Sample records for early receptor potential

  1. Retinal degeneration in cats fed casein. IV. The early receptor potential.

    PubMed

    Berson, E L; Watson, G; Grasse, K L; Szamier, R B

    1981-08-01

    Electroretinographic studies of casein-fed cats with retinal taurine deficiency revealed that the early receptor potential (ERP) was initially normal in amplitude at a time when the a-wave and b-wave of the electroretinogram were substantially reduced or even nondetectable. The preserved ERP's in these taurine-deficient cats could be correlated with the histologic finding that their outer segments were relatively intact over 90% of the retinal area subtended by the test flash. The sequence of electroretinographic changes in these taurine-deficient cats was also consistent with previous biochemical studies on the normal cat retina that have shown a relatively low concentration of taurine at the level of the outer segments and a higher concentration at the level of the inner segments. The responses in early stages from taurine-deficient cats differed from the responses obtained from vitamin A--deficient cats but resembled those from cats that received an intravitreal injection of ouabain. Similarities and a difference between the responses of taurine-deficient cats and those of patients with early retinitis pigmentosa are considered.

  2. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-05

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Oxotremorine-M potentiates NMDA receptors by muscarinic receptor dependent and independent mechanisms.

    PubMed

    Zwart, Ruud; Reed, Hannah; Sher, Emanuele

    2018-01-01

    Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Protection against early intestinal compromise by lipid-rich enteral nutrition through cholecystokinin receptors.

    PubMed

    de Haan, Jacco J; Thuijls, Geertje; Lubbers, Tim; Hadfoune, M'hamed; Reisinger, Kostan; Heineman, Erik; Greve, Jan-Willem M; Buurman, Wim A

    2010-07-01

    Early gut wall integrity loss and local intestinal inflammation are associated with the development of inflammatory complications in surgical and trauma patients. Prevention of these intestinal events is a potential target for therapies aimed to control systemic inflammation. Previously, we demonstrated in a rodent shock model that lipid-rich enteral nutrition attenuated systemic inflammation and prevented organ damage through a cholecystokinin receptor-dependent vagal pathway. The influence of lipid-rich nutrition on very early intestinal compromise as seen after shock is investigated. Next, the involvement of cholecystokinin receptors on the nutritional modulation of immediate gut integrity loss and intestinal inflammation is studied. Randomized controlled in vivo study. University research unit. Male Sprague-Dawley rats. Liquid lipid-rich nutrition or control low-lipid feeding was administered per gavage before hemorrhagic shock. Cholecystokinin receptor antagonists were used to investigate involvement of the vagal antiinflammatory pathway. Gut permeability to horseradish peroxidase increased as soon as 30 mins postshock and was prevented by lipid-rich nutrition compared with low-lipid (p<.01) and fasted controls (p<.001). Furthermore, lipid-rich nutrition reduced plasma levels of enterocyte damage marker ileal lipid binding protein at 60 mins (p<.05). Early gut barrier dysfunction correlated with rat mast cell protease plasma concentrations at 30 mins (rs=0.67; p<.001) and intestinal myeloperoxidase levels at 60 mins (rs=0.58; p<.05). Lipid-rich nutrition significantly reduced plasma rat mast cell protease (p<.01) and myeloperoxidase (p<.05) before systemic inflammation was detectable. Protective effects of lipid-rich nutrition were abrogated by cholecystokinin receptor antagonists (horseradish peroxidase; p<.05 and rat mast cell protease; p<.05). Lipid-rich enteral nutrition prevents early gut barrier loss, enterocyte damage, and local intestinal inflammation

  5. [Electrophysiological characteristics of hippocampal postnatal early development mediated by AMPA receptors in rats].

    PubMed

    Chen, Xue-Yi; Zhang, Ai-Feng; Zhao, Wen; Gao, Yu-Dan; Duan, Hong-Mei; Hao, Peng; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-25

    The present study was aimed to investigate the electrophysiological characteristics of hippocampal postnatal early development mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rats. Forty-eight Wistar rats were divided into postnatal 0.5-, 1-, 2- and 3-month groups (n = 12). Spontaneous excitatory postsynaptic currents (sEPSCs) and field excitatory postsynaptic potentials (fEPSPs) mediated by AMPA receptors were recorded to evaluate the changes in the intrinsic membrane properties of hippocampal CA1 pyramidal neurons by using patch-clamp and MED64 planar microelectrode array technique respectively. The results showed that, during the period of postnatal 0.5-3 months, some of the intrinsic membrane properties of hippocampal CA1 pyramidal neurons, such as the membrane capacitance (Cm) and the resting membrane potential (RMP), showed no significant changes, while the membrane input resistance (Rin) and the time constant (τ) of the cells were decreased significantly. The amplitude, frequency and kinetics (both rise and decay times) of sEPSCs were significantly increased during the period of postnatal 0.5-1 month, but they were all decreased during the period of postnatal 1-3 months. In addition, the range of evoked fEPSPs in hippocamal CA1 region was significantly expanded, but the fEPSP amplitudes were decreased significantly during the period of postnatal 0.5-3 months. Furthermore, the evoked fEPSPs could be significantly inhibited by extracellular application of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These results suggest that AMPA receptor may act as a major type of excitatory receptor to regulate synaptic transmission and connections during the early stage of hippocampal postnatal development, which promotes the development and functional maturation of hippocampus in rats.

  6. Receptor subtypes involved in callosally-induced postsynaptic potentials in rat frontal agranular cortex in vitro.

    PubMed

    Kawaguchi, Y

    1992-01-01

    A slice preparation of rat frontal agranular cortex preserving commissural inputs has been used for intracellular recording from layer V pyramidal cells, in order to characterize the synaptic potentials induced by stimulation of the corpus callosum and to reveal the subtypes of amino acid receptors involved. Stimulation of the corpus callosum induced EPSPs followed by early IPSPs with a peak latency of 30 +/- 2 ms and late IPSPs with a peak latency of 185 +/- 18 ms. Reversal potentials for early and late IPSPs were -75 +/- 5 mV (early) and -96 +/- 5 mV (late). Late IPSPs were more dependent on extracellular K+ concentration. The early IPSPs were blocked by GABAA antagonists, bicuculline and picrotoxin, whereas the late IPSPs were reduced by the GABAB antagonist, phaclofen. CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), an antagonist of non-NMDA (N-methyl-D-aspartate) receptors, suppressed both EPSPs and late IPSPs at 5 microM. Early IPSPs remained at this concentration but were suppressed by 20 microM CNQX. In Mg(2+)-free solution, EPSPs were larger and more prolonged than in control solution. These enhanced EPSPs persisted after 5 to 20 microM CNQX, but were reduced in amplitude, and their onset was delayed by 3.6 +/- 0.8 ms. The remaining EPSPs were suppressed by 50 microM APV (DL-2-amino-5-phosphono-valeric acid), an antagonist of NMDA receptors. In Mg(2+)-free solution containing 5 to 20 microM CNQX, the late IPSPs were not diminished. The remaining late IPSPs were suppressed by APV or by phaclofen.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Preclinical characterization of three transient receptor potential vanilloid receptor 1 antagonists for early use in human intradermal microdose analgesic studies.

    PubMed

    Sjögren, E; Halldin, M M; Stålberg, O; Sundgren-Andersson, A K

    2018-05-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) is a nonselective cation channel involved in the mediation of peripheral pain to the central nervous system. As such, the TRPV1 is an accessible molecular target that lends itself well to the understanding of nociceptive signalling. This study encompasses preclinical investigations of three molecules with the prospect to establish them as suitable analgesic model compounds in human intradermal pain relief studies. The inhibitory effectiveness was evaluated by means of in vitro assays, TRPV1 expressing Chinese hamster ovary cells (CHO-K1) and rat dorsal root ganglion cultures in fluorescent imaging plate reader and whole cell patch clamp systems, as well as in vivo by capsaicin-evoked pain-related behavioural response studies in rat. Secondary pharmacology, pharmacokinetics and preclinical safety were also assessed. In vitro, all three compounds were effective at inhibiting capsaicin-activated TRPV1. The concentration producing 50% inhibition (IC 50 ) determined was in the range of 3-32 nmol/L and 10-501 nmol/L using CHO-K1 and dorsal root ganglion cultures, respectively. In vivo, all compounds showed dose-dependent reduction in capsaicin-evoked pain-related behavioural responses in rat. None of the three compounds displayed any significant activity on any of the secondary targets tested. The compounds were also shown to be safe from a toxicological, drug metabolism and pharmacokinetic perspective, for usage in microgram doses in the human skin. The investigated model compounds displayed ideal compound characteristics as pharmacological and translational tools to address efficacy on the human native TRPV1 target in human skin in situ. This work details the pharmaceutical work-up of three TRPV1-active investigational compounds, to obtain regulatory approval, for subsequent use in humans. This fast and cost-effective preclinical development path may impact research beyond the pain management area, as

  8. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal

    PubMed Central

    Cadieux, Jean-Sébastien; Leclerc, Patrick; St-Onge, Mireille; Dussault, Andrée-Anne; Laflamme, Cynthia; Picard, Serge; Ledent, Catherine; Borgeat, Pierre; Pouliot, Marc

    2010-01-01

    Summary Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B4 from the 5-lipoxygenase pathway and prostaglandin E2 through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B4 while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A2A receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A2A receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A2A receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine’s effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E2 on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A2A receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine. PMID:15769843

  9. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    PubMed

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  10. Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons

    PubMed Central

    Ohta, Toshio; Ikemi, Yuki; Murakami, Matsuka; Imagawa, Toshiaki; Otsuguro, Ken-ichi; Ito, Shigeo

    2006-01-01

    5-Hydroxytryptamine (5-HT) is one of the major chemical mediators released in injured and inflamed tissue and is capable of inducing hyperalgesia in vivo. However, the cellular mechanisms of 5-HT-induced hyperalgesia remain unclear. Transient receptor potential V1 (TRPV1) plays a pivotal role in nociceptive receptors. In the present study, we determined whether 5-HT changes TRPV1 functions in cultured dorsal root ganglion (DRG) neurons isolated from neonatal rats, using Ca2+ imaging and whole-cell patch-clamp techniques. In more than 70% of DRG neurons, 5-HT potentiated the increases of [Ca2+]i induced by capsaicin, protons and noxious heat. Capsaicin-induced current and depolarizing responses, and proton-induced currents were also augmented by 5-HT. RT-PCR analysis revealed the expression of 5-HT2A and 5-HT7 receptors in rat DRG neurons. Agonists for 5-HT2A and 5-HT7 receptors mimicked the potentiating effect of 5-HT, and their antagonists decreased it. In DRG ipsilateral to the complete Freund's adjuvant-injected inflammation side, expression levels of 5-HT2A and 5-HT7 mRNAs increased, and the potentiating effect of 5-HT was more prominent than in the contralateral control side. These results suggest that the PKC- and PKA-mediated signalling pathways are involved in the potentiating effect of 5-HT on TRPV1 functions through the activation of 5-HT2A and 5-HT7 receptors, respectively. Under inflammatory conditions, the increases of the biosynthesis of these 5-HT receptors may lead to further potentiation of TRPV1 functions, resulting in the generation of inflammatory hyperalgesia in vivo. PMID:16901936

  11. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    PubMed

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories.

    PubMed

    Hardt, Oliver; Nader, Karim; Wang, Yu-Tian

    2014-01-05

    The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.

  13. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor.

    PubMed

    Laudet, V

    1997-12-01

    From a database containing the published nuclear hormone receptor (NR) sequences I constructed an alignment of the C, D and E domains of these molecules. Using this alignment, I have performed tree reconstruction using both distance matrix and parsimony analysis. The robustness of each branch was estimated using bootstrap resampling methods. The trees constructed by these two methods gave congruent topologies. From these analyses I defined six NR subfamilies: (i) a large one clustering thyroid hormone receptors (TRs), retinoic acid receptors (RARs), peroxisome proliferator-activated receptors (PPARs), vitamin D receptors (VDRs) and ecdysone receptors (EcRs) as well as numerous orphan receptors such as RORs or Rev-erbs; (ii) one containing retinoid X receptors (RXRs) together with COUP, HNF4, tailless, TR2 and TR4 orphan receptors; (iii) one containing steroid receptors; (iv) one containing the NGFIB orphan receptors; (v) one containing FTZ-F1 orphan receptors; and finally (vi) one containing to date only one gene, the GCNF1 orphan receptor. The relationships between the six subfamilies are not known except for subfamilies I and IV which appear to be related. Interestingly, most of the liganded receptors appear to be derived when compared with orphan receptors. This suggests that the ligand-binding ability of NRs has been gained by orphan receptors during the course of evolution to give rise to the presently known receptors. The distribution into six subfamilies correlates with the known abilities of the various NRs to bind to DNA as homo- or heterodimers. For example, receptors heterodimerizing efficiently with RXR belong to the first or the fourth subfamilies. I suggest that the ability to heterodimerize evolved once, just before the separation of subfamilies I and IV and that the first NR was able to bind to DNA as a homodimer. From the study of NR sequences existing in vertebrates, arthropods and nematodes, I define two major steps of NR diversification: one

  14. Sigma receptors: biology and therapeutic potential.

    PubMed

    Guitart, Xavier; Codony, Xavier; Monroy, Xavier

    2004-07-01

    More than 20 years after the identification of the sigma receptors as a unique binding site in the brain and in the peripheral organs, several questions regarding this receptor are still open. Only one of the subtypes of the receptor has been cloned to date, but the endogenous ligand still remains unknown, and the possible association of the receptor with a conventional second messenger system is controversial. From the very beginning, the sigma receptors were associated with various central nervous system disorders such as schizophrenia or movement disorders. Today, after hundreds of papers dealing with the importance of sigma receptors in brain function, it is widely accepted that sigma receptors represent a new and different avenue in the possible pharmacological treatment of several brain-related disorders. In this review, what is known about the biology of the sigma receptor regarding its putative structure and its distribution in the central nervous system is summarized first. The role of sigma receptors regulating cellular functions and other neurotransmitter systems is also addressed, as well as a short overview of the possible endogenous ligands. Finally, although no specific sigma ligand has reached the market, different pharmacological approaches to the alleviation and treatment of several central nervous system disorders and deficits, including schizophrenia, pain, memory deficits, etc., are discussed, with an overview of different compounds and their potential therapeutic use.

  15. IgG1-iS18 impedes the adhesive and invasive potential of early and late stage malignant melanoma cells.

    PubMed

    Munien, Carmelle; Rebelo, Thalia M; Ferreira, Eloise; Weiss, Stefan F T

    2017-02-15

    The 37kDa/67kDa laminin receptor (LRP/LR) is a non-integrin laminin receptor which is overexpressed in tumorigenic cells and supports progression of cancer via promoting metastasis, angiogenesis and telomerase activity and impediment of apoptosis. The present study investigates the role of LRP/LR on the metastatic potential of early (A375) and late (A375SM) stage malignant melanoma cells. Flow cytometry revealed that both early and late stage malignant melanoma cells display high levels of LRP/LR on their cell surface. Flow cytometry and western blot analysis showed that late stage malignant melanoma cells display significantly higher total and cell surface LRP/LR levels in comparison to early stage malignant melanoma cells and the poorly invasive breast cancer (MCF-7) control cell line. Targeting LRP/LR using the LRP/LR specific antibody IgG1-iS18 resulted in a significant reduction of the adhesive potential to laminin-1 and the invasive potential through the 'ECM-simulating' Matrigel™ of both early and late stage malignant melanoma cells. Furthermore, Pearson's correlation coefficient confirmed that increased LRP levels correlate with the increased invasive and adhesive potential in early and late stage melanoma cells. Thus, blocking LRP/LR using the IgG1-iS18 antibody may therefore be a promising therapeutic strategy for early and late stage malignant melanoma treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The bradykinin B2 receptor in the early immune response against Listeria infection.

    PubMed

    Kaman, Wendy E; Wolterink, Arthur F W M; Bader, Michael; Boele, Linda C L; van der Kleij, Desiree

    2009-02-01

    The endogenous danger signal bradykinin was recently found implicated in the development of immunity against parasites via dendritic cells. We here report an essential role of the B(2) (B(2)R) bradykinin receptor in the early immune response against Listeria infection. Mice deficient in B(2)R (B(2)R(-/-) mice) were shown to suffer from increased hepatic bacterial burden and concomitant dramatic weight loss during infection with Listeria monocytogenes. Levels of cytokines known to play a pivotal role in the early phase immune response against L. monocytogenes, IL-12p70 and IFN-gamma, were reduced in B(2)R(-/-) mice. To extend these findings to the human system, we show that bradykinin potentiates the production of IL-12p70 in human monocyte-derived dendritic cells. Thus, we show that bradykinin and the B(2)R play a role in early innate immune functions during bacterial infection.

  17. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  18. Progesterone receptor in the prostate: A potential suppressor for benign prostatic hyperplasia and prostate cancer.

    PubMed

    Chen, RuiQi; Yu, Yue; Dong, Xuesen

    2017-02-01

    Advanced prostate cancer undergoing androgen receptor pathway inhibition (ARPI) eventually progresses to castrate-resistant prostate cancer (CRPC), suggesting that (i) androgen receptor (AR) blockage is incomplete, and (ii) there are other critical molecular pathways contributing to prostate cancer (PCa) progression. Although most PCa occurs in the epithelium, prostate stroma is increasingly believed to play a crucial role in promoting tumorigenesis and facilitating tumor progression. In the stroma, sex steroid hormone receptors such as AR and estrogen receptor-α are implicated to have important functions, whereas the progesterone receptor (PR) remains largely under-investigated despite the high sequence and structural similarities between PR and AR. Stromal progesterone/PR signaling may play a critical role in PCa development and progression because not only progesterone is a critical precursor for de novo androgen steroidogenesis and an activator of mutant androgen receptors, but also PR functions in a ligand-independent manner in various important pathways. In fact, recent progress in our understanding of stromal PR function suggests that this receptor may exert an inhibitory effect on benign prostatic hyperplasia (BPH), reactive stroma development, and PCa progression. These early findings of stromal PR warrant further investigations as this receptor could be a potential biomarker and therapeutic target in PCa management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons

    PubMed Central

    Oswald, Manfred J.; Schulz, Jan M.; Kelsch, Wolfgang; Oorschot, Dorothy E.; Reynolds, John N. J.

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg2+-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg2+-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission. PMID:25914618

  20. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons.

    PubMed

    Oswald, Manfred J; Schulz, Jan M; Kelsch, Wolfgang; Oorschot, Dorothy E; Reynolds, John N J

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission.

  1. Therapeutic potential of metabotropic glutamate receptor modulators.

    PubMed

    Hovelsø, N; Sotty, F; Montezinho, L P; Pinheiro, P S; Herrik, K F; Mørk, A

    2012-03-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson's disease, Alzheimer's disease and pain.

  2. Therapeutic Potential of Metabotropic Glutamate Receptor Modulators

    PubMed Central

    Hovelsø, N; Sotty, F; Montezinho, L.P; Pinheiro, P.S; Herrik, K.F; Mørk, A

    2012-01-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain. PMID:22942876

  3. Corticotropin-releasing factor (CRF) and α 2 adrenergic receptors mediate heroin withdrawal-potentiated startle in rats.

    PubMed

    Park, Paula E; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Schulteis, Gery; Koob, George F

    2013-09-01

    Anxiety is one of the early symptoms of opioid withdrawal and contributes to continued drug use and relapse. The acoustic startle response (ASR) is a component of anxiety that has been shown to increase during opioid withdrawal in both humans and animals. We investigated the role of corticotropin-releasing factor (CRF) and norepinephrine (NE), two key mediators of the brain stress system, on acute heroin withdrawal-potentiated ASR. Rats injected with heroin (2 mg/kg s.c.) displayed an increased ASR when tested 4 h after heroin treatment. A similar increase in ASR was found in rats 10-20 h into withdrawal from extended access (12 h) to i.v. heroin self-administration, a model that captures several aspects of heroin addiction in humans. Both the α 2 adrenergic receptor agonist clonidine (10 μg/kg s.c.) and CRF1 receptor antagonist N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine (MPZP; 20 mg/kg s.c.) blocked heroin withdrawal-potentiated startle. To investigate the relationship between CRF1 and α 2 adrenergic receptors in the potentiation of the ASR, we tested the effect of MPZP on yohimbine (1.25 mg/kg s.c.)-potentiated startle and clonidine on CRF (2 μg i.c.v.)-potentiated startle. Clonidine blocked CRF-potentiated startle, whereas MPZP partially attenuated but did not reverse yohimbine-potentiated startle, suggesting that CRF may drive NE release to potentiate startle. These results suggest that CRF1 and α 2 receptors play an important role in the heightened anxiety-like behaviour observed during acute withdrawal from heroin, possibly via CRF inducing the release of NE in stress-related brain regions.

  4. Ethanol exposure in early adolescence inhibits intrinsic neuronal plasticity via sigma-1 receptor activation in hippocampal CA1 neurons

    PubMed Central

    Sabeti, Jilla

    2011-01-01

    Background We demonstrated previously that rats exposed to chronic intermittent ethanol (CIE) vapors in early adolescence show increased magnitudes of long-term potentiation (LTP) of excitatory transmission when recorded at dendritic synapses in hippocampus. Large amplitude LTP following CIE exposure is mediated by sigma-1 receptors; however, not yet addressed is the role of sigma-1 receptors in modulating the intrinsic properties of neurons to alter their action potential firing during LTP. Methods Activity-induced plasticity of spike firing was investigated using rat hippocampal slice recordings to measure changes in both field excitatory postsynaptic potentials (fEPSPs) and population spikes (pop. spikes) concomitantly at dendritic inputs and soma of CA1 pyramidal neurons, respectively. Results We observed unique modifications in plasticity of action potential firing in hippocampal slices from CIE exposed adolescent rats, where the induction of large amplitude LTP by 100 Hz stimulations was accompanied by reduced CA1 neuronal excitability—reflected as decreased pop. spike efficacy and impaired activity-induced fEPSP-to-spike (E-S) potentiation. By contrast, LTP induction in ethanol-naïve control slices resulted in increased spike efficacy and robust E-S potentiation. E-S potentiation impairments emerged at 24 hr after CIE treatment cessation, but not before the alcohol withdrawal period, and were restored with bath-application of the sigma-1 receptor selective antagonist BD1047, but not the NMDA receptor antagonist D-AP5. Further evidence revealed a significantly shortened somatic fEPSP time course in adolescent CIE-withdrawn hippocampal slices during LTP; however, paired-pulse data show no apparent correspondence between E-S dissociation and altered recurrent feedback inhibition. Conclusions Results here suggest that acute withdrawal from adolescent CIE exposure triggers sigma-1 receptors that act to depress the efficacy of excitatory inputs in triggering

  5. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors.

    PubMed

    Miller, Paul S; Da Silva, Helena M A; Smart, Trevor G

    2005-11-11

    The divalent cation Zn(2+) is a potent potentiator at the strychnine-sensitive glycine receptor (GlyR). This occurs at nanomolar concentrations, which are the predicted endogenous levels of extracellular neuronal Zn(2+). Using structural modeling and functional mutagenesis, we have identified the molecular basis for the elusive Zn(2+) potentiation site on GlyRs and account for the differential sensitivity of GlyR alpha(1) and GlyR alpha(2) to Zn(2+) potentiation. In addition, juxtaposed to this Zn(2+) site, which is located externally on the N-terminal domain of the alpha subunit, another residue was identified in the nearby Cys loop, a region that is critical for receptor gating in all Cys loop ligand-gated ion channels. This residue acted as a key control element in the allosteric transduction pathway for Zn(2+) potentiation, enabling either potentiation or overt inhibition of receptor activation depending upon the moiety resident at this location. Overall, we propose that Zn(2+) binds to a site on the extracellular outer face of the GlyR alpha subunit and exerts its positive allosteric effect via an interaction with the Cys loop to increase the efficacy of glycine receptor gating.

  7. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014.

  8. Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats.

    PubMed

    Rudoy, C A; Van Bockstaele, E J

    2007-06-30

    , treatment with betaxolol during early cocaine withdrawal significantly decreased beta(1)-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar beta(1)-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence.

  9. Identification of Owl Monkey CD4 Receptors Broadly Compatible with Early-Stage HIV-1 Isolates

    PubMed Central

    Meyerson, Nicholas R.; Sharma, Amit; Wilkerson, Gregory K.

    2015-01-01

    ABSTRACT Most HIV-1 variants isolated from early-stage human infections do not use nonhuman primate versions of the CD4 receptor for cellular entry, or they do so poorly. We and others have previously shown that CD4 has experienced strong natural selection over the course of primate speciation, but it is unclear whether this selection has influenced the functional characteristics of CD4 as an HIV-1 receptor. Surprisingly, we find that selection on CD4 has been most intense in the New World monkeys, animals that have never been found to harbor lentiviruses related to HIV-1. Based on this, we sampled CD4 genetic diversity within populations of individuals from seven different species, including five species of New World monkeys. We found that some, but not all, CD4 alleles found in Spix's owl monkeys (Aotus vociferans) encode functional receptors for early-stage human HIV-1 isolates representing all of the major group M clades (A, B, C, and D). However, only some isolates of HIV-1 subtype C can use the CD4 receptor encoded by permissive Spix's owl monkey alleles. We characterized the prevalence of functional CD4 alleles in a colony of captive Spix's owl monkeys and found that 88% of surveyed individuals are homozygous for permissive CD4 alleles, which encode an asparagine at position 39 of the receptor. We found that the CD4 receptors encoded by two other species of owl monkeys (Aotus azarae and Aotus nancymaae) also serve as functional entry receptors for early-stage isolates of HIV-1. IMPORTANCE Nonhuman primates, particularly macaques, are used for preclinical evaluation of HIV-1 vaccine candidates. However, a significant limitation of the macaque model is the fact that most circulating HIV-1 variants cannot use the macaque CD4 receptor to enter cells and have to be adapted to these species. This is particularly true for viral variants from early stages of infection, which represent the most relevant vaccine targets. In this study, we found that some individuals

  10. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  11. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors

    PubMed Central

    Ivy, Autumn S.; Rex, Christopher S.; Chen, Yuncai; Dubé, Céline; Maras, Pamela M.; Grigoriadis, Dimitri E.; Gall, Christine M.; Lynch, Gary; Baram, Tallie Z.

    2010-01-01

    Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF1) located on pyramidal cell dendrites. Additionally, chronic CRF1 occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH-expression is augmented in hippocampus of middle-aged CES rats, and then tested if the morphological defects and poor memory performance in these animals involve excessive activation of CRF1 receptors. Central or peripheral administration of a CRF1 blocker following the stress period improved memory performance of CES rats in novel object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF1 interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF1 occupancy post-hoc normalized hippocampal function during middle-age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress. PMID:20881118

  12. Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy.

    PubMed

    Santarelli, Rosamaria; Starr, Arnold; Michalewski, Henry J; Arslan, Edoardo

    2008-05-01

    Transtympanic electrocochleography (ECochG) was recorded bilaterally in children and adults with auditory neuropathy (AN) to evaluate receptor and neural generators. Test stimuli were clicks from 60 to 120dB p.e. SPL. Measures obtained from eight AN subjects were compared to 16 normally hearing children. Receptor cochlear microphonics (CMs) in AN were of normal or enhanced amplitude. Neural compound action potentials (CAPs) and receptor summating potentials (SPs) were identified in five AN ears. ECochG potentials in those ears without CAPs were of negative polarity and of normal or prolonged duration. We used adaptation to rapid stimulus rates to distinguish whether the generators of the negative potentials were of neural or receptor origin. Adaptation in controls resulted in amplitude reduction of CAP twice that of SP without affecting the duration of ECochG potentials. In seven AN ears without CAP and with prolonged negative potential, adaptation was accompanied by reduction of both amplitude and duration of the negative potential to control values consistent with neural generation. In four ears without CAP and with normal duration potentials, adaptation was without effect consistent with receptor generation. In five AN ears with CAP, there was reduction in amplitude of CAP and SP as controls but with a significant decrease in response duration. Three patterns of cochlear potentials were identified in AN: (1) presence of receptor SP without CAP consistent with pre-synaptic disorder of inner hair cells; (2) presence of both SP and CAP consistent with post-synaptic disorder of proximal auditory nerve; (3) presence of prolonged neural potentials without a CAP consistent with post-synaptic disorder of nerve terminals. Cochlear potential measures may identify pre- and post-synaptic disorders of inner hair cells and auditory nerves in AN.

  13. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    PubMed

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  14. Betaxolol, a selective β1-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats

    PubMed Central

    Rudoy, C.A.; Van Bockstaele, E.J.

    2007-01-01

    . Furthermore, treatment with betaxolol during early cocaine withdrawal significantly decreased β1-adrenergic receptor protein expression in the amygdala to levels comparable to those of control animals. Conclusions The present findings suggest that the anxiolytic-like effect of betaxolol on cocaine-induced anxiety may be related to its effect on amygdalar β1-adrenergic receptors that are up-regulated during early phases of drug withdrawal. These data support the efficacy of betaxolol as a potential effective pharmacotherapy in treating cocaine withdrawal-induced anxiety during early phases of abstinence. PMID:17513029

  15. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  16. Potential role of gender specific effect of leptin receptor deficiency in an extended consanguineous family with severe early-onset obesity.

    PubMed

    Dehghani, Mohammad Reza; Mehrjardi, Mohammad Yahya Vahidi; Dilaver, Nafi; Tajamolian, Masoud; Enayati, Samaneh; Ebrahimi, Pirooz; Amoli, Mahsa M; Farooqi, Sadaf; Maroofian, Reza

    2018-03-12

    Congenital Leptin receptor (LEPR) deficiency is a rare genetic cause of early-onset morbid obesity characterised by severe early onset obesity, major hyperphagia, hypogonadotropic hypogonadism and immune and neuroendocrine/metabolic dysfunction. We identified a homozygous loss-of-function mutation, NM_002303.5:c.464 T > G; p.(Tyr155*), in the LEPR in an extended consanguineous family with multiple individuals affected by early-onset severe obesity and hyperphagia. Interestingly, the LEPR-deficient adult females have extremely high body mass index (BMI) with hypogonadal infertility, the BMI of the affected males began to decline around the onset of puberty (13-15 years) with fertility being preserved. These findings lead to the speculation that LEPR deficiency may have a gender-specific effect on the regulation of body weight. In order to elucidate gender-specific effects of LEPR deficiency on reproduction further investigations are needed. The limitations of this study are that our conclusion is based on observations of two males and two females. Further LEPR deficient males and females are required for comparison in order to support this finding more confidently. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. A desensitization-selective potentiator of AMPA-type glutamate receptors

    PubMed Central

    Sekiguchi, Masayuki; Nishikawa, Kaori; Aoki, Shunsuke; Wada, Keiji

    2002-01-01

    We examined the effects of PEPA, an allosteric potentiator of AMPA receptors, on AMPA receptor kinetics. PEPA did not affect the deactivation of glutamate responses but potently attenuated the extent of receptor desensitization without slowing the onset of desensitization in most of the recombinant AMPA receptors (GluR1-flip, GluR1-flop, GluR3-flip, GluR3-flip + GluR2-flip, and GluR3-flop + GluR2-flop) expressed in Xenopus oocytes. For the GluR3-flop subunit, PEPA attenuated the extent of desensitization and only weakly prolonged deactivation (1.3 fold). PEPA did not significantly affect recovery from desensitization in oocytes expressing GluR3-flip, GluR1-flop, and GluR1-flop, but weakly accelerated (2.6 fold) recovery from desensitization in oocytes expressing GluR3-flop. PEPA's effect on desensitization of GluR3-flop-containing receptors is unique in that onset is very slow. Simulation studies using simplified kinetic models for AMPA receptors are utilized to explore the differential effects of PEPA on GluR3-flip and -flop. It is possible to simulate the action on GluR3-flip by modulating two rate constants in a 12-state kinetic model. For simulation of the action on GluR3-flop, the 12-state kinetic model is not enough, and it is necessary to invoke a 13th state, a PEPA-bound receptor to which glutamate cannot bind. These results suggest that attenuation of extent of desensitization represents the principal mechanism underlying the potentiation of AMPA receptors by PEPA, and that PEPA exhibits different mechanisms with respect to GluR3-flip and GluR3-flop. PMID:12145103

  18. Estrogen receptor β and Liver X receptor β: biology and therapeutic potential in CNS diseases.

    PubMed

    Warner, M; Gustafsson, J-A

    2015-02-01

    In the last decade of the twentieth century, two nuclear receptors were discovered in our laboratory and, very surprisingly, were found to have key roles in the central nervous system. These receptors have provided some novel insights into the etiology and progression of neurodegenerative diseases and anxiety disorders. The two receptors are estrogen receptor beta (ERβ) and liver X receptor beta (LXRβ). Both ERβ and LXRβ have potent anti-inflammatory activities and, in addition, LXRβ is involved in the genesis of dopaminergic neurons during development and protection of these neurons against neurodegeneration in adult life. ERβ is involved in migration of cortical neurons and calretinin-positive GABAergic interneurons during development and maintenance of serotonergic neurons in adults. Both receptors are present in magnocellular neurons of the hypothalamic preoptic area including those expressing vasopressin and oxytocin. As both ERβ and LXRβ are ligand-activated transcription factors, their ligands hold great potential in the treatment of diseases of the CNS.

  19. A potential determinant role of adiponectin and receptors for the early embryo development in PCOS patients with obesity hinted by quantitative profiling.

    PubMed

    Zhang, Ning; Hao, Cuifang; Liu, Xiaoyan; Zhang, Shouxin; Zhang, Fengrong; Zhuang, Lili; Zhao, Dongmei

    2017-02-01

    To identify the quantitative profiling of adiponectin and its receptors (AdipoR1, AdipoR2, and T-cadherin) in cumulus cells (CCs) and to evaluate their roles in the early embryo development of polycystic ovary syndrome (PCOS) patients, in part, with obesity. Fifty-five subjects were divided into two groups according to the body mass index. Oocytes were further inseminated and only mature and normal fertilized oocytes (2PN) were included in this research. Real-time PCR and western blot were performed to identify adiponectin and its receptors in CCs. Adiponectin and receptors were ubiquitously expressed in CCs of PCOS and non-PCOS patients. The level of AdipoR2 in CCs from the oocytes yielding blastocyst after 5/6 days in vitro culture was markedly higher than in those from oocytes could not develop to blastocyst stage after Day 6, for non-obese or obese PCOS patients (0.1647 ± 0.0161 versus 0.0783 ± 0.0385, 0.1948 ± 0.0307 versus 0.1057 ± 0.0236, respectively, p < 0.05). In addition, only in patients with PCOS and concurrent obesity the AdipoR1 in CCs was considerably increased in CC-B + compared with CC-B - subgroup (0.5162 ± 0.0371 versus 0.2448 ± 0.0333, p < 0.01). The development of early embryo was associated with the up-regulation of AdipoR1 and AdipoR2 in PCOS patients. Our results suggested that adiponectin could positively modulate embryo development in humans. Further investigations should be carried out to unlock the crucial role that adiponectin plays in embryo development.

  20. The expression of human natural killer cell receptors in early life.

    PubMed

    Sundström, Y; Nilsson, C; Lilja, G; Kärre, K; Troye-Blomberg, M; Berg, L

    2007-01-01

    Natural killer (NK) cells play an important role in tumour immunosurveillance and the early defence against viral infections. Recognition of altered cells (i.e. infected- or tumour-cells) is achieved through a multiple receptor recognition strategy which gives the NK cells inhibitory or activating signals depending on the ligands present on the target cell. NK cells originate from the bone marrow where they develop and proliferate. However, further maturation processes and homeostasis of NK cells in peripheral blood are not well understood. To determine the proportions of cells and the expression of NK cell receptors, mononuclear cells from children at three time points during early childhood were compared, i.e. cord blood (CB), 2 and 5 years of age. The proportion of NK cells was high in CB, but the interferon-gamma (IFN-gamma) production low compared to later in life. In contrast, the proportion of T cells was low in CB. This may indicate a deviation of the regulatory function of NK cells in CB compared to later in life, implying an importance of innate immunity in early life before the adaptive immune system matures. Additionally, we found that the proportion of LIR-1(+) NK cells increased with increasing age while CD94(+)NKG2C(-) (NKG2A(+)) NK cells and the level of expression of NKG2D, NKp30 and NKp46 decreased with age. These age related changes in NK cell populations defined by the expression of activating and inhibitory receptors may be the result of pathogen exposure and/or a continuation of the maturation process that begins in the bone marrow.

  1. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat.

    PubMed

    Pereira, Mariana; Farrar, Andrew M; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D; Morrell, Joan I

    2011-01-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A(2A) receptors in striatal areas, including the nucleus accumbens. This study was conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. The adenosine A(2A) receptor antagonist MSX-3 (0.25-2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25-2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother-infant relationship.

  2. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat

    PubMed Central

    Farrar, Andrew M.; Hockemeyer, Jörg; Müller, Christa E.; Salamone, John D.; Morrell, Joan I.

    2011-01-01

    Rationale Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A2A receptors in striatal areas, including the nucleus accumbens. Objective This study was conducted to determine if adenosine A2A receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. Methods The adenosine A2A receptor antagonist MSX-3 (0.25–2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Results Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25–2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Conclusions Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother–infant relationship. PMID:20848086

  3. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wairagu, Peninah M.; Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701; Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where eachmore » pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.« less

  4. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    PubMed Central

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  5. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  6. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  7. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions.

    PubMed

    Fuxe, Kjell; Marcellino, Daniel; Borroto-Escuela, Dasiel Oscar; Frankowska, Malgorzata; Ferraro, Luca; Guidolin, Diego; Ciruela, Francisco; Agnati, Luigi F

    2010-10-01

    Based on indications of direct physical interactions between neuropeptide and monoamine receptors in the early 1980s, the term receptor-receptor interactions was introduced and later on the term receptor heteromerization in the early 1990s. Allosteric mechanisms allow an integrative activity to emerge either intramolecularly in G protein-coupled receptor (GPCR) monomers or intermolecularly via receptor-receptor interactions in GPCR homodimers, heterodimers, and receptor mosaics. Stable heteromers of Class A receptors may be formed that involve strong high energy arginine-phosphate electrostatic interactions. These receptor-receptor interactions markedly increase the repertoire of GPCR recognition, signaling and trafficking in which the minimal signaling unit in the GPCR homomers appears to be one receptor and one G protein. GPCR homomers and GPCR assemblies are not isolated but also directly interact with other proteins to form horizontal molecular networks at the plasma membrane.

  8. Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis.

    PubMed

    Liu, Cai-Yun; Zhu, Jie; Zheng, Xiang-Yu; Ma, Chi; Wang, Xu

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is potentially lethal, but it is also a treatable autoimmune disorder characterized by prominent psychiatric and neurologic symptoms. It is often accompanied with teratoma or other neoplasm, especially in female patients. Anti-NMDAR antibodies in cerebrospinal fluid (CSF) and serum are characteristic features of the disease, thereby suggesting a pathogenic role in the disease. Here, we summarize recent studies that have clearly documented that both clinical manifestations and the antibodies may contribute to early diagnosis and multidisciplinary care. The clinical course of the disorder is reversible and the relapse could occur in some patients. Anti-NMDAR encephalitis coexisting with demyelinating disorders makes the diagnosis more complex; thus, clinicians should be aware of the overlapping diseases.

  9. Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis

    PubMed Central

    Liu, Cai-yun; Zheng, Xiang-Yu; Ma, Chi

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is potentially lethal, but it is also a treatable autoimmune disorder characterized by prominent psychiatric and neurologic symptoms. It is often accompanied with teratoma or other neoplasm, especially in female patients. Anti-NMDAR antibodies in cerebrospinal fluid (CSF) and serum are characteristic features of the disease, thereby suggesting a pathogenic role in the disease. Here, we summarize recent studies that have clearly documented that both clinical manifestations and the antibodies may contribute to early diagnosis and multidisciplinary care. The clinical course of the disorder is reversible and the relapse could occur in some patients. Anti-NMDAR encephalitis coexisting with demyelinating disorders makes the diagnosis more complex; thus, clinicians should be aware of the overlapping diseases. PMID:28698711

  10. Metabotropic glutamate receptors are required for the induction of long-term potentiation

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.

  11. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats.

    PubMed

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A; Andrés, María E

    2017-08-01

    Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  12. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    PubMed

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  13. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency.

    PubMed

    Kohlsdorf, Katja; Nunziata, Adriana; Funcke, Jan-Bernd; Brandt, Stephanie; von Schnurbein, Julia; Vollbach, Heike; Lennerz, Belinda; Fritsch, Maria; Greber-Platzer, Susanne; Fröhlich-Reiterer, Elke; Luedeke, Manuel; Borck, Guntram; Debatin, Klaus-Michael; Fischer-Posovszky, Pamela; Wabitsch, Martin

    2018-02-27

    To evaluate whether early childhood body mass index (BMI) is an appropriate indicator for monogenic obesity. A cohort of n = 21 children living in Germany or Austria with monogenic obesity due to congenital leptin deficiency (group LEP, n = 6), leptin receptor deficiency (group LEPR, n = 6) and primarily heterozygous MC4 receptor deficiency (group MC4R, n = 9) was analyzed. A control group (CTRL) was defined that consisted of n = 22 obese adolescents with no mutation in the above mentioned genes. Early childhood (0-5 years) BMI trajectories were compared between the groups at selected time points. The LEP and LEPR group showed a tremendous increase in BMI during the first 2 years of life with all patients displaying a BMI >27 kg/m 2 (27.2-38.4 kg/m 2 ) and %BMI P95 (percentage of the 95th percentile BMI for age and sex) >140% (144.8-198.6%) at the age of 2 years and a BMI > 33 kg/m 2 (33.3-45.9 kg/m 2 ) and %BMI P95  > 184% (184.1-212.6%) at the age of 5 years. The MC4R and CTRL groups had a later onset of obesity with significantly lower BMI values at both time points (p < 0.01). As result of the investigation of early childhood BMI trajectories in this pediatric cohort with monogenic obesity we suggest that BMI values >27.0 kg/m 2 or %BMI P95  > 140% at the age of 2 years and BMI values >33.0 kg/m 2 or %BMI P95  > 184% at the age of 5 years may be useful cut points to identify children who should undergo genetic screening for monogenic obesity due to functionally relevant mutations in the leptin gene or leptin receptor gene.

  14. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus

    PubMed Central

    Zeiler, F. A.

    2015-01-01

    Refractory status epilepticus (RSE) and superrefractory status epilepticus (SRSE) pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA) receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE. PMID:25649724

  15. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  16. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  17. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis

    PubMed Central

    Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Koppán, Miklós

    2017-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis (n = 15), uterine fibroid-induced moderate dysmenorrhoea (n = 7) and tubal infertility with no pain (n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first

  18. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis.

    PubMed

    Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Helyes, Zsuzsanna; Koppán, Miklós

    2017-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis ( n = 15), uterine fibroid-induced moderate dysmenorrhoea ( n = 7) and tubal infertility with no pain ( n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first

  19. Artificial receptors in serologic tests for the early diagnosis of dengue virus infection.

    PubMed

    Tai, Dar-Fu; Lin, Chung-Yin; Wu, Tzong-Zeng; Huang, Jyh-Hsiung; Shu, Pei-Yun

    2006-08-01

    Because of the range and nonspecificity of clinical presentations of dengue virus infections, we felt there was a need to create diagnostic tests. We used artificial receptors for the virus to develop serologic assays to detect dengue virus infection. We coated a quartz crystal microbalance (QCM) with molecularly imprinted polymers specific for nonstructural protein 1 of flavivirus. These artificial receptors were specifically created on a QCM chip by polymerization of monomers and were cross-linked in the presence of the epitope site of nonstructural protein 1. We tested serum samples from patients with confirmed cases of dengue reported to the Center for Disease Control in Taipei. Samples were diluted 100-fold; no other sample pretreatment was used. The QCM response was compared with results of monoclonal ELISA. QCM signals were >15 Hz in 18 of 21 (86%) of dengue samples and in 0 of 16 control samples. The correlation (r2) of the QCM response and the ELISA result was 0.73. Within-run and run-to-run imprecisions (CV) were 4%-28% and 10%-32%, respectively. The described assay offers a serologic technique for diagnosis of early viremia. The results illustrate the potential of well-organized polymers on the highly sensitive sensor system for diagnostic and biotechnological applications.

  20. Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam.

    PubMed

    Ito, I; Tanabe, S; Kohda, A; Sugiyama, H

    1990-05-01

    1. Allosteric potentiation of the ionotropic quisqualate (iQA) receptor by a nootropic drug aniracetam (1-p-anisoyl-2-pyrrolidinone) was investigated using Xenopus oocytes injected with rat brain mRNA and rat hippocampal slices. 2. Aniracetam potentiates the iQA responses induced in Xenopus oocytes by rat brain mRNA in a reversible manner. This effect was observed above the concentrations of 0.1 mM. Kainate. N-methyl-D-aspartate and gamma-aminobutyric acid responses induced in the same oocytes were not affected. 3. The specific potentiation of iQA responses was accompanied by an increase in the conductance change of iQA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) responses, but the affinity of receptors for agonist and the ion-selectivity of the channels (reversal potentials) were not changed. 4. Aniracetam reversibly potentiated the iQA responses recorded intracellularly from the pyramidal cells in the CA1 region of rat hippocampal slices. The excitatory postsynaptic potentials (EPSPs) in Schaffer collateral-commissural-CA1 synapses were also potentiated by aniracetam. 5. Population EPSPs recorded in the mossy fibre-CA3 synapses as well as Schaffer-commissural synapses were also potentiated by aniracetam. The amplitudes of the potentiation were not changed by the formation of long-term potentiation.

  1. Potential therapeutic targets for ATP-gated P2X receptor ion channels.

    PubMed

    Li, Zhiyuan; Liang, Dong; Chen, Ling

    2008-04-01

    P2X receptors make up a novel family of ligand-gated ion channels that are activated by binding of extracellular ATP. These receptors can form a number of homomeric and heteromeric ion channels, which are widely distributed throughout the human body. They are thought to play an important role in many cellular processes, including synaptic transmission and thrombocyte aggregation. These ion channels are also involved in the pathology of several disease states, including chronic inflammation and neuropathic pain, and thus are the potential targets for drug development. The recent discovery of potent and highly selective antagonists for P2X(7) receptors, through the use of high-throughput screening, has helped to further understand the P2X receptor pharmacology and provided new evidence that P2X(7) receptors play a specific role in chronic pain states. In this review, we discuss how the P2X family of ion channels has distinguished itself as a potential new drug target. We are optimistic that safe and effective candidate drugs will be suitable for progression into clinical development.

  2. Vasopressin up-regulates the expression of growth-related immediate-early genes via two distinct EGF receptor transactivation pathways

    PubMed Central

    Fuentes, Lida Q.; Reyes, Carlos E.; Sarmiento, José M.; Villanueva, Carolina I.; Figueroa, Carlos D.; Navarro, Javier; González, Carlos B.

    2008-01-01

    Activation of V1a receptor triggers the expression of growth-related immediate-early genes (IEGs), including c-Fos and Egr-1. Here we found that pre-treatment of rat vascular smooth muscle A-10 cell line with the EGF receptor inhibitor AG1478 or the over-expression of an EGFR dominant negative mutant (HEBCD533) blocked the vasopressin-induced expression of IEGs, suggesting that activation of these early genes mediated by V1a receptor is via transactivation of the EGF receptor. Importantly, the inhibition of the metalloproteinases, which catalyzed the shedding of the EGF receptor agonist HB-EGF, selectively blocked the vasopressin-induced expression c-Fos. On the other hand, the inhibition of c-Src selectively blocked the vasopressin-induced expression of Egr-1. Interestingly, in contrast to the expression of c-Fos, the expression of Egr-1 was mediated via the Ras/MEK/MAPK-dependent signalling pathway. Vasopressin-triggered expression of both genes required the release of intracellular calcium, activation of PKC and β-arrestin 2. These findings demonstrated that vasopressin up-regulated the expression of c-Fos and Erg-1 via transactivation of two distinct EGF receptor-dependent signalling pathways. PMID:18571897

  3. Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam.

    PubMed Central

    Ito, I; Tanabe, S; Kohda, A; Sugiyama, H

    1990-01-01

    1. Allosteric potentiation of the ionotropic quisqualate (iQA) receptor by a nootropic drug aniracetam (1-p-anisoyl-2-pyrrolidinone) was investigated using Xenopus oocytes injected with rat brain mRNA and rat hippocampal slices. 2. Aniracetam potentiates the iQA responses induced in Xenopus oocytes by rat brain mRNA in a reversible manner. This effect was observed above the concentrations of 0.1 mM. Kainate. N-methyl-D-aspartate and gamma-aminobutyric acid responses induced in the same oocytes were not affected. 3. The specific potentiation of iQA responses was accompanied by an increase in the conductance change of iQA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) responses, but the affinity of receptors for agonist and the ion-selectivity of the channels (reversal potentials) were not changed. 4. Aniracetam reversibly potentiated the iQA responses recorded intracellularly from the pyramidal cells in the CA1 region of rat hippocampal slices. The excitatory postsynaptic potentials (EPSPs) in Schaffer collateral-commissural-CA1 synapses were also potentiated by aniracetam. 5. Population EPSPs recorded in the mossy fibre-CA3 synapses as well as Schaffer-commissural synapses were also potentiated by aniracetam. The amplitudes of the potentiation were not changed by the formation of long-term potentiation. PMID:1975272

  4. Group III mGlu receptor agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block.

    PubMed

    De Sarro, Giovambattista; Chimirri, Alba; Meldrum, Brian S

    2002-09-06

    We report the anticonvulsant action in DBA/2 mice of two mGlu Group III receptor agonists: (R,S)-4-phosphonophenylglycine, (R,S)-PPG, a compound with moderate mGlu8 selectivity, and of (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid, ACPT-1, a selective agonist for mGlu4alpha receptors. Both compounds, given intracerebroventricularly at doses which did not show marked anticonvulsant activity, produced a consistent shift to the left of the dose-response curves (i.e. enhanced the anticonvulsant properties) of 1-(4'-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one hydrochloride, CFM-2, a noncompetitive AMPA receptor antagonist, and 3-((+/-)-2-carboxypiperazin-4-yl)-1-phosphonic acid, CPPene, a competitive NMDA receptor antagonist, in DBA/2 mice. In addition, (R,S)-PPG and ACPT-1 administered intracerebroventricularly prolonged the time course of the anticonvulsant properties of CFM-2 (33 micromol/kg, i.p.) and CPPene (3.3 micromol/kg, i.p.) administered intraperitoneally. We conclude that modest reduction of synaptic glutamate release by activation of Group III metabotropic receptors potentiates the anticonvulsant effect of AMPA and NMDA receptor blockade. Copyright 2002 Elsevier Science B.V.

  5. Rethinking Nuclear Receptors as Potential Therapeutic Targets for Retinal Diseases.

    PubMed

    Choudhary, Mayur; Malek, Goldis

    2016-12-01

    Collectively, retinal diseases, including age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, result in severe vision impairment worldwide. The absence and/or limited availability of successful drug therapies for these blinding disorders necessitates further understanding their pathobiology and identifying new targetable signaling pathways. Nuclear receptors are transcription regulators of many key aspects of human physiology, as well as pathophysiology, with reported roles in development, aging, and disease. Some of the pathways regulated by nuclear receptors include, but are not limited to, angiogenesis, inflammation, and lipid metabolic dysregulation, mechanisms also important in the initiation and development of several retinal diseases. Herein, we present an overview of the biology of three diseases affecting the posterior eye, summarize a growing body of evidence that suggests direct or indirect involvement of nuclear receptors in disease progression, and discuss the therapeutic potential of targeting nuclear receptors for treatment.

  6. Rethinking Nuclear Receptors as Potential Therapeutic Targets for Retinal Diseases

    PubMed Central

    Choudhary, Mayur; Malek, Goldis

    2017-01-01

    Collectively, retinal diseases, including age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, result in severe vision impairment worldwide. The absence and/or limited availability of successful drug therapies for these blinding disorders necessitates further understanding their pathobiology and identifying new targetable signaling pathways. Nuclear receptors are transcription regulators of many key aspects of human physiology, as well as pathophysiology, with reported roles in development, aging, and disease. Some of the pathways regulated by nuclear receptors include, but are not limited to, angiogenesis, inflammation, and lipid metabolic dysregulation, mechanisms also important in the initiation and development of several retinal diseases. Herein, we present an overview of the biology of three diseases affecting the posterior eye, summarize a growing body of evidence that suggests direct or indirect involvement of nuclear receptors in disease progression, and discuss the therapeutic potential of targeting nuclear receptors for treatment. PMID:27455994

  7. Beta receptor-mediated modulation of the late positive potential in humans.

    PubMed

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  8. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    PubMed

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early

  9. Transient receptor potential channel M5 and phospholipaseC-beta2 colocalizing in zebrafish taste receptor cells.

    PubMed

    Yoshida, Yuki; Saitoh, Kana; Aihara, Yoshiko; Okada, Shinji; Misaka, Takumi; Abe, Keiko

    2007-10-08

    In mammals, transient receptor potential (TRP) channel M5 (TRPM5) is coexpressed with phospholipaseC-beta2 (PLC-beta2) in the taste receptor cells, and both PLC-beta2 and TRPM5 are essential elements in the signal transduction of sweet, bitter and umami stimuli. In this study, we identified the zebrafish homologue of TRPM5 (zfTRPM5) and examined its expression in the gustatory system by in-situ hybridization. Using a transgenic zebrafish line that expressed green fluorescent protein under the control of the PLC-beta2 promoter, we showed that zfTRPM5 is expressed in green fluorescent protein-labeled cells of the taste buds. These results demonstrate that zfTRPM5 and PLC-beta2 colocalize in zebrafish taste receptor cells, suggesting their crucial roles in taste signaling via the fish taste receptors.

  10. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    PubMed

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  11. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea

    PubMed Central

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D.; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J.; Buddenkotte, Jörg; Steinhoff, Martin

    2011-01-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea. PMID:22189789

  12. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome.

    PubMed

    Killisch, I; Steinlein, P; Römisch, K; Hollinshead, R; Beug, H; Griffiths, G

    1992-09-01

    We describe a detailed morphological characterization of the endocytic pathway in differentiating chicken erythroblasts transformed by a temperature-sensitive mutant of avian erythroblastosis virus (AEV). These cells express high levels of transferrin receptors (TfR) when induced to differentiate at 42 degrees C. Biochemical analysis showed that most (approximately 90%) of the internalized 125I-Tf recycled within approximately 30 min while a smaller fraction of 125I-Tf required up to 2 h for recycling. By immunocytochemistry, the bulk of Tf and TfR was localized at the plasma membrane and in tubuloreticular early endosomes. This structure contained coated buds that labelled with an antibody specific for the clathrin light chain. Decreasing amounts of both Tf and TfR were detected in two distal compartments, spherical endosome vesicles resembling multivesicular bodies and the prelysosomal compartment (PLC) enriched in cation-independent mannose 6-phosphate receptor. As shown by fluorescent (FITC-Tf) labelling of living cells, the movement of Tf/TfR complex into these late structures was accompanied by a significant drop in pH from about 6, the value displayed by early endosomes, to values below pH 5.0. Since no detectable 125I-Tf degradation was observed during a 4 h period we believe that the Tf/TfR detected in these late endocytic structures avoids degradation and recycles back to the cell surface. The addition of an anti-TfR monoclonal antibody to the culture medium of these cells blocks their differentiation. Under this condition the antibody-TfR complex was trapped in an early endosome compartment that enlarged to more than twice its normal size. However, this condition did not affect the transport kinetics of horseradish peroxidase from the medium to the PLC.

  13. Chronic exposure to bisphenol a impairs progesterone receptor-mediated signaling in the uterus during early pregnancy

    PubMed Central

    Li, Quanxi; Davila, Juanmahel; Bagchi, Milan K.; Bagchi, Indrani C.

    2016-01-01

    Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In a recent publication in Endocrinology, we demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo implantation and decidua morphogenesis, two critical events for establishment and maintenance of early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised in response to BPA. This research highlight will provide an overview of our findings and discuss the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy. PMID:28239613

  14. Effect of transient receptor potential vanilloid 6 gene silencing on the expression of calcium transport genes in chicken osteoblasts.

    PubMed

    Zhang, Jie; Deng, Yifeng; Ma, Huijie; Hou, Jiafa; Zhou, ZhenLei

    2015-03-01

    Ca2+ plays a major role in the regulation of signal transduction. Transient receptor potential vanilloid 6 is a Ca2+-selective channel that serves as an important rate-limiting step in the facilitation of Ca2+ entry into cells, but little is known about the regulation of transient receptor potential vanilloid 6 in chickens. In this study, we evaluated the effects of transient receptor potential vanilloid 6 gene interference on the expression of calbindin-D28K, Na+/Ca2+ exchangers, and plasma membrane Ca2+ ATPase 1b to investigate the mechanism underlying the regulation of transient receptor potential vanilloid 6. Three hairpin siRNA expression vectors targeting transient receptor potential vanilloid 6 (pSIREN- transient receptor potential vanilloid 6) and a negative control (pSIREN-control) were constructed and transfected into chicken osteoblasts. The mRNA and protein expression levels were evaluated by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. The mRNA expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 45.7% (P<0.01) and 27.9% (P<0.01), respectively, 48 h after transfection with one of the three constructs (pSIREN- transient receptor potential vanilloid 6-3) compared with the level obtained in the untreated group. There was no significant difference in the mRNA expression levels of Na+/Ca2+ exchangers and plasma membrane Ca2+ ATPase 1b. The protein expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 40.2% (P<0.01) and 29.8% (P<0.01), respectively, 48 h after transfection with pSIREN-transient receptor potential vanilloid 6-3 compared with the level obtained in the untreated group. In conclusion, the vector-based transient receptor potential vanilloid 6-shRNA can efficiently suppress the mRNA and protein expression of transient receptor potential vanilloid 6 in chicken osteoblasts, and transient receptor potential vanilloid

  15. Subchronic Glucocorticoid Receptor Inhibition Rescues Early Episodic Memory and Synaptic Plasticity Deficits in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Lanté, Fabien; Chafai, Magda; Raymond, Elisabeth Fabienne; Salgueiro Pereira, Ana Rita; Mouska, Xavier; Kootar, Scherazad; Barik, Jacques; Bethus, Ingrid; Marie, Hélène

    2015-01-01

    The early phase of Alzheimer's disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid receptor targeting strategies could be beneficial to delay AD onset. PMID:25622751

  16. Sensitization of transient receptor potential vanilloid 1 by the prokineticin receptor agonist Bv8.

    PubMed

    Vellani, Vittorio; Colucci, Mariantonella; Lattanzi, Roberta; Giannini, Elisa; Negri, Lucia; Melchiorri, Pietro; McNaughton, Peter A

    2006-05-10

    Small mammalian proteins called the prokineticins [prokineticin 1 (PK1) and PK2] and two corresponding G-protein-coupled receptors [prokineticin receptor 1 (PKR1) and PKR2] have been identified recently, but the physiological role of the PK/PKR system remains mostly unexplored. Bv8, a protein extracted from frog skin, is a convenient and potent agonist for both PKR1 and PKR2, and injection of Bv8 in vivo causes a potent and long-lasting hyperalgesia. Here, we investigate the cellular basis of hyperalgesia caused by activation of PKRs. Bv8 caused increases in [Ca]i in a population of isolated dorsal root ganglion (DRG) neurons, which we identified as nociceptors, or sensors for painful stimuli, from their responses to capsaicin, bradykinin, mustard oil, or proteases. Bv8 enhanced the inward current carried by the heat and capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1) via a pathway involving activation of protein kinase Cepsilon (PKCepsilon), because Bv8 caused translocation of PKCepsilon to the neuronal membrane and because PKC antagonists reduced both the enhancement of current carried by TRPV1 and behavioral hyperalgesia in rodents. The neuronal population expressing PKRs consisted partly of small peptidergic neurons and partly of neurons expressing the N52 marker for myelinated fibers. Using single-cell reverse transcriptase-PCR, we found that mRNA for PKR1 was mainly expressed in small DRG neurons. Exposure to GDNF (glial cell line-derived neurotrophic factor) induced de novo expression of functional receptors for Bv8 in a nonpeptidergic population of neurons. These results show that prokineticin receptors are expressed in nociceptors and cause heat hyperalgesia by sensitizing TRPV1 through activation of PKCepsilon. The results suggest a role for prokineticins in physiological inflammation and hyperalgesia.

  17. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors

    PubMed Central

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-01-01

    Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed. PMID:16945965

  18. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors.

    PubMed

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-11-15

    Glutamate acts at central synapses via ionotropic (iGluR--NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed.

  19. Early versus delayed invasive strategy for intermediate- and high-risk acute coronary syndromes managed without P2Y12 receptor inhibitor pretreatment: Design and rationale of the EARLY randomized trial.

    PubMed

    Lemesle, Gilles; Laine, Marc; Pankert, Mathieu; Puymirat, Etienne; Cuisset, Thomas; Boueri, Ziad; Maillard, Luc; Armero, Sébastien; Cayla, Guillaume; Bali, Laurent; Motreff, Pascal; Peyre, Jean-Pascal; Paganelli, Franck; Kerbaul, François; Roch, Antoine; Michelet, Pierre; Baumstarck, Karine; Bonello, Laurent

    2018-01-01

    According to recent literature, pretreatment with a P2Y 12 ADP receptor antagonist before coronary angiography appears no longer suitable in non-ST-segment elevation acute coronary syndrome (NSTE-ACS) due to an unfavorable risk-benefit ratio. Optimal delay of the invasive strategy in this specific context is unknown. We hypothesize that without P2Y 12 ADP receptor antagonist pretreatment, a very early invasive strategy may be beneficial. The EARLY trial (Early or Delayed Revascularization for Intermediate- and High-Risk Non-ST-Segment Elevation Acute Coronary Syndromes?) is a prospective, multicenter, randomized, controlled, open-label, 2-parallel-group study that plans to enroll 740 patients. Patients are eligible if the diagnosis of intermediate- or high-risk NSTE-ACS is made and an invasive strategy intended. Patients are randomized in a 1:1 ratio. In the control group, a delayed strategy is adopted, with the coronary angiography taking place between 12 and 72 hours after randomization. In the experimental group, a very early invasive strategy is performed within 2 hours. A loading dose of a P2Y 12 ADP receptor antagonist is given at the time of intervention in both groups. Recruitment began in September 2016 (n = 558 patients as of October 2017). The primary endpoint is the composite of cardiovascular death and recurrent ischemic events at 1 month. The EARLY trial aims to demonstrate the superiority of a very early invasive strategy compared with a delayed strategy in intermediate- and high-risk NSTE-ACS patients managed without P2Y 12 ADP receptor antagonist pretreatment. © 2018 Wiley Periodicals, Inc.

  20. Caffeinol at the receptor level; Anti-ischemic effect of NMDA receptor blockade is potentiated by caffeine

    PubMed Central

    Zhao, Xiurong; Strong, Roger; Piriyawat, Paisith; Palusinski, Robert; Grotta, James C.; Aronowski, Jaroslaw

    2010-01-01

    Background and Purpose Although caffeinol (combination of low dose of caffeine and ethanol) was shown to robustly reduce stroke damage in experimental models and is now in clinical evaluation for treatment of ischemic stroke, little is known about the potential mechanism of its action. Methods We have used an in vivo excitotoxicity model based on intracortical infusion of NMDA and model of reversible focal ischemia to demonstrate NMDA receptor inhibition as one potential mechanism of Caffeinol anti-ischemic activity. Results Caffeinol reduced the size of excitotoxic lesion and substitution of ethanol in Caffeinol with CNS-1102 and MK-801, but not with MgSO4, produced treatment with strong synergistic effect that was at least as robust in reducing ischemic damage as Caffeinol. This NMDA receptor antagonist and caffeine combination showed long window of opportunity, activity in spontaneously hypertensive rats, and unlike Caffeinol was fully effective in animals chronically pre-treated with ethanol. Conclusions Our study suggests that anti-excitotoxic properties may underlie some of the anti-ischemic effect of Caffeinol. This study provides strong evidence that the anti-ischemic effect of NMDA receptor blockers in general can be dramatically augmented by caffeine, thus opening a possibility for new utilization of NMDA-based pharmacology in the treatment of stroke. PMID:20044532

  1. Early mortality in acute promyelocytic leukemia: Potential predictors

    PubMed Central

    Chen, Can; Huang, Xilian; Wang, Kaile; Chen, Kuang; Gao, Danquan; Qian, Shenxian

    2018-01-01

    Acute promyelocytic leukemia (APL) is a rare leukemia characterized by the balanced reciprocal translocation between the promyelocytic leukemia gene on chromosome 15 and the retinoic acid receptor α (RARα) gene on chromosome 17, and accounts for 10–15% of newly diagnosed acute myeloid leukemia each year. The combined use of all-trans retinoic acid and arsenic trioxide (ATO) as primary therapy has markedly improved the survival rate of patients with APL. Mortality in the first 30 days following therapy remains a major contribution to treatment failure. In the present study, published data was reviewed with a focus on the factors associated with early mortality. When treated with ATO as a primary treatment, the fms-like tyrosine kinase-internal tandem deletion has no impact on early mortality. Low lymphoid enhancer binding factor-1 expression may be a reliable marker for early mortality and the target of therapy if it could be proven by further studies. Cluster of differentiation (CD)56+ and CD34+/CD2+ may be candidates to select high-risk patients. The risk of early mortality in APL still cannot be predicted via the cell surface makers, despite multiple studies on their prognostic significance. Typically, a complex translocation did not alter the survival rate in patients with APL; however, if an abnormal karyotype [e.g., Ide(17), ZBTB16/RARα and STAT5B/RARα] appeared singularly or as part of a complex mutation, there is a high possibility of early mortality if clinicians are unable to identify or monitor it. PMID:29541170

  2. Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists.

    PubMed

    Roser, Patrik; Vollenweider, Franz X; Kawohl, Wolfram

    2010-03-01

    Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the principal psychoactive constituent of the Cannabis sativa plant, and other agonists at the central cannabinoid (CB(1)) receptor may induce characteristic psychomotor effects, psychotic reactions and cognitive impairment resembling schizophrenia. These effects of Delta(9)-THC can be reduced in animal and human models of psychopathology by two exogenous cannabinoids, cannabidiol (CBD) and SR141716. CBD is the second most abundant constituent of Cannabis sativa that has weak partial antagonistic properties at the CB(1) receptor. CBD inhibits the reuptake and hydrolysis of anandamide, the most important endogenous CB(1) receptor agonist, and exhibits neuroprotective antioxidant activity. SR141716 is a potent and selective CB(1) receptor antagonist. Since both CBD and SR141716 can reverse many of the biochemical, physiological and behavioural effects of CB(1) receptor agonists, it has been proposed that both CBD and SR141716 have antipsychotic properties. Various experimental studies in animals, healthy human volunteers, and schizophrenic patients support this notion. Moreover, recent studies suggest that cannabinoids such as CBD and SR141716 have a pharmacological profile similar to that of atypical antipsychotic drugs. In this review, both preclinical and clinical studies investigating the potential antipsychotic effects of both CBD and SR141716 are presented together with the possible underlying mechanisms of action.

  3. A Multi-Receptor and Multi-Species Assay for Potential Endocrine Disruptor Targets (SLAS meeting)

    EPA Science Inventory

    Screening methods for detecting potential endocrine disrupting chemicals rely chiefly on transactivation assays targeting nuclear receptors such as the estrogen (ER) and androgen receptors (AR). These assays are predominately human-based; yet environmental exposure can affect div...

  4. Agonist- and subunit-dependent potentiation of glutamate receptors by a nootropic drug aniracetam.

    PubMed

    Tsuzuki, K; Takeuchi, T; Ozawa, S

    1992-11-01

    GluR1 and GluR2 cDNAs encoding non-NMDA subtypes of glutamate receptor were isolated from a rat brain cDNA library by Boulter et al. (Science, 249 (1990) 1033-1037). Functional receptors activated by kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and glutamate were expressed in Xenopus oocytes injected with GluR1, GluR2 or a mixture of GluR1 and GluR2 RNAs. In GluR1-expressed oocytes, 1 mM aniracetam potentiated AMPA-induced currents by 99 +/- 10% (mean +/- S.E.M., n = 5) and glutamate-induced currents by 140 +/- 8% (n = 4), but little affected kainate-induced currents. Aniracetam was effective from a concentration of 0.1 mM, and it exhibited more conspicuous effects with the increase of the dose. In oocytes injected with GluR1 plus GluR2 RNAs, aniracetam more markedly potentiated current responses to AMPA and glutamate than those in oocytes injected with GluR1 RNA alone. For example, 1 mM aniracetam potentiated AMPA-induced currents by 396 +/- 76% (n = 4) and glutamate-induced currents by 970 +/- 65% (n = 5) in oocytes injected with 10% GluR1 and 90% GluR2 RNAs. In these oocytes, however, the potentiation of kainate-induced currents by 1 mM aniracetam was only 8 +/- 5% (n = 4). Thus, we conclude that the potentiation of the AMPA/kainate receptor by aniracetam depends on both species of agonists and subunit composition of the receptor.

  5. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons.

    PubMed

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin; Puopolo, Michelino

    2016-03-15

    The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  6. Positive selection moments identify potential functional residues in human olfactory receptors

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  7. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation.

    PubMed

    Suo, Zhiming; Wu, Min; Citron, Bruce A; Wong, Gwendolyn T; Festoff, Barry W

    2004-03-31

    Overwhelming evidence indicates that the effects of beta-amyloid (Abeta) are dose dependent both in vitro and in vivo, which implies that Abeta is not directly detrimental to brain cells until it reaches a threshold concentration. In an effort to understand early Alzheimer's disease (AD) pathogenesis, this study focused on the effects of subthreshold soluble Abeta and the underlying molecular mechanisms in murine microglial cells and an AD transgenic mouse model. We found that there were two phases of dose-dependent Abeta effects on microglial cells: at the threshold of 5 microm and above, Abeta directly induced tumor necrosis factor-alpha (TNF-alpha) release, and at subthreshold doses, Abeta indirectly potentiated TNF-alpha release induced by certain G-protein-coupled receptor (GPCR) activators. Mechanistic studies revealed that subthreshold Abeta pretreatment in vitro reduced membrane GPCR kinase-2/5 (GRK2/5), which led to retarded GPCR desensitization, prolonged GPCR signaling, and cellular hyperactivity to GPCR agonists. Temporal analysis in an early-onset AD transgenic model, CRND8 mice, revealed that the membrane (functional) GRK2/5 in brain cortices were significantly reduced. More importantly, such a GRK abnormality took place before cognitive decline and changed in a manner corresponding with the mild to moderate soluble Abeta accumulation in these transgenic mice. Together, this study not only discovered a novel link between subthreshold Abeta and GRK dysfunction, it also demonstrated that the GRK abnormality in vivo occurs at prodromal and early stages of AD.

  8. Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents.

    PubMed

    Andrè, E; Gatti, R; Trevisani, M; Preti, D; Baraldi, P G; Patacchini, R; Geppetti, P

    2009-11-01

    The transient receptor potential ankyrin receptor 1 (TRPA1) is a cation channel, co-expressed with the pro-tussive transient receptor potential vanilloid type 1 (TRPV1) channel in primary sensory neurons. TRPA1 is activated by a series of irritant exogenous and endogenous alpha,beta-unsaturated aldehydes which seem to play a role in airway diseases. We investigated whether TRPA1 agonists provoke cough in guinea pigs and whether TRPA1 antagonists inhibit this response. Animals were placed in a Perspex box, and cough sounds were recorded and counted by observers unaware of the treatment used. Inhalation of two selective TRPA1 agonists, allyl isothiocyanate and cinnamaldehyde, dose-dependently caused cough in control guinea pigs, but not in those with airway sensory nerves desensitized by capsaicin. Coughs elicited by TRPA1 agonists were reduced by non-selective (camphor and gentamicin) and selective (HC-030031) TRPA1 antagonists, whereas they were unaffected by the TRPV1 antagonist, capsazepine. Acrolein and crotonaldehyde, two alpha,beta-unsaturated aldehydes recently identified as TRPA1 stimulants and contained in cigarette smoke, air pollution or produced endogenously by oxidative stress, caused a remarkable tussive effect, a response that was selectively inhibited by HC-030031. Part of the cough response induced by cigarette smoke inhalation was inhibited by HC-030031, suggesting the involvement of TRPA1. A novel pro-tussive pathway involves the TRPA1 channel, expressed by capsaicin-sensitive airway sensory nerves and is activated by a series of exogenous (cigarette smoke) and endogenous irritants. These results suggest TRPA1 may be a novel target for anti-tussive medicines.

  9. A potentially novel nicotinic receptor in Aplysia neuroendocrine cells.

    PubMed

    White, Sean H; Carter, Christopher J; Magoski, Neil S

    2014-07-15

    Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction. Copyright © 2014 the American Physiological Society.

  10. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery.

    PubMed

    Segal, Scott; Narayanan, Ramesh; Dalton, James T

    2006-04-01

    Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.

  11. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    PubMed

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  12. Induction of the early-late Ddc gene during Drosophila metamorphosis by the ecdysone receptor.

    PubMed

    Chen, Li; Reece, Christian; O'Keefe, Sandra L; Hawryluk, Gregory W L; Engstrom, Monica M; Hodgetts, Ross B

    2002-06-01

    During Drosophila metamorphosis, the 'early-late' genes constitute a unique class regulated by the steroid hormone 20-hydroxyecdysone. Their induction is comprised of both a primary and a secondary response to ecdysone. Previous work has suggested that the epidermal expression of the dopa decarboxylase gene (Ddc) is likely that of a typical early-late gene. Accumulation of the Ddc transcript is rapidly initiated in the absence of protein synthesis, which implies that the ecdysone receptor plays a direct role in induction. However, full Ddc expression requires the participation of one of the transcription factors encoded by the Broad-Complex. In this paper, we characterize an ecdysone response element (EcRE) that contributes to the primary response. Using gel mobility shift assays and transgenic assays, we identified a single functional EcRE, located at position -97 to -83 bp relative to the transcription initiation site. This is the first report of an EcRE associated with an early-late gene in Drosophila. Competition experiments indicated that the affinity of the Ddc EcRE for the ecdysone receptor complex was at least four-fold less than that of the canonical EcRE of the hsp27 gene. Using in vitro mutagenesis, we determined that the reduced affinity of the EcRE resided at two positions where the nucleotides differed from those found in the canonical sequence. The ecdysone receptor, acting through this EcRE, releases Ddc from a silencing mechanism, whose cis-acting domain we have mapped to the 5'-upstream region between -2067 and -1427 bp. Deletion of this repressive element resulted in precocious expression of Ddc in both epidermis and imaginal discs. Thus, epidermal Ddc induction at pupariation is under the control of an extended genomic region that contains both positive and negative regulatory elements. Copyright 2002 Elsevier Science Ireland Ltd.

  13. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium.

    PubMed

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer

    2013-08-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.

  14. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  15. Evolution of melanocortin receptors in cartilaginous fish: melanocortin receptors and the stress axis in elasmobranches.

    PubMed

    Liang, Liang; Reinick, Christina; Angleson, Joseph K; Dores, Robert M

    2013-01-15

    There is general agreement that the presence of five melanocortin receptor genes in tetrapods is the result of two genome duplications that occurred prior to the emergence of the gnathostomes, and at least one local gene duplication that occurred early in the radiation of the ancestral gnathostomes. Hence, it is assumed that representatives from the extant classes of gnathostomes (i.e., Chondrichthyes, Actinopterygii, Sarcopterygii) should also have five paralogous melanocortin genes. Current studies on cartilaginous fishes indicate that while there is evidence for five paralogous melanocortin receptor genes in this class, to date all five paralogs have not been detected in the genome of a single species. This mini-review will discuss the ligand selectivity properties of the melanocortin-3 receptor of the elephant shark (subclass Holocephali) and the ligand selectivity properties of the melanocortin-3 receptor, melanocortin-4 receptor, and the melanocortin-5 receptor of the dogfish (subclass Elasmobranchii). The potential relationship of these melanocortin receptors to the hypothalamus/pituitary/interrenal axis will be discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Regulation of Transient Receptor Potential channels by the phospholipase C pathway

    PubMed Central

    Rohacs, Tibor

    2013-01-01

    Transient Receptor Potential (TRP) channels were discovered while analyzing visual mutants in drosophila. The protein encoded by the transient receptor potential (trp) gene is a Ca2+ permeable cation channel activated downstream of the phospholipase C (PLC) pathway. While searching for homologues in other organisms, a surprisingly large number of mammalian TRP channels were cloned. The regulation of TRP channels is quite diverse, but many of them are either activated downstream of the PLC pathway, or modulated by it. This review will summarize the current knowledge on regulation of TRP channels by the PLC pathway, with special focus on TRPC-s, which can be considered as effectors of the PLC pathway, and the heat and capsaicin sensitive TRPV1, which is modulated by the PLC pathway in a complex manner. PMID:23916247

  17. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation

    PubMed Central

    Sivori, Simona; Falco, Michela; Marcenaro, Emanuela; Parolini, Silvia; Biassoni, Roberto; Bottino, Cristina; Moretta, Lorenzo; Moretta, Alessandro

    2002-01-01

    In this study we analyzed the progression of cell surface receptor expression during the in vitro-induced human natural killer (NK) cell maturation from CD34+ Lin− cell precursors. NKp46 and NKp30, two major triggering receptors that play a central role in natural cytotoxicity, were expressed before the HLA class I-specific inhibitory receptors. Moreover, their appearance at the cell surface correlated with the acquisition of cytolytic activity by developing NK cells. Although the early expression of triggering receptors may provide activating signals required for inducing further cell differentiation, it may also affect the self-tolerance of developing NK cells. Our data show that a fail-safe mechanism preventing killing of normal autologous cells may be provided by the 2B4 surface molecule, which, at early stages of NK cell differentiation, functions as an inhibitory rather than as an activating receptor. PMID:11917118

  18. Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL.

    PubMed

    Blanco, Gonzalo; Vardi, Anna; Puiggros, Anna; Gómez-Llonín, Andrea; Muro, Manuel; Rodríguez-Rivera, María; Stalika, Evangelia; Abella, Eugenia; Gimeno, Eva; López-Sánchez, Manuela; Senín, Alicia; Calvo, Xavier; Abrisqueta, Pau; Bosch, Francesc; Ferrer, Ana; Stamatopoulos, Kostas; Espinet, Blanca

    2018-01-01

    Analysis of the T cell receptor (TR) repertoire of chronic lymphocytic leukemia-like monoclonal B cell lymphocytosis (CLL-like MBL) and early stage CLL is relevant for understanding the dynamic interaction of expanded B cell clones with bystander T cells. Here we profiled the T cell receptor β chain (TRB) repertoire of the CD4 + and CD8 + T cell fractions from 16 CLL-like MBL and 13 untreated, Binet stage A/Rai stage 0 CLL patients using subcloning analysis followed by Sanger sequencing. The T cell subpopulations of both MBL and early stage CLL harbored restricted TRB gene repertoire, with CD4 + T cell clonal expansions whose frequency followed the numerical increase of clonal B cells. Longitudinal analysis in MBL cases revealed clonal persistence, alluding to persistent antigen stimulation. In addition, the identification of shared clonotypes among different MBL/early stage CLL cases pointed towards selection of the T cell clones by common antigenic elements. T cell clonotypes previously described in viral infections and immune disorders were also detected. Altogether, our findings evidence that antigen-mediated TR restriction occurs early in clonal evolution leading to CLL and may further increase together with B cell clonal expansion, possibly suggesting that the T cell selecting antigens are tumor-related.

  19. G-Protein-coupled receptors as potential drug candidates in preeclampsia: targeting the relaxin/insulin-like family peptide receptor 1 for treatment and prevention.

    PubMed

    Conrad, Kirk P

    2016-09-01

    expected to (i) enhance endothelial nitric oxide synthesis and bioactivity, as well as directly reduce vascular smooth muscle cytosolic calcium, thus promoting vasodilation; (ii) improve the local angiogenic balance by augmenting arterial vascular endothelial and placental growth factor (VEGF and PLGF) activities; (iii) ameliorate vascular inflammation; (iv) enhance placental peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PCG1α) expression, and hence, peroxisome proliferator-activated receptor gamma (PPAR-γ) activity and (v) confer cytotrophoblast and endothelial cytoprotection. Insofar as impaired endometrial maturation (decidualization) predisposes to the development of preeclampsia, relaxin administration in the late secretory phase and during early pregnancy would be anticipated to improve decidualization, and hence trophoblast invasion and spiral artery remodeling, thereby reducing the risk of preeclampsia. Relaxin has a favorable safety profile both in the non-pregnant condition and during pregnancy. There is a strong scientific rationale for RXFP1 activation in severe preeclampsia by administration of relaxin, relaxin analogs or small molecule mimetics, in order to mollify the disease pathogenesis for safe prolongation of pregnancy, thus allowing time for more complete fetal maturation, which is a primary therapeutic endpoint in treating the disease. In light of recent data implicating deficient or defective decidualization as a potential etiological factor in preeclampsia and the capacity of relaxin to promote endometrial maturation, the prophylactic application of relaxin to reduce the risk of preeclampsia is a plausible therapeutic approach to consider. Finally, given its pleiotropic and beneficial attributes particularly in the cardiovascular system, relaxin, although traditionally considered as a 'pregnancy' hormone, is likely to prove salutary for several disease indications in the non-pregnant population. © The Author 2016

  20. G-Protein-coupled receptors as potential drug candidates in preeclampsia: targeting the relaxin/insulin-like family peptide receptor 1 for treatment and prevention

    PubMed Central

    Conrad, Kirk P.

    2016-01-01

    attributes in preeclampsia, relaxin supplementation is expected to (i) enhance endothelial nitric oxide synthesis and bioactivity, as well as directly reduce vascular smooth muscle cytosolic calcium, thus promoting vasodilation; (ii) improve the local angiogenic balance by augmenting arterial vascular endothelial and placental growth factor (VEGF and PLGF) activities; (iii) ameliorate vascular inflammation; (iv) enhance placental peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PCG1α) expression, and hence, peroxisome proliferator-activated receptor gamma (PPAR-γ) activity and (v) confer cytotrophoblast and endothelial cytoprotection. Insofar as impaired endometrial maturation (decidualization) predisposes to the development of preeclampsia, relaxin administration in the late secretory phase and during early pregnancy would be anticipated to improve decidualization, and hence trophoblast invasion and spiral artery remodeling, thereby reducing the risk of preeclampsia. Relaxin has a favorable safety profile both in the non-pregnant condition and during pregnancy. WIDER IMPLICATIONS There is a strong scientific rationale for RXFP1 activation in severe preeclampsia by administration of relaxin, relaxin analogs or small molecule mimetics, in order to mollify the disease pathogenesis for safe prolongation of pregnancy, thus allowing time for more complete fetal maturation, which is a primary therapeutic endpoint in treating the disease. In light of recent data implicating deficient or defective decidualization as a potential etiological factor in preeclampsia and the capacity of relaxin to promote endometrial maturation, the prophylactic application of relaxin to reduce the risk of preeclampsia is a plausible therapeutic approach to consider. Finally, given its pleiotropic and beneficial attributes particularly in the cardiovascular system, relaxin, although traditionally considered as a ‘pregnancy’ hormone, is likely to prove salutary for several

  1. Computational studies of new potential antimalarial compounds Stereoelectronic complementarity with the receptor

    NASA Astrophysics Data System (ADS)

    Portela, César; Afonso, Carlos M. M.; Pinto, Madalena M. M.; João Ramos, Maria

    2003-09-01

    One of the most important pharmacological mechanisms of antimalarial action is the inhibition of the aggregation of hematin into hemozoin. We present a group of new potential antimalarial molecules for which we have performed a DFT study of their stereoelectronic properties. Additionally, the same calculations were carried out for the two putative drug receptors involved in the referred activity, i.e., hematin μ-oxo dimer and hemozoin. A complementarity between the structural and electronic profiles of the planned molecules and the receptors can be observed. A docking study of the new compounds in relation to the two putative receptors is also presented, providing a correlation with the defined electrostatic complementarity.

  2. Sensing of blood pressure increase by transient receptor potential vanilloid 1 receptors on baroreceptors.

    PubMed

    Sun, Hao; Li, De-Pei; Chen, Shao-Rui; Hittelman, Walter N; Pan, Hui-Lin

    2009-12-01

    The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling revealed that TRPV1 immunoreactivity was present on nerve fibers and terminals in the adventitia of the ascending aorta and aortic arch, the nodose ganglion neurons, and afferent fibers in the solitary tract of the brainstem. RTX treatment eliminated TRPV1 immunoreactivities in the aorta, nodose ganglion, and solitary tract. Renal sympathetic nerve activity, blood pressure, and heart rate were recorded in anesthetized rats. The baroreflex was triggered by lowering and raising blood pressure through intravenous infusion of sodium nitroprusside and phenylephrine, respectively. Inhibition of sympathetic nerve activity and heart rate by the phenylephrine-induced increase in blood pressure was largely impaired in RTX-treated rats. The maximum gain of the baroreflex function was significantly lower in RTX-treated than vehicle-treated rats. Furthermore, blocking of TRPV1 receptors significantly blunted the baroreflex and decreased the maximum gain of baroreflex function in the high blood pressure range. Our findings provide important new information that TRPV1 is expressed along the entire baroreceptive afferent pathway. TRPV1 receptors expressed on baroreceptive nerve endings can function as mechanoreceptors to detect the increase in blood pressure and maintain the homoeostasis.

  3. Sensing of Blood Pressure Increase by Transient Receptor Potential Vanilloid 1 Receptors on Baroreceptors

    PubMed Central

    Sun, Hao; Li, De-Pei; Chen, Shao-Rui; Hittelman, Walter N.

    2009-01-01

    The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling revealed that TRPV1 immunoreactivity was present on nerve fibers and terminals in the adventitia of the ascending aorta and aortic arch, the nodose ganglion neurons, and afferent fibers in the solitary tract of the brainstem. RTX treatment eliminated TRPV1 immunoreactivities in the aorta, nodose ganglion, and solitary tract. Renal sympathetic nerve activity, blood pressure, and heart rate were recorded in anesthetized rats. The baroreflex was triggered by lowering and raising blood pressure through intravenous infusion of sodium nitroprusside and phenylephrine, respectively. Inhibition of sympathetic nerve activity and heart rate by the phenylephrine-induced increase in blood pressure was largely impaired in RTX-treated rats. The maximum gain of the baroreflex function was significantly lower in RTX-treated than vehicle-treated rats. Furthermore, blocking of TRPV1 receptors significantly blunted the baroreflex and decreased the maximum gain of baroreflex function in the high blood pressure range. Our findings provide important new information that TRPV1 is expressed along the entire baroreceptive afferent pathway. TRPV1 receptors expressed on baroreceptive nerve endings can function as mechanoreceptors to detect the increase in blood pressure and maintain the homoeostasis. PMID:19726694

  4. Potentiation of oxycodone antinociception in mice by agmatine and BMS182874 via an imidazoline I2 receptor-mediated mechanism.

    PubMed

    Bhalla, Shaifali; Ali, Izna; Lee, Hyaera; Andurkar, Shridhar V; Gulati, Anil

    2013-01-01

    The potentiation of oxycodone antinociception by BMS182874 (endothelin-A (ET(A)) receptor antagonist) and agmatine (imidazoline receptor/α(2)-adrenoceptor agonist) is well-documented. It is also known that imidazoline receptors but not α(2)-adrenoceptors are involved in potentiation of oxycodone antinociception by agmatine and BMS182874 in mice. However, the involvement of specific imidazoline receptor subtypes (I(1), I(2), or both) in this interaction is not clearly understood. The present study was conducted to determine the involvement of imidazoline I(1) and I(2) receptors in agmatine- and BMS182874-induced potentiation of oxycodone antinociception in mice. Antinociceptive (tail flick and hot-plate) latencies were determined in male Swiss Webster mice treated with oxycodone, agmatine, BMS182874, and combined administration of oxycodone with agmatine or BMS182874. Efaroxan (imidazoline I(1) receptor antagonist) and BU224 (imidazoline I(2) receptor antagonist) were used to determine the involvement of I(1) and I(2) imidazoline receptors, respectively. Oxycodone produced significant antinociceptive response in mice which was not affected by efaroxan but was blocked by BU224. Agmatine-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. Similarly, BMS182874-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. This is the first report demonstrating that BMS182874- or agmatine-induced enhancement of oxycodone antinociception is blocked by BU224 but not by efaroxan. We conclude that imidazoline I(2) receptors but not imidazoline I(1) receptors are involved in BMS182874- and agmatine-induced potentiation of oxycodone antinociception in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons.

    PubMed

    Bonsi, P; Calabresi, P; De Persis, C; Papa, M; Centonze, D; Bernardi, G; Pisani, A

    2004-01-01

    Mitochondrial metabolism impairment has been implicated in the pathogenesis of several neurodegenerative disorders. In the present work, we combined electrophysiological recordings and microfluorometric measurements from cholinergic interneurons obtained from a rat neostriatal slice preparation. Acute application of the mitochondrial complex I inhibitor rotenone produced an early membrane hyperpolarization coupled to a fall in input resistance, followed by a late depolarizing response. Current-voltage relationship showed a reversal potential of -80 +/- 3 mV, suggesting the involvement of a potassium (K+) current. Simultaneous measurement of intracellular sodium [Na+]i or calcium [Ca2+]i concentrations revealed a striking correlation between [Na+]i elevation and the early membrane hyperpolarization, whereas a significant [Ca2+]i rise matched the depolarizing phase. Interestingly, ion and membrane potential changes were mimicked by ouabain, inhibitor of the Na+-K+ATPase, and were insensitive to tetrodotoxin (TTX) or to a combination of glutamate receptor antagonists. The rotenone effects were partially reduced by blockers of ATP-sensitive K+ channels, glibenclamide and tolbutamide, and largely attenuated by a low Na+-containing solution. Morphological analysis of the rotenone effects on striatal slices showed a significant decrease in the number of choline acetyltransferase (ChAT) immunoreactive cells. These results suggest that rotenone rapidly disrupts the ATP content, leading to a decreased Na+-K+ATPase function and, therefore, to [Na+]i overload. In turn, the hyperpolarizing response might be generated both by the opening of ATP-sensitive K+ channels and by Na+-activated K+ conductances. The increase in [Ca2+]i occurs lately and does not seem to influence the early events.

  6. Amyotrophic Lateral Sclerosis (ALS) and Adenosine Receptors.

    PubMed

    Sebastião, Ana M; Rei, Nádia; Ribeiro, Joaquim A

    2018-01-01

    In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS). Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A 2A receptors (A 2A R), most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A 2A R antagonists. It may happen that there are time windows where A 2A R prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.

  7. Investigational hormone receptor agonists as ongoing female contraception: a focus on selective progesterone receptor modulators in early clinical development.

    PubMed

    Nelson, Anita L

    2015-01-01

    As efforts are made to continue to increase the safety of contraceptive methods, those without estrogen have attracted new attention. Progestin-only options are available in many delivery systems, but most cause disturbed bleeding patterns. For gynecologic patients, selective progesterone receptor modulators (SPRMs) have been approved for medical abortion, for ovulation suppression in emergency contraception, and for the treatment of heavy menstrual bleeding due to leiomyoma. This article discusses the role of SPRMs in controlling fertility on an ongoing basis with particular emphasis on mifepristone and ulipristal acetate (UPA), since none of the other compounds has progressed out of early Phase I - II testing. It also discusses important information about the mechanisms of action and safety of these two SPRMs. Of all the investigational hormone agonist/antagonists, SPRMs have demonstrated the greatest potential as ongoing female contraceptives. They have the ability to suppress ovulation after initiation of the luteinizing hormone (LH) surge without affecting ovarian production of estrogen or inducing any significant metabolic changes. SPRMs may well be able to provide longer term contraception as oral agents, vaginal rings, and perhaps even intrauterine devices. UPA has the greatest promise. Current research needs to be expanded.

  8. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    PubMed

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  9. Critical role of canonical transient receptor potential channel 7 in initiation of seizures.

    PubMed

    Phelan, Kevin D; Shwe, U Thaung; Abramowitz, Joel; Birnbaumer, Lutz; Zheng, Fang

    2014-08-05

    Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel.

  10. Interactions of sex and early life social experiences at two developmental stages shape nonapeptide receptor profiles.

    PubMed

    Hiura, Lisa C; Ophir, Alexander G

    2018-05-31

    Early life social experiences are critical to behavioral and cognitive development, and can have a tremendous influence on developing social phenotypes. Most work has focused on outcomes of experiences at a single stage of development (e.g., perinatal, or post-weaning). Few studies have assessed the impact of social experience at multiple developmental stages and across sex. Oxytocin and vasopressin are profoundly important for modulating social behavior and these nonapeptide systems are highly sensitive to developmental social experience, particularly in brain areas important for social behavior. We investigated whether oxytocin receptor (OTR) and vasopressin receptor (V1aR) distributions of prairie voles (Microtus ochrogaster) change as a function of parental composition within the natal nest or social composition after weaning. We raised pups either in the presence or absence of their fathers. At weaning, offspring were housed either individually or with a same-sex sibling. We also examined whether changes in receptor distributions are sexually dimorphic because the impact of the developmental environment on the nonapeptide system could be sex-dependent. We found that differences in nonapeptide receptor expression were region-, sex-, and rearing condition-specific, indicating a high level of complexity in the ways that early life experiences shape the social brain. We found many more differences in V1aR density compared to OTR density, indicating that nonapeptide receptors demonstrate differential levels of neural plasticity and sensitivity to environmental and biological variables. Our data highlight that critical factors including biological sex and multiple experiences across the developmental continuum interact in complex ways to shape the social brain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Opioid, cannabinoid, and transient receptor potential (TRP) systems: effects on body temperature

    PubMed Central

    Rawls, Scott M.; Benamar, Khalid

    2014-01-01

    Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. Endocannabinoids participate in the febrile response, but more studies are needed to determine if a cannabinoid CB1 receptor tone exerts control over basal body temperature. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation. PMID:21622235

  12. Potentiated antibodies to mu-opiate receptors: effect on integrative activity of the brain.

    PubMed

    Geiko, V V; Vorob'eva, T M; Berchenko, O G; Epstein, O I

    2003-01-01

    The effect of homeopathically potentiated antibodies to mu-receptors (10(-100) wt %) on integrative activity of rat brain was studied using the models of self-stimulation of the lateral hypothalamus and convulsions produced by electric current. Electric current was delivered through electrodes implanted into the ventromedial hypothalamus. Single treatment with potentiated antibodies to mu-receptors increased the rate of self-stimulation and decreased the threshold of convulsive seizures. Administration of these antibodies for 7 days led to further activation of the positive reinforcement system and decrease in seizure thresholds. Distilled water did not change the rate of self-stimulation and seizure threshold.

  13. Early life trauma, depression and the glucocorticoid receptor gene--an epigenetic perspective.

    PubMed

    Smart, C; Strathdee, G; Watson, S; Murgatroyd, C; McAllister-Williams, R H

    2015-12-01

    Hopes to identify genetic susceptibility loci accounting for the heritability seen in unipolar depression have not been fully realized. Family history remains the 'gold standard' for both risk stratification and prognosis in complex phenotypes such as depression. Meanwhile, the physiological mechanisms underlying life-event triggers for depression remain opaque. Epigenetics, comprising heritable changes in gene expression other than alterations of the nucleotide sequence, may offer a way to deepen our understanding of the aetiology and pathophysiology of unipolar depression and optimize treatments. A heuristic target for exploring the relevance of epigenetic changes in unipolar depression is the hypothalamic-pituitary-adrenal (HPA) axis. The glucocorticoid receptor (GR) gene (NR3C1) has been found to be susceptible to epigenetic modification, specifically DNA methylation, in the context of environmental stress such as early life trauma, which is an established risk for depression later in life. In this paper we discuss the progress that has been made by studies that have investigated the relationship between depression, early trauma, the HPA axis and the NR3C1 gene. Difficulties with the design of these studies are also explored. Future efforts will need to comprehensively address epigenetic natural histories at the population, tissue, cell and gene levels. The complex interactions between the epigenome, genome and environment, as well as ongoing nosological difficulties, also pose significant challenges. The work that has been done so far is nevertheless encouraging and suggests potential mechanistic and biomarker roles for differential DNA methylation patterns in NR3C1 as well as novel therapeutic targets.

  14. Serotonergic 5-HT6 Receptor Antagonists: Heterocyclic Chemistry and Potential Therapeutic Significance.

    PubMed

    Bali, Alka; Singh, Shalu

    2015-01-01

    The serotonin 5-HT(6) receptor (5- HT(6)R) is amongst the recently discovered serotonergic receptors with almost exclusive localization in the brain. Hence, this receptor is fast emerging as a promising target for cognition enhancement in central nervous system (CNS) diseases such as Alzheimer's disease (cognitive function), obesity, schizophrenia and anxiety. The last decade has seen a surge of literature reports on the functional role of this receptor in learning and memory processes and investigations related to the chemistry and pharmacology of 5-HT(6) receptor ligands, especially 5- HT(6) receptor antagonists. Studies show the involvement of multiple neurotransmitter systems in cognitive enhancement by 5-HT(6)R antagonists including cholinergic, glutamatergic, and GABAergic systems. Several of the 5-HT(6)R ligands are indole based agents bearing structural similarity to the endogenous neurotransmitter serotonin. Based on the pharmacophoric models proposed for these agents, drug designing has been carried out incorporating various heterocyclic replacements for the indole nucleus. In this review, we have broadly summarized the medicinal chemistry and current status of this fairly recent class of drugs along with their potential therapeutic applications.

  15. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors.

    PubMed

    Penn, A C; Zhang, C L; Georges, F; Royer, L; Breillat, C; Hosy, E; Petersen, J D; Humeau, Y; Choquet, D

    2017-09-21

    Long-term potentiation (LTP) of excitatory synaptic transmission has long been considered a cellular correlate for learning and memory. Early LTP (less than 1 h) had initially been explained either by presynaptic increases in glutamate release or by direct modification of postsynaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function. Compelling models have more recently proposed that synaptic potentiation can occur by the recruitment of additional postsynaptic AMPA receptors (AMPARs), sourced either from an intracellular reserve pool by exocytosis or from nearby extra-synaptic receptors pre-existing on the neuronal surface. However, the exact mechanism through which synapses can rapidly recruit new AMPARs during early LTP remains unknown. In particular, direct evidence for a pivotal role of AMPAR surface diffusion as a trafficking mechanism in synaptic plasticity is still lacking. Here, using AMPAR immobilization approaches, we show that interfering with AMPAR surface diffusion markedly impairs synaptic potentiation of Schaffer collaterals and commissural inputs to the CA1 area of the mouse hippocampus in cultured slices, acute slices and in vivo. Our data also identify distinct contributions of various AMPAR trafficking routes to the temporal profile of synaptic potentiation. In addition, AMPAR immobilization in vivo in the dorsal hippocampus inhibited fear conditioning, indicating that AMPAR diffusion is important for the early phase of contextual learning. Therefore, our results provide a direct demonstration that the recruitment of new receptors to synapses by surface diffusion is a critical mechanism for the expression of LTP and hippocampal learning. Since AMPAR surface diffusion is dictated by weak Brownian forces that are readily perturbed by protein-protein interactions, we anticipate that this fundamental trafficking mechanism will be a key target for modulating synaptic potentiation and learning.

  16. Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells.

    PubMed

    Jiang, Shu-Xia; Li, Qian; Wang, Xiao-Han; Li, Fang; Wang, Zhong-Feng

    2013-08-25

    Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.

  17. Transient receptor potential cation channels in visceral sensory pathways

    PubMed Central

    Blackshaw, L Ashley

    2014-01-01

    The extensive literature on this subject is in direct contrast to the limited range of clinical uses for ligands of the transient receptor potential cation channels (TRPs) in diseases of the viscera. TRPV1 is the most spectacular example of this imbalance, as it is in other systems, but it is nonetheless the only TRP target that is currently targeted clinically in bladder sensory dysfunction. It is not clear why this discrepancy exists, but a likely answer is in the promiscuity of TRPs as sensors and transducers for environmental mechanical and chemical stimuli. This review first describes the different sensory pathways from the viscera, and on which nociceptive and non-nociceptive neurones within these pathways TRPs are expressed. They not only fulfil roles as both mechano-and chemo-sensors on visceral afferents, but also form an effector mechanism for cell activation after activation of GPCR and cytokine receptors. Their role may be markedly changed in diseased states, including chronic pain and inflammation. Pain presents the most obvious potential for further development of therapeutic interventions targeted at TRPs, but forms of inflammation are emerging as likely to benefit also. However, despite much basic research, we are still at the beginning of exploring such potential in visceral sensory pathways. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24641218

  18. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana

    PubMed Central

    Wang, Chenggang; Zhou, Mingqi; Zhang, Xudong; Yao, Jin; Zhang, Yanping; Mou, Zhonglin

    2017-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants. DOI: http://dx.doi.org/10.7554/eLife.25474.001 PMID:28722654

  19. Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.

    PubMed

    Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti

    2016-04-05

    Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6% success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μM. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  1. The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy

    PubMed Central

    Large, Michael J.; Wetendorf, Margeaux; Lanz, Rainer B.; Hartig, Sean M.; Creighton, Chad J.; Mancini, Michael A.; Kovanci, Ertug; Lee, Kuo-Fen; Threadgill, David W.; Lydon, John P.; Jeong, Jae-Wook; DeMayo, Francesco J.

    2014-01-01

    Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. PMID

  2. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    PubMed

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  3. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction.

    PubMed

    Shibukawa, Yoshiyuki; Sato, Masaki; Kimura, Maki; Sobhan, Ubaidus; Shimada, Miyuki; Nishiyama, Akihiro; Kawaguchi, Aya; Soya, Manabu; Kuroda, Hidetaka; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu

    2015-04-01

    Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.

  4. Potential role for ET-2 acting through ETA receptors in experimental colitis in mice.

    PubMed

    Claudino, R F; Leite, D F; Bento, A F; Chichorro, J G; Calixto, J B; Rae, G A

    2017-02-01

    This study attempted to clarify the roles of endothelins and mechanisms associated with ET A /ET B receptors in mouse models of colitis. Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ET A receptor antagonist, 10 mg/kg), A-192621 (ET B receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1β, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ET A and ET B receptors mRNA were increased at 24, 48 and 72 h after colitis induction. Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ET A receptors might be a potential target for inflammatory bowel diseases.

  5. Translating 5-HT receptor pharmacology.

    PubMed

    Sanger, G J

    2009-12-01

    Since metoclopramide was first described (in 1964) there have been several attempts to develop compounds which retained gastrointestinal prokinetic activity (via 5-HT(4) receptor activation) but without the limiting side effects associated with dopamine D(2) receptor antagonism. Early compounds (mosapride, cisapride, renzapride, tegaserod) were identified before several of the 5-HT receptors were even described (including 5-HT(4) and 5-HT(2B)), whereas prucalopride came later. Several compounds were hampered by non-selectivity, introducing cardiac liability (cisapride: activity at human Ether-a-go-go Related Gene) or potentially, a reduced intestinal prokinetic activity caused by activity at a second 5-HT receptor (renzapride: antagonism at the 5-HT(3) receptor; tegaserod: antagonism at the 5-HT(2B) receptor). Poor intrinsic activity at gastrointestinal 5-HT(4) receptors has also been an issue (mosapride, tegaserod). Perhaps prucalopride has now achieved the profile of good selectivity of action and high intrinsic activity at intestinal 5-HT(4) receptors, without clinically-meaningful actions on 5-HT(4) receptors in the heart. The progress of this compound for treatment of chronic constipation, as well as competitor molecules such as ATI-7505 and TD-5108, will now be followed with interest as each attempts to differentiate themselves from each other. Perhaps at last, 5-HT(4) receptor agonists are being given the chance to show what they can do.

  6. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  7. Isothiocyanates from Wasabia japonica activate transient receptor potential ankyrin 1 channel.

    PubMed

    Uchida, Kunitoshi; Miura, Yosuke; Nagai, Masashi; Tominaga, Makoto

    2012-11-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) and 6-(methylthio)hexyl isothiocyanate (6-MTITC) have low pungency and are responsible for the fresh flavor of wasabi (Wasabia japonica [Miq] Matsumura). In this study, we found that these two isothiocyanates activate transient receptor potential ankyrin 1 (TRPA1), and 6-MSITC activates transient receptor potential vanilloid 1 (TRPV1), but not other transient receptor potential channels expressed in sensory neurons. Both 6-MSITC and 6-MTITCinduced intracellular Ca(2+) increases in human embryonic kidney-derived 293 cells expressing mouse TRPA1 (mTRPA1) as measured by Ca(2+) imaging. In whole-cell patch-clamp recordings, 6-MSITC and 6-MTITC dose-dependently activated both mTRPA1 (EC(50) = 147±26 µM for 6-MSITC and 30±3 µM for 6-MTITC) and human TRPA1 (hTRPA1; EC(50) = 39±4 µM for 6-MSITC and 34±3 µM for 6-MTITC). In addition, TRPA1 N-terminal cysteines, which are reported to be important for channel activation by electrophilic ligands, were involved in 6-MSITC- and 6-MTITC-evoked TRPA1 activation. These isothiocyanates also activated endogenous TRPA1 expressed in mouse dorsal root ganglion neurons and intraplantar injection of 10-30 mM 6-MSITC-evoked pain-related behaviors in mice. These results indicate the following: 1) 6-MSITC and 6-MTITC activate both mTRPA1 and hTRPA1; 2) 6-MSITC activates mTRPV1; and 3) the pharmacological functions of these isothiocyanates could be derived from TRPA1 activation.

  8. The cubic ternary complex receptor-occupancy model. III. resurrecting efficacy.

    PubMed

    Weiss, J M; Morgan, P H; Lutz, M W; Kenakin, T P

    1996-08-21

    Early work in pharmacology characterized the interaction of receptors and ligands in terms of two parameters, affinity and efficacy, an approach we term the bipartite view. A precise formulation of efficacy only exists for very simple pharmacological models. Here we extend the notion of efficacy to models that incorporate receptor activation and G-protein coupling. Using the cubic ternary complex model, we show that efficacy is not purely a property of the ligand-receptor interaction; it also depends upon the distributional details of the receptor species in the native receptor ensemble. This suggests a distinction between what we call potential efficacy (a vector) and realized efficacy (a scalar). To each receptor species in the native receptor ensemble we assign a part-worth utility; taken together these utilities comprise the potential efficacy vector. Realized efficacy is the expectation of these part-worth utilities with respect to the frequency distribution of receptor species in the native receptor ensemble. In the parlance of statistical decision theory, the binding of a ligand to a receptor ensemble is a random prospect and realized efficacy is the utility of this prospect. We explore the implications that our definition of efficacy has for understanding agonism and in assessing the legitimacy of the bipartite view in pharmacology.

  9. PGC-1α, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease

    PubMed Central

    Zheng, Bin; Liao, Zhixiang; Locascio, Joseph J.; Lesniak, Kristen A.; Roderick, Sarah S.; Watt, Marla L.; Eklund, Aron C.; Zhang-James, Yanli; Kim, Peter D.; Hauser, Michael A.; Grünblatt, Edna; Moran, Linda B.; Mandel, Silvia A.; Riederer, Peter; Miller, Renee M.; Federoff, Howard J.; Wüllner, Ullrich; Papapetropoulos, Spyridon; Youdim, Moussa B.; Cantuti-Castelvetri, Ippolita; Young, Anne B.; Vance, Jeffery M.; Davis, Richard L.; Hedreen, John C.; Adler, Charles H.; Beach, Thomas G.; Graeber, Manuel B.; Middleton, Frank A.; Rochet, Jean-Christophe; Scherzer, Clemens R.

    2011-01-01

    Parkinson’s disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson’s and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson’s disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) are underexpressed in Parkinson’s disease patients. Activation of PGC-1α results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson’s disease identifies PGC-1α as a potential therapeutic target for early intervention. PMID:20926834

  10. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness.

    PubMed

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo

    2003-05-01

    Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.

  11. Principles of antibody-mediated TNF receptor activation

    PubMed Central

    Wajant, H

    2015-01-01

    From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies. PMID:26292758

  12. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  13. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder

    PubMed Central

    Goodwani, Sunil; Saternos, Hannah; Alasmari, Fawaz; Sari, Youssef

    2017-01-01

    Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamatergic receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD. PMID:28242339

  14. Potentiation of the gastric antisecretory activity of histamine H2-receptor antagonists by clebopride.

    PubMed

    Fernández, A G; Massingham, R; Roberts, D J

    1988-05-01

    The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.

  15. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    PubMed

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  16. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9

    USDA-ARS?s Scientific Manuscript database

    Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is a well-acknowledged early event in tumor initi...

  17. Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn.

    PubMed

    Ohashi, Nobuko; Uta, Daisuke; Sasaki, Mika; Ohashi, Masayuki; Kamiya, Yoshinori; Kohno, Tatsuro

    2017-08-01

    The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P < 0.01), while direct application of acetaminophen to the dorsal horn did not reduce these responses. Direct application of N-acylphenolamine decreased the amplitudes of monosynaptic excitatory postsynaptic currents evoked by C-fiber stimulation (control, 462.5 ± 197.5 pA; N-acylphenolamine, 272.5 ± 134.5 pA; n = 10; P = 0.022) but not those evoked by stimulation of Aδ-fibers. These phenomena were mediated by transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.

  18. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure.

    PubMed

    Tuttolomondo, Antonino; Simonetta, Irene; Pinto, Antonio

    2016-11-01

    Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.

  19. Dehydroepiandrosterone Potentiates Native Ionotropic ATP Receptors Containing the P2X2 Subunit in Rat Sensory Neurones

    PubMed Central

    De Roo, Mathias; Rodeau, Jean-Luc; Schlichter, Rémy

    2003-01-01

    We have studied the modulatory effect of dehydroepiandrosterone (DHEA), the most abundant neurosteroid produced by glial cells and neurones, on membrane currents induced by the activation of ionotropic ATP (P2X) receptors in neonatal rat dorsal root ganglion neurones. ATP (1 μm) induced three types of currents/responses termed F (fast and transient), S (slowly desensitizing) and M (mixed, sum of F- and S-type responses). DHEA (10 nm to 100 μm) concentration-dependently increased the amplitude of plateau-like currents of S- and M-type responses evoked by submaximal (1 μm) but not saturating (100 μm or 1 mM) concentrations of ATP. αβ-Methylene ATP (αβme-ATP, 5 μm) also evoked F-, S- and M-type responses, the plateau phases of which were potentiated by lowering external pH (6.3) and by ivermectin (IVM, 3 μm), indicating the presence heteromeric P2X2-containing receptors and possibly of functional native P2X4/6 receptors. There was a strict correlation between the potentiating effects of low pH and DHEA on αβme-ATP responses but not between that of IVM and DHEA, suggesting that DHEA selectively modulated P2X2-containing receptors. DHEA also potentiated putative homomeric P2X2 receptor responses recorded in the continuous presence of 1 μm 2′-(or 3′)-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP). Our results constitute the first demonstration of a fast potentiation of P2X receptors by a neurosteroid and suggest that DHEA could be an endogenous modulator of P2X2-containing receptors thereby contributing to the facilitation of the detection and/or the transmission of nociceptive messages, particularly under conditions of inflammatory pain where the P2X receptor signalling pathway appears to be upregulated. PMID:12844512

  20. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila

    PubMed Central

    Pitmon, E.; Stephens, G.; Parkhurst, S. J.; Wolf, F. W.; Kehne, G.; Taylor, M.

    2016-01-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. PMID:26749475

  1. The cargo receptor p24A facilitates calcium sensing receptor maturation and stabilization in the early secretory pathway

    PubMed Central

    Stepanchick, Ann; Breitwieser, Gerda E.

    2010-01-01

    The calcium sensing receptor (CaSR) is a Family 3/C G protein-coupled receptor with slow and partial targeting to the plasma membrane in both native and heterologous cells. We identified cargo receptor family member p24A in yeast two-hybrid screens with the CaSR carboxyl terminus. Interactions were confirmed by immunoprecipitation of either p24A or CaSR in transiently transfected HEK293 cells. Only the immaturely glycosylated form of CaSR interacts with p24A. Dissociation likely occurs in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) or cis-Golgi, since only the uncleaved form of a CaSR mutant sensitive to the trans-Golgi enzyme furin was coimmunoprecipitated with p24A. p24A and p24A(ΔGOLD) significantly increased total and plasma membrane CaSR protein but p24A(FF/AA) did not. The CaSR carboxyl terminus distal to T868 is required for differential sensitivity to p24A and its mutants. Interaction with p24A therefore increases CaSR stability in the ER and enhances plasma membrane targeting. Neither wt Sar1p or the T39N mutant increased CaSR maturation or abundance while the H79G mutant increased abundance but prevented maturation of CaSR. These results suggest that p24A is the limiting factor in CaSR trafficking in the early secretory pathway, and that cycling between the ER and ERGIC protects CaSR from degradation. PMID:20361938

  2. Neurotrophins Acting Via TRKB Receptors Activate the JAGGED1-NOTCH2 Cell-Cell Communication Pathway to Facilitate Early Ovarian Development

    PubMed Central

    Dorfman, Mauricio D.; Kerr, Bredford; Garcia-Rudaz, Cecilia; Paredes, Alfonso H.; Dissen, Gregory A.

    2011-01-01

    Tropomyosin-related kinase (TRK) receptor B (TRKB) mediates the supportive actions of neurotrophin 4/5 and brain-derived neurotrophic factor on early ovarian follicle development. Absence of TRKB receptors reduces granulosa cell (GC) proliferation and delays follicle growth. In the present study, we offer mechanistic insights into this phenomenon. DNA array and quantitative PCR analysis of ovaries from TrkB-null mice revealed that by the end of the first week of postnatal life, Jagged1, Hes1, and Hey2 mRNA abundance is reduced in the absence of TRKB receptors. Although Jagged1 encodes a NOTCH receptor ligand, Hes1 and Hey2 are downstream targets of the JAGGED1-NOTCH2 signaling system. Jagged1 is predominantly expressed in oocytes, and the abundance of JAGGED1 is decreased in TrkB−/− oocytes. Lack of TRKB receptors also resulted in reduced expression of c-Myc, a NOTCH target gene that promotes entry into the cell cycle, but did not alter the expression of genes encoding core regulators of cell-cycle progression. Selective restoration of JAGGED1 synthesis in oocytes of TrkB−/− ovaries via lentiviral-mediated transfer of the Jagged1 gene under the control of the growth differentiation factor 9 (Gdf9) promoter rescued c-Myc expression, GC proliferation, and follicle growth. These results suggest that neurotrophins acting via TRKB receptors facilitate early follicle growth by supporting a JAGGED1-NOTCH2 oocyte-to-GC communication pathway, which promotes GC proliferation via a c-MYC-dependent mechanism. PMID:22028443

  3. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson's disease

    PubMed Central

    Duty, Susan

    2010-01-01

    Current drugs used in the treatment of Parkinson's disease (PD), for example, L-DOPA and dopamine agonists, are very effective at reversing the motor symptoms of the disease. However, they do little to combat the underlying degeneration of dopaminergic neurones in the substantia nigra pars compacta (SNc) and their long-term use is associated with the appearance of adverse effects such as L-DOPA-induced dyskinesia. Much emphasis has therefore been placed on finding alternative non-dopaminergic drugs that may circumvent some or all of these problems. Group III metabotropic glutamate (mGlu) receptors were first identified in the basal ganglia a decade ago. One or more of these receptors (mGlu4, mGlu7 or mGlu8) is found on pre-synaptic terminals of basal ganglia pathways whose overactivity is implicated not only in the generation of motor symptoms in PD, but also in driving the progressive SNc degeneration. The finding that drugs which activate group III mGlu receptors can inhibit transmission across these overactive synapses has lead to the proposal that group III mGlu receptors are promising targets for drug discovery in PD. This paper provides a comprehensive review of the role and target potential of group III mGlu receptors in the basal ganglia. Overwhelming evidence obtained from in vitro studies and animal models of PD supports group III mGlu receptors as potentially important drug targets for providing both symptom relief and neuroprotection in PD. PMID:20735415

  4. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  5. Endothelin‐1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention

    PubMed Central

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G

    2017-01-01

    Background and Purpose Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin‐1 (ET‐1) and the role of endothelin ETA and ETB receptors in haemorrhoid tissue. Experimental Approach Protein expression of ET‐1, ETA and ETB receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET‐1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Key Results Dense binding of [125I]‐ET‐1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ETB than ETA receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ETA and ETB receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ETB receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET‐1 and affected by the ETA selective antagonist, but sarafotoxin S6a‐induced contractions were more pronounced in veins and antagonized by a selective ETB receptor antagonist. Conclusions and Implications ETA and ETB receptors are present in human haemorrhoids with ETB receptors predominating. ETA receptors are activated by ET‐1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a – a response that involves ETB receptors at low concentrations. Selective ETB agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. PMID:28095606

  6. Endothelin-1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention.

    PubMed

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G; Dashwood, Michael R

    2017-04-01

    Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin-1 (ET-1) and the role of endothelin ET A and ET B receptors in haemorrhoid tissue. Protein expression of ET-1, ET A and ET B receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET-1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Dense binding of [ 125 I]-ET-1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ET B than ET A receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ET A and ET B receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ET B receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET-1 and affected by the ET A selective antagonist, but sarafotoxin S6a-induced contractions were more pronounced in veins and antagonized by a selective ET B receptor antagonist. ET A and ET B receptors are present in human haemorrhoids with ET B receptors predominating. ET A receptors are activated by ET-1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a - a response that involves ET B receptors at low concentrations. Selective ET B agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. © 2017 The British Pharmacological Society.

  7. Evaluation of an In Vitro Multi-Receptor and Multi-Species Assay for Potential Endocrine Disruptor Targets (SOT)

    EPA Science Inventory

    Receptor sequence conservation across species may be a key factor determining susceptibility to potential endocrine disrupting chemicals. Computational approaches that compare receptor sequence similarities (e.g. SeqAPASS; https://seqapass.epa.gov/seqapass/) have been proposed to...

  8. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors.

    PubMed

    Jiang, L; Kang, D; Kang, J

    2015-07-09

    Presynaptic kainate-type glutamate ionotropic receptors (KARs) that mediate either the depression or the facilitation of GABA release have been intensively studied. Little attention has been given to the modulation of GABAA receptors (GABAARs) by postsynaptic KARs. Recent studies suggest that two GABAAR populations, synaptic (sGABAAR) and extrasynaptic (eGABAAR) GABAARs, mediate phasic and tonic forms of inhibition, respectively. Tonic inhibition plays an important role in the excitability of neuronal circuits and the occurrence of epileptic seizures. For this study, we are the first to report that the activation of postsynaptic KARs by the KAR agonist, Kainic acid (KA, 5 μM), enhanced tonic inhibition by potentiating eGABAARs. KA enhanced THIP-induced eGABAAR currents and prolonged the rise and decay time of muscimol-induced sGABAAR/eGABAAR currents, but also depressed the amplitude of evoked inhibitory postsynaptic currents (IPSCs), unitary IPSCs (uIPSCs), and muscimol-induced sGABAAR/eGABAAR currents. The PKC inhibitor, staurosporine (1 μM), in the patch pipette solution fully blocked the KA-induced potentiation of tonic inhibition, suggesting the involvement of an intracellular PKC pathway. Our study suggests that the activation of postsynaptic KARs potentiates eGABAARs but depresses sGABAARs. By activating postsynaptic KARs, synaptically released glutamate depresses phasic inhibition to facilitate neuronal plasticity, but potentiates tonic inhibition to protect neurons from over-excitation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Upregulation of endothelin receptors A and B in the nitrofen induced hypoplastic lung occurs early in gestation.

    PubMed

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-01-01

    Pulmonary hypoplasia and persistent pulmonary hypertension (PPH) aggravate clinical courses in congenital diaphragmatic hernia (CDH). Endothelin 1 enhances PPH by vasoconstriction and proliferation of vessel walls. Up-regulation of pulmonary Endothelin Receptors A and B (EDNRA, EDNRB) has been reported in human CDH and animal models, but the onset of those alterations during lung development remains unclear. We hypothesized that pulmonary expression of EDNRA and EDNRB is up-regulated at early gestational stages in the nitrofen model. Pregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Embryos were sacrificed on D15, D18 and D21 and divided into nitrofen- and control group. Pulmonary RNA was extracted and mRNA levels of EDNRA and EDNRB were determined by real-time PCR. Immunohistochemistry for protein expression of both receptors was performed. mRNA levels of EDNRA and EDNRB were significantly increased in the nitrofen group on D15, D18 and D21. Immunohistochemistry revealed increased pulmonary vascular expression of EDNRA and EDNRB compared to controls. Altered expression of EDNRA and EDNRB is an early event in lung morphogenesis in the nitrofen model. We speculate that pulmonary arteries in CDH become excessively muscularised in early fetal life, becoming unable to adapt normally at birth.

  10. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder.

    PubMed

    Goodwani, Sunil; Saternos, Hannah; Alasmari, Fawaz; Sari, Youssef

    2017-06-01

    Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Therapeutic treatments potentially mediated by melatonin receptors: potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy.

    PubMed

    Witt-Enderby, Paula A; Radio, Nicholas M; Doctor, John S; Davis, Vicki L

    2006-11-01

    Melatonin's therapeutic potential is grossly underestimated because its functional roles are diverse and its mechanism(s) of action are complex and varied. Melatonin produces cellular effects via a variety of mechanisms in a receptor independent and dependent manner. In addition, melatonin is a chronobiotic agent secreted from the pineal gland during the hours of darkness. This diurnal release of melatonin impacts the sensitivity of melatonin receptors throughout a 24-hr period. This changing sensitivity probably contributes to the narrow therapeutic window for use of melatonin in treating sleep disorders, that is, at the light-to-dark (dusk) or dark-to-light (dawn) transition states. In addition to the cyclic changes in melatonin receptors, many genes cycle over the 24-hr period, independent or dependent upon the light/dark cycle. Interestingly, many of these genes support a role for melatonin in modulating metabolic and cardiovascular physiology as well as bone metabolism and immune function and detoxification of chemical agents and cancer reduction. Melatonin also enhances the actions of a variety of drugs or hormones; however, the role of melatonin receptors in modulating these processes is not known. The goal of this review is to summarize the evidence related to the utility of melatonin as a therapeutic agent by focusing on its other potential uses besides sleep disorders. In particular, its use in cancer prevention, osteoporosis and, as an adjuvant to other therapies are discussed. Also, the role that melatonin and, particularly, its receptors play in these processes are highlighted.

  12. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  13. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs

    PubMed Central

    Pandey, Kailash N.

    2015-01-01

    The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed. PMID:26151885

  14. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of antiprogestin ZK 98. 734 on the ovarian cycle, early pregnancy, and on its binding to progesterone receptors in the myometrium of marmoset Callithrix jacchus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, C.P.; Kholkute, S.D.; Pongubala, J.M.

    1988-04-01

    The antiprogestin ZK 98.734 (11 beta-(4-dimethylaminophenyl-17 beta-hydroxy-17 alpha-(3-hydroxy-prop-1(Z)-enyl-4,9(10)-estradien-3-one) was administered i.m. (5 mg/day) for three consecutive days to two groups of common marmosets. In one group (nonpregnant, n = 6), it was injected during the luteal phase, and to the second group (pregnant, n = 7), it was injected during early pregnancy, on Days 24-26 of the mid-cycle estradiol peak. Administration of ZK 98.734 during the luteal phase caused a sharp drop in plasma progesterone levels. The luteal phase was shortened whether the drug was administered during the early or the late luteal phase. Similarly, administration of ZK 98.734 duringmore » early pregnancy caused a significant drop in progesterone levels, and pregnancy was terminated in all of the animals. The post-treatment cycles in both groups of animals were ovulatory and of normal duration. /sup 3/H-ZK 98.734 showed specific binding to myometrial cytosol fraction. ZK 98.734 also displaced the binding of /sup 3/H-progesterone to progesterone receptors. However, progesterone had higher binding affinity than did ZK 98.734. The antifertility action of ZK 98.734 could be a result either of its luteolytic action or of its blocking the progesterone receptors in the target tissue. This study, therefore, indicates that in the common marmoset ZK 98.734 is a progesterone antagonist with a potential to terminate early pregnancy.« less

  16. Modeling the Interaction between Quinolinate and the Receptor for Advanced Glycation End Products (RAGE): Relevance for Early Neuropathological Processes

    PubMed Central

    Serratos, Iris N.; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Reyes-Espinosa, Francisco; Díaz-Garrido, Paulina; López-Macay, Ambar; Martínez-Flores, Karina; López-Reyes, Alberto; Sánchez-García, Aurora; Cuevas, Elvis; Santamaria, Abel

    2015-01-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function. PMID:25757085

  17. Multifocal visual evoked potentials for early glaucoma detection.

    PubMed

    Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W

    2012-07-01

    To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.

  18. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila.

    PubMed

    Pitmon, E; Stephens, G; Parkhurst, S J; Wolf, F W; Kehne, G; Taylor, M; Lebestky, T

    2016-03-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH-positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  19. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding.

    PubMed

    Murrough, James W; Czermak, Christoph; Henry, Shannan; Nabulsi, Nabeel; Gallezot, Jean-Dominique; Gueorguieva, Ralitza; Planeta-Wilson, Beata; Krystal, John H; Neumaier, John F; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E; Neumeister, Alexander

    2011-09-01

    Serotonergic dysfunction is implicated in the pathogenesis of posttraumatic stress disorder (PTSD), and recent animal models suggest that disturbances in serotonin type 1B receptor function, in particular, may contribute to chronic anxiety. However, the specific role of the serotonin type 1B receptor has not been studied in patients with PTSD. To investigate in vivo serotonin type 1B receptor expression in individuals with PTSD, trauma-exposed control participants without PTSD (TC), and healthy (non-trauma-exposed) control participants (HC) using positron emission tomography and the recently developed serotonin type 1B receptor selective radiotracer [(11)C]P943. Cross-sectional positron emission tomography study under resting conditions. Academic and Veterans Affairs medical centers. Ninety-six individuals in 3 study groups: PTSD (n = 49), TC (n = 20), and HC (n = 27). Main Outcome Measure  Regional [(11)C]P943 binding potential (BP(ND)) values in an a priori-defined limbic corticostriatal circuit investigated using multivariate analysis of variance and multiple regression analysis. A history of severe trauma exposure in the PTSD and TC groups was associated with marked reductions in [(11)C]P943 BP(ND) in the caudate, the amygdala, and the anterior cingulate cortex. Participant age at first trauma exposure was strongly associated with low [(11)C]P943 BP(ND). Developmentally earlier trauma exposure also was associated with greater PTSD symptom severity and major depression comorbidity. These data suggest an enduring effect of trauma history on brain function and the phenotype of PTSD. The association of early age at first trauma and more pronounced neurobiological and behavioral alterations in PTSD suggests a developmental component in the cause of PTSD.

  20. The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice.

    PubMed

    Meotti, Flavia Carla; Figueiredo, Cláudia Pinto; Manjavachi, Marianne; Calixto, João B

    2017-02-01

    The kinin receptor B 1 and the transient receptor potential ankyrin 1 (TRPA1) work as initiators and gatekeepers of nociception and inflammation. This study reports that the nociceptive transmission induced by activation of B 1 receptor is dependent on TRPA1 ion channel. The mechanical hyperalgesia was induced by intrathecal (i.t.) injection of B 1 agonist des-Arginine 9 -bradykinin (DABK) or TRPA1 agonist cinnamaldehyde and was evaluated by the withdrawal response after von Frey Hair application in the hind paw. After behavioral experiments, lumbar spinal cord and dorsal root ganglia (DRG) were harvested to assess protein expression and mRNA by immunohistochemistry and real time-PCR, respectively. The pharmacological antagonism (HC030031) or the down-regulation of TRPA1 greatly inhibited the mechanical hyperalgesia induced by DABK. Intrathecal injection of DABK up regulated the ionized calcium binding adaptor molecule (Iba-1) in lumbar spinal cord (L5-L6); TRPA1 protein and mRNA in lumbar spinal cord; and B 1 receptor mRNA in both lumbar spinal cord and DRG. The knockdown of TRPA1 prevented microglia activation induced by DABK. Furthermore, the mechanical hyperalgesia induced by either DABK or by cinnamaldehyde was significantly reduced by inhibition of cyclooxygenase (COX), protein kinase C (PKC) or phospholipase C (PLC). In summary, this study revealed that TRPA1 positively modulates the mechanical hyperalgesia induced by B 1 receptor activation in the spinal cord and that the classical GPCR downstream molecules PLC, diacylglycerol (DAG), 3,4,5-inositide phosphate (IP 3 ) and PKC are involved in the nociceptive transmission triggered by these two receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B4-negative Medium-sized Trigeminal Ganglion Neurons.

    PubMed

    Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2018-06-01

    Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential

  2. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    PubMed

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.

  3. Ritonavir binds to and downregulates estrogen receptors: molecular mechanism of promoting early atherosclerosis.

    PubMed

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Enhanced AMPA Receptor Function Promotes Cerebellar Long-Term Depression Rather than Potentiation

    ERIC Educational Resources Information Center

    van Beugen, Boeke J.; Qiao, Xin; Simmons, Dana H.; De Zeeuw, Chris I.; Hansel, Christian

    2014-01-01

    Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory postsynaptic currents (EPSCs) at cerebellar…

  5. Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats

    PubMed Central

    D’Amore, V.; Santolini, I.; van Rijn, C.M.; Biagioni, F.; Molinaro, G.; Prete, A.; Conn, P.J.; Lindsley, C.W.; Zhou, Y.; Vinson, P.N.; Rodriguez, A.L.; Jones, C.K.; Stauffer, S.R.; Nicoletti, F.; van Luijtelaar, G.; Ngomba, R.T.

    2013-01-01

    Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3 and mGlu4 receptors produces the opposite effect. Here, we have extended the study to mGlu5 receptors, which are known to be highly expressed within the cortico-thalamo-cortical network. We used presymptomatic and symptomatic WAG/Rij rats and aged-matched ACI rats. WAG/Rij rats showed a reduction in the mGlu5 receptor protein levels and in the mGlu5-receptor mediated stimulation of polyphosphoinositide hydrolysis in the ventrobasal thalamus, whereas the expression of mGlu5 receptors was increased in the somatosensory cortex. Interestingly, these changes preceded the onset of the epileptic phenotype, being already visible in pre-symptomatic WAG/Rij rats. SWDs in symptomatic WAG/Rij rats were not influenced by pharmacological blockade of mGlu5 receptors with MTEP (10 or 30 mg/kg, i.p.), but were significantly decreased by mGlu5 receptor potentiation with the novel enhancer, VU0360172 (3 or 10 mg/kg, s.c.), without affecting motor behaviour. The effect of VU0360172 was prevented by co-treatment with MTEP. These findings suggest that changes in mGlu5 receptors might lie at the core of the absence-seizure prone phenotype of WAG/Rij rats, and that mGlu5 receptor enhancers are potential candidates to the treatment of absence epilepsy. PMID:22705340

  6. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7)*

    PubMed Central

    Valinsky, William C.; Jolly, Anna; Miquel, Perrine

    2016-01-01

    Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg2+-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg2+ levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed. PMID:27466368

  7. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7).

    PubMed

    Valinsky, William C; Jolly, Anna; Miquel, Perrine; Touyz, Rhian M; Shrier, Alvin

    2016-09-16

    Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg(2+)-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg(2+) levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Early environments, glucocorticoid receptors, and behavioral epigenetics.

    PubMed

    Champagne, Frances A

    2013-10-01

    In 1985, a brief report published in Behavioral Neuroscience established the link between neonatal handling and concentrations of hippocampal glucocorticoid receptors (GR) in the adult rat, suggesting a neurobiological basis for the attenuated stress reactivity observed in handled versus nonhandled offspring. To celebrate the 30th anniversary of Behavioral Neuroscience, this article explores the research that preceded and followed from this brief but significant publication. Changes in hippocampal GR induced by handling were determined to be the outcome of a cascade of cellular and molecular events involving thyroid hormones, serotonin turnover, and transcription factor binding to the Nr3c1 gene, leading to increased GR mRNA and protein. Though many hypotheses were proposed for the "handling effect," the role of handling-induced changes in maternal care, particularly pup licking/grooming (LG), generated a productive scientific framework for understanding the handling phenomenon. Indeed, LG has since been demonstrated to alter GR levels through the signaling pathways described for handling. Moreover, epigenetic mechanisms have been discovered to play a critical role in the effects of early life experience and particularly in the regulation of Nr3c1. Overall, the research avenues that have evolved from the initial finding of handling-induced changes in GR have broad applications to our understanding of plasticity, resilience, and the transmission of traits across generations. 2013 APA, all rights reserved

  9. Early age rutting potential of warm mix asphalt (WMA).

    DOT National Transportation Integrated Search

    2012-12-01

    Various plant produced Warm Mix Asphalt (WMA) mixtures were evaluated and compared to identical : plant produced Hot Mix Asphalt to assess their early life rutting potential. Along with laboratory permanent : deformation testing, fatigue and moisture...

  10. GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?

    EPA Science Inventory

    Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?

    Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.

    National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

  11. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  12. Early age rutting potential of warm mix asphalt (WMA).

    DOT National Transportation Integrated Search

    2012-12-01

    Various plant produced Warm Mix Asphalt (WMA) mixtures were evaluated and compared to identical plant produced Hot Mix Asphalt to assess their early life rutting potential. Along with laboratory permanent deformation testing, fatigue and moisture dam...

  13. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor.

    PubMed

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-03-01

    Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. © 2013 The British Pharmacological Society.

  14. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor

    PubMed Central

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-01-01

    BACKGROUND AND PURPOSE Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. EXPERIMENTAL APPROACH The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). KEY RESULTS Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. CONCLUSIONS AND IMPLICATIONS Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. PMID:24670149

  15. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas.

    PubMed

    Souazé, Frédérique; Viardot-Foucault, Véronique; Roullet, Nicolas; Toy-Miou-Leong, Mireille; Gompel, Anne; Bruyneel, Erik; Comperat, Eva; Faux, Maree C; Mareel, Marc; Rostène, William; Fléjou, Jean-François; Gespach, Christian; Forgez, Patricia

    2006-04-01

    Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.

  16. Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4.

    PubMed

    Shibasaki, Koji; Suzuki, Makoto; Mizuno, Atsuko; Tominaga, Makoto

    2007-02-14

    Physiological body temperature is an important determinant for neural functions, and it is well established that changes in temperature have dynamic influences on hippocampal neural activities. However, the detailed molecular mechanisms have never been clarified. Here, we show that hippocampal neurons express functional transient receptor potential vanilloid 4 (TRPV4), one of the thermosensitive TRP (transient receptor potential) channels, and that TRPV4 is constitutively active at physiological temperature. Activation of TRPV4 at 37 degrees C depolarized the resting membrane potential in hippocampal neurons by allowing cation influx, which was observed in wild-type (WT) neurons, but not in TRPV4-deficient (TRPV4KO) cells, although dendritic morphology, synaptic marker clustering, and synaptic currents were indistinguishable between the two genotypes. Furthermore, current injection studies revealed that TRPV4KO neurons required larger depolarization to evoke firing, equivalent to WT neurons, indicating that TRPV4 is a key regulator for hippocampal neural excitabilities. We conclude that TRPV4 is activated by physiological temperature in hippocampal neurons and thereby controls their excitability.

  17. Synthesis and binding affinity of new 1,4-disubstituted triazoles as potential dopamine D(3) receptor ligands.

    PubMed

    Insua, Ignacio; Alvarado, Mario; Masaguer, Christian F; Iglesias, Alba; Brea, José; Loza, María I; Carro, Laura

    2013-10-15

    A series of new 1,4-disubstituted triazoles was prepared from appropriate arylacetylenes and aminoalkylazides using click chemistry methodology. These compounds were evaluated as potential ligands on several subtypes of dopamine receptors in in vitro competition assays, showing high affinity for dopamine D3 receptors, lower affinity for D2 and D4, and no affinity for the D1 receptors. Compound 18 displayed the highest affinity at the D3 receptor with a Ki value of 2.7 nM, selectivity over D2 (70-fold) and D4 (200-fold), and behaviour as a competitive antagonist in the low nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    PubMed

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  19. The therapeutic potential of G-protein coupled receptors in Huntington's disease.

    PubMed

    Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle

    2010-11-01

    Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  1. Premyelinated central axons express neurotoxic NMDA receptors: relevance to early developing white-matter injury

    PubMed Central

    Huria, Tahani; Beeraka, Narasimha Murthy; Al-Ghamdi, Badrah; Fern, Robert

    2015-01-01

    Ischemic-type injury to developing white matter is associated with the significant clinical condition cerebral palsy and with the cognitive deficits associated with premature birth. Premyelinated axons are the major cellular component of fetal white matter and loss of axon function underlies the disability, but the cellular mechanisms producing ischemic injury to premyelinated axons have not previously been described. Injury was found to require longer periods of modelled ischemia than at latter developmental points. Ischemia produced initial hyperexcitability in axons followed by loss of function after Na+ and Ca2+ influx. N-methyl-D-aspartate- (NMDA) type glutamate receptor (GluR) agonists potentiated axon injury while antagonists were protective. The NMDA GluR obligatory Nr1 subunit colocalized with markers of small premyelinated axons and expression was found at focal regions of axon injury. Ischemic injury of glial cells present in early developing white matter was NMDA GluR independent. Axons in human postconception week 18 to 23 white matter had a uniform prediameter expansion phenotype and postembedded immuno-gold labelling showed Nr1 subunit expression on the membrane of these axons, demonstrating a shared key neuropathologic feature with the rodent model. Premyelinated central axons therefore express high levels of functional NMDA GluRs that confer sensitivity to ischemic injury. PMID:25515212

  2. dTULP, the Drosophila melanogaster Homolog of Tubby, Regulates Transient Receptor Potential Channel Localization in Cilia

    PubMed Central

    Shim, Jaewon; Han, Woongsu; Lee, Jinu; Bae, Yong Chul; Chung, Yun Doo; Kim, Chul Hoon; Moon, Seok Jun

    2013-01-01

    Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions. PMID:24068974

  3. The therapeutic potential of erythropoiesis-stimulating agents for tissue protection: a tale of two receptors.

    PubMed

    Brines, Michael

    2010-01-01

    Erythropoietin (EPO) is a well-known therapeutic protein employed widely in the treatment of anemia. Over the past decade, abundant evidence has shown that in addition to its systemic role in the regulation of plasma pO(2) by modulating erythrocyte numbers, EPO is also a cytoprotective molecule made locally in response to injury or metabolic stress. Many studies have shown beneficial effects of EPO administration in reducing damage caused by ischemia-reperfusion, trauma, cytotoxicity, infection and inflammation in a variety of organs and tissues. Notably, the receptor mediating the nonerythropoietic effects of EPO differs from the one responsible for hematopoiesis. The tissue-protective receptor exhibits a lower affinity for EPO and is a heteromer consisting of EPO receptor monomers in association with the common receptor that is also employed by granulocyte macrophage colony-stimulating factor, interleukin 3, and interleukin 5. This heteromeric receptor is expressed immediately following injury, whereas EPO production is delayed. Thus, early administration of EPO can dramatically reduce the deleterious components of the local inflammatory cascade. However, a high dose of EPO is required and this also stimulates the bone marrow to produce highly reactive platelets and activates the vascular endothelium into a prothrombotic state. To circumvent these undesirable effects, the EPO molecule has been successfully altered to selectively eliminate erythropoietic and prothrombotic potencies, while preserving tissue-protective activities. Very recently, small peptide mimetics have been developed that recapitulate the tissue-protective activities of EPO. Nonerythropoietic tissue-protective molecules hold high promise in a wide variety of acute and chronic diseases. Copyright (c) 2010 S. Karger AG, Basel.

  4. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma*

    PubMed Central

    Stockmann, Chris; Romero, Erin G.; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L.; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A.; Ward, Robert M.; Veranth, John M.; Reilly, Christopher A.

    2016-01-01

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. PMID:27758864

  5. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    PubMed

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  7. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib

    PubMed Central

    Acharya, Sunil; Xu, Jia; Wang, Xiao; Jain, Shalini; Wang, Hai; Zhang, Qingling; Chang, Chia-Chi; Bower, Joseph; Arun, Banu; Seewaldt, Victoria; Yu, Dihua

    2016-01-01

    Tamoxifen and aromatase inhibitors (AIs) have shown efficacy in prevention of estrogen receptor-positive (ER+) breast cancer; however, there exists no proven prevention strategy for estrogen receptor-negative (ER-) breast cancer. Up to 40% of ER- breast cancers have human epidermal growth factor receptor 2 overexpression (HER2+), suggesting HER2 signaling might be a good target for chemoprevention for certain ER- breast cancers. Here, we tested the feasibility of the HER2-targeting agent lapatinib in prevention and/or early intervention of an ER-/HER2+ early-stage breast disease model. We found that lapatinib treatment forestalled the progression of atypical ductal hyperplasia (ADH)-like acini to ductal carcinoma in situ (DCIS)-like acini in ER-/HER2+ human mammary epithelial cells (HMECs) in 3D culture. Mechanistically, we found that inhibition of HER2/Akt signaling by lapatinib led to downregulation of GLUT4 and a reduced glucose uptake in HER2-overexpressing cells, resulting in decreased proliferation and increased apoptosis of these cells in 3D culture. Additionally, our data suggest that HER2-driven glycolytic metabolic dysregulation in ER-/HER2+ HMECs might promote early-stage breast disease progression, which can be reversed by lapatinib treatment. Furthermore, low-dose lapatinib treatment, starting at the early stages of mammary grand transformation in the MMTV-neu* mouse model, significantly delayed mammary tumor initiation and progression, extended tumor-free survival, which corresponded to effective inhibition of HER2/Akt signaling and downregulation of GLUT4 in vivo. Taken together, our results indicate that lapatinib, through its inhibition of key signaling pathways and tumor-promoting metabolic events, is a promising agent for the prevention/early intervention of ER-/HER2+ breast cancer progression. PMID:27293993

  8. Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance.

    PubMed

    Rupp, Alan C; Allison, Margaret B; Jones, Justin C; Patterson, Christa M; Faber, Chelsea L; Bozadjieva, Nadejda; Heisler, Lora K; Seeley, Randy J; Olson, David P; Myers, Martin G

    2018-06-06

    To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. We generated new mouse lines deleted for LepRb in ARC Ghrh Cre neurons or in Htr2c Cre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Uncommon endocytic and trafficking pathway of the natural killer cell CD94/NKG2A inhibitory receptor.

    PubMed

    Masilamani, Madhan; Narayanan, Sriram; Prieto, Martha; Borrego, Francisco; Coligan, John E

    2008-06-01

    The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic-like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1(+), Rab5(+) early endosomes. It does appear in Rab4(+) early/sorting endosome, but, in the time period examined, fails to reach Rab11(+) recycling or Rab7(+) late endosomes or lysosome-associated membrane protein-1(+) lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.

  10. Oxytocin receptors (OXTR) and early parental care: An interaction that modulates psychiatric disorders.

    PubMed

    Cataldo, Ilaria; Azhari, Atiqah; Lepri, Bruno; Esposito, Gianluca

    2017-10-21

    Oxytocin plays an important role in the modulation of social behavior in both typical and atypical contexts. Also, the quality of early parental care sets the foundation for long-term psychosocial development. Here, we review studies that investigated how oxytocin receptor (OXTR) interacts with early parental care experiences to influence the development of psychiatric disorders. Using Pubmed, Scopus and PsycInfo databases, we utilized the keyword "OXTR" before subsequently searching for specific OXTR single nucleotide polymorphisms (SNPs), generating a list of 598 studies in total. The papers were catalogued in a database and filtered for gene-environment interaction, psychiatric disorders and involvement of parental care. In particular, rs53576 and rs2254298 were found to be significantly involved in gene-environment interactions that modulated risk for psychopathology and the following psychiatric disorders: disruptive behavior, depression, anxiety, eating disorder and borderline personality disorder. These results illustrate the importance of OXTR in mediating the impact of parental care on the emergence of psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A role for N-methyl-D-aspartate receptors in norepinephrine-induced long-lasting potentiation in the dentate gyrus.

    PubMed

    Stanton, P K; Mody, I; Heinemann, U

    1989-01-01

    Mechanisms of action of norepinephrine (NE) on dentate gyrus granule cells were studied in rat hippocampal slices using extra- and intracellular recordings and measurements of stimulus and amino acid-induced changes in extracellular Ca2+ and K+ concentration. Bath application of NE (10-50 microM) induced long-lasting potentiation of perforant path evoked potentials, and markedly enhanced high-frequency stimulus-induced Ca2+ influx and K+ efflux, actions blocked by beta-receptor antagonists and mimicked by beta agonists. Enhanced Ca2+ influx was primarily postsynaptic, since presynaptic delta [Ca2+]o in the stratum moleculare synaptic field was not altered by NE. Interestingly, the potentiation of both ionic fluxes and evoked population potentials were antagonized by the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (APV). Furthermore, NE selectively enhanced the delta [Ca2+]o delta [K+]o and extracellular slow negative field potentials elicited by iontophoretically applied NMDA, but not those induced by the excitatory amino acid quisqualate. These results suggest that granule cell influx of Ca2+ through NMDA ionophores is enhanced by NE via beta-receptor activation. In intracellular recordings, NE depolarized granule cells (4.8 +/- 1.1 mV), and increased input resistance (RN) by 34 +/- 6.5%. These actions were also blocked by either the beta-antagonist propranolol or specific beta 1-blocker metoprolol. Moreover, the depolarization and RN increase persisted for long periods (93 +/- 12 min) after NE washout. In contrast, while NE, in the presence of APV, still depolarized granule cells and increased RN, APV made these actions quickly reversible upon NE washout (16 +/- 9 min). This suggested that NE induction of long-term, but not short-term, plasticity in the dentate gyrus requires NMDA receptor activation. NE may be enhancing granule cell firing by some combination of blockade on the late Ca2+-activated K+ conductance and depolarization

  12. Selective progesterone receptor modulators 1: use during pregnancy.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A large number of synthetic compounds known as selective progesterone receptor modulators can bind to progesterone receptors: the ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. Only a dozen or so selective progesterone receptor modulators have been tested to any significant extent: among them are mifepristone (RU 486), asoprisnil (J867), onapristone (ZK 98 299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Their clinical applications during pregnancy are discussed. A careful evaluation of existing major review papers and recently published articles was carried out focusing on mifepristone, the most widely studied selective progesterone receptor modulator, which was first used for the voluntary interruption of an early gestation. Other selective progesterone receptor modulators, especially those with partial agonist action, have shown little activity during pregnancy in animal models. Besides early and late voluntary interruption of gestation, selective progesterone receptor modulators have been tested in a variety of obstetrical situations: to obtain a ripening of the cervix, for the medical management of early embryonic loss and foetal death, for the induction of labour at term and for the medical treatment of extra-uterine pregnancies. The only applications that seem worthy of large-scale utilisation during pregnancy are voluntary interruption of early and late gestation, medical management of early delayed miscarriage and late foetal demise.

  13. Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N-Methyl-D-Aspartate Receptor Subunit.

    PubMed

    Tozzi, Alessandro; de Iure, Antonio; Bagetta, Vincenza; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Costa, Cinzia; Di Filippo, Massimiliano; Ghiglieri, Veronica; Latagliata, Emanuele Claudio; Wegrzynowicz, Michal; Decressac, Mickael; Giampà, Carmela; Dalley, Jeffrey W; Xia, Jing; Gardoni, Fabrizio; Mellone, Manuela; El-Agnaf, Omar Mukhtar; Ardah, Mustafa Taleb; Puglisi-Allegra, Stefano; Björklund, Anders; Spillantini, Maria Grazia; Picconi, Barbara; Calabresi, Paolo

    2016-03-01

    Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Cabello-Verrugio, Claudio; Armisén, Ricardo; Varela, Diego; Simon, Felipe

    2015-05-01

    To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

  15. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  16. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    PubMed

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [18F]Fluorophenylazocarboxylates: Design and Synthesis of Potential Radioligands for Dopamine D3 and μ-Opioid Receptor

    PubMed Central

    2017-01-01

    18F-Labeled building blocks from the type of [18F]fluorophenylazocarboxylic-tert-butyl esters offer a rapid, mild, and reliable method for the 18F-fluoroarylation of biomolecules. Two series of azocarboxamides were synthesized as potential radioligands for dopamine D3 and the μ-opioid receptor, revealing compounds 3d and 3e with single-digit and sub-nanomolar affinity for the D3 receptor and compound 4c with only micromolar affinity for the μ-opioid receptor, but enhanced selectivity for the μ-subtype in comparison to the lead compound AH-7921. A “minimalist procedure” without the use of a cryptand and base for the preparation of 4-[18F]fluorophenylazocarboxylic-tert-butyl ester [18F]2a was established, together with the radiosynthesis of methyl-, methoxy-, and phenyl-substituted derivatives ([18F]2b–f). With the substituted [18F]fluorophenylazocarbylates in hand, two prototype azocarboxylates radioligands were synthesized by 18F-fluoroarylation, namely the methoxy azocarboxamide [18F]3d as the D3 receptor radioligand and [18F]4a as a prototype structure of the μ-opioid receptor radioligand. By introducing the new series of [18F]fluorophenylazocarboxylic-tert-butyl esters, the method of 18F-fluoroarylation was significantly expanded, thereby demonstrating the versatility of 18F-labeled phenylazocarboxylates for the design of potential radiotracers for positron emission tomography . PMID:29479577

  18. Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.

    PubMed

    Perez-García, Georgina S; Meneses, A

    2005-08-30

    This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.

  19. Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation.

    PubMed

    Chao, Dongman; Donnelly, David F; Feng, Yin; Bazzy-Asaad, Alia; Xia, Ying

    2007-02-01

    Central neurons are extremely vulnerable to hypoxic/ischemic insult, which is a major cause of neurologic morbidity and mortality as a consequence of neuronal dysfunction and death. Our recent work has shown that delta-opioid receptor (DOR) is neuroprotective against hypoxic and excitotoxic stress, although the underlying mechanisms remain unclear. Because hypoxia/ischemia disrupts ionic homeostasis with an increase in extracellular K(+), which plays a role in neuronal death, we asked whether DOR activation preserves K(+) homeostasis during hypoxic/ischemic stress. To test this hypothesis, extracellular recordings with K(+)-sensitive microelectrodes were performed in mouse cortical slices under anoxia or oxygen-glucose deprivation (OGD). The main findings in this study are that (1) DOR activation with [D-Ala(2), D-Leu(5)]-enkephalinamide attenuated the anoxia- and OGD-induced increase in extracellular K(+) and decrease in DC potential in cortical slices; (2) DOR inhibition with naltrindole, a DOR antagonist, completely abolished the DOR-mediated prevention of increase in extracellular K(+) and decrease in DC potential; (3) inhibition of protein kinase A (PKA) with N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide dihydrochloride had no effect on the DOR protection; and (4) inhibition of protein kinase C (PKC) with chelerythrine chloride reduced the DOR protection, whereas the PKC activator (phorbol 12-myristate 13-acetate) mimicked the effect of DOR activation on K(+) homeostasis. These data suggest that activation of DOR protects the cortex against anoxia- or ODG-induced derangement of potassium homeostasis, and this protection occurs via a PKC-dependent and PKA-independent pathway. We conclude that an important aspect of DOR-mediated neuroprotection is its early action against derangement of K(+) homeostasis during anoxia or ischemia.

  20. On the photosynthetic potential in the very Early Archean oceans.

    PubMed

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  1. Homozygosity for a novel missense mutation in the leptin receptor gene (P316T) in two Egyptian cousins with severe early onset obesity.

    PubMed

    Mazen, I; El-Gammal, M; Abdel-Hamid, M; Farooqi, I S; Amr, K

    2011-04-01

    Congenital deficiency of the leptin receptor is a very rare cause of severe early-onset obesity. To date, only 9 families have been reported in the literature to have mutations in the leptin receptor gene. The clinical features include severe early onset obesity, severe hyperphagia, hypogonadotropic hypogonadism, and T cell and neuroendocrine/metabolic dysfunction. Here we report two cousins with severe early onset obesity and recurrent respiratory tract infections. Their serum leptin levels were elevated but they were within the range predicted by the elevated fat mass in both cousins. Direct sequencing of the entire coding sequence of the leptin receptor gene revealed a novel homozygous missense mutation in exon 6, P316T. The mutation was found in the homozygous form in both cousins and in the heterozygote state in their parents. This mutation was not found in 200 chromosomes from 100 unrelated normal weight control subjects of Egyptian origin using PCR-RFLP analysis. In conclusion, finding this new mutation in the LEPR beside our previous mutation in the LEP gene implies that monogenic obesity syndromes may be common in the Egyptian population owing to the high rates of consanguineous marriages. Further screening of more families for mutations in LEP, LEPR, and MC4 might confirm this assumption. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Compound gravity receptor polarization vectors evidenced by linear vestibular evoked potentials

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.; Bell, P. L.; Taylor, M. J.

    2001-01-01

    The utricle and saccule are gravity receptor organs of the vestibular system. These receptors rely on a high-density otoconial membrane to detect linear acceleration and the position of the cranium relative to Earth's gravitational vector. The linear vestibular evoked potential (VsEP) has been shown to be an effective non-invasive functional test specifically for otoconial gravity receptors (Jones et al., 1999). Moreover, there is some evidence that the VsEP can be used to independently test utricular and saccular function (Taylor et al., 1997; Jones et al., 1998). Here we characterize compound macular polarization vectors for the utricle and saccule in hatchling chickens. Pulsed linear acceleration stimuli were presented in two axes, the dorsoventral (DV, +/- Z axis) to isolate the saccule, and the interaural (IA, +/- Y axis) to isolate the utricle. Traditional signal averaging was used to resolve responses recorded from the surface of the skull. Latency and amplitude of eighth nerve components of the linear VsEP were measured. Gravity receptor responses exhibited clear preferences for one stimulus direction in each axis. With respect to each utricular macula, lateral translation in the IA axis produced maximum ipsilateral response amplitudes with substantially greater amplitude intensity (AI) slopes than medially directed movement. Downward caudal motions in the DV axis produced substantially larger response amplitudes and AI slopes. The results show that the macula lagena does not contribute to the VsEP compound polarization vectors of the sacculus and utricle. The findings suggest further that preferred compound vectors for the utricle depend on the pars externa (i.e. lateral hair cell field) whereas for the saccule they depend on pars interna (i.e. superior hair cell fields). These data provide evidence that maculae saccule and utricle can be selectively evaluated using the linear VsEP.

  3. Potential Landslide Early Detection Near Wenchuan by a Qualitatively Multi-Baseline Dinsar Method

    NASA Astrophysics Data System (ADS)

    Dai, K.; Chen, G.; Xu, Q.; Li, Z.; Qu, T.; Hu, L.; Lu, H.

    2018-04-01

    Early detection of landslides is important for disaster prevention, which was still very hard work with traditional surveying methods. Interferometric Synthetic Aperture Radar (InSAR) technology provided us the ability to monitor displacements along the slope with wide coverage and high accuracy. In this paper, we proposed a qualitatively multi-baseline DInSAR method to early detect and map the potential landslides. Two sections of China National Highway 317 and 213 were selected as study area. With this method 10 potential landslide areas were early detected and mapped in a quick and effective way. One of them (i.e. Shidaguan landslide) collapsed on August 2017, which was coincident with our results, suggesting that this method could become an effective way to acquire the landslide early detection map to assist the future disaster prevention work.

  4. Mechanisms of Inhibition and Potentiation of α4β2 Nicotinic Acetylcholine Receptors by Members of the Ly6 Protein Family*

    PubMed Central

    Wu, Meilin; Puddifoot, Clare A.; Taylor, Palmer; Joiner, William J.

    2015-01-01

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca2+ flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. PMID:26276394

  5. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains

    PubMed Central

    Krieger, James; Bahar, Ivet; Greger, Ingo H.

    2015-01-01

    Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment. PMID:26255587

  6. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    PubMed Central

    Dennis, Siobhan H.; Pasqui, Francesca; Colvin, Ellen M.; Sanger, Helen; Mogg, Adrian J.; Felder, Christian C.; Broad, Lisa M.; Fitzjohn, Steve M.; Isaac, John T.R.; Mellor, Jack R.

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  7. Sensitivity of bronchopulmonary receptors to cold and heat mediated by transient receptor potential cation channel subtypes in an ex vivo rat lung preparation.

    PubMed

    Zhou, Yun; Sun, Biying; Li, Qian; Luo, Pin; Dong, Li; Rong, Weifang

    2011-08-15

    Changes in airway temperature can result in respiratory responses such as cough, bronchoconstriction and mucosal secretion after cold exposure and hyperventilation after heat exposure. In the present investigation, we examined the activity of bronchopulmonary receptors in response to activators of thermo-sensitive transient receptor potential (TS-TRP) cation channels using an ex vivo rat lung preparation. Receptive fields in small bronchioles were probed with von Frey hair monofilaments, warm (50°C) or cold (8°C) saline or saline containing TS-TRP agonists. Among 233 fibers tested, 159 (68.2%) responded to heat (50°C). A large proportion of heat-responsive receptors (107/145) were also activated by capsaicin. Heat and capsaicin-evoked responses were both blocked by TRPV1 antagonist, capsazepine. Only 15.3% of airway receptors responded to cold, which was associated with sensitivity to TRPM8 agonist menthol but not to TRPA1 agonist cinnamaldehyde (CA). Moreover, cold-evoked responses was unaffected by TRPA1 antagonist HC-03001. Our observations suggest that TRPV1 and TRPM8 are involved in transducing heat and cold in the lower respiratory tract, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    PubMed

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  9. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond

    PubMed Central

    Singh, Jagdeep SS; Lang, Chim C

    2015-01-01

    Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction. PMID:26082640

  10. NMDA receptor-mediated long term modulation of electrically evoked field potentials in the rat medial vestibular nuclei.

    PubMed

    Capocchi, G; Della Torre, G; Grassi, S; Pettorossi, V E; Zampolini, M

    1992-01-01

    The effect of high frequency stimulation (HFS) of the primary vestibular afferents on field potentials recorded in the ipsilateral Medial Vestibular Nuclei (MVN) was studied. Our results show that potentiation and depression can be induced in different portions of MVN, which are distinguishable by their anatomical organization. HFS induces potentiation of the monosynaptic component in the ventral portion of the MVN, whereas it provokes depression of the polysynaptic component in the dorsal portion of the same nucleus. The induction of both potentiation and depression was blocked under AP5 perfusion, thus demonstrating that NMDA receptor activation mediates both phenomena. Furthermore, the finding that the field potentials were not modified during perfusion with DL-AP5, as previously reported, supports the hypothesis that NMDA receptors are not involved in the normal synaptic transmission from the primary vestibular afferent fibres, but are only activated following hyperstimulation of this afferent system. Our results suggest that the mechanisms of long term modification of synaptic efficacy observed in MVN may underlie the plasticity phenomena occurring in vestibular nuclei.

  11. Protease-activated receptor 2-mediated protection of myocardial ischemia-reperfusion injury: role of transient receptor potential vanilloid receptors

    PubMed Central

    Zhong, Beihua

    2009-01-01

    Activation of the protease-activated receptor 2 (PAR2) or the transient receptor potential vanilloid type 1 (TRPV1) channels expressed in cardiac sensory afferents containing calcitonin gene-related peptide (CGRP) and/or substance P (SP) has been proposed to play a protective role in myocardial ischemia-reperfusion (I/R) injury. However, the interaction between PAR2 and TRPV1 is largely unknown. Using gene-targeted TRPV1-null mutant (TRPV1−/−) or wild-type (WT) mice, we test the hypothesis that TRPV1 contributes to PAR2-mediated cardiac protection via increasing the release of CGRP and SP. Immunofluorescence labeling showed that TRPV1 coexpressed with PAR2, PKC-ε, or PKAc in cardiomyocytes, cardiac blood vessels, and perivascular nerves in WT but not TRPV1−/− hearts. WT or TRPV1−/− hearts were Langendorff perfused with the selective PAR2 agonist, SLIGRL, in the presence or absence of various antagonists, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). The recovery rate of coronary flow, the maximum rate of left ventricular pressure development, left ventricular end-diastolic pressure, and left ventricular developed pressure were evaluated after I/R. SLIGRL improved the recovery of hemodynamic parameters, decreased lactate dehydrogenase release, and reduced the infarct size in both WT and TRPV1−/− hearts (P < 0.05). The protection of SLIGRL was significantly surpassed for WT compared with TRPV1−/− hearts (P < 0.05). CGRP8–37, a selective CGRP receptor antagonist, RP67580, a selective neurokinin-1 receptor antagonist, PKC-ε V1–2, a selective PKC-ε inhibitor, or H-89, a selective PKA inhibitor, abolished SLIGRL protection by inhibiting the recovery of the rate of coronary flow, maximum rate of left ventricular pressure development, and left ventricular developed pressure, and increasing left ventricular end-diastolic pressure in WT but not TRPV1−/− hearts. Radioimmunoassay showed that SLIGRL increased the release

  12. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  13. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    PubMed

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  14. Economic evaluation of the 70-gene prognosis-signature (MammaPrint®) in hormone receptor-positive, lymph node-negative, human epidermal growth factor receptor type 2-negative early stage breast cancer in Japan.

    PubMed

    Kondo, Masahide; Hoshi, Shu-Ling; Ishiguro, Hiroshi; Toi, Masakazu

    2012-06-01

    The 70-gene prognosis-signature is validated as a good predictor of recurrence for hormone receptor-positive (ER+), lymph node-negative (LN-), human epidermal growth factor receptor type 2-negative (HER2-) early stage breast cancer (ESBC) in Japanese patient population. Its high cost and potential in avoiding unnecessary adjuvant chemotherapy arouse interest in its economic impact. This study evaluates the cost-effectiveness of including the assay into Japan's social health insurance benefit package. An economic decision tree and Markov model under Japan's health system from the societal perspective is constructed with clinical evidence from the pool analysis of validation studies. One-way sensitivity analyses are also performed. Incremental cost-effectiveness ratio is estimated as ¥3,873,922/quality adjusted life year (QALY) (US$43,044/QALY), which is not more than the suggested social willingness-to-pay for one QALY gain from an innovative medical intervention in Japan, ¥5,000,000/QALY (US$55,556/QALY). However, sensitivity analyses show the instability of this estimation. The introduction of the assay into Japanese practice of ER+, LN-, HER2- ESBC treatment by including it to Japan's social health insurance benefit package has a reasonable chance to be judged as cost-effective and may be justified as an efficient deployment of finite health care resources.

  15. Expression of glucocorticoid receptor and early growth response gene 1 during postnatal development of two inbred strains of mice exposed to early life stress.

    PubMed

    Navailles, Sylvia; Zimnisky, Ross; Schmauss, Claudia

    2010-07-01

    Early life stress can elicit profound changes in adult gene expression and behavior. One consequence of early life stress is a decreased expression of glucocorticoid receptors (GRs) in the frontal cortex and hippocampus. However, neither the time of onset nor the mechanism(s) leading to decreased GR expression during postnatal development are known. The present study used two inbred strains of mice that differ in their behavioral responsiveness to stress (Balb/c and C57Bl/6), exposed them to an established paradigm of early life stress (infant maternal separation), and measured their expression of frontal cortical and hippocampal GRs and the putative transcriptional activator of the GR gene, early growth response gene (egr)-1, at defined stages of postnatal development. In both strains, real-time RT-PCR experiments revealed that decreased expression of GR in adolescence and adulthood is, in fact, preceded by increased GR expression during early life stress exposure. Thus, the early life stress-induced disruption of the normal stress-hyporesponsive period during infancy is accompanied by increased GR expression. Moreover, chronic treatment with the antidepressant drug fluoxetine during adolescence or adulthood reversed the effect of early life stress on adult GR mRNA expression. In contrast to the strain-independent effect of early life stress on GR expression, however, changes in egr-1 expression occurred only in Balb/c mice, and unlike the biphasic developmental changes in GR mRNA expression, egr-1 mRNA was decreased throughout postnatal development. Moreover, there was no consistent overlap of anatomic regions affected by decreased GR and egr-1 protein expression. Thus, in Balb/c mice, changes in GR and egr-1 expression can independently contribute to the phenotypes resulting from early life stress exposure. These findings illustrate that the impact of early life stress on gene expression changes is modulated by the genetic background and that the persistent

  16. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    PubMed Central

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  17. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice.

    PubMed

    Cattaruzza, Fiore; Johnson, Cali; Leggit, Alan; Grady, Eileen; Schenk, A Katrin; Cevikbas, Ferda; Cedron, Wendy; Bondada, Sandhya; Kirkwood, Rebekah; Malone, Brian; Steinhoff, Martin; Bunnett, Nigel; Kirkwood, Kimberly S

    2013-06-01

    Chronic pancreatitis (CP) is a devastating disease characterized by persistent and uncontrolled abdominal pain. Our lack of understanding is partially due to the lack of experimental models that mimic the human disease and also to the lack of validated behavioral measures of visceral pain. The ligand-gated cation channel transient receptor potential ankyrin 1 (TRPA1) mediates inflammation and pain in early experimental pancreatitis. It is unknown if TRPA1 causes fibrosis and sustained pancreatic pain. We induced CP by injecting the chemical agent trinitrobenzene sulfonic acid (TNBS), which causes severe acute pancreatitis, into the pancreatic duct of C57BL/6 trpa1(+/+) and trpa1(-/-) mice. Chronic inflammatory changes and pain behaviors were assessed after 2-3 wk. TNBS injection caused marked pancreatic fibrosis with increased collagen-staining intensity, atrophy, fatty replacement, monocyte infiltration, and pancreatic stellate cell activation, and these changes were reflected by increased histological damage scores. TNBS-injected animals showed mechanical hypersensitivity during von Frey filament probing of the abdomen, decreased daily voluntary wheel-running activity, and increased immobility scores during open-field testing. Pancreatic TNBS also reduced the threshold to hindpaw withdrawal to von Frey filament probing, suggesting central sensitization. Inflammatory changes and pain indexes were significantly reduced in trpa1(-/-) mice. In conclusion, we have characterized in mice a model of CP that resembles the human condition, with marked histological changes and behavioral measures of pain. We have demonstrated, using novel and objective pain measurements, that TRPA1 mediates inflammation and visceral hypersensitivity in CP and could be a therapeutic target for the treatment of sustained inflammatory abdominal pain.

  18. Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family.

    PubMed

    Wu, Meilin; Puddifoot, Clare A; Taylor, Palmer; Joiner, William J

    2015-10-02

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.

    PubMed

    Valkova, Christina; Albrizio, Marina; Röder, Ira V; Schwake, Michael; Betto, Romeo; Rudolf, Rüdiger; Kaether, Christoph

    2011-01-11

    The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.

  20. Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential

    PubMed Central

    Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.

    2014-01-01

    Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349

  1. Receptor for macrophage colony-stimulating factor transduces a signal decreasing erythroid potential in the multipotent hematopoietic EML cell line.

    PubMed

    Pawlak, G; Grasset, M F; Arnaud, S; Blanchet, J P; Mouchiroud, G

    2000-10-01

    To test the hypothesis that hematopoietic growth factors may influence lineage choice in pluripotent progenitor cells, we investigated the effects of macrophage colony-stimulating factor (M-CSF) on erythroid and myeloid potentials of multipotent EML cells ectopically expressing M-CSF receptor (M-CSFR). EML cells are stem cell factor (SCF)-dependent murine cells that give rise spontaneously to pre-B cells, burst-forming unit erythroid (BFU-E), and colony-forming unit granulocyte macrophage (CFU-GM). We determined BFU-E and CFU-GM frequencies among EML cells transduced with murine M-CSFR, human M-CSFR, or chimeric receptors, and cultivated in the presence of SCF, M-CSF, or both growth factors. Effects of specific inhibitors of signaling molecules were investigated. EML cells transduced with murine M-CSFR proliferated in response to M-CSF but also exhibited a sharp and rapid decrease in BFU-E frequency associated with an increase in CFU-GM frequency. In contrast, EML cells expressing human M-CSFR proliferated in response to M-CSF without any changes in erythroid or myeloid potential. Using chimeric receptors between human and murine M-CSFR, we showed that the effects of M-CSF on EML cell differentiation potential are mediated by a large region in the intracellular domain of murine M-CSFR. Furthermore, phospholipase C (PLC) inhibitor U73122 interfered with the negative effects of ligand-activated murine M-CSFR on EML cell erythroid potential. We propose that signaling pathways activated by tyrosine kinase receptors may regulate erythroid potential and commitment decisions in multipotent progenitor cells and that PLC may play a key role in this process.

  2. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Jin; Wang, Ying; Su, Ke

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist formore » E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.« less

  3. Developmental profiles of progesterone receptor transcripts and molecular responses to gestagen exposure during Silurana tropicalis early development.

    PubMed

    Thomson, Paisley; Langlois, Valerie S

    2018-05-18

    Environmental gestagens are an emerging class of contaminants that have been recently measured in surface water and can interfere with reproduction in aquatic vertebrates. Gestagens include endogenous progestogens, such as progesterone (P4), which bind P4-receptors and have critically important roles in vertebrate physiology and reproduction. Gestagens also include synthetic progestins, which are components of human and veterinary drugs, such as melengestrol acetate (MGA). Endogenous progestogens are essential in the regulation of reproduction in mammalian species, but the role of P4 in amphibian larval development remains unclear. This project aims to understand the roles and the regulatory mechanisms of P4 in amphibians and to assess the consequences of exposures to environmental gestagens on the P4-receptor signaling pathways in frogs. Here, we established the developmental profiles of the P4 receptors: the intracellular progesterone receptor (ipgr), the membrane progesterone receptor β (mpgrβ), and the progesterone receptor membrane component 1 (pgrmc1) in Western clawed frog (Silurana tropicalis) embryos using real-time qPCR. P4-receptor mRNAs were detected throughout embryogenesis. Transcripts for ipgr and pgrmc1 were detected in embryos at Nieuwkoop and Faber (NF) stage 2 and 7, indicative of maternal transfer of mRNA. We also assessed the effects of P4 and MGA exposure in embryonic and early larval development. Endocrine responses were evaluated through transcript analysis of a suite of gene targets of interest, including: ipgr, mpgrβ, pgrmc1, androgen receptor (ar), estrogen receptor α (erα), follicle stimulating hormone β (fshβ), prolactin (prl), and the steroid 5-alpha reductase family (srd5α1, 2, and 3). Acute exposure (NF 12-46) to P4 caused a 2- to 5-fold change increase of ipgr, mpgrβ, pgrmc1, and ar mRNA levels at the environmentally relevant concentration of 195 ng/L P4. Acute exposure to MGA induced a 56% decrease of srd5α3 at 1140

  4. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders

    PubMed Central

    Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.

    2010-01-01

    Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682

  5. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains.

    PubMed

    Krieger, James; Bahar, Ivet; Greger, Ingo H

    2015-09-15

    Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Light induced changes of internal pH in a barnacle photoreceptor and the effect of internal pH on the receptor potential.

    PubMed Central

    Brown, H M; Meech, R W

    1979-01-01

    1. Intracellular pH (pH1) was measured in Balanus photoreceptors using pH-sensitive glass micro-electrodes. The average pH1 of twelve photoreceptors which had been dark adapted for at least 30 min was 7.3 +/- 0.07 (S.D.). 2. Illumination reduced the recorded pH1 by as much as 0.2 pH unit. The change in pH1 was graded with light intensity. 3. When the cells were exposed to CO2 in the dark, pH1 declined monophasically. Saline equilibrated with 2% CO2; 98% O2 produced a steady reduction in pH1 of about 0.25 unit in 2--3 min. The buffering capacity of the receptor cell cytoplasm calculated from such experiments is approximately 15 slykes. 4. In the presence of HCO3-1, CO2 saline produced smaller, biphasic changes in pH1. 5. The membrane depolarization produced by a bright flash (depolarizing receptor potential) was reversibly reduced in the presence of external CO2 or by injection of H+. Iontophoretic injection of HCO2- increased the amplitude of the receptor potential. 6. In individual cells there was a close correlation between the amplitude of the receptor potential and pH1. 7. Saline equilibrated with CO2 reduced the light induced current (recorded under voltage-clamp) by 40--50% without affecting its reversal potential. 8. Exposure of the receptor to 95% CO2 saline for several minutes (pH0 5.5) not only abolished the receptor potential but also reversibly decreased the K conductance of the membrane in the dark. These effects were not reproduced by pH0 5.5 buffered saline or by a 5 min exposure to saline equilibrated with N2. 9. It is suggested that changes in pH1 induced by light modulate the sensitivity of the receptor under physiological conditions. PMID:43890

  7. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  8. Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons.

    PubMed

    Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K

    2006-06-01

    In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.

  9. Reaching Potentials: Transforming Early Childhood Curriculum and Assessment. Volume 2.

    ERIC Educational Resources Information Center

    Bredekamp, Sue, Ed.; Rosegrant, Teresa, Ed.

    This book builds on Volume 1 of "Reaching Potentials," which attempted to operationalize the "Guidelines for Appropriate Curriculum Content and Assessment" set by the National Association for the Education of Young Children (NAEYC) and the National Association of Early Childhood Specialists in State Departments of Education…

  10. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    PubMed Central

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N.; Sinha, Satyesh; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  11. Potential upstream regulators of cannabinoid receptor 1 signaling in prostate cancer: a Bayesian network analysis of data from a tissue microarray.

    PubMed

    Häggström, Jenny; Cipriano, Mariateresa; Forshell, Linus Plym; Persson, Emma; Hammarsten, Peter; Stella, Nephi; Fowler, Christopher J

    2014-08-01

    The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.

  12. Behavioral analysis of the consequences of chronic blockade of NMDA-type glutamate receptors in the early postnatal period in rats.

    PubMed

    Latysheva, N V; Raevskii, K S

    2003-02-01

    Considering data on the possible glutamatergic nature of the pathogenesis of schizophrenia, we attempted to model cognitive derangements in animals by chronic blockade of NMDA glutamate receptors. Wistar rats received daily s.c. injections of the non-competitive NMDA glutamate receptor antagonist MK-801 (0.05 mg/kg) from days 7 to day 49 of postnatal life. One day after the antagonist injections given on days 27 and 28 of life, animals of the experimental group showed decreased levels of spontaneous movement and orientational-investigative activity as compared with controls, where there was no change in the elevated locomotor reaction produced in response to the direct action of MK-801. These animals showed decreases in the level of anxiety (on day 40 of life) and derangement in spatial learning with food reinforcement (days 50-54 of life). It is suggested that early neonatal blockade of NMDA glutamate receptors leads to the development in animals of disturbances to situational perception and assessment of incoming sensory information.

  13. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization

    PubMed Central

    Mestre-Citrinovitz, Ana C.; Kleff, Veronika; Vallejo, Griselda

    2015-01-01

    Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets. PMID:25897495

  14. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway.

    PubMed

    Singh, A S; Shah, A; Brockmann, A

    2018-02-01

    In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses. © 2017 The Royal Entomological Society.

  15. Expression of receptors for ovarian steroids and prostaglandin E2 in the endometrium and myometrium of mares during estrus, diestrus and early pregnancy.

    PubMed

    Silva, E S M; Scoggin, K E; Canisso, I F; Troedsson, M H T; Squires, E L; Ball, B A

    2014-12-30

    The objective of this study was to compare expression of estrogen receptor alpha (ER-α), β (ER-β), progesterone receptor (PR), as well as prostaglandin E2 type 2 (EP2) and 4 (EP4) receptors in the equine myometrium and endometrium during estrus, diestrus and early pregnancy. Tissues were collected during estrus, diestrus, and early pregnancy. Transcripts for ER-α (ESR1), ER-β (ESR2), PR (PGR), EP2 (PTGER2) and EP4 (PTGER4) were quantified by qPCR. Immunohistochemistry was used to localize ER-α, ER-β, PR, EP2 and EP4. Differences in transcript in endometrium and myometrium were compared by the ΔΔCT method. Expression for ESR1 (P<0.05) tended to be higher during estrus than diestrus in the endometrium (P=0.1) and myometrium (P=0.06). In addition, ESR1 expression was greater during estrus than pregnancy (P<0.05) in the endometrium and tended to be higher in estrus compared to pregnancy in the myometrium (P=0.1). Expression for PGR was greater (P<0.05) in the endometrium during estrus and diestrus than during pregnancy. In the myometrium, PGR expression was greater in estrus than pregnancy (P=0.05) and tended to be higher during diestrus in relation to pregnancy (P=0.07). There were no differences among reproductive stages in ESR2, PTGER2 and PTGER4 mRNA expression (P>0.05). Immunolabeling in the endometrium appeared to be more intense for ER-α during estrus than diestrus and pregnancy. In addition, immunostaining for PR during pregnancy appeared to be more intense in the stroma and less intense in glands and epithelium compared to estrus and diestrus. EP2 immunoreactivity appeared to be more intense during early pregnancy in both endometrium and myometrium, whereas weak immunolabeling for EP4 was noted across reproductive stages. This study demonstrates differential regulation of estrogen receptor (ER) and PR in the myometrium and endometrium during the reproductive cycle and pregnancy as well as abundant protein expression of EP2 in the endometrium and

  16. PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons.

    PubMed

    Cang, Chun-Lei; Zhang, Hua; Zhang, Yu-Qiu; Zhao, Zhi-Qi

    2009-06-30

    Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor. In this study we investigated the effect of NK-1 receptor agonist on Na(v)1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar(9), Met(O2)(11)]-substance P (Sar-SP) significantly enhanced the Na(v)1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCepsilon, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons. These data suggest that activation of NK-1 receptor potentiates Na(v)1.8 sodium current via PKCepsilon-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.

  17. Heteromeric Canonical Transient Receptor Potential 1 and 4 Channels Play a Critical Role in Epileptiform Burst Firing and Seizure-Induced Neurodegeneration

    PubMed Central

    Phelan, Kevin D.; Mock, Matthew M.; Kretz, Oliver; Shwe, U. Thaung; Kozhemyakin, Maxim; Greenfield, L. John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit

    2012-01-01

    Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity. PMID:22144671

  18. Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration.

    PubMed

    Phelan, Kevin D; Mock, Matthew M; Kretz, Oliver; Shwe, U Thaung; Kozhemyakin, Maxim; Greenfield, L John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit; Zheng, Fang

    2012-03-01

    Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity.

  19. Absence of γ-aminobutyric acid-a receptor potentiation in central hypersomnolence disorders.

    PubMed

    Dauvilliers, Yves; Evangelista, Elisa; Lopez, Regis; Barateau, Lucie; Jaussent, Isabelle; Cens, Thierry; Rousset, Matthieu; Charnet, Pierre

    2016-08-01

    The pathophysiology of idiopathic hypersomnia (IH) remains unclear. Recently, cerebrospinal fluid (CSF)-induced enhancement of γ-aminobutyric acid (GABA)-A receptor activity was found in patients with IH compared to controls. Fifteen unrelated patients (2 males and 13 females) affected with typical IH, 12 patients (9 males and 3 females) with narcolepsy type 1, and 15 controls (9 males and 6 females) with unspecified hypersomnolence (n = 7) and miscellaneous neurological conditions (n = 8) were included. A lumbar puncture was performed in all participants to measure CSF hypocretin-1 and GABA-A response. We used a voltage-clamp assay on Xenopus oocytes injected with the RNAs that encode the α1 β2 γ2 or the α2 β2 γ2 subunits of the human GABA-A receptor. A sequence of 6 different applications (GABA, GABA/CSF, and CSF alone) with 2 to 4 oocytes per CSF sample was performed in a whole-cell voltage-clamp assay. Representative current traces from oocytes expressing human α1 β2 γ2 or α2 β2 γ2 GABA-A receptors were recorded in response to 6 successive puffs of GABA diluted in the survival medium (SM), showing stable and reliable response. GABA puffs diluted in SM/CSF solution or SM/CSF solution alone showed no significant differences in the CSF of IH, narcolepsy, or control groups. No associations were found between GABA responses, demographic features, disease duration, or disease severity in the whole population or within groups. Using the Xenopus oocyte assay, we found an absence of GABA-A receptor potentiation with CSF from patients with central hypersomnolence disorders, with no significant differences between hypocretin-deficient and non-hypocretin-deficient patients compared to controls. Ann Neurol 2016;80:259-268. © 2016 American Neurological Association.

  20. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    PubMed Central

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  1. Receptor-mediated signalling in plants: molecular patterns and programmes

    PubMed Central

    Tör, Mahmut; Lotze, Michael T.; Holton, Nicholas

    2009-01-01

    A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed. PMID:19628572

  2. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    PubMed

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Thyrotropin receptor autoantibodies and early miscarriages in patients with Hashimoto thyroiditis: a case-control study.

    PubMed

    Toulis, Konstantinos A; Goulis, Dimitrios G; Tsolakidou, Konstantina; Hilidis, Ilias; Fragkos, Marios; Polyzos, Stergios A; Gerofotis, Antonios; Kita, Marina; Bili, Helen; Vavilis, Dimitrios; Daniilidis, Michail; Tarlatzis, Basil C; Papadimas, Ioannis

    2013-08-01

    We have previously hypothesized that early miscarriage in women with Hashimoto thyroiditis might be the result of a cross-reactivity process, in which blocking autoantibodies against thyrotropin receptor (TSHr-Ab) antagonize hCG action on its receptor on the corpus luteum. To test this hypothesis from the clinical perspective, we investigated the presence of TSHr-Ab in Hashimoto thyroiditis patients with apparently unexplained, first-trimester recurrent miscarriages compared to that in Hashimoto thyroiditis patients with documented normal fertility. A total of 86 subjects (43 cases and 43 age-matched controls) were finally included in a case-control study. No difference in the prevalence of TSHr-Ab positivity was detected between cases and controls (Fisher's exact test, p value = 1.00). In patients with recurrent miscarriages, TSHr-Ab concentrations did not predict the number of miscarriages (univariate linear regression, p value = 0.08). These results were robust in sensitivity analyses, including only cases with full investigation or those with three or more miscarriages. We conclude that no role could be advocated for TSHr-Ab in the aetiology of recurrent miscarriages in women with Hashimoto thyroiditis.

  4. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors.

    PubMed

    Mari, Muriel; Bujny, Miriam V; Zeuschner, Dagmar; Geerts, Willie J C; Griffith, Janice; Petersen, Claus M; Cullen, Pete J; Klumperman, Judith; Geuze, Hans J

    2008-03-01

    Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.

  5. Immunization against exon 1 decapeptides from the lutropin/choriogonadotropin receptor or the follitropin receptor as potential male contraceptive.

    PubMed

    Remy, J J; Couture, L; Rabesona, H; Haertle, T; Salesse, R

    1996-11-01

    Pituitary gonadotropin hormones lutropin (LH) and follitropin (FSH) control steroidogenesis and gametogenesis in male and female gonads through interaction with G protein-coupled receptors, LHR and FSHR. In the male, LH acts on leydig cells and is mostly responsible for the acquisition of puberty and the production of androgens while FSH, together with androgens, regulates spermatogenesis within Sertoli cells. We have engineered filamentous phages displaying mouse LHR and human FSHR decapeptides chosen in hormone binding regions. Peptides from both receptors displayed on phages belong either to the receptor specific exon 1 (amino acids 18-27) or to the homologous exon 4 (amino acids 98-107). Vaccination of prepubertal BALB/c male mice with hybrid phages using sub-cutaneous or intraperitoneal injections induced immunity against receptors. Anti-receptor immunization produced agonist or antagonist effects depending only on the circulating levels of the antibodies. Both anti-LHR and anti-FSHR vaccines induced efficient as well as reversible male contraception, through different mechanisms: targeting LH receptors inhibited or hyperstimulated Leydig cell testosterone production while targeting FSH receptors did not affect testosterone levels.

  6. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation

    PubMed Central

    Hassan, Samia; Eldeeb, Khalil; Millns, Paul J; Bennett, Andrew J; Alexander, Stephen P H; Kendall, David A

    2014-01-01

    Background and Purpose Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis. Experimental Approach Phagocytosis was assessed by measuring ingestion of fluorescently labelled latex beads by cultured microglial cells. Drug effects were probed using single-cell Ca2+ imaging and expression of mediator proteins by immunoblotting and immunocytochemistry. Key Results CBD (10 μM) enhanced bead phagocytosis to 175 ± 7% control. Other phytocannabinoids, synthetic and endogenous cannabinoids were without effect. The enhancement was dependent upon Ca2+ influx and was abolished in the presence of EGTA, the Ca2+ channel inhibitor SKF96365, the transient receptor potential (TRP) channel blocker ruthenium red, and the TRPV1 antagonists capsazepine and AMG9810. CBD produced a sustained increase in intracellular Ca2+ concentration in BV-2 microglia and this was abolished by ruthenium red. CBD rapidly increased the expression of TRPV2 and TRPV1 proteins and caused a translocation of TRPV2 to the cell membrane. Wortmannin blocked CBD enhancement of BV-2 cell phagocytosis, suggesting that it is mediated by PI3K signalling downstream of the Ca2+ influx. Conclusions and Implications The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family. PMID:24641282

  7. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 daysmore » after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.« less

  8. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice

    PubMed Central

    Kanatsou, Sofia; Ter Horst, Judith P.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harmen J.; Joëls, Marian

    2016-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice. PMID:26858618

  9. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis.

    PubMed

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-08-01

    The anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab's high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50-54 y; 95% CI 2.29-2.37) for the worst prognosis (ER-/PR-) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25-29 to 90-94 y (0.44 times for the age group 50-54 y; 95% CI 0.43-0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]-adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER-/PR- subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR- cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had the same result. A key limitation was a lack of treatment

  10. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis

    PubMed Central

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-01-01

    Background The anti–human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab’s high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. Methods and Findings A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50–54 y; 95% CI 2.29–2.37) for the worst prognosis (ER−/PR−) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25–29 to 90–94 y (0.44 times for the age group 50–54 y; 95% CI 0.43–0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]–adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER−/PR− subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR− cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had

  11. Integral assessment of estrogenic potentials in sediment-associated samples: Part 2: Study of estrogen and anti-estrogen receptor-binding potentials of sediment-associated chemicals under different salinity conditions using the salinity-adapted enzyme-linked receptor assay.

    PubMed

    Kase, Robert; Hansen, Peter D; Fischer, Birgit; Manz, Werner; Heininger, Peter; Reifferscheid, Georg

    2009-01-01

    The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-beta-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination. The applicability of the ELRA for routine analysis in environmental assessment was evaluated. Salinity is often a critical factor for bioassays in ecotoxicological sediment assessment. Therefore, salinity of the samples was additionally adjusted to different levels to characterise its influence on elution and binding processes of receptor-binding substances. The ELRA was carried out with the human estrogen receptor alpha (ER) in a 96-well microplate format using the experimental setup known from the competitive immunoassay based on ligand-protein interaction. It is an important improvement that a physiologically relevant receptor was used as a linking protein instead of an antibody. The microplates were coated with a 17-beta-estradiol-BSA conjugate, and dilution series of estradiol and of native sediment samples were added and incubated with the ER. After a washing step, a biotinylated mouse anti-ER antibody was added to each well. Receptor binding to estradiol, agonistic and antagonistic receptor binding, were determined by a streptavidin-POD-biotin complex with subsequent measurement of the peroxidase activity at the wavelength of 450 nm using a commercial ELISA multiplate reader. The sediment elutriates and pore water samples of

  12. G protein-coupled estrogen receptor 1 (GPER, GPR 30) in normal human endometrium and early pregnancy decidua.

    PubMed

    Kolkova, Z; Noskova, V; Ehinger, A; Hansson, S; Casslén, B

    2010-10-01

    The recently identified trans-membrane G protein-coupled estrogen receptor 1 (GPER, GPR30) has been implicated in rapid non-genomic effects of estrogens. This focuses on expression and localization of GPER mRNA and protein in normal cyclic endometrium and early pregnancy decidua. Real-time PCR, western blotting, in situ hybridization and immuno-histochemistry were used. Endometrial expression of GPER mRNA was lower in the secretory phase than in the proliferative phase, and even lower in the decidua. The expression pattern was similar to that of ERα mRNA, but different from that of ERβ mRNA. Western blot detected GPER protein as a 54 kDa band in all endometrial and decidual samples. In contrast to the mRNA, GPER protein did not show cyclic variations. Apparently, a lower amount of mRNA is sufficient to maintain protein levels in the secretory phase. GPER mRNA was predominantly localized in the epithelium of mid- and late-proliferative phase endometrium, whereas expression in early proliferative and secretory glands could not be distinguished from the diffuse stromal signal, which was present throughout the cycle. Immuno-staining for GPER was stronger in glandular and luminal epithelium than in the stroma throughout the cycle. The cyclic variations of GPER mRNA obviously relate to strong epithelial expression in the proliferative phase, and the expression pattern suggests regulation by ovarian steroids. GPER protein is present in endometrial tissue throughout the cycle, and the epithelial localization suggests potential functions during sperm migration at mid-cycle, as well as decidualization and blastocyst implantation in the mid-secretory phase.

  13. Genotypic differences in intruder-evoked immediate early gene activation in male, but not female, vasopressin 1b receptor knockout mice.

    PubMed

    Witchey, Shannah K; Stevenson, Erica L; Caldwell, Heather K

    2016-11-24

    The neuropeptide arginine vasopressin (Avp) modulates social behaviors via its two centrally expressed receptors, the Avp 1a receptor and the Avp 1b receptor (Avpr1b). Recent work suggests that, at least in mice, Avp signaling through Avpr1b within the CA2 region of the hippocampus is critical for normal aggressive behaviors and social recognition memory. However, this brain area is just one part of a larger neural circuit that is likely to be impacted in Avpr1b knockout (-/-) mice. To identify other brain areas that are affected by altered Avpr1b signaling, genotypic differences in immediate early gene activation, i.e. c-FOS and early growth response factor 1 (EGR-1), were quantified using immunocytochemistry following a single exposure to an intruder. In females, no genotypic differences in intruder-evoked c-FOS or EGR-1 immunoreactivity were observed in any of the brain areas measured. In males, while there were no intruder-evoked genotypic differences in c-FOS immunoreactivity, genotypic differences were observed in EGR-1 immunoreactivity within the ventral bed nucleus of the stria terminalis and the anterior hypothalamus; with Avpr1b -/- males having less EGR-1 immunoreactivity in these regions than controls. These data are the first to identify specific brain areas that may be a part of a neural circuit that includes Avpr1b-expressing cells in the CA2 region of the hippocampus. It is thought that this circuit, when working properly, plays a role in how an animal evaluates its social context.

  14. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  15. Synthesis and Structure Activity Relationship of Tetrahydroisoquinoline-based Potentiators of GluN2C and GluN2D Containing N-Methyl-D-Aspartate Receptors

    PubMed Central

    Santangelo Freel, Rose M.; Ogden, Kevin K.; Strong, Katie L.; Khatri, Alpa; Chepiga, Kathryn M.; Jensen, Henrik S.; Traynelis, Stephen F.; Liotta, Dennis C.

    2015-01-01

    We describe here the synthesis and evaluation of a series of tetrahydroisoquinolines that show subunit-selective potentiation of NMDA receptors containing the GluN2C or GluN2D subunits. Bischler-Napieralski conditions were employed in the key step for the conversion of acyclic amides to the corresponding tetrahydroisoquinoline containing analogs. Compounds were evaluated using both two electrode voltage clamp recordings from Xenopus laevis oocytes and imaging of mammalian BHK cells loaded with Ca2+-sensitive dyes. The most potent analogues had EC50 values of 300 nM and showed over 2-fold potentiation of the response to maximally effective concentrations of glutamate and glycine, but had no effect on responses from NMDA receptors containing the GluN2A or GluN2B subunits, AMPA, kainate, GABA, or glycine receptors or a variety of other potential targets. These compounds represent a potent class of small molecule subunit-selective potentiators of NMDA receptors. PMID:23627311

  16. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avianmore » receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.« less

  17. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    PubMed

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Guidepost neurons for the lateral olfactory tract: expression of metabotropic glutamate receptor 1 and innervation by glutamatergic olfactory bulb axons.

    PubMed

    Hirata, Tatsumi; Kumada, Tatsuro; Kawasaki, Takahiko; Furukawa, Tomonori; Aiba, Atsu; Conquet, François; Saga, Yumiko; Fukuda, Atsuo

    2012-12-01

    The guidepost neurons for the lateral olfactory tract, which are called lot cells, are the earliest-generated neurons in the neocortex. They migrate tangentially and ventrally further down this tract, and provide scaffolding for the olfactory bulb axons projecting into this pathway. The molecular profiles of the lot cells are largely uncharacterized. We found that lot cells specifically express metabotropic glutamate receptor subtype-1 at a very early stage of development. This receptor is functionally competent and responds to a metabotropic glutamate receptor agonist with a transient increase in the intracellular calcium ion concentration. When the glutamatergic olfactory bulb axons were electrically stimulated, lot cells responded to the stimulation with a calcium increase mainly via ionotropic glutamate receptors, suggesting potential neurotransmission between the axons and lot cells during early development. Together with the finding that lot cells themselves are glutamatergic excitatory neurons, our results provide another notable example of precocious interactions between the projecting axons and their intermediate targets. Copyright © 2012 Wiley Periodicals, Inc.

  19. The potential role of dopamine D3 receptor neurotransmission in cognition

    PubMed Central

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-01-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this work is to review the literature on the role of dopamine D3 receptors in cognition, and propose dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D3 receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D3 receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects. PMID:23791072

  20. Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR).

    PubMed

    Hapner, S J; Boeshore, K L; Large, T H; Lefcort, F

    1998-09-01

    trkC receptors, which serve critical functions during the development of the nervous system, are alternatively spliced to yield isoforms containing the catalytic tyrosine kinase domain (TK+) and truncated isoforms which lack this domain (TK-). To test for potential differences in their roles during early stages of neural development, TK+ and TK- isoforms were ectopically expressed in cultures of neural crest, the stem cell population that gives rise to the vast majority of the peripheral nervous system. NT-3 activation of ectopically expressed trkC TK+ receptors promoted both proliferation of neural crest cells and neuronal differentiation. Strikingly, the trkC TK- isoform was significantly more effective at promoting neuronal differentiation, but had no effect on proliferation. Furthermore, the trkC TK- response was dependent on a conserved receptor cytoplasmic domain and required the participation of the p75(NTR) neurotrophin receptor. Antibody-mediated receptor dimerization of TK+ receptors, but not TK- receptors, was sufficient to stimulate differentiation. These data identify a phenotypic response to activation of the trkC TK- receptor and demonstrate a functional interaction with p75(NTR), indicating there may be multiple trkC receptor-mediated systems guiding neuronal differentiation. Copyright 1998 Academic Press.

  1. Rapid actions of aldosterone revisited: Receptors in the limelight.

    PubMed

    Wehling, Martin

    2018-02-01

    Steroid hormones like aldosterone have been conclusively shown to elicit both late genomic and rapid, nongenomically initiated responses. Aldosterone was among the first for which rapid, clinically relevant effects were even shown in humans. Yet, after over 30 years of research, the nature of receptors involved in rapid actions of aldosterone is still unclear. Such effects may be assigned to the classical, intracellular steroid receptors, in this case mineralocorticoid receptors (MR, class IIa action Mannheim classification). They typically disappear in knockout models and are blocked by MR-antagonists such as spironolactone, as shown for several cellular and physiological, e.g. renal or cardiovascular effects. In contrast, there is also consistent evidence suggesting type IIb effects involving structurally different receptors ("membrane receptors") being insensitive to classic antagonists and persistent in knockout models; IIb effects have lately even been confirmed by atomic force detection of surface receptors which bind aldosterone but not spironolactone. Type IIa and b may coexist in the same cell with IIa often augmenting early IIb effects. So far cloning of IIb receptors was unsuccessful; therefore results on G-protein coupled estrogen receptor 1 (GPER1) being potentially involved in rapid aldosterone action raised considerable interest. Surprisingly, GPER1 does not bind aldosterone. Though under these circumstances GPER1 should not yet be considered as IIb-receptor, it might be an intermediary signaling enhancer of mineralocorticoid action as shown for epithelial growth factor receptors reconciling those results. We still seem to be left without IIb-receptors whose identification would however be highly desirable and essential for clinical translation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Long-term dysregulation of brain corticotrophin and glucocorticoid receptors and stress reactivity by single early-life pain experience in male and female rats.

    PubMed

    Victoria, Nicole C; Inoue, Kiyoshi; Young, Larry J; Murphy, Anne Z

    2013-12-01

    Inflammatory pain experienced on the day of birth (postnatal day 0: PD0) significantly dampens behavioral responses to stress- and anxiety-provoking stimuli in adult rats. However, to date, the mechanisms by which early life pain permanently alters adult stress responses remain unknown. The present studies examined the impact of inflammatory pain, experienced on the day of birth, on adult expression of receptors or proteins implicated in the activation and termination of the stress response, including corticotrophin releasing factor receptors (CRFR1 and CRFR2) and glucocorticoid receptor (GR). Using competitive receptor autoradiography, we show that Sprague Dawley male and female rat pups administered 1% carrageenan into the intraplantar surface of the hindpaw on the day of birth have significantly decreased CRFR1 binding in the basolateral amygdala and midbrain periaqueductal gray in adulthood. In contrast, CRFR2 binding, which is associated with stress termination, was significantly increased in the lateral septum and cortical amygdala. GR expression, measured with in situ hybridization and immunohistochemistry, was significantly increased in the paraventricular nucleus of the hypothalamus and significantly decreased in the hippocampus of neonatally injured adults. In parallel, acute stress-induced corticosterone release was significantly attenuated and returned to baseline more rapidly in adults injured on PD0 in comparison to controls. Collectively, these data show that early life pain alters neural circuits that regulate responses to and neuroendocrine recovery from stress, and suggest that pain experienced by infants in the Neonatal Intensive Care Unit may permanently alter future responses to anxiety- and stress-provoking stimuli. Published by Elsevier Ltd.

  3. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system.

    PubMed

    Holzer, Peter

    2011-07-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen.

    PubMed

    Gago, Belén; Fuxe, Kjell; Brené, Stefan; Díaz-Cabiale, Zaida; Reina-Sánchez, María Dolores; Suárez-Boomgaard, Diana; Roales-Buján, Ruth; Valderrama-Carvajal, Alejandra; de la Calle, Adelaida; Rivera, Alicia

    2013-12-01

    The peptides dynorphin and enkephalin modulate many physiological processes, such as motor activity and the control of mood and motivation. Their expression in the caudate putamen (CPu) is regulated by dopamine and opioid receptors. The current work was designed to explore the early effects of the acute activation of D4 and/or μ opioid receptors by the agonists PD168,077 and morphine, respectively, on the regulation of the expression of these opioid peptides in the rat CPu, on transcription factors linked to them, and on the expression of μ opioid receptors. In situ hybridization experiments showed that acute treatment with morphine (10 mg/kg) decreased both enkephalin and dynorphin mRNA levels in the CPu after 30 min, but PD168,077 (1 mg/kg) did not modify their expression. Coadministration of the two agonists demonstrated that PD168,077 counteracted the morphine-induced changes and even increased enkephalin mRNA levels. The immunohistochemistry studies showed that morphine administration also increased striatal μ opioid receptor immunoreactivity but reduced P-CREB expression, effects that were blocked by the PD168,077-induced activation of D4 receptors. The current results present evidence of functional D4 -μ opioid receptor interactions, with consequences for the opioid peptide mRNA levels in the rat CPu, contributing to the integration of DA and opioid peptide signaling. Copyright © 2013 Wiley Periodicals, Inc.

  5. Targeting the Transient Receptor Potential Vanilloid Type 1 (TRPV1) Assembly Domain Attenuates Inflammation-induced Hypersensitivity*

    PubMed Central

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-01-01

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184

  6. Targeting the transient receptor potential vanilloid type 1 (TRPV1) assembly domain attenuates inflammation-induced hypersensitivity.

    PubMed

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-06-13

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Early immune response and regulation of IL-2 receptor subunits

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto

    2005-01-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and

  8. Early immune response and regulation of IL-2 receptor subunits.

    PubMed

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J B; Cogoli, Augusto

    2005-09-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and

  9. Regulation of corticoid and serotonin receptor brain system following early life exposure of glucocorticoids: long term implications for the neurobiology of mood.

    PubMed

    Vázquez, Delia M; Neal, Charles R; Patel, Paresh D; Kaciroti, Niko; López, Juan F

    2012-03-01

    Potent glucocorticoids (GC) administered early in life have improved premature infant survival dramatically. However, these agents may increase the risk for physical, neurological and behavior alterations. Anxiety, depression and attention difficulties are commonly described in adolescent and young adult survivors of prematurity. In the present study we administered vehicle, dexamethasone, or hydrocortisone to Sprague-Dawley rat pups on postnatal days 5 and 6, mimicking a short term clinical protocol commonly used in human infants. Two systems that are implicated in the regulation of stress and behavior were assessed: the limbic-hypothalamic-pituitary-adrenal axis [LHPA; glucocorticoid and mineralocorticoid receptors within] and the Serotonin (5-HT) system. We found that as adults, male Sprague-Dawley pups treated with GC showed agent specific altered growth, anxiety-related behavior, changes in corticoid response to novelty and gene expression changes within LHPA and 5-HT-related circuitry. The data suggest that prolonged GC-receptor stimulation during the early neonatal period can contribute to the development of individual differences in stress response and anxiety-related behavior later in life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Regulation of Corticoid and Serotonin Receptor Brain System following Early Life Exposure of Glucocorticoids: Long Term Implications for the Neurobiology of Mood

    PubMed Central

    Vázquez, Delia M.; Neal, Charles R.; Patel, Paresh D.; Kaciroti, Niko; López, Juan F.

    2011-01-01

    Potent glucocorticoids (GC) administered early in life has improved premature infant survival dramatically. However, these agents may increase the risk for physical, neurological and behavior alterations. Anxiety, depression and attention difficulties are commonly described in adolescent and young adult survivors of prematurity. In the present study we administered vehicle, dexamethasone, or hydrocortisone to Sprague-Dawley rat pups on postnatal days 5 and 6, mimicking a short term clinical protocol commonly used in human infants. Two systems that are implicated in the regulation of stress and behavior were assessed: the limbic-hypothalamic-pituitary-adrenal axis [LHPA, glucocorticoid and mineralocorticoid receptors within] and the Serotonin (5-HT) system. We found that as adults, male Sprague-Dawley pups treated with GC showed agent specific altered growth, anxiety-related behavior, changes in corticoid response to novelty and gene expression changes within LHPA and 5-HT–related circuitry. The data suggest that prolonged GC-receptor stimulation during the early neonatal period can contribute to the development of individual differences in stress response and anxiety-related behavior later in life. PMID:21855221

  11. Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Silva, António C; Lemos, Cristina; Gonçalves, Francisco Q; Pliássova, Anna V; Machado, Nuno J; Silva, Henrique B; Canas, Paula M; Cunha, Rodrigo A; Lopes, João Pedro; Agostinho, Paula

    2018-05-31

    Alzheimer's disease (AD) begins with a deficit of synaptic function and adenosine A 2A receptors (A 2A R) are mostly located in synapses controlling synaptic plasticity. The over-activation of adenosine A 2A receptors (A 2A R) causes memory deficits and the blockade of A 2A R prevents memory damage in AD models. We now enquired if this prophylactic role of A 2A R might be extended to a therapeutic potential. We used the triple transgenic model of AD (3xTg-AD) and defined that the onset of memory dysfunction occurred at 4 months of age in the absence of locomotor or emotional alterations. At the onset of memory deficits, 3xTg mice displayed a decreased density of markers of excitatory synapses (10.6 ± 3.8% decrease of vGluT1) without neuronal or glial overt damage and an increase of synaptic A 2A R in the hippocampus (130 ± 22%). After the onset of memory deficits in 3xTg-AD mice, a three weeks treatment with the selective A 2A R antagonist normalized the up-regulation of hippocampal A 2A R and restored hippocampal-dependent reference memory, as well as the decrease of hippocampal synaptic plasticity (60.0 ± 3.7% decrease of long-term potentiation amplitude) and the decrease of global (syntaxin-I) and glutamatergic synaptic markers (vGluT1). These findings show a therapeutic-like ability of A 2A R antagonists to recover synaptic and memory dysfunction in early AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides.

    PubMed

    de Masson, Adele; O'Malley, John T; Elco, Christopher P; Garcia, Sarah S; Divito, Sherrie J; Lowry, Elizabeth L; Tawa, Marianne; Fisher, David C; Devlin, Phillip M; Teague, Jessica E; Leboeuf, Nicole R; Kirsch, Ilan R; Robins, Harlan; Clark, Rachael A; Kupper, Thomas S

    2018-05-09

    Mycosis fungoides (MF), the most common cutaneous T cell lymphoma (CTCL) is a malignancy of skin-tropic memory T cells. Most MF cases present as early stage (stage I A/B, limited to the skin), and these patients typically have a chronic, indolent clinical course. However, a small subset of early-stage cases develop progressive and fatal disease. Because outcomes can be so different, early identification of this high-risk population is an urgent unmet clinical need. We evaluated the use of next-generation high-throughput DNA sequencing of the T cell receptor β gene ( TCRB ) in lesional skin biopsies to predict progression and survival in a discovery cohort of 208 patients with CTCL (177 with MF) from a 15-year longitudinal observational clinical study. We compared these data to the results in an independent validation cohort of 101 CTCL patients (87 with MF). The tumor clone frequency (TCF) in lesional skin, measured by high-throughput sequencing of the TCRB gene, was an independent prognostic factor of both progression-free and overall survival in patients with CTCL and MF in particular. In early-stage patients, a TCF of >25% in the skin was a stronger predictor of progression than any other established prognostic factor (stage IB versus IA, presence of plaques, high blood lactate dehydrogenase concentration, large-cell transformation, or age). The TCF therefore may accurately predict disease progression in early-stage MF. Early identification of patients at high risk for progression could help identify candidates who may benefit from allogeneic hematopoietic stem cell transplantation before their disease becomes treatment-refractory. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Low asialoglycoprotein receptor expression as markers for highly proliferative potential hepatocytes.

    PubMed

    Ise, H; Sugihara, N; Negishi, N; Nikaido, T; Akaike, T

    2001-07-13

    Development of a reliable method to isolate highly proliferative potential hepatocytes will provide insight into the molecular mechanisms of liver regeneration, as well as proving crucial for the development of a biohybrid artificial liver. The aim of this study is to isolate highly proliferative, e.g., progenitor-like, hepatocytes. To this end, we fractionated hepatocytes expressing low and high levels of the asialoglycoprotein receptor (ASGP-R) based on the difference in their adhesion to poly[N-p-vinylbenzyl-O-beta-d-galactopyranosyl-(1-->4)-d-gluconamide] (PVLA), and examined the proliferative activity and gene expression of these fractionated hepatocytes. The results showed that approximately 0.5 to 1% of the total number of hepatocytes, which showed low adhesion to PVLA, expressed low levels of the ASGP-R, while the rest of hepatocyte population with high adhesion to PVLA expressed high levels of the ASGP-R. Interestingly hepatocytes with low ASGP-R expression levels had much higher DNA synthesizing activity (i.e., are much more proliferative) than those with high ASGP-R expression levels. Moreover, hepatocytes with low ASGP-R expression levels expressed higher levels of epidermal growth factor receptor (EGF-R), CD29 (beta1 integrin) and CD49f (alpha6 integrin) and lower levels of glutamine synthetase than those with high ASGP-R expression. These findings suggested that hepatocytes with low adhesion to PVLA due to their low ASGP-R expression could be potential candidates for progenitor-like hepatocytes due to their high proliferative capacity; hence, the low expression of the ASGP-R could be a unique marker for progenitor hepatocytes. The isolation of hepatocytes with different functional phenotypes using PVLA may provide a new research tool for a better understanding of the biology of hepatocytes and the mechanisms regulating their proliferation and differentiation in health and disease. Copyright 2001 Academic Press.

  14. δ opioid receptor antagonist, ICI 174,864, is suitable for the early treatment of uncontrolled hemorrhagic shock in rats.

    PubMed

    Liu, Liangming; Tian, Kunlun; Zhu, Yu; Ding, Xiaoli; Li, Tao

    2013-08-01

    Fluid resuscitation is the essential step for early treatment of traumatic hemorrhagic shock. However, its implementation is greatly limited before hospital or during evacuation. The authors investigated whether δ opioid receptor antagonist ICI 174,864 was suitable for the early treatment of traumatic hemorrhagic shock. With uncontrolled hemorrhagic-shock rats, the antishock effects of six dosages of ICI 174,864 (0.1, 0.3, 0.5, 1, 3, and 5 mg/kg) infused with or without a small volume of lactated Ringer's solution (LR) before bleeding controlled or bleeding cessation at different times were observed. ICI 174,864 (0.1-3 mg/kg) with or without 1/4 volume of LR infusion showed dose-dependent increase in the mean arterial blood pressure, and significantly prolonged the survival time and 8-h survival rate, as compared with ICI 174,864 plus 1/2 volume of LR infusion. The best effect was shown with 3 mg/kg of ICI 174,864. Bleeding cessation at 1, 2, or 3 h during infusion of ICI 174,864 (3 mg/kg) plus 1/4 volume of LR improved subsequent treatment (70% 24-h survival rate vs. 50 and 10% 24-h survival rate in hypotensive resuscitation and LR group, respectively). There was significant improvement in hemodynamic parameters, oxygen delivery, and tissue perfusion of hemorrhagic-shock rats with 3 mg/kg of ICI 174,864 plus 1/4 volume of LR infusion. δ Opioid receptor antagonist ICI 174,864 alone or with small volume of fluid infusion has good beneficial effect on uncontrolled hemorrhagic shock. Its early application can "buy" time for subsequent treatment of traumatic shock.

  15. Strengths and Weaknesses of Sea Ice as a Potential Early Indicator of Climate Change,

    DTIC Science & Technology

    Sea ice is examined for its potential as an early indicator of climate change by considering how well it satisfies four criteria listed as desired... climate change , sea ice is unlikely any time in the near future to be a definitive early indicator of climate change when considered by itself.

  16. The EGF receptor family as targets for cancer therapy.

    PubMed

    Mendelsohn, J; Baselga, J

    2000-12-27

    Human carcinomas frequently express high levels of receptors in the EGF receptor family, and overexpression of at least two of these receptors, the EGF receptor (EGFr) and closely related ErbB2, has been associated with a more aggressive clinical behavior. Further, transfection or activation of high levels of these two receptors in nonmalignant cell lines can lead to a transformed phenotype. For these reasons therapies directed at preventing the function of these receptors have the potential to be useful anti-cancer treatments. In the last two decades monoclonal antibodies (MAbs) which block activation of the EGFr and ErbB2 have been developed. These MAbs have shown promising preclinical activity and 'chimeric' and 'humanized' MAbs have been produced in order to obviate the problem of host immune reactions. Clinical activity with these antibodies has been documented: trastuzumab, a humanized anti-ErbB2 MAb, is active and was recently approved in combination with paclitaxel for the therapy of patients with metastatic ErbB2-overexpressing breast cancer; IMC-C225, a chimeric anti-EGFr MAb, has shown impressive activity when combined with radiation therapy and reverses resistance to chemotherapy. In addition to antibodies, compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported. A series of phase III studies with these antibodies and direct tyrosine kinase inhibitors are ongoing or planned, and will further address the role of these active anti-receptor agents in the treatment of patients with cancer.

  17. B cell expression of the inhibitory Fc gamma receptor is unchanged in early MS.

    PubMed

    Comabella, Manuel; Montalban, Xavier; Kakalacheva, Kristina; Osman, Deeqa; Nimmerjahn, Falk; Tintoré, Mar; Lünemann, Jan D

    2010-06-01

    Expression of the inhibitory Fcgamma receptor IIB (FcgammaRIIB) has emerged as a late checkpoint during peripheral B cell development which prevents autoreactive memory B lymphocytes from becoming long-lived plasma cells. Decreased expression of FcgammaRIIB or non-functional FcgammaRIIB variants are associated with the development of autoimmune tissue inflammation. We determined the expression profile of FcgammaRIIB in peripheral blood cells in treatment-naïve patients with early MS. Twenty-five patients with clinically isolated syndrome (CIS) who converted to clinically definite MS (CDMS) and 25 demographically matched healthy donors were included in the study. Frequencies of peripheral blood monocytes and B cell subsets as well as FcgammaRIIB expression profile was determined by flow cytometry. FcgammaRIIB expression levels were higher in B cells compared to monocytes (p<0.0001) and higher in memory B cells compared to their naïve counterparts (p<0.0001). However, FcgammaRIIB expression in naïve and memory B cells as well as monocytes was unchanged in patients with early MS at onset of symptoms as well as after conversion to CDMS compared to controls. No significant correlations were found between FcgammaRIIB expression levels and brain MRI-derived metrics or EDSS progression during follow-up. These data indicate that FcgammaRIIB expression, a critical late B cell differentiation checkpoint preventing the occurrence of autoreactive long-lived plasma cells, is not impaired in treatment-naïve patients with MS, at least in the early phases of the disease. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Involvement of Transient Receptor Potential Vanilloid (TRPV) 4 in mouse sperm thermotaxis.

    PubMed

    Hamano, Koh-Ichi; Kawanishi, Tae; Mizuno, Atsuko; Suzuki, Makoto; Takagi, Yuji

    2016-08-25

    Transient Receptor Potential Vanilloid (TRPV) 4 is one of the temperature-sensitive ion channels involved in temperature receptors, and it is known to be activated from 35 to 40ºC. Here we analyzed sperm motility function of Trpv4 knockout (KO) mouse in temperature-gradient conditions to elucidate the thermotaxis of mouse sperm and the involvement of TRPV4 in thermotaxis. The sperm were introduced at the vertical column end of a T-shaped chamber filled with medium in a plastic dish, and we measured the number of sperm that arrived at both ends of the wide column where we had established a temperature gradient of approx. 2ºC, and we evaluated the sperm's thermotaxis. Large numbers of wild-type (WT) mouse sperm migrated into the high level of the temperature gradient that was set in the wide column, and thermotaxis was confirmed. The ratio of migrated sperm at the high temperature level of the T-shaped chamber was decreased in the KO sperm and Ruthenium red (a TRPV antagonist) treated sperm compared with the WT sperm. The thermotaxis of the mouse sperm was confirmed, and the involvement of TRPV4 in this thermotaxis was suggested.

  19. β2-Adrenergic Receptor Activation Suppresses the Rat Phenethylamine Hallucinogen-Induced Head Twitch Response: Hallucinogen-Induced Excitatory Post-synaptic Potentials as a Potential Substrate

    PubMed Central

    Marek, Gerard J.; Ramos, Brian P.

    2018-01-01

    5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, μ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the β2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 μM). Epinephrine (0.3–10 μM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective β2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective β2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3–3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective β2-adrenergic receptor antagonist ICI-118,553 (0.01–1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, β2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears

  20. Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity.

    PubMed

    Sibille, E; Su, J; Leman, S; Le Guisquet, A M; Ibarguen-Vargas, Y; Joeyen-Waldorf, J; Glorioso, C; Tseng, G C; Pezzone, M; Hen, R; Belzung, C

    2007-11-01

    Normal aging of the brain differs from pathological conditions and is associated with increased risk for psychiatric and neurological disorders. In addition to its role in the etiology and treatment of mood disorders, altered serotonin (5-HT) signaling is considered a contributing factor to aging; however, no causative role has been identified in aging. We hypothesized that a deregulation of the 5-HT system would reveal its contribution to age-related processes and investigated behavioral and molecular changes throughout adult life in mice lacking the regulatory presynaptic 5-HT(1B) receptor (5-HT(1B)R), a candidate gene for 5-HT-mediated age-related functions. We show that the lack of 5-HT(1B)R (Htr1b(KO) mice) induced an early age-related motor decline and resulted in decreased longevity. Analysis of life-long transcriptome changes revealed an early and global shift of the gene expression signature of aging in the brain of Htr1b(KO) mice. Moreover, molecular changes reached an apparent maximum effect at 18-months in Htr1b(KO) mice, corresponding to the onset of early death in that group. A comparative analysis with our previous characterization of aging in the human brain revealed a phylogenetic conservation of age-effect from mice to humans, and confirmed the early onset of molecular aging in Htr1b(KO) mice. Potential mechanisms appear independent of known central mechanisms (Bdnf, inflammation), but may include interactions with previously identified age-related systems (IGF-1, sirtuins). In summary, our findings suggest that the onset of age-related events can be influenced by altered 5-HT function, thus identifying 5-HT as a modulator of brain aging, and suggesting age-related consequences to chronic manipulation of 5-HT.

  1. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu-Ching; Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ho, Heng-Chien

    2012-07-15

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2more » h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.« less

  2. Potentiation of Brain Stimulation Reward by Morphine: Effects of Neurokinin-1 Receptor Antagonism

    PubMed Central

    Robinson, J.E.; Fish, E.W.; Krouse, M.C.; Thorsell, A.; Heilig, M.; Malanga, C.J.

    2012-01-01

    Rationale The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists. Objective To measure the effects of opioid and neurokinin-1 (NK1R) receptor blockade on the potentiation of brain stimulation reward (BSR) by morphine using the intracranial self-stimulation (ICSS) method. Methods Adult male C57BL/6J mice (n = 15) were implanted with unipolar stimulating electrodes in the lateral hypothalamus and trained to respond for varying frequencies of rewarding electrical stimulation. The BSR threshold (θ0) and maximum response rate (MAX) were determined before and after intraperitoneal administration of saline, morphine (1.0 - 17.0 mg/kg), or the NK1R antagonists L-733,060 (1.0 - 17.0 mg/kg) and L-703,606 (1.0 - 17.0 mg/kg). In morphine antagonism experiments, naltrexone (0.1 – 1.0 mg/kg) or 10.0 mg/kg L-733,060 or L-703,606 was administered 15 minutes before morphine (1.0 - 10.0 mg/kg) or saline. Results Morphine dose-dependently decreased θ0 (maximum effect = 62% of baseline) and altered MAX when compared to saline. L-703,606 and L-733,060 altered θ0 without affecting MAX. 10.0 mg/kg L-733,060 and L-703,606, which did not affect θ0 or MAX, attenuated the effects of 3.0 and 10.0 mg/kg morphine. 1.0 and 0.3 mg/kg naltrexone blocked the effects of 10.0 mg/kg morphine. Naltrexone given before saline did not affect θ0 or MAX. Conclusions The decrease in θ0 by morphine reflects its rewarding effects, which were attenuated by NK1R and opioid receptor blockade. These results demonstrate the importance of substance P signaling during limbic reward system activation by opioids. PMID:21909635

  3. Vascular Repair After Menstruation Involves Regulation of Vascular Endothelial Growth Factor-Receptor Phosphorylation by sFLT-1

    PubMed Central

    Graubert, Michael D.; Asuncion Ortega, Maria; Kessel, Bruce; Mortola, Joseph F.; Iruela-Arispe, M. Luisa

    2001-01-01

    Regeneration of the endometrium after menstruation requires a rapid and highly organized vascular response. Potential regulators of this process include members of the vascular endothelial growth factor (VEGF) family of proteins and their receptors. Although VEGF expression has been detected in the endometrium, the relationship between VEGF production, receptor activation, and endothelial cell proliferation during the endometrial cycle is poorly understood. To better ascertain the relevance of VEGF family members during postmenstrual repair, we have evaluated ligands, receptors, and activity by receptor phosphorylation in human endometrium throughout the menstrual cycle. We found that VEGF is significantly increased at the onset of menstruation, a result of the additive effects of hypoxia, transforming growth factor-α, and interleukin-1β. Both VEGF receptors, FLT-1 and KDR, followed a similar pattern. However, functional activity of KDR, as determined by phosphorylation studies, revealed activation in the late menstrual and early proliferative phases. The degree of KDR phosphorylation was inversely correlated with the presence of sFLT-1. Endothelial cell proliferation analysis in endometrium showed a peak during the late menstrual and early proliferative phases in concert with the presence of VEGF, VEGF receptor phosphorylation, and decrease of sFLT-1. Together, these results suggest that VEGF receptor activation and the subsequent modulation of sFLT-1 in the late menstrual phase likely contributes to the onset of angiogenesis and endothelial repair in the human endometrium. PMID:11290558

  4. Fear Potentiated Startle Increases Phospholipase D (PLD) Expression/Activity and PLD-Linked Metabotropic Glutamate Receptor Mediated Post-Tetanic Potentiation in Rat Amygdala

    PubMed Central

    Krishnan, Balaji; Scott, Michael T.; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-01-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders. PMID:26748024

  5. Calcium-sensing receptor (CASR) is involved in porcine in vitro fertilisation and early embryo development.

    PubMed

    Liu, C; Liu, Y; Larsen, K; Hou, Y P; Callesen, H

    2018-01-01

    It has been demonstrated that extracellular calcium is necessary in fertilisation and embryo development but the mechanism is still not well understood. The present study mainly focussed on the extracellular calcium effector called the calcium-sensing receptor (CASR) and examined its expression in porcine gametes and embryos and its function during fertilisation and early embryo development. By using reverse transcription polymerase chain reaction, CASR was found to be expressed in porcine oocytes, spermatozoa and embryos at different developmental stages. Functionally, medium supplementation with a CASR agonist or an antagonist during in vitro fertilisation (IVF) and in vitro culture (IVC) was tested. During fertilisation, the presence of a CASR agonist increased sperm penetration rate and decreased polyspermy rate leading to an increased normal fertilisation rate. During embryo development, for the IVF embryos, agonist treatment during IVC significantly increased cleavage rate and blastocyst formation rate compared with the control group. Furthermore, parthenogenetically activated embryos showed similar results with lower cleavage and blastocyst formation rates in the antagonist group than in the other groups. It was concluded that CASR, as the effector of extracellular calcium, modulates porcine fertilisation and early embryo development.

  6. Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus

    PubMed Central

    Daskalakis, Nikolaos P.; De Kloet, Edo Ronald; Yehuda, Rachel; Malaspina, Dolores; Kranz, Thorsten M.

    2015-01-01

    Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders. PMID:26635521

  7. Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus

    PubMed Central

    Jo, Jihoon; Hogg, Ellen L.; Piers, Thomas; Kim, Dong-Hyun; Seaton, Gillian; Seok, Heon; Bru-Mercier, Gilles; Son, Gi Hoon; Regan, Philip; Hildebrandt, Lars; Waite, Eleanor; Kim, Byeong-Chae; Kerrigan, Talitha L.; Kim, Kyungjin; Whitcomb, Daniel J.; Lightman, Stafford L.

    2013-01-01

    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+-permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation. PMID:24271563

  8. Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor.

    PubMed

    Liu, Lanhua; Zhou, Xiaohong; Lu, Yun; Shan, Didi; Xu, Bi; He, Miao; Shi, Hanchang; Qian, Yi

    2017-11-15

    The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of screening xenoestrogens. We reported an estrogen receptor (ER)-based reusable fiber biosensor for facile screening estrogenic compounds in environment. The bioassay is based on the competition of xenoestrogens with 17β-estradiol (E 2 ) for binding to the recombinant receptor of human estrogen receptor α (hERα) protein, leaving E 2 free to bind to fluorophore-labeled anti-E 2 monoclonal antibody. Unbound anti-E 2 antibody then binds to the immobilized E 2 -protein conjugate on the fiber surface, and is detected by fluorescence emission induced by evanescent field. As expected, the stronger estrogenic activity of xenoestrogen would result in the weaker fluorescent signal. Three estrogen-agonist compounds, diethylstilbestrol (DES), 4-n-nonylphenol (NP) and 4-n-octylphenol (OP), were chosen as a paradigm for validation of this assay. The rank order of estrogenic potency determined by this biosensor was DES>OP>NP, which were consistent with the published results in numerous studies. Moreover, the E 2 -protein conjugate modified optical fiber was robust enough for over 300 sensing cycles with the signal recoveries ranging from 90% to 100%. In conclusion, the biosensor is reusable, reliable, portable and amenable to on-line operation, providing a facile, efficient and economical alternative to screen potential xenoestrogens in environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluating Potential Exposures to Ecological Receptors Due to Transport of Hydrophobic Organic Contaminants in Subsurface Systems (Final Report)

    EPA Science Inventory

    EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Potential Exposures to Ecological Receptors Due to Transport of Hydrophobic Organic Contaminants in Subsurface Systems. This technical paper recommends several ty...

  10. Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential

    PubMed Central

    Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud Y.

    2014-01-01

    Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits. PMID:25573450

  11. Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats.

    PubMed

    Yoshizawa, Tsuyoshi; Hayashi, Yukio; Yoshida, Akira; Yoshida, Shohei; Ito, Yoshihiko; Yamaguchi, Kenya; Yamada, Shizuo; Takahashi, Satoru

    2018-03-01

    To investigate time course of bladder dysfunction and concurrent changes in number and affinity of the muscarinic and P 2 X receptor in the early stage of streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by the intraperitoneal injection of 50 mg/kg of STZ to 7-week-old female Wistar rats. We performed recording of 24-h voiding behavior and cystometry at 1, 4, 8, and 12 weeks after the induction of diabetes. A muscle strip experiments with electrical field stimulation (EFS), carbachol, and α,β-methylene adenosine 5'-triphosphate (α,β-MeATP) were also performed at the same time-points. Additionally, concurrent changes in number and affinity of bladder muscarinic and P 2 X receptor were measured by a radioreceptor assay using [N-methyl- 3 H] scopolamine methyl chloride ([ 3 H]NMS) and α,β-methylene-ATP (2,8- 3 H) tetrasodium salt ([ 3 H]α,β-MeATP). In STZ-induced diabetic rats, polydipsic polyuric pollakiuria were noted on recording of 24-h voiding behavior from early stage. Also, the residual urine volume markedly increased in diabetic rats on cystometry. In the muscle strip experiment, the detrusor contractions induced by EFS, carbachol, and α,β-MeATP were enhanced in STZ-induced diabetic rats. Based on the radioreceptor assay, the maximum number of sites (Bmax) for the specific binding of [ 3 H]NMS and [ 3 H]α,β-MeATP was concurrently increased in the bladder from diabetic rats. Increased bladder contractility is found in early stage of diabetic rats. Then, bladder dysfunction is associated with increased number of muscarinic and P 2 X receptors in STZ-induced diabetic rats.

  12. Early and Definitive Diagnosis of Toxic Shock Syndrome by Detection of Marked Expansion of T-Cell-Receptor Vβ2-Positive T Cells

    PubMed Central

    Kato, Hidehito; Yamada, Ritsuko; Okano, Hiroya; Ohta, Hiroaki; Imanishi, Ken’ichi; Kikuchi, Ken; Totsuka, Kyouichi; Uchiyama, Takehiko

    2003-01-01

    We describe two cases of early toxic shock syndrome, caused by the superantigen produced from methicillin-resistant Staphylococcus aureus and diagnosed on the basis of an expansion of T-cell-receptor Vβ2-positive T cells. One case-patient showed atypical symptoms. Our results indicate that diagnostic systems incorporating laboratory techniques are essential for rapid, definitive diagnosis of toxic shock syndrome. PMID:12643839

  13. AMPA receptor desensitization mutation results in severe developmental phenotypes and early postnatal lethality

    PubMed Central

    Christie, Louisa A.; Russell, Theron A.; Xu, Jian; Wood, Lydia; Shepherd, Gordon M. G.; Contractor, Anis

    2010-01-01

    AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate) recep-tors desensitize rapidly and completely in the continued presence of their endogenous ligand glutamate; however, it is not clear what role AMPA receptor desensitization plays in the brain. We generated a knock-in mouse in which a single amino acid residue, which controls desensitization, was mutated in the GluA2 (GluR2) receptor subunit (GluA2L483Y). This mutation was homozygous lethal. However, mice carrying a single mutated allele, GluA2L483Y/wt, survived past birth, but displayed severe and progressive neurological deficits including seizures and, ultimately, increased mortality. The expression of the AMPA receptor subunits GluA1 and GluA2 was decreased, whereas NMDA receptor protein expression was increased in GluA2L483Y/wt mice. Despite this, basal synaptic transmission and plasticity in the hippocampus were largely unaffected, suggesting that neurons preferentially target receptors to synapses to normalize synaptic weight. We found no gross neuroanatomical alterations in GluA2L483Y/wt mice. Moreover, there was no accumulation of AMPA receptor subunits in intracellular compartments, suggesting that folding and assembly of AMPA receptors are not affected by this mutation. Interestingly, EPSC paired pulse ratios in the CA1 were enhanced without a change in synaptic release probability, demonstrating that postsynaptic receptor properties can contribute to facilitation. The dramatic phenotype observed in this study by the introduction of a single amino acid change demonstrates an essential role in vivo for AMPA receptor desensitization. PMID:20439731

  14. Chewing rescues stress-suppressed hippocampal long-term potentiation via activation of histamine H1 receptor.

    PubMed

    Ono, Yumie; Kataoka, Tsuyoshi; Miyake, Shinjiro; Sasaguri, Kenichi; Sato, Sadao; Onozuka, Minoru

    2009-08-01

    We have previously found in rats that chewing, an active behavioral strategy to cope with a stressful situation, rescues long-term potentiation (LTP) in the hippocampus through activating stress-suppressed N-methyl-D-aspartate (NMDA) receptor function. To further examine the mechanisms underlying this ameliorative effect of chewing, we studied the involvement of the histaminergic system, which has been shown to be activated by mastication, in the LTP of hippocampal slices of rats that were allowed to chew a wooden stick during exposure to immobilization stress. Chewing failed to rescue stress-suppressed LTP in the rats treated with histamine H1 receptor (H1R) antagonist pyrilamine (5 mg/kg, i.p.) before exposure to stress, although administration of pyrilamine did not affect LTP in naive rats and in stressed rats that did not chew. However, when pyrilamine was administrated immediately after exposure to stress, chewing rescued LTP whose magnitude was statistically comparable to that in the rats that chewed without drug treatment. These results suggest that chewing-induced histamine release in the hippocampus and the subsequent H1 receptor activation may be essential to rescue stress-suppressed synaptic plasticity.

  15. The role of transient receptor potential channels in joint diseases.

    PubMed

    Krupkova, O; Zvick, J; Wuertz-Kozak, K

    2017-10-10

    Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  16. Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotensin II-induced hypertension

    PubMed Central

    Graciano, Miguel L.; Nishiyama, Akira; Jackson, Keith; Seth, Dale M.; Ortiz, Rudy M.; Prieto-Carrasquero, Minolfa C.; Kobori, Hiroyuki; Navar, L. Gabriel

    2008-01-01

    Chronic ANG II infusions lead to increases in intrarenal ANG II levels, hypertension, and tissue injury. Increased blood pressure also elicits increases in renal interstitial fluid (RIF) ATP concentrations that stimulate cell proliferation. We evaluated the contribution of purinergic receptor activation to ANG II-induced renal injury in rats by treating with clopidogrel, a P2Y12 receptor blocker, or with PPADS, a nonselective P2 receptor blocker. α-Actin expression in mesangial cells, afferent arteriolar wall thickness (AAWT), cortical cell proliferation, and macrophage infiltration were used as early markers of renal injury. Clopidogrel and PPADS did not alter blood pressure, renin or kidney ANG II content. α-Actin expression increased from control of 0.6 ± 0.4% of mesangial area to 6.3 ± 1.9% in ANG II-infused rats and this response was prevented by clopidogrel (0.4 ± 0.2%) and PPADS. The increase in AAWT from 4.7 ± 0.1 to 6.0 ± 0.1 mm in ANG II rats was also prevented by clopidogrel (4.8 ± 0.1 mm) and PPADS. ANG II infusion led to interstitial macrophage infiltration (105 ± 16 vs. 62 ± 4 cell/mm2) and tubular proliferation (71 ± 15 vs. 20 ± 4 cell/mm2) and these effects were prevented by clopidogrel (52 ± 4 and 36 ± 3 cell/mm2) and PPADS. RIF ATP levels were higher in ANG II-infused rats than in control rats (11.8 ± 1.9 vs. 5.6 ± 0.6 nmol/l, P < 0.05). The results suggest that activation of vascular and glomerular purinergic P2 receptors may contribute to the mesangial cell transformation, renal inflammation, and vascular hypertrophy observed in ANG II-dependent hypertension. PMID:17989111

  17. Long-term failure of alveologenesis after an early short-term exposure to a PDGF-receptor antagonist.

    PubMed

    Lau, Mandy; Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Tanswell, A Keith

    2011-04-01

    Survivors of moderate-to-severe bronchopulmonary dysplasia have impaired alveologenesis lasting at least into early adult life. The mechanisms underlying this long-term effect are unknown. We hypothesized that short-term inhibition of growth factor-mediated early alveolar formation would result in a long-term impairment of subsequent alveologenesis. Neonatal rats were injected daily with the platelet-derived growth factor (PDGF) receptor antagonist, imatinib mesylate, from day 1-7 of life, to inhibit the early alveolar formation occurring by in-growth of secondary crests into precursor saccules. The pups were then allowed to recover for 7, 14, 21, or 58 days. In imatinib-treated pups, DNA synthesis in total lung cells, and specifically in cells of secondary crests, was reduced at day 8 of life, had rebounded on day 14 of life but was then again reduced by day 28 of life. At day 8 of life, imatinib-treated pups had impaired alveologenesis as reflected by a decrease in secondary crests, an increase in alveolar size, and an overall decrease in both estimated alveolar number and generations compared with age-matched controls. No meaningful recovery was observed, even after a 21- or 58-day recovery period. The lungs of imatinib-treated pups had increased fibulin-5 content and an abnormal deposition of elastin. We conclude that reduced signaling through the PDGF pathways, at an early stage of alveologenesis, can result in long-lasting changes in lung architecture. A likely mechanism is through impaired formation of the elastin scaffold required for alveolarization.

  18. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1) receptors during descending inhibition in guinea-pig ileum.

    PubMed

    Thornton, Peter D J; Gwynne, Rachel M; McMillan, Darren J; Bornstein, Joel C

    2013-01-01

    The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs). Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1) receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT(3) receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone. Slow EPSPs mediated by P2Y(1) receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  19. Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels.

    PubMed

    Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł

    2017-01-01

    The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β 1 - and not α 1 - or α 2 -adrenergic receptor stimulation. Activation of β 1 -adrenergic receptors led to an increase in inward Na + current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na + /K + current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β 1 -adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β 1 -adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the

  20. Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels

    PubMed Central

    Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł

    2017-01-01

    The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer’s disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit. PMID

  1. Early phytocannabinoid chemistry to endocannabinoids and beyond.

    PubMed

    Mechoulam, Raphael; Hanuš, Lumír O; Pertwee, Roger; Howlett, Allyn C

    2014-11-01

    Isolation and structure elucidation of most of the major cannabinoid constituents--including Δ(9)-tetrahydrocannabinol (Δ(9)-THC), which is the principal psychoactive molecule in Cannabis sativa--was achieved in the 1960s and 1970s. It was followed by the identification of two cannabinoid receptors in the 1980s and the early 1990s and by the identification of the endocannabinoids shortly thereafter. There have since been considerable advances in our understanding of the endocannabinoid system and its function in the brain, which reveal potential therapeutic targets for a wide range of brain disorders.

  2. Synaptic potentials in respiratory neurones during evoked phase switching after NMDA receptor blockade in the cat

    PubMed Central

    Pierrefiche, O; Haji, A; Foutz, A S; Takeda, R; Champagnat, J; Denavit-Saubié, M

    1998-01-01

    Blockade of NMDA receptors by dizocilpine impairs the inspiratory off-switch (IOS) of central origin but not the IOS evoked by stimulation of sensory afferents. To investigate whether this difference was due to the effects of different patterns of synaptic interactions on respiratory neurones, we stimulated electrically the superior laryngeal nerve (SLN) or vagus nerve in decerebrate cats before and after i.v. administration of dizocilpine, whilst recording intracellularly. Phrenic nerve responses to ipsilateral SLN or vagal stimulation were: at mid-inspiration, a transient inhibition often followed by a brief burst of activity; at late inspiration, an IOS; and at mid-expiration, a late burst of activity. In all neurones (n = 16), SLN stimulation at mid-inspiration evoked an early EPSP during phase 1 (latency to the arrest of phrenic nerve activity), followed by an IPSP in inspiratory (I) neurones (n = 8) and by a wave of EPSPs in post-inspiratory (PI) neurones (n = 8) during phase 2 (inhibition of phrenic activity). An EPSP in I neurones and an IPSP in PI neurones occurred during phase 3 (brief phrenic burst) following phase 2. Evoked IOS was associated with a fast (phase 1) activation of PI neurones, whereas during spontaneous IOS, a progressive (30-50 ms) depolarization of PI neurones preceded the arrest of phrenic activity. Phase 3 PSPs were similar to those occurring during the burst of activity seen at the start of spontaneous inspiration. Dizocilpine did not suppress the evoked phrenic inhibition and the late burst of activity. The shapes and timing of the evoked PSPs and the changes in membrane potential in I and PI neurones during the phase transition were not altered. We hypothesize that afferent sensory pathways not requiring NMDA receptors (1) terminate inspiration through a premature activation of PI neurones, and (2) evoke a late burst of phrenic activity which might be the first stage of the inspiratory on-switch. PMID:9508816

  3. Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential.

    PubMed

    Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud Y

    2015-02-01

    Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Transient Receptor Potential Ankyrin 1 Receptor Activation In Vitro and In Vivo by Pro-tussive Agents: GRC 17536 as a Promising Anti-Tussive Therapeutic

    PubMed Central

    Mukhopadhyay, Indranil; Kulkarni, Abhay; Aranake, Sarika; Karnik, Pallavi; Shetty, Mahesh; Thorat, Sandeep; Ghosh, Indraneel; Wale, Dinesh; Bhosale, Vikram; Khairatkar-Joshi, Neelima

    2014-01-01

    Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1) is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1. PMID:24819048

  6. Observing the Confinement Potential of Bacterial Pore-Forming Toxin Receptors Inside Rafts with Nonblinking Eu3+-Doped Oxide Nanoparticles

    PubMed Central

    Türkcan, Silvan; Masson, Jean-Baptiste; Casanova, Didier; Mialon, Geneviève; Gacoin, Thierry; Boilot, Jean-Pierre; Popoff, Michel R.; Alexandrou, Antigoni

    2012-01-01

    We track single toxin receptors on the apical cell membrane of MDCK cells with Eu-doped oxide nanoparticles coupled to two toxins of the pore-forming toxin family: α-toxin of Clostridium septicum and ε-toxin of Clostridium perfringens. These nonblinking and photostable labels do not perturb the motion of the toxin receptors and yield long uninterrupted trajectories with mean localization precision of 30 nm for acquisition times of 51.3 ms. We were thus able to study the toxin-cell interaction at the single-molecule level. Toxins bind to receptors that are confined within zones of mean area 0.40 ± 0.05 μm2. Assuming that the receptors move according to the Langevin equation of motion and using Bayesian inference, we determined mean diffusion coefficients of 0.16 ± 0.01 μm2/s for both toxin receptors. Moreover, application of this approach revealed a force field within the domain generated by a springlike confining potential. Both toxin receptors were found to experience forces characterized by a mean spring constant of 0.30 ± 0.03 pN/μm at 37°C. Furthermore, both toxin receptors showed similar distributions of diffusion coefficient, domain area, and spring constant. Control experiments before and after incubation with cholesterol oxidase and sphingomyelinase show that these two enzymes disrupt the confinement domains and lead to quasi-free motion of the toxin receptors. Our control data showing cholesterol and sphingomyelin dependence as well as independence of actin depolymerization and microtubule disruption lead us to attribute the confinement of both receptors to lipid rafts. These toxins require oligomerization to develop their toxic activity. The confined nature of the toxin receptors leads to a local enhancement of the toxin monomer concentration and may thus explain the virulence of this toxin family. PMID:22677383

  7. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    PubMed

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  8. Functional expression of calcium-permeable canonical transient receptor potential 4-containing channels promotes migration of medulloblastoma cells.

    PubMed

    Wei, Wei-Chun; Huang, Wan-Chen; Lin, Yu-Ping; Becker, Esther B E; Ansorge, Olaf; Flockerzi, Veit; Conti, Daniele; Cenacchi, Giovanna; Glitsch, Maike D

    2017-08-15

    The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca 2+ ] i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca 2+ ] i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. Aberrant intracellular Ca 2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca 2+ concentration occur in response to Ca 2+ influx through plasma membrane channels and Ca 2+ release from intracellular Ca 2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing G q -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed

  9. Evaluation of 11C-Me-NB1 as a Potential PET Radioligand for Measuring GluN2B-Containing NMDA Receptors, Drug Occupancy, and Receptor Cross Talk.

    PubMed

    Krämer, Stefanie D; Betzel, Thomas; Mu, Linjing; Haider, Ahmed; Herde, Adrienne Müller; Boninsegni, Anna K; Keller, Claudia; Szermerski, Marina; Schibli, Roger; Wünsch, Bernhard; Ametamey, Simon M

    2018-04-01

    Clinical and preclinical research with modulators at the N -methyl-d-aspartate (NMDA) receptor GluN2B N-terminal domain (NTD) aims for the treatment of various neurologic diseases. The interpretation of the results is hampered by the lack of a suitable NMDA PET tracer for assessing the receptor occupancy of potential drugs. We have developed 11 C-Me-NB1 as a PET tracer for imaging GluN1/GluN2B-containing NMDA receptors and used it to investigate in rats the dose-dependent receptor occupancy of eliprodil, a GluN2B NTD modulator. Methods: 11 C-Me-NB1 was synthesized and characterized by in vitro displacement binding experiments with rat brain membranes, in vitro autoradiography, and blocking and displacement experiments by PET and PET kinetic modeling. Receptor occupancy by eliprodil was studied by PET with 11 C-Me-NB1. Results: 11 C-Me-NB1 was synthesized at 290 ± 90 GBq/μmol molar activity, 7.4 ± 1.9 GBq total activity at the end of synthesis ( n = 17), and more than 99% radiochemical purity. 11 C-Me-NB1 binding in rat brain was blocked in vitro and in vivo by the NTD modulators Ro-25-6981 and eliprodil. Half-maximal receptor occupancy by eliprodil occurred at 1.5 μg/kg. At 1 mg/kg of eliprodil, a dose with reported neuroprotective effects, more than 99.5% of binding sites were occupied. In vitro, 11 C-Me-NB1 binding was independent of the σ-1 receptor (Sigma1R), and the Sigma1R agonist (+)-pentazocine did not compete for high-affinity binding. In vivo, a 2.5 mg/kg dose of (+)-pentazocine abolished 11 C-Me-NB1-specific binding, indicating an indirect effect of Sigma1R on 11 C-Me-NB1 binding. Conclusion: 11 C-Me-NB1 is suitable for the in vivo imaging of NMDA GluN1/GluN2B receptors and the assessment of receptor occupancy by NTD modulators. GluN1/GluN2B NMDA receptors are fully occupied at neuroprotective doses of eliprodil. Furthermore, 11 C-Me-NB1 enables imaging of GluN1/GluN2B NMDA receptor cross talk. © 2018 by the Society of Nuclear Medicine and

  10. Web site review. Carolinas HealthCare recognized Internet marketing potential early.

    PubMed

    Botvin, Judith D

    2005-01-01

    Since the early days of the Internet, administrators Carolinas HealthCare System in Charlotte, NC, have appreciated its potential as a marketing tool. This places a lot of expectations on the Web site, www.carolinashealthcare.org, which is managed by the marketing-public relations department. Find out how the well-established site fulfills its mission and more.

  11. Role of Transient Receptor Potential Channels in Heart Transplantation: A Potential Novel Therapeutic Target for Cardiac Allograft Vasculopathy.

    PubMed

    Ma, Shuo; Jiang, Yue; Huang, Weiting; Li, Xintao; Li, Shuzhuang

    2017-05-18

    Heart transplantation has evolved as the criterion standard therapy for end-stage heart failure, but its efficacy is limited by the development of cardiac allograft vasculopathy (CAV), a unique and rapidly progressive form of atherosclerosis in heart transplant recipients. Here, we briefly review the key processes in the development of CAV during heart transplantation and highlight the roles of transient receptor potential (TRP) channels in these processes during heart transplantation. Understanding the roles of TRP channels in contributing to the key procedures for the development of CAV during heart transplantation could provide basic scientific knowledge for the development of new preventive and therapeutic approaches to manage patients with CAV after heart transplantation.

  12. Potential application of non-small cell lung cancer-associated autoantibodies to early cancer diagnosis

    PubMed Central

    Yao, Yibing; Fan, Yu; Wu, Jun; Wan, Haisu; Wang, Jing; Lam, Stephen; Lam, Wan L.; Girard, Luc; Gazdar, Adi F.; Wu, Zhihao; Zhou, Qinghua

    2015-01-01

    To identify a panel of tumor associated autoantibodies which can potentially be used as biomarkers for the early diagnosis of non-small cell lung cancer (NSCLC). Thirty-five unique and in-frame expressed phage proteins were isolated. Based on the gene expression profiling, four proteins were selected for further study. Both receiver operating characteristic curve analysis and leave-one-out method revealed that combined measurements of four antibodies produced have better predictive accuracies than any single marker alone. Leave-one-out validation also showed significant relevance with all stages of NSCLC patients. The panel of autoantibodies has a high potential for detecting early stage NSCLC. PMID:22713465

  13. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body.

    PubMed

    Xiaopeng, Bai; Tanaka, Yoshimasa; Ihara, Eikichi; Hirano, Katsuya; Nakano, Kayoko; Hirano, Mayumi; Oda, Yoshinao; Nakamura, Kazuhiko

    2017-02-15

    Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH 2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK 1 ) and NK 2 antagonists, but not by an NK 3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK 1 , NK 2 and NK 3 ) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK 1 and NK 2 antagonists, but not by the NK 3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK 1/2 . Gap junctions were indispensable in this tachykinin-induced response. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Del-1 Expression as a Potential Biomarker in Triple-Negative Early Breast Cancer.

    PubMed

    Lee, Soo Jung; Lee, Jeeyeon; Kim, Wan Wook; Jung, Jin Hyang; Park, Ho Yong; Park, Ji-Young; Chae, Yee Soo

    2018-01-01

    A differential diagnostic role for plasma Del-1 was proposed for early breast cancer (EBC) in our previous study. We examined tumoral Del-1 expression and analyzed its prognostic impact among patients with EBC. Del-1 mRNA expression was assessed in breast epithelial and cancer cells. Meanwhile, the tumoral expression of Del-1 was determined based on tissue microarrays and immunohistochemistry results from 440 patients. While a high Del-1 mRNA expression was found in all the breast cancer cell lines, the expression was significantly higher in MDA-MB-231. Tumoral expression of Del-1 was also significantly associated with a negative expression of estrogen receptor or progesterone receptor, and low expression of Ki-67, particularly in the case of triple-negative breast cancer (TNBC) (p < 0.036). Furthermore, a correlation was found between Del-1 expression and an aggressive histological grade, nuclear mitosis, and polymorphism, suggesting a possible role in tumor progression. In the survival analysis, a worse distant disease-free survival trend was noted for the group overexpressing Del-1. While all the investigated breast cancer cell lines exhibited Del-1 expression, the expression rate and intensity were specifically prominent in TNBC. In addition, based on its relationship to an unfavorable histology and worse survival trend, Del-1 could act as a molecular target in TNBC patients. © 2018 S. Karger AG, Basel.

  15. A Qualitative Approach to Portfolios: The Early Assessment for Exceptional Potential Model.

    ERIC Educational Resources Information Center

    Shaklee, Beverly D.; Viechnicki, Karen J.

    1995-01-01

    The Early Assessment for Exceptional Potential portfolio assessment model assesses children as exceptional learners, users, generators, and pursuers of knowledge. It is based on use of authentic learning opportunities; interaction of assessment, curriculum, and instruction; multiple criteria derived from multiple sources; and systematic teacher…

  16. Group II metabotropic glutamate receptor type 2 allosteric potentiators prevent sodium lactate-induced panic-like response in panic-vulnerable rats

    PubMed Central

    Johnson, Philip L; Fitz, Stephanie D; Engleman, Eric A; Svensson, Kjell A; Schkeryantz, Jeffrey M; Shekhar, Anantha

    2015-01-01

    Rats with chronic inhibition of GABA synthesis by infusion of l-allyglycine, a glutamic acid decarboxylase inhibitor, into their dorsomedial/perifornical hypothalamus are anxious and exhibit panic-like cardio-respiratory responses to treatment with intravenous (i.v.) sodium lactate (NaLac) infusions, in a manner similar to what occurs in patients with panic disorder. We previously showed that either NMDA receptor antagonists or metabotropic glutamate receptor type 2/3 receptor agonists can block such a NaLac response, suggesting that a glutamate mechanism is contributing to this panic-like state. Using this animal model of panic, we tested the efficacy of CBiPES and THIIC, which are selective group II metabotropic glutamate type 2 receptor allosteric potentiators (at 10–30mg/kg i.p.), in preventing NaLac-induced panic-like behavioral and cardiovascular responses. The positive control was alprazolam (3mg/kg i.p.), a clinically effective anti-panic benzodiazepine. As predicted, panic-prone rats given a NaLac challenge displayed NaLac-induced panic-like cardiovascular (i.e. tachycardia and hypertensive) responses and “anxiety” (i.e. decreased social interaction time) and “flight” (i.e. increased locomotion) -associated behaviors; however, systemic injection of the panic-prone rats with CBiPES, THIIC or alprazolam prior to the NaLac dose blocked all NaLac-induced panic-like behaviors and cardiovascular responses. These data suggested that in a rat animal model, selective group II metabotropic glutamate type 2 receptor allosteric potentiators show an anti-panic efficacy similar to alprazolam. PMID:22914798

  17. Early life adversity potentiates the effects of later life stress on cumulative physiological dysregulation.

    PubMed

    Dich, Nadya; Hansen, Åse Marie; Avlund, Kirsten; Lund, Rikke; Mortensen, Erik Lykke; Bruunsgaard, Helle; Rod, Naja Hulvej

    2015-01-01

    Previous research indicates that early life adversity may heighten stress reactivity and impair mechanisms for adaptive coping, suggesting that experience of stress in early life may also potentiate adults' physiological vulnerability to stress in later life. The study tested this hypothesis by investigating whether the experience of stressful events and circumstances (SEC) in childhood or adolescence amplified the effect of adulthood SEC on physiological dysregulation (allostatic load, AL) in later midlife. Observational data were used in the present study. Physiological functioning was measured in later midlife (participants' age ranged from 49 to 63 years). Both childhood/adolescence and adulthood SEC were reported retrospectively on the same occasion. Participants were 5309 Danish men and women from Copenhagen Aging and Midlife Biobank (CAMB). SEC included socioeconomic and family factors. The AL index was based on nine cardiovascular, metabolic, and immune biomarkers. Experience of SEC in both early life and adulthood independently predicted higher AL. In men, experience of SEC in early life also potentiated the effect of SEC in adulthood on AL. The results provide further insight into the mechanisms behind the "biological embedding" of childhood stress.

  18. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    PubMed Central

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  19. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  20. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction.

  1. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes

    PubMed Central

    Flores, Pedro L.; Rodríguez, Emma; Zapata, Estrella; Carbó, Roxana; Farías, José María; Martínez, Martín

    2017-01-01

    Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels. PMID:28672825

  2. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes.

    PubMed

    Flores, Pedro L; Rodríguez, Emma; Zapata, Estrella; Carbó, Roxana; Farías, José María; Martínez, Martín

    2017-06-25

    Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.

  3. Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus

    PubMed Central

    Miles, Linde A.; Burga, Laura N.; Gardner, Eric E.; Bostina, Mihnea; Poirier, John T.; Rudin, Charles M.

    2017-01-01

    Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. It has shown promise as a cancer therapeutic in preclinical studies and early-phase clinical trials. Here, we have identified anthrax toxin receptor 1 (ANTXR1) as the receptor for SVV using genome-wide loss-of-function screens. ANTXR1 is necessary for permissivity in vitro and in vivo. However, robust SVV replication requires an additional innate immune defect. We found that SVV interacts directly and specifically with ANTXR1, that this interaction is required for SVV binding to permissive cells, and that ANTXR1 expression is necessary and sufficient for infection in cell lines with decreased expression of antiviral IFN genes at baseline. Finally, we identified the region of the SVV capsid that is responsible for receptor recognition using cryoelectron microscopy of the SVV-ANTXR1-Fc complex. These studies identify ANTXR1, a class of receptor that is shared by a mammalian virus and a bacterial toxin, as the cellular receptor for SVV. PMID:28650343

  4. Differences in kainate receptor involvement in hippocampal mossy fibre long-term potentiation depending on slice orientation.

    PubMed

    Sherwood, John L; Amici, Mascia; Dargan, Sheila L; Culley, Georgia R; Fitzjohn, Stephen M; Jane, David E; Collingridge, Graham L; Lodge, David; Bortolotto, Zuner A

    2012-09-01

    Long-term potentiation (LTP) is a well-established experimental model used to investigate the synaptic basis of learning and memory. LTP at mossy fibre - CA3 synapses in the hippocampus is unusual because it is normally N-methyl-d-aspartate (NMDA) receptor-independent. Instead it seems that the trigger for mossy fibre LTP involves kainate receptors (KARs). Although it is generally accepted that pre-synaptic KARs play an essential role in frequency facilitation and LTP, their subunit composition remains a matter of significant controversy. We have reported previously that both frequency facilitation and LTP can be blocked by selective antagonism of GluK1 (formerly GluR5/Glu(K5))-containing KARs, but other groups have failed to reproduce this effect. Moreover, data from receptor knockout and mRNA expression studies argue against a major role of GluK1, supporting a more central role for GluK2 (formerly GluR6/Glu(K6)). A potential reason underlying the controversy in the pharmacological experiments may reside in differences in the preparations used. Here we show differences in pharmacological sensitivity of synaptic plasticity at mossy fibre - CA3 synapses depend critically on slice orientation. In transverse slices, LTP of fEPSPs was invariably resistant to GluK1-selective antagonists whereas in parasagittal slices LTP was consistently blocked by GluK1-selective antagonists. In addition, there were pronounced differences in the magnitude of frequency facilitation and the sensitivity to the mGlu2/3 receptor agonist DCG-IV. Using anterograde labelling of granule cells we show that slices of both orientations possess intact mossy fibres and both large and small presynaptic boutons. Transverse slices have denser fibre tracts but a smaller proportion of giant mossy fibre boutons. These results further demonstrate a considerable heterogeneity in the functional properties of the mossy fibre projection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Laminar shear stress regulates endothelial kinin B1 receptor expression and function: potential implication in atherogenesis

    PubMed Central

    Duchene, Johan; Cayla, Cécile; Vessillier, Sandrine; Scotland, Ramona; Yamashiro, Kazuo; Lecomte, Florence; Syed, Irfan; Vo, Phuong; Marrelli, Alessandra; Pitzalis, Costantino; Cipollone, Francesco; Schanstra, Joost; Bascands, Jean-Loup; Hobbs, Adrian J; Perretti, Mauro; Ahluwalia, Amrita

    2009-01-01

    OBJECTIVE The pro-inflammatory phenotype induced by low laminar shear stress (LSS) is implicated in atherogenesis. The kinin B1 receptor (B1R), known to be induced by inflammatory stimuli, exerts many pro-inflammatory effects including vasodilatation and leukocyte recruitment. We investigated whether low LSS is a stimulus for endothelial B1R expression and function. METHODS AND RESULTS Human and mouse atherosclerotic plaques expressed high level of B1R mRNA and protein. In addition, B1R expression was upregulated in the aortic arch (low LSS region) of ApoE-/- mice fed a high fat diet compared to vascular regions of high LSS and animals fed normal chow. Of interest, a greater expression of B1R was noticed in endothelial cells from regions of low LSS in aortic arch of ApoE-/- mice. B1R was also upregulated in human umbilical vein endothelial cells (HUVEC) exposed to low LSS (0-2dyn/cm2) compared to physiological LSS (6-10dyn/cm2): an effect similarly evident in murine vascular tissue perfused ex vivo. Functionally, B1R activation increased prostaglandin and CXCL5 expression in cells exposed to low, but not physiological, LSS. IL-1β and ox-LDL induced B1R expression and function in HUVECs, a response substantially enhanced under low LSS conditions and inhibited by blockade of NFκB activation. CONCLUSION Herein, we show that LSS is a major determinant of functional B1R expression in endothelium. Furthermore, whilst physiological high LSS is a powerful repressor of this inflammatory receptor, low LSS at sites of atheroma are associated with substantial upregulation, identifying this receptor as a potential therapeutic target. CONDENSED ABSTRACT Low laminar shear stress (LSS) underlies the pro-inflammatory processes in atherogenesis. Herein, we demonstrate that whilst physiological LSS represses inflammatory kinin B1 receptor (B1R) expression/function, low atherogenic LSS is associated with profound upregulation of both in atherosclerosis in both humans and animal

  6. Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment

    PubMed Central

    Tapia, Mónica; Dominguez, Ana; Zhang, Wei; del Puerto, Ana; Ciorraga, María; Benitez, María José; Guaza, Carmen; Garrido, Juan José

    2017-01-01

    Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies

  7. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase

  8. What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel?

    PubMed

    Perálvarez-Marín, Alex; Doñate-Macian, Pau; Gaudet, Rachelle

    2013-11-01

    Transient receptor potential (TRP) ion channels are emerging as a new set of membrane proteins involved in a vast array of cellular processes and regulated by a large number of physical and chemical stimuli, which involves them with sensory cell physiology. The vanilloid TRP subfamily (TRPV) named after the vanilloid receptor 1 (TRPV1) consists of six members, and at least four of them (TRPV1-TRPV4) have been related to thermal sensation. One of the least characterized members of the TRP subfamily is TRPV2. Although initially characterized as a noxious heat sensor, TRPV2 now seems to have little to do with temperature sensing but a much more complex physiological profile. Here we review the available information and research progress on the structure, physiology and pharmacology of TRPV2 in an attempt to shed some light on the physiological and pharmacological deorphanization of TRPV2. © 2013 FEBS.

  9. What do we know about the Transient Receptor Potential Vanilloid 2 (TRPV2) ion channel?

    PubMed Central

    Perálvarez-Marín, Alex; Doñate-Macian, Pau; Gaudet, Rachelle

    2013-01-01

    Transient receptor potential (TRP) ion channels are emerging as a new set of membrane proteins involved in a vast array of cellular processes and regulated by a large number of physical and chemical stimuli, which involves them with sensory cell physiology. The vanilloid TRP subfamily (TRPV) named after the vanilloid receptor 1 (TRPV1) consists of six members, and at least four of them (TRPV1-TRPV4) have been related to thermal sensation. One of the least characterized members of the TRP subfamily is TRPV2. Although initially characterized as a noxious heat sensor, TRPV2 now seems to have little to do with temperature sensing, but a much more complex physiological profile. Here we review the available information and research progress on the structure, physiology and pharmacology of TRPV2 in an attempt to shed some light on the physiological and pharmacological deorphanization of TRPV2. PMID:23615321

  10. The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy.

    PubMed

    Grimm, Simone; Wirth, Katharina; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Dziobek, Isabel; Bajbouj, Malek; Aust, Sabine

    2017-06-30

    Early life stress (ELS) is associated with increased vulnerability for depression, changes to the corticotropin-releasing hormone (CRH) system and structural and functional changes in hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS to predict depression, cognitive functions and hippocampal activity. Social cognition has been related to hippocampal function and might be crucial for maintaining mental health. However, the interaction of CRHR1 gene variation and ELS on social cognition has not been investigated yet. We assessed social cognition in 502 healthy subjects to test effects of ELS and the CRHR1 gene. Participants were genotyped for rs110402 and rs242924. ELS was assessed by Childhood Trauma Questionnaire, social cognition was measured via Multifaceted Empathy Test and Empathy Quotient. Severity of ELS was associated with decreased emotional, but not cognitive empathy. Subjects with the common homozygous GG GG genotype showed decreased implicit emotional empathy after ELS exposure regardless of its severity. The results reveal that specific CRHR1 polymorphisms moderate the effect of ELS on emotional empathy. Exposure to ELS in combination with a vulnerable genotype results in impaired emotional empathy in adulthood, which might represent an early marker of increased vulnerability after ELS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses

    PubMed Central

    Santoni, Giorgio; Farfariello, Valerio; Liberati, Sonia; Morelli, Maria B.; Nabissi, Massimo; Santoni, Matteo; Amantini, Consuelo

    2013-01-01

    The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34+ hematopoietic stem cells, where its cytosolic Ca2+ activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca2+ ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56+ natural killer cells. TRPV2 orchestrates Ca2+ signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4+ and CD8+ T lymphocytes. Finally, TRPV2 is expressed in CD19+ B lymphocytes where it regulates Ca2+ release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation. PMID:23420671

  12. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  13. Interaction Between Helminths and Toll-Like Receptors: Possibilities and Potentials for Asthma Therapy.

    PubMed

    Zakeri, Amin; Borji, Hassan; Haghparast, Alireza

    2016-05-03

    Toll-like receptors (TLRs) are essential components of the innate immune system. They play an important role in the pathogenesis of allergic diseases, especially asthma. Since TLRs significantly orchestrate innate and adaptive immune response, their manipulation has widely been considered as a potential approach to control asthma symptoms. It is well established that helminths have immunoregulatory effects on host immune responses, especially innate immunity. They release bioactive molecules such as excretory-secretory (ES) products manipulating TLRs expression and signaling. Thus, given the promising results derived from preclinical studies, harnessing helminth-derived molecules affecting TLRs can be considered as a potential biological therapy for allergic diseases. Prospectively, the data that are available at present suggest that, in the near future, it is possible that helminth antigens will offer new therapeutic strategies and druggable targets for fighting allergic diseases. This review describes the interactions between helminths and TLRs and discusses the potential possibilities for asthma therapy. In this opinion paper, the authors aimed to review the updated literatures on the interplay between helminths, TLRs, and asthma with a view to proposing helminth-based asthma therapy.

  14. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth.

    PubMed

    Pasek, Matthew; Lauretta, Dante

    2008-02-01

    With growing evidence for a heavy bombardment period ending 4-3.8 billion years ago, meteorites and comets may have been an important source of prebiotic carbon, nitrogen, and phosphorus on the early Earth. Life may have originated shortly after the late-heavy bombardment, when concentrations of organic compounds and reactive phosphorus were enough to "kick life into gear". This work quantifies the sources of potentially prebiotic, extraterrestrial C, N, and P and correlates these fluxes with a comparison to total Ir fluxes, and estimates the effect of atmosphere on the survival of material. We find (1) that carbonaceous chondrites were not a good source of organic compounds, but interplanetary dust particles provided a constant, steady flux of organic compounds to the surface of the Earth, (2) extraterrestrial metallic material was much more abundant on the early Earth, and delivered reactive P in the form of phosphide minerals to the Earth's surface, and (3) large impacts provided substantial local enrichments of potentially prebiotic reagents. These results help elucidate the potential role of extraterrestrial matter in the origin of life.

  15. Characterization of the porcine neonatal Fc receptor—potential use for trans-epithelial protein delivery

    PubMed Central

    Stirling, Catrina M A; Charleston, Bryan; Takamatsu, Haru; Claypool, Steven; Lencer, Wayne; Blumberg, Richard S; Wileman, Thomas E

    2005-01-01

    The neonatal Fc receptor transports maternal immunoglobulin across the gut wall and has the potential to deliver genetically engineered proteins bearing immunoglobulin Fc domains across the gut to the mucosal immune system. Here we have characterized the porcine neonatal Fc receptor and tested its utility as a model system to study this kind of protein delivery. The complete DNA sequence obtained from an EST revealed 70–80% homology to mouse and human receptors, respectively, and tyrptophan and di-leucine endocytosis motifs were identified in the cytoplasmic tail. Reverse transcription–polymerase chain reaction analysis showed expression of the receptor mRNA in gut, liver, kidney and spleen tissue, aortic endothelial cells and monocytes. Pig kidney cell lines showed saturable pH-dependent binding and uptake of porcine immunoglobulin G (IgG) and also bovine, mouse and human IgG. Polyclonal antibodies raised against the receptor immunoprecipitated a protein of 40 000 MW when the cDNA was expressed in cells and the receptor required assembly with porcine β2-microglobulin for transport from the endoplasmic reticulum to recycling and early endosomes. Immunohistochemical analysis showed the receptor expressed in epithelial cells of the gut of young and adult animals. The ability of the receptor to deliver immunoglobulin across the gut was demonstrated by feeding piglets bovine colostrum as a source of bovine IgG. Bovine IgG was delivered into the pig circulation. Pigs express the neonatal Fc receptor and the receptor has the potential to deliver protein antigens to the pig immune system. PMID:15804291

  16. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin,R.; Clark, S.; Weeks, A.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimermore » interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.« less

  17. Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia.

    PubMed

    Harris, Andrew C; Rothwell, Patrick E; Gewirtz, Jonathan C

    2008-03-01

    While the N-methyl-D: -aspartate (NMDA) glutamate receptor has been strongly implicated in chronic opiate dependence, relatively few studies have examined the effects of NMDA receptor antagonists on withdrawal from acute opiate exposure. The current study examined the effects of memantine, a well-tolerated NMDA receptor antagonist, on acute opiate dependence as assessed by elevations in rodent startle responding (i.e., "withdrawal-potentiated startle") and increased pain sensitivity (i.e., hyperalgesia). Administration of memantine either attenuated (5 mg/kg) or blocked (10 mg/kg) the expression of withdrawal-potentiated startle during naloxone (2.5 mg/kg)-precipitated withdrawal from a single dose of morphine sulfate (10 mg/kg). Pre-treatment with the NMDA receptor antagonist also inhibited the exacerbation of withdrawal-potentiated startle across repeated acute opiate exposures. Memantine blocked the expression of acute dependence, but was less effective in inhibiting its escalation, when hyperalgesia was used as a measure of withdrawal. These doses of memantine did not affect startle responding or nociception in otherwise drug-free animals. Data from additional control groups indicated that the effects of memantine on the expression of withdrawal were not influenced by nonspecific interactions between the NMDA antagonist and either morphine or naloxone. These findings suggest that the NMDA receptor may play a key role in the earliest stages of opiate dependence and provide further evidence that memantine may be useful for the treatment of opiate withdrawal.

  18. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells.

    PubMed

    Fong-Ngern, Kedsarin; Sueksakit, Kanyarat; Thongboonkerd, Visith

    2016-07-01

    Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.

  19. Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole.

    PubMed

    Meseguer, Victor; Karashima, Yuji; Talavera, Karel; D'Hoedt, Dieter; Donovan-Rodríguez, Tansy; Viana, Felix; Nilius, Bernd; Voets, Thomas

    2008-01-16

    Clotrimazole (CLT) is a widely used drug for the topical treatment of yeast infections of skin, vagina, and mouth. Common side effects of topical CLT application include irritation and burning pain of the skin and mucous membranes. Here, we provide evidence that transient receptor potential (TRP) channels in primary sensory neurons underlie these unwanted effects of CLT. We found that clinically relevant CLT concentrations activate heterologously expressed TRPV1 and TRPA1, two TRP channels that act as receptors of irritant chemical and/or thermal stimuli in nociceptive neurons. In line herewith, CLT stimulated a subset of capsaicin-sensitive and mustard oil-sensitive trigeminal neurons, and evoked nocifensive behavior and thermal hypersensitivity with intraplantar injection in mice. Notably, CLT-induced pain behavior was suppressed by the TRPV1-antagonist BCTC [(N-(-4-tertiarybutylphenyl)-4-(3-cholorpyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide)] and absent in TRPV1-deficient mice. In addition, CLT inhibited the cold and menthol receptor TRPM8, and blocked menthol-induced responses in capsaicin- and mustard oil-insensitive trigeminal neurons. The concentration for 50% inhibition (IC50) of inward TRPM8 current was approximately 200 nM, making CLT the most potent known TRPM8 antagonist and a useful tool to discriminate between TRPM8- and TRPA1-mediated responses. Together, our results identify TRP channels in sensory neurons as molecular targets of CLT, and offer means to develop novel CLT preparations with fewer unwanted sensory side effects.

  20. Early memory formation disrupted by atypical PKC inhibitor ZIP in the medial prefrontal cortex but not hippocampus

    PubMed Central

    Evuarherhe, Obaro; Barker, Gareth R. I.; Savalli, Giorgia; Warburton, Elizabeth C.; Brown, Malcolm W.

    2014-01-01

    Atypical isoforms of protein kinase C (aPKCs; particularly protein kinase M zeta: PKMζ) have been hypothesised to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long term memory by maintaining postsynaptic AMPA receptors via the GluR2 subunit. A myristoylated PKMζ pseudosubstrate peptide (ZIP) blocks PKMζ activity. We examined the actions of ZIP in medial prefrontal cortex (mPFC) and hippocampus in associative recognition memory in rats during early memory formation and memory maintenance. ZIP infusion in either hippocampus or mPFC impaired memory maintenance. However, early memory formation was impaired by ZIP in mPFC but not hippocampus; and blocking GluR2-dependent removal of AMPA receptors did not affect this impairment caused by ZIP in the mPFC. The findings indicate: (i) a difference in the actions of ZIP in hippocampus and medial prefrontal cortex, and (ii) a GluR2-independent target of ZIP (possibly PKCλ) in the mPFC during early memory formation. PMID:24729442

  1. Oestrogen receptor negative early operable primary breast cancer in older women-Biological characteristics and long-term clinical outcome.

    PubMed

    Syed, Binafsha Manzoor; Morgan, Dal; Setty, Tulassi; Green, Andrew R; Paish, Emma C; Ellis, Ian O; Cheung, K L

    2017-01-01

    Older women are at the greatest risk of breast cancer development and a considerable number present with comorbidities. Although the majority of breast cancers in this age group express oestrogen receptor (ER), which makes endocrine therapy (primary or adjuvant) feasible, given the huge size of the elderly population, there remains a significant number of patients, in absolute term, whose tumours do not express ER and their management is challenging. Of a consecutive series of 1,758 older (≥70 years) women with early operable primary breast cancer managed in a dedicated service from 1973-2010, 252(14.3%) had ER-negative (histochemical (H) score ≤50) tumours. Their clinical outcome was retrospectively reviewed and tumour samples collected from diagnostic core biopsies were analysed for progesterone receptor (PgR), HER2 and Ki67 using immunohistochemistry. The commonest primary treatment was surgery (N = 194, 77%) followed by primary endocrine therapy (14.3%), primary radiotherapy (5.6%) and supportive treatment only (3.1%). Among the patients undergoing surgery, most of them had grade 3 (78.1%) and node-negative disease (62.2%). Some of them (21.1%) received postoperative radiotherapy. At a median follow-up of 37.5 months, 117 patients had died, out of which 48.6% were due to breast cancer. For those who underwent surgery, the regional and local recurrence rates were 2% and 1.1% per annum respectively. For those who received primary endocrine therapy, 38% progressed at 6 months, however all patients who had primary radiotherapy achieved clinical benefit at 6 months. Regardless of treatment given, the 5-year breast cancer specific and overall survival rates were 70% and 50% respectively. Biological analysis based on good quality needle core biopsy specimensfrom181 patients showed that 26.8% (N = 49), 16.9% (N = 31) and 70.7% (N = 70)expressed positivity for PgR, HER2 and Ki67 respectively. No correlation between these biomarkers and breast cancer specific

  2. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli.

    PubMed

    Chatchaisak, Duangthip; Connor, Mark; Srikiatkhachorn, Anan; Chetsawang, Banthit

    2018-05-01

    Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.

  3. The Receptor That Tames the Innate Immune Response

    PubMed Central

    Brines, Michael; Cerami, Anthony

    2012-01-01

    Tissue injury, hypoxia and significant metabolic stress activate innate immune responses driven by tumor necrosis factor (TNF)-α and other proinflammatory cytokines that typically increase damage surrounding a lesion. In a compensatory protective response, erythropoietin (EPO) is synthesized in surrounding tissues, which subsequently triggers antiinflammatory and antiapoptotic processes that delimit injury and promote repair. What we refer to as the sequelae of injury or disease are often the consequences of this intentionally discoordinated, primitive system that uses a “scorched earth” strategy to rid the invader at the expense of a serious lesion. The EPO-mediated tissue-protective system depends on receptor expression that is upregulated by inflammation and hypoxia in a distinctive temporal and spatial pattern. The tissue-protective receptor (TPR) is generally not expressed by normal tissues but becomes functional immediately after injury. In contrast to robust and early receptor expression within the immediate injury site, EPO production is delayed, transient and relatively weak. The functional EPO receptor that attenuates tissue injury is distinct from the hematopoietic receptor responsible for erythropoiesis. On the basis of current evidence, the TPR is composed of the β common receptor subunit (CD131) in combination with the same EPO receptor subunit that is involved in erythropoiesis. Additional receptors, including that for the vascular endothelial growth factor, also appear to be a component of the TPR in some tissues, for example, the endothelium. The discoordination of the EPO response system and its relative weakness provide a window of opportunity to intervene with the exogenous ligand. Recently, molecules were designed that preferentially activate only the TPR and thus avoid the potential adverse consequences of activating the hematopoietic receptor. On administration, these agents successfully substitute for a relative deficiency of EPO

  4. The receptor that tames the innate immune response.

    PubMed

    Brines, Michael; Cerami, Anthony

    2012-05-09

    Tissue injury, hypoxia and significant metabolic stress activate innate immune responses driven by tumor necrosis factor (TNF)-α and other proinflammatory cytokines that typically increase damage surrounding a lesion. In a compensatory protective response, erythropoietin (EPO) is synthesized in surrounding tissues, which subsequently triggers antiinflammatory and antiapoptotic processes that delimit injury and promote repair. What we refer to as the sequelae of injury or disease are often the consequences of this intentionally discoordinated, primitive system that uses a "scorched earth" strategy to rid the invader at the expense of a serious lesion. The EPO-mediated tissue-protective system depends on receptor expression that is upregulated by inflammation and hypoxia in a distinctive temporal and spatial pattern. The tissue-protective receptor (TPR) is generally not expressed by normal tissues but becomes functional immediately after injury. In contrast to robust and early receptor expression within the immediate injury site, EPO production is delayed, transient and relatively weak. The functional EPO receptor that attenuates tissue injury is distinct from the hematopoietic receptor responsible for erythropoiesis. On the basis of current evidence, the TPR is composed of the β common receptor subunit (CD131) in combination with the same EPO receptor subunit that is involved in erythropoiesis. Additional receptors, including that for the vascular endothelial growth factor, also appear to be a component of the TPR in some tissues, for example, the endothelium. The discoordination of the EPO response system and its relative weakness provide a window of opportunity to intervene with the exogenous ligand. Recently, molecules were designed that preferentially activate only the TPR and thus avoid the potential adverse consequences of activating the hematopoietic receptor. On administration, these agents successfully substitute for a relative deficiency of EPO

  5. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    PubMed

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the

  6. Transient Receptor Potential Canonical (TRPC)/Orai1-dependent Store-operated Ca2+ Channels

    PubMed Central

    Sabourin, Jessica; Bartoli, Fiona; Antigny, Fabrice; Gomez, Ana Maria; Benitah, Jean-Pierre

    2016-01-01

    Store-operated Ca2+ entry (SOCE) has emerged as an important mechanism in cardiac pathology. However, the signals that up-regulate SOCE in the heart remain unexplored. Clinical trials have emphasized the beneficial role of mineralocorticoid receptor (MR) signaling blockade in heart failure and associated arrhythmias. Accumulated evidence suggests that the mineralocorticoid hormone aldosterone, through activation of its receptor, MR, might be a key regulator of Ca2+ influx in cardiomyocytes. We thus assessed whether and how SOCE involving transient receptor potential canonical (TRPC) and Orai1 channels are regulated by aldosterone/MR in neonatal rat ventricular cardiomyocytes. Molecular screening using qRT-PCR and Western blotting demonstrated that aldosterone treatment for 24 h specifically increased the mRNA and/or protein levels of Orai1, TRPC1, -C4, -C5, and stromal interaction molecule 1 through MR activation. These effects were correlated with a specific enhancement of SOCE activities sensitive to store-operated channel inhibitors (SKF-96365 and BTP2) and to a potent Orai1 blocker (S66) and were prevented by TRPC1, -C4, and Orai1 dominant negative mutants or TRPC5 siRNA. A mechanistic approach showed that up-regulation of serum- and glucocorticoid-regulated kinase 1 mRNA expression by aldosterone is involved in enhanced SOCE. Functionally, 24-h aldosterone-enhanced SOCE is associated with increased diastolic [Ca2+]i, which is blunted by store-operated channel inhibitors. Our study provides the first evidence that aldosterone promotes TRPC1-, -C4-, -C5-, and Orai1-mediated SOCE in cardiomyocytes through an MR and serum- and glucocorticoid-regulated kinase 1 pathway. PMID:27129253

  7. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  8. The estrogen-related receptors (ERRs): potential targets against bone loss.

    PubMed

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  9. [Anti-NMDA-receptor encephalitis: a new axis-III disorder in the differential diagnosis of childhood disintegrative disorder, early onset schizophrenia and late onset autism].

    PubMed

    Creten, C; van der Zwaan, S; Blankespoor, R J; Maatkamp, A; Klinkenberg, S; van Kranen-Mastenbroek, V H J M; Nicolai, J; Dhossche, D M; van Os, J; Schieveld, J N M

    2012-01-01

    Childhood disintegrative disorder (CDD), early onset schizophrenia (EOS), and late onset autism (LOA) often follow a similar course: initially, development is normal, then there is a sudden neuropsychiatric deterioration of social interaction and communication skills, which is combined with a decline in intelligence and reduction in daily activities. A 9-year-old boy was admitted to the paediatric ward with acute onset of secondary epileptic seizures. It was not long until the boy's symptoms resembled that of patients with cdd, eos and loa. Intensive tests led to the diagnosis of anti-NMDA-receptor encephalitis. Anti-NMDA-receptor encephalitis should be regarded as a possible organic cause underlying the syndromal presentation of CDD, EOS and LOA.

  10. Need for Better Diabetes Treatment: The Therapeutic Potential of NMDA Receptor Antagonists.

    PubMed

    Welters, A; Lammert, E; Mayatepek, E; Meissner, T

    2017-01-01

    Diabetes mellitus is the most common metabolic disorder in children and adolescents. Optimal control of blood glucose concentration is essential to prevent acute and diabetic long-term complications. The options to treat diabetes have clearly improved over the last decades, however, to date neither type 1 diabetes nor type 2 diabetes mellitus can be cured. Therefore, diabetes research aims at developing β-cell protective agents that prevent or even reverse diabetes onset. N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are widely expressed in the central nervous system (CNS) where they hold central roles in CNS function. NMDAR dysfunction is associated with several neurological and psychiatric disorders and therefore NMDAR modulators have several potential therapeutic indications. Only little is known about the role of pancreatic NMDA receptors. Our data provide evidence that inhibition of pancreatic NMDARs, either genetically or pharmacologically with the over-the-counter drug dextromethorphan, increases glucose-stimulated insulin secretion from mouse and human pancreatic islets, improves glucose tolerance in mice and individuals with diabetes and promotes islet cell survival under diabetogenic conditions. Thus, our data indicate for the first time that NMDAR antagonists could serve as adjunct treatment for diabetes mellitus. The development of a safe, blood glucose lowering and particularly β-cell protective medication would significantly enhance current diabetes treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Early life stress-induced alterations in rat brain structures measured with high resolution MRI.

    PubMed

    Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette

    2017-01-01

    Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.

  12. Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells.

    PubMed

    Sokolowska, Izabela; Woods, Alisa G; Gawinowicz, Mary Ann; Roy, Urmi; Darie, Costel C

    2012-07-01

    Tumor differentiation factor (TDF) is a pituitary protein that is secreted into the bloodstream and has an endocrine function. TDF and TDF-P1, a 20-residue peptide selected from the ORF of TDF, induce differentiation in human breast and prostate cancer cells, but not in other cells. TDF has no known mechanism of action. In our recent study, we identified heat shock 70 kDa proteins (HSP70s) as TDF receptors (TDF-Rs) in breast cancer cells. Therefore, we sought to investigate whether TDF-R candidates from prostate cancer cells are the same as those identified in breast cancer cells. Here, we used TDF-P1 to purify the potential TDF-R candidates by affinity purification chromatography from DU145 and PC3 steroid-resistant prostate cancer cells, LNCaP steroid-responsive prostate cancer cells, and nonprostate NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. We identified the purified proteins by MS, and validated them by western blotting, immunofluorescence microscopy, immunoaffinity purification chromatography, and structural biology. We identified seven candidate proteins, of which three were from the HSP70 family. These three proteins were validated as potential TDF-R candidates in LNCaP steroid-responsive and in DU145 and PC3 steroid-resistant prostate cancer cells, but not in NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. Our previous study and the current study suggest that GRP78, and perhaps HSP70s, are strong TDF-R candidates, and further suggest that TDF interacts with its receptors exclusively in breast and prostate cells, inducing cell differentiation through a novel, steroid-independent pathway. © 2012 The Authors Journal compilation © 2012 FEBS.

  13. A Critical Role for the Transient Receptor Potential Channel Type 6 in Human Platelet Activation

    PubMed Central

    Conlon, Christine; Khasawneh, Fadi T.

    2015-01-01

    While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders. PMID:25928636

  14. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  15. Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors.

    PubMed

    Chung, F Z; Lentes, K U; Gocayne, J; Fitzgerald, M; Robinson, D; Kerlavage, A R; Fraser, C M; Venter, J C

    1987-01-26

    Two cDNA clones, lambda-CLFV-108 and lambda-CLFV-119, encoding for the beta-adrenergic receptor, have been isolated from a human brain stem cDNA library. One human genomic clone, LCV-517 (20 kb), was characterized by restriction mapping and partial sequencing. The human brain beta-receptor consists of 413 amino acids with a calculated Mr of 46480. The gene contains three potential glucocorticoid receptor-binding sites. The beta-receptor expressed in human brain was homology with rodent (88%) and avian (52%) beta-receptors and with porcine muscarinic cholinergic receptors (31%), supporting our proposal [(1984) Proc. Natl. Acad. Sci. USA 81, 272 276] that adrenergic and muscarinic cholinergic receptors are structurally related. This represents the first cloning of a neurotransmitter receptor gene from human brain.

  16. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer

    PubMed Central

    2010-01-01

    Introduction Various multigene predictors of breast cancer clinical outcome have been commercialized, but proved to be prognostic only for hormone receptor (HR) subsets overexpressing estrogen or progesterone receptors. Hormone receptor negative (HRneg) breast cancers, particularly those lacking HER2/ErbB2 overexpression and known as triple-negative (Tneg) cases, are heterogeneous and generally aggressive breast cancer subsets in need of prognostic subclassification, since most early stage HRneg and Tneg breast cancer patients are cured with conservative treatment yet invariably receive aggressive adjuvant chemotherapy. Methods An unbiased search for genes predictive of distant metastatic relapse was undertaken using a training cohort of 199 node-negative, adjuvant treatment naïve HRneg (including 154 Tneg) breast cancer cases curated from three public microarray datasets. Prognostic gene candidates were subsequently validated using a different cohort of 75 node-negative, adjuvant naïve HRneg cases curated from three additional datasets. The HRneg/Tneg gene signature was prognostically compared with eight other previously reported gene signatures, and evaluated for cancer network associations by two commercial pathway analysis programs. Results A novel set of 14 prognostic gene candidates was identified as outcome predictors: CXCL13, CLIC5, RGS4, RPS28, RFX7, EXOC7, HAPLN1, ZNF3, SSX3, HRBL, PRRG3, ABO, PRTN3, MATN1. A composite HRneg/Tneg gene signature index proved more accurate than any individual candidate gene or other reported multigene predictors in identifying cases likely to remain free of metastatic relapse. Significant positive correlations between the HRneg/Tneg index and three independent immune-related signatures (STAT1, IFN, and IR) were observed, as were consistent negative associations between the three immune-related signatures and five other proliferation module-containing signatures (MS-14, ONCO-RS, GGI, CSR/wound and NKI-70). Network analysis

  17. Activation of Estrogen Receptor Transfected into a Receptor-Negative Brest Cancer Cell Line Decreases the Metastatic and Invasive Potential of the Cells

    NASA Astrophysics Data System (ADS)

    Garcia, Marcel; Derocq, Danielle; Freiss, Gilles; Rochefort, Henri

    1992-12-01

    Breast cancers containing estrogen receptors are responsive to antiestrogen treatment and have a better prognosis than estrogen receptor-negative tumors. The loss of estrogen and progesterone receptors appears to be associated with a progression to less-differentiated tumors. We transfected the human estrogen receptor into the estrogen receptor-negative metastatic breast cancer cell line MDA-MB-231 in an attempt to restore their sensitivity to antiestrogens. Two stable sublines of MDA-MB-231 cells (HC1 and HE5) expressing functional estrogen receptors were studied for their ability to grow and invade in vitro and to metastasize in athymic nude mice. The number and size of lung metastases developed by these two sublines in ovariectomized nude mice was not markedly altered by tamoxifen but was inhibited 3-fold by estradiol. Estradiol also significantly inhibited in vitro cell proliferation of these sublines and their invasiveness in Matrigel, a reconstituted basement membrane, whereas the antiestrogens 4-hydroxytamoxifen and ICI 164,384 reversed these effects. These results show that estradiol inhibits the metastatic ability of estrogen receptornegative breast cancer cells following transfection with the estrogen receptor, whereas estrogen receptor-positive breast cancers are stimulated by estrogen, indicating that factors other than the estrogen receptor are involved in progression toward hormone independence. Reactivation or transfer of the estrogen receptor gene can therefore be considered as therapeutic approaches to hormone-independent cancers

  18. Coarse Architecture of the Transient Receptor Potential Vanilloid 1 (TRPV1) Ion Channel Determined by Fluorescence Resonance Energy Transfer*

    PubMed Central

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E.; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D.

    2013-01-01

    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane. PMID:23965996

  19. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer.

    PubMed

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D

    2013-10-11

    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.

  20. Effects of early-life malnutrition on neurodevelopment and neuropsychiatric disorders and the potential mechanisms.

    PubMed

    Yan, Xintian; Zhao, Xinzhi; Li, Juxue; He, Lin; Xu, Mingqing

    2018-04-20

    Lines of evidence have demonstrated that early-life malnutrition is highly correlated with neurodevelopment and adulthood neuropsychiatric disorders, while some findings are conflicting with each other. In addition, the biological mechanisms are less investigated. We systematically reviewed the evidence linking early-life nutrition status with neurodevelopment and clinical observations in human and animal models. We summarized the effects of special nutritious on neuropsychiatric disorders and explored the underlying potential mechanisms. The further understanding of the biological regulation of early-life nutritional status on neurodevelopment might shed light on precision nutrition at an integrative systems biology framework. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2016-11-01

    IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.

  2. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    PubMed Central

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  3. Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation.

    PubMed

    Da Silva, C; Astals, S; Peces, M; Campos, J L; Guerrero, L

    2018-01-01

    Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to >100days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B 0 ) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k≤0.1d -1 ) have a minimum testing times of ≥15days, (ii) moderately biodegradable substrates (0.1

  4. Human eosinophils - potential pharmacological model applied in human histamine H4 receptor research.

    PubMed

    Grosicki, Marek; Kieć-Kononowicz, Katarzyna

    2015-01-01

    Histamine and histamine receptors are well known for their immunomodulatory role in inflammation. In this review we describe the role of histamine and histamine H4 receptor on human eosinophils. In the first part of article we provide short summary of histamine and histamine receptors role in physiology and histamine related therapeutics used in clinics. We briefly describe the human histamine receptor H4 and its ligands, as well as human eosinophils. In the second part of the review we provide detailed description of known histamine effects on eosinophils including: intracellular calcium concentration flux, actin polymerization, cellular shape change, upregulation of adhesion proteins and cellular chemotaxis. We provide proofs that these effects are mainly connected with the activation of histamine H4 receptor. When examining experimental data we discuss the controversial results and limitations of the studies performed on isolated eosinophils. In conclusion we believe that studies on histamine H4 receptor on human eosinophils can provide interesting new biomarkers that can be used in clinical studies of histamine receptors, that in future might result in the development of new strategies in the treatment of chronic inflammatory conditions like asthma or allergy, in which eosinophils are involved.

  5. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    PubMed

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Differential epileptogenic potentials of selective mu and delta opiate receptor agonists.

    PubMed

    Haffmans, J; Dzoljic, M R

    1983-01-01

    By using electroencephalographic (EEG) and electromyographic recordings in anaesthetized and free-moving rats, two opioid peptides, known as selective agonists for mu and delta opiate receptors, respectively, were examined for their epileptogenic properties. The delta receptor peptide (DSTLE, 4.6-18.6 nmol, intraventricularly, ivt), a putative delta opiate agonist, produced a dose-related increase of myoclonic contractions (MC) with epileptic discharges in anaesthetized rats and severe wet dog shakes, with occasionally falling down, in free-moving animals. Morphiceptin, a specific mu opiate agonist, used in equimolar doses and under the same experimental conditions, had a significantly less pronounced effect on the number of MC and epileptiform EEG phenomena. Similarly, DSTLE (18.6 nmol) injected in the CA2 area of the hippocampus, a region with a nearly equal distribution of mu and delta opiate receptors, induced epileptic discharges in anaesthetized and free-moving rats, while an equimolar dose of morphiceptin had no significant effect. It is suggested that the epileptiform activity of opioid peptides is mainly due to an activation of delta opiate receptors in the central nervous system.

  7. The insulin receptor.

    PubMed

    Kaplan, S A

    1984-03-01

    Cells are endowed with specific cognitive molecules that function as receptors for hormones, neurotransmitters, and other intercellular messengers. The receptor molecules may be present in the plasma membrane, cytoplasm, or nucleus. When occupied by the messenger, the receptor is coupled to the cellular machinery that responds to the message-bearing molecules. For some hormones the events following attachment of the messenger to the receptor are well known. An example is the generation of cAMP after combination of glucagon with its receptor and the series of steps culminating in activation of phosphorylase. In the case of many other messengers, including insulin, the nature of these coupling steps is not known. Receptors are subject to the regulatory processes of synthesis, degradation, and conformational change; alterations in receptor properties may have significant effects on the qualitative and quantitative responses of the cell to the extracellular messenger. The insulin receptor is located in the plasma membrane, is composed of two pairs of subunits, and has a molecular weight of about 350,000. It is located in cells such as adipocytes, hepatocytes, and skeletal muscle cells as well as in cells not considered to be typical target organ cells. Insulin receptors in nonfetal cells are downregulated by exposure of the cells to high concentrations of insulin. Other factors that regulate insulin binding include muscular exercise, diet, thyroid hormones, glucocorticoids, androgens, estrogens, and cyclic nucleotides. The fetus has high concentrations of insulin receptors in several tissues. These begin to appear early in fetal life and may outnumber those found in adult tissues. Fetal insulin receptors are unusual in that they may not undergo downregulation but may experience the opposite when exposed to insulin in high concentrations. Thus the offspring of a mother with poorly controlled diabetes may be placed in double jeopardy by fetal hyperinsulinemia and

  8. Transient receptor potential vanilloid 2 (TRPV2), a potential novel biomarker in childhood asthma.

    PubMed

    Cai, Xin; Yang, Yong-chang; Wang, Jing-feng; Wang, Qiang; Gao, Jie; Fu, Wen-liang; Zhu, Ze-yi; Wang, Yuan-yuan; Zou, Min-ji; Wang, Jia-xi; Xu, Dong-qun; Xu, Dong-gang

    2013-03-01

    The presence of transient receptor potential vanilloid 2 (TRPV2) in human peripheral blood cells may suggest a role under pathological conditions. The aim of this study was to explore the relationship between the expression profile of TRPV2 gene and childhood asthma in the north of China. The effects of allergens exposure on the expression of TRPV2 gene were also investigated. Sixty asthmatics children confirmed by physician diagnosis and 60 healthy children as a control group were recruited. Serum total IgE and specific IgE were measured. Using quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), TRPV2 was detected in total RNA extracted from peripheral blood lymphocytes. Student's t-test and chi-square test were used to analyze the relationship between TRPV2 transcript and different parameter variables on susceptibility of childhood asthma. Multiple logistic regression was used to analyze the associations between TRPV2 gene and allergens. The expression level of TRPV2 gene was increased 2.6 times in asthmatic children compared with controls (p < .01). The up-regulation of TRPV2 gene and sensitization to one of three the allergens-spring pollen, dust mite, and dog and cat hair-were correlated with childhood asthma. In addition, the hypersensitivity to spring pollen, cockroach, and dust mite and up-regulation of TRPV2 gene expression may be the risk factors for the childhood asthma in Beijing. The increased expression of TRPV2 gene in peripheral lymphocytes is closely correlated with childhood asthma in the north of China. This study provides a potential new biomarker of childhood asthma and lays the basis for further clarification of the pathogenesis underlying asthma.

  9. Differences in expression of the cancer stem cell marker aldehyde dehydrogenase 1 among estrogen receptor-positive/human epidermal growth factor receptor type 2-negative breast cancer cases with early, late, and no recurrence.

    PubMed

    Miyoshi, Yuichiro; Shien, Tadahiko; Ogiya, Akiko; Ishida, Naoko; Yamazaki, Kieko; Horii, Rie; Horimoto, Yoshiya; Masuda, Norikazu; Yasojima, Hiroyuki; Inao, Touko; Osako, Tomofumi; Takahashi, Masato; Tomioka, Nobumoto; Endo, Yumi; Hosoda, Mitsuchika; Doihara, Hiroyoshi; Miyoshi, Shinichiro; Yamashita, Hiroko

    2016-07-02

    The significance of the expression of aldehyde dehydrogenase 1 (ALDH1), a cancer stem cell marker, for predicting the recurrence of estrogen receptor (ER)-positive/human epidermal growth factor receptor type 2 (HER2)-negative breast cancer is still poorly understood. The value of ALDH1 in predicting the time of recurrence remains unknown. In total, 184 patients with early distant recurrence, 134 patients with late distant recurrence, and 321 control patients without recurrence for more than 10 years after starting initial treatment for ER-positive/HER2-negative breast cancer, registered in 9 institutions, were analyzed. We assessed relationships between ALDH1 and other clinicopathological features, and ALDH1 expression was compared among the three groups. The relationship between ALDH1 expression and overall survival after recurrence was also evaluated in each group. The rates of ALDH1 expression positivity (more than 1 %) in the early, late, and no recurrence groups were 18.4 %, 13.4 %, and 8.4 %, respectively. ALDH1 expression correlated significantly with lymph node metastases (p = 0.048) and the Ki-67 labeling index (p < 0.001) in the early recurrence group. Multivariate analysis revealed ALDH1 expression to be significantly higher in the early recurrence group than in the no recurrence group (adjusted OR 2.140, 95 % CI 1.144-4.003, p = 0.016). Moreover, there was a significant difference in ALDH1 expression between the early and no recurrence groups receiving adjuvant endocrine therapy and chemotherapy (adjusted OR 4.625, 95 % CI 1.881-12.474, p < 0.001). However, there was no difference in ALDH1 expression between the late and no recurrence groups in univariate analysis (OR 1.507, 95 % CI 0.738-2.998, p = 0.253). In multivariate analysis, ALDH1 was not a factor independently predicting overall survival after the detection of recurrence (adjusted OR 1.451, 95 % CI 0.985-2.085, p = 0.059). Among patients with ER-positive/HER2

  10. Modification of cocaine self-administration by buspirone (buspar®): potential involvement of D3 and D4 dopamine receptors

    PubMed Central

    Bergman, Jack; Roof, Rebecca A.; Furman, Cheryse A.; Conroy, Jennie L.; Mello, Nancy K.; Sibley, David R.; Skolnick, Phil

    2016-01-01

    Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (~98 and ~29 nM respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose–effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction. PMID:22827916

  11. Poly(ADP-ribose) polymerase inhibitors sensitize cancer cells to death receptor-mediated apoptosis by enhancing death receptor expression.

    PubMed

    Meng, X Wei; Koh, Brian D; Zhang, Jin-San; Flatten, Karen S; Schneider, Paula A; Billadeau, Daniel D; Hess, Allan D; Smith, B Douglas; Karp, Judith E; Kaufmann, Scott H

    2014-07-25

    Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation.

  12. Poly(ADP-ribose) Polymerase Inhibitors Sensitize Cancer Cells to Death Receptor-mediated Apoptosis by Enhancing Death Receptor Expression*

    PubMed Central

    Meng, X. Wei; Koh, Brian D.; Zhang, Jin-San; Flatten, Karen S.; Schneider, Paula A.; Billadeau, Daniel D.; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Kaufmann, Scott H.

    2014-01-01

    Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation. PMID:24895135

  13. P2X7 receptor antagonism: Implications in diabetic retinopathy.

    PubMed

    Platania, Chiara Bianca Maria; Giurdanella, Giovanni; Di Paola, Luisa; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio

    2017-08-15

    Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands.

    PubMed

    Christopoulos, Arthur; Changeux, Jean-Pierre; Catterall, William A; Fabbro, Doriano; Burris, Thomas P; Cidlowski, John A; Olsen, Richard W; Peters, John A; Neubig, Richard R; Pin, Jean-Philippe; Sexton, Patrick M; Kenakin, Terry P; Ehlert, Frederick J; Spedding, Michael; Langmead, Christopher J

    2014-10-01

    Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties. U.S. Government work not protected by U.S. copyright.

  15. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    PubMed

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  16. Receptor changes and LTP: an analysis using aniracetam, a drug that reversibly modifies glutamate (AMPA) receptors.

    PubMed

    Staubli, U; Ambros-Ingerson, J; Lynch, G

    1992-01-01

    The hypothesis that long-term potentiation (LTP) involves receptor modifications was tested with aniracetam, a nootropic drug that selectively increases currents mediated by the AMPA subclass of glutamate receptors. Aniracetam had different effects on the waveform of synaptic potentials in hippocampus before and after induction of LTP: (1) the drug caused a slight reduction (or delay) of the initial segment of the response after LTP; and (2) the facilitatory effects of aniracetam occurred at a later time point in the response after LTP than before. The interactions between LTP and aniracetam were still present when synaptic responses were greatly reduced by partial blockade of postsynaptic receptors and were not reproduced by increasing release or the number of stimulated synapses. A mathematical treatment of synaptic currents produced the following results: (1) if aniracetam facilitates AMPA receptor currents simply by reducing desensitization, then its complex interaction with LTP emerges when potentiation changes the kinetic and conductance properties of receptor channels; (2) if aniracetam also significantly increases conductance, then the experimental data can be reproduced by modeling LTP as an increase in channel conductance alone.

  17. Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice.

    PubMed

    Sun, Jingyu; Zhang, Chen; Kim, MinJeong; Su, Yajuan; Qin, Lili; Dong, Jingmei; Zhou, Yunhe; Ding, Shuzhe

    2018-04-01

    Exercise and resveratrol supplementation exhibit anti-obesity functions in the long term but have not been fully investigated yet in terms of their early potential effectiveness. Mice fed with high-fat diet were categorized into control (Cont), exercise (Ex), resveratrol supplementation (Res), and exercise combined with resveratrol supplementation (Ex + Res) groups. In the four-week period of weight loss, exercise combined with resveratrol supplementation exerted no additional effects on body weight loss but significantly improved whole-body glucose and lipid homeostasis. The combined treatment significantly decreased intrahepatic lipid content but did not affect intramyocellular lipid content. Moreover, the treatment significantly increased the contents of mtDNA and cytochrome c, the expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and its downstream transcription factors, and the activities of ATPase and citrate synthase. However, exercise, resveratrol, and their combination did not promote myofiber specification toward slow-twitch type. The effects of exercise combined with resveratrol supplementation on weight loss could be partly due to enhanced mitochondrial biogenesis and not to fiber-type shift in skeletal muscle tissues. [BMB Reports 2018; 51(4): 200-205].

  18. Retrograde transport of the transmembrane estrogen receptor, G-protein-coupled-receptor-30 (GPR30/GPER) from the plasma membrane towards the nucleus.

    PubMed

    Cheng, Shi-Bin; Graeber, Carl T; Quinn, Jeffrey A; Filardo, Edward J

    2011-08-01

    G-protein-coupled receptor 30 (GPR30/GPER) belongs to the seven transmembrane receptor (7TMR) superfamily, the most common class of surface receptor with approximately 800 known members. GPER promotes estrogen binding and rapid signaling via membrane-associated enzymes resulting in increased cAMP and release of heparan bound epidermal growth factor (proHB-EGF) from breast cancer cells. However, GPER is predominately localized intracellularly in breast cancer cells with minor amounts of receptor on the cell surface, an observation that has caused some controversy regarding its potential role as a plasma membrane estrogen receptor. Using the widely employed approach of tracking recombinant 7TMRs by surface labeling live cells, we have begun to characterize and compare the endocytic fate of GPER to other similarly labeled 7TMRs. Upon ectopic expression in human embryonic kidney HEK-293 cells, functional GPER is generated as these cells acquire the capacity to stimulate cAMP and activate cyclic AMP responsive binding protein in response to estradiol-17 beta stimulation. GPER is detectable on the cell surface by immunofluorescent analysis using HA-specific antibodies, albeit the bulk of the receptor is located intracellularly. Like β1AR (beta 1 adrenergic receptor) and CXCR4 (C-X-C chemokine receptor 4), GPER exits the plasma membrane via clathrin-coated pits and enters early endosomes. Interestingly, GPER has a destination that is uncommon among 7TMRs, as it accumulates in a perinuclear compartment. Like many 7TMRs (approximately one-third), GPER trafficking from the plasma membrane is constitutive (occurs in the absence of agonist). However, its route of intracellular trafficking is highly unusual, as 7TMRs typically recycle to the plasma membrane (e.g. β1AR) or are degraded in lysosomes (e.g. CXCR4). The accumulation of GPER in the perinuclear space and its possible significance for attenuating estrogen action via this newly recognized membrane estrogen receptor is

  19. Basic pharmacology of NMDA receptors.

    PubMed

    Gonda, Xenia

    2012-01-01

    NMDA receptors are ionotropic receptors mediating glutamatergic neurotransmission and play a role in several basic functions in the central nervous system, from regulating neurodevelopment and synaptic plasticity, learning and memory formation, cognitive processes, rhythm generation necessary for locomotor activity and breathing, and excitotoxicity. Due to their complex involvement in the above processes, NMDA receptors have been established to play a role in the etiopathology of several neuropsychiatric disorders such as ischaemia and traumatic brain injury, neurodegenerative disorders, pain syndromes, addiction, affective disorders and such neurodevelopmental disorders as autism or schizophrenia. NMDA receptors contain multiple types of subunits with distinct functional and pharmacological properties making the picture more complex. These receptors also offer multiple binding sites to be targeted with pharmacons, however, early broad-spectrum NMDA receptor antagonists had limited clinical use due to their intolerable adverse effect profile. The discovery of several types of subunit selective NMDA receptor antagonists may offer valuable therapeutic possibilities for several disorders, with improved clinical efficacy and decreased side effects. However, in spite of our increasing knowledge concerning the involvement of NMDA receptors in pathological processes, molecules with a selective action, tolerable side effect profile and good clinical efficacy are still only in clinical development in the majority of cases. Nevertheless, NMDA receptors offer a novel opportunity in the treatment of various neuropsychiatric conditions.

  20. I1 Imidazoline Receptor: Novel Potential Cytoprotective Target of TVP1022, the S-Enantiomer of Rasagiline

    PubMed Central

    Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B. H.; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I1 & I2) are potential targets for TVP1022 (IC50 = 9.5E-08 M and IC50 = 1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1–20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I1 imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I1imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I1imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022. PMID:23166584

  1. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline.

    PubMed

    Barac, Yaron D; Bar-Am, Orit; Liani, Esti; Amit, Tamar; Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B H; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I(1) & I(2)) are potential targets for TVP1022 (IC(50) =9.5E-08 M and IC(50) =1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1-20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I(1) imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I(1)imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I(1)imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.

  2. Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells.

    PubMed

    Chittajallu, R; Wester, J C; Craig, M T; Barksdale, E; Yuan, X Q; Akgül, G; Fang, C; Collins, D; Hunt, S; Pelkey, K A; McBain, C J

    2017-07-28

    Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.

  3. AMPA RECEPTOR POTENTIATORS: FROM DRUG DESIGN TO COGNITIVE ENHANCEMENT

    PubMed Central

    PARTIN, KATHRYN M.

    2014-01-01

    Positive allosteric modulators of ionotropic glutamate receptors have emerged as a target for treating cognitive impairment and neurodegeneration, but also mental illnesses such as major depressive disorder. The possibility of creating a new class of pharmaceutical agent to treat refractive mental health issues has compelled researchers to redouble their efforts to develop a safe, effective treatment for memory and cognition impairments. Coupled with the more robust research methodologies that have emerged, including more sophisticated high-throughput-screens, higher resolution structural biology techniques, and more focused assessment on pharmacokinetics, the development of positive modulators of AMPA receptors holds great promise. We describe recent approaches that improve our understanding of the basic physiology underlying memory and cognition, and their application towards promoting human health. PMID:25462292

  4. Peroxisome Proliferator-Activated Receptor α Activation Suppresses Cytochrome P450 Induction Potential in Mice Treated with Gemfibrozil.

    PubMed

    Shi, Cunzhong; Min, Luo; Yang, Julin; Dai, Manyun; Song, Danjun; Hua, Huiying; Xu, Gangming; Gonzalez, Frank J; Liu, Aiming

    2017-09-01

    Gemfibrozil, a peroxisome proliferator-activated receptor α (PPARα) agonist, is widely used for hypertriglyceridaemia and mixed hyperlipidaemia. Drug-drug interaction of gemfibrozil and other PPARα agonists has been reported. However, the role of PPARα in cytochrome P450 (CYP) induction by fibrates is not well known. In this study, wild-type mice were first fed gemfibrozil-containing diets (0.375%, 0.75% and 1.5%) for 14 days to establish a dose-response relationship for CYP induction. Then, wild-type mice and Pparα-null mice were treated with a 0.75% gemfibrozil-containing diet for 7 days. CYP3a, CYP2b and CYP2c were induced in a dose-dependent manner by gemfibrozil. In Pparα-null mice, their mRNA level, protein level and activity were induced more than those in wild-type mice. So, gemfibrozil induced CYP, and this action was inhibited by activated PPARα. These data suggested that the induction potential of CYPs was suppressed by activated PPARα, showing a potential role of this receptor in drug-drug interactions and metabolic diseases treated with fibrates. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs

    PubMed Central

    Levit, Anat; Yarnitzky, Talia; Wiener, Ayana; Meidan, Rina; Niv, Masha Y.

    2011-01-01

    Background and Motivation The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer. Methods and Results Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity

  6. Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses*

    PubMed Central

    Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Mickum, Megan L.; Ashline, David J.; Prasad, B. V. Venkataram; Estes, Mary K.; Reinhold, Vernon N.; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures. PMID:25048705

  7. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  8. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential?

    PubMed

    Albert-Vartanian, A; Boyd, M R; Hall, A L; Morgado, S J; Nguyen, E; Nguyen, V P H; Patel, S P; Russo, L J; Shao, A J; Raffa, R B

    2016-08-01

    Optimal utilization of opioid analgesics is significantly limited by the central nervous system adverse effects and misuse/abuse potential of currently available drugs. It has been postulated that opioid-associated adverse effects and abuse potential would be greatly reduced if opioids could be excluded from reaching the brain. We review the basic science and clinical evidence of one such approach - peripherally restricted kappa-opioid receptor (KOR) agonists (pKORAs). Published and unpublished literature, websites and other sources were searched for basic science and clinical information related to the potential benefits and development of peripherally restricted kappa-opioid receptor agonists. Each source was summarized, reviewed and assessed. The historical development of pKORAs can be traced from the design of increasingly KOR-selective agonists, elucidation of the pharmacologic attributes of such compounds and strategies to restrict passage across the blood-brain barrier. Novel compounds are under development and have progressed to clinical trials. The results from recent clinical trials suggest that peripherally restricted opioids can be successfully designed and that they can retain analgesic efficacy with a more favourable adverse effect profile. © 2016 John Wiley & Sons Ltd.

  9. Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat.

    PubMed

    Hassanain, M; Bhatt, S; Zalcman, S; Siegel, A

    2005-06-28

    Recently, this laboratory provided evidence that interleukin-1beta (IL-1beta), an immune and brain-derived cytokine, microinjected into the medial hypothalamus, potentiates defensive rage behavior in the cat elicited from the midbrain periaqueductal gray (PAG), and that such effects are blocked by a 5-HT2 receptor antagonist. Since this finding represents the first time that a brain cytokine has been shown to affect defensive rage behavior, the present study replicated and extended these findings by documenting the specific potentiating role played by IL-1beta Type 1 receptor (IL-1RI), and the anatomical relationship between IL-1beta and 5-HT2 receptors in the medial hypothalamus. IL-1beta (10 ng) microinjected into the medial hypothalamus induced two separate phases of facilitation, one at 60 min and another at 180 min, post-injection. In turn, these effects were blocked with pretreatment of the selective IL-1 Type I receptor antagonist (IL-1ra) (10 ng), demonstrating the selectivity of the effects of IL-1beta on medial hypothalamic neurons upon PAG-elicited defensive rage behavior. The next stage of the study utilized immunohistochemical methods to demonstrate that IL-1beta and 5-HT2 receptors were present on the same neurons within regions of the medial hypothalamus where IL-1beta and the IL-1beta receptor antagonists were administered. This provided anatomical evidence suggesting a relationship between IL-1RI and 5-HT2 receptors in the medial hypothalamus that is consistent with the previous pharmacological observations in our laboratory. The overall findings show that activation of IL-1RI in the medial hypothalamus potentiates defensive rage behavior in the cat and that these effects may also be linked to the presence of 5-HT2 receptors on the same groups of neurons in this region of hypothalamus.

  10. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts.

    PubMed

    Fu, Qin; Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan; Xiang, Yang K

    2017-03-15

    Patients with diabetes show a blunted cardiac inotropic response to β-adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β-adrenergically induced contractile function in isolated cardiomyocytes and Langendorff-perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high-fat diet (HFD) feeding on the cardiac β 2 -adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β-adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β 2 -adrenergic receptor phosphorylation at protein kinase A and G-protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high-fat diet (HFD) on the insulin-adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD-fed mice displayed a significant elevation of phosphorylation of the β 2 -adrenergic receptor (β 2 AR) at both the protein kinase A site serine 261/262 and the G-protein-coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD-fed mice also displayed a reduced contractile response to

  11. Toxicities of chimeric antigen receptor T cells: recognition and management

    PubMed Central

    Brudno, Jennifer N.

    2016-01-01

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy. PMID:27207799

  12. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    PubMed

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  13. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    PubMed Central

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis. PMID:27019631

  14. Protein Kinase Cδ and Calmodulin Regulate Epidermal Growth Factor Receptor Recycling from Early Endosomes through Arp2/3 Complex and Cortactin

    PubMed Central

    Lladó, Anna; Timpson, Paul; Vilà de Muga, Sandra; Moretó, Jemina; Pol, Albert; Grewal, Thomas; Daly, Roger J.

    2008-01-01

    The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cδ (PKCδ). On inhibition of CaM, PKCδ promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCδ impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCδ-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCδ. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCδ, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCδ organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR. PMID:17959830

  15. Dopamine receptor gene d4 polymorphisms and early sexual onset: gender and environmental moderation in a sample of african-american youth.

    PubMed

    Kogan, Steven M; Lei, Man-Kit; Beach, Steven R H; Brody, Gene H; Windle, Michael; Lee, Sunbok; MacKillop, James; Chen, Yi-Fu

    2014-08-01

    Early sexual onset and its consequences disproportionately affect African-American youth, particularly male youth. The dopamine receptor D4 gene (DRD4) has been linked to sexual activity and other forms of appetitive behavior, particularly for male youth and in combination with environmental factors (gene × environment [G × E] effects). The differential susceptibility perspective suggests that DRD4 may exert this effect by amplifying the effects of both positive and negative environments. We hypothesized that DRD4 status would amplify the influence of both positive and negative neighborhood environments on early sexual onset among male, but not female, African-Americans. Hypotheses were tested with self-report, biospecimen, and census data from five prospective studies of male and female African-American youth in rural Georgia communities, N = 1,677. Early sexual onset was defined as intercourse before age 14. No significant G × E findings emerged for female youth. Male youth with a DRD4 long allele were more likely than those with two DRD4 short alleles to report early sexual onset in negative community environments and not to report early onset in positive community environments. Dopaminergic regulation of adolescent sexual behaviors may operate differently by gender. DRD4 operated as an environmental amplification rather than a vulnerability factor. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  16. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat.

    PubMed

    Bhatt, Suresh; Bhatt, Rekha; Zalcman, Steven S; Siegel, Allan

    2008-02-01

    Feline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems. The present study sought to determine whether a similar relationship exists with respect to interleukin 1-beta (IL-1 beta), whose receptor activation in the medial hypothalamus potentiates defensive rage. Thus, the present study identified the effects of administration of IL-1 beta into the PAG upon defensive rage elicited from the medial hypothalamus. Microinjections of IL-1 beta into the dorsal PAG significantly facilitated defensive rage behavior elicited from the medial hypothalamus in a dose and time dependent manner. In addition, the facilitative effects of IL-1 beta were blocked by pre-treatment with anti-IL-1 beta receptor antibody, while IL-1 beta administration into the PAG had no effect upon predatory attack elicited from the lateral hypothalamus. The findings further demonstrated that IL-1 beta's effects were mediated through 5-HT(2) receptors since pretreatment with a 5-HT(2C) receptors antagonist blocked the facilitating effects of IL-1 beta. An extensive pattern of labeling of IL-1 beta and 5-HT(2C) receptors in the dorsal PAG supported these findings. The present study demonstrates that IL-beta in the dorsal PAG, similar to the medial hypothalamus, potentiates defensive rage behavior and is mediated through a 5-HT(2C) receptor mechanism.

  17. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    PubMed

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Metabotropic glutamate receptor 5 as a potential target for smoking cessation.

    PubMed

    Chiamulera, Cristiano; Marzo, Claudio Marcello; Balfour, David J K

    2017-05-01

    Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high, and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence, they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many "off-target" effects to be used clinically. However, newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence.

  19. Potentiation of capsaicin-induced neurogenic inflammation by 5-HT7 receptors in the rat hind paw: Involvement of calcitonin gen-related peptide.

    PubMed

    Arreola-Peralta, Luis D; Altamirano-Reyna, Frida; Galindo-González, Deni M; Solis-Anguiano, Jessica G; Lacivita, Enza; Leopoldo, Marcello; Terrón, José A

    2018-05-03

    A decrease in the activation threshold of primary sensory neurons to transient receptor potential V1 (TRPV1) stimulation by serotonin 5-HT7 receptors has been reported but no confirmation if this might translate into facilitation of neurogenic inflammation has been provided. We analysed the modulation of capsaicin (CAP)-induced neurogenic inflammation in the rat hind paw by the selective 5-HT7 receptor agonist, LP-44, and the involvement of calcitonin gen-related peptide (CGRP) in this effect. Animals received intra-plantar injections (30 μL) of vehicle, CAP (0.05%, 0.1% and 0.2%), LP-44 (7.5 and 15 nmol) and the combination of LP-44 + CAP; then, the time course of the inflammatory responses was measured. The effect of the 5-HT7 receptor antagonist, SB-269970 (3 mg/kg, s.c.), on responses produced by LP-44 alone and combined with CAP was tested. As expected, CAP produced concentration- and time-dependent inflammatory responses in the hind paw. Interestingly, LP-44 by itself also produced inflammation in a concentration- and time-dependent manner, and magnified CAP-induced responses. Systemic pre-treatment with SB-269970 significantly blunted LP-44 (15 nmol)-induced inflammation as well as magnified inflammatory responses produced by the combination of LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus confirming the involvement of 5-HT7 receptors. Finally, the non-peptide CGRP receptor antagonist, BIBN4096 (3 mg/kg, s.c.), strongly inhibited the potentiated inflammatory responses induced by LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus substantiating their neurogenic nature. Thus, sensitization of CAP-sensitive primary sensory neurons by 5-HT7 receptors may result in facilitation of neurogenic inflammation involving CGRP in the rat hind paw. Copyright © 2018. Published by Elsevier Inc.

  20. Behavioural profiles in the mouse defence test battery suggest anxiolytic potential of 5-HT(1A) receptor antagonists.

    PubMed

    Griebel, G; Rodgers, R J; Perrault, G; Sanger, D J

    1999-05-01

    Compounds varying in selectivity as 5-HT1A receptor antagonists have recently been reported to produce anxiolytic-like effects comparable to those of benzodiazepines in the mouse elevated plus-maze procedure. In view of the potential clinical significance of these findings, the present experiments compared the behavioural effects of diazepam (0.5-3.0 mg/kg) with those of several non-selective 5-HT1A receptor antagonists [NAN-190, 0.1-3.0 mg/kg, MM-77, 0.03-1.0 mg/kg, (S)-UH-301, 0.3-3.0 mg/kg and pindobind-5-HT1A, 0.03-1.0 mg/kg], and three selective 5-HT1A receptor antagonists (WAY100635, 0.01-3.0 mg/kg, p-MPPI, 0.1-3.0 mg/kg and SL88.0338, 0.3-3.0 mg/kg) in the mouse defence test battery (MDTB). In this well-validated anxiolytic screening test, Swiss mice are directly confronted with a natural threat (a rat) as well as situations associated with this threat. Primary measures taken during and after rat confrontation were flight, risk assessment (RA), defensive threat/attack and escape attempts. Diazepam significantly decreased flight reactions after the rat was introduced into the runway, reduced RA activities of mice chased by the rat, increased RA responses displayed when subjects were constrained in a straight alley and reduced defensive upright postures and biting upon forced contact. All the selective 5-HT1A receptor antagonists and NAN-190 also reduced flight, RA in the chase test, and defensive threat and attack behaviours. (S)-UH-301 and pindobind-5-HT1A reduced RA in the chase test, but only partially modified defensive threat and attack. Unlike the other drugs tested, MM-77 produced significant effects only at doses which also markedly reduced spontaneous locomotor activity, suggesting a behaviourally non-specific action. In contrast to diazepam, the 5-HT1A receptor ligands failed to affect RA in the straight alley test. Following removal of the rat from the test area, only diazepam and (S)-UH-301 reduced escape behaviour (contextual defence) at doses

  1. Underexpression of mineralocorticoid receptor in colorectal carcinomas and association with VEGFR-2 overexpression.

    PubMed

    Di Fabio, Francesco; Alvarado, Carlos; Majdan, Agnieszka; Gologan, Adrian; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2007-11-01

    The human mineralocorticoid receptor (MR) is a steroid receptor widely expressed in colorectal mucosa. A significant role for the MR in the reduction of vascular endothelial growth factor receptor-2 (VEGFR-2) mRNA levels has been demonstrated in vitro. To evaluate a potential contribution of MR to colorectal carcinoma progression, we analyzed the expression of MR in relation to VEGFR-2. Fresh human colorectal cancer tissue and adjacent normal mucosa were harvested from 48 consecutive patients. MR and VEGFR-2 mRNA expression levels were determined by real-time reverse transcriptase-polymerase chain reaction and correlated with clinicopathological parameters. A decline of MR expression was observed in all carcinomas compared to normal mucosa. Expression of MR was a median of 11-fold lower in carcinoma compared to the normal mucosa, irrespective of the location, size, stage, and differentiation. MR was a median of 20-fold underexpressed in carcinomas with VEGFR-2 overexpression vs only 9-fold in carcinomas with VEGFR-2 underexpression (p = 0.035, Mann-Whitney test). These findings support the hypothesis that reduction of MR expression may be one of the early events involved in colorectal carcinoma progression. The inverse association between MR and VEGFR-2 expression in carcinoma suggests a potential tumor-suppressive function for MR.

  2. Mu Opioids and Their Receptors: Evolution of a Concept

    PubMed Central

    Pan, Ying-Xian

    2013-01-01

    Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes—primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated. PMID:24076545

  3. Decreased endothelin receptor B expression in large primary uveal melanomas is associated with early clinical metastasis and short survival

    PubMed Central

    Smith, S L; Damato, B E; Scholes, A G M; Nunn, J; Field, J K; Heighway, J

    2002-01-01

    The most devastating aspect of cancer is the metastasis of tumour cells to organs distant from the original tumour site. The major problem facing oncologists treating uveal melanoma, the most common cancer of the eye, is metastatic disease. To lower mortality, it is necessary to increase our understanding of the molecular genetic alterations involved in this process. Using suppression subtractive hybridisation, we have analysed differential gene expression between four primary tumours from patients who have developed clinical metastasis and four primary tumours from patients with no evidence of metastasis to date. We have identified endothelin receptor type B as differentially expressed between these tumours and confirmed this observation using comparative multiplex RT–PCR. In a further 33 tumours, reduced endothelin receptor type B expression correlated with death from metastatic disease. Reduced expression also correlated with other known prognostic indicators, including the presence of epithelioid cells, chromosome 3 allelic imbalance and chromosome 8q allelic imbalance. Endothelin receptor type B expression was also reduced in four out of four primary small cell lung carcinomas compared to normal bronchial epithelium. We also show that the observed down-regulation of endothelin receptor type B in uveal melanoma was not due to gene deletion. Our findings suggest a role for endothelin receptor type B in the metastasis of uveal melanoma and, potentially, in the metastasis of other neural crest tumours. British Journal of Cancer (2002) 87, 1308–1313. doi:10.1038/sj.bjc.6600620 www.bjcancer.com © 2002 Cancer Research UK PMID:12439722

  4. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. A Low-Molecular-Weight Antagonist for the Human Thyrotropin Receptor with Therapeutic Potential for Hyperthyroidism

    PubMed Central

    Neumann, Susanne; Kleinau, Gunnar; Costanzi, Stefano; Moore, Susanna; Jiang, Jian-kang; Raaka, Bruce M.; Thomas, Craig J.; Krause, Gerd; Gershengorn, Marvin C.

    2008-01-01

    Low-molecular-weight (LMW) antagonists for TSH receptor (TSHR) may have therapeutic potential as orally active drugs to block stimulating antibodies (TsAbs) in Graves’ hyperthyroidism. We describe an approach to identify LMW ligands for TSHR based on Org41841, a LMW partial agonist for the LH/choriogonadotropin receptor and TSHR. We used molecular modeling and functional experiments to guide the chemical modification of Org41841. We identified an antagonist (NIDDK/CEB-52) that selectively inhibits activation of TSHR by both TSH and TsAbs. Whereas initially characterized in cultured cells overexpressing TSHRs, the antagonist was also active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs in which it inhibited TSH- and TsAb-induced up-regulation of mRNA transcripts for thyroperoxidase. Our results establish this LMW compound as a lead for the development of higher potency antagonists and serve as proof of principle that LMW ligands that target TSHR could serve as drugs in patients with Graves’ disease. PMID:18669595

  6. GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications.

    PubMed

    Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel

    2009-08-01

    Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of

  7. The interleukin-20 receptor axis in early rheumatoid arthritis: novel links between disease-associated autoantibodies and radiographic progression.

    PubMed

    Kragstrup, Tue Wenzel; Greisen, Stinne Ravn; Nielsen, Morten Aagaard; Rhodes, Christopher; Stengaard-Pedersen, Kristian; Hetland, Merete Lund; Hørslev-Petersen, Kim; Junker, Peter; Østergaard, Mikkel; Hvid, Malene; Vorup-Jensen, Thomas; Robinson, William H; Sokolove, Jeremy; Deleuran, Bent

    2016-03-11

    Rheumatoid arthritis (RA) is often characterized by the presence of rheumatoid factor, anti-citrullinated protein antibodies, and bone erosions. Current therapies can compromise immunity, leading to risk of infection. The interleukin-20 receptor (IL-20R) axis comprising IL-19, IL-20, and IL-24 and their shared receptors activates tissue homeostasis processes but not the immune system. Consequently, modulation of the IL-20R axis may not lead to immunosuppression, making it an interesting drug target. We evaluated the role of the IL-20R axis in RA and associations between plasma cytokine levels and clinical disease. Plasma IL-19, IL-20, and IL-24 levels were measured in early RA patients during a treat-to-target strategy by enzyme-linked immunosorbent assays. The IL-20R1 and IL-22R1 levels in paired peripheral blood mononuclear cells and synovial fluid mononuclear cells from a different cohort of RA patients were evaluated by flow cytometry and confocal microscopy. Monocytes/macrophages were stimulated with heat-aggregated human immunoglobulin immune complexes and immune complexes containing citrullinated fibrinogen, and osteoclasts were incubated with IL-19, IL-20, and IL-24. The plasma concentrations of IL-20 and IL-24 (but not IL-19) were increased in early RA patients compared with healthy controls (both P < 0.002) and decreased after 6 months of treatment (both P < 0.0001). The expression of IL-22R1 (but not IL-20R1) was increased on monocytes from RA synovial fluid compared with monocytes from both RA and healthy control peripheral blood. The plasma concentrations of IL-20 and IL-24 were increased in rheumatoid factor and anti-citrullinated protein antibody positive compared with negative early RA patients (all P < 0.0001). Immune complexes stimulated the production of the IL-20R cytokines by monocytes/macrophages. Increased baseline plasma concentrations of IL-20 and IL-24 were associated with Sharp-van der Heijde score progression after 24

  8. Cortical Reorganization in Dyslexic Children after Phonological Training: Evidence from Early Evoked Potentials

    ERIC Educational Resources Information Center

    Spironelli, Chiara; Penolazzi, Barbara; Vio, Claudio; Angrilli, Alessandro

    2010-01-01

    Brain plasticity was investigated in 14 Italian children affected by developmental dyslexia after 6 months of phonological training. The means used to measure language reorganization was the recognition potential, an early wave, also called N150, elicited by automatic word recognition. This component peaks over the left temporo-occipital cortex…

  9. High‐fat diet induces protein kinase A and G‐protein receptor kinase phosphorylation of β2‐adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts

    PubMed Central

    Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan

    2017-01-01

    Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve.Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts.In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function.We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium.The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a

  10. Temporally selective attention modulates early perceptual processing: event-related potential evidence.

    PubMed

    Sanders, Lisa D; Astheimer, Lori B

    2008-05-01

    Some of the most important information we encounter changes so rapidly that our perceptual systems cannot process all of it in detail. Spatially selective attention is critical for perception when more information than can be processed in detail is presented simultaneously at distinct locations. When presented with complex, rapidly changing information, listeners may need to selectively attend to specific times rather than to locations. We present evidence that listeners can direct selective attention to time points that differ by as little as 500 msec, and that doing so improves target detection, affects baseline neural activity preceding stimulus presentation, and modulates auditory evoked potentials at a perceptually early stage. These data demonstrate that attentional modulation of early perceptual processing is temporally precise and that listeners can flexibly allocate temporally selective attention over short intervals, making it a viable mechanism for preferentially processing the most relevant segments in rapidly changing streams.

  11. P2X1 Receptor-Mediated Ca2+ Influx Triggered by DA-9801 Potentiates Nerve Growth Factor-Induced Neurite Outgrowth.

    PubMed

    Back, Moon Jung; Lee, Hae Kyung; Lee, Joo Hyun; Fu, Zhicheng; Son, Mi Won; Choi, Sang Zin; Go, Hyo Sang; Yoo, Sungjae; Hwang, Sun Wook; Kim, Dae Kyong

    2016-11-16

    Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.

  12. Breast density and parenchymal texture measures as potential risk factors for estrogen-receptor positive breast cancer

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2014-03-01

    Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.

  13. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    ERIC Educational Resources Information Center

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  14. Do unliganded thyroid hormone receptors have physiological functions?

    PubMed

    Chassande, O

    2003-08-01

    Thyroid hormone (TH) is required for the development of vertebrates and exerts numerous homeostatic functions in adults. TH acts through nuclear receptors which control the transcription of target genes. Unliganded and liganded thyroid hormone receptors (TRs) have been shown to exert opposite effects on the transcription of target genes in vitro. However, the occurance of an aporeceptor activity in vivo and its potential physiological significance has not been clearly addressed. Several data generated using experimental hypothyroidism and thyrotoxicosis in wild type and TR knockout mice support the notion that apoTRs have an intrinsic activity in several tIssues. ApoTRs, and in particular TRalpha1, are predominant during the early stages of vertebrate development and must be turned into holoTRs for post-natal development to proceed normally. However, the absence of striking alterations of embryonic and fetal development in mice devoid of TRs indicates that apoTRs do not play a fundamental role. During development, as well as in adults, apoTRs rather appears as a system which increases the range of transcriptional responses to moderate variations of T3.

  15. Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis

    PubMed Central

    Tokuda, Kazuhiro; O’Dell, Kazuko A.; Izumi, Yukitoshi; Zorumski, Charles F.

    2010-01-01

    Benzodiazepines (BDZs) enhance γ-aminobutyric acid-A (GABAA) receptor inhibition by direct actions on central BDZ receptors (CBRs). Although some BDZs also bind mitochondrial receptors (translocator protein 18kDa, TSPO) and promote the synthesis of GABA-enhancing neurosteroids, the role of neurosteroids in the clinical effects of BDZs is unknown. In rat hippocampal slices, we compared midazolam, an anesthetic BDZ with clonazepam, an anticonvulsant/anxiolytic BDZ that activates CBRs selectively. Midazolam, but not clonazepam, increased neurosteroid levels in CA1 pyramidal neurons without changing TSPO immunostaining. Midazolam, but not clonazepam, also augmented a form of spike inhibition following stimulation adjacent to the pyramidal cell layer and inhibited induction of long-term potentiation. These effects were prevented by finasteride, an inhibitor of neurosteroid synthesis, or 17PA (17-phenyl-(3α, 5α)-androst-16-en-3-ol), a blocker of neurosteroid effects on GABAA receptors. Moreover, the synaptic effects were mimicked by a combination of clonazepam with FGIN, a selective TSPO agonist, or a combination of clonazepam with exogenous allopregnanolone. Consistent with these in vitro results, finasteride abolished the effects of midazolam on contextual fear learning when administrated one day prior to midazolam injection. Thus, dual activation of CBRs and TSPO appears to result in unique actions of clinically-important BDZs. Furthermore, endogenous neurosteroids are shown to be important regulators of pyramidal neuron function and synaptic plasticity. PMID:21159950

  16. Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.

    PubMed

    Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Noble, Denis; Giles, Wayne

    2017-11-01

    In healthy mammalian hearts the action potential (AP) waveform initiates and modulates each contraction, or heartbeat. As a result, AP height and duration are key physiological variables. In addition, rate-dependent changes in ventricular AP duration (APD), and variations in APD at a fixed heart rate are both reliable biomarkers of electrophysiological stability. Present guidelines for the likelihood that candidate drugs will increase arrhythmias rely on small changes in APD and Q-T intervals as criteria for safety pharmacology decisions. However, both of these measurements correspond to the final repolarization of the AP. Emerging clinical evidence draws attention to the early repolarization phase of the action potential (and the J-wave of the ECG) as an additional important biomarker for arrhythmogenesis. Here we provide a mechanistic background to this early repolarization syndrome by summarizing the evidence that both the initial depolarization and repolarization phases of the cardiac action potential can exhibit distinct time- and voltage-dependent thresholds, and also demonstrating that both can show regenerative all-or-none behaviour. An important consequence of this is that not all of the dynamics of action potential repolarization in human ventricle can be captured by data from single myocytes when these results are expressed as 'repolarization reserve'. For example, the complex pattern of cell-to-cell current flow that is responsible for AP conduction (propagation) within the mammalian myocardium can change APD and the Q-T interval of the electrocardiogram alter APD stability, and modulate responsiveness to pharmacological agents (such as Class III anti-arrhythmic drugs). © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  17. Multifocal blue-on-yellow visual evoked potentials in early glaucoma.

    PubMed

    Klistorner, Alexander; Graham, Stuart L; Martins, Alessandra; Grigg, John R; Arvind, Hemamalini; Kumar, Rajesh S; James, Andrew C; Billson, Francis A

    2007-09-01

    To determine the sensitivity and specificity of blue-on-yellow multifocal visual evoked potentials (mfVEPs) in early glaucoma. Cross-sectional study. Fifty patients with a confirmed diagnosis of early glaucoma and 60 normal participants. Black-and-white mfVEPs and blue-on-yellow mfVEPs were recorded using the Accumap version 2.0 (ObjectiVision Pty. Ltd., Sydney, Australia). All patients also underwent achromatic standard automated perimetry (SAP). Multifocal VEP amplitude and latency values in glaucoma patients were analyzed and compared with those of the normal controls. Based on the definition of visual field defect, in the group of glaucomatous eyes with SAP defects, amplitude of blue-on-yellow mfVEP was abnormal in all 64 cases (100% sensitivity), whereas black-and-white mfVEP missed 5 cases (92.2% sensitivity). Generally, larger scotomata were noted on blue-on-yellow mfVEP compared with black-and-white mfVEP for the same eyes. There was high topographic correspondence between SAP and amplitude of blue-on-yellow mfVEP and significant (P<0.0001) correlation between them (correlation coefficient, 0.73). Abnormal amplitude was detected in 3 of 60 eyes of control subjects (95% specificity). There was, however, no correlation between visual field defect and latency delay in glaucoma patients. Although there was a significant difference between averaged latency of control and glaucoma eyes, values considerably overlapped. The blue-on-yellow mfVEP is a sensitive and specific tool for detecting early glaucoma based on amplitude analysis.

  18. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    PubMed

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  19. Adenosine receptor activation potentiates phosphoinositide hydrolysis and arachidonic acid release in DDT1-MF2 cells: putative interrelations.

    PubMed

    Schachter, J B; Yasuda, R P; Wolfe, B B

    1995-09-01

    Studies were undertaken in an effort to discern possible mechanisms by which the A1 adenosine receptor agonist cyclopentyladenosine (CPA) enhances the norepinephrine-stimulated (NE-stimulated) hydrolysis of phosphoinositides in DDT1-MF2 cells. Measurements of arachidonic acid release revealed similar behaviours to those observed in measurements of phosphoinositide hydrolysis. In the presence of NE, both second messenger responses were potentiated by the addition of CPA, whereas in the absence of NE, CPA had little or no effect on either second messenger. The stimulation and potentiation of both second messenger responses were enhanced in the presence of extracellular calcium, and in each case these effects were persistent over time. For either second messenger system the stimulation by NE and the potentiation by CPA appeared to utilize separate mechanisms as evidenced by the fact that the potentiations by CPA were selectively antagonized by a cAMP analogue or by pertussis toxin, whereas the stimulations by NE were essentially unaffected by these agents. Inhibition of phospholipase A2 (PLA2) also blocked the potentiation of PLC by CPA, without affecting NE-stimulated phosphoinositide hydrolysis. Furthermore, in the presence of CPA, the exogenous administration of PLA2 was found to stimulate phosphoinositide hydrolysis in these cells. These data are consistent with a hypothesis whereby the apparent potentiation of NE-stimulated phosphoinositide hydrolysis by CPA is actually due to the stimulation by CPA of a second pathway of phospholipase C activity which is additive to that of NE. The activation of PLC and PLA2 by NE produces phospholipid products which may play a permissive role in the pathway coupling adenosine A1 receptors to these phospholipases. The formation of lysophosphatidic acid is suggested as one possible mediator of this permissive effect.

  20. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Lindstrom, Jon

    2018-06-01

    Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2) 2 α5, (α4β2) 2 β3 and (α6β2) 2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  1. Synthesis and biological evaluation of aryl isoxazole derivatives as metabotropic glutamate receptor 1 antagonists: a potential treatment for neuropathic pain.

    PubMed

    Cho, Gyeong Hi; Kim, TaeHun; Son, Woo Seung; Seo, Seon Hee; Min, Sun-Joon; Cho, Yong Seo; Keum, Gyochang; Jeong, Kyu-Sung; Koh, Hun Yeong; Lee, Jiyoun; Pae, Ae Nim

    2015-03-15

    Glutamate is the major excitatory neurotransmitter and known to activate the metabotropic and ionotropic glutamate receptors in the brain. Among these glutamate receptors, metabotropic glutamate receptor 1 (mGluR1) has been implicated in various brain disorders including anxiety, schizophrenia and chronic pain. Several studies demonstrated that the blockade of mGluR1 signaling reduced pain responses in animal models, suggesting that mGluR1 is a promising target for the treatment of neuropathic pain. In this study, we have developed mGluR1 antagonists with an aryl isoxazole scaffold, and identify several compounds that are orally active in vivo. We believe that these compounds can serve as a useful tool for the investigation of the role of mGluR1 and a promising lead for the potential treatment of neuropathic pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    PubMed Central

    Meirson, Tomer; Samson, Abraham O; Gil-Henn, Hava

    2017-01-01

    The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK) was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. PMID:28572720

  3. A-kinase anchoring protein 150 mediates transient receptor potential family V type 1 sensitivity to phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Jeske, Nathaniel A; Por, Elaine D; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A; Akopian, Armen N; Henry, Michael A; Gomez, Ruben

    2011-06-08

    A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) anchors AKAP150 to the plasma membrane in naive conditions and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP(2) on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP(2) led to significant changes in the association of AKAP150 and TRPV1. Following PIP(2) degradation, increased TRPV1:AKAP150 coimmunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150(-/-) animals indicated that PIP(2)-mediated inhibition of TRPV1 in the whole-cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP(2) to neurons isolated from AKAP150 wild-type mice reduced PKA sensitization of TRPV1 compared with isolated neurons from AKAP150(-/-) mice. These findings suggest that PIP(2) degradation increases AKAP150 association with TRPV1 in the whole-cell environment, leading to sensitization of the receptor to nociceptive stimuli.

  4. The potential for early and rapid pathogen detection within poultry processing through hyperspectral microscopy

    USDA-ARS?s Scientific Manuscript database

    The acquisition of hyperspectral microscopic images containing both spatial and spectral data has shown potential for the early and rapid optical classification of foodborne pathogens. A hyperspectral microscope with a metal halide light source and acousto-optical tunable filter (AOTF) collects 89 ...

  5. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice.

    PubMed

    Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A

    2014-02-01

    NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.

  6. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus.

    PubMed

    Navakkode, Sheeja; Chew, Katherine C M; Tay, Sabrina Jia Ning; Lin, Qingshu; Behnisch, Thomas; Soong, Tuck Wah

    2017-11-14

    Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABA A -receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.

  7. D-1 and D-2 receptor blockade have additive cataleptic effects in mice, but receptor effects may interact in opposite ways.

    PubMed

    Klemm, W R; Block, H

    1988-02-01

    The dopaminergic role of D-1 and D-2 receptors in catalepsy was evaluated using drugs with preferential receptor affinities. The D-1 antagonist, SCH 23390, caused distinct catalepsy in mice at 1, 2, and 10 mg/kg, IP, but not at two lower doses. The selective D-1 blocker, molindone, also caused catalepsy at 5 and 10 mg/kg; and blockade of both receptor types produced additive cataleptogenic effects. Apomorphine (4 mg/kg), which is an agonist for both receptors, potentiated SCH 23390-induced catalepsy much more than it did the catalepsy induced by molindone; the potentiation was produced by higher, not lower, doses of apomorphine. To determine if the apomorphine potentiation was mediated by D-1 or D-2 receptors, we tested selective agonists in mice that were concurrently injected with selective blockers. SCH 23390-induced catalepsy was potentiated by a large dose of the D-2 agonist, bromocriptine. The catalepsy of D-2 blockade with molindone was not potentiated by the D-1 agonist, SKF 38393, which slightly disrupted the catalepsy of D-2 blockade. We conclude that catalepsy is not a simple D-2 blockade phenomenon and that preferential antagonism of either receptor type can cause catalepsy. Catalepsy is most profound when both receptor types are blocked. Dopamine agonists, in large concentrations, are known to promote movements, and thus it is not surprising that they tend to disrupt catalepsy.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Maturation profile of inferior olivary neurons expressing ionotropic glutamate receptors in rats: role in coding linear accelerations.

    PubMed

    Li, Chuan; Han, Lei; Ma, Chun-Wai; Lai, Suk-King; Lai, Chun-Hong; Shum, Daisy Kwok Yan; Chan, Ying-Shing

    2013-07-01

    Using sinusoidal oscillations of linear acceleration along both the horizontal and vertical planes to stimulate otolith organs in the inner ear, we charted the postnatal time at which responsive neurons in the rat inferior olive (IO) first showed Fos expression, an indicator of neuronal recruitment into the otolith circuit. Neurons in subnucleus dorsomedial cell column (DMCC) were activated by vertical stimulation as early as P9 and by horizontal (interaural) stimulation as early as P11. By P13, neurons in the β subnucleus of IO (IOβ) became responsive to horizontal stimulation along the interaural and antero-posterior directions. By P21, neurons in the rostral IOβ became also responsive to vertical stimulation, but those in the caudal IOβ remained responsive only to horizontal stimulation. Nearly all functionally activated neurons in DMCC and IOβ were immunopositive for the NR1 subunit of the NMDA receptor and the GluR2/3 subunit of the AMPA receptor. In situ hybridization studies further indicated abundant mRNA signals of the glutamate receptor subunits by the end of the second postnatal week. This is reinforced by whole-cell patch-clamp data in which glutamate receptor-mediated miniature excitatory postsynaptic currents of rostral IOβ neurons showed postnatal increase in amplitude, reaching the adult level by P14. Further, these neurons exhibited subthreshold oscillations in membrane potential as from P14. Taken together, our results support that ionotropic glutamate receptors in the IO enable postnatal coding of gravity-related information and that the rostral IOβ is the only IO subnucleus that encodes spatial orientations in 3-D.

  9. Ecosystems for Early Warning: Potential Use of Bioindicators

    NASA Astrophysics Data System (ADS)

    Zommers, Z. A.; Sitati, A. M.; Habilov, M.

    2014-12-01

    Bioindicators are biological processes, species or communities, which are used to assess changes in the environment or environmental quality. Theoretically, they could also be used to provide advanced warning of hazards. They are inexpensive, locally relevant, and can encourage stakeholder participation in early warning system development and maintenance. While bioindicators have been identified for environmental problems such as air pollution and water pollution, and have been used to assess health of ecosystems, little information is available on bioindicators for climate related hazards. This presentation reviews possible biodindicators for droughts, wildfires and tropical cyclones, based on the results of a literature review. It will also present results from a household survey of 36 communities in Kenya, Ghana and Burkina Faso. Indigenous knowledge offers a wealth of potential bioindicators; including animal and insect behavior, and plant phenology. Yet significant study is needed to verify these indicators and evaluate them against criteria such as specificity, variability, monotonicity, practicality and relevance. Bioindicators may not be specific to individual hazards and may provide limited advanced warning, as response often occurs after the actual onset of the hazard. Furthermore, indicators may become increasingly unreliable due to climate change itself. There is a need for a large-scale assessment of hazard bioindicators, which should also include forecasts of bioindicator change under global warming, and a cost-benefit analysis of the value of integrating bioindicators into early warning systems. Lessons can be drawn from ethnopharmacology. Coordinated research on this topic could contribute to the resilience of both ecosystems and human livelihoods.

  10. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    PubMed Central

    Seebacher, Frank; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

  11. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles.

    PubMed

    Seebacher, Frank; Murray, Shauna A

    2007-03-14

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response.

  12. Painful purinergic receptors.

    PubMed

    Donnelly-Roberts, Diana; McGaraughty, Steve; Shieh, Char-Chang; Honore, Prisca; Jarvis, Michael F

    2008-02-01

    Multiple P2 receptor-mediated mechanisms exist by which ATP can alter nociceptive sensitivity following tissue injury. Evidence from a variety of experimental strategies, including genetic disruption studies and the development of selective antagonists, has indicated that the activation of P2X receptor subtypes, including P2X(3), P2X(2/3), P2X(4) and P2X(7), and P2Y (e.g., P2Y(2)) receptors, can modulate pain. For example, administration of a selective P2X(3) antagonist, A-317491, has been shown to effectively block both hyperalgesia and allodynia in different animal models of pathological pain. Intrathecally delivered antisense oligonucleotides targeting P2X(4) receptors decrease tactile allodynia following nerve injury. Selective antagonists for the P2X(7) receptor also reduce sensitization in animal models of inflammatory and neuropathic pain, providing evidence that purinergic glial-neural interactions are important modulators of noxious sensory neurotransmission. Furthermore, activation of P2Y(2) receptors leads to sensitization of polymodal transient receptor potential-1 receptors. Thus, ATP acting at multiple purinergic receptors, either directly on neurons (e.g., P2X(3), P2X(2/3), and P2Y receptors) or indirectly through neural-glial cell interactions (P2X(4) and P2X(7) receptors), alters nociceptive sensitivity. The development of selective antagonists for some of these P2 receptors has greatly aided investigations into the nociceptive role of ATP. This perspective highlights some of the recent advances to identify selective P2 receptor ligands, which has enhanced the investigation of ATP-related modulation of pain sensitivity.

  13. SELECTIVE POTENTIATION OF THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 2 BLOCKS PHENCYCLIDINE-INDUCED HYPERLOCOMOTION AND BRAIN ACTIVATION

    PubMed Central

    HACKLER, E. A.; BYUN, N. E.; JONES, C. K.; WILLIAMS, J. M.; BAHEZA, R.; SENGUPTA, S.; GRIER, M. D.; AVISON, M.; CONN, P. J.; GORE, J. C.

    2013-01-01

    Previous preclinical and clinical studies have demonstrated the efficacy of group II metabotropic glutamate receptor (mGluR) agonists as potential antipsychotics. Recent studies utilizing mGluR2-, mGluR3-, and double knockout mice support that the antipsychotic effects of those compounds are mediated by mGluR2. Indeed, biphenyl indanone-A (BINA), an allosteric potentiator of mGluR2, is effective in experimental models of psychosis, blocking phencyclidine (PCP)-induced hyperlocomotion and prepulse inhibition deficits in mice. In this study, we administered the NMDA receptor antagonist PCP (5.6 mg/kg i.p.) to rats, an established animal model predictive of schizophrenia. Here, we show that BINA (32 mg/kg i.p.) attenuated PCP-induced locomotor activity in rats. Using behaviorally relevant doses of BINA and PCP, we performed pharmacological magnetic resonance imaging (phMRI) to assess the specific brain regions that underlie the psychotomimetic effects of PCP, and examined how BINA modulated the PCP-induced functional changes in vivo. In anesthetized rats, acute administration of PCP produced robust, sustained blood oxygenation level-dependent (BOLD) activation in specific cortical, limbic, thalamic, and striatal regions. Pretreatment with BINA suppressed the amplitude of the BOLD response to PCP in the prefrontal cortex, caudaute–putamen, nucleus accumbens, and mediodorsal thalamus. Our results show key brain structures underlying PCP-induced behaviors in a preclinical model of schizophrenia, and, importantly, its reversal by potentiation of mGluR2 by BINA, revealing specific brain regions functionally involved in its pharmacological action. Finally, our findings bolster the growing body of evidence that mGluR2 is a viable target for the treatment of schizophrenia. PMID:20350588

  14. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  15. A new chromanone derivative isolated from Hypericum lissophloeus (Hypericaceae) potentiates GABAA receptor currents in a subunit specific fashion.

    PubMed

    Crockett, Sara; Baur, Roland; Kunert, Olaf; Belaj, Ferdinand; Sigel, Erwin

    2016-02-15

    A phytochemical investigation of the lipophilic extract of Hypericum lissophloeus (smoothbark St. John's wort, Hypericaceae) was conducted, resulting in the isolation and identification of a new chromanone derivative: 5,7-dihydroxy-2,3-dimethyl-6-(3-methyl-but-2-enyl)-chroman-4-one (1). This compound was demonstrated to act as a potent stimulator of currents elicited by GABA in recombinant α1β2γ2 GABAA receptors, with a half-maximal potentiation observed at a concentration of about 4μM and a maximal potentiation of >4000%. Significant potentiation was already evident at a concentration as low as 0.1μM. Extent of potentiation strongly depends on the type of α subunit, the type of β subunit and the presence of the γ subunit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The G protein-coupled estrogen receptor (GPER/GPR30) may serve as a prognostic marker in early-stage cervical cancer.

    PubMed

    Friese, Klaus; Kost, Bernd; Vattai, Aurelia; Marmé, Frederik; Kuhn, Christina; Mahner, Sven; Dannecker, Christian; Jeschke, Udo; Heublein, Sabine

    2018-01-01

    were detected. Finally, immunopositivity of GPER cyt was predictive for favourable overall as well as recurrence-free survival in cervical cancer of early stage (FIGO I). This retrospective study reports GPER cyt to be associated with improved overall and recurrence-free survival in early-stage cervical cancer. Further investigations are needed thus to determine whether this observation may be of clinical impact. Interestingly, Raloxifene-a GPER-activating selective estrogen receptor modulator-has recently been demonstrated to be preventive for cervical cancer relapse in mice. Whether this effect is only reliant on raloxifene blocking ERα or may also be related to activation of GPER remains to be determined.

  17. Expression and purification of functional PDGF receptor beta.

    PubMed

    Shang, Qingbin; Zhao, Liang; Wang, Xiaojing; Wang, Meimei; Sui, Sen-Fang; Mi, Li-Zhi

    2017-07-29

    Platelet Derived Growth Factor receptors (PDGFRs), members of receptor tyrosine kinase superfamily, play essential roles in early hematopoiesis, angiogenesis and organ development. Dysregulation of PDGF receptor signaling under pathological conditions associates with cancers, vascular diseases, and fibrotic diseases. Therefore, they are attractive targets in drug development. Like any other membrane proteins with a single-pass transmembrane domain, the high-resolution structural information of the full-length PDGF receptors is still not resolved. It is caused, at least in part, by the technical challenges in the expression and purification of the functional, full-length PDGF receptors. Herein, we reported our experimental details in expression and purification of the full-length PDGFRβ from mammalian cells. We found that purified PDGFRβ remained in two different oligomeric states, presumably the monomer and the dimer, with basal kinase activity in detergent micelles. Addition of PDGF-B promoted dimerization and elevated kinase activity of the receptor, suggesting that purified receptors were functional. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Src-JNK Potentiation of Estrogen Receptor AF-1; Mechanism, and Role in Estrogen Action in Breast Cancer

    DTIC Science & Technology

    2002-08-01

    an increase in estrogen receptor activity. A second objective is to understand the potential role of Src in estrogen induced mammary ductal development ...bPcis i on to The Ser-ilS-dependent link wt GR- t KaroBio AB, a Swedish pharmaceutical development company with CBP is in addition to the Ser-1l8...the ECL detection kit (Amersham Pharmacia Biotech ). phoresis, stained with Coomassic Blue to monitor expression, and sub- Fluorescence Microscopy

  19. Molecular Perspectives for mu/delta Opioid Receptor Heteromers as Distinct, Functional Receptors

    PubMed Central

    Ong, Edmund W.; Cahill, Catherine M.

    2014-01-01

    Opioid receptors are the sites of action for morphine and the other opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Understandings of the nature, behavior, and role of these opioid receptor heteromers are developing. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. There is now considerable evidence demonstrating M/DOR to be an extant and physiologically relevant receptor species. Participating in the cellular environment as a distinct receptor type, M/DOR availability is complexly regulated and M/DOR exhibits unique pharmacology from that of other opioid receptors (ORs), including its constituents. M/DOR appears to have a range of actions that vary in a ligand- (or ligands-) dependent manner. These actions can meaningfully affect the clinical effects of opioid drugs: strategies targeting M/DOR may be therapeutically useful. This review presents and discusses developments in these understandings with a focus on the molecular nature and activity of M/DOR in the context of therapeutic potentials. PMID:24709907

  20. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris

    PubMed Central

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom. PMID:26974325

  1. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris.

    PubMed

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William; Muscoli, Carolina; Colasanti, Marco

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom.

  2. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field.

    PubMed

    Moran, Magdalene M; Szallasi, Arpad

    2018-06-01

    Control of chronic pain is frequently inadequate and/or associated with intolerable adverse effects, prompting a frantic search for new therapeutics and new therapeutic targets. Nearly two decades of preclinical and clinical research supports the involvement of transient receptor potential (TRP) channels in temperature perception, nociception and sensitization. Although there has been considerable excitement around the therapeutic potential of this channel family since the cloning and identification of TRPV1 cation channels as the capsaicin receptor more than 20 years ago, only modulators of a few channels have been tested clinically. TRPV1 channel antagonists have suffered from side effects related to the channel's role in temperature sensation; however, high dose formulations of capsaicin have reached the market and shown therapeutic utility. A number of potent, small molecule antagonists of TRPA1 channels have recently advanced into clinical trials for the treatment of inflammatory and neuropathic pain, and TRPM8 antagonists are following closely behind for cold allodynia. TRPV3, TRPV4, TRPM2 and TRPM3 channels have also been of significant interest. This review discusses the preclinical promise and status of novel analgesic agents that target TRP channels and the challenges that these compounds may face in development and clinical practice. This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc. © 2017 The British Pharmacological Society.

  3. Gene expression analysis in zebrafish embryos: a potential approach to predict effect concentrations in the fish early life stage test.

    PubMed

    Weil, Mirco; Scholz, Stefan; Zimmer, Michaela; Sacher, Frank; Duis, Karen

    2009-09-01

    Based on the hypothesis that analysis of gene expression could be used to predict chronic fish toxicity, the zebrafish (Danio rerio) embryo test (DarT), developed as a replacement method for the acute fish test, was expanded to a gene expression D. rerio embryo test (Gene-DarT). The effects of 14 substances on lethal and sublethal endpoints of the DarT and on expression of potential marker genes were investigated: the aryl hydrocarbon receptor 2, cytochrome P450 1A (cypla), heat shock protein 70, fizzy-related protein 1, the transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene family protein g (avian) 1 and NF-E2-p45-related factor, and heme oxygenase 1 (hmox1). After exposure of zebrafish embryos for 48 h, differential gene expression was evaluated using reverse transcriptase-polymerase chain reaction, gel electrophoresis, and densitometric analysis of the gels. All tested compounds significantly affected the expression of at least one potential marker gene, with cyp1a and hmox1 being most sensitive. Lowest-observed-effect concentrations (LOECs) for gene expression were below concentrations resulting in 10% lethal effects in the DarT. For 10 (3,4- and 3,5-dichloroaniline, 1,4-dichlorobenzene, 2,4-dinitrophenol, atrazine, parathion-ethyl, chlorotoluron, genistein, 4-nitroquinoline-1-oxide, and cadmium) out of the 14 tested substances, LOEC values derived with the Gene-DarT differ by a factor of less than 10 from LOEC values of fish early life stage tests with zebrafish. For pentachloroaniline and pentachlorobenzene, the Gene-DarT showed a 23- and 153-fold higher sensitivity, respectively, while for lindane, it showed a 13-fold lower sensitivity. For ivermectin, the Gene-DarT was by a factor of more than 1,000 less sensitive than the acute fish test. The results of the present study indicate that gene expression analysis in zebrafish embryos could principally be used to predict effect concentrations in the fish early life stage test.

  4. Ionotropic and metabotropic receptor mediated airway sensory nerve activation.

    PubMed

    Lee, Min-Goo; Kollarik, Marian; Chuaychoo, Benjamas; Undem, Bradley J

    2004-01-01

    There are several receptors capable of inducing activating generator potentials in cough-associated afferent terminals in the airways. The chemical receptors leading to generator potentials can be subclassified into ionotropic and metabotropic types. An ionotropic receptor has an agonist-binding domain, and also serves directly as an ion channel that is opened upon binding of the agonist. Examples of ionotropic receptors found in airway sensory nerve terminals include receptors for serotonin (5-HT3 receptors), ATP (P2X receptors), acetylcholine (nicotinic receptors), receptors for capsaicin and related vanilloids (TRPV1 receptors), and acid receptors (acid sensing ion channels). Afferent nerve terminals can also be depolarized via activation of metabotropic or G-protein coupled receptors (GPCRs). Among the GPCRs that can lead to activation of airway afferent fibers include bradykinin B2 and adenosine A1 receptors. The signaling events leading to GPCR-mediated membrane depolarization are more complex than that seen with ionotropic receptors. The GPCR-mediated effects are thought to occur through classical second messenger systems such as activation of phospholipase C. This may lead to membrane depolarization through interaction with specific ionotropic receptors (such as TRPV1) and/or various types of calcium activated channels.

  5. Endothelin-1 signalling controls early embryonic heart rate in vitro and in vivo.

    PubMed

    Karppinen, S; Rapila, R; Mäkikallio, K; Hänninen, S L; Rysä, J; Vuolteenaho, O; Tavi, P

    2014-02-01

    Spontaneous activity of embryonic cardiomyocytes originates from sarcoplasmic reticulum (SR) Ca(2+) release during early cardiogenesis. However, the regulation of heart rate during embryonic development is still not clear. The aim of this study was to determine how endothelin-1 (ET-1) affects the heart rate of embryonic mice, as well as the pathway through which it exerts its effects. The effects of ET-1 and ET-1 receptor inhibition on cardiac contraction were studied using confocal Ca(2+) imaging of isolated mouse embryonic ventricular cardiomyocytes and ultrasonographic examination of embryonic cardiac contractions in utero. In addition, the amount of ET-1 peptide and ET receptor a (ETa) and b (ETb) mRNA levels were measured during different stages of development of the cardiac muscle. High ET-1 concentration and expression of both ETa and ETb receptors was observed in early cardiac tissue. ET-1 was found to increase the frequency of spontaneous Ca(2+) oscillations in E10.5 embryonic cardiomyocytes in vitro. Non-specific inhibition of ET receptors with tezosentan caused arrhythmia and bradycardia in isolated embryonic cardiomyocytes and in whole embryonic hearts both in vitro (E10.5) and in utero (E12.5). ET-1-mediated stimulation of early heart rate was found to occur via ETb receptors and subsequent inositol trisphosphate receptor activation and increased SR Ca(2+) leak. Endothelin-1 is required to maintain a sufficient heart rate, as well as to prevent arrhythmia during early development of the mouse heart. This is achieved through ETb receptor, which stimulates Ca(2+) leak through IP3 receptors. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    PubMed Central

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets. PMID:23060857

  7. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.

    PubMed

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets.

  8. Dipentylammonium Binds to the Sigma-1 Receptor and Protects Against Glutamate Toxicity, Attenuates Dopamine Toxicity and Potentiates Neurite Outgrowth in Various Cultured Cell Lines.

    PubMed

    Brimson, James M; Safrany, Stephen T; Qassam, Heider; Tencomnao, Tewin

    2018-03-27

    Alzheimer's disease is a neurodegenerative disease that affects 44 million people worldwide, costing the world $605 billion to care for those affected not taking into account the physical and psychological costs for those who care for Alzheimer's patients. Dipentylammonium is a simple amine, which is structurally similar to a number of other identified sigma-1 receptor ligands with high affinities such as (2R-trans)-2butyl-5-heptylpyrrolidine, stearylamine and dodecylamine. This study investigates whether dipentylammonium is able to provide neuroprotective effects similar to those of sigma-1 receptor agonists such as PRE-084. Here we identify dipentylammonium as a sigma-1 receptor ligand with nanomolar affinity. We have found that micromolar concentrations of dipentylammonium protect from glutamate toxicity and prevent NFκB activation in HT-22 cells. Micromolar concentrations of dipentylammonium also protect stably expressing amyloid precursor protein Swedish mutant (APP/Swe) Neuro2A cells from toxicity induced by 150 μM dopamine, suggesting that dipentylammonium may be useful for the treatment of Parkinsonian symptoms in Alzheimer's patients which are often associated with a more rapid deterioration of cognitive and physical ability. Finally, we found that low micromolar concentrations of dipentylammonium could out preform known sigma-1 receptor agonist PRE-084 in potentiating neurite outgrowth in Neuro2A cells, further suggesting that dipentylammonium has a potential use in the treatment of neurodegenerative diseases and could be acting through the sigma-1 receptor.

  9. The effects of N-Methyl-D-Aspartate receptor blockade during the early neurodevelopmental period on emotional behaviors and cognitive functions of adolescent Wistar rats.

    PubMed

    Kocahan, Sayad; Akillioglu, Kubra; Binokay, Secil; Sencar, Leman; Polat, Sait

    2013-05-01

    The N-Methyl-D-Aspartate (NMDA) receptor is expressed abundantly in the brain and plays an important role in neuronal development, learning and memory, neurodegenerative diseases, and neurogenesis. In this study, we evaluated the effects of NMDA receptor blockade during the early neurodevelopmental period on exploratory locomotion, anxiety-like behaviors and cognitive functions of adolescent Wistar rats. NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in rats (0.25 mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF), elevated plus maze (EPM) and passive avoidance (PA) tests were used to evaluate exploratory locomotion, anxiety-like behaviors and cognitive functions. In the OF test, MK-801 caused an increase in locomotion behavior (p < 0.01) and in the frequency of rearing (p < 0.05). In the EPM test, MK-801 treatment increased the time spent in the open arms, the number of open arm entries and the amount of head dipping (p < 0.01). MK-801 treatment caused no statistical difference compared to the control group in the PA test (p > 0.05). Chronic NMDA receptor blockade during the critical period of maturation for the glutamatergic brain system (postnatal days 7-10) produces locomotor hyperactivity and decreased anxiety levels, but has no significant main effect on cognitive function during adolescence.

  10. Hyperestrogenemia and presence of estrogen receptors associated with an epithelial ovarian tumor of low malignant potential.

    PubMed

    Ben-Hur, H; Dgani, R; Insler, V; Lifschitz-Mercer, B; Blickstein, I; Mor, G; Kohen, F; Shani, A; Biran, H

    1996-01-01

    An 80-year-old woman presented with breast congestion, tenderness and pain. Mammography was normal. Circulating estradiol was markedly elevated, while LH and FSH were low. Pelvic examination and imaging revealed an ovarian mass which was extirpated during total abdominal hysterectomy and bilateral salpingo-oophorectomy. Histopathology revealed an ovarian mucinous cystadenocarcinoma of low malignant potential, stage 1. The tumor was positively stained for estrogen receptors. Estradiol levels returned to normal post-operatively, with a corresponding adjustment of LH/FSH. Possible autocrine steroid production is discussed.

  11. Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity

    PubMed Central

    Lippman-Bell, Jocelyn J.; Zhou, Chengwen; Sun, Hongyu; Feske, Joel S.; Jensen, Frances E.

    2016-01-01

    Calcium (Ca2+)-mediated1 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48 hours after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48 hours after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target. PMID:27521497

  12. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar

    Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation,more » protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates

  13. Effects of NMDA receptor blockade during the early development period on the retest performance of adult Wistar rats in the elevated plus maze.

    PubMed

    Kocahan, Sayad; Akillioglu, Kubra

    2013-07-01

    The elevated plus maze (EPM) is an animal model of anxiety used to test the effects of anxioselective drugs. The loss of the anxiolytic effect of drugs during the second exposure to the EPM is called the "one trial tolerance" (OTT) phenomenon. The present study was designed to investigate the relationship between the OTT phenomenon and N-methyl-D-aspartate (NMDA) receptor blockade in the early developmental period of rats. NMDA receptor blockade was accomplished using MK-801 treatment given between postnatal days 20-30. Beginning on postnatal day 20, the rats were subcutaneously injected with MK-801 twice a day at the nape of the neck for a period of 10 days (0.25 mg/kg). Increased open arm exploration was observed in MK-801-treated rats during trial 1 (p = 0.001) and trial 2 (p = 0.003). The rats spent less time in the closed arms as compared to the saline animals in trial 1 (p = 0.006), and this time decreased further in trial 2 (p = 0.02). The fecal boli of the MK-801 group was decreased in trial 1 as compared to the saline group (p = 0.01), but was not significantly different in trial 2 (p = 0.08). In conclusion, NMDA receptor blockade using MK-801 produced an anxiolytic-like effect in trials 1 and 2. Furthermore, OTT was not affected by NMDA receptor blockade.

  14. Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis.

    PubMed

    Tokuda, Kazuhiro; O'Dell, Kazuko A; Izumi, Yukitoshi; Zorumski, Charles F

    2010-12-15

    Benzodiazepines (BDZs) enhance GABA(A) receptor inhibition by direct actions on central BDZ receptors (CBRs). Although some BDZs also bind mitochondrial receptors [translocator protein (18 kDa) (TSPO)] and promote the synthesis of GABA-enhancing neurosteroids, the role of neurosteroids in the clinical effects of BDZs is unknown. In rat hippocampal slices, we compared midazolam, an anesthetic BDZ, with clonazepam, an anticonvulsant/anxiolytic BDZ that activates CBRs selectively. Midazolam, but not clonazepam, increased neurosteroid levels in CA1 pyramidal neurons without changing TSPO immunostaining. Midazolam, but not clonazepam, also augmented a form of spike inhibition after stimulation adjacent to the pyramidal cell layer and inhibited induction of long-term potentiation. These effects were prevented by finasteride, an inhibitor of neurosteroid synthesis, or 17PA [17-phenyl-(3α,5α)-androst-16-en-3-ol], a blocker of neurosteroid effects on GABA(A) receptors. Moreover, the synaptic effects were mimicked by a combination of clonazepam with FGIN (2-[2-(4-fluorophenyl)-1H-indol-3-yl]-N,N-dihexylacetamide), a selective TSPO agonist, or a combination of clonazepam with exogenous allopregnanolone. Consistent with these in vitro results, finasteride abolished the effects of midazolam on contextual fear learning when administrated 1 d before midazolam injection. Thus, dual activation of CBRs and TSPO appears to result in unique actions of clinically important BDZs. Furthermore, endogenous neurosteroids are shown to be important regulators of pyramidal neuron function and synaptic plasticity.

  15. Functionalized Ergot-alkaloids as potential dopamine D3 receptor agonists for treatment of schizophrenia

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2012-12-01

    The relationship between the molecular structure and physical properties of functionalized naturally occurred Ergot-alkaloids as potential dopamine D3 receptor agonists is presented. The molecular modeling of the ergoline-skeleton is based on the comprehensive theoretical study of the binding affinity of the isolated chemicals towards the active sites of the D3 sub-type receptor (D3R) loops. The studied proton accepting ability under physiological conditions allows classifying four types of monocationics, characterizing with the different binding modes to D3R involving selected amino acid residues to the active sites. These results marked the pharmaceutical potential and clinical usage of the reported compounds as antipsychotic drugs for Schizophrenia treatment, since they allowed evaluating the highlights of the different hypothesizes of the biochemical causes the illness. The applied complex approach for theoretical and experimental elucidation, including quantum chemistry method, electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometric (MS) methods, nuclear magnetic resonance and vibrational IR and Raman spectroscopy on the isolated fifteen novel derivatives (1)-(15) and their different protonated forms (1a)-(15a) evidenced a strong dependence of molecular conformation, physical properties and binding affinity. Thus, the semi-synthetic functionalization of the naturally occurred products (NPs), provided significant possibilities to further molecular drugs-design and development of novel derivatives with wanted biological function, using the established profile of selected classes/families of NPs. The work described chiefly the non-linear (NL) approach for the interpretation of the mass chromatograms on the performed hybrid high performance liquid chromatography (HPLC) tandem MS/MS and MS/MS/MS experiments, discussing the merits and great diversity of instrumentation flexibility, thus achieving fundamental

  16. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers.

    PubMed

    Gong, Ping; Hong, Huixiao; Perkins, Edward J

    2015-01-01

    Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.

  17. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  18. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.

    PubMed

    Ulfig, Agnes; Freudl, Roland

    2018-05-11

    The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in the binding of the proteins to the membrane-associated TatBC receptor complex. In addition, the hydrophobic region in the Tat signal peptides also contributes to TatBC binding, but whether regions beyond the signal-peptide cleavage site are involved in this process is unknown. Here, we analyzed the contribution of the early mature protein part of the Escherichia coli trimethylamine N -oxide reductase (TorA) to productive TatBC receptor binding. We identified substitutions in the 30 amino acids immediately following the TorA signal peptide (30aa-region) that restored export of a transport-defective TorA[KQ]-30aa-MalE precursor, in which the RR residues had been replaced by a lysine-glutamine pair. Some of these substitutions increased the hydrophobicity of the N-terminal part of the 30aa-region and thereby likely enhanced hydrophobic substrate-receptor interactions within the hydrophobic TatBC substrate-binding cavity. Another class of substitutions increased the positive net charge of the region's C-terminal part, presumably leading to strengthened electrostatic interactions between the mature substrate part and the cytoplasmic TatBC regions. Furthermore, we identified substitutions in the C-terminal domains of TatB following the transmembrane segment that restored transport of various transport-defective TorA-MalE derivatives. Some of these substitutions most likely affected the orientation or conformation of the flexible, carboxy-proximal helices of TatB. Therefore, we propose that a tight accommodation of the folded mature region by TatB contributes to productive binding of Tat substrates to TatBC. © 2018 Ulfig and Freudl.

  19. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism

    PubMed Central

    Sourdon, Joevin; Lager, Franck; Viel, Thomas; Balvay, Daniel; Moorhouse, Rebecca; Bennana, Evangeline; Renault, Gilles; Tharaux, Pierre-Louis; Dhaun, Neeraj; Tavitian, Bertrand

    2017-01-01

    The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach. PMID:28824714

  20. New-generation 5-HT4 receptor agonists: potential for treatment of gastrointestinal motility disorders.

    PubMed

    Manabe, Noriaki; Wong, Banny S; Camilleri, Michael

    2010-06-01

    Gastrointestinal (GI) dysmotility is an important mechanism in functional GI disorders (FGIDs) including constipation, irritable bowel syndrome, functional dyspepsia, and gastroparesis. 5-hydroxytryptamine(4) (5-HT(4)) receptors are targets for the treatment of GI motility disorders. However, older 5-HT(4) receptor agonists had limited clinical success because they were associated with changes in the function of the cardiac HERG potassium channel. We conducted a PubMed search using the following key words alone or in combination: 5-HT(4), safety, toxicity, pharmacokinetics, pharmacodynamics, clinical trial, cardiac, hERG, arrhythmia, potassium current, elderly, prucalopride, ATI-7505, and velusetrag (TD-5108), to review mechanisms of action, clinical efficacy, safety and tolerability of three new-generation 5-HT(4) receptor agonists. Prucalopride, ATI-7505, and velusetrag (TD-5108) are highly selective, high-affinity 5-HT(4) receptor agonists that are devoid of action on other receptors within their therapeutic range. Their efficacy has been demonstrated in pharmacodynamic studies which demonstrate acceleration of colonic transit and, to a variable degree, in clinical trials that significantly relieve chronic constipation. Currently available evidence shows that the new 5-HT(4) receptor agonists have safe cardiac profiles. New-generation 5-HT(4) receptor agonists and future drugs targeting organ-specific splice variants are promising approaches to treat GI dysmotility, particularly colonic diseases.

  1. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phasemore » diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.« less

  2. Muscarinic acetylcholine receptor activation blocks long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses via cannabinoid signaling.

    PubMed

    Rinaldo, Lorenzo; Hansel, Christian

    2013-07-02

    Muscarinic acetylcholine receptors (mAChRs) are known to modulate synaptic plasticity in various brain areas. A signaling pathway triggered by mAChR activation is the production and release of endocannabinoids that bind to type 1 cannabinoid receptors (CB1R) located on synaptic terminals. Using whole-cell patch-clamp recordings from rat cerebellar slices, we have demonstrated that the muscarinic agonist oxotremorine-m (oxo-m) blocks the induction of presynaptic long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell synapses in a CB1R-dependent manner. Under control conditions, LTP was induced by delivering 120 PF stimuli at 8 Hz. In contrast, no LTP was observed when oxo-m was present during tetanization. PF-LTP was restored when the CB1R antagonist N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251) was coapplied with oxo-m. Furthermore, the suppressive effect of oxo-m on PF-LTP was abrogated by the GDP analog GDP-β-S (applied intracellularly), the phospholipase C inhibitor U-73122, and the diacylglycerol lipase inhibitor tetrahydrolipstatin (THL), suggesting that cannabinoid synthesis results from the activation of Gq-coupled mAChRs present on Purkinje cells. The oxo-m-mediated suppression of LTP was also prevented in the presence of the M3 receptor antagonist DAU 5884, and was absent in M1/M3 receptor double-KO mice, identifying M3 receptors as primary oxo-m targets. Our findings allow for the possibility that cholinergic signaling in the cerebellum--which may result from long-term depression (LTD)-related disinhibition of cholinergic neurons in the vestibular nuclei--suppresses presynaptic LTP to prevent an up-regulation of transmitter release that opposes the reduction of postsynaptic responsiveness. This modulatory capacity of mAChR signaling could promote the functional penetrance of LTD.

  3. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relationships (SAR) and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action. The pyridinium cation displays molecular electrostatic potential which may well play a role energetically or as a bridging mechanism. An SAR analysis points to analogy with other physiologically active xenobiotics, namely benzodiazepines and paraquat in the conjugated iminium category. Inactivity of metabolites indicates that the parent is the active form of zolpidem. Absence of reactive oxygen species and oxidative stress is in line with minor side effects. In contrast, generally, the prior literature contains essentially no discussion of these fundamental biochemical relationships. Pharmacodynamics may play an important role. Concerning behavior at the blood-brain barrier, useful insight can be gained from investigations of the related cationic anesthetics that are structurally related to acetyl choline. Evidently, the neutral form of the drug penetrates the neuronal membrane, with the salt form operating at the receptor. The pathways of zolpidem have several clinical implications since the agent affects sedation, electroencephalographic activity, oxidative metabolites and

  4. Selective Glucocorticoid Receptor modulators.

    PubMed

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review. 2010 Elsevier Ltd. All rights reserved.

  5. α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization

    PubMed Central

    Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  6. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  7. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection.

    PubMed

    Rosero, Rebecca A; Villares, Gabriel J; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.

  8. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors.

    PubMed

    Kwon, S G; Roh, D H; Yoon, S Y; Choi, S R; Choi, H S; Moon, J Y; Kang, S Y; Kim, H W; Han, H J; Beitz, A J; Oh, S B; Lee, J H

    2016-04-01

    The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain. © 2015 European Pain Federation - EFIC®

  9. Early Seizures Prematurely Unsilence Auditory Synapses to Disrupt Thalamocortical Critical Period Plasticity.

    PubMed

    Sun, Hongyu; Takesian, Anne E; Wang, Ting Ting; Lippman-Bell, Jocelyn J; Hensch, Takao K; Jensen, Frances E

    2018-05-29

    Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP) for tonotopic map plasticity in primary auditory cortex (A1). We show that this CP is characterized by a prevalence of "silent," NMDA-receptor (NMDAR)-only, glutamate receptor synapses in auditory cortex that become "unsilenced" due to activity-dependent AMPA receptor (AMPAR) insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor.

    PubMed

    Farooqi, I Sadaf; Wangensteen, Teresia; Collins, Stephan; Kimber, Wendy; Matarese, Giuseppe; Keogh, Julia M; Lank, Emma; Bottomley, Bill; Lopez-Fernandez, Judith; Ferraz-Amaro, Ivan; Dattani, Mehul T; Ercan, Oya; Myhre, Anne Grethe; Retterstol, Lars; Stanhope, Richard; Edge, Julie A; McKenzie, Sheila; Lessan, Nader; Ghodsi, Maryam; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Barroso, Inês; Undlien, Dag E; O'Rahilly, Stephen

    2007-01-18

    A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations--7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism. Copyright 2007 Massachusetts Medical Society.

  11. LY404187: a novel positive allosteric modulator of AMPA receptors.

    PubMed

    Quirk, Jennifer C; Nisenbaum, Eric S

    2002-01-01

    LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA

  12. Delta-opioid receptors as targets for migraine therapy.

    PubMed

    Charles, Andrew; Pradhan, Amynah A

    2016-06-01

    The purpose of this review is to contrast the properties of the δ-opioid receptor with those of the μ-opioid receptor, which is the primary target of most currently available opioid analgesics. We also discuss preclinical evidence that indicates the potential efficacy of δ-opioid receptor agonists as migraine therapy. The use of currently available opioid analgesics is highly problematic for patients with migraine. Delta-opioid receptors have key differences from μ receptors; these differences make the δ receptor an attractive therapeutic target for migraine. Delta-opioid receptors are expressed in both the peripheral and central nervous system in anatomical regions and cell types that are believed to play a role in migraine. Delta-receptor agonists have also shown promising effects in multiple migraine models, including nitroglycerin evoked hyperalgesia and conditioned place aversion, and cortical spreading depression. Evidence from animal models indicates that activation of δ receptors is less likely to cause tolerance and dependence, and less likely to cause hyperalgesia. In addition, δ receptors may have antidepressant and anxiolytic properties that are distinct from those of μ receptors. In human studies investigating other conditions, δ-receptor agonists have been generally safe and well tolerated. Delta-opioid receptor agonists have promising potential as acute and/or preventive migraine therapies, without the problems associated with currently used opioid analgesics.

  13. Decision making and action implementation: evidence for an early visually triggered motor activation specific to potential actions.

    PubMed

    Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J

    2013-07-01

    To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.

  14. The Transferrin Receptor: A Potential Molecular Imaging Marker for Human Cancer1

    PubMed Central

    Högemann-Savellano, Dagmar; Bos, Erik; Blondet, Cyrille; Sato, Fuminori; Abe, Tatsuya; Josephson, Lee; Weissleder, Ralph; Gaudet, Justin; Sgroi, Dennis; Peters, Peter J.; Basilion, James P.

    2003-01-01

    Abstract Noninvasive imaging of differences between the molecular properties of cancer and normal tissue has the potential to enhance the detection of tumors. Because overexpression of endogenous transferrin receptor (TfR) has been qualitatively described for various cancers and is presumably due to malignant transformation of cells, TfR may represent a suitable target for application of molecular imaging technologies to increase detection of smaller tumors. In the work reported here, investigation into the biology of this receptor using electron microscopy has demonstrated that iron oxide particles targeted to TfR are internalized and accumulate in lysosomal vesicles within cells. Biochemical analysis of the interaction of imaging probes with cells overexpressing the TfR demonstrated that the extent of accumulation, and therefore probe efficacy, is dependent on the nature of the chemical cross-link between transferrin and the iron oxide particle. These data were utilized to design and synthesize an improved imaging probe. Experiments demonstrate that the novel magnetic resonance imaging (MRI) probe is sensitive enough to detect small differences in endogenous TfR expression in human cancer cell lines. Quantitative measurement of TfR overexpression in a panel of 27 human breast cancer patients demonstrated that 74% of patient cancer tissues overexpressed the TfR and that the sensitivity of the new imaging agent was suitable to detect TfR overexpression in greater than 40% of these cases. Based on a biochemical and cell biological approach, these studies have resulted in the synthesis and development of an improved MRI probe with the best in vitro and in vivo imaging properties reported to date. PMID:14965443

  15. miR-7-1 POTENTIATED ESTROGEN RECEPTOR AGONISTS FOR FUNCTIONAL NEUROPROTECTION IN VSC4.1 MOTONEURONS

    PubMed Central

    CHAKRABARTI, M.; BANIK, N. L.; RAY, S. K.

    2013-01-01

    Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI) insulted VSC4.1 motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using miRDB indicated that miR-7-1 could inhibit expression of L-type Ca2+ channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca2+/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI. PMID

  16. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    NASA Astrophysics Data System (ADS)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  17. The Inhibitory Effect of Rapamycin on Toll Like Receptor 4 and Interleukin 17 in the Early Stage of Rat Diabetic Nephropathy.

    PubMed

    Yu, Ruichao; Bo, Hong; Villani, Vincenzo; Spencer, Philip J; Fu, Ping

    2016-01-01

    There is increasing evidence showing that innate immune responses and inflammatory processes play an important role in the development and progression of diabetic nephropathy (DN). The potential effect of innate immunity in the early stage of DN is still unclear. Toll-Like-Receptor 4 (TLR4) is vigorously involved in the progress of kidney diseases in a sterile environment. The activation of the interleukin 17 (IL-17) pathway produces inflammatory cytokines, appearing in various kidney diseases. Unfortunately the relationship between TLR4 and IL-17 has not been investigated in diabetic nephropathy to date. The aim of this study is to investigate whether mammalian target of rapamycin (mTOR) inhibition may be dependent on TLR4 signaling and the pro-inflammatory factor IL-17 to delay the progression of DN. Streptozotocin (STZ)-induced diabetic rats were randomly assigned to 3 experimental groups: a diabetic nephropathy group (DN, n = 6); and a diabetic nephropathy treated with rapamycin group (Rapa, n = 6) and a control group (Control, n =6). Body weight, fasting blood sugar, and 24h urine albumin were assessed at week 2, week 4 and week 8. Renal tissues were harvested for H&E, PAS staining, as well as an immunohistochemistry assay for TLR4 and IL-17. TLR4 quantitative expression was measured by Western-Blot analysis and RT-PCR. Our results demonstrated that the expression of both TLR4 and IL-17 were upregulated in early stage DN and reduced by rapamycin. TLR4 and IL-17 both increased and positively related to 24h urinary albumin and kidney/weight ratio. However, neither TLR4 nor IL-17 made a significant difference on fasting blood sugar. Taken together, our results confirm and extend previous studies identifying the significance of the TLR4 and Th17 pathways in development of early stage DN. Furthermore, we suggest this overexpression of TLR4 might be involved in the immunopathogenesis of DN through activation of Th17 cells. Rapamycin may attenuate DN via

  18. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatalmore » rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.« less

  19. A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

    PubMed

    Ling, István; Mihalik, Balázs; Etherington, Lori-An; Kapus, Gábor; Pálvölgyi, Adrienn; Gigler, Gábor; Kertész, Szabolcs; Gaál, Attila; Pallagi, Katalin; Kiricsi, Péter; Szabó, Éva; Szénási, Gábor; Papp, Lilla; Hársing, László G; Lévay, György; Spedding, Michael; Lambert, Jeremy J; Belelli, Delia; Barkóczy, József; Volk, Balázs; Simig, Gyula; Gacsályi, István; Antoni, Ferenc A

    2015-10-05

    Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Potential Involvement of P2 Receptors in the Pathological Processes of Hyperthyroidism: A Pilot Study.

    PubMed

    Hong, Wu; Li, Guodong; Nie, Yijun; Zou, Lifang; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Zhang, Chun-Ping; Liang, Shangdong

    2016-05-01

    Symptoms of hyperthyroidism manifest mainly as changes in the nervous and metabolic systems. Whether P2X receptors (ionotropic ATP purinergic receptors, including P2X3 receptor and P2X7 receptor) are involved in the alterations of these disorders still remains unclear. Thus, this study aimed to assess the association of hyperthyroidism with the expression of P2X3 and P2X7 receptors and the concentrations of ATP in blood leukocytes and catecholamine. Twelve healthy subjects and twelve patients diagnosed with hyperthyroidism were recruited. Serum free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) levels had been detected by chemiluminescence method. Meanwhile, the catecholamine levels (including adrenaline, noradrenaline, and dopamine) in plasma, ATP level and P2X receptors (including P2X3 receptor and P2X7 receptor) in peripheral blood had been detected by high performance liquid chromatography, bioluminescence method, and reverse transcription polymerase chain reaction, respectively. Levels of epinephrine and norepinephrine were significantly higher in the hyperthyroidism group compared with the control group. The concentration of ATP in the hyperthyroidism group was significantly higher than its in the control group. The expression of P2X3 mRNA and P2X7 mRNA in hyperthyroidism group were significantly increased compared with those in control group. In a conclusion, there is a relationship between the elevated expression of P2X3 receptor and P2X7 receptor in peripheral blood leukocytes and high serum epinephrine and norepinephrine levels in hyperthyroidism patients. © 2016 by the Association of Clinical Scientists, Inc.

  1. History of retinoic acid receptors.

    PubMed

    Benbrook, Doris M; Chambon, Pierre; Rochette-Egly, Cécile; Asson-Batres, Mary Ann

    2014-01-01

    The discovery of retinoic acid receptors arose from research into how vitamins are essential for life. Early studies indicated that Vitamin A was metabolized into an active factor, retinoic acid (RA), which regulates RNA and protein expression in cells. Each step forward in our understanding of retinoic acid in human health was accomplished by the development and application of new technologies. Development cDNA cloning techniques and discovery of nuclear receptors for steroid hormones provided the basis for identification of two classes of retinoic acid receptors, RARs and RXRs, each of which has three isoforms, α, β and ɣ. DNA manipulation and crystallographic studies revealed that the receptors contain discrete functional domains responsible for binding to DNA, ligands and cofactors. Ligand binding was shown to induce conformational changes in the receptors that cause release of corepressors and recruitment of coactivators to create functional complexes that are bound to consensus promoter DNA sequences called retinoic acid response elements (RAREs) and that cause opening of chromatin and transcription of adjacent genes. Homologous recombination technology allowed the development of mice lacking expression of retinoic acid receptors, individually or in various combinations, which demonstrated that the receptors exhibit vital, but redundant, functions in fetal development and in vision, reproduction, and other functions required for maintenance of adult life. More recent advancements in sequencing and proteomic technologies reveal the complexity of retinoic acid receptor involvement in cellular function through regulation of gene expression and kinase activity. Future directions will require systems biology approaches to decipher how these integrated networks affect human stem cells, health, and disease.

  2. Visualizing odorant receptor trafficking in living cells down to the single-molecule level

    PubMed Central

    Jacquier, V.; Prummer, M.; Segura, J.-M.; Pick, H.; Vogel, H.

    2006-01-01

    Despite the importance of trafficking for regulating G protein-coupled receptor signaling, for many members of the seven transmembrane helix protein family, such as odorant receptors, little is known about this process in live cells. Here, the complete life cycle of the human odorant receptor OR17-40 was directly monitored in living cells by ensemble and single-molecule imaging, using a double-labeling strategy. While the overall, intracellular trafficking of the receptor was visualized continuously by using a GFP tag, selective imaging of cell surface receptors was achieved by pulse-labeling an acyl carrier protein tag. We found that OR17-40 efficiently translocated to the plasma membrane only at low expression, whereas at higher biosynthesis the receptor accumulated in intracellular compartments. Receptors in the plasma membrane showed high turnover resulting from constitutive internalization along the clathrin pathway, even in the absence of ligand. Single-molecule microscopy allowed monitoring of the early, dynamic processes in odorant receptor signaling. Although mobile receptors initially diffused either freely or within domains of various sizes, binding of an agonist or an antagonist increased partitioning of receptors into small domains of ≈190 nm, which likely are precursors of clathrin-coated pits. The binding of a ligand, therefore, resulted in modulation of the continuous, constitutive internalization. After endocytosis, receptors were directed to early endosomes for recycling. This unique mechanism of continuous internalization and recycling of OR17-40 might be instrumental in allowing rapid recovery of odor perception. PMID:16980412

  3. Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses

    PubMed Central

    Vasou, Andri; Sultanoglu, Nazife; Goodbourn, Stephen

    2017-01-01

    Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation. PMID:28703784

  4. Potentiation of the early visual response to learned danger signals in adults and adolescents

    PubMed Central

    Howsley, Philippa; Jordan, Jeff; Johnston, Pat

    2015-01-01

    The reinforcing effects of aversive outcomes on avoidance behaviour are well established. However, their influence on perceptual processes is less well explored, especially during the transition from adolescence to adulthood. Using electroencephalography, we examined whether learning to actively or passively avoid harm can modulate early visual responses in adolescents and adults. The task included two avoidance conditions, active and passive, where two different warning stimuli predicted the imminent, but avoidable, presentation of an aversive tone. To avoid the aversive outcome, participants had to learn to emit an action (active avoidance) for one of the warning stimuli and omit an action for the other (passive avoidance). Both adults and adolescents performed the task with a high degree of accuracy. For both adolescents and adults, increased N170 event-related potential amplitudes were found for both the active and the passive warning stimuli compared with control conditions. Moreover, the potentiation of the N170 to the warning stimuli was stable and long lasting. Developmental differences were also observed; adolescents showed greater potentiation of the N170 component to danger signals. These findings demonstrate, for the first time, that learned danger signals in an instrumental avoidance task can influence early visual sensory processes in both adults and adolescents. PMID:24652856

  5. Autologous Bone Marrow Stromal Cells Genetically Engineered to Secrete an IGF-I Receptor Decoy Prevent the Growth of Liver Metastases

    PubMed Central

    Wang, Ni; Fallavollita, Lucia; Nguyen, Long; Burnier, Julia; Rafei, Moutih; Galipeau, Jacques; Yakar, Shoshana; Brodt, Pnina

    2009-01-01

    Liver metastases respond poorly to current therapy and remain a frequent cause of cancer-related mortality. We reported previously that tumor cells expressing a soluble form of the insulin-like growth factor-I receptor (sIGFIR) lost the ability to metastasize to the liver. Here, we sought to develop a novel therapeutic approach for prevention of hepatic metastasis based on sustained in vivo delivery of the soluble receptor by genetically engineered autologous bone marrow stromal cells. We found that when implanted into mice, these cells secreted high plasma levels of sIGFIR and inhibited experimental hepatic metastases of colon and lung carcinoma cells. In hepatic micrometastases, a reduction in intralesional angiogenesis and increased tumor cell apoptosis were observed. The results show that the soluble receptor acted as a decoy to abort insulin-like growth factor-I receptor (IGF-IR) functions during the early stages of metastasis and identify sustained sIGFIR delivery by cell-based vehicles as a potential approach for prevention of hepatic metastasis. PMID:19367255

  6. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    PubMed Central

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  7. Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics.

    PubMed

    Gaunt, Hannah J; Vasudev, Naveen S; Beech, David J

    2016-10-01

    Novel approaches towards cancer therapy are urgently needed. One approach might be to target ion channels mediating Ca 2+ entry because of the critical roles played by Ca 2+ in many cell types, including cancer cells. There are several types of these ion channels, but here we address those formed by assembly of transient receptor potential canonical (TRPC) proteins, particularly those which involve two closely related members of the family: TRPC4 and TRPC5. We focus on these proteins because recent studies point to roles in important aspects of cancer: drug resistance, transmission of drug resistance through extracellular vesicles, tumour vascularisation, and evoked cancer cell death by the TRPC4/5 channel activator (-)-englerin A. We conclude that further research is both justified and necessary before these proteins can be considered as strong targets for anti-cancer cell drug discovery programmes. It is nevertheless already apparent that inhibitors of the channels would be unlikely to cause significant adverse effects, but, rather, have other effects which may be beneficial in the context of cancer and chemotherapy, potentially including suppression of innate fear, visceral pain and pathological cardiac remodelling.

  8. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature.

    PubMed

    Chen, L; Kaßmann, M; Sendeski, M; Tsvetkov, D; Marko, L; Michalick, L; Riehle, M; Liedtke, W B; Kuebler, W M; Harteneck, C; Tepel, M; Patzak, A; Gollasch, M

    2015-02-01

    Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. The TRPV1 agonist capsaicin relaxed mouse mesenteric arteries with an EC50 of 25 nm, but large mouse renal arteries or rat descending vasa recta only at >100-fold higher concentrations. The vasodilatory effect of capsaicin in the low-nanomolar concentration range was endothelium-dependent and absent in vessels of Trpv1 -/- mice. The TRPV4 agonist GSK1016790A relaxed large conducting renal arteries, mesenteric arteries and vasa recta with EC50 of 18, 63 nm and ~10 nm respectively. These effects were endothelium-dependent and inhibited by a TRPV4 antagonist, AB159908 (10 μm). Capsaicin and GSK1016790A produced vascular dilation in isolated mouse perfused kidneys with EC50 of 23 and 3 nm respectively. The capsaicin effects were largely reduced in Trpv1 -/- kidneys, and the effects of GSK1016790A were inhibited in Trpv4 -/- kidneys. Our results demonstrate that two TRPV channels have unique sites of vasoregulatory function in the kidney with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. Sexual Abuse Exposure Alters Early Processing of Emotional Words: Evidence from Event-Related Potentials

    PubMed Central

    Grégoire, Laurent; Caparos, Serge; Leblanc, Carole-Anne; Brisson, Benoit; Blanchette, Isabelle

    2018-01-01

    This study aimed to compare the time course of emotional information processing between trauma-exposed and control participants, using electrophysiological measures. We conceived an emotional Stroop task with two types of words: trauma-related emotional words and neutral words. We assessed the evoked cerebral responses of sexual abuse victims without post-traumatic stress disorder (PTSD) and no abuse participants. We focused particularly on an early wave (C1/P1), the N2pc, and the P3b. Our main result indicated an early effect (55–165 ms) of emotionality, which varied between non-exposed participants and sexual abuse victims. This suggests that potentially traumatic experiences modulate early processing of emotional information. Our findings showing neurobiological alterations in sexual abuse victims (without PTSD) suggest that exposure to highly emotional events has an important impact on neurocognitive function even in the absence of psychopathology. PMID:29379428

  10. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin.

    PubMed

    Raicevic, Gordana; Najar, Mehdi; Pieters, Karlien; De Bruyn, Cecile; Meuleman, Nathalie; Bron, Dominique; Toungouz, Michel; Lagneaux, Laurence

    2012-07-01

    Mesenchymal stromal cells (MSCs) can be isolated not only from bone marrow (BM) but also from other tissues, including adipose tissue (AT) and umbilical cord Wharton's Jelly (WJ). Thanks to their ability to differentiate into various cell types, MSC are considered attractive candidates for cell-based regenerative therapy. In degenerative clinical settings, inflammation or infection is often involved. In the present work, we hypothesized that an inflammatory environment and/or Toll-like receptor (TLR) ligation could affect the MSC differentiation potential. MSC were isolated from BM, AT, and WJ. Inflammation was mimicked by a cytokine cocktail, and TLR activation was induced through TLR3 and TLR4 ligation. Osteogenesis was chosen as a model for differentiation. Osteogenic parameters were evaluated by measuring Ca2+ deposits and alkaline phosphatase (ALP) activity at day 7, 14, and 21 of the culture in an osteogenic medium. Our results show that WJ-MSC exhibit a much lower osteogenic potential than the other two MSC types. However, inflammation was able to strongly increase the osteogenic differentiation of WJ-MSC as calcification, and ALP activity appeared as early as day 7. However, this latter enzymatic activity remained much lower than that disclosed by BM-MSC. TLR3 or TLR4 triggering increased the osteogenesis in AT- and, to lesser extent, in BM-MSC. In conclusion, WJ-MSC constitutively disclose a lower osteogenic potential as compared with BM and AT-MSC, which is not affected by TLR triggering but is strongly increased by inflammation, then reaching the level of BM-MSC. These observations suggest that WJ-MSC could constitute an alternative of BM-MSC for bone regenerative applications, as WJ is an easy access source of large amounts of MSC that can effectively differentiate into osteoblasts in an inflammatory setting.

  11. Functional role of ambient GABA in refining neuronal circuits early in postnatal development

    PubMed Central

    Cellot, Giada; Cherubini, Enrico

    2013-01-01

    Early in development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the mature brain, depolarizes and excites targeted neurons by an outwardly directed flux of chloride, resulting from the peculiar balance between the cation-chloride importer NKCC1 and the extruder KCC2. The low expression of KCC2 at birth leads to accumulation of chloride inside the cell and to the equilibrium potential for chloride positive respect to the resting membrane potential. GABA exerts its action via synaptic and extrasynaptic GABAA receptors mediating phasic and tonic inhibition, respectively. Here, recent data on the contribution of “ambient” GABA to the refinement of neuronal circuits in the immature brain have been reviewed. In particular, we focus on the hippocampus, where, prior to the formation of conventional synapses, GABA released from growth cones and astrocytes in a calcium- and SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor)-independent way, diffuses away to activate in a paracrine fashion extrasynaptic receptors localized on distal neurons. The transient increase in intracellular calcium following the depolarizing action of GABA leads to inhibition of DNA synthesis and cell proliferation. Tonic GABA exerts also a chemotropic action on cell migration. Later on, when synapses are formed, GABA spilled out from neighboring synapses, acting mainly on extrasynaptic α5, β2, β3, and γ containing GABAA receptor subunits, provides the membrane depolarization necessary for principal cells to reach the window where intrinsic bursts are generated. These are instrumental in triggering calcium transients associated with network-driven giant depolarizing potentials which act as coincident detector signals to enhance synaptic efficacy at emerging GABAergic and glutamatergic synapses. PMID:23964205

  12. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators.

    PubMed

    Reeves, Suzanne J; Polling, Catherine; Stokes, Paul R A; Lappin, Julia M; Shotbolt, Paul P; Mehta, Mitul A; Howes, Oliver D; Egerton, Alice

    2012-04-30

    Positron emission tomography (PET) studies have reported an association between reduced striatal dopamine D2/3 receptor availability and higher scores on self-report measures of trait impulsivity in healthy adults. However, impulsivity is a multi-faceted construct, and it is unclear which aspect(s) of impulsivity might be driving these associations. The current study aimed to investigate the relationship between limbic (ventral) striatal D2/3 receptor availability and individual components of impulsivity (attentional, motor and non-planning) using the Barratt Impulsiveness Scale (BIS-11) and [(11)C]raclopride PET in 23 healthy volunteers. A partial correlational analysis showed a significant association between non-planning impulsiveness (lack of forethought or 'futuring') and limbic D2/3 receptor availability, which was only apparent after the exclusion of potential dissimulators (indexed by high scores on impression management). Our findings suggest that non-planning impulsiveness is associated with individual variation in limbic striatal D2/3 receptor availability and that different facets of impulsivity may have specific neurochemical correlates. Future studies that combine D2/3 receptor imaging with behavioral measures of impulsivity are required to further elucidate the precise relationship between individual components of trait impulsivity and brain dopaminergic function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Anti-NMDA receptor encephalitis presenting as atypical anorexia nervosa: an adolescent case report.

    PubMed

    Mechelhoff, David; van Noort, Betteke Maria; Weschke, Bernhard; Bachmann, Christian J; Wagner, Christiane; Pfeiffer, Ernst; Winter, Sibylle

    2015-11-01

    Since 2007, more than 600 patients have been diagnosed with anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, with almost 40 % of those affected being children or adolescents. In early phases of the illness, this life-threatening disease is characterized by psychiatric symptoms, such as depression, anxiety, obsessions, hallucinations or delusions. Consequently, a high percentage of patients receive psychiatric diagnoses at first, hindering the crucial early diagnosis and treatment of the anti-NMDA receptor encephalitis. We report on a 15-year-old girl initially presenting with pathological eating behaviour and significant weight loss resulting in an (atypical) anorexia nervosa (AN) diagnosis. Her early course of illness, diagnostic process, treatment and short-term outcome are described. This case report aims to raise awareness about the association between anorectic behaviour and anti-NMDA receptor encephalitis and highlight the importance of multidisciplinary teams in child and adolescent services.

  14. Detection of Elevated Plasma Levels of EGF Receptor Prior to Breast Cancer Diagnosis among Hormone Therapy Users

    PubMed Central

    Pitteri, Sharon J.; Amon, Lynn M.; Buson, Tina Busald; Zhang, Yuzheng; Johnson, Melissa M.; Chin, Alice; Kennedy, Jacob; Wong, Chee-Hong; Zhang, Qing; Wang, Hong; Lampe, Paul D.; Prentice, Ross L.; McIntosh, Martin W.; Hanash, Samir M.; Li, Christopher I.

    2010-01-01

    Applying advanced proteomic technologies to prospectively collected specimens from large studies is one means of identifying preclinical changes in plasma proteins that are potentially relevant to the early detection of diseases like breast cancer. We conducted fourteen independent quantitative proteomics experiments comparing pooled plasma samples collected from 420 estrogen receptor positive (ER+) breast cancer patients ≤17 months prior to their diagnosis and matched controls. Based on the over 3.4 million tandem mass spectra collected in the discovery set, 503 proteins were quantified of which 57 differentiated cases from controls with a p-value<0.1. Seven of these proteins, for which quantitative ELISA assays were available, were assessed in an independent validation set. Of these candidates, epidermal growth factor receptor (EGFR) was validated as a predictor of breast cancer risk in an independent set of preclinical plasma samples for women overall [odds ratio (OR)=1.44, p-value=0.0008], and particularly for current users of estrogen plus progestin (E+P) menopausal hormone therapy (OR=2.49, p-value=0.0001). Among current E+P users EGFR's sensitivity for breast cancer risk was 31% with 90% specificity. While EGFR's sensitivity and specificity are insufficient for a clinically useful early detection biomarker, this study suggests that proteins that are elevated preclinically in women who go on to develop breast cancer can be discovered and validated using current proteomic technologies. Further studies are warranted to both examine the role of EGFR and to discover and validate other proteins that could potentially be used for breast cancer early detection. PMID:20959476

  15. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

    PubMed Central

    Prestori, Francesca; Bonardi, Claudia; Mapelli, Lisa; Lombardo, Paola; Goselink, Rianne; De Stefano, Maria Egle; Gandolfi, Daniela; Mapelli, Jonathan; Bertrand, Daniel; Schonewille, Martijn; De Zeeuw, Chris; D’Angelo, Egidio

    2013-01-01

    The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. PMID:23741401

  17. Fear Memory Recall Potentiates Opiate Reward Sensitivity through Dissociable Dopamine D1 versus D4 Receptor-Dependent Memory Mechanisms in the Prefrontal Cortex.

    PubMed

    Jing Li, Jing; Szkudlarek, Hanna; Renard, Justine; Hudson, Roger; Rushlow, Walter; Laviolette, Steven R

    2018-05-09

    Disturbances in prefrontal cortical (PFC) dopamine (DA) transmission are well established features of psychiatric disorders involving pathological memory processing, such as post-traumatic stress disorder and opioid addiction. Transmission through PFC DA D4 receptors (D4Rs) has been shown to potentiate the emotional salience of normally nonsalient emotional memories, whereas transmission through PFC DA D1 receptors (D1Rs) has been demonstrated to selectively block recall of reward- or aversion-related associative memories. In the present study, using a combination of fear conditioning and opiate reward conditioning in male rats, we examined the role of PFC D4/D1R signaling during the processing of fear-related memory acquisition and recall and subsequent sensitivity to opiate reward memory formation. We report that PFC D4R activation potentiates the salience of normally subthreshold fear conditioning memory cues and simultaneously potentiates the rewarding effects of systemic or intra-ventral tegmental area (VTA) morphine conditioning cues. In contrast, blocking the recall of salient fear memories with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or intra-VTA morphine place preference. These effects were dependent upon dissociable PFC phosphorylation states involving calcium-calmodulin-kinase II or extracellular signal-related kinase 1-2, following intra-PFC D4 or D1R activation, respectively. Together, these findings reveal new insights into how aberrant PFC DAergic transmission and associated downstream molecular signaling pathways may modulate fear-related emotional memory processing and concomitantly increase opioid addiction vulnerability. SIGNIFICANCE STATEMENT Post-traumatic stress disorder is highly comorbid with addiction. In this study, we use a translational model of fear memory conditioning to examine how transmission through dopamine D1 or D4 receptors, in the prefrontal cortex (PFC), may differentially

  18. Prefrontal mRNA expression of long and short isoforms of D2 dopamine receptor: Possible role in delayed learning deficit caused by early life interleukin-1β treatment.

    PubMed

    Schwarz, Alexander P; Trofimov, Alexander N; Zubareva, Olga E; Lioudyno, Victoria I; Kosheverova, Vera V; Ischenko, Alexander M; Klimenko, Victor M

    2017-08-30

    Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1β (1μg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1β. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1β-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells.

    PubMed

    Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko

    2013-10-15

    Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.

  20. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals

    PubMed Central

    Vogeler, Susanne; Galloway, Tamara S.; Isupov, Michail

    2017-01-01

    Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor’s functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor’s ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a