Therapy, 38, 601-610) suggested that the images may be linked to early memories of unpleasant social experiences. This preliminary study…

  10. Preliminary results from BCG and ECG measurements in the heart failure clinic.

    PubMed

    Giovangrandi, Laurent; Inan, Omer T; Banerjee, Dipanjan; Kovacs, Gregory T A

    2012-01-01

    We report on the preliminary deployment of a bathroom scale-based ballistocardiogram (BCG) system for the in-hospital monitoring of patients with heart failure. These early trials provided valuable insights into the challenges and opportunities for such monitoring. In particular, the need for robust algorithms and adapted BCG metric is suggested. The system was designed to be robust and user-friendly, with dual ballistocardiogram (BCG) and electrocardiogram (ECG) capabilities. The BCG was measured from a modified bathroom scale, while the ECG (used as timing reference) was measured using dry handlebar electrodes. The signal conditioning and digitization circuits were USB-powered, and data acquisition performed using a netbook. Four patients with a NYHA class III at admission were measured daily for the duration of their treatment at Stanford hospital. A measure of BCG quality, in essence a quantitative implementation of the BCG classes originally defined in the 1950s, is proposed as a practical parameter.

  11. The Design and Validation of a Parent-Report Questionnaire for Assessing the Characteristics and Quality of Early Intervention over Time

    ERIC Educational Resources Information Center

    Young, Alys; Gascon-Ramos, Maria; Campbell, Malcolm; Bamford, John

    2009-01-01

    This article concerns a parent-report repeat questionnaire to evaluate the quality of multiprofessional early intervention following early identification of deafness. It discusses the rationale for the design of the instrument, its theoretical underpinnings, its psychometric properties, and its usability. Results for the validity and reliability…

  12. Design and preliminary evaluation of a self-steering, pneumatically driven colonoscopy robot.

    PubMed

    Dehghani, Hossein; Welch, C Ross; Pourghodrat, Abolfazl; Nelson, Carl A; Oleynikov, Dmitry; Dasgupta, Prithviraj; Terry, Benjamin S

    2017-04-01

    Colonoscopy is a diagnostic procedure to detect pre-cancerous polyps and tumours in the colon, and is performed by inserting a long tube equipped with a camera and biopsy tools. Despite the medical benefits, patients undergoing this procedure often complain about the associated pain and discomfort. This discomfort is mostly due to the rough handling of the tube and the creation of loops during the insertion. The overall goal of this work is to minimise the invasiveness of traditional colonoscopy. In pursuit of this goal, this work presents the development of a semi-autonomous colonoscopic robot with minimally invasive locomotion. The proposed robotic approach allows physicians to concentrate mainly on the diagnosis rather than the mechanics of the procedure. In this paper, an innovative locomotion approach for robotic colonoscopy is addressed. Our locomotion approach takes advantage of longitudinal expansion of a latex tube to propel the robot's tip along the colon. This soft and compliant propulsion mechanism, in contrast to minimally invasive mechanisms used in, for example, inchworm-like robots, has shown promising potential. In the preliminary ex vivo experiments, the robot successfully advanced 1.5 metres inside an excised curvilinear porcine colon with average speed of 28 mm/s, and was capable of traversing bends up to 150 degrees. The robot creates less than 6 N of normal force at its tip when it is pressurised with 90 kPa. This maximum force generates pressure of 44.17 mmHg at the tip, which is significantly lower than safe intraluminal human colonic pressure of 80 mmHg. The robot design inherently prevents loop formation in the colon, which is recognised as the main cause of post procedural pain in patients. Overall, the robot has shown great promise in an ex vivo experimental setup. The design of an autonomous control system and in vivo experiments are left as future work.

  13. Experimental acidification of Little Rock Lake (Wisconsin): fish research approach and early responses.

    PubMed

    Swenson, W A; McCormick, J H; Simonson, T D; Jensen, K M; Eaton, J G

    1989-01-01

    One goal of research at Little Rock Lake, Wisconsin, is to enhance understanding of lake acidification effects on warm- and cool-water fishery resources. The Little Rock Lake fish assemblage is characteristic of many acid sensitive waters in North America and is dominated by yellow perch (Percidae) and sunfishes (Centrarchidae). Analyses of reproduction, early survival and growth rates in the field were designed around the differing reproductive modes of these taxa. Complementary laboratory research on early life stages was conducted to assist in isolating direct effect mechanisms and to determine the reliability of laboratory results in predicting field response. Preliminary findings suggest that lake acidification to pH 5.6 has not influenced reproductive activity of the four most abundant fish species. However, the field results suggest that year-class failure of rock bass (Ambloplites rupestris) may be occurring due to reduced survival of early life stages. Reduced growth and food conversion efficiency of Age 0 largemouth bass (Micropterus salmoides) is also suggested. The laboratory bioassays indicate rock bass is the most acid-sensitive Little Rock Lake species tested. However, rock bass fry survival was not significantly affected until pH was reduced from 5.6 to 5.0.

  14. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  15. Preliminary Design Phases, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The typical design process for schools begins with programming and selection of the architectural-engineering team. It then proceeds through schematic design, design development, contract documents, construction, commissioning and occupancy.

  16. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  17. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, Giuseppe; University Mediterranea of Reggio Calabria, Reggio Calabria; Mascali, David

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chambermore » radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.« less

  18. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  19. A Framework of Working Across Disciplines in Early Design and R&D of Large Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.

    2015-01-01

    This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.

  20. Preliminary Design of a Ramjet for Integration with Ground-Based Launch Assist

    NASA Technical Reports Server (NTRS)

    Sayles, Emily L.

    2008-01-01

    This viewgraph presentation reviews the preliminary design of a ramjet for integration with a ground based launch assist. The reasons for the use of ground-based launch assist and the proposed mechanism for a system are reviewed. The use of a Optimal Trajectory by Implicit Simulation (OTIS), to model the flight and comparison with an actual rocket trajectory is given. The OTIS system is reviewed, The benefits of a launch assist system are analyzed concluding that a launch assist can provide supersonic speeds thus allowing ignition of ramjet without an onboard compressor. This means a further reduction in total launch weight. The Ramjet study is reviewed next. This included a review of the ONX simulations, the verification of the ONX results with the use of Holloman Sled experiment data as derived from the Feasibility of Ramjet Engine Test Capability on The Holloman AFB Sled Track. The conclusion was that the ONX system was not sufficient to meet the needs for the modeling required. The GECAT (Graphical Engine Cycle Analysis Tool) is examined. The results of the GECAT simulations was verified with data from Stataltex and D21 flights. The Next steps are: to create a GECAT Model of a launch assist ramjet, to adjust the geometry to produce the desired thrust, and to survey the ramjet's performance over a range of Mach numbers. The assumptions and requirements of a launch assist ramjet are given, and the acceptable flight regimes are reviewed.