Sample records for early season water

  1. Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas; Liniger, Mark

    2016-04-01

    Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.

  2. Acclimation of peanut (Arachis hypogaea L.) to water stress through exposure to differing periods of early season drought

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hypogaea L.) is able to withstand periods of water scarcity either in the early or late periods of the growing season, but suffers significant stress and yield loss during drought periods in mid-season, or the period coinciding with peak flower production and pod maturation. In fact...

  3. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  4. Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.

    2017-12-01

    The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS

  5. Extreme Seasonality During Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Birgenheier, L.

    2012-12-01

    intensification is seen as short intense rain seasons alternating with prolonged droughts. Such seasonality intensification had a profound effect on landscape morphology as well as on vegetation. River systems changed from braided streams to highly seasonal fluvial megafans with tens of meters deep channels. River channels staid dry through most of the prolonged droughts, as witnessed by intra-channel insect burrows and paleosols. The intense wet seasons caused extremely high water discharge in channels, resulting in high rates of erosion, sediment transport and deposition. As a result, the channels were filled locally by up to 10s of meters of sediment, causing rapid river course changes and terrestrial flooding. Particulate organic matter content is extremely low in these sediments. This is in contrast to river sediments that were deposited during less intense seasonality. The dataset was compared to other datasets from intermontane basins in the Western Interior and also Europe (Spain), where similar seasonality changes are indicated to have occurred during the PETM. This is in great contrast to intermontane Early Eocene river systems documented in Norwegian Arctic (e.g. Spitsbergen) and in tropics (e.g. Venezuela), where no seasonality intensification has been documented. Thus the seasonality intensification seems to have been confined to (northern) mid-latitudes and subtropics.

  6. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    PubMed Central

    Allen, Michael F.; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  7. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  8. Seasonal carbon storage and growth in Mediterranean tree seedlings under different water conditions.

    PubMed

    Sanz-Pérez, Virginia; Castro-Díez, Pilar; Joffre, Richard

    2009-09-01

    In all Mediterranean-type ecosystems, evergreen and deciduous trees differing in wood anatomy, growth pattern and leaf habit coexist, suggesting distinct adaptative responses to environmental constraints. This study examined the effects of summer water stress on carbon (C) storage and growth in seedlings of three coexisting Mediterranean trees that differed in phenology and wood anatomy characteristics: Quercus ilex subsp. ballota (Desf.) Samp., Quercus faginea Lam. and Pinus halepensis L. Seedlings were subjected to two levels of watering during two consecutive summers and achieved a minimum of -0.5 and -2.5 MPa of predawn water potential in the control and water stress treatment, respectively. Both Quercus species concentrated their growth in the early growing season, demanding higher C in early spring but replenishing C-stores in autumn. These species allocated more biomass to roots, having larger belowground starch and lipid reserves. Quercus species differed in seasonal storage dynamics from P. halepensis. This species allocated most of its C to aboveground growth, which occurred gradually during the growing season, leading to fewer C-reserves. Soluble sugar and starch concentrations sharply declined in August in P. halepensis, probably because reserves support respiration demands as this species closed stomata earlier under water stress. Drought reduced growth of the three species, mainly in Q. faginea and P. halepensis, but not C-reserves, suggesting that growth under water stress conditions is not limited by C-availability.

  9. The seasonal cycle of water on Mars

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.

    1985-01-01

    A review of the behavior of water in the Mars atmosphere and subsurface is appropriate now that data from the Mariner and Viking spacecraft have been analyzed and discussed for several years following completion of those missions. Observations and analyses pertinent to the seasonal cycle of water vapor in the atmosphere of Mars are reviewed, with attention toward transport of water and the seasonal exchange of water between the atmosphere and various non-atmospheric reservoirs. Possible seasonally-accessible sources and sinks for water include water ice on or within the seasonal and residual polar caps; surface or subsurface ice in the high-latitude regions of the planet; adsorbed or chemically-bound water within the near-surface regolith; or surface or subsurface liquid water. The stability of water within each of these reservoirs is discussed, as are the mechanisms for driving exchange of the water with the atmosphere and the timescales for exchange. Specific conclusions are reached about the distribution of water and the viability of each mechanism as a seasonal reservoir. Discussion is also included of the behavior of water on longer timescales, driven by the variations in solar forcing due to the quasi-periodic variations of the orbital obliquity. Finally, specific suggestions are made for future observations from spacecraft which would further define or constrain the seasonal cycle of water.

  10. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    NASA Astrophysics Data System (ADS)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  11. Seasonal to Mesoscale Variability of Water Masses in Barrow Canyon,Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Nobre, C.; Pickart, R. S.; Moore, K.; Ashjian, C. J.; Arrigo, K. R.; Grebmeier, J. M.; Vagle, S.; Itoh, M.; Berchok, C.; Stabeno, P. J.; Kikuchi, T.; Cooper, L. W.; Hartwell, I.; He, J.

    2016-02-01

    Barrow Canyon is one of the primary conduits by which Pacific-origin water exits the Chukchi Sea into the Canada Basin. As such, it is an ideal location to monitor the different water masses through the year. At the same time, the canyon is an energetic environment where mixing and entrainment can occur, modifying the pacific-origin waters. As part of the Distributed Biological Observatory (DBO) program, a transect across the canyon was occupied 24 times between 2010-2013 by international ships of opportunity passing through the region during summer and early-fall. Here we present results from an analysis of these sections to determine the seasonal evolution of the water masses and to investigate the nature of the mesoscale variability. The mean state shows the clear presence of six water masses present at various times through the summer. The seasonal evolution of these summer water masses is characterized both in depth space and in temperature-salinity (T-S) space. Clear patterns emerge, including the arrival of Alaskan coastal water and its modification in early-fall. The primary mesoscale variability is associated with wind-driven upwelling events which occur predominantly in September. The atmospheric forcing of these events is investigated as is the oceanic response.

  12. Climate model biases in seasonality of continental water storage revealed by satellite gravimetry

    USGS Publications Warehouse

    Swenson, Sean; Milly, P.C.D.

    2006-01-01

    Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low latitudes. Seasonal extrema of low‐latitude, hemispheric storage generally occur too early in the models, and model‐specific errors in amplitude of the low‐latitude annual variations are substantial. These errors are potentially explicable in terms of neglected or suboptimally parameterized water stores in the land models and precipitation biases in the climate models.

  13. Stochastic soil water balance under seasonal climates

    PubMed Central

    Feng, Xue; Porporato, Amilcare; Rodriguez-Iturbe, Ignacio

    2015-01-01

    The analysis of soil water partitioning in seasonally dry climates necessarily requires careful consideration of the periodic climatic forcing at the intra-annual timescale in addition to daily scale variabilities. Here, we introduce three new extensions to a stochastic soil moisture model which yields seasonal evolution of soil moisture and relevant hydrological fluxes. These approximations allow seasonal climatic forcings (e.g. rainfall and potential evapotranspiration) to be fully resolved, extending the analysis of soil water partitioning to account explicitly for the seasonal amplitude and the phase difference between the climatic forcings. The results provide accurate descriptions of probabilistic soil moisture dynamics under seasonal climates without requiring extensive numerical simulations. We also find that the transfer of soil moisture between the wet to the dry season is responsible for hysteresis in the hydrological response, showing asymmetrical trajectories in the mean soil moisture and in the transient Budyko's curves during the ‘dry-down‘ versus the ‘rewetting‘ phases of the year. Furthermore, in some dry climates where rainfall and potential evapotranspiration are in-phase, annual evapotranspiration can be shown to increase because of inter-seasonal soil moisture transfer, highlighting the importance of soil water storage in the seasonal context. PMID:25663808

  14. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  15. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  16. Water consumption, grain yield, and water productivity in response to field water management in double rice systems in China.

    PubMed

    Wu, Xiao Hong; Wang, Wei; Yin, Chun Mei; Hou, Hai Jun; Xie, Ke Jun; Xie, Xiao Li

    2017-01-01

    Rice cultivation has been challenged by increasing food demand and water scarcity. We examined the responses of water use, grain yield, and water productivity to various modes of field water managements in Chinese double rice systems. Four treatments were studied in a long-term field experiment (1998-2015): continuous flooding (CF), flooding-midseason drying-flooding (F-D-F), flooding-midseason drying-intermittent irrigation without obvious standing water (F-D-S), and flooding-rain-fed (F-RF). The average precipitation was 483 mm in early-rice season and 397 mm in late-rice season. The irrigated water for CF, F-D-F, F-D-S, and F-RF, respectively, was 263, 340, 279, and 170 mm in early-rice season, and 484, 528, 422, and 206 mm in late-rice season. Grain yield for CF, F-D-F, F-D-S, and F-RF, respectively, was 4,722, 4,597, 4,479, and 4,232 kgha-1 in early-rice season, and 5,420, 5,402, 5,366, and 4,498 kgha-1 in late-rice season. Compared with CF, F-D-F consumed more irrigated water, which still decreased grain yield, leading to a decrease in water productivity by 25% in early-rice season and by 8% in late-rice season. Compared with F-D-F, F-D-S saved much irrigated water with a small yield reduction, leading to an increase in water productivity by 22% in early-rice season and by 26% in late-rice season. The results indicate that CF is best for early-rice and FDS is best for late-rice in terms of grain yield and water productivity.

  17. Water-use advantage for lianas over trees in tropical seasonal forests.

    PubMed

    Chen, Ya-Jun; Cao, Kun-Fang; Schnitzer, Stefan A; Fan, Ze-Xin; Zhang, Jiao-Lin; Bongers, Frans

    2015-01-01

    Lianas exhibit peak abundance in tropical forests with strong seasonal droughts, the eco-physiological mechanisms associated with lianas coping with water deficits are poorly understood. We examined soil water partitioning, sap flow, and canopy eco-physiological properties for 99 individuals of 15 liana and 34 co-occurring tree species in three tropical forests that differed in soil water availability. In the dry season, lianas used a higher proportion of deep soil water in the karst forest (KF; an area with severe seasonal soil water deficit (SSWD)) and in the tropical seasonal forest (TSF, moderate SSWD), permitting them to maintain a comparable leaf water status than trees in the TSF or a better status than trees in the KF. Lianas exhibited strong stomatal control to maximize carbon fixation while minimizing dry season water loss. During the dry period, lianas significantly decreased water consumption in the TSF and the KF. Additionally, lianas had a much higher maximum photosynthetic rates and sap flux density in the wet season and a lower proportional decline in photosynthesis in the dry season compared with those of trees. Our results indicated that access to deep soil water and strong physiological adjustments in the dry season together with active wet-season photosynthesis may explain the high abundance of lianas in seasonally dry forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests

  19. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J.

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed - therefore the number of logs was not significantly changed by fire - but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by

  20. Seasonality, Water Quality Variability and Diarrheal Disease in Northern Coastal Ecuador

    NASA Astrophysics Data System (ADS)

    Levy, K.; Hubbard, A. E.; Nelson, K. L.; Eisenberg, J. N.

    2008-12-01

    Objective Seasonality plays a key role in determining incidence of infectious diseases. Diarrheal diseases in particular show seasonal trends, with bacterial pathogens usually peaking in warmer months and viral pathogens peaking in cooler, dryer months. However, studies of the impacts of water quality on diarrheal disease are usually undertaken cross-sectionally, over a short period of time. In this study, we explore how seasonality affects diarrheal disease incidence in a rural area of northern coastal Ecuador, using longer-term datasets. Materials and Methods We use water quality data (as measured by E.coli counts) for both source and in-home water samples collected on a weekly basis over the course of one year in one village. We test the relationship between weekly variability in water quality and diarrheal disease incidence, water treatment and water storage practices in the home. Results We find that peaks in geometric mean values of microbial contamination of source waters often correspond to peaks in weekly village diarrhea incidence in the wet season, but not in the dry season. We also find that perceptions of villagers about water cleanliness do not correspond to levels of microbial contamination; people are more likely to treat their water in the dry season, whereas microbial contamination of source waters peaks in the wet season. We relate these findings to a broader analysis of the relationship between weekly rainfall and diarrheal disease incidence in 21 villages across a larger region over the course of five years. Conclusions Our findings suggest that seasonal variability plays a role in the relationship between water quality and waterborne disease. A consideration of seasonality can help guide public health interventions, by targeting messages about water treatment at times when people are most at risk for waterborne disease. These data can also help inform projections of the impact of climate change on waterborne disease.

  1. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    PubMed

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  2. Seasonality of selected surface water constituents in the Indian River Lagoon, Florida.

    PubMed

    Qian, Y; Migliaccio, K W; Wan, Y; Li, Y C; Chin, D

    2007-01-01

    Seasonality is often the major exogenous effect that must be compensated for or removed to discern trends in water quality. Our objective was to provide a methodological example of trend analysis using water quality data with seasonality. Selected water quality constituents from 1979 to 2004 at three monitoring stations in southern Florida were evaluated for seasonality. The seasonal patterns of flow-weighted and log-transformed concentrations were identified by applying side-by-side boxplots and the Wilcoxon signed-rank test (p < 0.05). Seasonal and annual trends were determined by trend analysis (Seasonal Kendall or Tobit procedure) using the U.S. Geological Survey (USGS) Estimate TREND (ESTREND) program. Major water quality indicators (specific conductivity, turbidity, color, and chloride), except for turbidity at Station C24S49, exhibited significant seasonal patterns. Almost all nutrient species (NO(2)-N, NH(4)-N, total Kjeldahl N, PO(4)-P, and total P) had an identical seasonal pattern of concentrations significantly greater in the wet than in the dry season. Some water quality constituents were observed to exhibit significant annual or seasonal trends. In some cases, the overall annual trend was insignificant while opposing trends were present in different seasons. By evaluating seasonal trends separately from all data, constituents can be assessed providing a more accurate interpretation of water quality trends.

  3. Seasonal variations in soil water in two woodland savannas of central Brazil with different fire history.

    PubMed

    Quesada, Carlos Alberto; Hodnett, Martin G; Breyer, Lacê M; Santos, Alexandre J B; Andrade, Sérgio; Miranda, Heloisa S; Miranda, Antonio Carlos; Lloyd, Jon

    2008-03-01

    Changes in soil water content were determined in two cerrado (sensu stricto) areas with contrasting fire history and woody vegetation density. The study was undertaken near Brasília, Brazil, from 1999 to 2001. Soil water content was measured with a neutron probe in three access tubes per site to a depth of 4.7 m. One site has been protected from fire for more than 30 years and, as a consequence, has a high density of woody plants. The other site had been frequently burned, and has a high herbaceous vegetation density and less woody vegetation. Soil water uptake patterns were strongly seasonal, and despite similarities in hydrological processes, the protected area systematically used more water than the burned area. Three temporarily contiguous patterns of water absorption were differentiated, characterized by variation in the soil depth from which water was extracted. In the early dry season, vegetation used water from throughout the soil profile but with a slight preference for water in the upper soil layers. Toward the peak of the dry season, vegetation had used most or all available water from the surface to a depth of 1.7 m, but continued to extract water from greater depths. Following the first rains, all water used was from the recently wetted upper soil layers only. Evaporation rates were a linear function of soil water availability, indicating a strong coupling of atmospheric water demand and the physiological response of the vegetation.

  4. Spatiotemporal Variation and the Role of Wildlife in Seasonal Water Quality Declines in the Chobe River, Botswana

    PubMed Central

    Fox, J. Tyler; Alexander, Kathleen A.

    2015-01-01

    Sustainable management of dryland river systems is often complicated by extreme variability of precipitation in time and space, especially across large catchment areas. Understanding regional water quality changes in southern African dryland rivers and wetland systems is especially important because of their high subsistence value and provision of ecosystem services essential to both public and animal health. We quantified seasonal variation of Escherichia coli (E. coli) and Total Suspended Solids (TSS) in the Chobe River using spatiotemporal and geostatistical modeling of water quality time series data collected along a transect spanning a mosaic of protected, urban, and developing urban land use. We found significant relationships in the dry season between E. coli concentrations and protected land use (p = 0.0009), floodplain habitat (p = 0.016), and fecal counts from elephant (p = 0.017) and other wildlife (p = 0.001). Dry season fecal loading by both elephant (p = 0.029) and other wildlife (p = 0.006) was also an important predictor of early wet season E. coli concentrations. Locations of high E. coli concentrations likewise showed close spatial agreement with estimates of wildlife biomass derived from aerial survey data. In contrast to the dry season, wet season bacterial water quality patterns were associated only with TSS (p<0.0001), suggesting storm water and sediment runoff significantly influence E. coli loads. Our data suggest that wildlife populations, and elephants in particular, can significantly modify river water quality patterns. Loss of habitat and limitation of wildlife access to perennial rivers and floodplains in water-restricted regions may increase the impact of species on surface water resources. Our findings have important implications to land use planning in southern Africa’s dryland river ecosystems. PMID:26460613

  5. A Drought Early Warning System Using System Dynamics Model and Seasonal Climate Forecasts: a case study in Hsinchu, Taiwan.

    NASA Astrophysics Data System (ADS)

    Tien, Yu-Chuan; Tung, Ching-Ping; Liu, Tzu-Ming; Lin, Chia-Yu

    2016-04-01

    In the last twenty years, Hsinchu, a county of Taiwan, has experienced a tremendous growth in water demand due to the development of Hsinchu Science Park. In order to fulfill the water demand, the government has built the new reservoir, Baoshan second reservoir. However, short term droughts still happen. One of the reasons is that the water level of the reservoirs in Hsinchu cannot be reasonably forecasted, which sometimes even underestimates the severity of drought. The purpose of this study is to build a drought early warning system that projects the water levels of two important reservoirs, Baoshan and Baoshan second reservoir, and also the spatial distribution of water shortagewith the lead time of three months. Furthermore, this study also attempts to assist the government to improve water resources management. Hence, a system dynamics model of Touchien River, which is the most important river for public water supply in Hsinchu, is developed. The model consists of several important subsystems, including two reservoirs, water treatment plants and agricultural irrigation districts. Using the upstream flow generated by seasonal weather forecasting data, the model is able to simulate the storage of the two reservoirs and the distribution of water shortage. Moreover, the model can also provide the information under certain emergency scenarios, such as the accident or failure of a water treatment plant. At last, the performance of the proposed method and the original water resource management method that the government used were also compared. Keyword: Water Resource Management, Hydrology, Seasonal Climate Forecast, Reservoir, Early Warning, Drought

  6. Season-ahead water quality forecasts for the Schuylkill River, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Leung, K.

    2013-12-01

    Anticipating and preparing for elevated water quality parameter levels in critical water sources, using weather forecasts, is not uncommon. In this study, we explore the feasibility of extending this prediction scale to a season-ahead for the Schuylkill River in Philadelphia, utilizing both statistical and dynamical prediction models, to characterize the season. This advance information has relevance for recreational activities, ecosystem health, and water treatment, as the Schuylkill provides 40% of Philadelphia's water supply. The statistical model associates large-scale climate drivers with streamflow and water quality parameter levels; numerous variables from NOAA's CFSv2 model are evaluated for the dynamical approach. A multi-model combination is also assessed. Results indicate moderately skillful prediction of average summertime total coliform and wintertime turbidity, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic Ocean. Models predicting the number of elevated turbidity events across the wintertime season are also explored.

  7. Wind energy input into the upper ocean over a lengthening open water season

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  8. Seasonality, water use and community management of water systems in rural settings: Qualitative evidence from Ghana, Kenya, and Zambia.

    PubMed

    Kelly, Emma; Shields, Katherine F; Cronk, Ryan; Lee, Kristen; Behnke, Nikki; Klug, Tori; Bartram, Jamie

    2018-07-01

    The sustainability of rural, community-managed water systems in sub-Saharan Africa depends in part on the ability of local water committees to repair breakdowns and carry out the operation and maintenance (O&M) of the system. Much of sub-Saharan Africa has two distinct seasons that affect the availability of water sources and how people use water. Little is known about how seasonality affects water system management. This qualitative study is based on 320 interviews and focus group discussions and examines the effects of season on community water use and management in Ghana, Kenya and Zambia. Participants revealed that seasonality affects water availability, water system breakdowns, resource mobilization, committee activity, and external support availability. In the rainy season, participants typically reported spending less time and money on water collection because rainwater harvesting and seasonal streams, ponds, wells and reservoirs are available. In the dry season, people used improved groundwater sources more often and spent more money and time collecting water. Although seasonal changes in household water demand and use have been examined previously, our data suggest that seasonality also influences community management through differential water system use, system breakdowns and management characteristics. We found that water committees generally have less money, time and access to external support during the rainy season, making them less able to carry out O&M. Our results suggest that community engagement should take place over a long period of time so that seasonal patterns in management can be understood and incorporated into water committee training. External support actors should make a more targeted effort to understand the cultural and economic patterns in a community in order to train committees with appropriate management strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Early-season wind erosion influenced by soil-incorporated green manure in the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    Management strategies are sought to minimize wind erosion of irrigated agricultural soils along the Columbia River of the Inland Pacific Northwest, particularly during the early season (March-April) when high winds coincide with sowing of vegetable crops. Early-season wind erosion potential from soi...

  10. Application of Satellite Data for Early Season Assessment of Fallowed Agricultural Lands for Drought Impact Reporting

    NASA Astrophysics Data System (ADS)

    Rosevelt, C.; Melton, F. S.; Johnson, L.; Verdin, J. P.; Thenkabail, P. S.; mueller, R.; Zakzeski, A.; Jones, J.

    2013-12-01

    Rapid assessment of drought impacts can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, or state emergency proclamations. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and land fallowing associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. Here we describe an approach for monthly mapping of land fallowing developed as part of a joint effort by USGS, USDA, and NASA to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of fallowed land from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of normalized difference vegetation index (NDVI) data from Landsat TM, ETM+, and MODIS. Our effort has been focused on development of leading indicators of drought impacts in the March - June timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. This capability complements ongoing work by USDA to produce and publicly release within-season estimates of fallowed acreage from the USDA Cropland Data Layer. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted along transects across the Central Valley at more than 200 fields per month from March - June, 2013. Here we present the algorithm for mapping fallowed acreage early in the season along with results from the accuracy assessment, and discuss potential applications to other regions.

  11. [Effects of Water and Nitrogenous Fertilizer Coupling on CH4 and N2O Emission from Double-Season Rice Paddy Field].

    PubMed

    Fu, Zhi-qiang; Long, Pan; Liu, Yi-yi; Zhong, Juan; Long, Wen-fei

    2015-09-01

    To provide support for the efficient use of water and fertilizer technology to double-season rice cultivation, water and fertilizer coupling mode was applied in this research, including two irrigation methods and four N levels. The irrigation methods were flood irrigation and intermittent irrigation, while four N levels were high-N, middle-N, low-N and none-N. Field experiment was conducted to study the effect of water and fertilizer coupling mode on CH4 and N2O emission. The results showed that the accumulated CH4 emissions were significantly reduced by intermittent irrigation, in comparison with flood irrigation, the reduction in early rice season were from 13. 18 kg.hm-2 to 87. 90 kg.hm-2, and were from 74. 48 kg.hm-2 to 131. 07 kg.hm-2 in late rice season, with a rate of 24. 4% -67. 4% and 42. 5% -65. 5% respectively; whereas the accumulated N20 emissions were increased, the increment were from 0. 03 kg.hm-2 to 0. 24 kg.hm-2 in early rice season and from 0. 35 kg.hm-2 to 1. 53 kg.hm-2 in late rice season when compared flood irrigation, increased by 6.2% -18. 3% and 40.2% - 80.9% respectively. On the whole, intermittent irrigation reduces the warming potential of greenhouse gases (GWP), which were decreased by 18. 8% to 58. 6% in early rice season and by 34. 4% to 60. 1% in late rice season, and the reduction of total GWP were from 2 388 to 4 151 kg. hm-2 (CO2 eq), with a rate of 41% -54% . Through correlation analysis it found that CH4 emissions from soil were significantly related with soil solution Eh and solution CH4 concentration. In comparison with the flood irrigation, the application of intermittent irrigation in double-season rice cultivation was conducive to CH4 reduction, though the increase came in N2O, but the GWPs were significantly reduced. Comprehensively, intermittent irrigation matching with middle-N is more benefit to double-season rice cultivation.

  12. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    PubMed

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P < 0.05). There was a significant and positive correlation between species drought tolerance index and species' seasonal loss in hydraulic conductivity (P < 0.05), confirming the ecological role of long-distance xylem transport in this seasonally dry tropical forest. Our results reveal that water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  13. Hemispheric asymmetry in martian seasonal surface water ice from MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Bandfield, Joshua L.; Wood, Stephen E.

    2015-11-01

    The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured planetary broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. We examine TES daytime albedo, temperature, and atmospheric opacity data to map the latitudinal and temporal occurrence of seasonal surface water frost on Mars. We expand on previous work by looking at the behavior of water frost over the entire martian year, made possible with comprehensive, multi-year data. Interpretations of frost are based on albedo changes and the corresponding daytime temperature range. Data is considered consistent with water frost when there are significant albedo increases (>0.05 relative to frost-free seasons) and the observed temperatures are ∼170-200 K. We argue the presence of extensive water frost in the northern hemisphere, extending from the pole to ∼40°N, following seasonal temperature trends. In the north, water frost first appears near the pole at Ls = ∼160° and is last observed at Ls = ∼90°. Extensive water frost is less evident in southern hemisphere data, though both hemispheres show data that are consistent with the presence of a water ice annulus during seasonal cap retreat. Hemispherical asymmetry in the occurrence of seasonal water frost is due in part to the lower (∼40%) atmospheric water vapor abundances observed in the southern hemisphere. Our results are consistent with net transport of water vapor to the northern hemisphere. The deposition and sublimation of seasonal water frost may significantly increase the near-surface water vapor density that could

  14. Daily and seasonal trends of electricity and water use on pasture-based automatic milking dairy farms.

    PubMed

    Shortall, J; O'Brien, B; Sleator, R D; Upton, J

    2018-02-01

    the early morning period (0300-0600 h), followed by spikes in consumption between 1100 and 1400 h. Seasonal water trends followed the seasonal milk production curve, except for the month of May, when water consumption was reduced due to above-average rainfall. This study provides a useful insight into the consumption of electricity and water on a pasture-based AM farms, while also facilitating the development of future strategies and technologies likely to increase the sustainability of AM systems. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  15. Seasonal energy and water balance of a Phragmites australis-dominated wetland in the Republican River basin of south-central Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Cutrell, G. J.; Istanbulluoglu, E.; Scott, D. T.; Herrman, K. S.; Irmak, A.; Eisenhauer, D. E.

    2011-09-01

    SummaryClimate and vegetation strongly influence the water cycle on local to regional scales. A change in the surface energy and water balance, especially in dry climatic regions, can have a significant impact on local water availability and, therefore, water resource management. The purpose of this study is to quantify the energy and water balance of a riparian wetland in a subhumid region of the central US, as well as the role of seasonal climate variability and vegetation phenology. The site is located in the Republican River basin in south-central Nebraska, where decreases in streamflow have been observed in recent decades. In an effort to reduce consumptive water use from evapotranspiration (ET), and thereby reclaim surface water, invasive species such as Phragmites australis have been removed throughout the riparian corridor of the river basin. In this study, we used energy/water balance monitoring stations, a Large Aperture Scintillometer (LAS), and numerous water and soil temperature probes to determine the energy and water balance during the 2009 growing season (April 11-October 3). Sensible heat flux was measured using the LAS, while ET was calculated as a residual of the energy balance (i.e., net radiation minus sensible heat flux and heat storage rates in the canopy, water, and soil). Rigorous quality control and uncertainty analyses were performed, and comparisons were also made with ET rates calculated via the simpler Priestley-Taylor method. Results of the energy budget analysis indicate that the average ET rate for the wetland during the growing season was 4.4 mm day -1, with a maximum daily rate of 8.2 mm day -1 (occurring on June 29). Precipitation during the same 176-day period averaged 2.7 mm day -1. Net radiation and vegetation phenology were found to be the two largest drivers of seasonal variability in ET. Sensible heat flux was significantly larger than latent heat flux early in the season, when standing vegetation in the wetland was still

  16. Two-stage seasonal streamflow forecasts to guide water resources decisions and water rights allocation

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Gonzalez, E.; Bonnafous, L.

    2011-12-01

    Decision-making in water resources is inherently uncertain producing copious risks, ranging from operational (present) to planning (season-ahead) to design/adaptation (decadal) time-scales. These risks include human activity and climate variability/change. As the risks in designing and operating water systems and allocating available supplies vary systematically in time, prospects for predicting and managing such risks become increasingly attractive. Considerable effort has been undertaken to improve seasonal forecast skill and advocate for integration to reduce risk, however only minimal adoption is evident. Impediments are well defined, yet tailoring forecast products and allowing for flexible adoption assist in overcoming some obstacles. The semi-arid Elqui River basin in Chile is contending with increasing levels of water stress and demand coupled with insufficient investment in infrastructure, taxing its ability to meet agriculture, hydropower, and environmental requirements. The basin is fed from a retreating glacier, with allocation principles founded on a system of water rights and markets. A two-stage seasonal streamflow forecast at leads of one and two seasons prescribes the probability of reductions in the value of each water right, allowing water managers to inform their constituents in advance. A tool linking the streamflow forecast to a simple reservoir decision model also allows water managers to select a level of confidence in the forecast information.

  17. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage.

    PubMed

    Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann; Sander, Bjoern Ole; de Neergaard, Andreas

    2018-01-15

    Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied. However, such ED periods could potentially be very effective since initial available C levels (and thereby the potential for methanogenesis) can be very high in paddy systems with rice straw incorporation. This study tested the effectiveness of seven drainage regimes varying in their timing and duration (combinations of ED and MD) to mitigate CH 4 and N 2 O emissions in a 101-day growth chamber experiment. Emissions were considerably reduced by early-season drainage compared to both conventional continuous flooding (CF) and the MD drainage regime. The results suggest that ED+MD drainage may have the potential to reduce CH 4 emissions and yield-scaled GWP by 85-90% compared to CF and by 75-77% compared to MD only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH 4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (p<0.01) decreased yield-scaled GWP by 85% and 87% respectively. This was associated with carbon being stabilised early in the season, thereby reducing available C for methanogenesis. Overall N 2 O emissions were small and not significantly affected by ED. It is concluded that ED+MD drainage might be an effective low-tech option for small-scale farmers to reduce GHG emissions and save water while maintaining yield. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Seasonality of bottom water temperature in the northern North Sea reconstructed from the oxygen isotope composition of the bivalve Arctica islandica

    NASA Astrophysics Data System (ADS)

    Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian

    2017-04-01

    The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.

  19. Legionella species in year-round vs. seasonal accommodation water supply systems.

    PubMed

    Rakić, Anita; Perić, Jelena; Štambuk-Giljanović, Nives; Mikrut, Antonija; Bakavić, Ana-Spomenka

    2011-12-01

    The purpose of this study was to compare the quality of hot water between eleven hotels in the Split-Dalmatia County, Croatia that are open year round and 10 summer season hotels and retirement homes with irregular use of water. We took 122 samples between May and December 2009. Water temperature and free residual chlorine were measured in situ. Physical and chemical analysis included pH, electrical conductivity, and concentrations of iron, manganese, copper, zinc, calcium, and magnesium that were measured using atomic absorption spectrophotometry, while the Legionella species were determined using a cultivation method on buffered charcoal yeast extract agar. Differences in metal concentrations between the seasonal and year-round accommodation facilities were negligible, save for zinc that was higher in year-round (0.341 mg L(-1)) than in seasonal facilities (0.130 mg L(-1)). Samples from all year-round and six summer season hotels were negative to the Legionella species, but four seasonal facilities turned up with positive samples to Legionella pneumophila. Our study has demonstrated that water quality differs between year-round and seasonal accommodation facilities. These findings suggest that metal plumbing components and associated corrosion products are important factors in the survival and growth of Legionella species in water distribution systems.

  20. Seasonal and Downslope Changes in the Pore Water Geochemistry of Tundra Soils Near Nome, Alaska

    NASA Astrophysics Data System (ADS)

    Philben, M. J.; Zheng, J.; Wullschleger, S. D.; Graham, D. E.; Gu, B.

    2017-12-01

    Thawing permafrost is exposing vast stores of organic matter to decomposition in previously frozen tundra soils. In low-relief and poorly drained areas, the complexity of microbial metabolism under anaerobic conditions complicates the prediction of resulting CO2 and CH4 emissions. To improve this understanding, we investigated the dissolved gas and major ion concentrations and DOM composition in depth profiles of soil pore water collected from the Teller Road site near Nome, AK, as part of the Next Generation Ecosystem Experiment (NGEE)-Arctic. Pathways of anaerobic organic matter degradation were inferred based on two complementary approaches: first, we compared the composition of soil pore waters of saturated areas in the peat plateau and the base of the hillslope, collected early and late in the thaw season (July and September) to assess seasonal changes in the soil solution chemistry. CH4 and low molecular weight organic acids (e.g., acetate, formate, and propionate) were both near or below the detection limit in July but accumulated later in the season. In contrast, SO42- and Fe(III) concentrations were high in July and low in September, while Fe(II) was higher in September. These results suggest SO42- and Fe(III) reduction were the primary pathways for anaerobic respiration early in the thaw season, while methanogenesis increased in September as labile organic acids accumulated. Second, we assessed the change in DOM composition in a transect of piezometers, capturing the degradation of organic matter during transport down a hillslope. The DOC concentration did not change, but SUVA254 declined and the organic acid concentration increased downslope. In addition, Fourier-transform infrared spectroscopy indicated the ratio of carboxyl to amide and aromatic functional groups increased downslope. These parameters show that although there was no net loss of DOC along the transect, it was transformed to less aromatic and potentially more labile forms. Together, these

  1. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    USGS Publications Warehouse

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  2. Seasonal Trends in Stratospheric Water Vapor as Derived from SAGE II Data

    NASA Technical Reports Server (NTRS)

    Roell, Marilee M.; Fu, Rong

    2008-01-01

    Published analysis of HALOE and Boulder balloon measurements of water vapor have shown conflicting trends in stratospheric water vapor for the periods of 1981 through 2005. Analysis of the SAGE II monthly mean water vapor data filtered for large aerosol events for time periods from 1985-1991, 1995-1999, and 2000-2005 have shown a globally decreasing water vapor trend at 17.5km. Seasonal analysis for these three time periods show a decreasing trend in water vapor at 17.5km for the winter and spring seasons. The summer and autumn seasonal analysis show a decreasing trend from 1985-2005, however, there is a increasing trend in water vapor at 17.5km for these seasons during 1995-2005. Latitude vs height seasonal analysis show a decreasing trend in the lower stratosphere between 20S - 20N for the autumn season, while at the latitudes of 30-50S and 30-50N there is an increasing trend in water vapor at heights up to 15km for that season. Comparison with regions of monsoon activity (Asian and North American) show that the Asian monsoon region had some effect on the lower stratospheric moistening in 1995-1999, however, for the time period of 2000-2005, there was no change in the global trend analysis due to either monsoon region. This may be due to the limitations of the SAGE II data from 2000-2005.

  3. Seasonal Variation in Drinking and Domestic Water Sources and Quality in Port Harcourt, Nigeria

    PubMed Central

    Kumpel, Emily; Cock-Esteb, Alicea; Duret, Michel; de Waal, Dominick; Khush, Ranjiv

    2017-01-01

    We compared dry and rainy season water sources and their quality in the urban region of Port Harcourt, Nigeria. Representative sampling indicated that municipal water supplies represent < 1% of the water sources. Residents rely on privately constructed and maintained boreholes that are supplemented by commercially packaged bottled and sachet drinking water. Contamination by thermotolerant coliforms increased from 21% of drinking water sources in the dry season to 42% of drinking water sources in the rainy season (N = 356 and N = 397). The most significant increase was in sachet water, which showed the lowest frequencies of contamination in the dry season compared with other sources (15%, N = 186) but the highest frequencies during the rainy season (59%, N = 76). Only half as many respondents reported drinking sachet water in the rainy season as in the dry season. Respondents primarily used flush or pour-flush toilets connected to septic tanks (85%, N = 399). The remainder relied on pit latrines and hanging (pier) latrines that drained into surface waters. We found significant associations between fecal contamination in boreholes and the nearby presence of hanging latrines. Sanitary surveys of boreholes showed that more than half were well-constructed, and we did not identify associations between structural or site deficiencies and microbial water quality. The deterioration of drinking water quality during the rainy season is a serious public health risk for both untreated groundwater and commercially packaged water, highlighting a need to address gaps in monitoring and quality control. PMID:27821689

  4. Responses of landscape pattern of China's two largest freshwater lakes to early dry season after the impoundment of Three-Gorges Dam

    NASA Astrophysics Data System (ADS)

    Wu, Haipeng; Zeng, Guangming; Liang, Jie; Chen, Jin; Xu, Jijun; Dai, Juan; Sang, Lianhai; Li, Xiaodong; Ye, Shujing

    2017-04-01

    The effects of hydrologic cycle change (caused by human activity and global climate change) on ecosystems attract the increasing attention around the world. As a result of impounding of the Three Gorges Dam (TGD), climate change and sand mining, the dry season of Poyang Lake and Dongting Lake (China's two largest freshwater lakes) came early after the TGD impoundment. It was the primary cause of the increasing need for sluice/dam construction to store water in the Lakes and attracted increasing attention. In this paper, we compared the landscape pattern between three hydrologic years with early dry season (EY) and three normal hydrologic years (NY) of each lake by remote sensing technology, to reveal the effect of early dry season on landscape pattern. The results showed that early dry season caused expanding of Phalaris to mudflat zone in Poyang Lake, while caused expanding of Carex to Phalaris zone and expanding of Phalaris to mudflat zone in Dongting Lake. In landscape level, there was no significant difference in landscape grain size, landscape grain shape, habitat connectivity and landscape diversity between EY and NY in the two lakes. While in habitat class level, there were significant changes in area of mudflat and Phalaris and grain size of mudflat in Poyang Lake, and in area of Carex, grain size of Phalaris and grain shape of Carex and Phalaris in Dongting Lake. These changes will impact migrating birds of East Asian and migratory fishes of Yangtze River.

  5. Snowmelt-Driven Trade-Offs Between Early and Late Season Productivity Negatively Impact Forest Carbon Uptake During Drought

    NASA Astrophysics Data System (ADS)

    Knowles, John F.; Molotch, Noah P.; Trujillo, Ernesto; Litvak, Marcy E.

    2018-04-01

    Future projections of declining snowpack and increasing potential evaporation are predicted to advance the timing of snowmelt in mountain ecosystems globally with unknown implications for snowmelt-driven forest productivity. Accordingly, this study combined satellite- and tower-based observations to investigate the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the Southern Rocky Mountain ecoregion, United States. Our results show that early and late season productivity were significantly and inversely related and that future shifts toward earlier and/or reduced snowmelt could decrease snowmelt water use efficiency and thus restrict productivity despite a longer growing season. This was explained by increasing snow aridity, which incorporated evaporative demand and snow water supply, and was modified by summer precipitation to determine total annual productivity. The combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34 year minimum ecosystem productivity that could be indicative of future conditions.

  6. Gradients in seasonality and seawater oxygen isotopic composition along the early Permian Gondwanan coast, SE Australia

    NASA Astrophysics Data System (ADS)

    Beard, J. Andrew; Ivany, Linda C.; Runnegar, Bruce

    2015-09-01

    Oxygen isotope compositions of marine carbonates are commonly employed for understanding ancient temperatures, but this approach is complicated in the very distant past due to uncertainties about the effects of diagenesis and the isotopic composition of seawater, both locally and globally. Microsampled accretionary calcite from two species of the fossil bivalve Eurydesma Sowerby and Morris 1845 collected from sediments of Cisuralian age in high latitude marine sediments along the SE coast of Australia records cyclic seasonal fluctuations in shell δ18O values during growth, demonstrating the primary nature of the isotope signal and thus allowing investigation of early Permian seawater isotopic composition and water temperature in the high southern latitudes. The mean and seasonal range of δ18Ocarb decreases poleward across about 10° of paleolatitude (∼67°S-77°S). The presence of co-occurring dropstones and stratigraphically associated glendonites constrains winter temperatures across the region to near-freezing, thus permitting calculation of realistic estimates of water composition and summer temperatures. Summer δ18Ocarb values indicate water temperatures between 5 °C and 12 °C, with warmer values at lower latitudes. The decrease in both mean sea surface temperature and seasonal amplitude with increasing latitude on the Gondwanan coast is much like that observed along high-latitude coastlines today. Calculated δ18Owater decreases toward the pole, likely associated with an increasing contribution of isotopically light fresh water derived from summer snow-melt. The gradient in δ18Owater is similar to that documented over a similar span of latitude on the modern SE Greenland coast. We infer the presence of a north-flowing coastal current of cold, O18-depleted water that entrains progressively greater amounts of more typical seawater as it moves away from the pole. δ18O values in SE Australia, however, are about 3‰ lower than those off Greenland

  7. Seasonal Variation in Drinking and Domestic Water Sources and Quality in Port Harcourt, Nigeria.

    PubMed

    Kumpel, Emily; Cock-Esteb, Alicea; Duret, Michel; de Waal, Dominick; Khush, Ranjiv

    2017-02-08

    We compared dry and rainy season water sources and their quality in the urban region of Port Harcourt, Nigeria. Representative sampling indicated that municipal water supplies represent < 1% of the water sources. Residents rely on privately constructed and maintained boreholes that are supplemented by commercially packaged bottled and sachet drinking water. Contamination by thermotolerant coliforms increased from 21% of drinking water sources in the dry season to 42% of drinking water sources in the rainy season ( N = 356 and N = 397). The most significant increase was in sachet water, which showed the lowest frequencies of contamination in the dry season compared with other sources (15%, N = 186) but the highest frequencies during the rainy season (59%, N = 76). Only half as many respondents reported drinking sachet water in the rainy season as in the dry season. Respondents primarily used flush or pour-flush toilets connected to septic tanks (85%, N = 399). The remainder relied on pit latrines and hanging (pier) latrines that drained into surface waters. We found significant associations between fecal contamination in boreholes and the nearby presence of hanging latrines. Sanitary surveys of boreholes showed that more than half were well-constructed, and we did not identify associations between structural or site deficiencies and microbial water quality. The deterioration of drinking water quality during the rainy season is a serious public health risk for both untreated groundwater and commercially packaged water, highlighting a need to address gaps in monitoring and quality control. © The American Society of Tropical Medicine and Hygiene.

  8. Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian-Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells

    NASA Astrophysics Data System (ADS)

    Brigaud, Benjamin; Pucéat, Emmanuelle; Pellenard, Pierre; Vincent, Benoît; Joachimski, Michael M.

    2008-08-01

    Oxygen isotope data from biostratigraphically well-dated oyster shells from the Late Jurassic of the eastern Paris Basin are used to reconstruct the thermal evolution of western Tethyan surface waters during the Early Oxfordian-Early Kimmeridgian interval. Seventy eight oyster shells were carefully screened for potential diagenetic alteration using cathodoluminescence microscopy. Isotope analyses were performed on non-luminescent parts of shells (n = 264). Intra-shell δ18O variability was estimated by microsampling along a transect perpendicular to the growth lines of the largest oyster shell. The sinusoidal distribution of the δ18O values along this transect and the dependence of the amplitude of variations with bathymetry suggest that intra-shell variability reflects seasonal variations of temperature and/or salinity. Average amplitudes of about 5 °C in shallow water environments and of about 2-3 °C in deeper offshore environments are calculated. These amplitudes reflect minimum seasonal temperature variation. Our new data allow to constrain existing paleotemperature trends established from fish tooth and belemnite δ18O data and are in better agreement with paleontological data. More specifically, a warming trend of about 3 °C is reconstructed for oceanic surface waters during the Early to Middle Oxfordian transition, with maximum temperatures reaching 24 °C in the transversarium Zone (late Middle Oxfordian). From the transversarium Zone to the bimmamatum Zone, a cooling of about 7 °C is indicated, whereas from the bimmamatum Zone, temperatures increased again by about 7 °C to reach 24 °C in average during the cymodoce Zone (Early Kimmeridgian).

  9. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  10. Seasonal variation in imposex intensity of Thais clavigera

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan

    2005-06-01

    Imposex, specifically caused by TBT pollution, refers to the superimposition of male sexual characteristics in gastropod females. Seasonal variation of imposex intensity in Thais clavigera from both slightly and severely contaminated sites in Hong Kong waters was studied from 1988 to 1999. The male penis length showed significant difference between both sites and seasons. It was shortest during late autumn and early winter (October to December) and longest during spring and early summer (February to June). Female penis length also showed significant difference between sites. It did not change seasonally, however. The RPS (Relative Penis Size) index was the highest during autumn and early winter, and the lowest during spring and early summer. The VDS (Vas Deferens Sequence) index remained stable throughout the sampling period. This study showed that VDS index is a better indicator when we compare relative intensity of imposex. The comparison can only be meaningful provided the samples from different locations are taken during the same season.

  11. Early and late seasonal carbon sequestration and allocation in larch trees growing on permafrost in Central Siberia

    NASA Astrophysics Data System (ADS)

    Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey

    2014-05-01

    Despite large geographic extent of deciduous conifer species Larix gmelinii, its seasonal photosynthetic activity and translocation of photoassimilated carbon within a tree remain poorly studied. To get better insight into productivity of larch trees growing on permafrost soils in Siberian larch biome we aimed to analyze dynamics of foliage parameters (i.e. leaf area, biomass, %N, %P etc.), seasonal dynamics of photosynthetic activity and apply whole tree labeling by 13CO2, which is powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree (Kagawa et al., 2006; Keel et al., 2012). Experimental plot has been established in mature 105 year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64o17'13" N, 100o11'55" E, 148 m a.s.l.). Trees selected for experiments represented mean tree of the stand. Measurements of seasonal photosynthetic activity and foliar biomass sampling were arranged from early growing season (June 8, 2013) until yellowing and senescence of needles on September 17, 2013. Labeling by 13C in whole tree chamber was conducted by three pulses ([CO2]max ≤ 2,500 ppmv, 13CO2 (30% v/v)) at the early (June) and late (August) phase of growing season for different trees in 3 replicates each time. Both early season and late season labeling experiments demonstrated high rate of 13CO2 assimilation and respective enrichment of needle tissues by 13C: δ13C increased from -28.7 up to +670‰ just after labeling. However, there was distinct post-labeling dynamics of needle δ13C among two seasonal experiments. At the early season 13C depletion in labeled needles was slower, and δ13C approached after 40 days ca. +110 ‰ and remained constant till senescence. In the late season (August) needles were losing labeled C with much faster rate and approached only +1.5 ‰ upon senescence (28 days exposition). These findings suggest that in early season ca. 20% of

  12. Copepod community succession during warm season in Lagoon Notoro-ko, northeastern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshizumi; Ichikawa, Hideaki; Kitamura, Mitsuaki; Nishino, Yasuto; Taniguchi, Akira

    2015-06-01

    Lagoon Notoro-ko, located on the northeastern coast of Hokkaido, Japan, and connected to the Okhotsk Sea by a human-made channel, is strongly influenced by local hydrography, as water masses in the lagoon are seasonally influenced by the Soya Warm Current and the East Sakhalin Current. We here report on the succession of copepod communities during the warm season in relation to water mass exchange. Copepods were categorized into four seasonal communities (spring/early-summer, mid-summer, late-summer/fall, and early-winter) via a cluster analysis based on Bray-Curtis similarities. Spring/early-summer and early-winter communities were characterized by the temperate-boreal calanoid Pseudocalanus newmani, comprising 34.9%-77.6% of the total abundance of copepods during times of low temperature/salinity, as influenced by the prevailing East Sakhalin Current. Late-summer/fall communities were characterized by the neritic warm-water calanoid Paracalanus parvus s.l., comprising 63.9%-96.3% of the total abundance, as influenced by the Soya Warm Current. Mid-summer communities comprised approximately equal abundances of P. parvus, Eurytemora herdmani, Scolecithricella minor, and Centropages abdominalis (12.8%-28.2%); this community is transitional between those of the spring/early-summer and late-summer/fall. Copepod community succession in Lagoon Notoro-ko can be largely explained by seasonal changes in water masses.

  13. Development of Water Resources Drought Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, B. P. T.; Chen, C. H.

    2017-12-01

    Signs of impending drought are often vague and result from hydrologic uncertainty. Because of this, determining the appropriate time to enforce water supply restrictions is difficult. This study proposes a drought early warning index (DEWI) that can help water resource managers to anticipate droughts so that preparations can be made to mitigate the impact of water shortages. This study employs the expected-deficit-rate of normal water supply conditions as the drought early warning index. An annual-use-reservoir-based water supply system in southern Taiwan was selected as the case study. The water supply simulation was based on reservoir storage at the evaluation time and the reservoir inflow series to cope with the actual water supply process until the end of the hydrologic year. A variety of deficits could be realized during different hydrologic years of records and assumptions of initial reservoir storage. These deficits are illustrated using the Average Shortage Rate (ASR) and the value of the ASR, namely the DEWI. The ASR is divided into 5 levels according to 5 deficit-tolerance combinations of each kind of annual demand. A linear regression model and a Neuro-Fuzzy Computing Technique model were employed to estimate the DEWI using selected factors deduced from supply-demand traits and available information, including: rainfall, reservoir inflow and storage data. The chosen methods mentioned above are used to explain a significant index is useful for both model development and decision making. Tests in the Tsengwen-Wushantou reservoir system showed this DEWI to perform very well in adopting the proper mitigation policy at the end of the wet season.

  14. Depletion of Stem Water of Sclerocarya birrea Agroforestry Tree Precedes Start of Rainy Season in West African Sudanian Zone

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Parlange, Marc B.

    2013-04-01

    Understanding water use by agroforestry trees in dry-land ecosystems is essential for improving water management. Agroforestry trees are valued and promoted for many of their ecologic and economic benefits but are often criticized as competing for valuable water resources. In order to understand the seasonal patterns of source water used by agroforestry trees, samples from rain, ground, and surface water were collected weekly in the subcatchment of the Singou watershed that is part of the Volta Basin. Soil and vegetation samples were collected from and under a Sclerocarya birrea agroforstry trees located in this catchment in sealed vials, extracted, and analyzed with a Picarro L2130-i CRDS to obtain both δO18 and δDH fractions. Meteorological measurements were taken with a network of wireless, autonomous stations that communicate through the GSM network (Sensorscope) and two complete eddy-covariance energy balance stations, in addition to intense monitoring of sub-canopy solar radiation, throughfall, stemflow, and soil moisture. Examination of the time series of δO18 concentrations confirm that values in soil and xylem water are coupled, both becoming enriched during the dry season and depleted during the rainy season. Xylem water δO18 levels drops to groundwater δO18 levels in early March when trees access groundwater for leafing out, however soil water does not reach this level until soil moisture increases in mid-June. The relationship between the δDH and δO18 concentrations of water extracted from soil and tree samples do not fall along the global meteoric water line. In order to explore whether this was a seasonally driven, we grouped samples into an "evaporated" group or a "meteoric" group based on the smaller residual to the respective lines. Although more soil samples were found along the m-line during the rainy season than tree samples or dry season soil samples, there was no significant difference in days since rain for any group This suggests that

  15. Excess growing-season water limits lowland black spruce productivity

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.

    2015-12-01

    The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.

  16. Sub-seasonal predictability of water scarcity at global and local scale

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  17. Sources of seasonal water-supply forecast skill in the western US

    USGS Publications Warehouse

    Dettinger, Michael

    2007-01-01

    Many water supplies in the western US depend on water that is stored in snowpacks and reservoirs during the cool, wet seasons for release and use in the following warm seasons. Managers of these water supplies must decide each winter how much water will be available in subsequent seasons so that they can proactively capture and store water and can make reliable commitments for later deliveries. Long-lead water-supply forecasts are thus important components of water managers' decisionmaking. Present-day operational water-supply forecasts draw skill from observations of the amount of water in upland snowpacks, along with estimates of the amount of water otherwise available (often via surrogates for antecedent precipitation, soil moisture or baseflows). Occasionally, the historical hydroclimatic influences of various global climate conditions may be factored in to forecasts. The relative contributions of (potential) forecast skill for January-March and April-July seasonal water- supply availability from these sources are mapped across the western US as lag correlations among elements of the inputs and outputs from a physically based, regional land-surface hydrology model of the western US from 1950-1999. Information about snow-water contents is the most valuable predictor for forecasts made through much of the cool-season but, before the snows begin to fall, indices of El Nino-Southern Oscillation are the primary source of whatever meager skill is available. The contributions to forecast skill made available by knowledge of antecedent flows (a traditional predictor) and soil moisture at the time the long-lead forecast is issued are compared, to gain insights into the potential usefulness of new soil-moisture monitoring options in the region. When similar computations are applied to simulated flows under historical conditions, but with a uniform +2°C warming imposed, the widespread diminution of snowpacks reduces forecast skills, although skill contributed by measures

  18. Seasonal and Non-seasonal Sea Level Variations by Exchange of Water with Land Hydrology

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.

    2004-01-01

    The global ocean exchanges a large amount of water, seasonally or non-seasonally, with land hydrology. Apart from the long-term melting of ice sheets and glaciers, the water is exchanged directly as land runoff R, and indirectly via atmosphere in the form of precipitation minus evapo-transpiration P-E. On land, the hydrological budget balance is soil moisture S = P-E-R. The runoff R has been difficult to monitor; but now by combining the following two data sets one can obtain a global estimate, subject to the spatial and temporal resolutions afforded by the data: (1) The space gravity mission GRACE yields monthly S estimate on a spatial scale larger than approx. 1000 km over the last 2.5 years; (2) The atmospheric circulation model output, such as from NCEP, provides proxy estimates for P-E at monthly and approx. 200 km resolutions. We will discuss these estimates and the effects on the global ocean water budget and hence sea level.

  19. Technical Note: Seasonality in alpine water resources management - a regional assessment

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2008-01-01

    Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.

  20. Diverse host feeding on nesting birds may limit early-season West Nile virus amplification.

    PubMed

    Egizi, Andrea M; Farajollahi, Ary; Fonseca, Dina M

    2014-06-01

    Arboviral activity tracks vector availability, which in temperate regions means that transmission ceases during the winter and must be restarted each spring. In the northeastern United States, Culex restuans Theobald resumes its activity earlier than Culex pipiens L. and is thought to be important in restarting West Nile virus (WNV) transmission. Its role in WNV amplification, however, is unclear, because viral levels commonly remain low until the rise of Cx. pipiens later in the season. Because a vector's feeding habits can reveal key information about disease transmission, we identified early-season (April-June) blood meals from Cx. restuans collected throughout New Jersey, and compared them to published datasets from later in the season and also from other parts of the country. We found significantly higher avian diversity, including poor WNV hosts, and fewer blood meals derived from American Robins (17% versus over 40% found in later season). Critically, we identified blood meals from significantly more female than male birds in species where females are the incubating sex, suggesting that Cx. restuans is able to feed on such a wide variety of hosts in early spring because incubating birds are easy targets. Because WNV amplification depends on virus consistently reaching competent hosts, our results indicate that Cx. restuans is unlikely to be an amplifying vector of WNV in the early season. As the season progresses, however, changes in the availability of nesting birds may make it just as capable as Cx. pipiens, although at somewhat lower abundance as the summer progresses.

  1. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  2. Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity

    NASA Astrophysics Data System (ADS)

    Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.

    2017-12-01

    Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.

  3. Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Arp, Christopher D.; Adams, Jeff; Falke, Jeffrey A.

    2015-01-01

    In Arctic ecosystems, freshwater fish migrate seasonally between productive shallow water habitats that freeze in winter and deep overwinter refuge in rivers and lakes. How these movements relate to seasonal hydrology is not well understood. We used passive integrated transponder tags and stream wide antennae to track 1035 Arctic grayling in Crea Creek, a seasonally flowing beaded stream on the Arctic Coastal Plain, Alaska. Migration of juvenile and adult fish into Crea Creek peaked in June immediately after ice break-up in the stream. Fish that entered the stream during periods of high flow and cold stream temperature traveled farther upstream than those entering during periods of lower flow and warmer temperature. We used generalized linear models to relate migration of adult and juvenile fish out of Crea Creek to hydrology. Most adults migrated in late June – early July, and there was best support (Akaike weight = 0.46; w i ) for a model indicating that the rate of migration increased with decreasing discharge. Juvenile migration occurred in two peaks; the early peak consisted of larger juveniles and coincided with adult migration, while the later peak occurred shortly before freeze-up in September and included smaller juveniles. A model that included discharge, minimum stream temperature, year, season, and mean size of potential migrants was most strongly supported (w i  = 0.86). Juvenile migration rate increased sharply as daily minimum stream temperature decreased, suggesting fish respond to impending freeze-up. We found fish movements to be intimately tied to the strong seasonality of discharge and temperature, and demonstrate the importance of small stream connectivity for migratory Arctic grayling during the entire open-water period. The ongoing and anticipated effects of climate change and petroleum development on Arctic hydrology (e.g. reduced stream connectivity, earlier peak flows, increased evapotranspiration) have important implications

  4. The role of seasonal water scarcity on water quality: a global analysis with case study in the Magdalena, Colombia

    NASA Astrophysics Data System (ADS)

    Burke, Sophia; Mulligan, Mark

    2017-04-01

    Water scarcity is not just a problem of its own right (hydrological drought) but cascades the hydro-economic system to create problems for crop growth and livestock (agricultural drought) and thus for wellbeing and economic productivity (economic drought). One of these cascades is the impact of reduced water quantity on water quality as a result of non-point source pollutant concentration in water bodies such as rivers, lakes and wetlands. This paper investigates the impact of seasonal water shortages on the quality of supplied water to urban centres with a view to better understanding how land use management can reduce dry-season pollutant spikes. We apply a widely used spatial hydrological model (WaterWorld) and its water quality index (the human footprint on water quality, HFWQ) to examine to what extent HFWQ of water flowing into urban water intakes is affected by flow seasonality and by typical "dry year" events. A global analysis shows trends across climatic and land use gradients and is followed by a regional analysis of the Magdalena basin in Colombia: a large basin with 79% of the countries population and a mixture of intensively farmed and protected lands along a seasonality gradient from South to North. The Magdalena is a case study basin of the EartH2Observe project.

  5. EFFECT OF CHLORAMINATION AND SEASONAL WATER CHANGES ON NANOFILTRATION FOULING

    EPA Science Inventory

    Nanofiltraton membrane studies conducted with Little Miami Aquifer water from the Indian Hill Water Works (OH) showed tht flux loss was highly seasonal in nature with the greatest fouling occurring during the highest water temperatures during drought conditions. The reason for th...

  6. Importance of Dry-Season Precipitation to the Water Resources of Monteverde, Costa Rica

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Rhodes, A. L.

    2005-12-01

    Monteverde, Costa Rica harbors montane forests that exemplify the delicate balances among climate, hydrology, habitat, and development. Most of the annual precipitation to this region arrives during the wet season, but the importance of orographic precipitation during the dry and transitional seasons should not be underestimated. Changes in regional land-cover and global climate may lead to reduced precipitation and cloud cover and a subsequent decline in endemic species, and a boom in ecotourism has put stress on water resources. A recent attempt to withdraw water from a local stream led to a standoff between conservationists and business developers, and there is a clear need for hydrologic data and understanding in support of policy. Through signals observed in the stable isotopic composition of precipitation and streamflow, we seek to understand how precipitation from the drier seasons propagates through the hydrologic cycle. In precipitation, δ18O and δ2H are heaviest during the dry and transitional seasons and light during the rainy season, consistent with the condensation mechanisms and degree of rainout typical of these periods. The signal in d-excess indicates a contribution of recycled water to precipitation in Monteverde from late in the rainy season through the dry season. Attenuated versions of these seasonal signals propagate through to the stream samples and provide a means of determining the importance of dry-season precipitation to water resources for the region. Results from six catchments on the leeward slope indicate that the Brillante Gap in the continental divide exerts strong control on the input of orographic precipitation to the region. Disparities in the temporal signals of precipitation and streamflow isotopes indicate non-linear behavior in the hydrologic processes that move water through these catchments.

  7. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  8. Early and Real-Time Detection of Seasonal Influenza Onset

    PubMed Central

    Marques-Pita, Manuel

    2017-01-01

    Every year, influenza epidemics affect millions of people and place a strong burden on health care services. A timely knowledge of the onset of the epidemic could allow these services to prepare for the peak. We present a method that can reliably identify and signal the influenza outbreak. By combining official Influenza-Like Illness (ILI) incidence rates, searches for ILI-related terms on Google, and an on-call triage phone service, Saúde 24, we were able to identify the beginning of the flu season in 8 European countries, anticipating current official alerts by several weeks. This work shows that it is possible to detect and consistently anticipate the onset of the flu season, in real-time, regardless of the amplitude of the epidemic, with obvious advantages for health care authorities. We also show that the method is not limited to one country, specific region or language, and that it provides a simple and reliable signal that can be used in early detection of other seasonal diseases. PMID:28158192

  9. Early-season avian deaths from West Nile virus as warnings of human infection

    USGS Publications Warehouse

    Guptill, S.C.; Julian, K.G.; Campbell, G.L.; Price, S.D.; Marfin, A.A.

    2003-01-01

    An analysis of 2001 and 2002 West Nile virus (WNV) surveillance data shows that counties that report WNV-infected dead birds early in the transmission season are more likely to report subsequent WNV disease cases in humans than are counties that do not report early WNV-infected dead birds.

  10. DESI-Detection of early-season invasives (software-installation manual and user's guide version 1.0)

    USGS Publications Warehouse

    Kokaly, Raymond F.

    2011-01-01

    This report describes a software system for detecting early-season invasive plant species, such as cheatgrass. The report includes instructions for installing the software and serves as a user's guide in processing Landsat satellite remote sensing data to map the distributions of cheatgrass and other early-season invasive plants. The software was developed for application to the semi-arid regions of southern Utah; however, the detection parameters can be altered by the user for application to other areas.

  11. Seasonal water storage, stress modulation, and California seismicity.

    PubMed

    Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland

    2017-06-16

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.

  12. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the

  13. Future change in seasonal march of snow water equivalent due to global climate change

    NASA Astrophysics Data System (ADS)

    Hara, M.; Kawase, H.; Ma, X.; Wakazuki, Y.; Fujita, M.; Kimura, F.

    2012-04-01

    Western side of Honshu Island in Japan is one of the heaviest snowfall areas in the world, although the location is relatively lower latitude than other heavy snowfall areas. Snowfall is one of major source for agriculture, industrial, and house-use in Japan. The change in seasonal march of snow water equivalent, e.g., snowmelt season and amount will strongly influence to social-economic activities (ex. Ma et al., 2011). We performed the four numerical experiments including present and future climate simulations and much-snow and less-snow cases using a regional climate model. Pseudo-Global-Warming (PGW) method (Kimura and Kitoh, 2008) is applied for the future climate simulations. NCEP/NCAR reanalysis is used for initial and boundary conditions in present climate simulation and PGW method. MIROC 3.2 medres 2070s output under IPCC SRES A2 scenario and 1990s output under 20c3m scenario used for PGW method. In much-snow cases, Maximum total snow water equivalent over Japan, which is mostly observed in early February, is 49 G ton in the present simulation, the one decreased 26 G ton in the future simulation. The decreasing rate of snow water equivalent due to climate change was 49%. Main cause of the decrease of the total snow water equivalent is strongly affected by the air temperature rise due to global climate change. The difference in present and future precipitation amount is little.

  14. Frequency and abundance of selected early season insect pests of cotton

    USDA-ARS?s Scientific Manuscript database

    The use of insecticides at planting has been a common crop management practice in cotton for several decades. Historically, U.S. cotton growers relied on in-furrow applications of insecticides, such as aldicarb, to control early season insect pests. In-furrow applications have largely been replaced ...

  15. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations

    USGS Publications Warehouse

    Luo, Y.; Sophocleous, M.

    2010-01-01

    Groundwater evaporation can play an important role in crop-water use where the water table is shallow. Lysimeters are often used to quantify the groundwater evaporation contribution influenced by a broad range of environmental factors. However, it is difficult for such field facilities, which are operated under limited conditions within limited time, to capture the whole spectrum of capillary upflow with regard to the inter-seasonal variability of climate, especially rainfall. Therefore, in this work, the method of combining lysimeter and numerical experiments was implemented to investigate seasonal groundwater contribution to crop-water use. Groundwater evaporation experiments were conducted through a weighing lysimeter at an agricultural experiment station located within an irrigation district in the lower Yellow River Basin for two winter wheat growth seasons. A HYDRUS-1D model was first calibrated and validated with weighing lysimeter data, and then was employed to perform scenario simulations of groundwater evaporation under different depths to water table (DTW) and water input (rainfall plus irrigation) driven by long term meteorological data. The scenario simulations revealed that the seasonally averaged groundwater evaporation amount was linearly correlated to water input for different values of DTW. The linear regression could explain more than 70% of the variability. The seasonally averaged ratio of the groundwater contribution to crop-water use varied with the seasonal water input and DTW. The ratio reached as high as 75% in the case of DTW=1.0. m and no irrigation, and as low as 3% in the case of DTW=3.0. m and three irrigation applications. The results also revealed that the ratio of seasonal groundwater evaporation to potential evapotranspiration could be fitted to an exponential function of the DTW that may be applied to estimate seasonal groundwater evaporation. In this case study of multilayered soil profile, the depth at which groundwater may

  16. Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile

    NASA Astrophysics Data System (ADS)

    Delorit, Justin; Cristian Gonzalez Ortuya, Edmundo; Block, Paul

    2017-09-01

    In many semi-arid regions, multisectoral demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited-capacity reservoir to allocate 25 000 water rights. Delayed infrastructure investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized through reductions in the volume associated with each water right. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of future conditions to guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October-January (growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions with a reservoir allocation tool. Skillful results (streamflow forecasts outperform climatology) are produced for short lead times (1 September: ranked probability skill score (RPSS) of 0.31, categorical hit skill score of 61 %). At longer lead times, climatological skill exceeds forecast skill due to fewer observations of precipitation. However, coupling the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60 % of years (1950-2015), suggesting forecasts need not be strictly deterministic to be useful for water rights holders. An early (1 May) categorical indication of expected conditions is reinforced with a deterministic forecast (1 September) as more observations of local variables become available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score of 53 %); skill improves to 79 % when categorical allocation prediction certainty exceeds 80 %. This result implies that allocation efficiency may improve when forecasts are integrated into reservoir decision frameworks. The

  17. Seasonal responses of terrestrial ecosystem water-use efficiency to climate change.

    PubMed

    Huang, Mengtian; Piao, Shilong; Zeng, Zhenzhong; Peng, Shushi; Ciais, Philippe; Cheng, Lei; Mao, Jiafu; Poulter, Ben; Shi, Xiaoying; Yao, Yitong; Yang, Hui; Wang, Yingping

    2016-06-01

    Ecosystem water-use efficiency (EWUE) is an indicator of carbon-water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long-term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2 . The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982-2008. The seasonal cycle for two variants of EWUE, water-use efficiency (WUE, GPP/ET), and transpiration-based WUE (WUEt , the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process-based models and satellite-based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite-based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite-based products. Trend analysis, based on process-model factorial simulations separating effects of climate, CO2 , and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid- and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m(-2)  mm(-1)  yr(-1) for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.

  18. Seasonal Responses of Terrestrial Ecosystem Water-use Efficiency to Climate Change

    NASA Astrophysics Data System (ADS)

    Huang, M.; Piao, S.; Zeng, Z.; Peng, S.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Yao, Y.; Yang, H.; Wang, Y.

    2016-12-01

    Ecosystem water-use efficiency (EWUE) is an indicator of carbon-water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long-term trend in annual EWUE over many regions, and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982-2008. The seasonal cycle for two variants of EWUE, water-use efficiency (WUE, GPP/ET) and transpiration-based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process-based models and satellite-based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite-based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite-based products. Trend analysis, based on process-model factorial simulations separating effects of climate, CO2 and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid- and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m-2 mm-1 yr-1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2 and NDEP.

  19. Atmospheric Expression of Seasonality on the Early Earth and Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Olson, S. L.; Schwieterman, E. W.; Reinhard, C. T.; Ridgwell, A.; Lyons, T. W.

    2017-12-01

    Biologically modulated seasonality impacts nearly every chemical constituent of Earth's atmosphere. For example, seasonal shifts in the balance of photosynthesis and respiration manifest as striking oscillation in the atmospheric abundance of CO2 and O2. Similar temporal variability is likely on other inhabited worlds, and seasonality is often regarded as a potential exoplanetary biosignature. Seasonality is a particularly intriguing biosignature because it may allow us to identify life through the abundance of spectrally active gases that are not uniquely biological in origin (e.g., CO2 or CH4). To date, however, the discussion of seasonality as a biosignature has been exclusively qualitative. We lack both quantitative constraints on the likelihood of spectrally detectable seasonality elsewhere and a framework for evaluating potential false positive scenarios (e.g., seasonal CO2 ice sublimation). That is, we do not yet know for which gases, and under which conditions, we could expect to detect seasonality and reliably infer the presence of an active biosphere. The composition of Earth's atmosphere has changed dramatically through time, and consequently, the atmospheric expression of seasonality has necessarily changed throughout Earth history as well. Thus, Earth offers several case studies for examining the potential for observable seasonality on chemically and tectonically diverse exoplanets. We outline an approach for exploring the history of seasonality on Earth via coupled biogeochemical and photochemical models, with particular emphasis on the seasonal cycles of CO2, CH4, and O2/O3. We also discuss the remote detectability of these seasonal signals on directly imaged exoplanets via reflectance and emission spectra. We suggest that seasonality in O2 on the early Earth was biogeochemically significant—and that seasonal cycles in O3, an indirect biological product coupled to biogenic O2, may be a readily detectable fingerprint of life in the absence of

  20. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    NASA Astrophysics Data System (ADS)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  1. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review.

    PubMed

    Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie

    2015-05-01

    Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biomass burning emissions in north Australia during the early dry season: an overview of the 2014 SAFIRED campaign

    NASA Astrophysics Data System (ADS)

    Mallet, Marc D.; Desservettaz, Maximilien J.; Miljevic, Branka; Milic, Andelija; Ristovski, Zoran D.; Alroe, Joel; Cravigan, Luke T.; Rohan Jayaratne, E.; Paton-Walsh, Clare; Griffith, David W. T.; Wilson, Stephen R.; Kettlewell, Graham; van der Schoot, Marcel V.; Selleck, Paul; Reisen, Fabienne; Lawson, Sarah J.; Ward, Jason; Harnwell, James; Cheng, Min; Gillett, Rob W.; Molloy, Suzie B.; Howard, Dean; Nelson, Peter F.; Morrison, Anthony L.; Edwards, Grant C.; Williams, Alastair G.; Chambers, Scott D.; Werczynski, Sylvester; Williams, Leah R.; Winton, V. Holly L.; Atkinson, Brad; Wang, Xianyu; Keywood, Melita D.

    2017-11-01

    The SAFIRED (Savannah Fires in the Early Dry Season) campaign took place from 29 May until 30 June 2014 at the Australian Tropical Atmospheric Research Station (ATARS) in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, speciated atmospheric mercury and trace metals. Aspects of the biomass burning aerosol emissions investigated included; emission factors of various species, physical and chemical aerosol properties, aerosol aging, micronutrient supply to the ocean, nucleation, and aerosol water uptake. Over the course of the month-long campaign, biomass burning signals were prevalent and emissions from several large single burning events were observed at ATARS.Biomass burning emissions dominated the gas and aerosol concentrations in this region. Dry season fires are extremely frequent and widespread across the northern region of Australia, which suggests that the measured aerosol and gaseous emissions at ATARS are likely representative of signals across the entire region of north Australia. Air mass forward trajectories show that these biomass burning emissions are carried north-west over the Timor Sea and could influence the atmosphere over Indonesia and the tropical atmosphere over the Indian Ocean. Here we present characteristics of the biomass burning observed at the sampling site and provide an overview of the more specific outcomes of the SAFIRED campaign.

  3. State of the Science for Sub-Seasonal to Seasonal Precipitation Forecasting in Support of Water Resource Managers

    NASA Astrophysics Data System (ADS)

    DeWitt, D. G.

    2017-12-01

    Water resource managers are one of the communities that would strongly benefit from highly-skilled sub-seasonal to seasonal precipitation forecasts. Unfortunately, the current state of the art prediction tools frequently fail to provide a level of skill sufficient to meet the stakeholders needs, especially on the monthly and seasonal timescale. On the other hand, the skill of precipitation forecasts on the week-2 timescale are relatively high and arguably useful in many decision-making contexts. This talk will present a comparison of forecast skill for the week-2 through the first season timescale and describe current efforts within NOAA and elsewhere to try to improve forecast skill beyond week-2, including research gaps that need to be addressed in order to make progress.

  4. Contrasting precipitation seasonality influences evapotranspiration dynamics in water-limited shrublands

    NASA Astrophysics Data System (ADS)

    Villarreal, Samuel; Vargas, Rodrigo; Yepez, Enrico A.; Acosta, Jose S.; Castro, Angel; Escoto-Rodriguez, Martin; Lopez, Eulogio; Martínez-Osuna, Juan; Rodriguez, Julio C.; Smith, Stephen V.; Vivoni, Enrique R.; Watts, Christopher J.

    2016-02-01

    Water-limited ecosystems occupy nearly 30% of the Earth, but arguably, the controls on their ecosystem processes remain largely uncertain. We analyzed six site years of eddy covariance measurements of evapotranspiration (ET) from 2008 to 2010 at two water-limited shrublands: one dominated by winter precipitation (WP site) and another dominated by summer precipitation (SP site), but with similar solar radiation patterns in the Northern Hemisphere. We determined how physical forcing factors (i.e., net radiation (Rn), soil water content (SWC), air temperature (Ta), and vapor pressure deficit (VPD)) influence annual and seasonal variability of ET. Mean annual ET at SP site was 455 ± 91 mm yr-1, was mainly influenced by SWC during the dry season, by Rn during the wet season, and was highly sensitive to changes in annual precipitation (P). Mean annual ET at WP site was 363 ± 52 mm yr-1, had less interannual variability, but multiple variables (i.e., SWC, Ta, VPD, and Rn) were needed to explain ET among years and seasons. Wavelet coherence analysis showed that ET at SP site has a consistent temporal coherency with Ta and P, but this was not the case for ET at WP site. Our results support the paradigm that SWC is the main control of ET in water-limited ecosystems when radiation and temperature are not the limiting factors. In contrast, when P and SWC are decoupled from available energy (i.e., radiation and temperature), then ET is controlled by an interaction of multiple variables. Our results bring attention to the need for better understanding how climate and soil dynamics influence ET across these globally distributed ecosystems.

  5. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  6. Seasonal dynamics and spatial distribution pattern of Parapoynx crisonalis (Lepidoptera: Crambidae) on water chestnuts.

    PubMed

    Li, Ni; Chen, Qi; Zhu, Jie; Wang, Xing; Huang, Jian-Bin; Huang, Guo-Hua

    2017-01-01

    Parapoynx crisonalis (Walker, 1859) (Lepidoptera: Crambidae) is a major pest of aquatic vegetables and aquatic landscape plants. It has been responsible for causing considerable economic damage to water chestnut (Trapa natans) plants. In the Changsha vicinity of China, P. crisonalis has five generations a year. Populations of P. crisonalis were relatively low in April and began to rapidly rise at the beginning of May. At the end of July and early August, the population dropped dramatically. A rebound occurred at the end of August and early September, which was referred to as the second population peak. From then, until early November, the P. crisonalis population steadily diminished in preparation for overwintering. The primary factors influencing the seasonal dynamics of P. crisonalis were the climatic conditions, especially the temperature, and secondarily precipitation. Between May and October, the P. crisonalis adults were evenly distributed in the pond. In May and June, the eggs of P. crisonalis were present in an aggregate distribution, due to the effects of environmental heterogeneity. In July and August, however, they were found to be in a uniform distribution.

  7. Seasonal dynamics and spatial distribution pattern of Parapoynx crisonalis (Lepidoptera: Crambidae) on water chestnuts

    PubMed Central

    Zhu, Jie; Wang, Xing; Huang, Jian-Bin; Huang, Guo-Hua

    2017-01-01

    Parapoynx crisonalis (Walker, 1859) (Lepidoptera: Crambidae) is a major pest of aquatic vegetables and aquatic landscape plants. It has been responsible for causing considerable economic damage to water chestnut (Trapa natans) plants. In the Changsha vicinity of China, P. crisonalis has five generations a year. Populations of P. crisonalis were relatively low in April and began to rapidly rise at the beginning of May. At the end of July and early August, the population dropped dramatically. A rebound occurred at the end of August and early September, which was referred to as the second population peak. From then, until early November, the P. crisonalis population steadily diminished in preparation for overwintering. The primary factors influencing the seasonal dynamics of P. crisonalis were the climatic conditions, especially the temperature, and secondarily precipitation. Between May and October, the P. crisonalis adults were evenly distributed in the pond. In May and June, the eggs of P. crisonalis were present in an aggregate distribution, due to the effects of environmental heterogeneity. In July and August, however, they were found to be in a uniform distribution. PMID:28863164

  8. Subseasonal to Seasonal Predictions of U.S. West Coast High Water Levels

    NASA Astrophysics Data System (ADS)

    Khouakhi, A.; Villarini, G.; Zhang, W.; Slater, L. J.

    2017-12-01

    Extreme sea levels pose a significant threat to coastal communities, ecosystems, and assets, as they are conducive to coastal flooding, coastal erosion and inland salt-water intrusion. As sea levels continue to rise, these sea level extremes - including occasional minor coastal flooding experienced during high tide (nuisance floods) - are of concern. Extreme sea levels are increasing at many locations around the globe and have been attributed largely to rising mean sea levels associated with intra-seasonal to interannual climate processes such as the El Niño-Southern Oscillation (ENSO). Here, intra-seasonal to seasonal probabilistic forecasts of high water levels are computed at the Toke Point tide gage station on the US west coast. We first identify the main climate drivers that are responsible for high water levels and examine their predictability using General Circulation Models (GCMs) from the North American Multi-Model Ensemble (NMME). These drivers are then used to develop a probabilistic framework for the seasonal forecasting of high water levels. We focus on the climate controls on the frequency of high water levels using the number of exceedances above the 99.5th percentile and above the nuisance flood level established by the National Weather Service. Our findings indicate good forecast skill at the shortest lead time, with the skill that decreases as we increase the lead time. In general, these models aptly capture the year-to-year variability in the observational records.

  9. Methanogenic Pathway and Fraction of CH4 Oxidized in Paddy Fields: Seasonal Variation and Effect of Water Management in Winter Fallow Season

    PubMed Central

    Zhang, Guangbin; Liu, Gang; Zhang, Yi; Ma, Jing; Xu, Hua; Yagi, Kazuyuki

    2013-01-01

    A 2-year field and incubation experiment was conducted to investigate δ13C during the processes of CH4 emission from the fields subjected to two water managements (flooding and drainage) in the winter fallow season, and further to estimate relative contribution of acetate to total methanogenesis (Fac) and fraction of CH4 oxidized (Fox) based on the isotopic data. Compared with flooding, drainage generally caused CH4, either anaerobically or aerobically produced, depleted in 13C. There was no obvious difference between the two in transport fractionation factor (εtransport) and δ13C-value of emitted CH4. CH4 emission was negatively related to its δ13C-value in seasonal variation (P<0.01). Acetate-dependent methanogenesis in soil was dominant (60–70%) in the late season, while drainage decreased Fac-value by 5–10%. On roots however, CH4 was mostly produced through H2/CO2 reduction (60–100%) over the season. CH4 oxidation mainly occurred in the first half of the season and roughly 10–90% of the CH4 was oxidized in the rhizosphere. Drainage increased Fox-value by 5–15%, which is possibly attributed to a significant decrease in production while no simultaneous decrease in oxidation. Around 30–70% of the CH4 was oxidized at the soil-water interface when CH4 in pore water was released into floodwater, although the amount of CH4 oxidized therein might be negligible relative to that in the rhizosphere. CH4 oxidation was also more important in the first half of the season in lab conditions and about 5–50% of the CH4 was oxidized in soil while almost 100% on roots. Drainage decreased Fox-value on roots by 15% as their CH4 oxidation potential was highly reduced. The findings suggest that water management in the winter fallow season substantially affects Fac in the soil and Fox in the rhizosphere and roots rather than Fac on roots and Fox at the soil-water interface. PMID:24069259

  10. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest

    USGS Publications Warehouse

    Schwilk, Dylan W.; Knapp, Eric E.; Ferrenberg, Scott; Keeley, Jon E.; Caprio, Anthony C.

    2006-01-01

    Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used prescription burning. Most fires prior to EuroAmerican settlement occurred during the late summer and early fall and most prescribed burning has taken place during the latter part of this period. Poor air quality and lack of suitable burn windows during the fall, however, have resulted in a need to conduct more prescription burning earlier in the season. Previous reports have suggested that burning during the time when trees are actively growing may increase mortality rates due to fine root damage and/or bark beetle activity. This study examines the effects of fire on tree mortality and bark beetle attacks under prescription burning during early and late season. Replicated early season burn, late season burn and unburned control plots were established in an old-growth mixed conifer forest in the Sierra Nevada that had not experienced a fire in over 120 years. Although prescribed burns resulted in significant mortality of particularly the smallest tree size classes, no difference between early and late season burns was detected. Direct mortality due to fire was associated with fire intensity. Secondary mortality due to bark beetles was not significantly correlated with fire intensity. The probability of bark beetle attack on pines did not differ between early and late season burns, while the probability of bark beetle attack on firs was greater following early season burns. Overall tree mortality appeared to be primarily the result of fire intensity rather than tree phenology at the time of the burns. Early season burns are generally conducted under higher fuel moisture conditions, leading to less fuel

  11. Effects of seasonal operation on the quality of water produced by public-supply wells.

    PubMed

    Bexfield, Laura M; Jurgens, Bryant C

    2014-09-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  12. Seasonal Shifts in Primary Water Source Type: A Comparison of Largely Pastoral Communities in Uganda and Tanzania

    PubMed Central

    Pearson, Amber L.; Zwickle, Adam; Namanya, Judith; Rzotkiewicz, Amanda; Mwita, Emiliana

    2016-01-01

    Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1) To what degree do households in Uganda (UG) and Tanzania (TZ) change primary water source type between wet and dry seasons?; and (2) How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG) and 9% (TZ) of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG) and 0% (TZ) of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources. PMID:26828507

  13. Nature and Stability of the Martian Seasonal Water Cycle

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.; Wilson, R. J.

    2001-12-01

    Which components control the contemporary water cycle and what is the nature of the control mechanisms? These questions are at the heart of understanding how the Martian exchangeable water budget adjusts to perturbations and changes in the climate system. Analysis of a water cycle model embedded in the GFDL Mars GCM provides a paradigm for the water cycle as a feedback system, providing information on the important control points and response times. Much information on this system derives from monitoring the evolution towards steady state--one that resembles the observed water vapour and ice cloud distributions. The most important exchange balance in the system is that between the northern polar atmosphere and the rest of the planet. As the major net source for water, the northern residual water ice cap is active during summer, in the window of time between the sublimation and recondensation of the seasonal CO2 cap. At this time, water is exported from the northern polar atmosphere at a rate determined by the mixing capacity of the atmosphere and the amount of water held in the polar atmosphere. The latter is determined by the cap surface temperature. During the remainder of the year, water is returned to the pole. This return flux is determined by the atmospheric mixing capacity and the amount of water vapour held in the tropical and winter extratropical atmosphere. Steady-state is achieved when these fluxes balance. For a given climate state (and a roughly repeatable annual cycle of mixing), the outflux and influx of polar water are controlled by separate variables. Holding the cap temperature constant, the outflux will remain constant. Any perturbation to the global water budget will result in a change in the return flux that tends to oppose the sense of the perturbation--the perturbation will be damped. In the same way, a change in cap temperature (e.g. associated with a change in albedo) will result in changed water outflow. Again, this will tend to change the

  14. Seasonal water mass distribution in the Indonesian throughflow entering the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Coatanoan, C.; Metzl, N.; Fieux, M.; Coste, B.

    1999-09-01

    A multiparametric approach is used to analyze the seasonal properties of water masses in the eastern Indian Ocean. The data were measured during two cruises of the Java Australia Dynamic Experiment (JADE) program carried out during two opposite seasons: August 1989 (SE monsoon) and February-March 1992 (NW monsoon). These cruises took place at the end of a La Niña event and during an El Niño episode, respectively. Seven sources have been identified in the studied region for the 200-800 m layer: the Subtropical Indian Water, the Indian Central Water, the modified Antarctic Intermediate Water, the Indonesian Subsurface Water, the Indonesian Intermediate Water, the Arabian Sea-Persian Gulf Water (AS-PGW), and the Arabian Sea-Red Sea Water (AS-RSW). The selected tracers are potential temperature, salinity and oxygen with mass conservation and positive mixing coefficients as constraints. The analysis indicates the proportion of each water source along the Australia-Bali section and into the Indonesian channels. Although no large changes are observed for Indonesian waters, significant seasonal variations are found for the southern and northern Indian Ocean water. During the NW monsoon, the contribution of the AS-RSW increases at the entrance of the Indonesian archipelago whereas the contribution of the south Indian waters decreases in the northwest Australia basin. In a complementary study, nutrients are introduced into the multiparametric analysis in order to more clearly separate the signature of the north Indian waters (AS-PGW, AS-RSW) and to provide supplementary information on the biological history of the water masses, which is compared to large-scale primary production estimates.

  15. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species

    USGS Publications Warehouse

    Carstensen, Jacob; Klais, Riina; Cloern, James E.

    2015-01-01

    Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and

  16. Constraining Water Vapor Abundance on Mars using a Coupled Heat-Water Transport Model and Seasonal Frost Observations

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Byrne, S.

    2016-12-01

    The stability of water ice on Mars' surface is determined by its temperature and the density of water vapor at the bottom of the atmosphere. Multiple orbiting instruments have been used to study column-integrated water abundance in the martian atmosphere, resolving the global annual water cycle. However, poor knowledge of the vertical distribution of water makes constraining its abundance near the surface difficult. One must assume a mixing regime to produce surface vapor density estimates. More indirectly, one can use the appearance and disappearance of seasonal water frost, along with ice stability models, to estimate this value. Here, we use derived temperature and surface reflectance data from MGS TES to constrain a 1-D thermal diffusion model, which is coupled to an atmospheric water transport model. TES temperatures are used to constrain thermal properties of our modeled subsurface, while changes in TES albedo can be used to determine the timing of water frost. We tune the density of water vapor in the atmospheric model to match the observed seasonal water frost timing in the northern hemisphere, poleward of 45°N. Thus, we produce a new estimate for the water abundance in the lower atmosphere of Mars and how it varies seasonally and geographically. The timing of water frost can be ambiguous in TES data, especially at lower latitudes where the albedo contrast between frosted and unfrosted surfaces is lower (presumably due to lesser areal coverage of water frost). The uncertainty in frost timing with our approach is <20° LS ( 40 sols), and will be used to define upper and lower bounds in our estimate of vapor density. The implications of our derived vapor densities on the stability of surface and subsurface water ice will be discussed.

  17. Assessment of Seasonal Water Balance Components over India Using Macroscale Hydrological Model

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Raju, P. V.; Hakeem, K. A.; Rao, V. V.; Yadav, A.; Issac, A. M.; Diwakar, P. G.; Dadhwal, V. K.

    2016-12-01

    Hydrological models provide water balance components which are useful for water resources assessment and for capturing the seasonal changes and impact of anthropogenic interventions and climate change. The study under description is a national level modeling framework for country India using wide range of geo-spatial and hydro-meteorological data sets for estimating daily Water Balance Components (WBCs) at 0.15º grid resolution using Variable Infiltration Capacity model. The model parameters were optimized through calibration of model computed stream flow with field observed yielding Nash-Sutcliffe efficiency between 0.5 to 0.7. The state variables, evapotranspiration (ET) and soil moisture were also validated, obtaining R2 values of 0.57 and 0.69, respectively. Using long-term meteorological data sets, model computation were carried to capture hydrological extremities. During 2013, 2014 and 2015 monsoon seasons, WBCs were estimated and were published in web portal with 2-day time lag. In occurrence of disaster events, weather forecast was ingested, high surface runoff zones were identified for forewarning and disaster preparedness. Cumulative monsoon season rainfall of 2013, 2014 and 2015 were 105, 89 and 91% of long period average (LPA) respectively (Source: India Meteorological Department). Analysis of WBCs indicated that corresponding seasonal surface runoff was 116, 81 and 86% LPA and evapotranspiration was 109, 104 and 90% LPA. Using the grid-wise data, the spatial variation in WBCs among river basins/administrative regions was derived to capture the changes in surface runoff, ET between the years and in comparison with LPA. The model framework is operational and is providing periodic account of national level water balance fluxes which are useful for quantifying spatial and temporal variation in basin/sub-basin scale water resources, periodical water budgeting to form vital inputs for studies on water resources and climate change.

  18. Habitat use by a freshwater dolphin in the low-water season

    USGS Publications Warehouse

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  19. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  20. Potential Seasonal Predictability of Water Cycle in Observations and Reanalysis

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P.

    2012-12-01

    Identification of predictability of water cycle variability is crucial for climate prediction, water resources availability, ecosystem management and hazard mitigation. An analysis that can assess the potential skill in seasonal prediction was proposed by the authors, named as analysis of covariance (ANOCOVA). This method tests whether interannual variability of seasonal means exceeds that due to weather noise under the null hypothesis that seasonal means are identical every year. It has the advantage of taking into account autocorrelation structure in the daily time series but also accounting for the uncertainty of the estimated parameters in the significance test. During the past several years, multiple reanalysis datasets have become available for studying climate variability and understanding climate system. We are motivated to compare the potential predictability of water cycle variation from different reanalysis datasets against observations using the newly proposed ANOCOVA method. The selected eight reanalyses include the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) 40-year Reanalysis Project (NNRP), the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) Reanalysis Project (NDRP), the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis, The Japan Meteorological Agency 25-year Reanalysis Project (JRA25), the ECMWF) Interim Reanalysis (ERAINT), the NCEP Climate Forecast System Reanalysis (CFSR), the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the National Oceanic and Atmospheric Administration-Cooperative Institute for Research in Environmental Sciences (NOAA/CIRES) 20th Century Reanalysis Version 2 (20CR). For key water cycle components, precipitation and evaporation, all reanalyses consistently show high fraction of predictable variance in the tropics, low

  1. Seasonal variation in the nature of DOM in a river and drinking water reservoir of a closed catchment.

    PubMed

    Awad, John; van Leeuwen, John; Chow, Christopher W K; Smernik, Ronald J; Anderson, Sharolyn J; Cox, Jim W

    2017-01-01

    Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character depending on its source within catchments and the timing and intensity of rainfall events. Here we report the findings of a study on the character and concentration of DOM in waters collected during different seasons from Myponga River and Reservoir, South Australia. The character of DOM was assessed in terms of its treatability by enhanced coagulation and potential for disinfection by-product i.e. trihalomethane (THM) formation. During the wet seasons (winter and spring), water samples from the river had higher DOC concentrations (X¯: 21 mg/L) and DOM of higher average molecular weight (AMW: 1526 Da) than waters collected during the dry seasons (summer and autumn: DOC: 13 mg/L; AMW: 1385 Da). Even though these features led to an increase in the percentage removal of organics by coagulation with alum (64% for wet compared with 53% for dry season samples) and a lower alum dose rate (10 versus 15 mg alum/mg DOC removal), there was a higher THM formation potential (THMFP) from wet season waters (treated waters: 217 μg/L vs 172 μg/L). For reservoir waters, samples collected during the wet seasons had an average DOC concentration (X¯: 15 mg/L), percentage removal of organics by alum (54%), alum dose rates (13 mg/mg DOC) and THMFP (treated waters: 207 μg/L) that were similar to samples collected during the dry seasons (mean DOC: 15 mg/L; removal of organics: 52%; alum dose rate: 13 mg/mg DOC; THMFP: 212 μg/L for treated waters). These results show that DOM present in river waters and treatability by alum are highly impacted by seasonal environmental variations. However these in reservoir waters exhibit less seasonal variability. Storage of large volumes of water in the reservoir enables mixing of influent waters and stabilization of water quality. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Photosynthetic responses of C3 and C4 species to seasonal water variability and competition.

    PubMed

    Niu, Shuli; Yuan, Zhiyou; Zhang, Yanfang; Liu, Weixing; Zhang, Lei; Huang, Jianhui; Wan, Shiqiang

    2005-11-01

    This study examined the impacts of seasonal water variability and interspecific competition on the photosynthetic characteristics of a C3 (Leymus chinensis) and a C4 (Chloris virgata) grass species. Plants received the same amount of water but in three seasonal patterns, i.e. the one-peak model (more water in the summer than in the spring and autumn), the two-peak model (more water in the spring and autumn than in the summer), and the average model (water evenly distributed over the growing season). The effects of water variability on the photosynthetic characteristics of the C3 and C4 species were dependent on season. There were significant differences in the photosynthetic characteristics of the C4 species in the summer and the C3 species in the autumn among the three water treatments. Interspecific competition exerted negative impacts on the C3 species in August and September but had no effects on the C4 species in any of the four measuring dates. The relative competitive capability of the two species was not altered by water availability. The assimilation rate, the maximum quantum yield of net CO2 assimilation, and the maximum rate of carboxylation of the C3 species were 13-56%, 5-11%, and 11-48% greater, respectively, in a monoculture than in a mixture in August and September. The results demonstrated that the photosynthetic characteristics of the C3 and C4 species were affected by water availability, but the effects varied considerably with season.

  3. Effects of seasonal operation on the quality of water produced by public-supply wells

    USGS Publications Warehouse

    Bexfield, Laura M.; Jurgens, Bryant C.

    2014-01-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin.

  4. Effects of Seasonal Operation on the Quality of Water Produced by Public-Supply Wells

    PubMed Central

    Bexfield, Laura M; Jurgens, Bryant C

    2014-01-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. PMID:24593780

  5. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa

    NASA Astrophysics Data System (ADS)

    Ogindo, H. O.; Walker, S.

    Seasonal water content fluctuation within the effective root zone was monitored during the growing season for a maize-bean intercrop (IMB), sole maize (SM) and sole bean (SB) in Free State Province, Republic of South Africa. Comparisons were undertaken for progressive depths of extraction 0-300 mm; 300-600 mm and 600-900 mm respectively. These enabled the understanding of water extraction behavior of the cropping systems within the different soil layers including the topsoil surface normally influenced by soil surface evaporation. Additive intercrops have been known to conserve water, largely due to the early high leaf area index and the higher total leaf area. In this study, the combined effect of the intercrop components seemed to lower the total water demand by the intercrop compared to the sole crops. During the two seasons (2000/2001 and 2001/2002) the drained upper limit (DUL) and crop lower limits (CLL) were determined. The maize-bean intercrop, sole maize and sole bean had CLL of 141 mm/m, 149 mm/m and 159 mm/m respectively. The DUL was 262 mm/m for the site and therefore the potential plant extractable soil water for the cropping systems were: 121 mm/m (IMB); 114 mm/m (SM) and 103 mm/m (SB). Overall, the intercrop did not have significantly different total soil water extraction during both seasons, although it was additive, showing that it had higher water to biomass conversion.

  6. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE PAGES

    Chan, Allison M.; Bowling, David R.

    2017-05-26

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  7. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Allison M.; Bowling, David R.

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  8. Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching.

    PubMed

    Lavigne, M B; Foster, R J; Goodine, G

    2004-04-01

    Soil respiration (rs), soil temperature (Ts) and volumetric soil water content were measured in a balsam fir (Abies balsamea (L.) Mill.) ecosystem from 1998 to 2001. Seasonal variation in root and microbial respiration, and covariation in abiotic factors confounded interpretation of the effects of Ts and soil water potential (Psis) on rs. To minimize the confounding effect of temperature, we analyzed the effect of Psis on rs during the summers of 1998-2000 when changes in Ts were slight. Soil respiration declined 25-50% in response to modest water stress (minimum Psis of -0.6 to -0.2 MPa), and between years, there was substantial variation in the relationship between rs and Psis. In the summer of 2000, 2-m2 plots were subjected to drought for 1 month and other plots were irrigated. The relationship between summertime rs and Psis in the experimental plots was similar to that estimated from the survey data obtained during the same summer. In late spring and early autumn of 2001, 2-m2 trenched and untrenched plots were subjected to drought or exposed to rainfall. It was dry in the early autumn and there was severe soil drying (Psis of -10 MPa in untrenched plots and -2 MPa in trenched plots). In spring, rs in untrenched plots responded more to modest water stress than rs in trenched plots, indicating that root respiration is more sensitive than microbial respiration to water stress at this time of year. The response to abiotic factors differed significantly between spring and autumn in untrenched plots but not in trenched plots, indicating that root activity was greater in early autumn than in late spring, and that roots acclimated to the sustained, severe water stress experienced before and during the autumn.

  9. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized

  10. Climate change effects on water allocations with season dependent water rights.

    PubMed

    Null, Sarah E; Prudencio, Liana

    2016-11-15

    Appropriative water rights allocate surface water to competing users based on seniority. Often water rights vary seasonally with spring runoff, irrigation schedules, or other non-uniform supply and demand. Downscaled monthly Coupled Model Intercomparison Project multi-model, multi-emissions scenario hydroclimate data evaluate water allocation reliability and variability with anticipated hydroclimate change. California's Tuolumne watershed is a study basin, chosen because water rights are well-defined, simple, and include competing environmental, agricultural, and urban water uses representative of most basins. We assume that dedicated environmental flows receive first priority when mandated by federal law like the Endangered Species Act or hydropower relicensing, followed by senior agricultural water rights, and finally junior urban water rights. Environmental flows vary by water year and include April pulse flows, and senior agricultural water rights are 68% larger during historical spring runoff from April through June. Results show that senior water right holders receive the largest climate-driven reductions in allocated water when peak streamflow shifts from snowmelt-dominated spring runoff to mixed snowmelt- and rainfall-dominated winter runoff. Junior water right holders have higher uncertainty from inter-annual variability. These findings challenge conventional wisdom that water shortages are absorbed by junior water users and suggest that aquatic ecosystems may be disproportionally impaired by hydroclimate change, even when environmental flows receive priority. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    PubMed

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  12. Spatial and Seasonal Dynamics of Water Environmental Capacity in Mountainous Rivers of the Southeastern Coast, China

    PubMed Central

    Jiang, Jingang; Jing, Changwei

    2018-01-01

    The south-east littoral is one of the most populous and developed regions in China suffering from serious water pollution problems, and the Xian-Jiang Basin in the mid of this region is among the most polluted watersheds. Critical information is needed but lacking for improved pollution control and water quality assessment, among which water environmental capacity (WEC) is the most important variable but is difficult to calculate. In this study, a one-dimensional water quality model combined with a matrix calculation algorithm was first developed and calibrated with in-situ observations in the Xian-Jiang basin. Then, the model was applied to analyze the spatial and temporal patterns of WEC of the entire basin. The results indicated that, in 2015, the total pollutant discharges into the river reached 6719.68 t/yr, 488.12 t/yr, and 128.57 t/yr for COD, NH3-N and TP, respectively. The spatial pattern suggested a strong correlation between these water contaminants and industrial enterprises, residential areas, and land-use types in the basin. Furthermore, it was noticed that there was a significant seasonal pattern in WEC that the dry season pollution is much greater than that in the plum season, while that in the typhoon season appears to be the weakest among all seasons. The WEC differed significantly among the 24 sub-basins during the dry season but varied to a smaller extent in other seasons, suggesting differential complex spatial-temporal dependency of the WEC. PMID:29315265

  13. Forecasted Flood Depth Grids Providing Early Situational Awareness to FEMA during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Jones, M.; Longenecker, H. E., III

    2017-12-01

    The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post

  14. Early-Season Host Switching in Adelphocoris spp. (Hemiptera: Miridae) of Differing Host Breadth

    PubMed Central

    Pan, Hongsheng; Lu, Yanhui; Wyckhuys, Kris A. G.

    2013-01-01

    The mirid bugs Adelphocoris suturalis (Jakovlev), Adelphocoris lineolatus (Goeze) and Adelphocoris fasciaticollis (Reuter) (Hemiptera: Miridae) are common pests of several agricultural crops. These three species have vastly different geographical distributions, phenologies and abundances, all of which are linked to their reliance on local plants. Previous work has shown notable differences in Adelphocoris spp. host use for overwintering. In this study, we assessed the extent to which each of the Adelphocoris spp. relies on some of its major overwinter hosts for spring development. Over the course of four consecutive years (2009–2012), we conducted population surveys on 77 different plant species from 39 families. During the spring, A. fasciaticollis used the broadest range of hosts, as it was found on 35 plant species, followed by A. suturalis (15 species) and A. lineolatus (7 species). Abundances of the species greatly differed between host plants, with A. fasciaticollis reaching the highest abundance on Chinese date (Ziziphus jujuba Mill.), whereas both A. suturalis and A. lineolatus preferred alfalfa (Medicago sativa L.). The host breadths of the three Adelphocoris spp. differed greatly between subsequent spring and winter seasons. The generalist species exhibited the least host fidelity, with A. suturalis and A. lineolatus using 8 of 22 and 4 of 12 overwinter host species for spring development, respectively. By contrast, the comparative specialist A. fasciaticollis relied on 9 of its 11 overwinter plants as early-season hosts. We highlight important seasonal changes in host breadth and interspecific differences in the extent of host switching behavior between the winter and spring seasons. These findings benefit our understanding of the evolutionary interactions between mirid bugs and their host plants and can be used to guide early-season population management. PMID:23527069

  15. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    PubMed

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  16. In-season monitoring of hip and groin strength, health and function in elite youth soccer: Implementing an early detection and management strategy over two consecutive seasons.

    PubMed

    Wollin, Martin; Thorborg, Kristian; Welvaert, Marijke; Pizzari, Tania

    2018-03-14

    The primary purpose of this study was to describe an early detection and management strategy when monitoring in-season hip and groin strength, health and function in soccer. Secondly to compare pre-season to in-season test results. Longitudinal cohort study. Twenty-seven elite male youth soccer players (age: 15.07±0.73years) volunteered to participate in the study. Monitoring tests included: adductor strength, adductor/abductor strength ratio and hip and groin outcome scores (HAGOS). Data were recorded at pre-season and at 22 monthly intervals in-season. Thresholds for alerts to initiate further investigations were defined as any of the following: adductor strength reductions >15%, adductor/abductor strength ratio <0.90, and HAGOS subscale scores <75 out of 100 in any of the six subscales. Overall, 105 alerts were detected involving 70% of players. Strength related alerts comprised 40% and remaining 60% of alerts were related to HAGOS. Hip adductor strength and adductor/abductor strength ratio were lowest at pre-season testing and had increased significantly by month two (p<0.01, mean difference 0.26, CI95%: 0.12, 0.41N/kg and p<0.01, mean difference 0.09, CI95%: 0.04, 0.13 respectively). HAGOS subscale scores were lowest at baseline with all, except Physical Activity, showing significant improvements at time-point one (p<0.01). Most (87%) time-loss were classified minimal or mild. In-season monitoring aimed at early detection and management of hip and groin strength, health and function appears promising. Hip and groin strength, health and function improved quickly from pre-season to in-season in a high-risk population for ongoing hip and groin problems. Copyright © 2018 Sports Medicine Australia. All rights reserved.

  17. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    NASA Astrophysics Data System (ADS)

    Cho, Kyung Hwa; Pachepsky, Yakov A.; Kim, Minjeong; Pyo, JongCheol; Park, Mi-Hyun; Kim, Young Mo; Kim, Jung-Woo; Kim, Joon Ha

    2016-04-01

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variability with a significant connection to temperature levels. In all observations, fecal coliform concentrations were relatively higher in summer and lower during the winter season. This could be explained by the seasonal dominance of growth or die-off of bacteria in soil and in-stream. Existing hydrologic models, however, have limitations in simulating the seasonal variability of fecal coliform. Soil and in-stream bacterial modules of the Soil and Water Assessment Tool (SWAT) model are oversimplified in that they exclude simulations of alternating bacterial growth. This study develops a new bacteria subroutine for the SWAT in an attempt to improve its prediction accuracy. We introduced critical temperatures as a parameter to simulate the onset of bacterial growth/die-off and to reproduce the seasonal variability of bacteria. The module developed in this study will improve modeling for environmental management schemes.

  18. Seasonal changes in tissue-water relations for eight species of ferns during historic drought in California.

    PubMed

    Holmlund, Helen I; Lekson, Victoria M; Gillespie, Breahna M; Nakamatsu, Nicole A; Burns, Amanda M; Sauer, Kaitlyn E; Pittermann, Jarmila; Davis, Stephen D

    2016-09-01

    California experienced severe drought between 2012 and 2016. During this period, we compared seasonal changes in tissue-water relations among eight fern species in the Santa Monica Mountains of southern California to elucidate differential mechanisms of drought survival and physiological performance during extreme water deficits. We monitored seasonal changes in water potential (Ψmd) and dark-adapted chlorophyll fluorescence (Fv/Fm), assessed tissue-water relations including osmotic potential at saturation and the turgor loss point (Ψπ, sat and Ψπ, tlp), and measured, for two evergreen species, xylem-specific and leaf-specific hydraulic conductivity (Ks and Kl) and vulnerability of stem xylem to water stress-induced embolism (water potential at 50% loss hydraulic conductivity, Ψ50). Species grew in either riparian or chaparral understory. The five chaparral species had a wider range of seasonal water potentials, root depths, and frond phenological traits, including one evergreen, two summer-deciduous, and two desiccation-tolerant (resurrection) species. Evergreen species were especially diverse, with an evergreen riparian species maintaining seasonal water potentials above -1.3 MPa, while an evergreen chaparral species had seasonal water potentials below -8 MPa. In those two species the Ψ50 values were -2.5 MPa and -4.3 MPa, respectively. Observed differences in physiological performance among eight fern species reflected niche partitioning in water utilization and habitat preference associated with distinct phenological traits. We predict differential survival among fern species as future drought events in California intensify, with desiccation-tolerant resurrection ferns being the most resistant. © 2016 Botanical Society of America.

  19. Observed Seasonal to Decadal-Scale Responses in Mesospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis

    2010-01-01

    The 14-yr (1991-2005) time series of mesospheric water vapor from the Halogen Occultation Experiment (HALOE) are analyzed using multiple linear regression (MLR) techniques for their6 seasonal and longer-period terms from 45S to 45N. The distribution of annual average water vapor shows a decrease from a maximum of 6.5 ppmv at 0.2 hPa to about 3.2 ppmv at 0.01 hPa, in accord with the effects of the photolysis of water vapor due to the Lyman-flux. The distribution of the semi-annual cycle amplitudes is nearly hemispherically symmetric at the low latitudes, while that of the annual cycles show larger amplitudes in the northern hemisphere. The diagnosed 11-yr, or solar cycle, max minus min, water vapor values are of the order of several percent at 0.2 hPa to about 23% at 0.01 hPa. The solar cycle terms have larger values in the northern than in the southern hemisphere, particularly in the middle mesosphere, and the associated linear trend terms are anomalously large in the same region. Those anomalies are due, at least in part, to the fact that the amplitudes of the seasonal cycles were varying at northern mid latitudes during 1991-2005, while the corresponding seasonal terms of the MLR model do not allow for that possibility. Although the 11-yr variation in water vapor is essentially hemispherically-symmetric and anti-phased with the solar cycle flux near 0.01 hPa, the concurrent temperature variations produce slightly colder conditions at the northern high latitudes at solar minimum. It is concluded that this temperature difference is most likely the reason for the greater occurrence of polar mesospheric clouds at the northern versus the southern high latitudes at solar minimum during the HALOE time period.

  20. Methods to predict seasonal high water table (SHGWT) : final report.

    DOT National Transportation Integrated Search

    2017-04-03

    The research study was sectioned into 5 separate tasks. Task 1 included defining the seasonal high ground water table (SHGWT); describing : methods and techniques used to determine SHGWTs; identify problems associated with estimating SHGWT conditions...

  1. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Seasonal Phenology of Zooplankton Composition in the Southeastern Bering Sea, 2008-2010

    NASA Astrophysics Data System (ADS)

    Eisner, L. B.; Pinchuk, A. I.; Harpold, C.; Siddon, E. C.; Mier, K.

    2016-02-01

    The availability of large crustacean zooplankton prey is critical to the condition and survival of forage fish (e.g., age-0 Walleye Pollock), sea birds, and marine mammals in the eastern Bering Sea. Zooplankton community composition and abundances of large lipid-rich copepods (e.g., Calanus spp.) have been evaluated for single seasons, but few studies have investigated seasonal variations in this region. Here, we investigate seasonal changes in taxa (community structure), stage composition (where appropriate), and diversity from spring through late summer/early fall over three consecutive colder than average years. Zooplankton taxonomic samples were collected with oblique bongo tows over the water column during spring (April-May), mid-summer (June-July) and late summer/early fall (August-September) across the southeastern Bering Sea shelf in 2008-2010. Zooplankton abundances were evaluated by oceanographic region, season and year, and related to water mass characteristics (temperature and salinity) and other environmental drivers. Finally, zooplankton phenology was compared to changes in forage fish composition to determine potential overlap of fish predators and zooplankton prey.

  3. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index

    Treesearch

    Philip E. Dennison; Dar A. Roberts; Sommer R. Thorgusen; Jon C. Regelbrugge; David Weise; Christopher Lee

    2003-01-01

    Live fuel moisture, an important determinant of fire danger in Mediterranean ecosystems, exhibits seasonal changes in response to soil water availability. Both drought stress indices based on meteorological data and remote sensing indices based on vegetation water absorption can be used to monitor live fuel moisture. In this study, a cumulative water balance index (...

  4. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    PubMed

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  5. Analysis of seasonal water pollution based on rainfall feature at Anyang river basin in Korea

    NASA Astrophysics Data System (ADS)

    Han, J. G.; Lee, Y. K.; Kim, T. H.; Hwang, E. J.

    2005-08-01

    To determine selected water pollution parameters of the Anyang River (one of the biggest contributory branches of the Han River in Korea) and its main tributaries, the geological and topographical and rainfall features in its basin were investigated, and the resulting data were tabulated. Samples were collected at the upper, mid and down parts of the Anyang River and its branches and were analyzed based on biochemical and chemical methods, Korean biotic index (KBI) and Saprobien systems. Selected parameters of concern include BOD, heavy metals, nonpoint pollution and sewage discharge. The Anyang River basin has a torrential heavy rainfall; however, the rate of rainfall significantly varies from season to season. Water pollution levels in the dry season increase dramatically. The mainstream of the Anyang River is classified as fifth grade polysaprobic water according to Saprobien system. In addition, the biotic index is over 2.5 in overall. General pollution at the junction of the Anyang River and each branch stream varies. Possible countermeasures to improve the water quality of the river include intercept the non-treated waste water and sewage at the Anyang River junction and each branch stream, enforcement of water management during the rainy season, and continuous investment on environmental restoration.

  6. Growth and Survival of Water Tupelo Coppice Regeneration After Six Growing Seasons

    Treesearch

    Harvey E. Kennedy

    1982-01-01

    In the lower Atchafalaya Basin, water tupelo (Nyssa aquatica L.) trees were cut in May and November at three stump heights to study coppice regeneration. Sprouting was extremely good after one growing season, and live sprouts grew well through the third and fourth seasons. However, some stumps began to deteriorate and sprouts die after the second...

  7. Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2011-06-01

    Using implanted temperature loggers, we measured core body temperature in nine western grey kangaroos every 5 min for 24 to 98 days in spring and summer. Body temperature was highest at night and decreased rapidly early in the morning, reaching a nadir at 10:00 h, after ambient temperature and solar radiation had begun to increase. On hotter days, the minimum morning body temperature was lower than on cooler days, decreasing from a mean of 36.2°C in the spring to 34.0°C in the summer. This effect correlated better with the time of the year than with proximate thermal stressors, suggesting that either season itself or some factor correlated with season, such as food availability, caused the change. Water saving has been proposed as a selective advantage of heterothermy in other large mammals, but in kangaroos the water savings would have been small and not required in a reserve with permanent standing water. We calculate that the lower core temperature could provide energy savings of nearly 7%. It is likely that the heterothermy that we observed on hot days results either from decreased energy intake during the dry season or from a seasonal pattern entrained in the kangaroos that presumably has been selected for because of decreased energy availability during the dry season.

  8. Seasonal variability of mesospheric water vapor

    NASA Technical Reports Server (NTRS)

    Schwartz, P. R.; Bevilacqua, R. M.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz atmospheric water vapor line in emission were made at the JPL in order to obtain data in a dry climate, and to confirm similar measurements made at the Haystack Observatory. The results obtained from March 1984 to July 1984 and from December 1984 to May 1985, were based on data recorded by a HP9816 microcomputer. The instrument spectrometer was a 64 channel, 62.5 kHz resolution filter bank. Data indicates the existence of a seasonal variation in the abundance of water vapor in the upper mesosphere, with mixing ratios higher in summer than in spring. This is consistent with recent theoretical and observational results. In the area of semiannual oscillation, Haystack data are more consistent than those of JPL, indicating an annual cycle with abundances at maximum in summer and minimum in winter.

  9. Considering Seasons.

    ERIC Educational Resources Information Center

    Gonzalez-Mena, Janet

    1994-01-01

    Argues that the traditional way that the four seasons are taught is culturally biased and does not reflect the actual seasons in many parts of the United States and other nations. Suggests that early childhood programs should take into account the diversity of seasonal transitions. (MDM)

  10. Is the water level during dry season in Poyang Lake really lower than before?

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Yu, Meixiu; Shi, Yong; Luan, Zhenyu; Fu, Dafang

    2017-04-01

    The Poyang Lake, the largest freshwater lake in China, has attracted world widely attentions in recent years due to it being dammed or not at the Lake's outlet. It was reported that the Poyang Lake water levels have been declining significantly in dry seasons, which resulted in severe water supply, irrigation and ecological flow requirement problems. The purpose of the study was to answer the question that the water level of the Poyang Lake during dry season is really lower than before or not. Based on topographical data, and long-term hydrological and meteorological data from 1950 to 2016, the relationship between the Poyang Lake and the Yangtze River before and after the completion of the Three Gorges Dam, the relationship between the Poyang Lake and its Five major tributaries (Ganjiang River, Fuhe River, Xinjiang River, Raohe River and Xiushui River), and as well as sand mining contributions to the water level in dry seasons of the Poyang Lake were investigated respectively.

  11. SPADE H2O measurements and the seasonal cycle of statospheric water vapor

    NASA Technical Reports Server (NTRS)

    Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.

    1994-01-01

    We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.

  12. Seasonal changes in background levels of deuterium and oxygen-18 prove water drinking by harp seals, which affects the use of the doubly labelled water method.

    PubMed

    Nordøy, Erling S; Lager, Anne R; Schots, Pauke C

    2017-12-01

    The aim of this study was to monitor seasonal changes in stable isotopes of pool freshwater and harp seal ( Phoca groenlandica ) body water, and to study whether these potential seasonal changes might bias results obtained using the doubly labelled water (DLW) method when measuring energy expenditure in animals with access to freshwater. Seasonal changes in the background levels of deuterium and oxygen-18 in the body water of four captive harp seals and in the freshwater pool in which they were kept were measured over a time period of 1 year. The seals were offered daily amounts of capelin and kept under a seasonal photoperiod of 69°N. Large seasonal variations of deuterium and oxygen-18 in the pool water were measured, and the isotope abundance in the body water showed similar seasonal changes to the pool water. This shows that the seals were continuously equilibrating with the surrounding water as a result of significant daily water drinking. Variations in background levels of deuterium and oxygen-18 in freshwater sources may be due to seasonal changes in physical processes such as precipitation and evaporation that cause fractionation of isotopes. Rapid and abrupt changes in the background levels of deuterium and oxygen-18 may complicate calculation of energy expenditure by use of the DLW method. It is therefore strongly recommended that analysis of seasonal changes in background levels of isotopes is performed before the DLW method is applied on (free-ranging) animals, and to use a control group in order to correct for changes in background levels. © 2017. Published by The Company of Biologists Ltd.

  13. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees.

    Treesearch

    Sandra J. Bucci; Guillermo Goldstein; Frederick C. Meinzer; Augusto C. Franco; Paula Campanello; Fabián G. Scholz

    2005-01-01

    Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum Ψ...

  14. Modelling Climate Change Impacts on the Seasonality of Water Resources in the Upper Ca River Watershed in Southeast Asia

    PubMed Central

    Giang, Pham Quy; Sakata, Masahiro; Vinh, Tran Quoc

    2014-01-01

    The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4°C in the 2090s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ±25% for the highest monthly changes in the 2090s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season. PMID:25243206

  15. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Sun, Guoping

    2017-01-01

    Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria , and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes , and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria , and Bacteroidetes were significantly higher in the dry season than those in the wet season ( p < 0.01), while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and [Formula: see text]-N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  16. SAPWOOD MOISTURE IN DOUGLAS-FIR BOLES AND SEASONAL CHANGES IN SOIL WATER

    EPA Science Inventory

    Large conifers, such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. Menziesii), purportedly draw on water stored in their boles during periods of summer drought. The relation of seasonal changes in soil moisture to sapwood water content was evaluated in four forest st...

  17. Seasonal change of residence time in spring water and groundwater at a mountainous headwater catchment

    NASA Astrophysics Data System (ADS)

    Nagano, Kosuke; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sakakibara, Koichi; Sato, Yutaro

    2017-04-01

    Determination of water age in headwater is important to consider water pathway, source and storage in the catchment. Previous studies showed that groundwater residence time changes seasonally. These studies reported that mean residence time of water in dry season tends to be longer than that in rainy season, and it becomes shorter as precipitation and discharge amount increases. However, there are few studies to clarify factors causing seasonal change in mean residence time in spring water and groundwater based on observed data. Therefore, this study aims to reveal the relationship between mean residence time and groundwater flow system using SFconcentration in spring and 10 minutes interval hydrological data such as discharge volume, groundwater level and precipitation amount in a headwater catchment in Fukushima, Japan. The SF6 concentration data in spring water observed from April 2015 to November 2016 shows the mean residence time of springs ranged from zero to 14 years. We also observed a clear negative correlation between discharge rate and residence time in the spring. The residence time in shallow groundwater in rainy season was younger as compared with that in low rainfall period. Therefore, the shallow groundwater with young residence time seems to contribute to the spring in rainy season, causing shorter residence time. Additionally, the residence time of groundwater ranged from 3 to 5 years even in low rainfall period. The residence time in high groundwater table level in ridge was older as compared with that in low groundwater table level. These suggest that the contribution of groundwater with older age in the ridge becomes dominant in the low discharge.

  18. Soil Water Adsorption and Evaporation During the Dry Season in an Arid Zone

    NASA Astrophysics Data System (ADS)

    Agam, N.; Berliner, P. R.

    2004-12-01

    The purpose of this study was to describe the daily pattern of changes in water content in the upper soil layers of a bare loess soil in the Negev desert throughout the dry season and to assess the corresponding relative magnitude of latent heat flux density. The measurements were carried out in the Northern Negev, Israel, over a bare loess soil, during nine 24-h field campaigns throughout the dry season of 2002. In addition to a micrometeorological station that was set up in the research site, an improved micro-lysimeter was installed. During each campaign, the 100-mm topsoil was sampled hourly, and water content at ten mm increments was obtained. A clear discernible daily cycle of water content in the upper soil layers was observed due to direct adsorption of water vapor by the soil and consequent evaporation. Although the water content of the uppermost soil is significantly lower than the wilting point, for which most of the commonly used meteorological models would assume no latent heat flux, the latter was ˜20% of the net-radiation during the night and 10-15% during the day. It is, therefore, concluded that latent heat flux plays a major role in the dissipation of the net radiation during the dry season in the Negev desert.

  19. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    PubMed

    Ohde, Thomas; Dadou, Isabelle

    2018-01-01

    We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass

  20. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system

    PubMed Central

    Dadou, Isabelle

    2018-01-01

    We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002–2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass

  1. Development of a decision support tool for seasonal water supply management incorporating system uncertainties and operational constraints

    NASA Astrophysics Data System (ADS)

    Wang, H.; Asefa, T.

    2017-12-01

    A real-time decision support tool (DST) for water supply system would consider system uncertainties, e.g., uncertain streamflow and demand, as well as operational constraints and infrastructure outage (e.g., pump station shutdown, an offline reservoir due to maintenance). Such DST is often used by water managers for resource allocation and delivery for customers. Although most seasonal DST used by water managers recognize those system uncertainties and operational constraints, most use only historical information or assume deterministic outlook of water supply systems. This study presents a seasonal DST that incorporates rainfall/streamflow uncertainties, seasonal demand outlook and system operational constraints. Large scale climate-information is captured through a rainfall simulator driven by a Bayesian non-homogeneous Markov Chain Monte Carlo model that allows non-stationary transition probabilities contingent on Nino 3.4 index. An ad-hoc seasonal demand forecasting model considers weather conditions explicitly and socio-economic factors implicitly. Latin Hypercube sampling is employed to effectively sample probability density functions of flow and demand. Seasonal system operation is modelled as a mixed-integer optimization problem that aims at minimizing operational costs. It embeds the flexibility of modifying operational rules at different components, e.g., surface water treatment plants, desalination facilities, and groundwater pumping stations. The proposed framework is illustrated at a wholesale water supplier in Southeastern United States, Tampa Bay Water. The use of the tool is demonstrated in proving operational guidance in a typical drawdown and refill cycle of a regional reservoir. The DST provided: 1) probabilistic outlook of reservoir storage and chance of a successful refill by the end of rainy season; 2) operational expectations for large infrastructures (e.g., high service pumps and booster stations) throughout the season. Other potential use

  2. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  3. Occurrence of Blastocystis sp. in water catchments at Malay villages and Aboriginal settlement during wet and dry seasons in Peninsular Malaysia

    PubMed Central

    Noradilah, Samseh Abdullah; Lee, Ii Li; Anuar, Tengku Shahrul; Salleh, Fatmah Md; Abdul Manap, Siti Nor Azreen; Mohd Mohtar, Noor Shazleen Husnie; Azrul, Syed Muhamad; Abdullah, Wan Omar

    2016-01-01

    In the tropics, there are too few studies on isolation of Blastocystis sp. subtypes from water sources; in addition, there is also an absence of reported studies on the occurrence of Blastocystis sp. subtypes in water during different seasons. Therefore, this study was aimed to determine the occurrence of Blastocystis sp. subtypes in river water and other water sources that drained aboriginal vicinity of highly endemic intestinal parasitic infections during wet and dry seasons. Water samples were collected from six sampling points of Sungai Krau (K1–K6) and a point at Sungai Lompat (K7) and other water sources around the aboriginal villages. The water samples were collected during both seasons, wet and dry seasons. Filtration of the water samples were carried out using a flatbed membrane filtration system. The extracted DNA from concentrated water sediment was subjected to single round polymerase chain reaction and positive PCR products were subjected to sequencing. All samples were also subjected to filtration and cultured on membrane lactose glucuronide agar for the detection of faecal coliforms. During wet season, Blastocystis sp. ST1, ST2 and ST3 were detected in river water samples. Blastocystis sp. ST3 occurrence was sustained in the river water samples during dry season. However Blastocystis sp. ST1 and ST2 were absent during dry season. Water samples collected from various water sources showed contaminations of Blastocystis sp. ST1, ST2, ST3 and ST4, during wet season and Blastocystis sp. ST1, ST3, ST8 and ST10 during dry season. Water collected from all river sampling points during both seasons showed growth of Escherichia coli and Enterobacter aerogenes, indicating faecal contamination. In this study, Blastocystis sp. ST3 is suggested as the most robust and resistant subtype able to survive in any adverse environmental condition. Restriction and control of human and animal faecal contaminations to the river and other water sources shall prevent the

  4. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  5. Peculiarities of the Bound Water and Water Ice Seasonal Variations in the Martian Surface Layer of the Regolith.

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. O.; Zabalueva, E. V.; Evdokimova, N. A.; Christensen, P. H.; Mitrofanov, I. G.; Litvak, M. L.

    2008-09-01

    Introduction: The processes of the hydration/ dehydration of salt minerals within the Martian soil and the condensation/sublimation of water ice (and frost) in the surficial soil layer and on the polar cap surface play great significance in the modern water cycle on Mars and directly affect the redistribution of the water phases and forms in the system "atmosphere/regolith/polar caps" [1, 2, 3, 4, 5]. The processes are reversible in time and their intensity is strongly dependent on such time-variable climatic parameters as atmospheric and surface temperature, atmospheric water vapour content and specific features of atmospheric seasonal circulation [6, 7, 8, 9, 10]. In the work we report the study results of the seasonal variations of the chemically bound water (BW) spectral signature (based on the TES and OMEGA data), estimation and mapping of the winterand spring-time water ice increase within the Martian surface soil (based on the TES and HEND data). Analysis and results: Regional and global mapping of the BW spectral index distribution as function of the seasons was conducted by using of the 6.1 μm emission pick from the TES dataset and the 1.91 μm absorption band from reflectance spectra of the OMEGA data. The study of the seasonal redistribution of the water ice (and frost) within the thin surficial soil layer was conducted based on the TES thermal inertia (TI) data and the HEND neutrons flux mapping data. Bound water mapping: The mapping of the TES 6.1 μm BW index distributions was conducted at the time steps from 30° to 60° of Ls [11]. The mapping results show remarkable changes of the BW index values from one season to other one at notable latitudinal dependence of the index (Fig.1). At that, the higher BW index values are disposed mostly within the peripheral zone near the edge of the perennial and seasonal polar caps (cooler, wetter areas), while the lower BW index values are observed at low latitudes (warmer, drier areas). Between the Nspring (Ls=0

  6. Peculiarities of the Bound Water and Water Ice Seasonal Variations in the Martian Surface Layer of the Regolith.

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. O.; Zabalueva, E. V.; Evdokimova, N. A.; Christensen, P. H.; Mitrofanov, I. G.; Litvak, M. L.

    2008-09-01

    Introduction: The processes of the hydration/ dehydration of salt minerals within the Martian soil and the condensation/sublimation of water ice (and frost) in the surficial soil layer and on the polar cap surface play great significance in the modern water cycle on Mars and directly affect the redistribution of the water phases and forms in the system "atmosphere/regolith/polar caps" [1, 2, 3, 4, 5]. The processes are reversible in time and their intensity is strongly dependent on such time-variable climatic parameters as atmospheric and surface temperature, atmospheric water vapour content and specific features of atmospheric seasonal circulation [6, 7, 8, 9, 10]. In the work we report the study results of the seasonal variations of the chemically bound water (BW) spectral signature (based on the TES and OMEGA data), estimation and mapping of the winterand spring-time water ice increase within the Martian surface soil (based on the TES and HEND data). Analysis and results: Regional and global mapping of the BW spectral index distribution as function of the seasons was conducted by using of the 6.1 μm emission pick from the TES dataset and the 1.91 μm absorption band from reflectance spectra of the OMEGA data. The study of the seasonal redistribution of the water ice (and frost) within the thin surficial soil layer was conducted based on the TES thermal inertia (TI) data and the HEND neutrons flux mapping data. Bound water mapping: The mapping of the TES 6.1 μm BW index distributions was conducted at the time steps from 30° to 60° of Ls [11]. The mapping results show remarkable changes of the BW index values from one season to other one at notable latitudinal dependence of the index (Fig.1). At that, the higher BW index values are disposed mostly within the peripheral zone near the edge of the perennial and seasonal polar caps (cooler, wetter areas), while the lower BW index values are observed at low latitudes (warmer, drier areas). Between the Nspring (Ls=0

  7. Mountain Gem Russet: A medium to late season potato variety with high early and full season yield potential and excellent fresh market characteristics

    USDA-ARS?s Scientific Manuscript database

    Mountain Gem Russet is a medium to late maturing variety with both high early and full season yields of oblong-long, medium-russeted tubers having higher protein content than those of standard potato varieties. Mountain Gem Russet has greater resistance to tuber late blight, tuber malformations and ...

  8. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    PubMed

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  9. Seasonal water chemistry variability in the Pangani River basin, Tanzania.

    PubMed

    Selemani, Juma R; Zhang, Jing; Muzuka, Alfred N N; Njau, Karoli N; Zhang, Guosen; Maggid, Arafa; Mzuza, Maureen K; Jin, Jie; Pradhan, Sonali

    2017-11-01

    The stable isotopes of δ 18 O, δ 2 H, and 87 Sr/ 86 Sr and dissolved major ions were used to assess spatial and seasonal water chemistry variability, chemical weathering, and hydrological cycle in the Pangani River Basin (PRB), Tanzania. Water in PRB was NaHCO 3 type dominated by carbonate weathering with moderate total dissolved solids. Major ions varied greatly, increasing from upstream to downstream. In some stations, content of fluoride and sodium was higher than the recommended drinking water standards. Natural and anthropogenic factors contributed to the lowering rate of chemical weathering; the rate was lower than most of tropical rivers. The rate of weathering was higher in Precambrian than volcanic rocks. 87 Sr/ 86 Sr was lower than global average whereas concentration of strontium was higher than global average with mean annual flux of 0.13 × 10 6  mol year -1 . Evaporation and altitude effects have caused enrichment of δ 18 O and δ 2 H in dry season and downstream of the river. Higher d-excess value than global average suggests that most of the stations were supplied by recycled moisture. Rainfall and groundwater were the major sources of surface flowing water in PRB; nevertheless, glacier from Mt. Kilimanjaro has insignificant contribution to the surface water. We recommend measures to be taken to reduce the level of fluoride and sodium before domestic use.

  10. Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India.

    PubMed

    Diwan, Vishal; Hanna, Nada; Purohit, Manju; Chandran, Salesh; Riggi, Emilia; Parashar, Vivek; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2018-06-17

    To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river.

  11. Seasonal and Interannual Trends in Largest Cholera Endemic Megacity: Water Sustainability - Climate - Health Challenges in Dhaka, Bangladesh

    NASA Astrophysics Data System (ADS)

    Akanda, Ali S.; Jutla, Antarpreet; Faruque, Abu S. G.; Huq, Anwar; Colwell, Rita R.

    2014-05-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. Emerging megacities in the region, especially those located in coastal areas also remain vulnerable to large scale drivers of cholera outbreaks. However, there has not been any systematic study on linking long-term disease trends with related changes in natural or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns and frequency of natural disasters. An interesting change is observed in the seasonal trends of cholera prevalence; while an endemic upward trend is seen in the dry season, the post-monsoon trend is epidemic in nature. In addition, the trend in the pre-monsoon dry season is significantly stronger than the post-monsoon wet season; and thus spring is becoming the dominant cholera season of the year. Evidence points to growing urbanization and rising population in unplanned settlements along the city peripheries. The rapid pressure of growth has led to an unsustainable and potentially disastrous situation with negligible-to-poor water and sanitation systems compounded by changing climatic patterns and increasing number of extreme weather events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of cholera outbreaks in spring, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate large scale water sustainability challenges in the context of climatic and anthropogenic changes in the

  12. Lingering effects of preceding strong El Niño events on the typhoon activity in early summer: Case study of sub-seasonal and seasonal predictions in 2016

    NASA Astrophysics Data System (ADS)

    Takaya, Y.; Kubo, Y.; Yamaguchi, M.; Vitart, F.; Hirahara, S.; Maeda, S.

    2016-12-01

    Strong El Niño events have lingering effects on the seasonal variability in the Indo- western Pacific region in the mature-decay phase of El Niño. Specifically, in the decay phase, a low-level anticyclonic circulation and suppressed convection in the western North Pacific are enforced as a result of a local air-sea feedback in the western North Pacific and remote response to the Indian Ocean warming due to El Niño. The typhoon activity in the western North Pacific is also modulated by the lingering effects in the early typhoon season (boreal spring to early summer) following the strong El Niño events. This study investigates underlying mechanisms and predictability by analyzing the historical analysis data, subseasonal and seasonal reforecast data, and sensitivity experiments with the use of an atmosphere-ocean coupled model for the 2016 typhoon season. In this study, we focus on the remote response of the typhoon activity in the Indo-Pacific region. First, we examined the case of 2016, which exhibited the striking inactive typhoon activity and marked the second latest genesis of the first typhoon of the year since 1977 (Typhoon Nipartak on 3 July 2016). The inactive typhoon activity in the early typhoon season of 2016 is plausibly related to the lingering effects of the preceding strong El Niño in 2015/2016 winter. And the inactive typhoon condition and its related atmosphere-ocean conditions in the western north Pacific were successfully predicted with sub-seasonal prediction systems and JMA seasonal prediction system (JMA/MRI-CPS2) well in advance. A composite analysis using historical analysis data indicates that the typhoon activity tends to be suppressed associated with the Indian Ocean warming in boreal spring to summer following El Niño winters. This is relatively well replicated in reforecasts of JMA/MRI-CPS2. We also carried out sensitivity experiments with JMA/MRI-CPS2, where we strongly nudge sea surface temperature (SST) in the Indian Ocean to

  13. Water insecurity and emotional distress: coping with supply, access, and seasonal variability of water in a Bolivian squatter settlement.

    PubMed

    Wutich, Amber; Ragsdale, Kathleen

    2008-12-01

    Recent research suggests that insecure access to key resources is associated with negative mental health outcomes. Many of these studies focus on drought and famine in agricultural, pastoral, and foraging communities, and indicate that food insecurity mediates the link between water insecurity and emotional distress. The present study is the first to systematically examine intra-community patterns of water insecurity in an urban setting. In 2004-2005, we collected interview data from a random sample of 72 household heads in Villa Israel, a squatter settlement of Cochabamba, Bolivia. We examined the extent to which water-related emotional distress is linked with three dimensions of water insecurity: inadequate water supply; insufficient access to water distribution systems; and dependence on seasonal water sources, and with gender. We found that access to water distribution systems and female gender were significantly associated with emotional distress, while water supply and dependence on seasonal water sources were not. Economic assets, social assets, entitlements to water markets, and entitlements to reciprocal exchanges of water were significantly associated with emotional distress, while entitlements to a common-pool water resource institution were not. These results suggest that water-related emotional distress develops as a byproduct of the social and economic negotiations people employ to gain access to water distribution systems in the absence of clear procedures or established water rights rather than as a result of water scarcity per se.

  14. Understanding the climate-included variations in the seasonal water demands of irrigated crops in Northern India

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Jain, M.

    2016-12-01

    Expected changes in temperature and precipitation patterns in the rice-wheat belt of Northern India have implications for balancing crop water demand and available water resources. Because the impacts of water scarcity and reduced crop production are realized at a local scale, water-saving interventions are most effective when implemented locally. However, a paucity of fine-scale studies on the relationship between variations in climate and crop water demand has limited our ability to effectively implement such interventions. In an effort to better understand the responses of irrigated crops to changing climate in Northern India at finer-scales, we propose a remote sensing based semi-empirical approach. First, we employ a multi-model surface energy balance (SEB) approach to map seasonal evapotranspiration (ET)/water use (1995-2015) at 30 to 100 m resolution from space and investigate how seasonal and inter-annual variations in temperature and precipitation are associated with regional surface-energy budgets. Second, using remote estimates of ET and other biophysical variables, such as vegetation indices, land surface temperature, and albedo, we will explain the possible relationships between climate change and seasonal water demands of crops. Our estimates of high/moderate resolution (30 to 100 m) seasonal ET maps can make clear distinctions between impacts of climate variations on crop water demand at field, plot, and regional scales in Northern India. Finally, by improving our ability to identify targeted area for water-saving interventions, this study supports agricultural resiliency of Northern India in the face of climate change.

  15. Season-ahead streamflow forecast informed tax strategies for semi-arid water rights markets

    NASA Astrophysics Data System (ADS)

    Delorit, J. D.; Block, P. J.

    2016-12-01

    In many semi-arid regions multisectoral demands stress available water supplies. The Elqui River valley of north central Chile, which draws on limited capacity reservoirs supplied largely by annually variable snowmelt, is one of these cases. This variability forces water managers to develop demand-based allocation strategies which have typically resulted in water right volume reductions, applied equally per right. Compounding this issue is often deferred or delayed infrastructure investments, which has been linked Chile's Coasian approach to water markets, under which rights holders do not pay direct procurement costs, non-use fees, nor taxes. Here we build upon our previous research using forecasts of likely water rights reductions, informed by season-ahead prediction models of October-January (austral growing season) streamflow, to construct annual, forecast-sensitive, per right tax. We believe this tax, to be borne by right holders, will improve the beneficial use of water resources by stimulating water rights trading and improving system efficiency by generating funds for infrastructure investment, thereby reducing free-ridership and conflict between rights holders. Research outputs will include sectoral per right tax assessments, tax revenue generation, Elqui River valley economic output, and water rights trading activity.

  16. Assessing Climate Change in Early Warm Season and Impacts on Wildfire Potential in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.

    2016-12-01

    Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the

  17. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    PubMed Central

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  18. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    PubMed

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  19. Hydrological Regime and Water Shortage as Drivers of the Seasonal Incidence of Diarrheal Diseases in a Tropical Montane Environment

    PubMed Central

    Choisy, Marc; Souliyaseng, Noy; Jourdren, Marine; Quet, Fabrice; Buisson, Yves; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Sengtaheuanghoung, Oloth; Pierret, Alain; Rochelle-Newall, Emma; Becerra, Sylvia; Ribolzi, Olivier

    2016-01-01

    100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. The temporal trends of reported daily diarrhea cases were generally bimodal with hospital admissions peaking in February-March and later in May-July. Annual incidence rates were higher in more densely populated areas and mostly concerned the 0–4 age group and male patients. Conclusions We found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies. These variables should be monitored in the framework of an early warning system provided that a tradeoff is found between the size of the monitored catchment and the frequency of the measurement. PMID:27935960

  20. Hydrological Regime and Water Shortage as Drivers of the Seasonal Incidence of Diarrheal Diseases in a Tropical Montane Environment.

    PubMed

    Boithias, Laurie; Choisy, Marc; Souliyaseng, Noy; Jourdren, Marine; Quet, Fabrice; Buisson, Yves; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Sengtaheuanghoung, Oloth; Pierret, Alain; Rochelle-Newall, Emma; Becerra, Sylvia; Ribolzi, Olivier

    2016-12-01

    fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. The temporal trends of reported daily diarrhea cases were generally bimodal with hospital admissions peaking in February-March and later in May-July. Annual incidence rates were higher in more densely populated areas and mostly concerned the 0-4 age group and male patients. We found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies. These variables should be monitored in the framework of an early warning system provided that a tradeoff is found between the size of the monitored catchment and the frequency of the measurement.

  1. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  2. Seasonal variability in bio-optical properties along the coastal waters off Cochin

    NASA Astrophysics Data System (ADS)

    Vishnu, P. S.; Shaju, S. S.; Tiwari, S. P.; Menon, Nandini; Nashad, M.; Joseph, C. Ajith; Raman, Mini; Hatha, Mohamed; Prabhakaran, M. P.; Mohandas, A.

    2018-04-01

    Strong seasonal upwelling, downwelling, changes in current patterns and the volume of freshwater discharge from Cochin Estuary defines the coastal waters off Cochin. These coastal waters were investigated through monthly sampling efforts during March 2015 to February 2016 to study the seasonal and spatial variability in bio-optical properties for the four different seasons mainly Spring Inter Monsoon (SIM), South West Monsoon (SWM), Fall Inter Monsoon (FIM) and Winter Monsoon (WM). The Barmouth region is the meeting place where freshwater from Cochin Estuary directly enters to the sea through a single narrow outlet, was dominated by highly turbid waters during the entire period of study. Among the four seasons, chlorophyll a (Chl_a) concentration showed a high value during SWM, ranged from 2.90 to 11.66 mg m-3 with an average value of 6.56 ± 3.51 mg m-3. During SIM the distribution of coloured dissolved organic matter (CDOM) is controlled by decomposition of phytoplankton biomass and the river discharge, whereas during SWM the temporal distribution of CDOM is controlled only by river discharge. The highest value for CDOM spectral slope (SCDOM) was observed during SWM, ranged from 0.013 to 0.020 nm-1 with an average value of 0.015 ± 0.002 nm-1. During WM, the high SCDOM with lower aCDOM (443) indicates the photo-degradation affects the absorption characteristics of CDOM. The observed nonlinearity between Chl_a and the ratio of phytoplankton absorption aph (443)/aph (670) indicating the packaging effect and changes in the intercellular composition of pigments. During the study period, aph (670) was strongly correlated with Chl_a than aph (443), which explains the accessory pigment absorption dominating more than Chl_a in the blue part of the spectrum. Similarly, the results obtained from seasonal bio-optical data indicating that Chl_a significantly contributes light attenuation of the water column during SIM, whereas detritus (ad) significantly contributes light

  3. Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening.

    PubMed

    Harayama, Hisanori; Ikeda, Takefumi; Ishida, Atsushi; Yamamoto, Shin-Ichi

    2006-08-01

    We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic

  4. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J.

    2014-05-01

    Early and on-going crop production forecasts are important to facilitate food price stability for regions at risk, and for agriculture exporters, to set market value. Most regional and global efforts in forecasting rely on multiple sources of information from the field. With increased access to data from spaceborne Synthetic Aperture Radar (SAR), these sensors could contribute information on crop acreage. But these acreage estimates must be available early in the season to assist with production forecasts. This study acquired TerraSAR-X and RADARSAT-2 data over a region in eastern Canada dominated by economically important corn and soybean production. Using a supervised decision tree classifier, results determined that either sensor was capable of delivering highly accurate maps of corn and soybeans at the end of the growing season. Accuracies far exceeded 90%. Spatial and multi-temporal filtering approaches were compared and small improvements in accuracies were found by applying the multi-temporal filter to the RADARSAT-2 data. Of significant interest, this study determined that by using only three TerraSAR-X images corn could be accurately identified by the end of June, a mere six weeks after planting and at a vegetative growth stage (V6 - sixth leaf collar developed). However, soybeans required additional acquisitions given the variance in planting densities and planting dates in this region of Canada. In this case, accurate soybean classification required TerraSAR-X images until early August at the start of the reproductive stage (R5 - seed development is beginning). Also important, by applying a multi-temporal filter accurate mapping (close to 90%) of corn and soybeans from RADARSAT-2 could occur five weeks earlier (by August 19) than if a spatial filter was used. Thus application of this filtering approach could accelerate delivery of a crop inventory for this region of Canada. Corn and soybeans are important commodities both globally and within Canada. This

  5. Seasonal variability of near surface soil water and groundwater tables in Florida : phase II.

    DOT National Transportation Integrated Search

    2008-01-01

    The seasonal high groundwater table (SHGWT) is a critical measure for design projects requiring : surface water permits including roadway design and detention or retention pond design. Accurately : measuring and, more importantly, predicting water ta...

  6. BOLE WATER CONTENT SHOWS LITTLE SEASONAL VARIATION IN CENTURY-OLD DOUGLAS-FIR TREES

    EPA Science Inventory

    Purportedly, large Douglas-fir trees in the American Pacific Northwest use water stored in bole tissues to ameliorate the effects of seasonal summer drought, the water content of bole tissues being drawn down over the summer months and replenished during the winter. Continuous mo...

  7. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China.

    PubMed

    Yang, Ji-Feng; Ying, Guang-Guo; Zhao, Jian-Liang; Tao, Ran; Su, Hao-Chang; Liu, You-Sheng

    2011-01-01

    The distribution and occurrence of 15 antibiotics in surface water of the Pearl River System (Liuxi River, Shijing River and Zhujiang River) and effluents of four wastewater treatment plants (WWTPs) were investigated in two sampling events representing wet season and dry season by using rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-MS/MS) in positive ionization mode. Only eight antibiotics (sulfadiazine, sulfapyridine, sulfamethazine, sulfamethoxazole, trimethoprim, roxithromycin, erythromycin-H₂O and norfloxacin) were detected in the water samples of the three rivers and the effluents. The detection frequencies and levels of antibiotics in the dry season were higher than those in the wet season. This could be attributed to the dilution effects in the wet season and relatively lower temperature in the dry season under which antibiotics could persist for a longer period. The levels of the detected antibiotics in different sites are generally in a decreasing order as follows: Shijing River ≥WWTP effluent ≥Zhujiang River ≥ Liuxi River. Risk assessment based on the calculated risk quotients showed that only erythromycin-H₂O and roxithromycin detected in the Pearl Rivers might have adverse effects on aquatic organisms.

  8. Seasonality of Cryptosporidium oocyst detection in surface waters of Meru, Kenya as determined by two isolation methods followed by PCR

    PubMed Central

    Muchiri, John M.; Ascolillo, Luke; Mugambi, Mutuma; Mutwiri, Titus; Ward, Honorine D.; Naumova, Elena N.; Egorov, Andrey I.; Cohen, Seth; Else, James G.; Griffiths, Jeffrey K.

    2009-01-01

    Meru, Kenya has watersheds which are shared by wildlife, humans and domesticated animals. These surface waters can be contaminated by the waterborne pathogen Cryptosporidium. To quantify the seasonality and prevalence of Cryptosporidium in Meru regional surface waters, we used a calcium carbonate flocculation (CCF) and sucrose floatation method, and a filtration and immunomagnetic bead separation method, each of which used PCR for Cryptosporidium detection and genotyping. Monthly water samples were collected from January through June in 2003 and 2004, bracketing two April-May rainy seasons. We detected significant seasonality with 8 of 9 positive samples from May and June (p < 0.0014), which followed peak rainy season precipitation and includes some of the subsequent dry season. Six of 9 positive samples revealed C. parvum, and 3 contained C. andersoni. None contained C. hominis. Our results indicate that Meru surface waters are Cryptosporidium-contaminated at the end of rainy seasons, consistent with the timing of human infections reported by others from East Africa and contrasting with the onset of rainy season peak incidence reported from West Africa. PMID:18957776

  9. Seasonal water storage, stress modulation and California seismicity

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Burgmann, R.; Fu, Y.

    2017-12-01

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Depending on fault geometry, the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze 9 years of M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault-normal and fault-shear stresses for the focal geometry. Our results reveal 10% more earthquakes occurring during slip-encouraging fault-shear stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by stress changes on the order of 1-5 kPa. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles.

  10. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales.

    PubMed

    Pratt, Bethany; Chang, Heejun

    2012-03-30

    The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Root distribution and seasonal water status in weathered granitic bedrock under chaparral

    Treesearch

    P. D. Sternberg; M. A. Anderson; R. C. Graham; J. L. Beyers; K. R. Tice

    1996-01-01

    Soils in mountainous terrain are often thin and unable to store sufficient water to support existing vegetation through dry seasons. This observation has led to speculation about the role of bedrock in supporting plant growth in natural ecosystems, since weathered bedrocks often have appreciable porosity and, like soil, can store and transmit water. This study, within...

  12. Evidence of hydraulic lift for pre-rainy season leaf out and dry-season stem water enrichment in Sclerocarya birrea, a tropical agroforestry tree

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Rinaldo, Andrea; Parlange, Marc B.

    2014-05-01

    We use stable isotopes of water as tracers to follow water use by five Sclerocarya birrea trees in a catchment in South Eastern Burkina Faso interspersed with millet fields, gallery forest, Sudanian savanna, and fallow fields. Isotopic ratios were determined from water extracted from stems of the trees and sub-canopy soil of two of them, while nearby ground water, precipitation, and surface water was sampled weekly. A unique configuration of sensors connected with a wireless sensor network of meteorological stations measured sub-canopy shading, the temperature and humidity in the canopy, through-fall, and soil moisture under two of the trees. Both water extracted from sap and water extracted from soil is extremely enriched in the dry season, but drop to levels close to the ground water in February or March, which coincides with the growth of leaves. Dates of leaf out were confirmed by changes in δDH and δO18 concentrations of water, photographic documentation & pixel analysis, and analysis of sub-canopy radiation and proceeded the rise in humidity and flow that was later detected in the sub-canopy soil, the trunk of the tree (sap-flow), and atmosphere (canopy VPD). Examination of the isotopic signature suggests that size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Further examination of the isotopic signatures of the roots suggested that the trees are performing hydraulic redistribution, or lifting the ground water and "sharing it" with the soil in the rooting zone in the dry season. The enriched level of xylem in this case is a product of water loss, and enrichment, along the travel path of the water from the roots to the tip of the stem, as evidenced by the variation according to size of tree. Vapor pressure deficit, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in

  13. Understanding the Impact of Ground Water Treatment and Evapotranspiration Parameterizations in the NCEP Climate Forecast System (CFS) on Warm Season Predictions

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Yang, R.

    2016-12-01

    Skillful short-term weather forecasts, which rely heavily on quality atmospheric initial conditions, have a fundamental limit of about two weeks owing to the chaotic nature of the atmosphere. Useful forecasts at sub-seasonal to seasonal time scales, on the other hand, require well-simulated large-scale atmospheric response to slowly varying lower boundary forcings from both the ocean and land surface. The critical importance of ocean has been recognized, where the ocean indices have been used in a variety of climate applications. In contrast, the impact of land surface anomalies, especially soil moisture and associated evaporation, has been proven notably difficult to demonstrate. The Noah Land Surface Model (LSM) is the land component of NCEP CFS version 2 (CFSv2) used for seasonal predictions. The Noah LSM originates from the Oregon State University (OSU) LSM. The evaporation control in the Noah LSM is based on the Penman-Monteith equation, which takes into account the solar radiation, relative humidity, air temperature, and soil moisture effects. The Noah LSM is configured with four soil layers with a fixed depth of 2 meters and free drainage at the bottom soil layer. This treatment assumes that the soil water table depth is well within the specified range, and also potentially misrepresents the soil moisture memory effects at seasonal time scales. To overcome the limitation, an unconfined aquifer is attached to the bottom of the soil to allow the water table to move freely up and down. In addition, in conjunction with the water table, an alternative Ball-Berry photosynthesis-based evaporation parameterization is examined to evaluate the impact from using a different evaporation control methodology. Focusing on the 2011 and 2012 intense summer droughts in the central US, seasonal ensemble forecast experiments with early May initial conditions are carried out for the two years using an enhanced version of CFSv2, where the atmospheric component of the CFSv2 is

  14. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-09-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.

  15. A seasonal hydrologic ensemble prediction system for water resource management

    NASA Astrophysics Data System (ADS)

    Luo, L.; Wood, E. F.

    2006-12-01

    A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.

  16. Consequences of seasonal variation in reservoir water level for predatory fishes: linking visual foraging and prey densities

    USGS Publications Warehouse

    Klobucar, Stephen L.; Budy, Phaedra

    2016-01-01

    In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.

  17. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics

    NASA Astrophysics Data System (ADS)

    Ai, L.; Shi, Z. H.; Yin, W.; Huang, X.

    2015-04-01

    Landscape characteristics are widely accepted as strongly influencing stream water quality in heterogeneous watersheds. Understanding the relationships between landscape and specific water contaminant can greatly improve the predictability of potential contamination and the assessment of contaminant export. In this work, we examined the combined effects of watershed complexity, in terms of land use and physiography, on specific water contaminant across watersheds close to the Danjiangkou Reservoir. The land use composition, land use pattern, morphometric variables and soil properties were calculated at the watershed scale and considered potential factors of influence. Due to high co-dependence of these watershed characteristics, partial least squares regression was used to elucidate the linkages between some specific water contaminants and the 16 selected watershed characteristic variables. Water contaminant maps revealed spatial and seasonal heterogeneity. The dissolved oxygen values in the dry season were higher than those in the wet season, whereas the other contaminant concentrations displayed the opposite trend. The studied watersheds which are influenced strongly by urbanization, showed higher levels of ammonia nitrogen, total phosphorus, potassium permanganate index and petroleum, and lower levels of dissolved oxygen. The urban land use, largest patch index and the hypsometric integral were the dominant factors affecting specific water contaminant.

  18. Seasonal Redistribution of Water in the Surficial Martian Regolith: Results of the HEND Data Analysis

    NASA Technical Reports Server (NTRS)

    Kuzmin, R. O.; Zabalueva, E. V.; Mitrofanov, I. G.; Litvak, M. I.; Parshukov, A. V.; Grinkov, V. Yu.; Saunders, R. S.; Boynton, W.

    2005-01-01

    The global mapping of the neutrons emission from the Mars, conducted recently by HEND instrument (Mars Odyssey), has shown that the surface layer (1-2 m) on the high latitudes of the planet (up to 50 ) is very reached by water ice with abundance more 50% by mass [1,2,3 ]. It was also shown that water ice distribution in surficial layer of the northern and the southern sub-polar regions is notably different [4]. Until today the existing HEND data already covers the period more then one the Martian year. This let to study the seasonal effects of volatiles redistribution associated with processes of sublimation and condensation of the seasonal polar caps and water exchange between the surface regolith and atmosphere. The goal of our work was to analyze the dynamic of the globally mapped neutrons flux as key to understanding of the seasonal redistribution of the water ice in the surface layer. For this we analyzed the globally mapped flux of the neutrons with different energy and corresponding effective layer of their emission.

  19. Impact of Seasonal Variability in Water, Plant and Soil Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Pelak, N. F., III; Revelli, R.; Porporato, A. M.

    2017-12-01

    Agroecosystems cover a significant fraction of the Earth's surface, making their water and nutrient cycles a major component of global cycles across spatial and temporal scales. Most agroecosystems experience seasonality via variations in precipitation, temperature, and radiation, in addition to human activities which also occur seasonally, such as fertilization, irrigation, and harvesting. These seasonal drivers interact with the system in complex ways which are often poorly characterized. Crop models, which are widely used for research, decision support, and prediction of crop yields, are among the best tools available to analyze these systems. Though normally constructed as a set of dynamical equations forced by hydroclimatic variability, they are not often analyzed using dynamical systems theory and methods from stochastic ecohydrology. With the goal of developing this viewpoint and thus elucidating the roles of key feedbacks and forcings on system stability and on optimal fertilization and irrigation strategies, we develop a minimal dynamical system which contains the key components of a crop model, coupled to a carbon and nitrogen cycling model, driven by seasonal fluctuations in water and nutrient availability, temperature, and radiation. External drivers include seasonally varying climatic conditions and random rainfall forcing, irrigation and fertilization as well as harvesting. The model is used to analyze the magnitudes and interactions of the effects of seasonality on carbon and nutrient cycles, crop productivity, nutrient export of agroecosystems, and optimal management strategies with reference to productivity, sustainability and profitability. The impact of likely future climate scenarios on these systems is also discussed.

  20. Fire decreases arthropod abundance but increases diversity: Early and late season prescribed fire effects in a Sierra Nevada mixed-conifer forest

    USGS Publications Warehouse

    Ferrenberg, Scott; Schwilk, Dylan W.; Knapp, Eric E.; Groth, Eric; Keeley, Jon E.

    2006-01-01

    Prior to fire suppression in the 20th century, the mixed-conifer forests of the Sierra Nevada, California, U.S.A., historically burned in frequent fires that typically occurred during the late summer and early fall. Fire managers have been attempting to restore natural ecosystem processes through prescription burning, and have often favored burning during the fall in order to mimic historical fire regimes. Increasingly, however, prescription burning is also being done during the late spring and early summer in order to expand the window of opportunity for needed fuel reduction burning. The effect of prescribed fires outside of the historical fire season on forest arthropods is not known. The objective of this study was to compare the short-term effects of prescribed fires ignited in the early and late fire season on forest floor arthropods. Arthropod abundance and diversity were assessed using pitfall trapping in replicated burn units in Sequoia National Park, California. Overall, abundance of arthropods was lower in the burn treatments than in the unburned control. However, diversity tended to be greater in the burn treatments. Fire also altered the relative abundances of arthropod feeding guilds. No significant differences in arthropod community structure were found between early and late season burn treatments. Instead, changes in the arthropod community appeared to be driven largely by changes in fuel loading, vegetation, and habitat heterogeneity, all of which differed more between the burned and unburned treatments than between early and late season burn treatments.

  1. Seasonal variation of the water exchange through the Bohai Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2016-02-01

    Seasonal variations of the Lubei coastal current off the northern Shandong Peninsula and water exchange between the Bohai and Yellow seas were analyzed, based on current and salinity data measured mainly in 2006, 2007 and 2012. In winter and autumn, the Lubei coastal current flows eastward through the Bohai Strait before ultimately heading southward into the waters off Chengshantou in the east of the Shandong Peninsula. In spring and summer, the Lubei coastal current disappears. There are three kinds of patterns of water exchange between the Bohai and Yellow seas. The first is the "inflow in the north and outflow in the south of the Bohai Strait" in winter and autumn, which is regarded as the permanent pattern during the whole year from literature. The second is "outflow in the surface layer and inflow in the underlying layer" in summer, where the outflow is significantly greater than the inflow related with increased runoff and precipitation. The third is "inflow together in the southern and northern channels of the Bohai Strait" in spring. The low mean sea level and N-S sea-level incline formed in winter in the Bohai Sea lose their dynamic balance because of the reversal of the northeast monsoon in spring. This forces the water from the northern Yellow Sea into the Bohai Sea via the southern and northern channels of the Bohai Strait, which constitutes the largest net inflow of the four seasons.

  2. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-06-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.

  3. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt water of the rivers originating in the mountains provides the only water resource available for agricultural production but also for water collection in reservoirs for energy production in winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources.. In fact, seasonal forecasts are mandatory tasks of national hydro-meteorological services in the region. Thus this study aims at a statistical forecast of the seasonal water availability, whereas the focus is put on the usage of freely available data in order to facilitate an operational use without data access limitations. The study takes the Naryn basin as a test case, at which outlet the Toktogul reservoir stores the discharge of the Naryn River. As most of the water originates form snow and glacier melt, a statistical forecast model should use data sets that can serve as proxy data for the snow masses and snow water equivalent in late spring, which essentially determines the bulk of the seasonal discharge. CRU climate data describing the precipitation and temperature in the basin during winter and spring was used as base information, which was complemented by MODIS snow cover data processed through ModSnow tool, discharge during the spring and also GRACE gravimetry anomalies. For the construction of linear forecast models monthly as well as multi-monthly means over the period January to April were used to predict the seasonal mean discharge of May-September at the station Uchterek. An automatic model selection was performed in multiple steps, whereas the best models were selected according to several performance measures and their robustness in a leave-one-out cross validation. It could be shown that the seasonal discharge can be predicted with

  4. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    PubMed

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  5. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    PubMed

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated

  6. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Repina, I. A.

    2018-01-01

    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  7. Different growth responses of C3 and C4 grasses to seasonal water and nitrogen regimes and competition in a pot experiment.

    PubMed

    Niu, Shuli; Liu, Weixing; Wan, Shiqiang

    2008-01-01

    Understanding temporal niche separation between C(3) and C(4) species (e.g. C(3) species flourishing in a cool spring and autumn while C(4) species being more active in a hot summer) is essential for exploring the mechanism for their co-existence. Two parallel pot experiments were conducted, with one focusing on water and the other on nitrogen (N), to examine growth responses to water or nitrogen (N) seasonality and competition of two co-existing species Leymus chinensis (C(3) grass) and Chloris virgata (C(4) grass) in a grassland. The two species were planted in either monoculture (two individuals of one species per pot) or a mixture (two individuals including one L. chinensis and one C. virgata per pot) under three different water or N seasonality regimes, i.e. the average model (AM) with water or N evenly distributed over the growing season, the one-peak model (OPM) with more water or N in the summer than in the spring and autumn, and the two-peak model (TPM) with more water or N in the spring and autumn than in the summer. Seasonal water regimes significantly affected biomass in L. chinensis but not in C. virgata, while N seasonality impacted biomass and relative growth rate of both species over the growing season. L. chinensis accumulated more biomass under the AM and TPM than OPM water or N treatments. Final biomass of C. virgata was less impacted by water and N seasonality than that of L. chinensis. Interspecific competition significantly decreased final biomass in L. chinensis but not in C. virgata, suggesting an asymmetric competition between the two species. The magnitude of interspecific competition varied with water and N seasonality. Changes in productivity and competition balance of L. chinensis and C. virgata under shifting seasonal water and N availabilities suggest a contribution of seasonal variability in precipitation and N to the temporal niche separation between C(3) and C(4) species.

  8. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports

    PubMed Central

    Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea. PMID:27410682

  9. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.

    PubMed

    Daryabor, Farshid; Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.

  10. Characterization of seasonal and inter-annual variability in global water bodies using annual MODIS water maps 2000 - 2016

    NASA Astrophysics Data System (ADS)

    Hubbard, A. B.; Carroll, M.

    2017-12-01

    Accurate maps of surface water resources are critical for long-term resource management, characterization of extreme events, and integration into various science products. Unfortunately, most of the currently available surface water products do not adequately represent inter- and intra-annual variation in water extent, resulting from both natural fluctuations in the hydrologic cycle and human activities. To capture this variability, annual water maps were generated from Terra MODIS data at 250 m resolution for the years 2000 through 2016, using the same algorithm employed to generate the previously released MOD44W Collection 5 static water mask (Carroll et al., 2009). Following efforts to verify the data and remove false positives, the final maps were submitted to the Land Processes DAAC for publication as MOD44W Collection 6.1. Analysis of these maps indicate that only about two thirds of inland water pixels were persistent throughout all 16 years of data, meaning that roughly one third of the surface water detected in this period displayed some degree of inter-annual variation. In addition to the annual datasets, water observations were aggregated by quarter for each year from 2003 through 2016 using the same algorithm and observations from both Terra and Aqua. Analysis of these seasonal maps is ongoing, but preliminary investigation indicates they capture dramatic intra-annual fluctuations of water extent in many regions. In cloudy regions, it is difficult or impossible to consistently measure this intra-annual variation without the twice-daily temporal resolution of the MODIS sensors. While the moderate spatial resolution of MODIS is a constraint, these datasets are suitable for studying such fluctuations in medium to large water bodies, or at regional to global scales. These maps also provide a baseline record of historical surface water resources, against which future change can be compared. Finally, comparisons with the MOD44W Collection 5 static water mask

  11. Assessment of a new seasonal to inter-annual operational Great Lakes water supply, water levels, and connecting channel flow forecasting system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Fry, L. M.; Hunter, T.; Pei, L.; Smith, J.; Lucier, H.; Mueller, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) has recently operationalized a suite of ensemble forecasts of Net Basin Supply (NBS), water levels, and connecting channel flows that was developed through a collaboration among USACE, NOAA's Great Lakes Environmental Research Laboratory, Ontario Power Generation (OPG), New York Power Authority (NYPA), and the Niagara River Control Center (NRCC). These forecasts are meant to provide reliable projections of potential extremes in daily discharge in the Niagara and St. Lawrence Rivers over a long time horizon (5 years). The suite of forecasts includes eight configurations that vary by (a) NBS model configuration, (b) meteorological forcings, and (c) incorporation of seasonal climate projections through the use of weighting. Forecasts are updated on a weekly basis, and represent the first operational forecasts of Great Lakes water levels and flows that span daily to inter-annual horizons and employ realistic regulation logic and lake-to-lake routing. We will present results from a hindcast assessment conducted during the transition from research to operation, as well as early indications of success rates determined through operational verification of forecasts. Assessment will include an exploration of the relative skill of various forecast configurations at different time horizons and the potential for application to hydropower decision making and Great Lakes water management.

  12. How do rubber ( Hevea brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, Tomo'omi; Mudd, Ryan G.; Giambelluca, Thomas W.

    Plantation rubber ( Hevea brasiliensis Müll. Arg.) is a viable economic resource for Southeast Asian countries. Consequently, rubber plantations are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially changing the partitioning of water, energy, and carbon at multiple scales, compared with the traditional land covers they are replacing. Delineating the characteristics of biosphere-atmosphere exchange in rubber plantations is therefore important to understanding the impacts of such land use change on environmental processes. We have conducted eddy flux measurements in two rubber plantation sites: (1) Som Sanuk (SS), located northern Thailand; and (2) Cambodian Rubbermore » Research Institute (CRRI), central Cambodia. Both sites have a distinct dry season. Measurements were made over a 3-year period. We used combination of actual evapotranspiration (E T) flux measurements and an inversed version of a simple 2-layer E T model for estimating the mean canopy stomatal conductances (g s), which is among the most effective measures for describing water and energy exchanges and tree water use characteristics. A main novelty in this analysis is that the rubber canopy conductance can be extracted from total surface conductance (including the canopy and the vegetation floor effects) and hence environmental and biological controls on rubber tree gs are explicitly compared at each site in different seasons and years. It is demonstrated how each studied rubber plantation copes with each strong seasonal drought via tree water use strategies. Potential tree water use deficit (precipitation (P) – potential evaporation (E T_POT)) for each season (i.e., December-February: DJF, March-May: MAM, June-August: JJA, and September-November: SON) revealed in which season and how the water use should be controlled. We found that in seasons when actual tree water use deficit (P – E T) was negative (i.e., DJF and MAM

  13. Seasonal trend of fog water chemical composition in the Po Valley.

    PubMed

    Fuzzi, S; Facchini, M C; Orsi, G; Ferri, D

    1992-01-01

    Fog frequency in the Po Valley, Northern Italy, can be as high as 30% of the time in the fall-winter season. High pollutant concentrations have been measured in fog water samples collected in this area over the past few years. The combined effects of high fog occurrence and high pollutant loading of the fog droplets can determine, in this area, appreciable chemical deposition rates. An automated station for fog water collection was developed, and deployed at the field station of S. Pietro Capofiume, in the eastern part of the Po Valley for an extended period: from the beginning of November 1989 to the end of April 1990. Time-resolved sampling of fog droplets was carried out during all fog events occurring in this period, and chemical analyses were performed on the collected samples. Statistical information on fog occurrence and fog water chemical composition is reported in this paper, and a tentative seasonal deposition budget is calculated for H+, NH4+, NO3- and SO4(2-) ions. The problems connected with fog droplet sampling in sub-freezing conditions are also addressed in the paper.

  14. Soil nutrients and microbial activity after early and late season prescribed burns in a Sierra Nevada mixed conifer forest

    Treesearch

    Sarah T. Hamman; Ingrid C. Burke; Eric E. Knapp

    2008-01-01

    Restoring the natural fire regime to forested systems that have experienced fire exclusion throughout the past century can be a challenge due to the heavy fuel loading conditions. Fire is being re-introduced to mixed conifer forests in the Sierra Nevada through both early season and late season prescribed burns, even though most fires historically occurred in the late...

  15. Forecasting infectious disease emergence subject to seasonal forcing.

    PubMed

    Miller, Paige B; O'Dea, Eamon B; Rohani, Pejman; Drake, John M

    2017-09-06

    Despite high vaccination coverage, many childhood infections pose a growing threat to human populations. Accurate disease forecasting would be of tremendous value to public health. Forecasting disease emergence using early warning signals (EWS) is possible in non-seasonal models of infectious diseases. Here, we assessed whether EWS also anticipate disease emergence in seasonal models. We simulated the dynamics of an immunizing infectious pathogen approaching the tipping point to disease endemicity. To explore the effect of seasonality on the reliability of early warning statistics, we varied the amplitude of fluctuations around the average transmission. We proposed and analyzed two new early warning signals based on the wavelet spectrum. We measured the reliability of the early warning signals depending on the strength of their trend preceding the tipping point and then calculated the Area Under the Curve (AUC) statistic. Early warning signals were reliable when disease transmission was subject to seasonal forcing. Wavelet-based early warning signals were as reliable as other conventional early warning signals. We found that removing seasonal trends, prior to analysis, did not improve early warning statistics uniformly. Early warning signals anticipate the onset of critical transitions for infectious diseases which are subject to seasonal forcing. Wavelet-based early warning statistics can also be used to forecast infectious disease.

  16. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  17. Assessment of Sulphate and Iron Contamination and Seasonal Variations in the Water Resources of a Damodar Valley Coalfield, India: A Case Study.

    PubMed

    Tiwari, Ashwani Kumar; De Maio, Marina

    2018-02-01

    The aim of the present study was to assess the sulphate [Formula: see text] and iron (Fe) contamination and seasonal variations in the water resources (groundwater, surface water, and mine water) of the West Bokaro coalfield region, India. One hundred and twenty-four water resources samples were collected from the coalfield during the post- and pre-monsoon seasons. The concentrations of [Formula: see text] were determined using ion chromatography and Fe concentrations were analyzed using inductively coupled plasma mass spectrometry. A statistical analysis was used to easily understand the seasonal variations of the elements in the water resources of the area. The concentrations of [Formula: see text] and Fe in the water resources were higher in the pre-monsoon season than in the post-monsoon season, irrespective of location. The water resources of the coalfield were contaminated with high concentrations of [Formula: see text] and Fe, and would require suitable treatment before drinking, domestic and industrial uses.

  18. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  19. Not dead yet: the seasonal water relations of two perennial ferns during California's exceptional drought.

    PubMed

    Baer, Alex; Wheeler, James K; Pittermann, Jarmila

    2016-04-01

    The understory of the redwood forests of California's coast harbors perennial ferns, including Polystichum munitum and Dryopteris arguta. Unusual for ferns, these species are adapted to the characteristic Mediterranean-type dry season, but the mechanisms of tolerance have not been studied. The water relations of P. munitum and D. arguta were surveyed for over a year, including measures of water potential (Ψ), stomatal conductance (gs) and frond stipe hydraulic conductivity (K). A dehydration and re-watering experiment on potted P. munitum plants corroborated the field data. The seasonal Ψ varied from 0 to below -3 MPa in both species, with gs and K generally tracking Ψ; the loss of K rarely exceeded 80%. Quantile regression analysis showed that, at the 0.1 quantile, 50% of K was lost at -2.58 and -3.84 MPa in P. munitum and D. arguta, respectively. The hydraulic recovery of re-watered plants was attributed to capillarity. The seasonal water relations of P. munitum and D. arguta are variable, but consistent with laboratory-based estimates of drought tolerance. Hydraulic and Ψ recovery following rain allows perennial ferns to survive severe drought, but prolonged water deficit, coupled with insect damage, may hamper frond survival. The legacy effects of drought on reproductive capacity and community dynamics are unknown. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    NASA Astrophysics Data System (ADS)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  1. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    NASA Astrophysics Data System (ADS)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land

  2. Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff.

    PubMed

    Regnery, Julia; Püttmann, Wilhelm

    2010-02-01

    To investigate seasonal fluctuations and trends of organophosphate (flame retardants, plasticizers) concentrations in rain and snow, precipitation samples were collected in 2007-2009 period at a densely populated urban sampling site and two sparsely populated rural sampling sites in middle Germany. In addition, storm water runoff was sampled from May 2008 to April 2009 at an urban storm water holding tank (SWHT). Samples were analyzed for tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP), tris(2-butoxyethyl) phosphate (TBEP), tri-iso-butyl phosphate (TiBP), and tri-n-butyl phosphate (TnBP) by gas chromatography-mass spectrometry after solid phase extraction. Among the six analyzed organophosphates (OPs), TCPP dominated in all precipitation and SWHT water samples with maximum concentrations exceeding 1000ngL(-1). For all analytes, no seasonal trends were observed at the urban precipitation sampling site, although atmospheric photooxidation was expected to reduce particularly concentrations of non-chlorinated OPs during transport from urban to remote areas in summer months with higher global irradiation. In the SWHT a seasonal trend with decreasing concentrations in summer/autumn is evident for the non-chlorinated OPs due to in-lake degradation but not for the chlorinated OPs. Furthermore, an accumulation of OPs deposited in SWHTs was observed with concentrations often exceeding those observed in wet precipitation. Median concentrations of TCPP (880ngL(-1)), TDCP (13ngL(-1)) and TBEP (77ngL(-1)) at the SWHT were more than twice as high as median concentrations measured at the urban precipitation sampling site (403ngL(-1), 5ngL(-1), and 21ngL(-1) respectively).

  3. Water, energy and CO2 exchange over a seasonally flooded forest in the Sahel.

    NASA Astrophysics Data System (ADS)

    Kergoat, L.; Le Dantec, V.; Timouk, F.; Hiernaux, P.; Mougin, E.; Manuela, G.; Diawara, M.

    2014-12-01

    In semi-arid areas like the Sahel, perennial water bodies and temporary-flooded lowlands are critical for a number of activities. In some cases, their existence is simply a necessary condition for human societies to establish. They also play an important role in the water and carbon cycle and have strong ecological values. As a result of the strong multi-decadal drought that impacted the Sahel in the 70' to 90', a paradoxical increase of ponds and surface runoff has been observed ("Less rain, more water in the ponds", Gardelle 2010). In spite of this, there are excessively few data documenting the consequence of such a paradox on the water and carbon cycle. Here we present 2 years of eddy covariance data collected over the Kelma flooded Acacia forest in the Sahel (15.50 °N), in the frame of the AMMA project. The flooded forest is compared to the other major component of this Sahelian landscape: a grassland and a rocky outcrop sites. All sites are involved in the ALMIP2 data/LSM model comparison. The seasonal cycle of the flooded forest strongly departs from the surroundings grassland and bare soil sites. Before the rain season, the forest displays the strongest net radiation and sensible heat flux. Air temperature within the canopy reaches extremely high values. During the flood, it turns to the lowest sensible heat flux. In fact, due to an oasis effect, this flux is negative during the late flood. Water fluxes turn from almost zero in the dry season to strong evaporation during the flood, since it uses additional energy provided by negative sensible heat flux. The eddy covariance fluxes are consistent with sap flow data, showing that the flood greatly increases the length of the growing season. CO2 fluxes over the forest were twice as large as over the grassland, and the growing season was also longer, giving a much larger annual photosynthesis. In view of these data and data over surroundings grasslands and bare soil, as well as data from a long-term ecological

  4. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    PubMed

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  5. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau

    PubMed Central

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land. PMID:27243772

  6. Comparison of the seasonal variability in abundance of the copepod Pseudocalanus newmani in Lagoon Notoro-ko and a coastal area of the southwestern Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Kitamura, Mitsuaki; Nakagawa, Yoshizumi; Nishino, Yasuto; Segawa, Susumu; Shiomoto, Akihiro

    2018-03-01

    Replacement of the warm water of the Soya Warm Current (SWC) and the cold water of the East Sakhalin Current (ESC) occurs seasonally along the coast of the southwestern Okhotsk Sea, and sea ice covers the surface during winter. Pseudocalanus newmani is one of the dominant copepods in coastal waters of the northern hemisphere. To better understand the population dynamics of the copepod P. newmani in coastal areas of the southwestern Okhotsk Sea, this study compared the seasonal variation in P. newmani abundance in Lagoon Notoro-ko and a coastal area of the Okhotsk Sea with regard to developmental stage. We sampled P. newmani in the lagoon, including during the ice cover season, and the coastal waters. Pseudocalanus newmani was abundant at both sites in spring. During summer-fall, adults disappeared from the populations at both sites, whereas the early developmental stages were abundant and dominated the population. Total length of adult females decreased toward summer at both sites. Pseudocalanus newmani abundance in the lagoon increased in early winter, and larger females were found in the populations at both sites. These phenomena at both sites corresponded with seasonal variation in water temperature caused by seasonal water-mass replacement and sea ice.

  7. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean.

    PubMed

    Sardessai, S; Shetye, Suhas; Maya, M V; Mangala, K R; Prasanna Kumar, S

    2010-01-01

    Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean. 2010 Elsevier Ltd. All rights reserved.

  8. Seasonal changes in antifreeze protein gene transcription and water content of beetle Microdera punctipennis (Coleoptera, Tenebrionidae) from Gurbantonggut desert in Central Asia.

    PubMed

    Hou, F; Ma, J; Liu, X; Wang, Y; Liu, X N; Zhang, F C

    2010-01-01

    Desert beetle Microdera punctipennis (Coleoptera: Tenebriondae) is a special species in Gurbantonggut Desert in Central Asia. To investigate the possible strategy it employs for cold survival, seasonal changes in supercooling point (SCP), body water content, haemolymph osmolality and antifreeze protein gene (Mpafp) expression were measured over 13 months. Our results show SCPs in M. punctipennis adults changed from -8.0°C in summer to -18.7°C in winter. During winter, adults endured modest water loss; total water decreased from 65.4 percent in summer to 55.9% in winter. Mpafp mRNAs level increased by 13.1 fold from summer to early winter, and haemolymph osmolality increased accordingly from 550 mOsm to 1486 mOsm. Correlation coefficient of Mpafp mRNAs level and SCP indicates that Mpafp mRNA explained 65.3 percent of the variation in SCPs. The correlation between Mpafp mRNA level and total water reflected an indirect influence of antifreeze protein on water content via reducing SCP.

  9. Decadal and seasonal changes in temperature, salinity, nitrate, and chlorophyll in inshore and offshore waters along southeast Australia

    NASA Astrophysics Data System (ADS)

    Kelly, Paige; Clementson, Lesley; Lyne, Vincent

    2015-06-01

    Sixty years of oceanographic in situ data at Port Hacking (34°S) and Maria Island (42°S) and 15 years of satellite-derived chlorophyll a (chl a) in inshore and offshore waters of southeast Australia show changes in the seasonality and trend of water properties consistent with long-term intensification and southerly extensions of East Australian Current (EAC) water. Decadal analyses reveal that the EAC extension water at Maria Island increased gradually from the 1940s to 1980s, followed by a rapid increase since the 1990s. This acceleration coincided with enhanced winter nitrate, implying increased injections of subantarctic water at Maria Island. Satellite-derived chl a at six coastal sites and offshore companion sites in the western Tasman Sea showed significant inshore-offshore variations in seasonal cycle and long-term trend. After 2004-2005, the Maria Island seasonal cycle became increasingly similar to those of Bass Strait and St. Helens, suggesting that the EAC extension water was extending further southward. Comparative analyses of inshore-offshore sites showed that the presence of EAC extension water declined offshore. Seasonal cycles at Maria Island show a recent shift away from the traditional spring bloom, toward increased winter biomass, and enhanced primary productivity consistent with extensions of warm, energetic EAC extension water and more frequent injections of cooler, fresher nitrate-replete waters. Overall, we find complex temporal, latitudinal, and inshore-offshore changes in multiple water masses, particularly at Maria Island, and changes in primary productivity that will profoundly impact fisheries and ecosystems.

  10. Water-use efficiency of willow: Variation with season, humidity and biomass allocation

    NASA Astrophysics Data System (ADS)

    Lindroth, Anders; Verwijst, Theo; Halldin, Sven

    1994-04-01

    Information on the water-use efficiency (WUE) of a vegetation cover improves understanding of the interrelationship between the water and carbon cycles, and enables hydrological practices to be related to agricultural and silvicultural planning and management. This study determined seasonal and climatic variations of the WUE of a fertilized and irrigated short-rotation stand of Salix viminalis L. on a clay soil. The WUE was determined as the ratio of above-ground production to transpiration or, alternatively, to transpiration divided by the saturation vapour pressure deficit. Growth was estimated from a combination of destructive and non-destructive measurements for 10 day periods during the growing seasons of 1986 and 1988. Daily transpiration was estimated using a physically based evaporation model, tuned against energy-balance/Bowen-ratio measurements of total stand evaporation. Nutrients were adequate and climate conditions were similar in both years. In spite of irrigation soil-water deficits developed during midsummer and affected growth rates in different ways: in 1986, both stem and leaf growth decreased, while in 1988 only stem growth decreased. Exceptionally high stem growth rates, twice the total potential growth rates, were recorded after the drought of 1988. They were probably caused by root-allocated assimilates that were sent above-ground after the drought. In both years, stem growth ceased 2-3 weeks after the leaf area had reached its maximum. Since light and temperature were still sufficient to maintain assimilation, all growth presumably took place below ground towards the end of the season. Changes in root-shoot allocation caused large variations in the WUE in 1988. The WUE, weighted by the saturation vapour pressure deficit, was fairly constant in 1986. In both years, the WUE was correlated with the vapour pressure deficit. Towards the end of both growing seasons, when all assimilates were sent below ground, the WUE decreased rapidly to zero

  11. Short-term effects of burn season on flowering phenology of savanna plants

    USGS Publications Warehouse

    Pavlovic, N.B.; Leicht-Young, S. A.; Grundel, R.

    2011-01-01

    We examined the effect of season of burn on flowering phenology of groundlayer species, in the year following burns, in a mesic-sand Midwestern oak savanna. Burn treatments were fall, early-season, growing-season, late-season, and 1 or 5 years after a prior early-season wildfire. For these treatments, we compared the number of flowering stems and of flowers for species overall, for the 20 most prolifically flowering species, as well as for species grouped by flowering phenoperiods, and by growth form. Growing-season burn had a significant negative effect on number of flowering stems and total number of flowers. This effect occurred when either the burn occurred during the flowering season or during the season prior to the flowering phenoperiod. Tradescantia ohiensis showed expedited flowering and Phlox pilosa showed delayed flowering in response to early-season burning. Flowering of early shrubs was reduced by the previous fall and early-spring fires, while flowering of mid-season blooming shrubs was reduced by the early- and growing-season burns. Vaccinium and Gaylussacia, early-flowering shrubs, produced fewer flowers 1 year after than 5 years after an early-season burn. Arabis lyrata showed reduced flowering from the early-season burn. We also found four instances where the early-spring burn effect on flowering was more severe than the fall burn effect, suggesting that many frequent early-season burns may be deleterious to flowering and reproduction of some species. Burns occurring too frequently in the same season could negatively affect future flowering and reproduction of these plant species.

  12. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    USGS Publications Warehouse

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions

  13. Embolism spread in the primary xylem of Polystichum munitum: implications for water transport during seasonal drought.

    PubMed

    Brodersen, Craig R; Rico, Christopher; Guenni, Orlando; Pittermann, Jarmila

    2016-02-01

    Xylem network structure and function have been characterized for many woody plants, but less is known about fern xylem, particularly in species endemic to climates where water is a limiting resource for months at a time. We characterized seasonal variability in soil moisture and frond water status in a common perennial fern in the redwood understory of a costal California, and then investigated the consequences of drought-induced embolism on vascular function. Seasonal variability in air temperature and soil water content was minimal, and frond water potential declined slowly over the observational period. Our data show that Polystichum munitum was protected from significant drought-induced hydraulic dysfunction during this growing season because of a combination of cavitation resistant conduits (Air-seeding threshold (ASP) = -1.53 MPa; xylem pressure inducing 50% loss of hydraulic conductivity (P50 ) = -3.02 MPa) and a soil with low moisture variability. High resolution micro-computed tomography (MicroCT) imaging revealed patterns of embolism formation in vivo for the first time in ferns providing insight into the functional status of the xylem network under drought conditions. Together with stomatal conductance measurements, these data suggest that P. munitum is adapted to tolerate drier conditions than what was observed during the growing season. © 2015 John Wiley & Sons Ltd.

  14. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments

    USGS Publications Warehouse

    Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.

    2005-01-01

    An important factor controlling catchment‐scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer‐dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment‐scale soil moisture capacity. Calibrations of this parameter indicated that infiltration‐excess runoff might be an important process, especially for the summer‐dominant rainfall catchments; most similar studies have shown that modeling of infiltration‐excess runoff is not required at the mean annual timescale.

  15. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    The South Indian tropical gyre receives and redistributes water masses from the Indonesian Throughflow (ITF), a source of Pacific Ocean water which represents the only low-latitude connector between the world oceans and, therefore, a key component in the global ocean circulation and climate system. We investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR), based on satellite altimeter data (AVISO) and global atlases of temperature and salinity (CARS09), wind stress (SCOW) and wind-driven circulation. Two novel large-scale features governing the upper geostrophic circulation of the South Indian tropical gyre are revealed. First, the seasonal shrinkage of the ocean gyre. This occurs when the South Equatorial Countercurrent (SECC) recirculates before arrival to Sumatra from winter to spring, in apparent synchronization with the annual cycle of the ITF. Second, the open-ocean upwelling is found to vary following seasonality of the overlying geostrophic ocean gyre, a relationship that has not been previously shown for this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. Broadly speaking, the seasonal shrinkage of the ocean gyre (and the SCTR) is the one feature that differs most when the geostrophic circulation is compared to the wind-driven Sverdrup circulation. From late autumn to spring, the eastward SECC recirculates early in

  16. Annual changes in seasonal river water temperatures in the eastern and western United States

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.; Whittier, Joanna B.; DeWeber, Jefferson T.; Paukert, Craig P.

    2017-01-01

    Changes in river water temperatures are anticipated to have direct effects on thermal habitat and fish population vital rates, and therefore, understanding temporal trends in water temperatures may be necessary for predicting changes in thermal habitat and how species might respond to such changes. However, many investigations into trends in water temperatures use regression methods that assume long-term monotonic changes in temperature, when in fact changes are likely to be nonmonotonic. Therefore, our objective was to highlight the need and provide an example of an analytical method to better quantify the short-term, nonmonotonic temporal changes in thermal habitat that are likely necessary to determine the effects of changing thermal conditions on fish populations and communities. To achieve this objective, this study uses Bayesian dynamic linear models (DLMs) to examine seasonal trends in river water temperatures from sites located in the eastern and western United States, regions that have dramatically different riverine habitats and fish communities. We estimated the annual rate of change in water temperature and found little evidence of seasonal changes in water temperatures in the eastern U.S. We found more evidence of warming for river sites located in the western U.S., particularly during the fall and winter seasons. Use of DLMs provided a more detailed view of temporal dynamics in river thermal habitat compared to more traditional methods by quantifying year-to-year changes and associated uncertainty, providing managers with the information needed to adapt decision making to short-term changes in habitat conditions that may be necessary for conserving aquatic resources in the face of a changing climate.

  17. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria

    USGS Publications Warehouse

    Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.

    2018-01-01

    Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.

  18. Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application

    NASA Astrophysics Data System (ADS)

    Chen, Jinduan; Boccelli, Dominic L.

    2018-02-01

    Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.

  19. Effects of saturation deficit on desiccation resistance and water balance in seasonal populations of the tropical drosophilid Zaprionus indianus.

    PubMed

    Kalra, Bhawna; Parkash, Ravi

    2016-10-15

    Seasonally varying populations of ectothermic insect taxa from a given locality are expected to cope with simultaneous changes in temperature and humidity through phenotypic plasticity. Accordingly, we investigated the effect of saturation deficit on resistance to desiccation in wild-caught flies from four seasons (spring, summer, rainy and autumn) and corresponding flies reared in the laboratory under season-specific simulated temperature and humidity growth conditions. Flies raised under summer conditions showed approximately three times higher desiccation resistance and increased levels of cuticular lipids compared with flies raised in rainy season conditions. In contrast, intermediate trends were observed for water balance-related traits in flies reared under spring or autumn conditions but trait values overlapped across these two seasons. Furthermore, a threefold difference in saturation deficit (an index of evaporative water loss due to a combined thermal and humidity effect) between summer (27.5 mB) and rainy (8.5 mB) seasons was associated with twofold differences in the rate of water loss. Higher dehydration stress due to a high saturation deficit in summer is compensated by storage of higher levels of energy metabolite (trehalose) and cuticular lipids, and these traits correlated positively with desiccation resistance. In Z. indianus, the observed changes in desiccation-related traits due to plastic effects of simulated growth conditions correspond to similar changes exhibited by seasonal wild-caught flies. Our results show that developmental plastic effects under ecologically relevant thermal and humidity conditions can explain seasonal adaptations for water balance-related traits in Z. indianus and are likely to be associated with its invasive potential. © 2016. Published by The Company of Biologists Ltd.

  20. Seasonal variation and potential sources of Cryptosporidium contamination in surface waters of Chao Phraya River and Bang Pu Nature Reserve pier, Thailand.

    PubMed

    Koompapong, Khuanchai; Sukthana, Yaowalark

    2012-07-01

    Using molecular techniques, a longitudinal study was conducted with the aims at identifying the seasonal difference of Cryptosporidium contamination in surface water as well as analyzing the potential sources based on species information. One hundred forty-four water samples were collected, 72 samples from the Chao Phraya River, Thailand, collected in the summer, rainy and cool seasons and 72 samples from sea water at Bang Pu Nature Reserve pier, collected before, during and after the presence of migratory seagulls. Total prevalence of Cryptosporidium contamination in river and sea water locations was 11% and 6%, respectively. The highest prevalence was observed at the end of rainy season continuing into the cool season in river water (29%) and in sea water (12%). During the rainy season, prevalence of Cryptosporidium was 4% in river and sea water samples, but none in summer season. All positive samples from the river was C. parvum, while C. meleagridis (1), and C. serpentis (1) were obtained from sea water. To the best of our knowledge, this is the first genetic study in Thailand of Cryptosporidium spp contamination in river and sea water locations and the first report of C. serpentis, suggesting that humans, household pets, farm animals, wildlife and migratory birds may be the potential sources of the parasites. The findings are of use for implementing preventive measures to reduce the transmission of cryptosporidiosis to both humans and animals.

  1. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system.

    PubMed

    Liang, Kaiming; Zhong, Xuhua; Huang, Nongrong; Lampayan, Rubenito M; Liu, Yanzhuo; Pan, Junfeng; Peng, Bilin; Hu, Xiangyu; Fu, Youqiang

    2017-12-31

    Nitrogen non-point pollution and greenhouse gas (GHG) emission are major challenges in rice production. This study examined options for both economic and environmental sustainability through optimizing water and N management. Field experiments were conducted to examine the crop yields, N use efficiency (NUE), greenhouse gas emissions, N losses under different N and water management. There were four treatments: zero N input with farmer's water management (N0), farmer's N and water management (FP), optimized N management with farmer's water management (OPT N ) and optimized N management with alternate wetting and drying irrigation (OPT N +AWD). Grain yields in OPT N and OPT N +AWD treatments increased by 13.0-17.3% compared with FP. Ammonia volatilization (AV) was the primary pathway for N loss for all treatments and accounted for over 50% of the total losses. N losses mainly occurred before mid-tillering. N losses through AV, leaching and surface runoff in OPT N were reduced by 18.9-51.6% compared with FP. OPT N +AWD further reduced N losses from surface runoff and leaching by 39.1% and 6.2% in early rice season, and by 46.7% and 23.5% in late rice season, respectively, compared with OPT N . The CH 4 emissions in OPT N +AWD were 20.4-45.4% lower than in OPT N and FP. Total global warming potential of CH 4 and N 2 O was the lowest in OPT N +AWD. On-farm comparison confirmed that N loss through runoff in OPT N +AWD was reduced by over 40% as compared with FP. OPT N and OPT N +AWD significantly increased grain yield by 6.7-13.9%. These results indicated that optimizing water and N management can be a simple and effective approach for enhancing yield with reduced environmental footprints. Copyright © 2017. Published by Elsevier B.V.

  2. The Water Vapor Source and Transport Characteristic of Rainy Seasons in Eastern China Base on Lagrangian Method

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Jiang, Z.; Liu, Z.; Li, L.

    2017-12-01

    The Hybrid Single-Particle Lagrangian Integrated Trajectory platform is employed in this studyto simulate trajectories of air parcels in the different rainy seasons in East China from 1961 to 2010,with the purpose of investigating general and specific characteristics of moisture sources and the eventual relationship withprecipitation in each rainy season.The moisture transport andsource-sink characteristics of different rainy seasons have evident differences. The results show that the frontal pre-rainy season is mainly influenced bywinter monsoon system, and the precipitation is strongly affected by water vapor from Pacific Ocean (PO) and East China (EC). Afterthe onset of South China Sea Summer Monsoon (SCSMS), the moisture from Pacific Ocean decreases and from Indian Ocean monsoon area increases. Afterwards, with the northward of the rain belt, the parcels from Southwest region (South China Sea (SCS), Indian Ocean (IO) andIndo-China Peninsula and Indian Peninsula(IP)) decrease and from North region (EC, Eurasia (EA) and PO) increase. Besides, most of the land areas are water vapor sink region and most of sea areas are water vapor source region. Before the onset of SCSMS, EC and PO are two main water vapor source areas.After the onset of SCSMS, the source from PO decreasesand Indian monsoon area becomes the main vapor source region. IP is the main water vapor sink area for all four rainy seasons.As for moisture circulation characteristics, the results of vertical structure of water vapor transport indicate that the maximum water vapor transport in west and east boundaries is located in mid-troposphere and in south and north boundaries is at low-troposphere. The spatiotemporal analysis of moisture trajectory based onmultivariate empirical orthogonal function (MVEOF) indicates that the first mode has close relationship with the precipitation in North China and PDO pattern; the second mode is closely related with the precipitation in Yangtze-Huaihe river basin and

  3. The use of seasonal forecasts in a crop failure early warning system for West Africa

    NASA Astrophysics Data System (ADS)

    Nicklin, K. J.; Challinor, A.; Tompkins, A.

    2011-12-01

    Seasonal rainfall in semi-arid West Africa is highly variable. Farming systems in the region are heavily dependent on the monsoon rains leading to large variability in crop yields and a population that is vulnerable to drought. The existing crop yield forecasting system uses observed weather to calculate a water satisfaction index, which is then related to expected crop yield (Traore et al, 2006). Seasonal climate forecasts may be able to increase the lead-time of yield forecasts and reduce the humanitarian impact of drought. This study assesses the potential for a crop failure early warning system, which uses dynamic seasonal forecasts and a process-based crop model. Two sets of simulations are presented. In the first, the crop model is driven with observed weather as a control run. Observed rainfall is provided by the GPCP 1DD data set, whilst observed temperature and solar radiation data are given by the ERA-Interim reanalysis. The crop model used is the groundnut version of the General Large Area Model for annual crops (GLAM), which has been designed to operate on the grids used by seasonal weather forecasts (Challinor et al, 2004). GLAM is modified for use in West Africa by allowing multiple planting dates each season, replanting failed crops and producing parameter sets for Spanish- and Virginia- type West African groundnut. Crop yields are simulated for three different assumptions concerning the distribution and relative abundance of Spanish- and Virginia- type groundnut. Model performance varies with location, but overall shows positive skill in reproducing observed crop failure. The results for the three assumptions are similar, suggesting that the performance of the system is limited by something other than information on the type of groundnut grown. In the second set of simulations the crop model is driven with observed weather up to the forecast date, followed by ECMWF system 3 seasonal forecasts until harvest. The variation of skill with forecast date

  4. Influence of bird feces to water quality in paddy fields during winter season

    NASA Astrophysics Data System (ADS)

    Somura, H.; Takeda, I.; Masunaga, T.; Mori, Y.; Ide, J.

    2009-12-01

    Thousands of migratory birds such as tundra swan came to the paddy fields for overwintering in recent years in the study area. They stayed in paddy fields during night time for sleeping and used around the fields as a feeding ground during day time. During the birds stay, it was observed that water pooled in the paddy fields gradually turned green and gave off a bad smell. In this study, we tried to estimate the influence of the bird’s feces to water quality in the paddy fields. The study area is in the southeastern portion of Matsue City in Shimane Prefecture, Japan. In several paddy fields, puddling procedure was executed after harvesting rice and then water was stored in the paddy fields during winter season. This is because of being easier of farming activities such as weeding next season and of avoiding using pesticide for weeding with rising of environmental awareness. Water in the paddy fields was collected once or twice a month from the target fields and analyzed nitrogen, phosphorus, and organic carbon in 2007. In the study in 2006, as water was sampled once a week and the changes in the water quality had been grasped, we paid attention to behavior of the birds in a day in the field investigation in 2007. The number of the birds was counted once an hour from visible 7 am to 6 pm once a month. In addition to this, fresh feces were sampled from the fields and analyzed the contents of nitrogen, phosphorus, and organic carbon in the feces. As results, average water qualities of TN, TP, and TOC from November 2007 to March 2008 showed very high concentrations compared with a river water concentration used as irrigation water. More than 70% of TN in the water was ammonia nitrogen. Moreover, comparing with a standard fertilizer amount of nitrogen and phosphorus for paddy fields during irrigation period, it was estimated that the amount of nitrogen excreted by the bird’s feces during the winter season was equivalent to the standard fertilizer amount and the

  5. Seasonal patterns of bole water content in old growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)

    EPA Science Inventory

    Large, old conifer trees in the Pacific Northwest (PNW), USA purportedly ameliorate the effects of seasonal summer drought by drawing down the water content of bole tissues over the summer months and refilling during the winter. Continuous monitoring of bole relative water conten...

  6. Using multi-objective robust decision making to support seasonal water management in the Chao Phraya River basin, Thailand

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Jessen, Oluf; Madsen, Henrik

    2016-04-01

    A multi-objective robust decision making approach is demonstrated that supports seasonal water management in the Chao Phraya River basin in Thailand. The approach uses multi-objective optimization to identify a Pareto-optimal set of management alternatives. Ensemble simulation is used to evaluate how each member of the Pareto set performs under a range of uncertain future conditions, and a robustness criterion is used to select a preferred alternative. Data mining tools are then used to identify ranges of uncertain factor values that lead to unacceptable performance for the preferred alternative. The approach is compared to a multi-criteria scenario analysis approach to estimate whether the introduction of additional complexity has the potential to improve decision making. Dry season irrigation in Thailand is managed through non-binding recommendations about the maximum extent of rice cultivation along with incentives for less water-intensive crops. Management authorities lack authority to prevent river withdrawals for irrigation when rice cultivation exceeds recommendations. In practice, this means that water must be provided to irrigate the actual planted area because of downstream municipal water supply requirements and water quality constraints. This results in dry season reservoir withdrawals that exceed planned withdrawals, reducing carryover storage to hedge against insufficient wet season runoff. The dry season planning problem in Thailand can therefore be framed in terms of decisions, objectives, constraints, and uncertainties. Decisions include recommendations about the maximum extent of rice cultivation and incentives for growing less water-intensive crops. Objectives are to maximize benefits to farmers, minimize the risk of inadequate carryover storage, and minimize incentives. Constraints include downstream municipal demands and water quality requirements. Uncertainties include the actual extent of rice cultivation, dry season precipitation, and

  7. Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea.

    PubMed

    Morales, Melanie; Garcia, Queila S; Munné-Bosch, Sergi

    2015-03-01

    The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.

    PubMed

    Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees.

    PubMed

    Muñoz-Villers, Lyssette E; Holwerda, Friso; Alvarado-Barrientos, M Susana; Geissert, Daniel R; Dawson, Todd E

    2018-06-25

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF ecohydrology remain poorly understood. To investigate functional responses of TMCF trees to reduced water availability, we conducted a study during the 2014 dry season in the lower altitudinal limit of TMCF in central Veracruz, Mexico. Temporal variations of transpiration, depth of water uptake and tree water sources were examined for three dominant, brevi-deciduous species using micrometeorological, sap flow and soil moisture measurements, in combination with oxygen and hydrogen stable isotope composition of rainfall, tree xylem, soil and stream water. Over the course of the dry season, reductions in crown conductance and transpiration were observed in canopy species (43 and 34%, respectively) and mid-story trees (23 and 8%), as atmospheric demand increased and soil moisture decreased. Canopy species consistently showed more depleted isotope values compared to mid-story trees. However, MixSIAR Bayesian model results showed that the evaporated (enriched) soil water pool was the main source for trees despite reduced soil moisture. Additionally, while increases in tree water uptake from deeper to shallower soil water sources occurred, concomitant decreases in transpiration were observed as the dry season progressed. A larger reduction in deep soil water use was observed for canopy species (from 79 ± 19 to 24 ± 20%) compared to mid-story trees (from 12 ± 17 to 10 ± 12%). The increase in shallower soil water sources may reflect a trade-off between water and nutrient requirements in this forest.

  10. Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey.

    PubMed

    Karadeniz, Hatice; Yenisoy-Karakaş, Serpil

    2015-03-01

    In this study, a total of 75 water samples (38 groundwater and 37 surface water samples) and 54 surface soil samples were collected from the five districts of Bolu, which is located in the Western Black Sea Region of Turkey in the summer season of 2009. In the autumn season, 17 water samples (surface water and groundwater samples) and 17 soil samples were collected within the city center to observe the seasonal changes of organochlorine pesticides (OCPs). Groundwater and surface water samples were extracted using solid phase extraction. Soil samples were extracted ultrasonically. Sixteen OCP compounds in the standard solution were detected by a gas chromatography-electron capture detector (GC-ECD). Therefore, the method validation was performed for those 16 OCP compounds. However, 13 OCP compounds could be observed in the samples. The concentrations of most OCPs were higher in samples collected in the summer than those in the autumn. The most frequently observed pesticides were endosulfan sulfate and 4,4'-dichlorodiphenyltrichloroethane (DDT) in groundwater samples, α-HCH in surface water samples, and endosulfan sulfate in soil samples. The average concentration of endosulfan sulfate was the highest in water and soil samples. Compared to the literature values, the average concentrations in this study were lower values. Spatial distribution of OCPs was evaluated with the aid of contour maps for the five districts of Bolu. Generally, agricultural processes affected the water and soil quality in the region. However, non-agricultural areas were also affected by pesticides. The concentrations of pesticides were below the legal limits of European directives for each pesticide.

  11. Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, Mohammed K.; Turner, D. D.; Heus, T.

    Here, this study explores water vapor turbulence in the convective boundary layer (CBL) using the Raman lidar observations from the Atmospheric Radiation Measurement site located at Darwin, Australia. An autocovariance technique was used to separate out the random instrument error from the atmospheric variability during time periods when the CBL is cloud–free, quasi–stationary, and well mixed. We identified 45 cases, comprising of 8 wet and 37 dry seasons events, over the 5–year data record period. The dry season in Darwin is known by warm and dry sunny days, while the wet season is characterized by high humidity and monsoonal rains.more » The inherent variability of the latter resulted in a more limited number of cases during the wet season. Profiles of the integral scale, variance, coefficient of the structure function, and skewness were analyzed and compared with similar observations from the Raman lidar at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The wet season shows larger median variance profiles than the dry season, while the median profile of the variance from the dry season and the SGP site are found to be more comparable particularly between 0.4 and 0.75 z i. The variance and coefficient of the structure function show qualitatively the same vertical pattern. Furthermore, deeper CBL, larger gradient of water vapor mixing ratio at z i, and the strong correlation with the water vapor variance at z i are seen during the dry season. The median value in the skewness is mostly positive below 0.6 z i unlike the SGP site.« less

  12. Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin

    DOE PAGES

    Osman, Mohammed K.; Turner, D. D.; Heus, T.; ...

    2018-04-23

    Here, this study explores water vapor turbulence in the convective boundary layer (CBL) using the Raman lidar observations from the Atmospheric Radiation Measurement site located at Darwin, Australia. An autocovariance technique was used to separate out the random instrument error from the atmospheric variability during time periods when the CBL is cloud–free, quasi–stationary, and well mixed. We identified 45 cases, comprising of 8 wet and 37 dry seasons events, over the 5–year data record period. The dry season in Darwin is known by warm and dry sunny days, while the wet season is characterized by high humidity and monsoonal rains.more » The inherent variability of the latter resulted in a more limited number of cases during the wet season. Profiles of the integral scale, variance, coefficient of the structure function, and skewness were analyzed and compared with similar observations from the Raman lidar at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The wet season shows larger median variance profiles than the dry season, while the median profile of the variance from the dry season and the SGP site are found to be more comparable particularly between 0.4 and 0.75 z i. The variance and coefficient of the structure function show qualitatively the same vertical pattern. Furthermore, deeper CBL, larger gradient of water vapor mixing ratio at z i, and the strong correlation with the water vapor variance at z i are seen during the dry season. The median value in the skewness is mostly positive below 0.6 z i unlike the SGP site.« less

  13. Seasonal ammonia losses from spray-irrigation with secondary-treated recycled water.

    PubMed

    Saez, Jose A; Harmon, Thomas C; Doshi, Sarika; Guerrero, Francisco

    2012-01-01

    This work examines ammonia volatilization associated with agricultural irrigation employing recycled water. Effluent from a secondary wastewater treatment plant was applied using a center pivot irrigation system on a 12 ha agricultural site in Palmdale, California. Irrigation water was captured in shallow pans and ammonia concentrations were quantified in four seasonal events. The average ammonia loss ranged from 15 to 35% (averaging 22%) over 2-h periods. Temporal mass losses were well-fit using a first-order model. The resulting rate constants correlated primarily with temperature and secondarily with wind speed. The observed application rates and timing were projected over an entire irrigation season using meteorological time series data from the site, which yielded volatilization estimates of 0.03 to 0.09 metric tons NH(3)-N/ha per year. These rates are consistent with average rates (0.04 to 0.08 MT NH(3)-N/ha per year) based on 10 to 20 mg NH(3)-N/L effluent concentrations and a 22% average removal. As less than 10% of the treated effluent in California is currently reused, there is potential for this source to increase, but the increase may be offset by a corresponding reduction in synthetic fertilizers usage. This point is a factor for consideration with respect to nutrient management using recycled water.

  14. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Treesearch

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  15. Changing Seasons

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    In some ways, there is a season of change at the national level in early childhood. Some things are wrapping up while some developments aim to prepare the "field" for improvements in the next year and beyond, just as a garden plot is readied for the next planting season. Change is in the air, and there's hope of renewal, but what changes and how…

  16. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    PubMed

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  17. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  18. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    PubMed

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  19. Rapid changes in the seasonal sea level cycle along the US Gulf coast in the early 21st century

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Calafat, F. M.; Luther, M. E.

    2013-12-01

    The seasonal cycle is an energetic component in the sea level spectrum and dominates the intra-annual sea level variability outside the semidiurnal and diurnal tidal bands in most regions. Changes in the annual or semi-annual amplitudes or phase lags have an immediate impact on marine coastal systems. Increases in the amplitudes or phase shifts towards the storm surge season may for instance exacerbate the risk of coastal flooding and/or beach erosion, and the ecological health of estuarine systems is also coupled to the seasonal sea level cycle. Here, we investigate the temporal variability of the seasonal harmonics along the US Gulf of Mexico (GOM) coastline using records from 13 tide gauges providing at least 30 years of data in total and at least 15 years for the period after 1990. The longest records go back to the early 20th century. Running Fourier analysis (with a window length of 5-years) is used to extract the seasonal harmonics from the observations. The resulting time series show a considerable decadal variability and no longer-term changes are found in the phase lags and the semi-annual amplitude. The amplitude of the dominating annual cycle in contrast shows a tendency towards higher values since the turn of the century at tide gauges in the eastern part of the GOM. This increase of up to more than 25% is found to be significant at the 90% confidence level for most tide gauges along the coastline of West Florida and at the 75% confidence level for virtually all stations in the eastern GOM (from Key West to Dauphin Island). Monthly mean sea level sub-series show that the changes are partly due to smaller values in the cold season but mostly a result of higher values in the warm season, i.e. sea levels tend to be higher during the hurricane season. We use information on the steric sea level component, sea surface and air temperature, wind forcing, precipitation, and sea level pressure to explain the mechanisms driving the decadal variability in the

  20. Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China.

    PubMed

    Hu, Chunhua; Froehlich, Klaus; Zhou, Peng; Lou, Qian; Zeng, Simiao; Zhou, Wenbin

    2013-06-01

    Based on the monthly δ(18)O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ(18)O in precipitation (δ(18)OPPT) and runoff (δ(18)OSUR) are discussed. The δ(18)OPPT and δ(18)OSUR values range from-2.75 to-14.12 ‰ (annual mean value=-7.13 ‰ ) and from-2.30 to-8.56 ‰, respectively. The seasonal variation of δ(18)OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ(18)OSUR in runoff of the rivers and δ(18)OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.

  1. Dissolved nitrogen seasonal dynamics in Alaskan Arctic streams & rivers

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.; Douglas, T. A.; Jacobson, A. D.; Barker, A. J.; Lehn, G. O.

    2011-12-01

    Over the coming century, continued warming in the Arctic is expected to bring about many changes to the region including altered precipitation regimes, earlier snowmelt, and degradation of permafrost. These alterations are likely to modify the hydrology within the region, including changes in the quantity, seasonality, and flow paths of water; all of which may impact biogeochemical processes within Arctic catchments. The anticipated responses to warming in the Arctic are likely to become most apparent during the spring snowmelt period, and in the late summer to early fall when the seasonally-thawed active layer reaches its maximum depth. While our knowledge of the seasonal dynamics of water-borne constituents in Arctic rivers is improving, the spring snowmelt and the late summer/early fall are times of the year that Arctic rivers have historically been under sampled. An improved understanding of the mechanisms that control the seasonal variability of water chemistry may help us to better understand how these systems will respond to further warming. Between May and October of 2009 and 2010 we collected surface water samples from six different rivers/streams in the Alaskan Arctic, with particular emphasis placed on sampling during the spring snowmelt and during the late summer until fall freeze-up. These rivers were selected because they represent end-member physical characteristics ranging from high gradient rivers draining predominantly bedrock to low gradient rivers draining predominantly tundra. The catchments of all six rivers are underlain by continuous permafrost and range in size from 1.6 km2 to 610 km2. Samples were analyzed for total dissolved nitrogen (TDN), nitrate (NO3-), and ammonium (NH4+). Dissolved organic nitrogen (DON) was calculated as [TDN] - [NO3-] - [NH4+]. TDN concentrations exhibited maxima in the spring and fall, but the prevailing forms of nitrogen differed markedly between the early and late periods. There were also marked differences

  2. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    PubMed Central

    Brewin, Robert J. W.; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  3. Remote sensing the phytoplankton seasonal succession of the Red Sea.

    PubMed

    Raitsos, Dionysios E; Pradhan, Yaswant; Brewin, Robert J W; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  4. Fish mercury concentration in the Alto Pantanal, Brazil: influence of season and water parameters.

    PubMed

    Hylander, L D; Pinto, F N; Guimarães, J R; Meili, M; Oliveira, L J; de Castro e Silva, E

    2000-10-16

    The tropical flood plain Pantanal is one of the world's largest wetlands and a wildlife sanctuary. Mercury (Hg) emissions from some upstream gold mining areas and recent findings of high natural Hg levels in tropical oxisols motivated studies on the Hg cycle in the Pantanal. A survey was made on total Hg in the most consumed piscivorous fish species from rivers and floodplain lakes in the north (Cáceres and Barão de Melgaço) and in the south part of Alto Pantanal (around the confluence of the Cuiabá and Paraguai rivers). Samples were collected in both the rainy and dry seasons (March and August 1998) and included piranha (Serrasalmus spp.), and catfish (Pseudoplatystoma coruscans, pintado, and Pseudoplatystoma fasciatum, cachara or surubim). There was only a small spatial variation in Hg concentration of the 185 analyzed fish samples from the 200 x 200 km large investigation area, and 90% contained total Hg concentration below the safety limit for regular fish consumption (500 ng g(-1)). Concentration above this limit was found in both Pseudoplatystoma and Serrasalmus samples from the Baia Siá Mariana, the only acid soft-water lake included in this study, during both the rainy and dry seasons. Concentration above this limit was also found in fish outside Baia Siá Mariana during the dry season, especially in Rio Cuiabá in the region of Barão de Melgaço. The seasonal effect may be connected with decreasing water volumes and changing habitat during the dry season. The results indicate that fertile women should restrict their consumption of piscivorous fishes from the Rio Cuiabá basin during the dry season. Measures should be implanted to avoid a further deterioration of fish Hg levels.

  5. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-05-01

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  6. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons.

    PubMed

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-05-05

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  7. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons

    PubMed Central

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-01-01

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment. PMID:27147104

  8. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    USGS Publications Warehouse

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  9. Flow Pathways of Snow and Ground Ice Melt Water During Initial Seasonal Thawing of the Active Layer on Continuous Permafrost

    NASA Astrophysics Data System (ADS)

    Sjoberg, Y.; Johansson, E.; Rydberg, J.

    2017-12-01

    In most arctic environments, the snowmelt is the main hydrologic event of the year as a large fraction of annual precipitation rapidly moves through the catchment. Flow can occur on top of the frozen ground surface or through the developing active layer, and flow pathways are critical determinants for biogeochemical transport. We study the linkages between micro topography, active layer thaw, and water partitioning on a hillslope in Greenland during late snowmelt season to explore how seasonal subsurface flow pathways develop. During snowmelt, a parallel surface drainage pattern appears across the slope, consisting of small streams, and water also collects in puddles across the slope. Thaw rates in the active layer were significantly higher (T-test p<0.01) on wet parts of the slope (0.8 cm/day), compared to drier parts of the slope (0.6 cm/day). Analyses of stable water isotopic composition show that snow had the lightest isotopic signatures, but with a large spread of values, while seasonally frozen ground and standing surface water (puddles) were heavier. The stream water became heavier over the two-week sampling period, suggesting an increasing fraction of melted soil water input over time. In contrast, standing surface water (puddles) isotopic composition did not change over time. In boreal catchments, seasonal frost has previously been found to not significantly influence flow pathways during most snowmelt events, and pre-event groundwater make out most of the stream water during snowmelt. Our results from a continuous permafrost environment show that both surface (overland) and subsurface flow pathways in the active layer are active, and that a large fraction of the water moving on the hillslope comes from melted ground ice rather than snow in the late snowmelt season. This suggests a possibility that flow pathways during snowmelt could shift to deeper subsurface flow following degradation of continuous permafrost.

  10. Seasonality of water quality and diarrheal disease counts in urban and rural settings in south India

    NASA Astrophysics Data System (ADS)

    Kulinkina, Alexandra V.; Mohan, Venkat R.; Francis, Mark R.; Kattula, Deepthi; Sarkar, Rajiv; Plummer, Jeanine D.; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N.

    2016-02-01

    The study examined relationships among meteorological parameters, water quality and diarrheal disease counts in two urban and three rural sites in Tamil Nadu, India. Disease surveillance was conducted between August 2010 and March 2012; concurrently water samples from street-level taps in piped distribution systems and from household storage containers were tested for pH, nitrate, total dissolved solids, and total and fecal coliforms. Methodological advances in data collection (concurrent prospective disease surveillance and environmental monitoring) and analysis (preserving temporality within the data through time series analysis) were used to quantify independent effects of meteorological conditions and water quality on diarrheal risk. The utility of a local calendar in communicating seasonality is also presented. Piped distribution systems in the study area showed high seasonal fluctuations in water quality. Higher ambient temperature decreased and higher rainfall increased diarrheal risk with temperature being the predominant factor in urban and rainfall in rural sites. Associations with microbial contamination were inconsistent; however, disease risk in the urban sites increased with higher median household total coliform concentrations. Understanding seasonal patterns in health outcomes and their temporal links to environmental exposures may lead to improvements in prospective environmental and disease surveillance tailored to addressing public health problems.

  11. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  12. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China.

    PubMed

    Zhou, Mo; Zhang, Jiquan; Sun, Caiyun

    2017-09-27

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin.

  13. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China

    PubMed Central

    Zhou, Mo; Sun, Caiyun

    2017-01-01

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin. PMID:28953252

  14. Analysing the origin of rain- and subsurface water in seasonal wetlands of north-central Namibia

    NASA Astrophysics Data System (ADS)

    Hiyama, Tetsuya; Kanamori, Hironari; Kambatuku, Jack R.; Kotani, Ayumi; Asai, Kazuyoshi; Mizuochi, Hiroki; Fujioka, Yuichiro; Iijima, Morio

    2017-03-01

    We investigated the origins of rain- and subsurface waters of north-central Namibia’s seasonal wetlands, which are critical to the region’s water and food security. The region includes the southern part of the Cuvelai system seasonal wetlands (CSSWs) of the Cuvelai Basin, a transboundary river basin covering southern Angola and northern Namibia. We analysed stable water isotopes (SWIs) of hydrogen (HDO) and oxygen (H2 18O) in rainwater, surface water and shallow groundwater. Rainwater samples were collected during every rainfall event of the rainy season from October 2013 to April 2014. The isotopic ratios of HDO (δD) and oxygen H2 18O (δ 18O) were analysed in each rainwater sample and then used to derive the annual mean value of (δD, δ 18O) in precipitation weighted by each rainfall volume. Using delta diagrams (plotting δD vs. δ 18O), we showed that the annual mean value was a good indicator for determining the origins of subsurface waters in the CSSWs. To confirm the origins of rainwater and to explain the variations in isotopic ratios, we conducted atmospheric water budget analysis using Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) data and ERA-Interim atmospheric reanalysis data. The results showed that around three-fourths of rainwater was derived from recycled water at local-regional scales. Satellite-observed outgoing longwave radiation (OLR) and complementary satellite data from MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer (AMSR) series implied that the isotopic ratios in rainwater were affected by evaporation of raindrops falling from convective clouds. Consequently, integrated SWI analysis of rain-, surface and subsurface waters, together with the atmospheric water budget analysis, revealed that shallow groundwater of small wetlands in this region was very likely to be recharged from surface waters originating from local rainfall, which was

  15. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    PubMed

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Towards seasonal Arctic shipping route predictions

    NASA Astrophysics Data System (ADS)

    Haines, K.; Melia, N.; Hawkins, E.; Day, J. J.

    2017-12-01

    In our previous work [1] we showed how trans-Arctic shipping routes would become more available through the 21st century as sea ice declines, using CMIP5 models with means and stds calibrated to PIOMAS sea ice observations. Sea ice will continue to close shipping routes to open water vessels through the winter months for the foreseeable future so the availability of open sea routes will vary greatly from year to year. Here [2] we look at whether the trans-Arctic shipping season period can be predicted in seasonal forecasts, again using several climate models, and testing both perfect and imperfect knowledge of the initial sea ice conditions. We find skilful predictions of the upcoming summer shipping season can be made from as early as January, although typically forecasts may show lower skill before a May `predictability barrier'. Focussing on the northern sea route (NSR) off Siberia, the date of opening of this sea route is twice as variable as the closing date, and this carries through to reduced predictability at the start of the season. Under climate change the later freeze-up date accounts for 60% of the lengthening season, Fig1 We find that predictive skill is state dependent with predictions for high or low ice years exhibiting greater skill than for average ice years. Forecasting the exact timing of route open periods is harder (more weather dependent) under average ice conditions while in high and low ice years the season is more controlled by the initial ice conditions from spring onwards. This could be very useful information for companies planning vessel routing for the coming season. We tested this dependence on the initial ice conditions by changing the initial ice state towards climatologically average conditions and show directly that early summer sea-ice thickness information is crucial to obtain skilful forecasts of the coming shipping season. Mechanisms for this are discussed. This strongly suggests that good sea ice thickness observations

  17. Seasonal forecasting for water resource management: the example of CNR Genissiat dam on the Rhone River in France

    NASA Astrophysics Data System (ADS)

    Dommanget, Etienne; Bellier, Joseph; Ben Daoud, Aurélien; Graff, Benjamin

    2014-05-01

    Compagnie Nationale du Rhône (CNR) has been granted the concession to operate the Rhone River from the Swiss border to the Mediterranean Sea since 1933 and carries out three interdependent missions: navigation, irrigation and hydropower production. Nowadays, CNR generates one quarter of France's hydropower electricity. The convergence of public and private interests around optimizing the management of water resources throughout the French Rhone valley led CNR to develop hydrological models dedicated to discharge seasonal forecasting. Indeed, seasonal forecasting is a major issue for CNR and water resource management, in order to optimize long-term investments of the produced electricity, plan dam maintenance operations and anticipate low water period. Seasonal forecasting models have been developed on the Genissiat dam. With an installed capacity of 420MW, Genissiat dam is the first of the 19 CNR's hydropower plants. Discharge forecasting at Genissiat dam is strategic since its inflows contributes to 20% of the total Rhone average discharge and consequently to 40% of the total Rhone hydropower production. Forecasts are based on hydrological statistical models. Discharge on the main Rhone River tributaries upstream Genissiat dam are forecasted from 1 to 6 months ahead thanks to multiple linear regressions. Inputs data of these regressions are identified depending on river hydrological regimes and periods of the year. For the melting season, from spring to summer, snow water equivalent (SWE) data are of major importance. SWE data are calculated from Crocus model (Météo France) and SLF's model (Switzerland). CNR hydro-meteorological forecasters assessed meteorological trends regarding precipitations for the next coming months. These trends are used to generate stochastically precipitation scenarios in order to complement regression data set. This probabilistic approach build a decision-making supports for CNR's water resource management team and provides them with

  18. Seasonal variability of the parameters of the Ball-Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions.

    PubMed

    Miner, Grace L; Bauerle, William L

    2017-09-01

    The Ball-Berry (BB) model of stomatal conductance (g s ) is frequently coupled with a model of assimilation to estimate water and carbon exchanges in plant canopies. The empirical slope (m) and 'residual' g s (g 0 ) parameters of the BB model influence transpiration estimates, but the time-intensive nature of measurement limits species-specific data on seasonal and stress responses. We measured m and g 0 seasonally and under different water availability for maize and sunflower. The statistical method used to estimate parameters impacted values nominally when inter-plant variability was low, but had substantial impact with larger inter-plant variability. Values for maize (m = 4.53 ± 0.65; g 0  = 0.017 ± 0.016 mol m -2 s -1 ) were 40% higher than other published values. In maize, we found no seasonal changes in m or g 0 , supporting the use of constant seasonal values, but water stress reduced both parameters. In sunflower, inter-plant variability of m and g 0 was large (m = 8.84 ± 3.77; g 0  = 0.354 ± 0.226 mol m -2 s -1 ), presenting a challenge to clear interpretation of seasonal and water stress responses - m values were stable seasonally, even as g 0 values trended downward, and m values trended downward with water stress while g 0 values declined substantially. © 2017 John Wiley & Sons Ltd.

  19. 75 FR 53226 - Migratory Bird Hunting; Early Seasons and Bag and Possession Limits for Certain Migratory Game...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Limits for Certain Migratory Game Birds in the Contiguous United States, Alaska, Hawaii, Puerto Rico, and...; sandhill cranes; sea ducks; early (September) waterfowl seasons; migratory game birds in Alaska, Hawaii... regulations for hunting migratory game birds under Sec. Sec. 20.101 through 20.107, 20.109, and 20.110 of...

  20. Seasonal radon measurements in Darbandikhan Lake water resources at Kurdistan region-northeastern of Iraq

    NASA Astrophysics Data System (ADS)

    Jafir, Adeeb Omer; Ahmad, Ali Hassan; Saridan, Wan Muhamad

    2016-03-01

    A total of 164 water samples were collected from Darbandikhan Lake with their different resources (spring, stream, and lake) during the four seasons, and the measurements were carried out using the electronic RAD 7 detector. For spring water the average radon concentration for spring, summer, autumn and summer were found to be 8.21 Bq/1, 8.94 Bq/1, 7.422 Bq/1, and 8.06 Bq/1, respectively, while for lake and streams the average values were found to be 0.43 Bq/1, 0.877 Bq/1, 0.727 Bq/1, 0.575 Bq/1 respectively. The radon concentration level was higher in summer and lower in spring, and only two samples from spring water have radon concentrations more than 11.1 Bq/1 recommended by the EPA. Total annual effective dose due to ingestion and inhalation has been estimated, the mean annual effective dose during the whole year for spring water was 0.022 mSv/y while for lake with streams was 0.00157 mSv/y. The determined mean annual effective dose in water was lower than the 0.1 mSv/y recommended by WHO. Some physicochemical parameters were measured and no correlation was found between them and radon concentration except for the conductivity of the spring drinking water which reveals a strong correlation for the four seasons.

  1. Drought Risk Identification: Early Warning System of Seasonal Agrometeorological Drought

    NASA Astrophysics Data System (ADS)

    Dalecios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2014-05-01

    By considering drought as a hazard, drought types are classified into three categories, namely meteorological or climatological, agrometeorological or agricultural and hydrological drought and as a fourth class the socioeconomic impacts can be considered. This paper addresses agrometeorological drought affecting agriculture within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with the quantification and monitoring of agrometeorological drought, which constitute part of risk identification. For the quantitative assessment of agrometeorological or agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the Vegetation Health Index (VHI). The computation of VHI is based on satellite data of temperature and the Normalized Difference Vegetation Index (NDVI). The spatiotemporal features of drought, which are extracted from VHI are: areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981-2001) time series of NOAA/AVHRR satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural region of Greece characterized by vulnerable and drought-prone agriculture. The results show that every year there is a seasonal agrometeorological drought with a gradual increase in the areal extent and severity with peaks appearing usually during the summer. Drought monitoring is conducted by monthly remotely sensed VHI images. Drought early warning is developed using empirical relationships of severity and areal extent. In particular, two second-order polynomials are fitted, one for low and the other for high severity drought, respectively. The two fitted curves offer a seasonal

  2. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary

  3. Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall

    NASA Astrophysics Data System (ADS)

    Questel, Jennifer M.; Clarke, Cheryl; Hopcroft, Russell R.

    2013-09-01

    We analyzed the seasonal and interannual variability of the planktonic communities in a densely sampled region of the northeastern Chukchi Sea as part of a multidisciplinary ecosystem study from 2008 to 2010. Observations of chlorophyll-a, inorganic macronutrients, and zooplankton (using both 150-μm and 505-μm mesh nets) were made within two 900-NM 2 grids (Klondike and Burger) at high spatial resolution three times each in 2008 and 2009, with a third grid (Statoil) sampled twice in 2010. Sea-ice conditions prior to sampling varied notably during the study: seasonal sea ice retreat was earlier and sea-surface temperatures (SSTs) were warmer in 2009 than in 2008, whereas SSTs for 2010 were intermediate between the 2008 and 2009 values. Eighty taxonomic categories of zooplankton, including 11 meroplanktonic categories, were recorded, with the greatest diversity found within the copepods (25 species), followed by the cnidarians (11 species). All species are typical for the region and most are seeded from the Bering Sea. A seasonal progression of the community structure was apparent over each survey area and was likely influenced by temperature. Cold oceanographic conditions in 2008 likely slowed growth and development of the zooplankton, such that holozooplankton abundance averaged 2389 and 106 individuals m-3 and biomass averaged 10.5 and 8.3 mg DW m-3 in the 150- and 505-μm nets, respectively. An early phytoplankton bloom in 2009 apparently supported a zooplankton community of greater abundance, but moderate biomass, averaging 6842 and 189 individuals m-3, and 16.3 and 7.0 mg DW m-3 in the 150- and 505-μm nets, respectively. Highest zooplankton abundance and biomass values among the three years occurred in 2010: 7396 and 198 individuals m-3 and 102.9 and 33.5 mg DW m-3 in the 150- and 505-μm nets, respectively. Holozooplankton biomass changes were driven by increases in large-bodied, lipid-rich copepods. The contribution of meroplankton was substantial in this

  4. Prevalence of atopic dermatitis in infants by domestic water hardness and season of birth: Cohort study.

    PubMed

    Engebretsen, Kristiane A; Bager, Peter; Wohlfahrt, Jan; Skov, Lone; Zachariae, Claus; Nybo Andersen, Anne-Marie; Melbye, Mads; Thyssen, Jacob P

    2017-05-01

    Atopic dermatitis (AD) appears to be more common in regions with hard domestic water and in children with a fall/winter birth. However, it is unknown whether a synergistic effect exists. We sought to evaluate the association between domestic water hardness and season of birth, respectively, with onset of AD within the first 18 months of life in a large Danish birth cohort. Of children from the Danish National Birth Cohort, 52,950 were included. History of physician-diagnosed AD and population characteristics were obtained from interviews. Birth data were obtained from the Civil Registration System, and domestic water hardness data were obtained from the Geological Survey of Denmark and Greenland. The relative prevalence (RP) of AD was calculated by using log-linear binomial regression. The prevalence of AD was 15.0% (7,942/52,950). The RP of AD was 5% (RP trend , 1.05; 95% CI, 1.03-1.07) higher for each 5° increase in domestic water hardness (range, 6.60-35.90 German degrees of hardness [118-641 mg/L]). Although the RP of AD was higher in children with a fall (RP, 1.24; 95% CI, 1.17-1.31) or winter (RP, 1.18; 95% CI, 1.11-1.25) birth, no significant interaction was observed with domestic water hardness. The population attributable risk of hard domestic water on AD was 2%. We observed that early exposure to hard domestic water and a fall/winter birth was associated with an increase in the relative prevalence of AD within the first 18 months of life. Although the 2 exposures did not interact synergistically, a dose-response relationship was observed between domestic water hardness and AD. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. A water marker monitored by satellites to predict seasonal endemic cholera.

    PubMed

    Jutla, Antarpreet; Akanda, Ali Shafqat; Huq, Anwar; Faruque, Abu Syed Golam; Colwell, Rita; Islam, Shafiqul

    2013-01-01

    The ability to predict an occurrence of cholera, a water-related disease, offers a significant public health advantage. Satellite based estimates of chlorophyll, a surrogate for plankton abundance, have been linked to cholera incidence. However, cholera bacteria can survive under a variety of coastal ecological conditions, thus constraining the predictive ability of the chlorophyll, since it provides only an estimate of greenness of seawater. Here, a new remote sensing based index is proposed: Satellite Water Marker (SWM), which estimates condition of coastal water, based on observed variability in the difference between blue (412 nm) and green (555 nm) wavelengths that can be related to seasonal cholera incidence. The index is bounded between physically separable wavelengths for relatively clear (blue) and turbid (green) water. Using SWM, prediction of cholera with reasonable accuracy, with at least two month in advance, can potentially be achieved in the endemic coastal regions.

  6. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet

    PubMed Central

    Liu, Xinsheng; Nie, Yuqin; Luo, Tianxiang; Yu, Jiehui; Shen, Wei; Zhang, Lin

    2016-01-01

    Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii) and juniper (Juniperus saltuaria) treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0°C. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change. PMID:27468289

  7. Soil water evaporation during the dry season in an arid zone

    NASA Astrophysics Data System (ADS)

    Agam (Ninari), Nurit; Berliner, Pedro R.; Zangvil, Abraham; Ben-Dor, Eyal

    2004-08-01

    The objective of this study was to assess the relative magnitude of latent heat flux density over a bare loess soil in the Negev desert throughout the dry season, during which the atmospheric models usually assume the lack of latent heat flux. The measurements were carried out in the northern Negev, Israel, over a bare loess soil, during nine 24-hour field campaigns throughout the dry season of 2002. In addition to a micrometeorological station that was set up in the research site, an improved microlysimeter was installed. The representativity of the microlysimeter was assessed by comparing its surface temperature to that of the surrounding surface using thermal images acquired on an hourly basis during several campaigns. It was found that although the water content of the uppermost soil is significantly lower than the wilting point, for which most of the commonly used meteorological models would assume no latent heat flux, the latter was ˜20% of the net-radiation during the night and 10-15% during the day. It is therefore concluded that latent heat flux plays a major role in the dissipation of the net radiation during the dry season in the Negev desert.

  8. Ergosterol and Water Changes in Tricholoma matsutake Soil Colony during the Mushroom Fruiting Season

    PubMed Central

    Lee, Dong-Hee; Park, Young-Woo; Lee, Young-Nam; Ka, Kang-Hyun; Park, Hyun; Bak, Won-Chull

    2009-01-01

    The purpose of this study is to understand spatio-temporal changes of active fungal biomass and water in Tricholoma matsutake soil colonies during the mushroom fruiting season. The active fungal biomass was estimated by analyzing ergosterol content at four different points within four replicated locations in a single circular T. matsutake colony at Ssanggok valley in the Sogri Mt. National Park in Korea during 2003 to 2005. The four points were the ahead of the colony, the front edge of the colony and 20 cm and 40 cm back from the front edge of the colony. Ergosterol content was 0.0 to 0.7 µg per gram dried soil at the ahead, 2.5 to 4.8 µg at the front edge, 0.5 to 1.8 µg at the 20 cm back and 0.3 to 0.8 µg at the 40 cm back. The ergosterol content was very high at the front edge where the T. matsutake hyphae were most active. However, ergosterol content did not significantly change during the fruiting season, September to October. Soil water contents were lower at the front edge and 20 cm back from the front edge of the colony than at the ahead and 40 cm back during the fruiting season. Soil water content ranged from 12 to 19% at the ahead, 10 to 11% at the edge, 9 to 11% at the 20 cm back and 11 to 15% at the 40 cm back. Our results suggest that the active front edge of the T. matsutake soil colony could be managed in terms of water relation and T. matsutake ectomycorrhizal root development. PMID:23983500

  9. Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations

    NASA Astrophysics Data System (ADS)

    Döll, Petra; Fritsche, Mathias; Eicker, Annette; Müller Schmied, Hannes

    2014-11-01

    Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude ( f GRACE) and time series of monthly TWS ( f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is

  10. Field metabolism and water flux of carolina chickadees during breeding and nonbreeding seasons: A test of the "peak-demand" and "reallocation" hypotheses

    USGS Publications Warehouse

    Doherty, P.F.; Williams, J.B.; Grubb, T.C.

    2001-01-01

    We tested the "peak-demand" and "reallocation" hypotheses of seasonal energy expenditure which predict, respectively, that energy expenditure is greatest during the breeding season or varies little seasonally. We tested these predictions by utilizing the doubly labeled water technique to estimate energy expenditure and water flux of Carolina Chickadees (Poecile carolinensis) in both the breeding and nonbreeding seasons. Similar to Weathers et al. (1999), we did not find support for either of these hypotheses, finding instead that energy expenditure was greater during the nonbreeding season. The fact that our study site was at the northern edge of the species' range, where winters are severe, may have influenced this result. Comparisons with other parid studies were equivocal because body size was an important factor in explaining seasonal energetics, and only the larger species have been examined during the breeding season.

  11. [Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China].

    PubMed

    Gao, Fei; Lin, Wei; Cui, Xiao-yang

    2016-01-01

    To investigate the seasonal dynamics of soil organic carbon (SOC) mineralization in Xiaoxing'an Mountain, we incubated soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in different seasons in the laboratory and measured the SOC mineralization rate and cumulative SOC mineralization (Cm). We employed simultaneous reaction model to describe C mineralization kinetics and estimated SOC mineralization parameters including soil easily mineralizable C (C1), potentially mineralizable C (C₀). We also analyzed the relations between Cm, C₁and their influencing factors. Results showed that the incubated SOC mineralization rate and Cm for 0-5 cm soil layer decreased from early spring to late autumn, while for 5-10 cm soil layer the seasonal variation was not statistically significant for both forest types. The C₁ in 0-5 and 5-10 cm soil layers varied from 42.92-92.18 and 19.23-32.95 mg kg⁻¹, respectively, while the C₀ in 0-5 and 5-10 cm soil layers varied from 863.92-3957.15 and 434.15-865.79 mg · kg⁻¹, respec- tively. Both C₁ and C₀ decreased from early spring to late autumn. The proportions of C₀ in SOC for two forest types were 0.74%-2.78% and 1.11%-1.84% in 0-5 and 5-10 cm soil layers, respectively, and decreased from early spring to late autumn, indicating that SOC tended to become more stable as a whole from spring to autumn. The Cm and C₀ were significantly positively correlated to in situ soil water content and hot water-extractable carbohydrate content, but were not correlated to in situ soil temperature and cool water-extractable carbohydrate content. We concluded that soil labile organic carbon, soil physical and chemical properties contributed to the seasonal dynamics of SOC mineralization in the forests.

  12. The Seasonal cycle of the Tropical Lower Stratospheric Water Vapor in Chemistry-Climate Models in Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Dessler, A. E.

    2017-12-01

    The seasonal cycle is one of the key features of the tropical lower stratospheric water vapor, so it is important that the climate models reproduce it. In this analysis, we evaluate how well the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and the Whole Atmosphere Community Climate Model (WACCM) reproduce the seasonal cycle of tropical lower stratospheric water vapor. We do this by comparing the models to observations from the Microwave Limb Sounder (MLS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERAi). We also evaluate if the chemistry-climate models (CCMs) reproduce the key transport and dehydration processes that regulate the seasonal cycle using a forward, domain filling, diabatic trajectory model. Finally, we explore the changes of the seasonal cycle during the 21st century in the two CCMs. Our results show general agreement in the seasonal cycles from the MLS, the ERAi, and the CCMs. Despite this agreement, there are some clear disagreements between the models and the observations on the details of transport and dehydration in the TTL. Finally, both the CCMs predict a moister seasonal cycle by the end of the 21st century. But they disagree on the changes of the seasonal amplitude, which is predicted to increase in the GEOSCCM and decrease in the WACCM.

  13. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants.

    PubMed

    Kot-Wasik, A; Jakimska, A; Śliwka-Kaszyńska, M

    2016-12-01

    Thousands of tons of pharmaceuticals are introduced into the aqueous environment due to their incomplete elimination during treatment process in wastewater treatment plants (WWTPs) and water treatment plants (WTPs). The presence of pharmacologically active compounds in the environment is of a great interest because of their potential to cause negative effects. Furthermore, drugs can undergo different processes leading to the formation of new transformation products, which may be more toxic than the parent compound. In light of these concerns, within the research a new, rapid and sensitive analytical procedure for the determination of a wide range of pharmaceuticals from different classes using solid phase extraction (SPE) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) technique in different water samples was developed. This methodology was applied to investigate the occurrence, removal efficiency of 25 pharmaceuticals during wastewater and drinking water treatment, and seasonal variability in the amount of selected pharmaceuticals in WWTP and WTP over a year. The most often detected analytes in water samples were carbamazepine (100 % of samples) and ibuprofen (98 % of samples), concluding that they may be considered as pollution indicators of the aqueous environment in tested area. Highly polar compound, metformin, was determined at very high concentration level of up to 8100 ng/L in analyzed water samples. Drugs concentrations were much higher in winter season, especially for non-steroidal inflammatory drugs (NSAIDs) and caffeine, probably due to the inhibited degradation related to lower temperatures and limited sunlight. Carbamazepine was found to be the most resistant drug to environmental degradation and its concentrations were at similar levels during four seasons.

  14. Effects of climatic seasonality on the isotopic composition of evaporating soil waters

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Volkmann, Till H. M.; von Freyberg, Jana; Frentress, Jay; Penna, Daniele; Dawson, Todd E.; Kirchner, James W.

    2018-05-01

    Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL) that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trend lines are often termed "evaporation lines" and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.

  15. Extending to seasonal scales the current usage of short range weather forecasts and climate projections for water management in Spain

    NASA Astrophysics Data System (ADS)

    Rodriguez-Camino, Ernesto; Voces, José; Sánchez, Eroteida; Navascues, Beatriz; Pouget, Laurent; Roldan, Tamara; Gómez, Manuel; Cabello, Angels; Comas, Pau; Pastor, Fernando; Concepción García-Gómez, M.°; José Gil, Juan; Gil, Delfina; Galván, Rogelio; Solera, Abel

    2016-04-01

    This presentation, first, briefly describes the current use of weather forecasts and climate projections delivered by AEMET for water management in Spain. The potential use of seasonal climate predictions for water -in particular dams- management is then discussed more in-depth, using a pilot experience carried out by a multidisciplinary group coordinated by AEMET and DG for Water of Spain. This initiative is being developed in the framework of the national implementation of the GFCS and the European project, EUPORIAS. Among the main components of this experience there are meteorological and hydrological observations, and an empirical seasonal forecasting technique that provides an ensemble of water reservoir inflows. These forecasted inflows feed a prediction model for the dam state that has been adapted for this purpose. The full system is being tested retrospectively, over several decades, for selected water reservoirs located in different Spanish river basins. The assessment includes an objective verification of the probabilistic seasonal forecasts using standard metrics, and the evaluation of the potential social and economic benefits, with special attention to drought and flooding conditions. The methodology of implementation of these seasonal predictions in the decision making process is being developed in close collaboration with final users participating in this pilot experience.

  16. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Treesearch

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  17. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovery, Caitlin M.; Wyneken, Jeanette

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less

  18. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    DOE PAGES

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less

  19. Water relations of baobab trees (Adansonia spp. L.) during the rainy season: does stem water buffer daily water deficits?

    PubMed

    Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele

    2006-06-01

    Baobab trees are often cited in the literature as water-storing trees, yet few studies have examined this assumption. We assessed the role of stored water in buffering daily water deficits in two species of baobabs (Adansonia rubrostipa Jum. and H. Perrier and Adansonia za Baill.) in a tropical dry forest in Madagascar. We found no lag in the daily onset of sap flow between the base and the crown of the tree. Some night-time sap flow occurred, but this was more consistent with a pattern of seasonal stem water replenishment than with diurnal usage. Intrinsic capacitance of both leaf and stem tissue (0.07-0.08 and 1.1-1.43 MPa(-1), respectively) was high, yet the amount of water that could be withdrawn before turgor loss was small because midday leaf and stem water potentials (WPs) were near the turgor-loss points. Stomatal conductance was high in the daytime but then declined rapidly, suggesting an embolism-avoidance strategy. Although the xylem of distal branches was relatively vulnerable to cavitation (P50: 1.1-1.7 MPa), tight stomatal control and minimum WPs near--1.0 MPa maintained native embolism levels at 30-65%. Stem morphology and anatomy restrict water movement between storage tissues and the conductive pathway, making stored-water usage more appropriate to longer-term water deficits than as a buffer against daily water deficits.

  20. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    NASA Astrophysics Data System (ADS)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  1. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  2. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul F.; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  3. Developing Novel Reservoir Rule Curves Using Seasonal Inflow Projections

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-yi; Tung, Ching-pin

    2015-04-01

    Due to significant seasonal rainfall variations, reservoirs and their flexible operational rules are indispensable to Taiwan. Furthermore, with the intensifying impacts of climate change on extreme climate, the frequency of droughts in Taiwan has been increasing in recent years. Drought is a creeping phenomenon, the slow onset character of drought makes it difficult to detect at an early stage, and causes delays on making the best decision of allocating water. For these reasons, novel reservoir rule curves using projected seasonal streamflow are proposed in this study, which can potentially reduce the adverse effects of drought. This study dedicated establishing new rule curves which consider both current available storage and anticipated monthly inflows with leading time of two months to reduce the risk of water shortage. The monthly inflows are projected based on the seasonal climate forecasts from Central Weather Bureau (CWB), which a weather generation model is used to produce daily weather data for the hydrological component of the GWLF. To incorporate future monthly inflow projections into rule curves, this study designs a decision flow index which is a linear combination of current available storage and inflow projections with leading time of 2 months. By optimizing linear relationship coefficients of decision flow index, the shape of rule curves and the percent of water supply in each zone, the best rule curves to decrease water shortage risk and impacts can be developed. The Shimen Reservoir in the northern Taiwan is used as a case study to demonstrate the proposed method. Existing rule curves (M5 curves) of Shimen Reservoir are compared with two cases of new rule curves, including hindcast simulations and historic seasonal forecasts. The results show new rule curves can decrease the total water shortage ratio, and in addition, it can also allocate shortage amount to preceding months to avoid extreme shortage events. Even though some uncertainties in

  4. A 'two-tank' seasonal storage concept for solar space heating of buildings

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Connor, D. W.; Mueller, R. O.

    This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.

  5. Introducing seasonal hydro-meteorological forecasts in local water management. First reflections from the Messara site, Crete, Greece.

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis; Grillakis, Manolis; Tsanis, Ioannis

    2017-04-01

    Seasonal prediction is recently at the center of the forecasting research efforts, especially for regions that are projected to be severely affected by global warming. The value of skillful seasonal forecasts can be considerable for many sectors and especially for the agricultural in which water users and managers can benefit to better anticipate against drought conditions. Here we present the first reflections from the user/stakeholder interactions and the design of a tailored drought decision support system in an attempt to bring seasonal predictions into local practice for the Messara valley located in the central-south area of Crete, Greece. Findings from interactions with the users and stakeholders reveal that although long range and seasonal predictions are not used, there is a strong interest for this type of information. The increase in the skill of short range weather predictions is also of great interest. The drought monitoring and prediction tool under development that support local water and agricultural management will include (a) sources of skillful short to medium term forecast information, (b) tailored drought monitoring and forecasting indices for the local groundwater aquifer and rain-fed agriculture, and (c) seasonal inflow forecasts for the local dam through hydrologic simulation to support management of freshwater resources and drought impacts on irrigated agriculture.

  6. Spatiotemporal Dynamics of Surface Water Extent from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Broich, M.

    2015-12-01

    Surface water is a critical resource in semi-arid areas. The Murray-Darling Basin (MDB) of Australia, one of the largest semi-arid basins in the world is aiming to set a worldwide example of how to balance multiple interests (i.e. environment, agriculture and urban use), but has suffered significant water shrinkages during the Millennium Drought (1999-2009), followed by extensive flooding. Baseline information and systematic quantification of surface water (SW) extent and flooding dynamics in space and time are needed for managing SW resources across the basin but are currently lacking. To synoptically quantify changes in SW extent and flooding dynamics over MDB, we used seasonally continuous Landsat TM and ETM+ data (1986 - 2011) and generic machine learning algorithms. We further mapped flooded forest at a riparian forest site that experienced severe tree dieback due to changes in flooding regime. We used a stratified sampling design to assess the accuracy of the SW product across time. Accuracy assessment yielded an overall classification accuracy of 99.94%, with producer's and user's accuracy of SW of 85.4% and 97.3%, respectively. Overall accuracy was the same for Landsat 5 and 7 data but user's and producer's accuracy of water were higher for Landsat 7 than 5 data and stable over time. Our validated results document a rapid loss in SW bodies. The number, size, and total area of SW showed high seasonal variability with highest numbers in winter and lowest numbers in summer. SW extent per season per year showed high interannual and seasonal variability, with low seasonal variability during the Millennium Drought. Examples of current uses of the new dataset will be presented and include (1) assessing ecosystem response to flooding with implications for environmental water releases, one of the largest investment in environment in Australia; (2) quantifying drivers of SW dynamics (e.g. climate, human activity); (3) quantifying changes in SW dynamics and

  7. Spatiotemporal Dynamics of Surface Water Extent from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Broich, M.; Stehman, Stephen V.

    2016-06-01

    Surface water is a critical resource in semi-arid areas. The Murray-Darling Basin (MDB) of Australia, one of the largest semi-arid basins in the world is aiming to set a worldwide example of how to balance multiple interests (i.e. environment, agriculture and urban use), but has suffered significant water shrinkages during the Millennium Drought (1999-2009), followed by extensive flooding. Baseline information and systematic quantification of surface water (SW) extent and flooding dynamics in space and time are needed for managing SW resources across the basin but are currently lacking. To synoptically quantify changes in SW extent and flooding dynamics over MDB, we used seasonally continuous Landsat TM and ETM+ data (1986 - 2011) and generic machine learning algorithms. We further mapped flooded forest at a riparian forest site that experienced severe tree dieback due to changes in flooding regime. We used a stratified sampling design to assess the accuracy of the SW product across time. Accuracy assessment yielded an overall classification accuracy of 99.94%, with producer's and user's accuracy of SW of 85.4% and 97.3%, respectively. Overall accuracy was the same for Landsat 5 and 7 data but user's and producer's accuracy of water were higher for Landsat 7 than 5 data and stable over time. Our validated results document a rapid loss in SW bodies. The number, size, and total area of SW showed high seasonal variability with highest numbers in winter and lowest numbers in summer. SW extent per season per year showed high interannual and seasonal variability, with low seasonal variability during the Millennium Drought. Examples of current uses of the new dataset will be presented and include (1) assessing ecosystem response to flooding with implications for environmental water releases, one of the largest investment in environment in Australia; (2) quantifying drivers of SW dynamics (e.g. climate, human activity); (3) quantifying changes in SW dynamics and

  8. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    Treesearch

    J-C. Domec; F.G. Scholz; S.J. Bucci; F.C. Meinzer; G. Goldstein; R. Villalobos-Vega

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occuring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (ψroot...

  9. Seasonal Variations in Water Chemistry and Sediment Composition in Three Minnesota Lakes

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Ito, E.; Banerjee, S.

    2006-12-01

    Variations in water chemistry, isotopic composition of dissolved inorganic carbon, sediment geochemistry and mineral magnetism were monitored for several months in three Minnesota lakes. Lake McCarrons, Deming Lake and Steel Lake are all small (<1 km2), deep (>16 m), stratified lakes that contain varved sediments for some time intervals or throughout. Deming Lake and Steel Lake are situated in north-central Minnesota, about 40 km apart, while Lake McCarrons is located in the heart of the Twin Cities and is heavily used for recreational purposes. The lakes have different mixing regimes (Steel is dimictic, Deming is meromictic and McCarrons is oligomictic) but all have well defined epilimnia and hypolimnia during the ice-free season. Water samples were collected bi-weekly from the epilimnia, upper and lower hypolimnia, while sediments were collected monthly from sediment traps placed in shallow and deep parts of the lakes. All lakes are moderately alkaline (80-280 ppm HCO3-) carbonate-producing systems, although calcite is being dissolved in the slightly acidic hypolimnetic waters of Deming Lake. The magnetic parameters reveal different distributions of the magnetic components in the three lakes, but all exhibit a general increase in the concentration of bacterial magnetosomes towards the end of summer. Differences in elemental concentrations, cation and anion profiles, and chemical behavior as the season progressed are also obvious among the three lakes. For the two lakes situated in the same climatic regime, this implies additional controls (besides climate) on water and sediment composition, such as local hydrology, substrate composition and biogeochemical in-lake processes.

  10. Reuse water: Exposure duration, seasonality and treatment affect tissue responses in a model fish.

    PubMed

    Blunt, B J; Singh, A; Wu, L; Gamal El-Din, M; Belosevic, M; Tierney, K B

    2017-12-31

    Partially remediated gray (reuse) water will likely find increasing use in a variety of applications owing to the increasing scarcity of freshwater. We aimed to determine if a model fish, the goldfish, could sense reuse water using olfaction (smell), and if 30min or 7d (acute) and 60d (sub-chronic) exposures would affect their olfactory responses to natural odorants. We examined olfaction as previous studies have found that numerous chemicals can impair the olfactory sense, which is critical to carrying out numerous life-sustaining behaviors from feeding to mating. We also examined if fish olfactory and liver tissues would mount a response in terms of biotransformation enzyme gene expression, and whether treatment of reuse water with UV/H 2 O 2 ameliorated adverse effects following reuse water exposure. We found that fish olfactory tissue responded to reuse water as it would to a natural odorant and that UV/H 2 O 2 treatment had no influence on this. With acute exposures, olfactory impairment was apparent regardless of water type (e.g. responses of 23-55% of control), but in sub-chronic exposures, only the untreated reuse water caused olfactory impairment. The exposure of fish to reuse water increased the expression of one enzyme (CYP1A; >2.5-6.5 fold change) and reuse water treatment with UV/H 2 O 2 reversed the effect. There was a seasonal effect that was likely due to changes in water quality (60d summer exposure impaired olfaction whereas spring and fall exposures did not). Overall, the data suggest that reuse water may be detected by olfaction, impair olfactory responses in fish receiving unavoidable exposures, and that exposure duration and season are important factors to consider regarding adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Season and preterm birth in Norway: A cautionary tale

    PubMed Central

    Weinberg, Clarice R; Shi, Min; DeRoo, Lisa A; Basso, Olga; Skjærven, Rolv

    2015-01-01

    Background: Preterm birth is a common, costly and dangerous pregnancy complication. Seasonality of risk would suggest modifiable causes. Methods: We examine seasonal effects on preterm birth, using data from the Medical Birth Registry of Norway (2 321 652 births), and show that results based on births are misleading and a fetuses-at-risk approach is essential. In our harmonic-regression Cox proportional hazards model we consider fetal risk of birth between 22 and 37 completed weeks of gestation. We examine effects of both day of year of conception (for early effects) and day of ongoing gestation (for seasonal effects on labour onset) as modifiers of gestational-age-based risk. Results: Naïve analysis of preterm rates across days of birth shows compelling evidence for seasonality (P < 10−152). However, the reconstructed numbers of conceptions also vary with season (P < 10−307), confounding results by inducing seasonal variation in the age distribution of the fetal population at risk. When we instead properly treat fetuses as the individuals at risk, restrict analysis to pregnancies with relatively accurate ultrasound-based assessment of gestational age (available since 1998) and adjust for socio-demographic factors and maternal smoking, we find modest effects of both time of year of conception and time of year at risk, with peaks for early preterm near early January and early July. Conclusions: Analyses of seasonal effects on preterm birth are demonstrably vulnerable to confounding by seasonality of conception, measurement error in conception dating, and socio-demographic factors. The seasonal variation based on fetuses reveals two peaks for early preterm, coinciding with New Year’s Day and the early July beginning of Norway’s summer break, and may simply reflect a holiday-related pattern of unintended conception. PMID:26045507

  12. Sources and seasonal variation of PAHs in the sediments of drinking water reservoirs in Hong Kong and the Dongjiang River (China).

    PubMed

    Liang, Yan; Fung, Pui Ka; Tse, Man Fung; Hong, Hua Chang; Wong, Ming Hung

    2008-11-01

    The main objective of this study was to investigate occurrence of polycyclic aromatic hydrocarbons (PAHs) in the sources of the drinking water supply of Hong Kong. The main emphasis was on the Dongjiang River in mainland China which is the major source, supplying 80% of the total consumption in Hong Kong (the remaining 20% is obtained from rain water). Sediments were collected from four sites along the Dongjiang River and four reservoirs in Hong Kong during both the dry and wet weather seasons. The concentrations of total PAHs in the sediments ranged between 36 and 539 microg/kg dry wt. The lower levels were detected at the upstream site on the Dongjiang River and at the reservoirs in Hong Kong (44-85 microg/kg dry wt), while the mid- and downstream sites on the Dongjiang River were more polluted (588-658 microg/kg dry wt). Examination of the PAH profiles revealed that the mid- and downstream sections of the Dongjiang River contained high percentages of 4,5,6-ring PAHs, similar to the amounts of atmospheric particulate matter and road dust collected during the dry weather season from the Pearl River Delta region as reported in the literature. Seasonal changes were revealed in the reservoirs of Hong Kong, with higher PAH levels in the wet weather season than in the dry weather season. For those reservoirs in Hong Kong that store water from the Dongjiang River, a distinct seasonal pattern was also observed, namely, that under dry weather season conditions the PAHs found in the sediments were primarily from petrogenic source, while under wet weather season conditions they were from pyrolytic sources. No such pattern was detected in the reservoirs which stored only rain water.

  13. Quantification of seasonal biomass effects on cosmic-ray soil water content determination

    NASA Astrophysics Data System (ADS)

    Baatz, R.; Bogena, H. R.; Hendricks Franssen, H.; Huisman, J. A.; Qu, W.; Montzka, C.; Korres, W.; Vereecken, H.

    2013-12-01

    The novel cosmic-ray soil moisture probes (CRPs) measure neutron flux density close to the earth surface. High energy cosmic-rays penetrate the Earth's atmosphere from the cosmos and become moderated by terrestrial nuclei. Hydrogen is the most effective neutron moderator out of all chemical elements. Therefore, neutron flux density measured with a CRP at the earth surface correlates inversely with the hydrogen content in the CRP's footprint. A major contributor to the amount of hydrogen in the sensor's footprint is soil water content. The ability to measure changes in soil water content within the CRP footprint at a larger-than-point scale (~30 ha) and at high temporal resolution (hourly) make these sensors an appealing measurement instrument for hydrologic modeling purposes. Recent developments focus on the identification and quantification of major uncertainties inherent in CRP soil moisture measurements. In this study, a cosmic-ray soil moisture network for the Rur catchment in Western Germany is presented. It is proposed to correct the measured neutron flux density for above ground biomass yielding vegetation corrected soil water content from cosmic-ray measurements. The correction for above ground water equivalents aims to remove biases in soil water content measurements on sites with high seasonal vegetation dynamics such as agricultural fields. Above ground biomass is estimated as function of indices like NDVI and NDWI using regression equations. The regression equations were obtained with help of literature information, ground-based control measurements, a crop growth model and globally available data from the Moderate Resolution Imaging Spectrometer (MODIS). The results show that above ground biomass could be well estimated during the first half of the year. Seasonal changes in vegetation water content yielded biases in soil water content of ~0.05 cm3/cm3 that could be corrected for with the vegetation correction. The vegetation correction has particularly

  14. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha.

    PubMed

    Jost, Jennifer A; Keshwani, Sarah S; Abou-Hanna, Jacob J

    2015-04-01

    Global climate change is affecting ectothermic species, and a variety of studies are needed on thermal tolerances, especially from cellular and physiological perspectives. This study utilized AMP-activated protein kinase (AMPK), a key regulator of cellular energy levels, to examine the effects of high water temperatures on zebra mussel (Dreissena polymorpha) physiology. During heating, AMPK activity increased as water temperature increased to a point, and maximum AMPK activity was detected at high, but sublethal, water temperatures. This pattern varied with season, suggesting that cellular mechanisms of seasonal thermal acclimatization affect basic metabolic processes during sublethal heat stress. There was a greater seasonal variation in the water temperature at which maximum AMPK activity was measured than in lethal water temperature. Furthermore, baseline AMPK activity varied significantly across seasons, most likely reflecting altered metabolic states during times of growth and reproduction. In addition, when summer-collected mussels were lab-acclimated to winter and spring water temperatures, patterns of heat stress mirrored those of field-collected animals. These data suggest that water temperature is the main driver of the seasonal variation in physiology. This study concluded that AMPK activity, which reflects changes in energy supply and demand during heat stress, can serve as a sensitive and early indicator of temperature stress in mussels. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Evapotranspiration seasonality across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  16. Spatio-Temporal Variations of Soil Water Use in the Growing Season in Northeast China Using Modis Data

    NASA Astrophysics Data System (ADS)

    Chang, s.; Huang, F.; Li, B.; Qi, H.; Zhai, H.

    2018-04-01

    Water use efficiency is known as an important indicator of carbon and water cycle and reflects the transformation capacity of vegetation water and nutrients into biomass. In this study, we presented a new indicator of water use efficiency, soil water use level (SWUL), derived from satellite remote sensing based gross primary production and the Visible and Shortwave Infrared Drought Index (VSDI). SWUL based on MODIS data was calculated for the growing season of 2014 in Northeast China, and the spatial pattern and the variation trend were analyzed. Results showed that the highest SWUL was observed in forestland with the value of 36.65. In cropland and grassland, the average SWUL were 26.18 and 29.29, respectively. SWUL showed an increased trend in the first half period of the growing season and peaked around the 200th day. After the 220th day, SWUL presented a decreasing trend. Compared to the soil water use efficiency (SWUE), SWUL might depict the water use status at finer spatial resolution. The new indicator SWUL can help promote understanding the water use efficiency for regions of higher spatial heterogeneity.

  17. Enrichment of free-living amoebae in biofilms developed at upper water levels in drinking water storage towers: An inter- and intra-seasonal study.

    PubMed

    Taravaud, Alexandre; Ali, Myriam; Lafosse, Bernard; Nicolas, Valérie; Féliers, Cédric; Thibert, Sylvie; Lévi, Yves; Loiseau, Philippe M; Pomel, Sébastien

    2018-08-15

    Free-living amoebae (FLA) are ubiquitous organisms present in various natural and artificial environments, such as drinking water storage towers (DWST). Some FLA, such as Acanthamoeba sp., Naegleria fowleri, and Balamuthia mandrillaris, can cause severe infections at ocular or cerebral level in addition to being potential reservoirs of other pathogens. In this work, the abundance and diversity of FLA was evaluated in two sampling campaigns: one performed over five seasons in three DWST at three different levels (surface, middle and bottom) in water and biofilm using microscopy and PCR, and one based on the kinetics analysis in phase contrast and confocal microscopy of biofilm samples collected every two weeks during a 3-month period at the surface and at the bottom of a DWST. In the seasonal study, the FLA were detected in each DWST water in densities of ~20 to 25amoebaeL -1 . A seasonal variation of amoeba distribution was observed in water samples, with maximal densities in summer at ~30amoebaeL -1 and minimal densities in winter at ~16amoebaeL -1 . The FLA belonging to the genus Acanthamoeba were detected in two spring sampling campaigns, suggesting a possible seasonal appearance of this potentially pathogenic amoeba. Interestingly, a 1 log increase of amoebae density was observed in biofilm samples collected at the surface of all DWST compared to the middle and the bottom where FLA were at 0.1-0.2amoebae/cm 2 . In the kinetics study, an increase of amoebae density, total cell density, and biofilm thickness was observed as a function of time at the surface of the DWST, but not at the bottom. To our knowledge, this study describes for the first time a marked higher FLA density in biofilms collected at upper water levels in DWST, constituting a potential source of pathogenic micro-organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Seasonal distribution of potentially pathogenic Acanthamoeba species from drinking water reservoirs in Taiwan.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Liu, Jorn-Hon; Chang, Hsiang-Yu; Ji, Wen-Tsai; Tzeng, Kai-Jiun; Huang, Shih-Wei; Huang, Yu-Li

    2015-03-01

    In order to detect the presence/absence of Acanthamoeba along with geographical variations, water quality variations and seasonal change of Acanthamoeba in Taiwan was investigated by 18S ribosomal RNA (rRNA) gene TaqMan quantitative real-time PCR. Samples were collected quarterly at 19 drinking water reservoir sites from November 2012 to August 2013. Acanthamoeba was detected in 39.5 % (30/76) of the water sample, and the detection rate was 63.2 % (12/19) from samples collected in autumn. The average concentration of Acanthamoeba was 3.59 × 10(4) copies/L. For geographic distribution, the detection rate for Acanthamoeba at the northern region was higher than the central and southern regions in all seasons. Results of Spearman rank test revealed that heterotrophic plate count (HPC) had a negative correlation (R = -0.502), while dissolved oxygen (DO) had a positive correlation (R = 0.463) in summer. Significant differences were found only between the presence/absence of Acanthamoeba and HPC in summer (Mann-Whitney U test, P < 0.05). T2 and T4 genotypes of Acanthamoeba were identified, and T4 was the most commonly identified Acanthamoeba genotypes. The presence of Acanthamoeba in reservoirs presented a potential public health threat and should be further examined.

  19. Hotel water consumption at a seasonal mass tourist destination. The case of the island of Mallorca.

    PubMed

    Deyà Tortella, Bartolomé; Tirado, Dolores

    2011-10-01

    While it is true that tourism is one of the main driving forces behind economic growth in several world regions, it is also true that tourism can have serious negative environmental impacts, especially with regard to water resources. The tourist water demand can generate big problems of sustainability, mainly in those regions where water is scarce, as occurs in most coastal and small island destinations where a large part of world tourism is concentrated. Given the shortage of literature on the subject, further research into the tourist water demand is required, with particular attention to the hotel sector, since hotels are the most popular option for tourists, displaying higher levels of water consumption. The main purpose of this study is to develop a model to analyse hotel water consumption at a mature sun and sand destination with a strong seasonal pattern and scarcity of water; characteristics shared by some of the world's main tourist destinations. Our model includes a set of different hotel variables associated with physical, seasonal and management-related factors and it improves on the capacity to explain water consumption at such destinations. Following a hierarchical regression methodology, the model is empirically tested through a survey distributed to managers of a representative sample of hotels on the island of Mallorca. From the obtained results, interesting recommendations can be made for both hotel managers and policy makers. Among these, it should be highlighted that the strategic move contemplated by many mature destinations towards a higher quality, low-season model could have significant negative effects in terms of the sustainability of water resources. Our results also conclude that managerial decisions, like the system of accommodation that is offered (i.e. the proliferation of the "all-inclusive" formula, both at mature and new destinations), could give rise to the same negative effect. Development of water saving initiatives (usually

  20. Unremarked or Unperformed? Systematic Review on Reporting of Validation Efforts of Health Economic Decision Models in Seasonal Influenza and Early Breast Cancer.

    PubMed

    de Boer, Pieter T; Frederix, Geert W J; Feenstra, Talitha L; Vemer, Pepijn

    2016-09-01

    Transparent reporting of validation efforts of health economic models give stakeholders better insight into the credibility of model outcomes. In this study we reviewed recently published studies on seasonal influenza and early breast cancer in order to gain insight into the reporting of model validation efforts in the overall health economic literature. A literature search was performed in Pubmed and Embase to retrieve health economic modelling studies published between 2008 and 2014. Reporting on model validation was evaluated by checking for the word validation, and by using AdViSHE (Assessment of the Validation Status of Health Economic decision models), a tool containing a structured list of relevant items for validation. Additionally, we contacted corresponding authors to ask whether more validation efforts were performed other than those reported in the manuscripts. A total of 53 studies on seasonal influenza and 41 studies on early breast cancer were included in our review. The word validation was used in 16 studies (30 %) on seasonal influenza and 23 studies (56 %) on early breast cancer; however, in a minority of studies, this referred to a model validation technique. Fifty-seven percent of seasonal influenza studies and 71 % of early breast cancer studies reported one or more validation techniques. Cross-validation of study outcomes was found most often. A limited number of studies reported on model validation efforts, although good examples were identified. Author comments indicated that more validation techniques were performed than those reported in the manuscripts. Although validation is deemed important by many researchers, this is not reflected in the reporting habits of health economic modelling studies. Systematic reporting of validation efforts would be desirable to further enhance decision makers' confidence in health economic models and their outcomes.

  1. Labeling research in support of through-the-season area estimation

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Hay, C. M.; Sheffner, E. J.

    1982-01-01

    The development of LANDSAT-based through-the-season labeling procedures for corn and soybeans is discussed. A model for predicting labeling accuracy within key time periods throughout the growing season is outlined. Two methods for establishing the starting point of one key time period, viz., early season, are described. In addition, spectral-temporal characteristics for separating crops in the early season time period are discussed.

  2. Seasonal water stress and the resistance of Pinus yunnanensis to a bark-beetle-associated fungus.

    PubMed

    Salle, Aurelien; Ye, Hui; Yart, Annie; Lieutier, François

    2008-05-01

    We examined the influence of seasonal water stress on the resistance of Pinus yunnanensis (Franch.) to inoculation with Leptographium yunnanense, a pathogenic fungus associated with the aggressive bark beetle, Tomicus n. sp. Experiments took place between October 1997 and November 1999 in two plots located at the top and at the foot of a hill in Shaogiu, China, a region characterized by dry winters and wet summers. Following isolated and mass fungal inoculations, we observed the reaction zone length, fungal growth in the phloem, and the occlusion, blue-staining and specific hydraulic conductivity of the sapwood. Measurements of soil and needle water contents and predawn needle water potentials confirmed that trees were subject to mild water stress during winter, especially at the drier hilltop site. Measures of tree resistance to fungal infection of phloem and sapwood were congruent and indicated that trees were most susceptible to inoculation during the wet summer, especially at the lower-elevation plot. Specific hydraulic conductivity decreased after inoculation in summer. The results indicate that mild seasonal water stress is not likely responsible for the recent extensive damage to young P. yunnanensis stands by Tomicus n. sp. in the vicinity of our study plots. Rather, the results suggest that mild water stress enhances tree resistance to fungal pathogens associated with Tomicus n. sp.

  3. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large

  4. Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season.

    PubMed

    Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele

    2006-01-01

    Baobab trees (Adansonia, Bombacaceae) are widely thought to store water in their stems for use when water availability is low. We tested this hypothesis by assessing the role of stored water during the dry season in three baobab species in Madagascar. In the dry season, leaves are present only during and after leaf flush. We quantified the relative contributions of stem and soil water during this period through measures of stem water content, sap flow and stomatal conductance. Rates of sap flow at the base of the trunk were near zero, indicating that leaf flushing was almost entirely dependent on stem water. Stem water content declined by up to 12% during this period, yet stomatal conductance and branch sap flow rates remained very low. Stem water reserves were used to support new leaf growth and cuticular transpiration, but not to support stomatal opening before the rainy season. Stomatal opening coincided with the onset of sap flow at the base of the trunk and occurred only after significant rainfall.

  5. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    PubMed Central

    Yao, Hong; Qian, Xin; Gao, Hailong; Wang, Yulei; Xia, Bisheng

    2014-01-01

    Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season) from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s) at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05). The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River) had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River) had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account. PMID:25407421

  6. Some consequences of a liquid water saturated regolith in early Martian history

    NASA Technical Reports Server (NTRS)

    Fuller, A. O.; Hargraves, R. B.

    1978-01-01

    Flooding of low-lying areas of the Martian regolith may have occurred early in the planet's history when a comparatively dense primitive atmosphere existed. If this model is valid, the following are some pedogenic and mineralogical consequences to be expected. Fluctuation of the water table in response to any seasonal or longer term causes would have resulted in precipitation of ferric oxyhydroxides with the development of a vesicular duricrust (or hardpan). Disruption of such a crust by scarp undercutting or frost heaving accompanied by wind deflation of fines could account for the boulders visible on Utopia Planitia in the vicinity of the second Viking lander site. Laboratory and field evidence on earth suggests that under weakly oxidizing conditions lepidocrocite (rather than goethite) would have preferentially formed in the Martian regolith from the weathering of ferrous silicates, accompanied by montmorillonite, nontronite, and cronstedtite. Maghemite may have formed as a low-temperature dehydrate of lepidocrocite or directly from ferrous precursors.

  7. Split-season herbaceous weed control for full-season seedling performance

    Treesearch

    Jimmie L. Yeiser; Andrew W. Ezell

    2010-01-01

    Results from four loblolly pine (Pinus taeda L.) sites, one in each of MS and TX in 2001 and again in 2002, are presented. Twelve herbicide treatments and an untreated check were tested. Herbicide treatments were applied early (mid-March), late (mid-May), both timings, or not at all to achieve, early- late-, full-season, or no weed control. When...

  8. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR). Results show a year-round, altimeter-derived cyclonic gyre where the upwelling regime appears closely related to seasonality of the ocean gyre, a relationship that has not been previously explored in this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. At basin-scale, the most outstanding feature is the seasonal shrinkage of the ocean gyre and the SCTR. From late autumn to spring, the eastward South Equatorial Countercurrent (SECC) recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as remote forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC.

  9. Irrigation-water quality during 1976 irrigation season in the Sulphur Creek basin, Yakima and Benton counties, Washington

    USGS Publications Warehouse

    Boucher, P.R.; Fretwell, M.O.

    1982-01-01

    A water-quality-sampling network was designed for the Sulphur Creek basin to observe the effects of farming practices on irrigation. Sediment and nutrient yield, discharge, and water temperature data were collected during the 1976 irrigation season and the following fall and winter. The suspended-sediment yield of the basin during this period was 2.0 tons per acre of irrigated cropland. Only about 3% of the net outflow of sediment occurred during the nonirrigation season. The yield computed by subbasin ranged from 0.7 to 7 tons per acre, depending mainly on land slope, but a high percentage of orchard land in the subbasins was probably also significant in reducing loads. Nutrient outflows during the study period were 1,180,000 pounds of nitrogen and 120,000 pounds of phosphorous. Nitrate-plus-nitrite represent 70% of the nitrogen outflow in the irrigation season and 84% in the nonirrigation season. The monitoring network was discontinued at the end of the study period, due largely to insufficient farmer participation. Network sensitivity in the control subbasins was inadequate to detect the effects of a planned demonstration program of best management practices. (USGS)

  10. Connectivity and seasonality cause rapid taxonomic and functional trait succession within an invertebrate community after stream restoration

    PubMed Central

    van der Geest, Harm G.; van Loon, E. Emiel; Verdonschot, Piet F. M.

    2018-01-01

    General colonization concepts consent that a slow process of microhabitat formation and subsequent niche realization occurs during early stages after new habitat is released. Subsequently, only few species are able to colonize new habitat in the early onset of succession, while species richness increases steadily over time. Although most colonization studies have been performed in terrestrial ecosystems, running water ecosystems are equally or even more prone to colonization after disturbance due to their dynamic nature. We question how invertebrate succession patterns reconcile with general colonization concepts. With this study we provide insight into the colonization process in newly created lowland stream trajectories and answer how within-stream bio- and functional diversity develops over time. Our results show a rapid influx of species, with a wide range of functional traits, during the first season after water flow commenced. During more than two years of regular monitoring, immigration rates were highest in autumn, marking the effects of seasonality on invertebrate dispersal. Biodiversity increased while abundance peaks of species alternated between seasons. Moreover, also days since start of the experiment explains a considerable part of the variability for taxa as well as traits. However, the relative trait composition remained similar throughout the entire monitoring period and only few specific traits had significantly higher proportions during specific seasons. This indicates that first phase colonization in freshwater streams can be a very rapid process that results in a high biodiversity and a large variety of species functional characteristics from the early onset of succession, contradicting general terrestrial colonization theory. PMID:29795599

  11. Toward a better δDalkanes paleoclimate proxy; Partitioning of seasonal water sources and xylem-leaf deuterium enrichment according to plant growth form and phenology

    NASA Astrophysics Data System (ADS)

    Wispelaere, Lien; Bodé, Samuel; Herve-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2016-04-01

    The DeepCHALLA consortium is preparing an ICDP (International Continental Drilling Program) deep-drilling project on Lake Challa, a crater lake near Mt. Kilimanjaro in equatorial East Africa, where the climate is tropical semi-arid climate and characterized by two distinct rainy seasons. The main objective of this project is to acquire high-resolution and accurately dated proxy data of continental climate and ecosystem change near the Equator over 250,000 years. One of the paleoclimate proxies to be used is the hydrogen-isotopic composition of sedimentary n-alkanes (δDalkanes) derived from fossil plant leaf wax. However, this requires a better understanding of seasonal variability in the isotopic composition of precipitation, and of the fractionation of its hydrogen during incorporation in the plant waxes. In addition, recent studies have described the existence of "two water worlds", resulting in an additional deviation of the isotopic composition of the water taken up by plants. In this study, we measured the δD and δ18O of local precipitation, lake water, and xylem and leaf water from different plant species, seasons and sites with varying distances to Lake Challa. We use these data to set up a local meteoric water line (LMWL), and to assess spatial and temporal patterns of water utilization by local plants. Our data show a seasonal change in water-isotope partitioning with plants tapping water from isotopically lighter water sources during the dry seasons, as indicated by more negative xylem δD values and higher offsets from precipitation (i.e. greater distances from the LMWL), therefore supporting the "two water worlds" hypothesis. Surprisingly, trees appear to preferentially exploit isotopically more enriched sources of soil water, suggesting shallower water sources, than shrubs. Plants located at the lake shore use a mixture of precipitation and lake water, reflected in enriched xylem δD values and in the intersection of 2H and 18O with the LMWL. Leaf-water

  12. Evaluation of early-season baculovirus treatment for suppression of Heliothis virescens and Helicouverpa zea (Lepidoptera: Noctuidae) over a wide area

    Treesearch

    Jane Leslie Hayes; Marion Bell

    1994-01-01

    Pheromone trap counts of F1 male cotton bollworm, Helicoverpa zea (Bodie), and tobacco budworm, Heliothis virescens (F1) were used to assess the effect of areawide suppression achieved by early-season application of a Heliocoverpa/Heliothis specific nuclear...

  13. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands.

    PubMed

    He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid

    2012-11-15

    Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. EFFECTS OF SEASONAL AND WATER QUALITY PARAMETERS ON OYSTERS (CRASSOSTREA VIRGINICA) AND ASSOCIATED FISH POPULATIONS.

    EPA Science Inventory

    Influence of water quality and seasonal changes on disease prevalence and intensity of Perkinsus marinus, gonadal condition, recruitment potential, growth of caged juvenile oysters, and habitat suitability of reefs for fishes and macrobenthic invertebrates were measured in Callos...

  15. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest.

    PubMed

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2013-07-01

    Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.

  16. Wet-dry seasonal and vertical geochemical variations in soil water and their driving forces under different land covers in southwest China karst

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Hu, Bill X.; Wu, Chuanhao; Xu, Kai

    2017-04-01

    Karst aquifers supply drinking water for 25% of the world's population, and they are, however, vulnerable to climate change. Bimonthly hydrochemical data in karst soil water samples from July 2010 to July 2011 were obtained to reveal the seasonal and vertical geochemical variations in soil water under five vegetation types in Qingmuguan, a small karst catchment in southwest China. Soil water chemistry was dominated by Ca2+, HCO3-, and SO42- because of the dissolution of limestone, dolomite, and gypsum minerals in the strata. The predominant hydrochemical types in soil water were Ca2+-HCO3-, Ca2+-SO42-, and mixed Ca2+-HCO3-SO42-. Ca2+ and HCO3- concentrations ranked in the following order: shrub land > dry land > afforestation farmland > bamboo land > grassland. In warm and wet seasons, the main ion concentrations in soil water from grasslands were low. Na+, K+, Ca2+, Mg2+, HCO3-, SO42-, and Cl- concentrations in soil water from other lands were high. An opposite trend was observed in cold and dry seasons. Marked seasonal variations were observed in Ca2+, HCO3-, and NO3- in soil water from dry land. The main ion concentrations in soil water from bamboo lands decreased as soil depth increased. By contrast, the chemistry of soil water from other lands increased as soil depth increased. Their ions were accumulated in depth. A consistent high and low variation between the main ions in soil water and the contents of carbonate and CO2 was found in the soil. Hydrochemical changes in soil water were regulated by the effects of dilution and soil CO2.

  17. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the

  18. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations

    NASA Technical Reports Server (NTRS)

    Forget, F.; Levrard, B.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Bibring, J. P.

    2005-01-01

    To better understand the behavior of the Mars CO2 ice seasonal polar caps, and in particular interpret the the Mars Express Omega observations of the recession of the northern seasonal cap, we present some simulations of the Martian Climate/CO2 cycle/ water cycle as modeled by the Laboratoire de Meteorologie Dynamique (LMD) global climate model.

  19. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  20. The impact of rainfall and seasonal variability on the removal of bacteria by a point-of-use drinking water treatment intervention in Chennai, India.

    PubMed

    MacDonald, Morgan C; Juran, Luke; Jose, Jincy; Srinivasan, Sekar; Ali, Syed I; Aronson, Kristan J; Hall, Kevin

    2016-01-01

    Point-of-use water treatment has received widespread application in the developing world to help mitigate waterborne infectious disease. This study examines the efficacy of a combined filter and chemical disinfection technology in removing bacterial contaminants, and more specifically changes in its performance resulting from seasonal weather variability. During a 12-month field trial in Chennai, India, mean log-reductions were 1.51 for E. coli and 1.67 for total coliforms, and the highest concentration of indicator bacteria in treated water samples were found during the monsoon season. Analysis of variance revealed significant differences in the microbial load of indicator organisms (coliforms and E. coli) between seasons, storage time since treatment (TST), and samples with and without chlorine residuals. Findings indicate that the bacteriological quality of drinking water treated in the home is determined by a complex interaction of environmental and sociological conditions. Moreover, while the effect of disinfection was independent of season, the impact of storage TST on water quality was found to be seasonally dependent.

  1. Season and preterm birth in Norway: A cautionary tale.

    PubMed

    Weinberg, Clarice R; Shi, Min; DeRoo, Lisa A; Basso, Olga; Skjærven, Rolv

    2015-06-01

    Preterm birth is a common, costly and dangerous pregnancy complication. Seasonality of risk would suggest modifiable causes. We examine seasonal effects on preterm birth, using data from the Medical Birth Registry of Norway (2,321,652 births), and show that results based on births are misleading and a fetuses-at-risk approach is essential. In our harmonic-regression Cox proportional hazards model we consider fetal risk of birth between 22 and 37 completed weeks of gestation. We examine effects of both day of year of conception (for early effects) and day of ongoing gestation (for seasonal effects on labour onset) as modifiers of gestational-age-based risk. Naïve analysis of preterm rates across days of birth shows compelling evidence for seasonality (P < 10(-152)). However, the reconstructed numbers of conceptions also vary with season (P < 10(-307)), confounding results by inducing seasonal variation in the age distribution of the fetal population at risk. When we instead properly treat fetuses as the individuals at risk, restrict analysis to pregnancies with relatively accurate ultrasound-based assessment of gestational age (available since 1998) and adjust for socio-demographic factors and maternal smoking, we find modest effects of both time of year of conception and time of year at risk, with peaks for early preterm near early January and early July. Analyses of seasonal effects on preterm birth are demonstrably vulnerable to confounding by seasonality of conception, measurement error in conception dating, and socio-demographic factors. The seasonal variation based on fetuses reveals two peaks for early preterm, coinciding with New Year's Day and the early July beginning of Norway's summer break, and may simply reflect a holiday-related pattern of unintended conception. Published by Oxford University Press on behalf of the International Epidemiological Association 2015. This work is written by a US Government employee and is in the public domain in

  2. Exploring the temporal effects of seasonal water availability on the snail kite of Florida: Part III

    USGS Publications Warehouse

    Mooij, Wolf M.; Martin, Julien; Kitchens, Wiley M.; DeAngelis, Donald L.

    2007-01-01

    The Florida snail kite (Rostrhamus sociabilis) is an endangered raptor that occurs as an isolated population, currently of about 2,000 birds, in the wetlands of southern and central Florida, USA. Its exclusive prey species, the apple snail (Pomacea paludosa) is strongly influenced by seasonal changes in water abundance. Droughts during the snail kite breeding season have a direct negative effect on snail kite survival and reproduction, but droughts are also needed to maintain aquatic vegetation types favorable to snail kite foraging for snails. We used a spatially explicit matrix model to explore the effects of temporal variation in water levels on the viability of the snail kite population under different temporal drought regimes in its wetland breeding habitat. We focused on three aspects of variations in water levels that were likely to affect kites: (1) drought frequency; (2) drought duration; and (3) drought timing within the year. We modeled a 31-year historical scenario using four different scenarios in which the average water level was maintained constant, but the amplitude of water level fluctuations was modified. Our results reveal the complexity of the effects of temporal variation in water levels on snail kite population dynamics. Management implications of these results are discussed. In particular, management decisions should not be based on annual mean water levels alone, but must consider the intra-annual variability.

  3. Effects of a Long-Term Disturbance on Arthropods and Vegetation in Subalpine Wetlands: Manifestations of Pack Stock Grazing in Early versus Mid-Season

    PubMed Central

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.

    2013-01-01

    Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response. PMID:23308297

  4. Effects of a long-term disturbance on arthropods and vegetation in subalpine wetlands: manifestations of pack stock grazing in early versus mid-season.

    PubMed

    Holmquist, Jeffrey G; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A

    2013-01-01

    Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response.

  5. Seasonal variation of acute gastro-intestinal illness by hydroclimatic regime and drinking water source: a retrospective population-based study.

    PubMed

    Galway, Lindsay P; Allen, Diana M; Parkes, Margot W; Takaro, Tim K

    2014-03-01

    Acute gastro-intestinal illness (AGI) is a major cause of mortality and morbidity worldwide and an important public health problem. Despite the fact that AGI is currently responsible for a huge burden of disease throughout the world, important knowledge gaps exist in terms of its epidemiology. Specifically, an understanding of seasonality and those factors driving seasonal variation remain elusive. This paper aims to assess variation in the incidence of AGI in British Columbia (BC), Canada over an 11-year study period. We assessed variation in AGI dynamics in general, and disaggregated by hydroclimatic regime and drinking water source. We used several different visual and statistical techniques to describe and characterize seasonal and annual patterns in AGI incidence over time. Our results consistently illustrate marked seasonal patterns; seasonality remains when the dataset is disaggregated by hydroclimatic regime and drinking water source; however, differences in the magnitude and timing of the peaks and troughs are noted. We conclude that systematic descriptions of infectious illness dynamics over time is a valuable tool for informing disease prevention strategies and generating hypotheses to guide future research in an era of global environmental change.

  6. Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Imanishi, Katsuya; Boreddy, S. K. R.; Nojiri, Yukihiro

    2015-05-01

    In order to assess the seasonal variability of atmospheric abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific and Sea of Japan, aerosol samples were collected along the longitudinal transacts during six cruises between Canada and Japan. The back trajectory analyses indicate that aerosol samples collected in winter and spring are influenced by the East Asian outflow, whereas summer and fall samples are associated with the pristine maritime air masses. Molecular distributions of water-soluble organics in winter and spring samples show the predominance of oxalic acid (C2) followed by succinic (C4) and malonic acids (C3). In contrast, summer and fall marine aerosols are characterized by the predominance of C3 over C4. Concentrations of dicarboxylic acids were higher over the Sea of Japan than the North Pacific. With a lack of continental outflow, higher concentrations during early summer are ascribed to atmospheric oxidation of organic precursors associated with high biological activity in the North Pacific. This interpretation is further supported by the high abundances of azelaic acid, which is a photochemical oxidation product of biogenic unsaturated fatty acids, over the Bering Sea in early summer when surface waters are characterized by high biological productivity. We found higher ratios of oxalic acid to pyruvic and glyoxylic acids (C2/Pyr and C2/ωC2) and glyoxal and methylglyoxal (C2/Gly and C2/MeGly) in summer and fall than in winter and spring, suggesting a production of C2 from the aqueous-phase oxidation of oceanic isoprene. In this study, dicarboxylic acids account for 0.7-38% of water-soluble organic carbon.

  7. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    USGS Publications Warehouse

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.

    2009-01-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  8. The influence of Critical Zone structure on runoff paths, seasonal water storage, and ecosystem composition

    NASA Astrophysics Data System (ADS)

    Hahm, W. J.; Dietrich, W. E.; Rempe, D.; Dralle, D.; Dawson, T. E.; Lovill, S.; Bryk, A.

    2017-12-01

    Understanding how subsurface water storage mediates water availability to ecosystems is crucial for elucidating linkages between water, energy, and carbon cycles from local to global scales. Earth's Critical Zone (the CZ, which extends from the top of the vegetation canopy downward to fresh bedrock) includes fractured and weathered rock layers that store and release water, thereby contributing to ecosystem water supplies, and yet are not typically represented in land-atmosphere models. To investigate CZ structural controls on water storage dynamics, we intensively studied field sites in a Mediterranean climate where winter rains arrive months before peak solar energy availability, resulting in strong summertime ecosystem reliance on stored subsurface water. Intra-hillslope and catchment-wide observations of CZ water storage capacity across a lithologic boundary in the Franciscan Formation of the Northern California Coast Ranges reveal large differences in the thickness of the CZ and water storage capacity that result in a stark contrast in plant community composition and stream behavior. Where the CZ is thick, rock moisture storage supports forest transpiration and slow groundwater release sustains baseflow and salmon populations. Where the CZ is thin, limited water storage is used by an oak savanna ecosystem, and streams run dry in summer due to negligible hillslope drainage. At both sites, wet season precipitation replenishes the dynamic storage deficit generated during the summer dry season, with excess winter rains exiting the watersheds via storm runoff as perched groundwater fracture flow at the thick-CZ site and saturation overland flow at the thin-CZ site. Annual replenishment of subsurface water storage even in severe drought years may lead to ecosystem resilience to climatic perturbations: during the 2011-2015 drought there was not widespread forest die-off in the study area.

  9. Strong seasonality of Bonamia sp. infection and induced Crassostrea ariakensis mortality in Bogue and Masonboro Sounds, North Carolina, USA.

    PubMed

    Carnegie, Ryan B; Stokes, Nancy A; Audemard, Corinne; Bishop, Melanie J; Wilbur, Ami E; Alphin, Troy D; Posey, Martin H; Peterson, Charles H; Burreson, Eugene M

    2008-07-01

    Asian oyster Crassostrea ariakensis is being considered for introduction to Atlantic coastal waters of the USA. Successful aquaculture of this species will depend partly on mitigating impacts by Bonamia sp., a parasite that has caused high C. ariakensis mortality south of Virginia. To better understand the biology of this parasite and identify strategies for management, we evaluated its seasonal pattern of infection in C. ariakensis at two North Carolina, USA, locations in 2005. Small (<50 mm) triploid C. ariakensis were deployed to upwellers on Bogue Sound in late spring (May), summer (July), early fall (September), late fall (November), and early winter (December) 2005; and two field sites on Masonboro Sound in September 2005. Oyster growth and mortality were evaluated biweekly at Bogue Sound, and weekly at Masonboro, with Bonamia sp. prevalence evaluated using parasite-specific PCR. We used histology to confirm infections in PCR-positive oysters. Bonamia sp. appeared in the late spring Bogue Sound deployment when temperatures approached 25 degrees C, six weeks post-deployment. Summer- and early fall-deployed oysters displayed Bonamia sp. infections after 3-4 weeks. Bonamia sp. prevalences were 75% in Bogue Sound, and 60% in Masonboro. While oyster mortality reached 100% in late spring and summer deployments, early fall deployments showed reduced (17-82%) mortality. Late fall and early winter deployments, made at temperatures <20 degrees C, developed no Bonamia sp. infections at all. Seasonal Bonamia sp. cycling, therefore, is influenced greatly by temperature. Avoiding peak seasonal Bonamia sp. activity will be essential for culturing C. ariakensis in Bonamia sp.-enzootic waters.

  10. Factors governing water condensation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Colburn, David S.; Pollack, J. B.; Haberle, Robert M.

    1988-01-01

    Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation.

  11. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    DOE PAGES

    Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.; ...

    2017-04-18

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less

  12. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less

  13. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    NASA Astrophysics Data System (ADS)

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.

    2017-05-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).

  14. Variation of levels and distribution of N-nitrosamines in different seasons in drinking waters of East China.

    PubMed

    Li, Ting; Yu, Dian; Xian, Qiming; Li, Aimin; Sun, Cheng

    2015-08-01

    We surveyed the occurrence of nine N-nitrosamine species in ten bottled drinking waters from supermarket and other water samples including raw waters, finished waters, and distribution system waters from nine municipal drinking water treatment plants in eight cities of Jiangsu Province, East China. N-nitrosodimethylamine (NDMA) was detected in one of ten bottled drinking water samples at concentration of 4.8 ng/L and N-nitrosomorpholine (NMor) was detected in four of the ten bottles with an average concentration and a standard deviation of 16 ± 15 ng/L. The levels of nitrosamines in the distribution system water samples collected during summer season ranged from below detection limit (BDL) to 5.4 ng/L for NDMA, BDL to 9.5 ng/L for N-nitrosomethylethylamine (NMEA), BDL to 2.7 ng/L for N-nitrosodiethylamine (NDEA) and BDL to 8.5 ng/L for N-nitrosopyrrolidine (NPyr). Samples of distribution system waters collected in winter season had levels of nitrosamines ranged from BDL to 45 ng/L for NDMA, BDL to 5.2 ng/L for NPyr, and BDL to 309 ng/L for N-nitrosopiperidine (NPip). A positive correlation of the concentration of NDMA as well as the total nine N-nitrosamines between finished waters and distribution system waters was observed. Both dissolved organic carbon and nitrite were found to correlate linearly with N-nitrosamine levels in raw waters.

  15. Gas exchange and water relations responses of spring wheat to full-season infrared warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semi-arid desert region of the Southwest USA. A Temperature Free-Air Controlled Enhancement (T-FACE) ap...

  16. Gas Exchange and Water Relations Responses of Spring Wheat to Full-Season Infrared Warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations were evaluated under full-season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free-air controlled enhancement (T-FACE) apparatus u...

  17. [Differences of inherent optical properties of inland lake water body in typical seasons].

    PubMed

    Sun, De-Yong; Li, Yun-Mei; Wang, Qiao; Le, Cheng-Fen; Huang, Chang-Chun; Wang, Li-Zhen

    2008-05-01

    Inherent optical property is one of the important properties of water body, which lays the foundation for the establishment of water color analytical models. By using quantity filter technology (QFT) and BB9 backscattering meter, the absorption coefficients of chromophoric dissolved organic matter (CDOM) and total suspended matters (TSM) and the backscattering coefficient of TSM in the water body at Meiliang Bay of Taihu Lake were measured in summer and winter. Based on the spectral comparison of the absorption and backscattering coefficients, their differences between the two seasons were demonstrated, and the reasons that caused these differences were also explored in the context of their relations to the changes in water quality. Consequently, water environment condition could be revealed by using the inherent optical property. The relationship between the backscattering coefficient and the TSM concentration was established, which could provide supporting coefficients to the analytical models to be developed.

  18. [Spatial and seasonal characterization of the drinking water from various sources in a peri-urban town of Salta].

    PubMed

    Rodriguez-Alvarez, María S; Moraña, Liliana B; Salusso, María M; Seghezzo, Lucas

    Drinking water monitoring plans are important to characterize both treated and untreated water used for drinking purposes. Access to drinking water increased in recent years as a response to the Millennium Development Goals set for 2015. The new Sustainable Development Goals aim to ensure universal access to safe drinking water by 2030. Within the framework of these global goals, it is crucial to monitor local drinking water systems. In this paper, treated and untreated water from different sources currently consumed in a specific town in Salta, northern Argentina, was thoroughly assessed. Monitoring extended along several seasons and included the physical, chemical and microbiological variables recommended by the Argentine Food Code. On the one hand, treated water mostly complies with these standards, with some non-compliances detected during the rainy season. Untreated water, on the other hand, never meets microbiological standards and is unfit for human consumption. Monitoring seems essential to detect anomalies and help guarantee a constant provision of safe drinking water. New treatment plants are urgently needed to expand the water grid to the entire population. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Seasonal and Spatial Dynamics of Gas Ebullition in a Temperate Water-Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Tušer, Michal; Picek, TomáÅ.¡; Sajdlová, Zuzana; Jůza, TomáÅ.¡; Muška, Milan; Frouzová, Jaroslava

    2017-10-01

    Gas ebullition of river impoundments plays an increasingly significant role, particularly in transporting methane CH4 from their sediments to the atmosphere, and contributing to the global carbon budget and global warming. Quantifying stochastic and episodic nature of gas ebullition is complicated especially when conventionally conducted by using coverage-limited gas traps. Current knowledge of seasonality in a reservoir's gas ebullition is lacking in the literature. For this reason, advanced acoustic surveying was intensively applied to determine spatiotemporal distributions of gas ebullition in a European water-storage reservoir for two years. Additionally, the sampling was accompanied with gas collecting for analyzing gas composition. The gas released from the reservoir was primarily composed of CH4 (on average 52%, up to 94%). The longitudinal distribution of gas ebullition was mainly determined by a proximity to the river inflow as a source of organic matter. A magnitude of ebullitive fluxes within the reservoir varied up to 1,300 mL m-2 d-1 (30 mmol CH4 m-2 d-1). The most significant period of ebullition has turned out to be in fall, on average reaching a sevenfold ebullitive flux (70 mL m-2 d-1, 1.6 mmol CH4 m-2 d-1) higher than in the rest of the season. A substantial contribution to the fall peak was induced by an expansion of gas ebullition into greater depths, covering two thirds of the reservoir in late fall. The study demonstrates that the ebullitive fluxes of the temperate water storage reservoir were correlated to season, depth, and inflow proximity.

  20. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    USDA-ARS?s Scientific Manuscript database

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  1. A simple framework to analyze water constraints on seasonal transpiration in rubber tree (Hevea brasiliensis) plantations

    PubMed Central

    Sopharat, Jessada; Gay, Frederic; Thaler, Philippe; Sdoodee, Sayan; Isarangkool Na Ayutthaya, Supat; Tanavud, Charlchai; Hammecker, Claude; Do, Frederic C.

    2015-01-01

    Climate change and fast extension in climatically suboptimal areas threaten the sustainability of rubber tree cultivation. A simple framework based on reduction factors of potential transpiration was tested to evaluate the water constraints on seasonal transpiration in tropical sub-humid climates, according pedoclimatic conditions. We selected a representative, mature stand in a drought-prone area. Tree transpiration, evaporative demand and soil water availability were measured every day over 15 months. The results showed that basic relationships with evaporative demand, leaf area index and soil water availability were globally supported. However, the implementation of a regulation of transpiration at high evaporative demand whatever soil water availability was necessary to avoid large overestimates of transpiration. The details of regulation were confirmed by the analysis of canopy conductance response to vapor pressure deficit. The final objective of providing hierarchy between the main regulation factors of seasonal and annual transpiration was achieved. In the tested environmental conditions, the impact of atmospheric drought appeared larger importance than soil drought contrary to expectations. Our results support the interest in simple models to provide a first diagnosis of water constraints on transpiration with limited data, and to help decision making toward more sustainable rubber plantations. PMID:25610443

  2. James Madison and a Shift in Precipitation Seasonality

    NASA Astrophysics Data System (ADS)

    Druckenbrod, D. L.; Mann, M. E.; Stahle, D. W.; Cleaveland, M. K.; Therrell, M. D.; Shugart, H. H.

    2001-12-01

    An eighteen-year meteorological diary and tree ring data from James Madison's Montpelier plantation provide a consistent reconstruction of early summer and prior fall rainfall for the 18th Century Virginia piedmont. The Madison meteorological diary suggests a seasonal shift in monthly rainfall towards an earlier wet season relative to 20th Century norms. Furthermore, dendroclimatic reconstructions of early summer and prior fall rainfall reflect this shift in the seasonality of summer rainfall. The most pronounced early summer drought during the Madison diary period is presented as a case study. This 1792 drought occurs during one of the strongest El Niño events on record and is highlighted in the correspondence of James Madison.

  3. Water, plants, and early human habitats in eastern Africa.

    PubMed

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa--Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water-lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C(4)-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm · y(-1) and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change.

  4. Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan

    USGS Publications Warehouse

    Stottlemyer, R.; Toczydlowski, D.

    1999-01-01

    We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering

  5. Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1973-01-01

    A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.

  6. Interdisciplinary class on the asymmetric seasonal march from autumn to the next spring around Japan at Okayama University (Joint activity with art and music expressions on the seasonal feeling)

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Kato, Haruko; Akagi, Rikako; Haga, Yuichi

    2015-04-01

    There are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling" around there. For example, the "wintertime pressure pattern" begins to prevail already from November due to the seasonal development of the Siberian Air mass and the Siberian High. The intermittent rainfall due to the shallow cumulus clouds in such situation is called "Shi-gu-re" in Japanese (consisting of the two Chinese characters which mean for "sometimes" (or intermittent) and "rain", respectively) and is often used for expression of the "seasonal feeling" in the Japanese classic literature (especially we can see in the Japanese classic poems called "Wa-Ka"). However, as presented by Kato et al. (EGU2014-3708), while the appearance frequency of the "wintertime pressure pattern" around November (early winter) and in early March (early spring) is nearly the same as each other, air temperature is rather lower in early spring. The solar radiation, however, is rather stronger in early spring. Such asymmetric seasonal cycle there would result in rather different "seasonal feeling" between early winter and early spring. Inversely, such difference of the "seasonal feelings" might be utilized for deeper understanding of the seasonal cycle of the climate system around Japan. As such, the present study reports the joint activity of the meteorology with music and art on these topics mainly in the class at the Faculty of Education, Okayama University. In that class, the students tried firstly the expression of the both selected stages in early winter and early spring, respectively, by combination of the 6 colors students selected from the 96 colored papers, based on the Johannes Itten's (1888-1967) exercise of the representation of the four seasons. Next, the students' activity on the music expression of what they firstly presented by the colors was

  7. Modified water regimes affect photosynthesis, xylem water potential, cambial growth and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae)

    Treesearch

    James P. Dunn; Peter L. Jr. Lorio

    1993-01-01

    We modified soil water supply to two groups of juvenile loblolly pines, Pinus taeda L., by sheltering or irrigating root systems in early summer or in later summer and measured oleoresin flow (primary defense), net photosynthesis, xylem water potential, and cambial growth throughout the growing season. When consistent significant differences in...

  8. Global-scale water circulation in the Earth's mantle: Implications for the mantle water budget in the early Earth

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Spiegelman, Marc W.

    2017-04-01

    We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.

  9. Strategies to overcome seasonal anestrus in water buffalo.

    PubMed

    de Carvalho, Nelcio Antonio Tonizza; Soares, Julia Gleyci; Baruselli, Pietro Sampaio

    2016-07-01

    Reproductive seasonality in buffalo (Bubalus bubalis) is characterized by behavioral, endocrine, and reproductive changes that occur over distinct periods of the year. During the nonbreeding season (spring and summer), the greater light-dark ratio (long days) suppresses estrus behavior and the occurrence of ovulation. Anestrous buffaloes have insufficient pulsatile of LH to support the final stages of follicular development, and subsequently, estrus behavior and ovulation do not occur, limiting reproductive efficiency, especially in artificial insemination (AI) programs. A number of therapeutic strategies designed to synchronize follicular wave emergence and ovulation have allowed for the use of AI throughout the year, overcoming seasonal anestrus in buffalo. These therapies also improve reproductive performance by increasing the service rate and pregnancy per AI in buffalo herds, regardless of reproductive seasonality. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Jerry M; Baskin, Carol C

    2014-01-01

    Seed morph, abiotic conditions and time of germination can affect plant fitness, but few studies have tested their combined effects on plasticity of plant life history traits. Thus, we tested the hypothesis that seed morph, germination season and watering regime influence phenotypic expression of post-germination life history traits in the diaspore-heteromorphic cold desert winter annual/spring ephemeral Diptychocarpus strictus. The two seed morphs were sown in watered and non-watered plots in late summer, and plants derived from them were watered or not-watered throughout the study. Seed morph did not affect phenology, growth and morphology, survival, dry mass accumulation and allocation or silique and seed production. Seeds in watered plots germinated in autumn (AW) and spring (SW) but only in spring for non-watered plots (SNW). A high percentage of AW, SW and SNW plants survived and reproduced, but flowering date and flowering period of autumn- vs. spring-germinated plants differed. Dry mass also differed with germination season/watering regime (AW > SW > SNW). Number of siliques and seeds increased with plant size (AW > SW > SNW), whereas percent dry mass allocated to reproduction was higher in small plants: SNW > SW > AW. Thus, although seed morph did not affect the expression of life history traits, germination season and watering regime significantly affected phenology, plant size and accumulation and allocation of biomass to reproduction. Flexibility throughout the life cycle of D. strictus is an adaptation to the variation in timing and amount of rainfall in its cold desert habitat.

  11. Longitudinal study of microbial diversity and seasonality in the Mexico City metropolitan area water supply system.

    PubMed

    Mazari-Hiriart, Marisa; López-Vidal, Yolanda; Ponce-de-León, Sergio; Calva, Juan José; Rojo-Callejas, Francisco; Castillo-Rojas, Gonzalo

    2005-09-01

    In the Mexico City metropolitan area (MCMA), 70% of the water for 18 million inhabitants is derived from the Basin of Mexico regional aquifer. To provide an overview of the quality of the groundwater, a longitudinal study was conducted, in which 30 sites were randomly selected from 1,575 registered extraction wells. Samples were taken before and after chlorine disinfection during both the rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci, and Vibrio spp.), the presence of Helicobacter pylori, and physicochemical parameters, including the amount of trihalomethanes (THMs), were determined. Although microorganisms and inorganic and organic compounds were evident, they did not exceed current permissible limits. Chlorine levels were low, and the bacterial counts were not affected by chlorine disinfection. Eighty-four bacterial species from nine genera normally associated with fecal contamination were identified in water samples. H. pylori was detected in at least 10% of the studied samples. About 40% of the samples surpassed the THM concentration allowed by Mexican and U.S. regulations, with levels of chloroform being high. The quality of the water distributed to the MCMA varied between the rainy and dry seasons, with higher levels of pH, nitrates, chloroform, bromodichloromethane, total organic carbon, and fecal streptococci during the dry season. This study showed that the groundwater distribution system is susceptible to contamination and that there is a need for a strict, year-round disinfection strategy to ensure adequate drinking-water quality. This situation in one of the world's megacities may reflect what is happening in large urban centers in developing countries which rely on a groundwater supply.

  12. Longitudinal Study of Microbial Diversity and Seasonality in the Mexico City Metropolitan Area Water Supply System

    PubMed Central

    Mazari-Hiriart, Marisa; López-Vidal, Yolanda; Ponce-de-León, Sergio; Calva, Juan José; Rojo-Callejas, Francisco; Castillo-Rojas, Gonzalo

    2005-01-01

    In the Mexico City metropolitan area (MCMA), 70% of the water for 18 million inhabitants is derived from the Basin of Mexico regional aquifer. To provide an overview of the quality of the groundwater, a longitudinal study was conducted, in which 30 sites were randomly selected from 1,575 registered extraction wells. Samples were taken before and after chlorine disinfection during both the rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci, and Vibrio spp.), the presence of Helicobacter pylori, and physicochemical parameters, including the amount of trihalomethanes (THMs), were determined. Although microorganisms and inorganic and organic compounds were evident, they did not exceed current permissible limits. Chlorine levels were low, and the bacterial counts were not affected by chlorine disinfection. Eighty-four bacterial species from nine genera normally associated with fecal contamination were identified in water samples. H. pylori was detected in at least 10% of the studied samples. About 40% of the samples surpassed the THM concentration allowed by Mexican and U.S. regulations, with levels of chloroform being high. The quality of the water distributed to the MCMA varied between the rainy and dry seasons, with higher levels of pH, nitrates, chloroform, bromodichloromethane, total organic carbon, and fecal streptococci during the dry season. This study showed that the groundwater distribution system is susceptible to contamination and that there is a need for a strict, year-round disinfection strategy to ensure adequate drinking-water quality. This situation in one of the world's megacities may reflect what is happening in large urban centers in developing countries which rely on a groundwater supply. PMID:16151096

  13. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system

    PubMed Central

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-01-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems. PMID:26251872

  14. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system.

    PubMed

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-03-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a 'core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.

  15. Seasonal changes in ground-water levels in the shallow aquifer near Hagerman and the Pecos River, Chaves County, New Mexico

    USGS Publications Warehouse

    Garn, H.S.

    1988-01-01

    The Pecos River near Hagerman in Chaves County, New Mexico, historically has been a gaining stream. In 1938, the slope of the water table in the shallow alluvial aquifer near Hagerman was toward the Pecos River. By 1950, a large water-table depression had formed in the alluvial aquifer southwest of Hagerman. Continued enlargement of this depression could reverse the direction of groundwater flow to the Pecos River. Water levels were measured during 1981-85 in wells along a section extending from the Pecos River to a point within the depression. Although the water-table depression has not caused a perennial change in direction of groundwater flow, it has caused a seasonal reversal in the slope of the water table between the river and the depression during the growing season when pumpage from the shallow aquifer is the greatest. (USGS)

  16. Seasonal temperature and precipitation recorded in the intra-annual oxygen isotope pattern of meteoric water and tree-ring cellulose

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Jahren, A. Hope

    2015-10-01

    Modern and ancient wood is a valuable terrestrial record of carbon ultimately derived from the atmosphere and oxygen inherited from local meteoric water. Many modern and fossil wood specimens display rings sufficiently thick for intra-annual sampling, and analytical techniques are rapidly improving to allow for precise carbon and oxygen isotope measurements on very small samples, yielding unprecedented resolution of seasonal isotope records. However, the interpretation of these records across diverse environments has been problematic because a unifying model for the quantitative interpretation of seasonal climate parameters from oxygen isotopes in wood is lacking. Towards such a model, we compiled a dataset of intra-ring oxygen isotope measurements on modern wood cellulose (δ18Ocell) from 33 globally distributed sites. Five of these sites represent original data produced for this study, while the data for the other 28 sites were taken from the literature. We defined the intra-annual change in oxygen isotope value of wood cellulose [Δ(δ18Ocell)] as the difference between the maximum and minimum δ18Ocell values determined within the ring. Then, using the monthly-resolved dataset of the oxygen isotope composition of meteoric water (δ18OMW) provided by the Global Network of Isotopes in Precipitation database, we quantified the empirical relationship between the intra-annual change in meteoric water [Δ(δ18OMW)] and Δ(δ18Ocell). We then used monthly-resolved datasets of temperature and precipitation to develop a global relationship between Δ(δ18OMW) and maximum/minimum monthly temperatures and winter/summer precipitation amounts. By combining these relationships we produced a single equation that explains much of the variability in the intra-ring δ18Ocell signal through only changes in seasonal temperature and precipitation amount (R2 = 0.82). We show how our recent model that quantifies seasonal precipitation from intra-ring carbon isotope profiles can be

  17. Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Chang, K. I.; Nam, S.

    2016-02-01

    Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.

  18. The comparative analysis of pre-flood season precipitation and water vapor transportation over guangdong before and after “Hiatus”

    NASA Astrophysics Data System (ADS)

    Fan, Lingli

    2018-02-01

    Relation between pre-flood season precipitation and water vapor transport in Guangdong was analysed by using the monthly observed precipitation data, reanalysis data of ERA, NCEP/NCAR, and OAFlux during 1979-2015, and the differences between before/after global warming “hiatus” were studied. Results showed that, after “hiatus”, during the pre-flood season, skin-temperature, evaporation, and the absolute humidity over the ocean near to Southern China was decreasing, and over land was increasing. So, the water cycle over the ocean had slowed down and over land had speed up. The absolute humidity difference between the ocean and the land was reduced. However, at the same time, the total wind speed in Southern China had decreased. So, the water vapor transport from the ocean to the land had reduced. The Eastern Guangdong had an anomalous convergence of meridional water vapor transport, led to increased precipitation; but in Western Guangdong, there was no meridional water vapor transport, so precipitation had a decrease.

  19. Seasonal and spatial variations of water quality and trophic status in Daya Bay, South China Sea.

    PubMed

    Wu, Mei-Lin; Wang, You-Shao; Wang, Yu-Tu; Sun, Fu-Lin; Sun, Cui-Ci; Cheng, Hao; Dong, Jun-De

    2016-11-15

    Coastal water quality and trophic status are subject to intensive environmental stress induced by human activities and climate change. Quarterly cruises were conducted to identify environmental characteristics in Daya Bay in 2013. Water quality is spatially and temporally dynamic in the bay. Cluster analysis (CA) groups 12 monitoring stations into two clusters. Cluster I consists of stations (S1, S2, S4-S7, S9, and S12) located in the central, eastern, and southern parts of the bay, representing less polluted regions. Cluster II includes stations (S3, S8, S10, and S11) located in the western and northern parts of the bay, indicating the highly polluted regions receiving a high amount of wastewater and freshwater discharge. Principal component analysis (PCA) identified that water quality experience seasonal change (summer, winter, and spring-autumn seasons) because of two monsoons in the study area. Eutrophication in the bay is graded as high by Assessment of Estuarine Trophic Status (ASSETS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Watermore » was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.« less

  1. [Seasonal variation of Tamarix ramosissima and Populus euphratica water potentials in southern fringe of Taklamakan Desert].

    PubMed

    Zeng, Fanjiang; Zhang, Ximing; Li, Xiangyi; Foetzki, Andrea; Runge, Michael

    2005-08-01

    The measurement of the seasonal and diurnal variations of Tamarix ramosissima and Populus euphratica water potentials in the southern fringe of Taklamakan Desert indicated that there was no apparent water stress for the two species during their growth period, with little change of predawn water potential and some extent decrease of midday water potential. Irrigation once or thinning had no significant effects on the water status of the plants, while groundwater appeared to be a prerequisite for the survival and growth of these species. It is very important to ensure a stable groundwater table for the restoration of Tamarix ramosissima and Populus euphratica in this area.

  2. Water quality of small seasonal wetlands in the Piedmont ecoregion, South Carolina, USA: Effects of land use and hydrological connectivity.

    PubMed

    Yu, Xubiao; Hawley-Howard, Joanna; Pitt, Amber L; Wang, Jun-Jian; Baldwin, Robert F; Chow, Alex T

    2015-04-15

    Small, shallow, seasonal wetlands with short hydroperiod (2-4 months) play an important role in the entrapment of organic matter and nutrients and, due to their wide distribution, in determining the water quality of watersheds. In order to explain the temporal, spatial and compositional variation of water quality of seasonal wetlands, we collected water quality data from forty seasonal wetlands in the lower Blue Ridge and upper Piedmont ecoregions of South Carolina, USA during the wet season of February to April 2011. Results indicated that the surficial hydrological connectivity and surrounding land-use were two key factors controlling variation in dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) in these seasonal wetlands. In the sites without obvious land use changes (average developed area <0.1%), the DOC (p < 0.001, t-test) and TDN (p < 0.05, t-test) of isolated wetlands were significantly higher than that of connected wetlands. However, this phenomenon can be reversed as a result of land use changes. The connected wetlands in more urbanized areas (average developed area = 12.3%) showed higher concentrations of dissolved organic matter (DOM) (DOC: 11.76 ± 6.09 mg L(-1), TDN: 0.74 ± 0.22 mg L(-1), mean ± standard error) compared to those in isolated wetlands (DOC: 7.20 ± 0.62 mg L(-1), TDN: 0.20 ± 0.08 mg L(-1)). The optical parameters derived from UV and fluorescence also confirmed significant portions of protein-like fractions likely originating from land use changes such as wastewater treatment and livestock pastures. The average of C/N molar ratios of all the wetlands decreased from 77.82 ± 6.72 (mean ± standard error) in February to 15.14 ± 1.58 in April, indicating that the decomposition of organic matter increased with the temperature. Results of this study demonstrate that the water quality of small, seasonal wetlands has a direct and close association with the surrounding environment. Copyright © 2015 Elsevier Ltd. All rights

  3. Water, plants, and early human habitats in eastern Africa

    PubMed Central

    Magill, Clayton R.; Ashley, Gail M.; Freeman, Katherine H.

    2013-01-01

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa—Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water–lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C4-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm·y−1 and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change. PMID:23267102

  4. a Process-Based Drought Early Warning Indicator for Supporting State Drought Mitigation Decision

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, D. N.; Pu, B.

    2014-12-01

    Drought prone states such as Texas requires creditable and actionable drought early warning ranging from seasonal to multi-decadal scales. Such information cannot be simply extracted from the available climate prediction and projections because of their large uncertainties at regional scales and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA national multi-models ensemble experiment (NMME) and the IPCC AR5 (CMIP5) models, are much more reliable for winter and spring than for the summer season for the US Southern Plains. They also show little connection between the droughts in winter/spring and those in summer, in contrast to the observed dry memory from spring to summer over that region. To mitigate the weakness of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies. Based on these key processes and related fields, we have developed a multivariate principle component statistical model to provide a probabilistic summer drought early warning indicator, using the observed or predicted climate conditions in winter and spring on seasonal scale and climate projection for the mid-21stcentury. The summer drought early warning indicator is constructed in a similar way to the NOAA probabilistic predictions that are familiar to water resource managers. The indicator skill is assessed using the standard NOAA climate prediction assessment tools, i.e., the two alternative forced choice (2AFC) and the Receiver Operating Characteristic (ROC). Comparison with long-term observations suggest that this summer drought early warning indicator is able to capture nearly all the strong summer droughts and outperform the dynamic prediction in this regard over the US Southern Plains. This early warning indicator has been used by the state water agency in May 2014 in briefing the state

  5. Seasonal Oxygen Isotopic Variations in Marine Waters from the Caribbean and Pacific Coasts of Panama

    NASA Astrophysics Data System (ADS)

    Robbins, J. A.; Grossman, E. L.; Morales, J.; Thompson, R.; O'Dea, A.

    2012-12-01

    Stable isotopic studies of ancient tropical marine environments require a much more thorough understanding of the relative influences of freshening and upwelling on isotopic records than currently exists. To this aim we conducted twice-weekly δ18O and salinity measurements on waters collected from marine laboratories on opposite sides of the Isthmus of Panama; Naos in the Gulf of Panama (Tropical Eastern Pacific) and Galeta in the southwestern Caribbean (SWC). Data reveal the strong transition from dry to rainy season in the Gulf of Panama where upwelling in the dry-season increases coastal salinity (up to 34.4 psu) and δ18O values (-1.0 to 0.0‰), whilst the rainy season lowers marine δ18O values (as low as -1.6‰) due to the 2-3 fold increase in rainfall. In contrast, the SWC experiences no upwelling, but does reveal a significant amount of freshening caused by increasing rainfall at the transition from boreal spring to summer. Despite the greater disparity in the average rainfall between dry and wet seasons near Galeta (SWC) compared with the Gulf of Panama, a decrease in marine δ18O of only ~0.5‰ on average was found between seasons for SWC waters. The higher salinity and higher δ18O values in the coastal waters of the SWC are due in part to large scale climatic differences principally that the Caribbean experiences higher evaporation than rainfall. The relationship between salinity and δ18O in the Gulf of Panama is strong (R2=0.87; p<0.001), but is much less pronounced in the SWC (R2=0.38; p<0.001). Regression lines for these data describe the local relationship between salinity and δ18O. The slope and intercept (freshwater end-member) derived for the SWC (0.15±0.02‰/psu; -4.56±0.77‰) are similar to those from Fairbanks et al. [1] for the Atlantic as a whole (0.19‰/psu; -5.97‰) and essentially identical to those from Legrande and Schmidt [2] for the "Tropical Atlantic" (0.15±0.01‰/psu; -4.61±0.30‰). Gulf of Panama samples share a

  6. Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania

    USGS Publications Warehouse

    Otte, Insa; Detsch, Florian; Gutlein, Adrian; Scholl, Martha A.; Kiese, Ralf; Appelhans, Tim; Nauss, Thomas

    2017-01-01

    To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n = 2,140, R2 = .91, p < .001. We investigated the precipitation-type-specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = −0.11‰ × 100 m−1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south- and north-easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of dexcess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.

  7. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  8. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland.

    PubMed

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min-1h) over selected time scales. In addition, the stable isotopes of water (δD and δ(18)O-H2O) as well as those of nitrate (δ(15)N-NO3(-) and δ(18)O-NO3(-)) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes--mainly photosynthesis and respiration--were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal changes. High

  9. Seasonal characteristics of water exchange in Beibu Gulf based on a particle tracking model

    NASA Astrophysics Data System (ADS)

    Wang, L.; Pan, W.; Yan, X.

    2016-12-01

    A lagrangian particle tracking model coupled with a three-dimensional Marine Environmental Committee Ocean Model (MEC) is used to study the transport and seasonal characteristics of water exchange in Beibu Gulf. The hydrodynamic model (MEC), which is forced with the daily surface and lateral boundary fluxes, as well as tidal harmonics and monthly climatological river discharges, is applied to simulate the flow field in the gulf during 2014. Using these results, particle tracking method which includes tidal advection and random walk in the horizontal is used to determine the residence times of sub regions within the gulf in response of winter and summer wind forcing. The result shows water exchange processes in the gulf have a similar tendency with seasonal circulation structure. During the sourthwestly prevailing wind in summer, water particles are traped within the gulf that considerably increases the residence time of each sub region. On the contrary, the presence of strong northeastly prevailing wind in winter drives particles to move cyclonicly leading to shorter residence times and rather active water exchanges among sub regions. Similarly, particle tracking is applied to investigate the water transport in Beibu Gulf. As Qiongzhou Strait and the wide opening in the south of the gulf are two significant channels connecting with the open ocean, continuous particle releases are simulated to quantify the influence range and the pathways of these sources water flowing into Beibu Gulf. The results show that water particles originated from Qiongzhou Strait are moving westward due to the year-round strong westward flow transportation. Influencing range in the north of the Beibu Gulf is enlarged by winter northeastly wind, however, it is blocked to the Leizhou Peninsula coastal region by summer westly wind. In the south opening, water particles are transported northward into the gulf along Hainan Island and flushed from Vietnam coastal region to the ocean rapidly by

  10. Seasonal variation of early diagenesis and greenhouse gas production in coastal sediments of Cadiz Bay: Influence of anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Burgos, Macarena; Ortega, Teodora; Bohórquez, Julio; Corzo, Alfonso; Rabouille, Christophe; Forja, Jesús M.

    2018-01-01

    Greenhouse gas production in coastal sediments is closely associated with the early diagenesis processes of organic matter and nutrients. Discharges from anthropogenic activities, particularly agriculture, fish farming and waste-water treatment plants supply large amounts of organic matter and inorganic nutrients that affect mineralization processes. Three coastal systems of Cadiz Bay (SW Spain) (Guadalete River, Rio San Pedro Creek and Sancti Petri Channel) were chosen to determine the seasonal variation of organic matter mineralization. Two sampling stations were selected in each system; one in the outer part, close to the bay, and another more inland, close to a discharge point of effluent related to anthropogenic activities. Seasonal variation revealed that metabolic reactions were driven by the annual change of temperature in the outer station of the systems. In contrast, these reactions depended on the amount of organic matter reaching the sediments in the outermost part of the systems, which was higher during winter. Oxygen is consumed in the first 0.5 cm indicating that suboxic and anoxic processes, such as denitrification, sulfate reduction and methanogenesis are important in these sediments. Sulfate reduction seems to account for most of the mineralization of organic matter at the marine stations, while methanogenesis is the main pathway at the sole freshwater station of this study, located inside the estuary of the Guadalete River, because of the lack of sulfate as electron acceptor. Results point to denitrification being the principal process of N2O formation. Diffusive fluxes varied between 2.6 and 160 mmol m-2 d-1 for dissolved inorganic carbon (DIC); 0.9 and 164.3 mmol m-2 d-1 for TA; 0.8 and 17.4 μmol m-2 d-1 for N2O; and 0.1 μmol and 13.1 mmol m-2 d-1 for CH4, indicating that these sediments act as a source of greenhouse gases to the water column.

  11. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression.

    PubMed

    Chen, Qiang; Mei, Kun; Dahlgren, Randy A; Wang, Ting; Gong, Jian; Zhang, Minghua

    2016-12-01

    As an important regulator of pollutants in overland flow and interflow, land use has become an essential research component for determining the relationships between surface water quality and pollution sources. This study investigated the use of ordinary least squares (OLS) and geographically weighted regression (GWR) models to identify the impact of land use and population density on surface water quality in the Wen-Rui Tang River watershed of eastern China. A manual variable excluding-selecting method was explored to resolve multicollinearity issues. Standard regression coefficient analysis coupled with cluster analysis was introduced to determine which variable had the greatest influence on water quality. Results showed that: (1) Impact of land use on water quality varied with spatial and seasonal scales. Both positive and negative effects for certain land-use indicators were found in different subcatchments. (2) Urban land was the dominant factor influencing N, P and chemical oxygen demand (COD) in highly urbanized regions, but the relationship was weak as the pollutants were mainly from point sources. Agricultural land was the primary factor influencing N and P in suburban and rural areas; the relationship was strong as the pollutants were mainly from agricultural surface runoff. Subcatchments located in suburban areas were identified with urban land as the primary influencing factor during the wet season while agricultural land was identified as a more prevalent influencing factor during the dry season. (3) Adjusted R 2 values in OLS models using the manual variable excluding-selecting method averaged 14.3% higher than using stepwise multiple linear regressions. However, the corresponding GWR models had adjusted R 2 ~59.2% higher than the optimal OLS models, confirming that GWR models demonstrated better prediction accuracy. Based on our findings, water resource protection policies should consider site-specific land-use conditions within each watershed to

  12. Large seasonal swings in leaf area of Amazon rainforests

    PubMed Central

    Myneni, Ranga B.; Yang, Wenze; Nemani, Ramakrishna R.; Huete, Alfredo R.; Dickinson, Robert E.; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I.; Saatchi, Sasan S.; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V.; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L.; Morisette, Jeffrey T.; Vermote, Eric F.; Roy, David P.; Wolfe, Robert E.; Friedl, Mark A.; Running, Steven W.; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V.

    2007-01-01

    Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests. PMID:17360360

  13. Assessment of Long-term Irrigation Water Availability over Highly Managed and Economically Important Agricultural Region of the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Rushi, B. R.; Malek, K.; Rajagopalan, K.; Hall, S.; Kruger, C. E.; Brady, M.; Stockle, C.; Adam, J. C.

    2016-12-01

    Agriculture contributes about 12% in Washington State's economy. Water diverted from the Columbia River Basin (CRB) is the major source of irrigation water in this region. Although agriculture accounts for 80% of this state's total water withdrawal, this sector is the first to be curtailed (i.e., irrigators do not receive their full water right allocation) while there is a water shortage. This snow dominated region is already threatened by climate change. A robust regional-scale analysis of water supply, demand, unmet crop water requirements and associated impacts is critical to develop sustainable water resources plans under climate change. This study uses a dynamically-coupled hydrologic and cropping systems model, VIC-CropSyst, a reservoir management model, ColSim, and a water curtailment model to simulate changes in surface water irrigation demand projecting 30 years in the future in response to various climate, management and economic scenarios. Five downscaled climate scenarios for each of the IPCC's Representative Concentration Pathway 4.5 (rcp4.5) and 8.5 (rcp8.5) are selected in a way that they capture the projected spread of temperature and precipitation changes for the area. Results show an increase in total water availability across the CRB. Water availability is predicted to shift earlier in the season due to warming-induced snowpack reductions. Agricultural water demand is projected to decrease by approximately 5.0% (±0.7%) and 6.9% (±0.7%) respectively across the entire CRB and the Washington portion of the CRB by 2035. Irrigation demand is expected to shift earlier in the season along with water availability. This shift in demand may cause higher amount of early season irrigation water curtailment in some highly managed watersheds of the CRB in Washington State. This reduction and shift in demand is due to a warmer climate and an elevated atmospheric CO2 level which are leading to a shorter but early starting growing season. This study does not

  14. Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data

    NASA Technical Reports Server (NTRS)

    Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.

    2006-01-01

    GRACE satellite gravity data is used to estimate terrestrial (surface plus ground) water storage within the Congo Basin in Africa for the period of April, 2002 - May, 2006. These estimates exhibit significant seasonal (30 +/- 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of approximately 280 km(exp 3) of water over the 50-month span of data. We also combine GRACE and precipitation data set (CMAP, TRMM) to explore the relative contributions of the source term to the seasonal hydrological balance within the Congo Basin. We find that the seasonal water storage tends to saturate for anomalies greater than 30-44 mm of equivalent water thickness. Furthermore, precipitation contributed roughly three times the peak water storage after anomalously rainy seasons, in early 2003 and 2005, implying an approximately 60-70% loss from runoff and evapotranspiration. Finally, a comparison of residual land water storage (monthly estimates minus best-fitting trends) in the Congo and Amazon Basins shows an anticorrelation, in agreement with the 'see-saw' variability inferred by others from runoff data.

  15. Influence of longer dry seasons in the Southern Amazon on patterns of water vapor transport over northern South America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Agudelo, Jhoana; Arias, Paola A.; Vieira, Sara C.; Martínez, J. Alejandro

    2018-06-01

    Several studies have identified a recent lengthening of the dry season over the southern Amazon during the last three decades. Some explanations to this lengthening suggest the influence of changes in the regional circulation over the Atlantic and Pacific oceans, whereas others point to the influence of vegetation changes over the Amazon rainforest. This study aims to understand the implications of more frequent long dry seasons in this forest on atmospheric moisture transport toward northern South America and the Caribbean region. Using a semi-Langrangian model for water vapor tracking, results indicate that longer dry seasons in the southern Amazon relate to reductions of water vapor content over the southern and eastern Amazon basin, due to significant reductions of evaporation and recycled precipitation rates in these regions, especially during the transition from dry to wet conditions in the southern Amazon. On the other hand, longer dry seasons also relate to enhanced atmospheric moisture content over the Caribbean and northern South America regions, mainly due to increased contributions of water vapor from oceanic regions and the increase of surface moisture convergence over the equatorial region. This highlights the importance of understanding the relative role of regional circulation and local surface conditions on modulating water vapor transport toward continental regions.

  16. Ground Water Levels for NGEE Areas A, B, C and D, Barrow, Alaska, 2012-2014

    DOE Data Explorer

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  17. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations.

    PubMed

    Sehgal, Vinay Kumar; Dhakar, Rajkumar

    2016-03-01

    The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology

  18. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters.

    PubMed

    Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark

    2014-11-01

    Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Modeling seasonal detection patterns for burrowing owl surveys

    Treesearch

    Quresh S. Latif; Kathleen D. Fleming; Cameron Barrows; John T. Rotenberry

    2012-01-01

    To guide monitoring of burrowing owls (Athene cunicularia) in the Coachella Valley, California, USA, we analyzed survey-method-specific seasonal variation in detectability. Point-based call-broadcast surveys yielded high early season detectability that then declined through time, whereas detectability on driving surveys increased through the season. Point surveys...

  20. Effects of Changing Climate During the Snow Ablation Season on Seasonal Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Gutzler, D. S.; Chavarria, S. B.

    2017-12-01

    Seasonal forecasts of total surface runoff (Q) in snowmelt-dominated watersheds derive most of their prediction skill from the historical relationship between late winter snowpack (SWE) and subsequent snowmelt runoff. Across the western US, however, the relationship between SWE and Q is weakening as temperatures rise. We describe the effects of climate variability and change during the springtime snow ablation season on water supply outlooks (forecasts of Q) for southwestern rivers. As snow melts earlier, the importance of post-snow rainfall increases: interannual variability of spring season precipitation accounts for an increasing fraction of the variability of Q in recent decades. The results indicate that improvements to the skill of S2S forecasts of spring season temperature and precipitation would contribute very significantly to water supply outlooks that are now based largely on observed SWE. We assess this hypothesis using historical data from several snowpack-dominated basins in the American Southwest (Rio Grande, Pecos, and Gila Rivers) which are undergoing rapid climate change.

  1. The role of permafrost and seasonal frost in the hydrology of northern wetlands in North America

    USGS Publications Warehouse

    Woo, M.-K.; Winter, Thomas C.

    1993-01-01

    Wetlands are a common landscape feature in the Arctic, Subarctic, and north Temperate zones of North America. In all three-zones, the occurrnce of seasonal frost results in similar surface-water processes in the early spring. For example, surface ice and snow generally melt before the soil frost thaws, causing melt water to flow into depressions, over the land surface and at times, across low topographic divides. However, evapotranspiration and ground-water movement differ among the three climatic zones because they are more affected by permafrost than seasonal frost. The water source for plants in the Arctic is restricted to the small volume of subsurface water lying above the permafrost. Although this is also true in the Subarctic where permafrost exists, where it does not, plants may receive and possibly reflect, more regional ground-water sources. Where permafrost exists, the interaction of wetlands with subsurface water is largely restricted to shallow local flow systems. But where permafrost is absent in parts of the Subarctic and all of the Temperature zone, wetlands may have a complex interaction with ground-water-flow systems of all magnitudes.

  2. Seasonal seafloor oxygen dynamics on the Romanian Black Sea Shelf

    NASA Astrophysics Data System (ADS)

    Friedrich, Jana; Balan, Sorin; van Beusekom, Justus E.; Naderipour, Celine; Secrieru, Dan

    2017-04-01

    The Black Sea suffers from the combined effects of anthropogenic eutrophication, overfishing and climate forcing. As a result, its broad and shallow western shelf in particular has a history of ecosystem collapse during the 1970s to the mid-1990s, which followed a slow recovery since the late 1990s due to reduction in anthropogenic pressures. Because of eutrophication, increased oxygen consumption caused recurrent widespread seasonal seafloor hypoxia in a system that is already naturally prone to decrease in bottom water oxygen during summer. On the shelf, reduced bottom water ventilation is a strong natural driver for seafloor hypoxia, due to strong seasonal thermohaline stratification as a result of freshwater inflow from the large rivers Danube, Dniester and Dniepro. To understand the present seasonal dynamics of seafloor oxygen on the Romanian shelf, a seafloor mooring was deployed in 2010 and 2016 during summer and autumn, for three and six months, respectively. The mooring, consisting of an Aanderaa SEAGUARD sensor package attached to an acoustic release, was deployed in 30 m water depth in the Portita region - north of Constanta and south of the Danube River Mouths. The in-situ time series of seafloor oxygen, temperature, turbidity, salinity, and current velocities and directions, combined with CTD profiles, benthic oxygen consumption rates based on ex-situ incubations of sediment cores, and pelagic oxygen respiration rates provide a set of information that allows biological and hydrophysical controls on seafloor oxygen to be identified. We observed the built-up of the thermohaline stratification during late spring and early summer, accompanied by steady decrease in bottom water oxygen. Superimposed settling of particles to the seafloor eventually led to the formation of seafloor hypoxia in late summer. Anticyclonic currents resemble diurnal tidal cycles, albeit low in magnitude. The effects of a strong rainstorm and a Danube flood event in late September

  3. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China.

    PubMed

    Chen, Li-ding; Peng, Hong-jia; Fu, Bo-Jie; Qiu, Jun; Zhang, Shu-rong

    2005-01-01

    Surface waters can be contaminated by human activities in two ways: (1) by point sources, such as sewage treatment discharge and storm-water runoff; and (2) by non-point sources, such as runoff from urban and agricultural areas. With point-source pollution effectively controlled, non-point source pollution has become the most important environmental concern in the world. The formation of non-point source pollution is related to both the sources such as soil nutrient, the amount of fertilizer and pesticide applied, the amount of refuse, and the spatial complex combination of land uses within a heterogeneous landscape. Land-use change, dominated by human activities, has a significant impact on water resources and quality. In this study, fifteen surface water monitoring points in the Yuqiao Reservoir Basin, Zunhua, Hebei Province, northern China, were chosen to study the seasonal variation of nitrogen concentration in the surface water. Water samples were collected in low-flow period (June), high-flow period (July) and mean-flow period (October) from 1999 to 2000. The results indicated that the seasonal variation of nitrogen concentration in the surface water among the fifteen monitoring points in the rainfall-rich year is more complex than that in the rainfall-deficit year. It was found that the land use, the characteristics of the surface river system, rainfall, and human activities play an important role in the seasonal variation of N-concentration in surface water.

  4. Seasonal patterns in the transmission of Schistosoma haematobium in Rhodesia, and its control by winter application of molluscicide.

    PubMed

    Shiff, C J; Coutts, W C; Yiannakis, C; Holmes, R W

    1979-01-01

    Surveys of snails occurring at water contact points used by rural people in Rhodesia show that transmission of Schistosoma haematobium is very high during the spring and early summer seasons. Although infected snails are found in all seasons, fewest occur in winter and during the heavy rains. It is suggested that the bionomics of this parasite depends on pre-rain transmission because destruction of infected snails during winter reduces the reservoir of infection in the area and also the level of parasitaemia in local schoolchildren.

  5. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: Spatial and seasonal variations in water quality

    USGS Publications Warehouse

    Alpers, Charles N.; Fleck, Jacob A.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Stephenson, Mark; Taylor, Howard E.

    2014-01-01

    The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37 ng L−1 unfiltered; 0.04 to 7.3 ng L−1 filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4 2 −/Cl− ratio, and δ34S in aqueous sulfate. These relationships suggest that microbial reduction of SO4 2−, Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting.

  6. High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific.

    PubMed

    Molina, Verónica; Belmar, Lucy; Ulloa, Osvaldo

    2010-09-01

    The community structure of putative aerobic ammonia-oxidizing archaea (AOA) was explored in two oxygen-deficient ecosystems of the eastern South Pacific: the oxygen minimum zone off Peru and northern Chile (11°S-20°S), where permanent suboxic and low-ammonium conditions are found at intermediate depths, and the continental shelf off central Chile (36°S), where seasonal oxygen-deficient and relatively high-ammonium conditions develop in the water column, particularly during the upwelling season. The AOA community composition based on the ammonia monooxygenase subunit A (amoA) genes changed according to the oxygen concentration in the water column and the ecosystem studied, showing a higher diversity in the seasonal low-oxygen waters. The majority of the archaeal amoA genotypes was affiliated to the uncultured clusters A (64%) and B (35%), with Cluster A AOA being mainly associated with higher oxygen and ammonium concentrations and Cluster B AOA with permanent oxygen- and ammonium-poor waters. Q-PCR assays revealed that AOA are an abundant community (up to 10(5) amoA copies ml(-1) ), while bacterial amoA genes from β proteobacteria were undetected. Our results thus suggest that a diverse uncultured AOA community, for which, therefore, we do not have any physiological information, to date, is an important component of the nitrifying community in oxygen-deficient marine ecosystems, and particularly in rich coastal upwelling ones. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Coincidence of pollen season with the first fetal trimester together with early pet exposure is associated with sensitization to cat and dog allergens in early childhood: A Finnish population-based study.

    PubMed

    Pyrhönen, K; Kulmala, P; Näyhä, S

    2018-03-01

    Children whose 11th fetal week falls in pollen season (spring) reportedly have an increased risk of sensitization to food allergens. No such finding has been reported for pet allergens. The aim of the study was to (i) evaluate the incidence of pet (dog and cat) sensitization according to the season of the 11th fetal week and (ii) whether the association between pet exposure and respective sensitization is modified by the coincidence of the 11th fetal week with pollen season. The study population comprised all children (born between 2001 and 2006) in the province of South Karelia, Finland (N = 5920). Their data of immunoglobulin E antibodies and skin prick tests to pet allergens (N = 538) were collected from patient records and linked with questionnaire data on pet exposure. The seasonal incidence peak of cat sensitization was observed in children whose 11th fetal week occurred in June (7.4%) and that of dog sensitization in April (3.8%) and June (4.7%). The relative rate (RR) for cat sensitization was 2.92 (95% CI 1.40-6.08) in children with cat exposure alone, 8.53 (4.07-17.86) in children with cat and fetal pollen exposures and 0.61 (0.20-1.83) in children exposed to pollen alone, compared with children without these exposures. The respective RRs for dog sensitization were 2.17 (1.13-4.19), 4.40 (2.19-8.83) and 1.65 (0.77-3.53). Coincidence of the first fetal trimester with pollen season strengthens the association between pet exposure and respective sensitization. Pollen exposure at early pregnancy may deviate immune system towards Th2-type reactivity promoting development of specific allergy in case allergen exposure occurred. Therefore, primary prevention of allergic diseases may need to begin during early pregnancy. © 2017 John Wiley & Sons Ltd.

  8. Seasonal dynamics of meroplankton in a high-latitude fjord

    NASA Astrophysics Data System (ADS)

    Michelsen, Helena Kling; Svensen, Camilla; Reigstad, Marit; Nilssen, Einar Magnus; Pedersen, Torstein

    2017-04-01

    Knowledge on the seasonal timing and composition of pelagic larvae of many benthic invertebrates, referred to as meroplankton, is limited for high-latitude fjords and coastal areas. We investigated the seasonal dynamics of meroplankton in the sub-Arctic Porsangerfjord (70°N), Norway, by examining their seasonal changes in relation to temperature, chlorophyll a and salinity. Samples were collected at two stations between February 2013 and August 2014. We identified 41 meroplanktonic taxa belonging to eight phyla. Multivariate analysis indicated different meroplankton compositions in winter, spring, early summer and late summer. More larvae appeared during spring and summer, forming two peaks in meroplankton abundance. The spring peak was dominated by cirripede nauplii, and late summer peak was dominated by bivalve veligers. Moreover, spring meroplankton were the dominant component in the zooplankton community this season. In winter, low abundances and few meroplanktonic taxa were observed. Timing for a majority of meroplankton correlated with primary production and temperature. The presence of meroplankton in the water column through the whole year and at times dominant in the zooplankton community, suggests that they, in addition to being important for benthic recruitment, may play a role in the pelagic ecosystem as grazers on phytoplankton and as prey for other organisms.

  9. Epidemic seasonal infertility — a hypothesis for the cause of seasonal variation of births

    NASA Astrophysics Data System (ADS)

    Miura, T.; Shimura, M.

    1980-03-01

    A hypothesis is proposed to explain the seasonality of births and its variations, that some unrecognized epidemic infertile factors have existed seasonally. In that case, certain women born in a particular low birth rate season must be those who survived these infertile factors in very early stage of their fetal lives. Then in later years, when they become pregnant, they may possibly be immune or different in their susceptibility to these infertile factors. Therefore, mothers born in a particular low birth rate season would tend to bear babies more frequently in that season than the others. To examine this hypothesis, birth records in 1930 of two maternity hospitals in Tokyo were investigated. These years were chosen for a period when seasonality of birth was most prominent in Japan. First babies were excluded to eliminate disturbances by season of marriages and other possible non-biological factors. The results show that among 1038 mothers born in a low birthrate season, May July, 245 (23.6%) had babies in May July, while the other mothers had significantly less babies (19.0%, 819/4302, P<0.001) in the same season. This may imply that seasonality of birth may have been influenced by some immunogenic infertile factors epidemic in a particular season.

  10. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China.

    PubMed

    Rajeshkumar, Sivakumar; Liu, Yang; Zhang, Xiangyang; Ravikumar, Boopalan; Bai, Ge; Li, Xiaoyu

    2018-01-01

    The present study, seasonal pollution of heavy metals (Pb, Cd, Cr and Cu) in water, sediment, tissues of fish Carassius carassius and oyster Crassostrea gigas were determined at seven sampling sites from Meiliang Bay, Taihu Lake during one year calendar, 2016. The total heavy metal concentrations in water samples were higher in winter and summer than in spring and autumn season, whereas in sediment they were higher in winter and summer seasons, respectively. The trend of metal mean contents found in the fish and oyster were in decreasing order of Pb > Cu > Cr > Cd and Pb > Cu > Cr > Cd, respectively. The tissues of fish and oyster captured during winter and summer accumulated a higher significant different amount of metals relative to other season, which was attributed to a higher influx of agricultural waste, sewage and sludge by heavy rainfall and floods. In addition, the pollution load index (PLI) values were above one (>1), indicating an advanced decline of the sediment quality, and contamination factor (CF) confirmed that the sediment samples were moderate to high contamination by Pb and Cr. Thus, comparative studies with seasonal pollution of heavy metals in Meiliang Bay of Lake Taihu regions indicate considerable heavy metal enrichment in water, sediments as well as in various organs of fish and oyster. Finally, our results indicated that the metal concentration values increased statistically significant different related to season (p < 0.001). The determination of heavy metal stress biomarkers in fish along with seasonal variations may serve as a convenient approach during pollution bio-monitoring programme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Seasonal changes in Cyclobalanopsis glauca transpiration and canopy stomatal conductance and their dependence on subterranean water and climatic factors in rocky karst terrain

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Li, Xiankun; Zhang, Zhongfeng; He, Chengxin; Zhao, Ping; You, Yeming; Mo, Ling

    2011-05-01

    SummaryThe presence of forest on south China karst is presumed to increase perennial epikarst spring flow, partly because there is adequate storage in bedrock fractures underlying the shallow soil in the forest. If true, transpiration of the ecosystem would not be strongly reduced by temperate drought if trees develop deep roots to reach the perched epikarst water. Therefore, in karst ecosystem the epikarst-soil-plant-atmosphere continuum (ESPAC) would be different from the SPAC in non-karst system. We measured transpiration and canopy conductance from a Cyclobalanopsis glauca (syn. Quercus glauca) stand on a rocky hill slope in South China during 2006-2007 by using the Granier's sap-flow method. Annual stand transpiration (836 mm y -1) accounted for 48.7% of the rainfall during the experimental year. Per month, daily stand transpiration ( E c) maximums varied between 2.1 mm d -1 in January (cool season) to 5.1 mm d -1 in July (hot season). In the driest months, September and October, E c of C. glauca was still high with maximum E c 3.82 mm d -1 and 2.96 mm d -1 respectively. Solar radiation ( PAR), vapor pressure deficiency ( VPD), and air temperature were simple influences on transpiration of C. glauca, which contributed to a quadratic power model, while soil water content ( SWC) moisture influence on transpiration was complicated, which SWC influenced E c greatly under higher VPD, but did not influence E c under low VPD. High stomatal openness occurred in C. glauca in the early morning and declined throughout the day. The relation coefficient between canopy stomatal conductance ( G c) and E c was high when VPD was more than 1.0 kPa, moderate when 0.5 kPa < VPD < 1.0 kPa, and low with VPD of less than 0.5 kPa. Under high VPD, stomatal control of transpiration is high. The pattern of seasonal change of transpiration and canopy stomatal conductance of the plant in karst regions is different from that in non-karst regions, with the stand transpiration and canopy

  12. Water-level measurements in Dauphin Island, Alabama, from the 2013 Hurricane Season

    USGS Publications Warehouse

    Dickhudt, Patrick J.; Sherwood, Christopher R.; DeWitt, Nancy T.

    2015-01-01

    This report describes the instrumentation, field measurements, and processing methods used by the U.S. Geological Survey to measure atmospheric pressure, water levels, and waves on Dauphin Island, Alabama, in 2013 at part of the Barrier Island Evolution Research project. Simple, inexpensive pressure sensors mounted in shallow wells were buried in the beach and left throughout the hurricane season. Additionally, an atmospheric pressure sensor was mounted on the porch of a private residence to provide a local atmospheric pressure measurement for correcting the submerged pressure records.

  13. Seasonal Variations of Oceanographic Variables and Eastern Little Tuna (Euthynnus affinis) Catches in the North Indramayu Waters Java Sea

    NASA Astrophysics Data System (ADS)

    Syamsuddin, Mega; Sunarto; Yuliadi, Lintang

    2018-02-01

    The remotely derived oceanographic variables included sea surface temperature (SST), chlorophyll-a (Chl-a) and Eastern Little Tuna (Euthynnus affinis) catches are used as a combined dataset to understand the seasonal variation of oceanographic variables and Eastern Little Tuna catches in the north Indramayu waters, Java Sea. The fish catches and remotely sensed data were analysed for the 5 years datasets from 2010-2014. This study has shown the effect of monsoon inducing oceanographic condition in the study area. Seasonal change features were dominant for all the selected oceanographic parameters of SST and Chl-a, and also Eastern Little Tuna catches, respectively. The Eastern Little Tuna catch rates have the peak season from September to December (700 to 1000) ton that corresponded with the value of SST ranging from 29 °C to 30 °C following the decreasing of Chl-a concentrations in September to November (0.4 to 0.5) mg m-3. The monsoonal system plays a great role in determining the variability of oceanographic conditions and catch in the north Indramayu waters, Java Sea. The catches seemed higher during the northwest monsoon than in the southeast monsoon for all year observations except in 2010. The wavelet spectrum analysis results confirmed that Eastern Little Tuna catches had seasonal and inter-annual variations during 2012-2014. The SST had seasonal variations during 2010-2014. The Chl-a also showed seasonal variations during 2010-2011 and interannual variations during 2011-2014. Our results would benefit the fishermen and policy makers to have better management for sustainable catch in the study area.

  14. Season matters when sampling streams for swine CAFO waste pollution impacts.

    PubMed

    Mallin, Michael A; McIver, Matthew R

    2018-02-01

    Concentrated (or confined) animal feed operations (CAFOs) are the principal means of livestock production in the United States, and such facilities pollute nearby waterways because of their waste management practices; CAFO waste is pumped from the confinement structure into a cesspit and sprayed on a field. Stocking Head Creek is located in eastern North Carolina, a state with >9,000,000 head of swine confined in CAFOs. This watershed contains 40 swine CAFOs; stream water quality was investigated at seven sites during 2016, with five sampling dates in early spring and five in summer. Geometric mean fecal coliform counts were in the thousands/100 mL at five sites in spring and all seven sites in summer. Excessive nitrate pollution was widespread with concentrations up to >11.0 mg N/L. Seasonality played an important role in pollutant concentrations. In North Carolina, spraying animal waste on adjoining fields is permissible from March 1 through September 30. Seasonal data showed significantly higher (p < 0.01) concentrations of conductivity, nitrate, total nitrogen, total organic carbon, and fecal bacteria in summer as opposed to early spring. Thus, sampling performed only in winter-early spring would significantly underestimate impacts from swine CAFO spray fields on nearby waterways.

  15. METHANE AND WATER ON MARS: MAPS OF ACTIVE REGIONS AND THEIR SEASONAL VARIABILITY

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.

    2009-12-01

    We have detected methane on Mars, and measured it simultaneously with water using powerful ground-based telescopes [1, 2]. Its presence in such a strongly oxidized atmosphere (CO2: 95.3%) requires recent release; the ultimate origin of this methane is uncertain, but it could either be abiotic or biotic. On Earth, methane is produced primarily by biology, with a small fraction produced by abiotic means. The sources and sinks of hydrogen-bearing species (e.g., H2O and CH4) on Mars are still poorly known. In particular, the roles of the regolith and the sub-surface hydrogen reservoirs in the Martian water cycle have been broadly studied, but have not been conclusively quantified. If water is being released from the sub-surface or shares a common source with other H-bearing species, we might see correlations among them. Previous searches for such correlations have been precluded because of the lack of simultaneity of the measurements and the intrinsic variability of water on Mars, which is a condensable whose total local abundance is partitioned among several competing phases controlled largely by temperature (ensuring its variability on a variety of time scales, from diurnal to seasonal to epochal). We sampled multiple spectral lines of methane and water vapor on Mars in a campaign spanning seven years (three Mars years; 1999-2006) and sampling three seasons on Mars. Data were ac-quired using long-slit infrared spectrometers: CSHELL (Cryogenic Echelle Spectrograph) at NASA-IRTF (Infrared Telescope Facility) and NIRSPEC (Near Infrared Spectrograph) at Keck 2. These instruments offer spatially-resolved spectra with the high spectral resolving power (λ/δλ ~ 40,000) needed to reduce confusion among telluric, Martian, and Fraunhofer lines (in reflected solar radiation). Since 2005, we greatly improved our data processing algorithms and increased the sensitivity of our measurements by an order of magnitude. Using these new techniques, we detected multiple lines of

  16. Towards seasonal Arctic shipping route predictions

    NASA Astrophysics Data System (ADS)

    Melia, N.; Haines, K.; Hawkins, E.; Day, J. J.

    2017-08-01

    The continuing decline in Arctic sea-ice will likely lead to increased human activity and opportunities for shipping in the region, suggesting that seasonal predictions of route openings will become ever more important. Here we present results from a set of ‘perfect model’ experiments to assess the predictability characteristics of the opening of Arctic sea routes. We find skilful predictions of the upcoming summer shipping season can be made from as early as January, although typically forecasts show lower skill before a May ‘predictability barrier’. We demonstrate that in forecasts started from January, predictions of route opening date are twice as uncertain as predicting the closing date and that the Arctic shipping season is becoming longer due to climate change, with later closing dates mostly responsible. We find that predictive skill is state dependent with predictions for high or low ice years exhibiting greater skill than medium ice years. Forecasting the fastest open water route through the Arctic is accurate to within 200 km when predicted from July, a six-fold increase in accuracy compared to forecasts initialised from the previous November, which are typically no better than climatology. Finally we find that initialisation of accurate summer sea-ice thickness information is crucial to obtain skilful forecasts, further motivating investment into sea-ice thickness observations, climate models, and assimilation systems.

  17. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  18. MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.; Tamppari, Leslie K.; Smith, Michael D.

    2010-11-01

    We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the 'cold' surface areas in the North polar region ( Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO 2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO 2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor

  19. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. High sub-seasonal variability in water volume transports, revealed through a new ocean monitoring initiative using autonomous gliders

    NASA Astrophysics Data System (ADS)

    Heslop, E.; Ruiz, S.; Allen, J.; Tintoré, J.

    2012-04-01

    One of the clear challenges facing oceanography today is to define variability in ocean processes at a seasonal and sub-seasonal scale, in order to clearly identify the signature of both natural large-scale climatic oscillations and the long-term trends brought about by the human-induced change in atmospheric composition. Without visibility of this variance, which helps to determine the margins of significance for long-term trends and decipher cause and effect, the inferences drawn from sparse data points can be misleading. The cyclonic basin scale circulation pattern in the Western Mediterranean has long been known; the role/contribution that processes in the Balearic Basin play in modifying this is less well defined. The Balearic Channels (channels between the Balearic Islands) are constriction points on this basin scale circulation that appear to exert a controlling influence on the north/south exchange of water masses. Understanding the variability in current flows through these channels is important, not just for the transport of heat and salt, but also for ocean biology that responds to physical variability at the scale of that variability. Earlier studies at a seasonal scale identified; an interannual summer/winter variation of 1 Sv in the strength of the main circulation pattern and a high cruise-to-cruise variability in the pattern and strength of the flows through the channels brought about by mesoscale activity. Initial results using new high-resolution data from glider based monitoring missions across the Ibiza Channel (the main exchange channel in the Balearic Basin), combined with ship and contemporaneous satellite data, indicate surprisingly high and rapid changes in the flows of surface and intermediate waters imposed on the broad seasonal cycle. To date the data suggests that there are three potential 'modes' of water volume transport, generated from the interplay between basin and mesoscale circulation. We will review the concept of transport

  1. Tissue-water relations of two co-occurring evergreen Mediterranean species in response to seasonal and experimental drought conditions.

    PubMed

    Serrano, Lydia; Peñuelas, Josep; Ogaya, Romà; Savé, Robert

    2005-08-01

    Tissue-water relations were used to characterize the responses of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) to seasonal and experimental drought conditions. Soil water availability was reduced approximately 15% by partially excluding rain throughfall and lateral flow (water runoff). Seasonal and experimental drought elicited physiological and morphological adaptations other than osmotic adjustment: both species showed large increases in cell-wall elasticity and decreased saturated-to-dry-mass ratio. Increased elasticity (lower elastic modulus) resulted in concurrent decreases in relative water content at turgor loss. In addition, P. latifolia showed significant increases in apoplastic water fraction. Decreased saturated-to-dry-mass ratio and increased apoplastic water fraction were accompanied by an increased range of turgor maintenance, which indicates that leaf sclerophyllous traits might be advantageous in drier scenarios. In contrast, the degree of sclerophylly (as assessed by the leaf mass-to-area ratio) was not related to tissue elasticity. An approximately 15% reduction in soil water availability resulted in significant reductions in diameter growth when compared to control plants in both species. Moreover, although P. latifolia underwent larger changes in tissue water-related traits than Q. ilex in response to decreasing water availability, growth was more sensitive to water stress in P. latifolia than in Q. ilex. Differences in diameter growth between species might be partially linked to the effects of cell-wall elasticity and turgor pressure on growth, since Q. ilex showed higher tissue elasticity and higher intrinsic tolerance to water deficit (as indicated by lower relative water content at turgor loss) than P. latifolia.

  2. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  3. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  4. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality managementmore » has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.« less

  5. Spatial synchronies in the seasonal occurrence of larvae of oysters (Crassostrea gigas) and mussels (Mytilus edulis/galloprovincialis) in European coastal waters

    NASA Astrophysics Data System (ADS)

    Philippart, Catharina J. M.; Amaral, Ana; Asmus, Ragnhild; van Bleijswijk, Judith; Bremner, Julie; Buchholz, Fred; Cabanellas-Reboredo, Miguel; Catarino, Diana; Cattrijsse, André; Charles, François; Comtet, Thierry; Cunha, Alexandra; Deudero, Salud; Duchêne, Jean-Claude; Fraschetti, Simonetta; Gentil, Franck; Gittenberger, Arjan; Guizien, Katell; Gonçalves, João M.; Guarnieri, Giuseppe; Hendriks, Iris; Hussel, Birgit; Vieira, Raquel Pinheiro; Reijnen, Bastian T.; Sampaio, Iris; Serrao, Ester; Pinto, Isabel Sousa; Thiebaut, Eric; Viard, Frédérique; Zuur, Alain F.

    2012-08-01

    Reproductive cycles of marine invertebrates with complex life histories are considered to be synchronized by water temperature and feeding conditions, which vary with season and latitude. This study analyses seasonal variation in the occurrence of oyster (Crassostrea gigas) and mussel (Mytilus edulis/galloprovincialis) larvae across European coastal waters at a synoptic scale (1000s of km) using standardised methods for sampling and molecular analyses. We tested a series of hypotheses to explain the observed seasonal patterns of occurrence of bivalve larvae at 12 European stations (located between 37°N and 60°N and 27°W and 18°E). These hypotheses included a model that stated that there was no synchronisation in seasonality of larval presence at all between the locations (null hypothesis), a model that assumed that there was one common seasonality pattern for all stations within Europe, and various models that supposed that the variation in seasonality could be grouped according to specific spatial scales (i.e., latitude, large marine ecosystems and ecoregions), taxonomic groups, or several combinations of these factors. For oysters, the best models explaining the presence/absence of larvae in European coastal waters were (1) the model that assumed one common seasonal pattern, and (2) the one that, in addition to this common pattern, assumed an enhanced probability of occurrence from south to north. The third best model for oysters, with less empirical support than the first two, stated that oysters reproduced later in the south than in the north. For mussels, the best models explaining the seasonality in occurrence of larvae were (1) the model that assumed four underlying trends related to large marine ecosystems, and (2) the one that assumed one common seasonal pattern for larvae occurrence throughout Europe. Such synchronies in larval occurrences suggest that environmental conditions relevant to bivalve larval survival are more or less similar at large

  6. Predicting large wildfires across western North America by modeling seasonal variation in soil water balance.

    PubMed

    Waring, Richard H; Coops, Nicholas C

    A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial resolution <10 km 2 have generally been unsuccessful. We hypothesized that predictions of fires might be improved if depletion of soil water reserves were coupled more directly to maximum leaf area index (LAI max ) and stomatal behavior. In an earlier publication, we used LAI max and a process-based forest growth model to derive and map the maximum available soil water storage capacity (ASW max ) of forested lands in western North America at l km resolution. To map large fires, we used data products acquired from NASA's Moderate Resolution Imaging Spectroradiometers (MODIS) over the period 2000-2009. To establish general relationships that incorporate the major biophysical processes that control evaporation and transpiration as well as the flammability of live and dead trees, we constructed a decision tree model (DT). We analyzed seasonal variation in the relative availability of soil water ( fASW ) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of 69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT identified four seasonal combinations, most of which included exhaustion of ASW during the summer as critical; two combinations involving antecedent conditions the previous spring or fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help identify forested areas where management efforts to reduce fire hazards might prove most beneficial.

  7. Seasonal Overturning Circulation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  8. Land Surface Modeling Applications for Famine Early Warning

    NASA Astrophysics Data System (ADS)

    McNally, A.; Verdin, J. P.; Peters-Lidard, C. D.; Arsenault, K. R.; Wang, S.; Kumar, S.; Shukla, S.; Funk, C. C.; Pervez, M. S.; Fall, G. M.; Karsten, L. R.

    2015-12-01

    AGU 2015 Fall Meeting Session ID#: 7598 Remote Sensing Applications for Water Resources Management Land Surface Modeling Applications for Famine Early Warning James Verdin, USGS EROS Christa Peters-Lidard, NASA GSFC Amy McNally, NASA GSFC, UMD/ESSIC Kristi Arsenault, NASA GSFC, SAIC Shugong Wang, NASA GSFC, SAIC Sujay Kumar, NASA GSFC, SAIC Shrad Shukla, UCSB Chris Funk, USGS EROS Greg Fall, NOAA Logan Karsten, NOAA, UCAR Famine early warning has traditionally required close monitoring of agro-climatological conditions, putting them in historical context, and projecting them forward to anticipate end-of-season outcomes. In recent years, it has become necessary to factor in the effects of a changing climate as well. There has also been a growing appreciation of the linkage between food security and water availability. In 2009, Famine Early Warning Systems Network (FEWS NET) science partners began developing land surface modeling (LSM) applications to address these needs. With support from the NASA Applied Sciences Program, an instance of the Land Information System (LIS) was developed to specifically support FEWS NET. A simple crop water balance model (GeoWRSI) traditionally used by FEWS NET took its place alongside the Noah land surface model and the latest version of the Variable Infiltration Capacity (VIC) model, and LIS data readers were developed for FEWS NET precipitation forcings (NOAA's RFE and USGS/UCSB's CHIRPS). The resulting system was successfully used to monitor and project soil moisture conditions in the Horn of Africa, foretelling poor crop outcomes in the OND 2013 and MAM 2014 seasons. In parallel, NOAA created another instance of LIS to monitor snow water resources in Afghanistan, which are an early indicator of water availability for irrigation and crop production. These successes have been followed by investment in LSM implementations to track and project water availability in Sub-Saharan Africa and Yemen, work that is now underway. Adoption of

  9. Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics

    NASA Astrophysics Data System (ADS)

    Seibert, Simon Paul; Jackisch, Conrad; Ehret, Uwe; Pfister, Laurent; Zehe, Erwin

    2017-06-01

    The baffling diversity of runoff generation processes, alongside our sketchy understanding of how physiographic characteristics control fundamental hydrological functions of water collection, storage, and release, continue to pose major research challenges in catchment hydrology. Here, we propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in catchment inter-comparison. More specifically, we present dimensionless double mass curves (dDMC) which allow inference of information on runoff generation and the water balance at the seasonal and annual timescales. By separating the vegetation and winter periods, dDMC furthermore provide information on the role of biotic and abiotic controls in seasonal runoff formation. A key aspect we address in this paper is the derivation of dimensionless expressions of fluxes which ensure the comparability of the signatures in space and time. We achieve this by using the limiting factors of a hydrological process as a scaling reference. We show that different references result in different diagnostics. As such we define two kinds of dDMC which allow us to derive seasonal runoff coefficients and to characterize dimensionless streamflow release as a function of the potential renewal rate of the soil storage. We expect these signatures for storage controlled seasonal runoff formation to remain invariant, as long as the ratios of release over supply and supply over storage capacity develop similarly in different catchments. We test the proposed methods by applying them to an operational data set comprising 22 catchments (12-166 km2) from different environments in southern Germany and hydrometeorological data from 4 hydrological years. The diagnostics are used to compare the sites and to reveal the dominant controls on runoff formation. The key findings are that dDMC are meaningful signatures for catchment runoff formation at the seasonal to annual scale and that the type of scaling strongly

  10. Surface-water/ground-water relations in the Lemhi River Basin, east-central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    1998-01-01

    This report summarizes work carried out in cooperation with the Bureau of Reclamation to provide hydrologic information to help Federal, State, and local agencies meet the goals of the Lemhi River Model Watershed Project. The primary goal of the project is to maintain, enhance, and restore anadromous and resident fish habitat in the Lemhi River, while maintaining a balance between resource protection and established water uses. The main objectives of the study were to carry out seepage measurements to determine seasonal distributed gains and losses in the Lemhi River and to estimate annual ground-water underflow from the basin to the Salmon River. In 1997, seepage measurements were made during and after the irrigation season along a 60-mile reach of the Lemhi River between Leadore and Salmon. Except for one 4-mile reach that lost 1.3 cubic feet per second per mile, the river gained from ground water in early August when ground-water levels were high. Highest flows in the Lemhi River in early August were about 400 cubic feet per second. In October, when ground-water levels were low, river losses to ground water were about 1 to 16 cubic feet per second per mile. In October, highest flows in the Lemhi River were about 500 cubic feet per second, near the river's mouth. Annual ground-water underflow from the Lemhi River Basin to the Salmon River was estimated by using a simplified water budget and by using Darcy's equation. The water-budget method contained large uncertainties associated with estimating precipitation and evapotranspiration. Results of both methods indicate that the quantity of ground water leaving the basin as underflow is small, probably less than 2 percent of the basin's total annual water yield.

  11. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau.

    PubMed

    Wang, Jian; Fu, Bojie; Lu, Nan; Zhang, Li

    2017-12-31

    Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ 2 H and δ 18 O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Seasonal variation in composition and abundance of harmful dinoflagellates in Yemeni waters, southern Red Sea.

    PubMed

    Alkawri, Abdulsalam

    2016-11-15

    General abundance and species composition of a dinoflagellate community in Yemeni coastal waters of Al Salif (southern Red Sea) were studied with a view to understand the annual variations in particular the toxic species. Dinoflagellates were more abundant among phytoplankton. Thirty five dinoflagellate taxa were identified, among which 12 were reported as potentially toxic species. A significant change in seasonal abundance was recorded with the maximum (2.27∗10 6 cellsl -1 ) in May, and the minimum (2.50∗10 2 cellsl -1 ) recorded in January. Kryptoperidinium foliaceum, which was reported for the first time from the Red Sea, was the most abundant species with a maximum in May 2013 (2.26∗10 6 cellsl -1 ). Spearman's rank correlation analysis indicates that, total harmful dinoflagellate cells, K. foliaceum, Prorocentrum gracile and Prorocentrum micans were significantly correlated with temperature. This study suggests that Yemeni waters should be monitored to investigate harmful species and to identify areas and seasons at higher risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Seasonal variation in male alternative reproductive tactics.

    PubMed

    Monroe, M J; Amundsen, T; Utne-Palm, A C; Mobley, K B

    2016-12-01

    Genetic parentage analyses reveal considerable diversity in alternative reproductive behaviours (e.g. sneaking) in many taxa. However, little is known about whether these behaviours vary seasonally and between populations. Here, we investigate seasonal variation in male reproductive behaviours in a population of two-spotted gobies (Gobiusculus flavescens) in Norway. Male two-spotted gobies guard nests, attract females and care for fertilized eggs. We collected clutches and nest-guarding males early and late in the breeding season in artificial nests and used microsatellite markers to reconstruct parentage from a subset of offspring from each nest. We hypothesized that mating, reproductive success and sneaking should be more prevalent early in the breeding season when competition for mates among males is predicted to be higher. However, parentage analyses revealed similar values of mating, reproductive success and high frequencies of successful sneaking early (30% of nests) and late (27% of nests) in the season. We also found that multiple females with eggs in the same nest were fertilized by one or more sneaker males, indicating that some males in this population engage in a satellite strategy. We contrast our results to previous work that demonstrates low levels of cuckoldry in a population in Sweden. Our results demonstrate marked stability in both the genetic mating system and male alternative reproductive tactics over the breeding season. However, sneaking rates may vary geographically within a species, likely due to local selection influencing ecological factors encountered at different locations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  15. Conditional Monthly Weather Resampling Procedure for Operational Seasonal Water Resources Forecasting

    NASA Astrophysics Data System (ADS)

    Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.

    2013-12-01

    To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most

  16. Prediction of seasonal runoff in ungauged basins

    USDA-ARS?s Scientific Manuscript database

    Many regions of the world experience strong seasonality in climate (i.e. precipitation and temperature), and strong seasonal runoff variability. Predictable patterns in seasonal water availability are of significant benefit to society because they allow reliable planning and infrastructure developme...

  17. Facts and myths about seasonal variation in suicide.

    PubMed

    Voracek, Martin; Tran, Ulrich S; Sonneck, Gernot

    2007-06-01

    The prevalence of suicide presents a universal seasonal pattern. In the Northern hemisphere, suicides peak during spring and early summer and the trough occurs during winter. This peculiar pattern might be counterintuitive for everyday reasoning. Data from 1,093 medical and psychology undergraduates from Austria (382 men and 711 women; M age 25.0 yr., SD=6.6) indicated an almost perfectly reversed pattern of beliefs about suicide seasonality compared with the actual seasonal distribution. The vast majority of respondents believed the peak to be located in late autumn and early winter and the trough occurring in late spring and the summer months. Implications for education and practice are discussed.

  18. Succession and seasonal variation in epilithic biofilms on artificial reefs in culture waters of the sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Du, Rongbin; Zhang, Xiaoling; Dong, Shuanglin; Sun, Shichun

    2017-01-01

    Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the Asia- Pacific region, particularly in China, artificial reefs are commonly used in the commercial farming of sea cucumbers. However, few studies have examined the epilithic biofilms on the artificial reefs. To gain a better understanding of the succession of epilithic biofilms and their ecological processes in sea cucumber culture waters, two experiments were conducted in culture waters of the sea cucumber Apostichopus japonicus in Rongcheng, China, using artificial test panels. On the test panels of succession experiment, more than 67 species were identified in the biofilms. On the test panels of seasonal variation experiment, more than 46 species were recorded in the biofilms. In both experiments, communities of epilithic biofilms were dominated by diatoms, green algae and the annelid Spirorbis sp. In the initial colonization, the dominant diatoms were Cocconeis sp., Amphora spp. and Nitzschia closterium in June, which were succeeded by species of Navicula, Cocconeis and Nitzschia (July to September), and then by Licmophora abbreviata, Nitzschia closterium and Synedra spp. in the following months. A diatom bloom in the autumn and filamentous green algae burst in the summer were also observed. Ecological indices well annotated the succession and seasonal changes in epilithic communities. Multidimensional scaling (MDS) analysis found significant differences in diatom community composition among months and seasons. Fast growth of biofilms was observed in the summer and autumn, whereas the biomass of summer biofilms was largely made up of filamentous green algae. Present results show that the components of epilithic biofilms are mostly optimal foods of A. japonicus, suggesting that biofilms on artificial reefs may contribute important nutritional sources for sea cucumbers during their

  19. Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality.

    PubMed

    Browne, Nicola K; Tay, Jason K L; Low, Jeffrey; Larson, Ole; Todd, Peter A

    2015-04-01

    Environmental drivers of coral condition (maximum quantum yield, symbiont density, chlorophyll a content and coral skeletal growth rates) were assessed in the equatorial inshore coastal waters of Singapore, where the amplitude of seasonal variation is low, but anthropogenic influence is relatively high. Water quality variables (sediments, nutrients, trace metals, temperature, light) explained between 52 and 83% of the variation in coral condition, with sediments and light availability as key drivers of foliose corals (Merulina ampliata, Pachyseris speciosa), and temperature exerting a greater influence on a branching coral (Pocillopora damicornis). Seasonal reductions in water quality led to high chlorophyll a concentrations and maximum quantum yields in corals, but low growth rates. These marginal coral communities are potentially vulnerable to climate change, hence, we propose water quality thresholds for coral growth with the aim of mitigating both local and global environmental impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  1. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna.

    PubMed

    Davidson, Zeke; Valeix, Marion; Van Kesteren, Freya; Loveridge, Andrew J; Hunt, Jane E; Murindagomo, Felix; Macdonald, David W

    2013-01-01

    Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs' index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group "medium Bovidae" are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs' index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour.

  2. Seasonal Diet and Prey Preference of the African Lion in a Waterhole-Driven Semi-Arid Savanna

    PubMed Central

    Van Kesteren, Freya; Loveridge, Andrew J.; Hunt, Jane E.; Murindagomo, Felix; Macdonald, David W.

    2013-01-01

    Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs’ index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group “medium Bovidae” are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs’ index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour. PMID:23405121

  3. An early warning and control system for urban, drinking water quality protection: China's experience.

    PubMed

    Hou, Dibo; Song, Xiaoxuan; Zhang, Guangxin; Zhang, Hongjian; Loaiciga, Hugo

    2013-07-01

    An event-driven, urban, drinking water quality early warning and control system (DEWS) is proposed to cope with China's urgent need for protecting its urban drinking water. The DEWS has a web service structure and provides users with water quality monitoring functions, water quality early warning functions, and water quality accident decision-making functions. The DEWS functionality is guided by the principles of control theory and risk assessment as applied to the feedback control of urban water supply systems. The DEWS has been deployed in several large Chinese cities and found to perform well insofar as water quality early warning and emergency decision-making is concerned. This paper describes a DEWS for urban water quality protection that has been developed in China.

  4. Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during a dry season in the tropics

    NASA Astrophysics Data System (ADS)

    Laban, S.; Oue, H.; Rampisela, D. A.

    2018-05-01

    Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during the 2nd dry season were analyzed in this study. Actual evapotranspiration (ET) was estimated by Bowen Ratio Energy Budget (BREB) method, potential evaporation (EP) was calculated by Penman method, and irrigation volume of water was measured manually. Meteorological instruments were installed in the experimental field during hot pepper cultivation. Leaf area index increased during the growing stages where the highest LAI of 1.65 in the generative stage. The daily average of ET was 1.94 and EP was 6.71 mm resulting in low Kc. The Kc values were significantly different between stage to stage under T-test analysis (α = 0.05). Moreover, Kc in every stage could be related to soil water content (SWC) in logarithmic function. Totally, ET during hot pepper cultivation was 179.19 mm, while rainfall was 180.0 mm and irrigation water was 27.42 mm. However, there was a water shortages during vegetative and generative stages. This study suggested that consumptive water of hot pepper was complimented by soil and groundwater under the condition of water shortages in the vegetative and generative stages during the 2nd dry season.

  5. Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs.

    PubMed

    Westerhoff, Paul; Rodriguez-Hernandez, M; Baker, Larry; Sommerfeld, Milton

    2005-12-01

    Methylisoborneol (MIB) and geosmin are cyanobacterial metabolites that occur at nanograms per liter levels in surface water supplies and are responsible for many taste and odor complaints about the aesthetics of drinking water. This study evaluated three water supply reservoirs with bottom-release (hypolimnion) outlet structures in Arizona. MIB concentrations were always higher than geosmin concentrations, but both followed similar seasonal trends. MIB concentrations increased from spring to late summer, and stratified vertically with depth in the water column; the highest concentrations were always in the upper 10 m of the water column. Thermal destratification in the autumn increased MIB concentrations released from the outlet of reservoirs and impacted downstream utilities for several months. By winter of each year MIB concentrations were non-detectable. Mass balance analyses on MIB indicated that in-reservoir reactions were more important in changing MIB concentrations than conservative hydraulic "flushing" of the reservoir. Maximum net loss rates for MIB in the field (R(F,max)) were on the order of 0.23-1.7 ng/L-day, and biodegradation appeared more important than volatilization, photolysis or adsorption. Using lake water in laboratory experiments, bacterial biodegradation rates (R(L)) ranged from 0.5-1 ng/L-day and were comparable to R(F,max) values. Based upon these rates, MIB concentrations in a reservoir would decrease by approximately 30 ng/L over a period of 1 month. This was the magnitude change in MIB concentrations commonly observed after autumn thermal destratification of the reservoirs.

  6. Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge

    2017-03-01

    Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results

  7. Transpiration Driven Hydrologic Transport in vegetated shallow water environments: Implications on Diel and Seasonal Soil Biogeochemical Processes and System Management

    NASA Astrophysics Data System (ADS)

    Bachand, P.; Bachand, S. M.; Fleck, J.; Anderson, F.

    2011-12-01

    Hydrology arguably plays the most important role in biogeochemical cycling of mercury in wetlands and other shallow aquatic systems. CFSTR, PFR and non-ideal reactor models are oftentimes currently used to hydrologically assess these systems and to account for the fate, transport and cycling of constituents of concern (COC) with systems assumed to be non-leaky and with diffusion dominating soil transport. Yet a number of results in the literature imply transpiration drives soil transport: transpiration into the root zone is in the range of 50 - 75% of ET seasonally; gaseous emissions from aquatic systems show a diel pattern that tracks diel ET patterns; in long detention time aquatic systems ET is the largest sink for applied surface waters; and non-reactive tracers when applied to surface waters can find themselves in the root zone and within plants. All these findings strongly suggest transpiration driven infiltration into the root zone, is a significant hydrologic pathway for constituents and is an important transport mechanism. This paper examines the annual water budget for four shallow aquatic land uses in the Yolo Bypass, California: rice, wild rice, fallowed fields and wetlands. Results indicate that differences in hydrology between the fields, particularly the temporal nature of transpiration, play a significant role in mercury transformations and transport. During the irrigation period, fallowed fields discharged 6 cm of surface water (15% applied water), rice fields 31 - 43 cm (27 - 31% applied water), and wild rice fields 16 - 39 cm (15 - 31% applied water). Evapotranspiration rates were in the range of 120 - 130 cm/y for all land uses (i.e. rice, wild rice, fallowed fields and seasonal wetlands) except for the permanent wetland which was about 1/3 higher at about 170 cm/y. During the summer, approximately 50% of the applied surface water was drawn into the root zone to meet transpiration demands. Based upon results from our water budget and utilizing

  8. A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water.

    PubMed

    Ohkouchi, Yumiko; Ly, Bich Thuy; Ishikawa, Suguru; Aoki, Yusuke; Echigo, Shinya; Itoh, Sadahiko

    2011-10-01

    In Japan, customers' concerns about chlorinous odour in drinking water have been increasing. One promising approach for reducing chlorinous odour is the minimization of residual chlorine in water distribution, which requires stricter control of organics to maintain biological stability in water supply systems. In this investigation, the levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water were surveyed to accumulate information on organics in terms of biological stability. In tap water samples purified through rapid sand filtration processes, the average AOC concentration was 174 microgC/L in winter and 60 microgC/L in summer. This difference seemed to reflect the seasonal changes of AOC in the natural aquatic environment. On the other hand, very little or no AOC could be removed after use of an ozonation-biological activated carbon (BAC) process. Especially in winter, waterworks should pay attention to BAC operating conditions to improve AOC removal. The storage of BAC effluent with residual chlorine at 0.05-0.15 mgCl2/L increased AOC drastically. This result indicated the possibility that abundant AOC precursors remaining in the finished water could contribute to newly AOC formation during water distribution with minimized residual chlorine. Combined amino acids, which remained at roughly equivalent to AOC in finished water, were identified as major AOC precursors. Prior to minimization of residual chlorine, enhancement of the removal abilities for both AOC and its precursors would be necessary.

  9. Spatial and seasonal variations in stream water delta34S-dissolved organic matter in northern Sweden.

    PubMed

    Giesler, Reiner; Björkvald, Louise; Laudon, Hoalmar; Mörth, Carl-Magnus

    2009-01-15

    The discharge of terrestrial dissolved organic matter (DOM) by streams is an important cross-system linkage that strongly influences downstream aquatic ecosystems. Isotopic tracers are important tools that can help to unravel the source of DOM from different terrestrial compartments in the landscape. Here we demonstrate the spatial and seasonal variation of delta34S of DOM in 10 boreal streams to test if the tracer could provide new insights into the origin of DOM. We found large spatial and seasonal variations in stream water delta34S-DOM values ranging from -5.2 per thousand to +9.6 per thousand with an average of +4.0 +/- 0.6 (N = 62; average and 95% confidence interval). Large seasonal variations were found in stream water delta34S-DOM values: for example, a shift of more than 10 per thousand during the spring snowmelt in a wetland-dominated stream. Spatial differences were also observed during the winter base flow with higher delta34S-DOM values in the fourth-order Krycklan stream at the outlet of the 68 km2 catchment compared to the small (< 1 km2) headwater streams. Our data clearly show that the delta34S-DOM values have the potential to be used as a tracer to identify and generate new insights about terrestrial DOM sources in the boreal landscape.

  10. Trends in annual, seasonal, and monthly streamflow characteristics at 227 streamgages in the Missouri River watershed, water years 1960-2011

    USGS Publications Warehouse

    Norton, Parker A.; Anderson, Mark T.; Stamm, John F.

    2014-01-01

    The Missouri River and its tributaries are an important resource that serve multiple uses including agriculture, energy, recreation, and municipal water supply. Understanding historical streamflow characteristics provides relevant guidance to adaptive management of these water resources. Streamflow records in the Missouri River watershed were examined for trends in time series of annual, seasonal, and monthly streamflow. A total of 227 streamgages having continuous observational records for water years 1960–2011 were examined. Kendall’s tau nonparametric test was used to determine statistical significance of trends in annual, seasonal, and monthly streamflow. A trend was considered statistically significant for a probability value less than or equal to 0.10 that the Kendall’s tau value equals zero. Significant trends in annual streamflow were indicated for 101 out of a total of 227 streamgages. The Missouri River watershed was divided into six watershed regions and trends within regions were examined. The western and the southern parts of the Missouri River watershed had downward trends in annual streamflow (56 streamgages), whereas the eastern part of the watershed had upward trends in streamflow (45 streamgages). Seasonal and monthly streamflow trends reflected prevailing annual streamflow trends within each watershed region.

  11. Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment.

    PubMed

    Qin, Wen; Li, Wei-Guang; Gong, Xu-Jin; Huang, Xiao-Fei; Fan, Wen-Biao; Zhang, Duoying; Yao, Peng; Wang, Xiao-Ju; Song, Yang

    2017-08-01

    To determine the potential effects of seasonal changes on water temperature and water quality upon removal of ammonium and organic carbon pollutants and to characterize the variations in microbial characteristics, a pilot-scale activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria was investigated for 528 days. The results show that 69.2 ± 28.6% of ammonium and 23.1 ± 11.6% of the dissolved organic carbon were removed by the biologically enhanced activated carbon (BEAC) reactor. It is shown that higher biodegradable dissolved organic carbon enhances ammonium removal, even at low temperatures. The C/N ratio consumed by the BEAC reactor reached a steady value (i.e., 3.3) after 2 months of operation. Despite seasonal fluctuations and competition of the indigenous community, the heterotrophic nitrifying bacteria (Acinetobacter sp. HRBLi 16 and Acinetobacter harbinensis strain HITLi 7) remained relatively stable. The amount of carbon source was the most significant environmental parameter and dramatically affected the microbial community compositions in the BEAC reactor. The present study provides new insights into the application of a BEAC reactor for ammonium removal from drinking water, resisting strong seasonal changes.

  12. Two different sources of water for the early solar nebula.

    PubMed

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  13. Seasonal Affective Disorder (SAD)

    MedlinePlus

    ... or early summer. Treatment for SAD may include light therapy (phototherapy), medications and psychotherapy. Don't brush off that yearly feeling as simply a case of the "winter blues" or a seasonal funk that you have to ...

  14. Impacts of precipitation seasonality and ecosystem types on evapotranspiration in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Liu, H.; Randerson, J.T.; Yu, G.; Tieszen, L.L.

    2010-01-01

    Evapotranspiration (ET) is the largest component of water loss from terrestrial ecosystems; however, large uncertainties exist when estimating the temporal and spatial variations of ET because of concurrent shifts in the magnitude and seasonal distribution of precipitation as well as differences in the response of ecosystem ET to environmental variabilities. In this study, we examined the impacts of precipitation seasonality and ecosystem types on ET quantified by eddy covariance towers from 2002 to 2004 in three ecosystems (grassland, deciduous broadleaf forest, and evergreen needleleaf forest) in the Yukon River Basin, Alaska. The annual precipitation changed greatly in both magnitude and seasonal distribution through the three investigated years. Observations and model results showed that ET was more sensitive to precipitation scarcity in the early growing season than in the late growing season, which was the direct result of different responses of ET components to precipitation in different seasons. The results demonstrated the importance of seasonal variations of precipitation in regulating annual ET and overshadowing the function of annual precipitation. Comparison of ET among ecosystems over the growing season indicated that ET was largest in deciduous broadleaf, intermediate in evergreen needleleaf, and lowest in the grassland ecosystem. These ecosystem differences in ET were related to differences in successional stages and physiological responses.

  15. Grid-cell-based crop water accounting for the famine early warning system

    USGS Publications Warehouse

    Verdin, J.; Klaver, R.

    2002-01-01

    Rainfall monitoring is a regular activity of food security analysts for sub-Saharan Africa due to the potentially disastrous impact of drought. Crop water accounting schemes are used to track rainfall timing and amounts relative to phenological requirements, to infer water limitation impacts on yield. Unfortunately, many rain gauge reports are available only after significant delays, and the gauge locations leave large gaps in coverage. As an alternative, a grid-cell-based formulation for the water requirement satisfaction index (WRSI) was tested for maize in Southern Africa. Grids of input variables were obtained from remote sensing estimates of rainfall, meteorological models, and digital soil maps. The spatial WRSI was computed for the 1996–97 and 1997–98 growing seasons. Maize yields were estimated by regression and compared with a limited number of reports from the field for the 1996–97 season in Zimbabwe. Agreement at a useful level (r = 0·80) was observed. This is comparable to results from traditional analysis with station data. The findings demonstrate the complementary role that remote sensing, modelling, and geospatial analysis can play in an era when field data collection in sub-Saharan Africa is suffering an unfortunate decline.

  16. Seasonal changes of the pelagic fish assemblage in a temperate estuary

    NASA Astrophysics Data System (ADS)

    Hagan, S. M.; Able, K. W.

    2003-01-01

    The pelagic (i.e. fishes that spend most of their time swimming and feeding in the water column) fish assemblage was examined within a temperate estuary to determine the seasonal patterns of abundance, biomass, richness, and species composition. These measures were related to abiotic measures including temperature, salinity, water transparency, and depth. Pelagic fish (n<350 000) were sampled weekly from August 1995 through December 1996 in Great Bay in New Jersey, USA, with a pop net (5 m diameter, 5 m length, 3 mm cod end). The most frequently occurring and abundant species included Clupea harengus (frequency of occurrence, 27.4%; abundance, 80.5% of total catch), Menidia menidia (frequency of occurrence, 83.5%; abundance, 10.6% of total catch), Anchoa mitchilli (frequency of occurrence, 66.5%; abundance, 6.0% of total catch), and Anchoa hepsetus (frequency of occurrence, 23.1%; abundance, 1.9% of total catch). There were strong seasonal trends in species richness, total abundance, and total biomass with peaks in spring, summer, and autumn, and very low values for these parameters in winter. In addition, there were five seasonal groupings within this pelagic fish assemblage that were primarily, but not exclusively, represented by young-of-the-year (age 0+). Winter (December-March) was represented by adult Gasterosteus aculeatus and age 1+ by M. menidia. Spring (April-early June) was overwhelmingly dominated by age 0+ C. harengus. Early summer (late June-early July) was relatively species rich and characterized by age 0+ of Brevoortia tyrannus, Pomatomus saltatrix, Alosa pseudoharengus, and age 1+ of A. mitchilli. Late summer (late July-August) remained relatively species rich and included mostly age 0+ of A. mitchilli, A. hepsetus, and M. menidia. Autumn (September-November) continued to have high catches of age 0+ of M. menidia and A. mitchilli. As expected for temperate estuaries, the best of the measured abiotic predictors of these groupings included

  17. Influence of the Aral Sea negative water balance on its seasonal circulation and ventilation patterns: use of a 3d hydrodynamic model.

    NASA Astrophysics Data System (ADS)

    Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J.

    2003-04-01

    Within the context of the EU INCO-COPERNICUS program "Desertification in the Aral Sea Region: A study of the Natural and Anthropogenic Impacts" (Contract IAC2-CT-2000-10023), a large-scale 3D hydrodynamic model was adapted to address specifically the macroscale processes affecting the Aral Sea water circulation and ventilation. The particular goal of this research is to simulate the effect of lasting negative water balance on the 3D seasonal circulation, temperature, salinity and water-mixing fields of the Aral Sea. The original Aral Sea seasonal hydrodynamism is simulated with the average seasonal forcings corresponding to the period from 1956 to 1960. This first investigation concerns a period of relative stability of the water balance, before the beginning of the drying process. The consequences of the drying process on the hydrodynamic of the Sea will be studied by comparing this first results with the simulation representing the average situation for the years 1981 to 1985, a very low river flow period. For both simulation periods, the forcing considered are the seasonal fluctuations of wind fields, precipitation, evaporation, river discharge and salinity, cloud cover, air temperature and humidity. The meteorological forcings were adapted to the common optimum one-month temporal resolution of the available data sets. Monthly mean kinetic energy flux and surface tensions were calculated from daily ECMWF wind data. Monthly in situ precipitation, surface air temperature and humidity fields were interpolated from data obtained from the Russian Hydrological and Meteorological Institute. Monthly water discharge and average salinity of the river water were considered for both Amu Darya and Syr Darya river over each simulation periods. The water mass conservation routines allowed the simulation of a changing coastline by taking into account local drying and flooding events of particular grid points. Preliminary barotropic runs were realised (for the 1951

  18. Watershed and land use-based sources of trace metals in urban storm water.

    PubMed

    Tiefenthaler, Liesl L; Stein, Eric D; Schiff, Kenneth C

    2008-02-01

    Trace metal contributions in urban storm water are of concern to environmental managers because of their potential impacts on ambient receiving waters. The mechanisms and processes that influence temporal and spatial patterns of trace metal loading in urban storm water, however, are not well understood. The goals of the present study were to quantify trace metal event mean concentration (EMC), flux, and mass loading associated with storm water runoff from representative land uses; to compare EMC, flux, and mass loading associated with storm water runoff from urban (developed) and nonurban (undeveloped) watersheds; and to investigate within-storm and within-season factors that affect trace metal concentration and flux. To achieve these goals, trace metal concentrations were measured in 315 samples over 11 storm events in five southern California, USA, watersheds representing eight different land use types during the 2000 through 2005 storm seasons. In addition, 377 runoff samples were collected from 12 mass emission sites (end of watershed) during 15 different storm events. Mean flux at land use sites ranged from 24 to 1,238, 0.1 to 1,272, and 6 to 33,189 g/km(2) for total copper, total lead, and total zinc, respectively. Storm water runoff from industrial land use sites contained higher EMCs and generated greater flux of trace metals than other land use types. For all storms sampled, the highest metal concentrations occurred during the early phases of storm water runoff, with peak concentrations usually preceding peak flow. Early season storms produced significantly higher metal flux compared with late season storms at both mass emission and land use sites.

  19. Modeling seasonal variability of carbonate system parameters at the sediment -water interface in the Baltic Sea (Gdansk Deep)

    NASA Astrophysics Data System (ADS)

    Protsenko, Elizaveta; Yakubov, Shamil; Lessin, Gennady; Yakushev, Evgeniy; Sokołowski, Adam

    2017-04-01

    A one-dimensional fully-coupled benthic pelagic biogeochemical model BROM (Bottom RedOx Model) was used for simulations of seasonal variability of biogeochemical parameters in the upper sediment, Bottom Boundary Layer and the water column in the Gdansk Deep of the Baltic Sea. This model represents key biogeochemical processes of transformation of C, N, P, Si, O, S, Mn, Fe and the processes of vertical transport in the water column and the sediments. The hydrophysical block of BROM was forced by the output calculated with model GETM (General Estuarine Transport Model). In this study we focused on parameters of carbonate system at Baltic Sea, and mainly on their distributions near the sea-water interface. For validating of BROM we used field data (concentrations of main nutrients at water column and porewater of upper sediment) from the Gulf of Gdansk. The model allowed us to simulate the baseline ranges of seasonal variability of pH, Alkalinity, TIC and calcite/aragonite saturation as well as vertical fluxes of carbon in a region potentially selected for the CCS storage. This work was supported by project EEA CO2MARINE and STEMM-CCS.

  20. Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia.

    PubMed

    Midekisa, Alemayehu; Beyene, Belay; Mihretie, Abere; Bayabil, Estifanos; Wimberly, Michael C

    2015-06-24

    The impacts of interannual climate fluctuations on vector-borne diseases, especially malaria, have received considerable attention in the scientific literature. These effects can be significant in semi-arid and high-elevation areas such as the highlands of East Africa because cooler temperature and seasonally dry conditions limit malaria transmission. Many previous studies have examined short-term lagged effects of climate on malaria (weeks to months), but fewer have explored the possibility of longer-term seasonal effects. This study assessed the interannual variability of malaria occurrence from 2001 to 2009 in the Amhara region of Ethiopia. We tested for associations of climate variables summarized during the dry (January-April), early transition (May-June), and wet (July-September) seasons with malaria incidence in the early peak (May-July) and late peak (September-December) epidemic seasons using generalized linear models. Climate variables included land surface temperature (LST), rainfall, actual evapotranspiration (ET), and the enhanced vegetation index (EVI). We found that both early and late peak malaria incidence had the strongest associations with meteorological conditions in the preceding dry and early transition seasons. Temperature had the strongest influence in the wetter western districts, whereas moisture variables had the strongest influence in the drier eastern districts. We also found a significant correlation between malaria incidence in the early and the subsquent late peak malaria seasons, and the addition of early peak malaria incidence as a predictor substantially improved models of late peak season malaria in both of the study sub-regions. These findings suggest that climatic effects on malaria prior to the main rainy season can carry over through the rainy season and affect the probability of malaria epidemics during the late malaria peak. The results also emphasize the value of combining environmental monitoring with epidemiological

  1. Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Piller, Werner E.; Müllegger, Stefan; Grunert, Patrick; Micheels, Arne

    2011-03-01

    The Western Tethyan estuarine oyster Crassostrea gryphoides is an excellent climate archive due to its large size and rapid growth. It is geologically long lived and allows a stable isotope-based insight into climatic trends during the Miocene. Herein we utilised the climate archive of 5 oyster shells from the Miocene Climate Optimum (MCO) and the subsequent Miocene Climate Transition (MCT) to evaluate changes of seasonality patterns. MCO shells exhibit highly regular seasonal rhythms of warm-wet and dry-cool seasons. Optimal conditions resulted in extraordinary growth rates of the oysters. δ 13C profiles are in phase with δ 18O although phytoplankton blooms may cause a slight offset. Estuarine waters during the MCO in Central Europe display a seasonal temperature range of c. 9-10 °C. Absolute water temperatures have ranged from 17 to 19 °C during cool seasons and up to 28 °C in warm seasons. Already during the early phase of the MCO, the growth rates are distinctly declining, although gigantic and extremely old shells have been formed at that time. Still, a very regular and well expressed seasonality is dominating the isotope profiles, but episodically occurring extreme climate events influence the environments. The seasonal temperature range is still c. 9 °C but the cool season temperature seems to be slightly lower (16 °C) and the warm season water temperature does not exceed c. 25 °C. In the later MCT at c. 12.5-12.0 Ma the seasonality pattern is breaking down and is replaced by successions of dry years with irregular precipitation events. No correlation between δ 18O and δ 13C is documented maybe due to a suboptimal nutrition level which would explain the low growth rates and small sizes. The amplitude of seasonal temperature range is decreasing to 5-8 °C. No clear cooling trend can be postulated for that time as the winter season water temperatures range from 15 to 20 °C. This may point to unstable precipitation rhythms on a multi-annual to

  2. Seasonal abundance and vertical distribution of capelin (Mallotus villosus) in relation to water temperature at a coastal site off eastern Newfoundland

    USGS Publications Warehouse

    Methven, David A.; Piatt, John F.

    1991-01-01

    The seasonal abundance and vertical distribution of capelin in relation to water temperature have been investigated by conducting repeated hydroacoustic surveys at a coastal site off eastern Newfoundland. Water temperatures were warmer in 1983 than in 1984 as indicated by the earlier appearance and greater depth of the seasonal thermocline. Correspondingly, schools of capelin appeared earlier, were more abundant, and extended deeper in the water column in 1983 than in 1984. Most capelin were found between the surface and the 5°C isotherm. In both years, initial peaks of capelin abundance occurred when nearshore water temperatures increased from about 0-1°C to above 6°C and, at or near, periods of maximum tidal oscillation. Short-term variations in the depth of the 5°C isotherm were related to nearshore wind-induced upwelling events. Annual variations corresponded to the volume of cold (>0°C) water and sea-ice transported south by the Labrador Current.

  3. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  4. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    PubMed

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  5. Seasonal Variations of Stratospheric Age Spectra in GEOSCCM

    NASA Technical Reports Server (NTRS)

    Li, Feng; Waugh, Darryn; Douglass, Anne R.; Newman, Paul A.; Pawson, Steven; Stolarski, Richard S.; Strahan, Susan E.; Nielsen, J. Eric

    2011-01-01

    There are many pathways for an air parcel to travel from the troposphere to the stratosphere, each of which takes different time. The distribution of all the possible transient times, i.e. the stratospheric age spectrum, contains important information on transport characteristics. However, it is computationally very expensive to compute seasonally varying age spectra, and previous studies have focused mainly on the annual mean properties of the age spectra. To date our knowledge of the seasonality of the stratospheric age spectra is very limited. In this study we investigate the seasonal variations of the stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We introduce a method to significantly reduce the computational cost for calculating seasonally dependent age spectra. Our simulations show that stratospheric age spectra in GEOSCCM have strong seasonal cycles and the seasonal cycles change with latitude and height. In the lower stratosphere extratropics, the average transit times and the most probable transit times in the winter/early spring spectra are more than twice as old as those in the summer/early fall spectra. But the seasonal cycle in the subtropical lower stratosphere is nearly out of phase with that in the extratropics. In the middle and upper stratosphere, significant seasonal variations occur in the sUbtropics. The spectral shapes also show dramatic seasonal change, especially at high latitudes. These seasonal variations reflect the seasonal evolution of the slow Brewer-Dobson circulation (with timescale of years) and the fast isentropic mixing (with timescale of days to months).

  6. The rain water management model on an appropriate hilly area to fulfil the needs of cocoa farm during dry season

    NASA Astrophysics Data System (ADS)

    Hasbi, M.; Darma, R.; Yamin, M.; Nurdin, M.; Rizal, M.

    2018-05-01

    Cocoa is an important commodity because 90% farmers involved, easily marketed, and potentially harvested along the year. However, cocoa productivity tended to decrease by an average of only 300 kg hectare-1 year-1 or away from the potential productivity of two tons. Water management was an alternative method to increase its productivity by harvesting rainwater on the hilly cocoa farm area and distributing the water based on the gravity law. The research objective was to describes how to manage rainwater at the hilly cocoa farm area, so that the water needs of cocoa farm were met during the dry season. The important implication of the management was the water availability that supports the cocoa cultivation during the year. This research used qualitative method with descriptive approach to explain the appropriate technical specification of infrastructure to support the rainwater management. This research generated several mathematical formulas to support rainwater management infrastructure. The implementation of an appropriate rainwater utilization management for cocoa farm will ensuring the availability of water during dry season, so the cocoa farm allowed to produce cacao fruit during the year.

  7. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  8. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  9. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  10. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  11. 18 CFR 157.36 - Open seasons for expansions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Open seasons for... GAS ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.36 Open seasons for expansions. Any open season for capacity exceeding the initial capacity of an Alaska natural gas...

  12. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    NASA Astrophysics Data System (ADS)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet

  13. Asymmetric seasonal march from autumn to the next spring in East Asia (Toward interdisciplinary education on the climate systems and the "seasonal feeling" such as around the Japan Islands area)

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Kato, Haruko; Sato, Sari; Akagi, Rikako; Haga, Yuichi; Miyake, Shoji

    2014-05-01

    There are many steps of seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling" around the Japan Islands. For example, the "wintertime pressure pattern" begins to prevail already from November due to the seasonal development of the Siberian Air mass and the Siberian High, although the air temperature around the Japan Islands is still rather higher than in midwinter. On the other hand, since the southward retreat of the warm moist air mass in the western Pacific area delays rather greatly to the advances of those northern systems. Thus it would be interesting to re-examine the whole seasonal cycle around the Japan Islands at the view point of how the phase differences among seasonal marches of the Asian monsoon subsystems affect the variety of the seasonal cycle there, together with their effects on the "seasonal feeling". As such, the present study will examine the asymmetric seasonal march from autumn to the next spring through midwinter around the Japan Islands as an interesting example, and will also report the joint activity with music, and so on, toward the development of an interdisciplinary study plan on such topics for the students in junior high school, high school and the faculty of education of the university. The wintertime weather pattern, i.e., precipitation in the Japan Sea side and clear day in the Pacific side of the Japan Islands, prevails from early November to early March, reflected by the seasonal cycle of the Siberian Air Mass and the Siberian High. However, the air temperature shows the minimum from late January to early February around the Japan Islands. In other words, although the dominant weather patterns around November and in early March are nearly the same as each other, air temperature is still lower in early March (early spring). In spite of that, the solar radiation is rather stronger in early

  14. Low-oxygen waters limited habitable space for early animals.

    PubMed

    Tostevin, R; Wood, R A; Shields, G A; Poulton, S W; Guilbaud, R; Bowyer, F; Penny, A M; He, T; Curtis, A; Hoffmann, K H; Clarkson, M O

    2016-09-23

    The oceans at the start of the Neoproterozoic Era (1,000-541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (∼550-541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems.

  15. A New NOAA Research Initiative on the Seasonal Prediction of U.S. Coastal High Water Levels

    NASA Astrophysics Data System (ADS)

    Mariotti, A.; Archambault, H. M.; Barrie, D.; Huang, J.

    2017-12-01

    A crucial part of NOAA's service mission is to make U.S. communities more resilient to rises in coastal sea level, which on a seasonal timescale may increase the threat for nuisance ("sunny day") flooding, as well as enhance the severity of storm surge events. Over a season, variability in climate or ocean dynamics, in combination with longer-term trends, can influence coastal sea level in a way that is potentially predictable. To leverage these emerging scientific findings, the Climate Program Office's Modeling, Analysis, Predictions, and Projections Program, in partnership with the National Marine Fisheries Service, has funded a set of three-year projects starting in FY 2017 to help develop NOAA's capability to produce skillful seasonal (i.e, 2-9 month) predictions of coastal high water levels as well as changing living marine resources. This presentation will describe the goals, scope and intended activities of this research initiative and its coordination via a new MAPP Ocean Prediction Task Force.

  16. 18 CFR 157.34 - Notice of open season.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Notice of open season... ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.34 Notice of open season. (a) Notice. A prospective applicant must provide reasonable public notice of an open season through methods...

  17. 18 CFR 157.34 - Notice of open season.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Notice of open season... ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.34 Notice of open season. (a) Notice. A prospective applicant must provide reasonable public notice of an open season through methods...

  18. 18 CFR 157.34 - Notice of open season.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Notice of open season... ACT Open Seasons for Alaska Natural Gas Transportation Projects § 157.34 Notice of open season. (a) Notice. A prospective applicant must provide reasonable public notice of an open season through methods...

  19. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  20. Semi-arid vegetation response to antecedent climate and water balance windows

    USGS Publications Warehouse

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation

  1. SEASONAL PATTERNS AND VERTICAL PROFILE OF SOIL WATER UPTAKE AND UTILIZATION BY YOUNG AND OLD DOUGLAS-FIR AND PONDEROSA PINE FORESTS

    EPA Science Inventory

    Water availability has a strong influence on the distribution of forest tree species across the landscape. However, we do not understand how seasonal patterns of water utilization by tree species are related to their drought tolerance. In the Pacific Northwest, Douglas-fir occu...

  2. Early successional forest habitats and water resources

    Treesearch

    James Vose; Chelcy Ford

    2011-01-01

    Tree harvests that create early successional habitats have direct and indirect impacts on water resources in forests of the Central Hardwood Region. Streamflow increases substantially immediately after timber harvest, but increases decline as leaf area recovers and biomass aggrades. Post-harvest increases in stormflow of 10–20%, generally do not contribute to...

  3. Seasonal drought effects on the water quality of the Biobío River, Central Chile.

    PubMed

    Yevenes, Mariela A; Figueroa, Ricardo; Parra, Oscar

    2018-05-01

    Quantifying the effect of droughts on ecosystem functions is essential to the development of coastal zone and river management under a changing climate. It is widely acknowledged that climate change is increasing the frequency and intensity of droughts, which can affect important ecosystem services, such as the regional supply of clean water. Very little is understood about how droughts affect the water quality of Chilean high flow rivers. This paper intends to investigate the effect of an, recently identified, unprecedented drought in Chile (2010-2015), on the Biobío River water quality, (36°45'-38°49' S and 71°00'-73°20' W), Central Chile. This river is one of the largest Chilean rivers and it provides abundant freshwater. Water quality (water temperature, pH, dissolved oxygen, electrical conductivity, biological oxygen demand, total suspended solids, chloride, sodium, nutrients, and trace metals), during the drought (2010-2015), was compared with a pre-drought period (2000-2009) over two reaches (upstream and downstream) of the river. Multivariate analysis and seasonal Mann-Kendall trend analyses and a Theil-Sen estimator were employed to analyze trends and slopes of the reaches. Results indicated a significant decreased trend in total suspended solids and a slightly increasing trend in water temperature and EC, major ions, and trace metals (chrome, lead, iron, and cobalt), mainly in summer and autumn during the drought. The reduced variability upstream suggested that nutrient and metal concentrations were more constant than downstream. The results evidenced, due to the close relationship between river discharge and water quality, a slightly decline of the water quality downstream of the Biobío River during drought period, which could be attenuated in a post-drought period. These results displayed that water quality is vulnerable to reductions in flow, through historical and emerging solutes/contaminants and induced pH mobilization. Consequently, seasonal

  4. Impact of lengthening open water season on food security in Alaska coastal communities: Global impacts may outweigh local "frontline" effects

    NASA Astrophysics Data System (ADS)

    Rolph, R.; Mahoney, A. R.

    2015-12-01

    Using ice concentration data from the Alaska Sea Ice Atlas from 1953-2013 for selected communities in Alaska, we find a consistent trend toward later freeze up and earlier breakup, leading a lengthened open water period. Such changes are often considered to bring a variety of "frontline" local impacts to Arctic coastal communities such as increased rates of coastal erosion. However, direct consequences of these changes to local food security (e.g. through impacts on subsistence activities and marine transport of goods) may be outweighed at least in the short term by the effects of large scale Arctic sea ice change coupled with global oil markets. For example, a later freeze-up might delay local hunters' transition from boats to snow-machines, but whether this trend will affect hunting success, especially in the next few years, is uncertain. Likewise, the magnitude of change in open water season length is unlikely to be sufficient to increase the frequency with which communities are served by barges. However, an expanding open water season throughout the Arctic has implications for the global economy, which can have indirect effects on local communities. In the Chukchi and Beaufort Seas, where rapid sea ice change has been accompanied by increased interest in oil and gas development, the U.S. Bureau of Ocean Energy Management currently requires drilling operations to cease 38 days prior to freeze up. Taking this into account, the lengthening open water season has effectively extended the drilling season for oil companies by 184% since the 1950s. If oil development goes ahead, local communities will likely experience a range of indirect impacts on food security due to increased vessel traffic and demand on infrastructure coupled with changes in local economies and employment opportunities. Increased likelihood of an oil spill in coastal waters also poses a significant threat to local food security. Thus, while Arctic coastal communities are already experiencing

  5. Seasonal variation of bacterial community in biological aerated filter for ammonia removal in drinking water treatment.

    PubMed

    Liu, Hongyuan; Zhu, Liying; Tian, Xiaohe; Yin, Yeshi

    2017-10-15

    Biological aerated filter (BAF) is widely used in wastewater treatment plants (WWTPs) and shows potential application of micropolluted drinking water sources with a higher NH 4 + -N removal efficiency during short warm seasons. Here we adopted a pilot lava-based BAF setup as a pretreatment unit of drinking water treatment plant (DWTP) and achieved a great performance of ammonia removal over a two-year operation using natural river water. We respectively observed 92.62% of NH 4 + -N removal efficiency, 97.88% of NO 2 - -N removal efficiency in summer, and 77.52% NH 4 + -N removal efficiency in winter down to 5 °C. Based on DGGE analysis, AOB, NOB, as well as heterotrophic bacteria including genus Flavobacterium and Sphingomonas are responsible for the performance. Nitrosomonas and Nitrospira are found to be the dominant AOB and NOB in the BAF microbiota. The compositions of AOB including Nitrosomonas communis and Nitrosomonas oligotropha are different from the strains previously reported in BAF of WWTPs but similar to the observations in DWPTs. We observed seasonal bacterial shifts between summer and winter groups involved in AOB, NOB and heterotrophic genus Flavobacterium, which may be responsible for the seasonal performance fluctuation. The psychrophilic AOB belonging to Nitrosomonas likely contribute to the recovered NH 4 + -N removal efficiency when temperature is below 7 °C. Lack of nitrification functional psychrophilic or psychrotolerant NOB may be in charge of the severe nitrite accumulation below 7 °C. Our analysis suggests that the colonization of psychrophilic nitrifying bacteria in BAF needs at least two-year of natural acclimatization and is necessary for all-weather BAF in DWTPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica

    NASA Astrophysics Data System (ADS)

    Welsh Unwala, K.; Boll, J.; Roupsard, O.

    2014-12-01

    Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (<1 km2) coffee agroforestry watershed located in central Costa Rica on the Caribbean side. Samples were collected in precipitation, groundwater, and stream water for more than two years, across seasons and at an hourly frequency during storm events to better characterize spatial and temporal variations of the isotopic composition and of the respective contribution of surface and deeper groundwater to streamflow in the watershed. Isotope composition in precipitation ranged from -18.5 to -0.3‰ (∂18O) and -136.4 to 13.7‰ (∂D), and data indicate that atmospheric moisture cycling plays an important role in this region. A distinct seasonality was observed in monthly-averaged data between enriched dry season events as compared with the rainy season events. Streamflow data indicate that a deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.

  7. Modelling of seasonal dynamics of Wetland-Groundwater flow interaction in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Ali, Melkamu; Nussbaumer, Raphaël; Ireson, Andrew; Keim, Dawn

    2015-04-01

    Wetland-shallow groundwater interaction is studied at the St. Denis National Wildlife Area in Saskatchewan, Canada, located within the northern glaciated prairies of North America. Ponds in the Canadian Prairies are intermittently connected by fill-spill processes in the spring and growing season of some wetter years. The contribution of the ponds and wetlands to groundwater is still a significant research challenge. The objective of this study is to evaluate model's ability to reproduce observed effects of groundwater-wetland interactions including seasonal pattern of shallow groundwater table, intended flow direction and to quantify the depression induced infiltration from the wetland to the surrounding uplands. The integrated surface-wetland-shallow groundwater processes and the changes in land-energy and water balances caused by the flow interaction are simulated using ParFlow-CLM at a small watershed of 1km2 containing both permanent and seasonal wetland complexes. We compare simulated water table depth with piezometers reading monitored by level loggers at the watershed. We also present the strengths and limitations of the model in reproducing observed behaviour of the groundwater table response to the spring snowmelt and summer rainfall. Simulations indicate that the shallow water table at the uphill recovers quickly after major rainfall events in early summer that generates lateral flow to the pond. In late summer, the wetland supplies water to the surrounding upland when the evapotranspiration is higher than the precipitation in which more water from the root zone is up taken by plants. Results also show that Parflow-CLM is able to reasonably simulate the water table patterns response to summer rainfall, while it is insufficient to reproduce the spring snowmelt infiltration which is the most dominant hydrological process in the Prairies.

  8. Water use efficiency by switchgrass compared to a native grass or a native grass alfalfa mixture

    USDA-ARS?s Scientific Manuscript database

    Development of sustainable cellulosic biofuel systems requires knowing the water use efficiency (WUE) of potential bioenergy crops. Impact of early and late season droughts on WUE and soil water deficits were evaluated in switchgrass (Panicum virgatum L.), western wheatgrass (Pascopyrum smithii (Ry...

  9. Seasonal variation of semidiurnal internal tides in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Jeon, Chanhyung; Park, Jae-Hun; Varlamov, Sergey M.; Yoon, Jong-Hwan; Kim, Young Ho; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik; Lee, Jae Hak; Kim, Cheol-Ho

    2014-05-01

    The seasonal variation of semidiurnal internal tides in the East/Japan Sea was investigated using 25 month long output from a real-time ocean forecasting system. The z coordinate eddy-resolving high-resolution numerical model, called the RIAM ocean model, incorporates data assimilation that nudges temperature and salinity fields together with volume transport through the Korea Strait to produce realistic oceanic currents and stratification. In addition to atmospheric forcing, it includes tidal forcing of 16 major components along open boundaries. The model generates energetic semidiurnal internal tides around the northern entrance of the Korea Strait. Energy conversion from barotropic to baroclinic (internal) tides varies seasonally with maxima in September (ranging 0.48-0.52 GW) and minima in March (ranging 0.11-0.16 GW). This seasonal variation is induced by the seasonality in stratification near the southwestern East/Japan Sea. The propagation distance of the internal tides is associated with generation intensity and wavelength. From late summer to early winter, the semidiurnal internal tides travel relatively far from the generation region due to stratification changes; its energy dissipates less as a result of longer wavelengths. Our results suggest that spatiotemporal variation of internal-tide-induced mixing due to the seasonality in the generation, propagation, and dissipation of internal tides should be considered for a more realistic simulation of water masses and circulation in models of the East/Japan Sea.

  10. Impact of Water-Sediment Regulation Scheme on seasonal and spatial variations of biogeochemical factors in the Yellow River estuary

    NASA Astrophysics Data System (ADS)

    Wang, Yujue; Liu, Dongyan; Lee, Kenneth; Dong, Zhijun; Di, Baoping; Wang, Yueqi; Zhang, Jingjing

    2017-11-01

    Seasonal and spatial distributions of nutrients and chlorophyll-a (Chl-a), together with temperature, salinity and total suspended matter (TSM), were investigated in the Yellow River estuary (China) to examine the biogeochemical influence of the ;Water and Sediment Regulation Scheme (WSRS); that is used to manage outflows from the river. Four cruises in April, June (early phase of WSRS), July (late phase of WSRS) and September were conducted in 2013 (WSRS from 19th June to 12th July). The results showed that nutrient species could be divided into two major groups according to their seasonal and spatial distributions. One group included NO3-, dissolved organic nitrogen (DON) and Si(OH)4, primarily from freshwater discharge. NO3- and DON related to anthropogenic sources were also separated from Si(OH)4, which was related to weather. The other group included dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), NO2-, and NH4+. Along with freshwater inputs, sediment absorption/desorption showed impacts on DIP and DOP concentration and distribution. Nitrification was a dominant factor controlling NO2- concentrations. NH4+ was influenced by both sediment absorption/desorption and nitrification. The WSRS not only shifted the seasonal patterns of nutrients in the estuary, with high concentrations moved from autumn to June and July, but also promoted the nutrient spread to the south central part of the Bohai Sea. Spatial distribution of Chlorophyll-a (Chl-a) was influenced by the WSRS, with high concentrations being found in the river mouth in June and September, flanking the river mouth in July, and in the south central part of the Bohai Sea in September. Although Chl-a concentrations increased in June and July, the seasonal patterns did not change. The highest concentrations were found in September. Nutrient loadings during the WSRS relieved DIP and Si(OH)4 limitation in the estuary and south central Bohai Sea, causing an excess of DIN and disrupting

  11. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    NASA Technical Reports Server (NTRS)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; hide

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  12. Statistical prediction of seasonal discharge in Central Asia for water resources management: development of a generic (pre-)operational modeling tool

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Baimaganbetov, Azamat; Kalashnikova, Olga; Gavrilenko, Nadejda; Abdykerimova, Zharkinay; Agalhanova, Marina; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2017-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydromet services, this study aims at the development of a generic tool for deriving statistical forecast models of seasonal river discharge. The generic model is kept as simple as possible in order to be driven by available hydrological and meteorological data, and be applicable for all catchments with their often limited data availability in the region. As snowmelt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature as recorded by climatological stations in the catchments. These data sets are accompanied by snow cover predictors derived from the operational ModSnow tool, which provides cloud free snow cover data for the selected catchments based on MODIS satellite images. In addition to the meteorological data antecedent streamflow is used as a predictor variable. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to 3 or 4 predictors. A user selectable number of best models according to pre-defined performance criteria is extracted automatically by the developed model fitting algorithm, which includes a test

  13. Differences in the Photosynthetic Activity of C3 and C4 Graminoids in Short-Hydroperiod Marl Prairies of the Florida Everglades: Responses to Seasonality and Water Management

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Olivas, P. C.; Schedlbauer, J. L.; Moser, J.

    2011-12-01

    Short hydroperiod marsh of the Everglades is dominated by a mix of sawgrass (Cladium jamaicense, a C3 sedge) and Muhly grass (Muhlenbergia capillaris, a C4 grass). Although the Everglades are located in a subtropical region, the climate is classified as tropical with distinct annual rainy and dry seasons during the summer and winter, respectively. Water levels in marl prairies vary greatly over the year driven by seasonality of rainfall, but are modified strongly by water management practices. As a result, the rainy season and period of inundation generally do not completely coincide. Water tables fall as much as 80 cm below the surface for approximately 6-7 months starting about December/January and reach up to 40 cm above the surface during the inundation period. Eddy covariance studies from this habitat revealed strong reductions in CO2 uptake coinciding with water tables inundating the surface. Submersion of macrophyte leaf area accounts for some of the reduction. To test if changes in leaf physiology also contribute to this reduced ecosystem CO2 uptake, we measured maximum assimilation rates (Amax) of the dominant species during both seasons in the marsh and on a nearby levee that remains above water. Typical of C4 plants, Amax of Muhlenbergia were high, > 20 μmol m-2 s-1, during the dry season. However when plant crowns were submerged, photosynthetic rates of emergent leaves of Muhlenbergia were strongly reduced to near compensation in some cases. In contrast, Amax of Muhlenbergia measured from higher terrain within 30 m of the flooded sites maintained high rates. Rates of Cladium were lower overall but did not show strong seasonality at either site. This wetland represents an unusual situation in which one of the codominants is effectively photosynthetically inactive during wet season. Planned changes to increase water flow to the Everglades and predicted changes in rainfall with climate change will strongly affect the carbon balance of this habitat.

  14. Water use efficiency (WUE) in blackberries is improved by the use of weed barriers and seasonal shading

    USDA-ARS?s Scientific Manuscript database

    Water use efficiency (WUE) was determined for two separate blackberry cultural management studies conducted during the years 2006-2008 (Expt. 1) and 2008-2010 (Expt. 2) in a semi-arid subtropical area in south Texas (Lat. 26° N). Adjustments were made for natural precipitation and total season wate...

  15. Impacts of climate change on rainfall, seasonal flooding, and evapotranspiration in the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Noone, D.; Mosimanyana, E.; Gondwe, M.

    2016-12-01

    The Okavango Delta in northern Botswana is one of the world's richest biodiversity hotspots. A UNESCO World Heritage Site, the Delta is known for its unique annual flood pulse, whereby the wetland and its neighboring river systems are inundated with waters that travel nearly 1000 km before reaching this subtropical, semi-arid destination. The livelihoods of northern Botswana's ecosystems and human populations rely on these floods to supplement the short and variable rainy season, which in many years is too minimal to ameliorate regional drought. However, anthropogenic climate change is reducing the amount of water that reaches the delta by increasing evaporation from soils and rivers, and transpiration by vegetation, during its long transit to Botswana. Future changes in rainfall patterns, extreme events, and increased upstream water use could exacerbate this water stress. Unfortunately, it remains difficult to assess the impacts of climate change on the delta because few data exist to constrain its complex climatic and seasonal water cycling regimes. This study presents a novel characterization of the water cycle in and around the Okavango Delta based on a survey of free-flowing surface waters, stagnant pools, precipitation, and groundwater carried out during the 2016 rainy and early-flood season. We use stable isotope and water quality data to assess local moisture sources, transport, evaporation, wetland flushing, and land-atmosphere exchanges, all of which are subject to change under global warming. We find a strong evaporation gradient and a progressive flushing of stagnant swamp waters along the northeastern and northwestern channels of the Delta. The evaporation gradient is more limited in nearby rivers with more limited wetlands. We contrast results with a survey of the Delta performed in the 1970's in order to assess changes over the past 40 years. Since some of these changes may arise from rainfall supply, we also present new analysis of rainfall moisture

  16. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  17. Cosmological Simulations with Molecular Astrochemistry: Water in the Early Universe

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon K.; Smidt, Joseph

    2018-01-01

    Water is required for the rise of life as we know it throughout the universe, but its origin and the circumstances of its first appearance remain a mystery. The abundance of deuterated water in solar system bodies cannot be explained if all the water in the solar system were created in the protoplanetary disk (Cleeves et al. 2014), suggesting that as much of half of Earth’s water predates the Sun. Water has been observed as early as one sixth the current universe’s age in MG J0414+0534 (Imprellizzeri et al. 2008). It was recently shown that water could, in principle, appear in hot halos barely enriched with heavy elements such as oxygen and carbon (Bialy et al. 2015). So far, no self-consistent calculation of cosmology physics carried out in line with a large chemical reaction network has been carried out to study the first sites of water formation in the universe. We present initial results the first such series of cosmological calculations with a 26 species low metallicity molecular chemical reaction network with Enzo (Bryan et al. 2014) to understand the role of hydrodynamics and radiative feedback on molecule formation in the early universe and to shed light on the cosmological history of this life-giving substance.

  18. Grid-cell-based crop water accounting for the famine early warning system

    NASA Astrophysics Data System (ADS)

    Verdin, James; Klaver, Robert

    2002-06-01

    Rainfall monitoring is a regular activity of food security analysts for sub-Saharan Africa due to the potentially disastrous impact of drought. Crop water accounting schemes are used to track rainfall timing and amounts relative to phenological requirements, to infer water limitation impacts on yield. Unfortunately, many rain gauge reports are available only after significant delays, and the gauge locations leave large gaps in coverage. As an alternative, a grid-cell-based formulation for the water requirement satisfaction index (WRSI) was tested for maize in Southern Africa. Grids of input variables were obtained from remote sensing estimates of rainfall, meteorological models, and digital soil maps. The spatial WRSI was computed for the 1996-97 and 1997-98 growing seasons. Maize yields were estimated by regression and compared with a limited number of reports from the field for the 1996-97 season in Zimbabwe. Agreement at a useful level (r = 0·80) was observed. This is comparable to results from traditional analysis with station data. The findings demonstrate the complementary role that remote sensing, modelling, and geospatial analysis can play in an era when field data collection in sub-Saharan Africa is suffering an unfortunate decline. Published in 2002 by John Wiley & Sons, Ltd.

  19. Magnitudes and timing of seasonal peak snowpack water equivalents in Arizona: A preliminary study of the possible effects of recent climatic change

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried

    2010-01-01

    Field measurements and computer-based predictions suggest that the magnitudes of seasonal peak snowpack water equivalents are becoming less and the timing of these peaks is occurring earlier in the snowmelt-runoff season of the western United States. These changes in peak snowpack conditions have often been attributed to a warming of the regional climate. To determine...

  20. Regression model estimation of early season crop proportions: North Dakota, some preliminary results

    NASA Technical Reports Server (NTRS)

    Lin, K. K. (Principal Investigator)

    1982-01-01

    To estimate crop proportions early in the season, an approach is proposed based on: use of a regression-based prediction equation to obtain an a priori estimate for specific major crop groups; modification of this estimate using current-year LANDSAT and weather data; and a breakdown of the major crop groups into specific crops by regression models. Results from the development and evaluation of appropriate regression models for the first portion of the proposed approach are presented. The results show that the model predicts 1980 crop proportions very well at both county and crop reporting district levels. In terms of planted acreage, the model underpredicted 9.1 percent of the 1980 published data on planted acreage at the county level. It predicted almost exactly the 1980 published data on planted acreage at the crop reporting district level and overpredicted the planted acreage by just 0.92 percent.

  1. Seasonal patterns of growth, dehydrins and water-soluble carbohydrates in genotypes of Dactylis glomerata varying in summer dormancy.

    PubMed

    Volaire, F; Norton, M R; Norton, G M; Lelièvre, F

    2005-05-01

    Summer dormancy in perennial grasses has been studied inadequately, despite its potential to enhance plant survival and persistence in Mediterranean areas. The aim of the present work was to characterize summer dormancy and dehydration tolerance in two cultivars of Dactylis glomerata (dormant 'Kasbah', non-dormant 'Oasis') and their hybrid using physiological indicators associated with these traits. Dehydration tolerance was assessed in a glasshouse experiment, while seasonal metabolic changes which produce putative protectants for drought, such as carbohydrates and dehydrins that might be associated with summer dormancy, were analysed in the field. The genotypes differed in their ability to survive increasing soil water deficit: lethal soil water potential (Psi(s)) was -3.4 MPa for 'Kasbah' (although non-dormant), -1.3 MPa for 'Oasis', and -1.6 MPa for their hybrid. In contrast, lethal water content of apices was similar for all genotypes (approx. 0.45 g H(2)O g d. wt(-1)), and hence the greater survival of 'Kasbah' can be ascribed to better drought avoidance rather than dehydration tolerance. In autumn-sown plants, 'Kasbah' had greatest dormancy, the hybrid was intermediate and 'Oasis' had none. The more dormant the genotype, the lower the metabolic activity during summer, and the earlier the activity declined in spring. Decreased monosaccharide content was an early indicator of dormancy induction. Accumulation of dehydrins did not correlate with stress tolerance, but dehydrin content was a function of the water status of the tissues, irrespective of the soil moisture. A protein of approx. 55 kDa occurred in leaf bases of the most dormant cultivar even in winter. Drought avoidance and summer dormancy are correlated but can be independently expressed. These traits are heritable, allowing selection in breeding programmes.

  2. Seasonal changes of dissolved nutrients within and around Port Foster Deception Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Sturz, Anne A.; Gray, Sarah C.; Dykes, Kathleen; King, Andrew; Radtke, Jennifer

    2003-06-01

    Temporal and spatial distribution of dissolved macronutrients (ammonia, nitrate, phosphate and silica) and productivity were investigated within and around Port Foster, the flooded 160-m-deep caldera of Deception Island, Antarctica. This study was part of the Erupt Project, which included five seasonal cruises over a complete annual cycle during 1999-2000. Seawater samples were collected and physical properties were monitored from seven stations within Port Foster and 12 stations in the adjacent Bransfield Strait. In addition, shallow-water and beach interstitial-water samples were collected along the shorelines of the peripheral coves. Port Foster macronutrient/depth profiles were typical for a normal shallow seawater column in a polar region. The water column in early austral spring was well mixed and changed to a stratified water column with a weak thermocline during the summer. By early winter, the thickness of the well-mixed surface layer increased until the entire water column returned to well-mixed conditions. This early winter transition from stratified conditions to well-mixed conditions occurred in June and appeared to be abrupt. During the seasons of light limitation and low-primary productivity, local currents were effective at redistributing dissolved biochemical components throughout the bay. During the summer season, the dissolved nutrient and oxygen distributions reflected consumption of nutrients by primary producers. The mid-depth maximum observed in the ammonia profiles implies the excretion of metabolites from resident animal populations. Residence time of dissolved ammonia must have been shorter than the circulation time within Port Foster because ammonia is not as uniformly distributed during the summer months as it was during the winter and spring. Dissolved nitrate concentrations in the Bransfield Strait during this study were similar to those measured in previous studies. The mean concentrations of phosphate, nitrate, and silica in the

  3. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    PubMed

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  4. Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria

    NASA Astrophysics Data System (ADS)

    Ganiyu, S. A.; Badmus, B. S.; Olurin, O. T.; Ojekunle, Z. O.

    2018-03-01

    The variation of groundwater quality across different regions is of great importance in the study of groundwater so as to ascertain the sources of contaminants to available water sources. Geochemical assessment of groundwater samples from hand-dug wells were done within the vicinity of Ajakanga dumpsite, Ibadan, Southwestern, Nigeria, with the aim of assessing their suitability for domestic and irrigation purposes. Ten groundwater samples were collected both in dry and wet seasons for analysis of physicochemical parameters such as: pH, EC, TDS, Na+, K+, Ca2+, Mg2+, HCO3^{ - } Cl-, SO4^{2 - }, NO3^{2 - } principal component analysis (PCA) and cluster analysis (CA) were used to determine probable sources of groundwater contamination. The results of the analyses showed the groundwater samples to be within permissible limits of WHO/NSDWQ, while elevated values of concentrations of most analyzed chemical constituents in water samples were noticed in S1 and S10 due to their nearness to the dumpsite and agricultural overflow, respectively. Groundwater in the study area is of hard, fresh and alkaline nature. There are very strong associations between EC and TDS, HCO3^{ - } and CO3^{2 - } in both seasons. PCA identified five and three major factors accounting for 95.7 and 88.7% of total variation in water quality for dry and wet seasons, respectively. PCA also identified factors influencing water quality as those probably related to mineral dissolution, groundwater-rock interaction, weathering process and anthropogenic activities from the dumpsite. Results of CA show groups based on similar water quality characteristics and on the extent of proximity to the dumpsite. Assessment for irrigation purpose showed that most of the water samples were suitable for agricultural purpose except in a few locations.

  5. Land Surface Phenologies and Seasonalities of Croplands and Grasslands in the US Prairie Pothole Region Using Passive Microwave Data (2003-2015)

    NASA Astrophysics Data System (ADS)

    Alemu, W. G.; Henebry, G. M.

    2017-12-01

    Grasslands and wetlands in the Prairie Pothole Region (PPR) have been converted to croplands in recent years. Crops cultivated in the PPR are also changing: spring wheat and alfalfa/hay are being switched to corn and soybean due to biofuel demand. According to the USDA Cropland Data Layer (CDL) from 2003 to 2015, spring wheat significantly decreased (r2 = 0.74), while corn and soybeans significantly increased (r2 = 0.86). We characterized land surface phenologies and land surface seasonalities across the PPR using the finer temporal (twice daily) but much lower spatial (25 km) resolution Advanced Microwave Scanning Radiometer (AMSR: blended from AMSR-E and AMSR2) enhanced land surface parameters for 2003-2015 (DOY 91-330 annual cycles). We tracked the temporal development of these land surface parameters as a function of accumulated growing degree-days (AGDD) based on the AMSR retrieved air temperature data. Growing degree-days (GDD) revealed distinct seasonality typical to temperate grasslands and croplands. GDD peaks were 23°C and it peaks at 1700°C AGDD. Precipitable water vapor (V) displayed seasonality comparable to GDD. Vegetation optical depth (VOD) revealed distinct land surface phenologies for grasslands versus croplands. We explored the changing crop fractions within the 25 km AMSR pixels using the CDL. Crop-dominated sites VOD time series caught the early spring growth, ploughing, and crop growth dynamics. In contrast, the VOD time series at grass-dominated sites exhibited a lower but more extended amplitude throughout the non-frozen season. VODs peaked at 1.6 and 1.3 for croplands and grasslands, respectively. Croplands peaked about a month later than grasslands (2200 °C AGDD vs. 1600 °C AGDD). The other parameters available from the AMSR dataset—soil moisture (sm), and fractional open water (fw)—together with the AGDD time series constructed from the AMSR air temperature data revealed the passage of storm systems during the growing season. Soil

  6. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    PubMed

    Domec, J C; Scholz, F G; Bucci, S J; Meinzer, F C; Goldstein, G; Villalobos-Vega, R

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.

  7. Knowledge of influenza vaccination recommendation and early vaccination uptake during the 2015-16 season among adults aged ≥18years - United States.

    PubMed

    Lu, Peng-Jun; Srivastav, Anup; Santibanez, Tammy A; Christopher Stringer, M; Bostwick, Michael; Dever, Jill A; Stanley Kurtz, Marshica; Williams, Walter W

    2017-08-03

    Since 2010, the Advisory Committee on Immunization Practices (ACIP) has recommended that all persons aged ≥6months receive annual influenza vaccination. We analyzed data from the 2015 National Internet Flu Survey (NIFS), to assess knowledge and awareness of the influenza vaccination recommendation and early influenza vaccination coverage during the 2015-16 season among adults. Predictive marginals from a multivariable logistic regression model were used to identify factors independently associated with adults' knowledge and awareness of the vaccination recommendation and early vaccine uptake during the 2015-16 influenza season. Among the 3301 respondents aged ≥18years, 19.6% indicated knowing that influenza vaccination is recommended for all persons aged ≥6months. Of respondents, 62.3% indicated awareness that there was a recommendation for influenza vaccination, but did not indicate correct knowledge of the recommended age group. Overall, 39.9% of adults aged ≥18years reported having an influenza vaccination. Age 65years and older, being female, having a college or higher education, not being in work force, having annual household income ≥$75,000, reporting having received an influenza vaccination early in the 2015-16 season, having children aged ≤17years in the household, and having high-risk conditions were independently associated with a higher correct knowledge of the influenza vaccination recommendation. Approximately 1 in 5 had correct knowledge of the recommendation that all persons aged ≥6months should receive an influenza vaccination annually, with some socio-economic groups being even less aware. Clinic based education in combination with strategies known to increase uptake of recommended vaccines, such as patient reminder/recall systems and other healthcare system-based interventions are needed to improve vaccination, which could also improve awareness. Published by Elsevier Ltd.

  8. Seasonal gametogenesis of host sea anemone ( Entacmaea quadricolor) inhabiting Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Bi, Ying; Zhang, Bin; Zhang, Zhifeng; Qiu, Jianwen

    2015-02-01

    Studying gonadal development of annual cycle can reveal the process of gametogenesis and reproductive period, and evaluate fertility and source utilization of a species. Host sea anemones are conspicuous members of tropical and subtropical reef ecosystems, but little is known about its biology including reproductive seasonality. Here we reported a one-year study on the gametogenesis and reproduction of host sea anemone ( Entacmaea quadricolor) inhabiting Hong Kong waters. E. quadricolor tissues were sampled in 12 occasions from 5 m and 15 m depths of water, respectively. Histological sectioning of the tissues showed that E. quadricolor was dioecious, and populational ratio of female to male was 1:1.6. The gonadal development was asynchronous within an annual cycle, which included proliferating, growing, maturing, spawning, and resting stages. The spawning occurred between August and October when surface seawater temperature reached the annual maximum (28°C), suggesting that temperature is an important factor modulating the gonadal development and mature of E. quadricolor.

  9. Seasonal trend of photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, L; Baldocchi, DD

    2003-09-01

    OAK-B135 Understanding seasonal changes in photosynthetic parameters and stomatal conductance is crucial for modeling long-term carbon uptake and energy fluxes of ecosystems. Gas exchange measurements of CO{sub 2} and light response curves on blue oak leaves (Quercus douglasii H. & A.) were conducted weekly throughout the growing season to study the seasonality of photosynthetic capacity (V{sub cmax}) and Ball-Berry slope (m) under prolonged summer drought and high temperature. A leaf photosynthetic model was used to determine V{sub cmax}. There was a pronounced seasonal pattern in V{sub cmax}. The maximum value of V{sub cmax}, 127 {micro}molm{sup -2} s{sup -1},was reached shortlymore » after leaf expansion in early summer, when air temperature was moderate and soil water availability was high. Thereafter, V{sub cmax} declined as the soil water profile became depleted and the trees experienced extreme air temperatures, exceeding 40 C. The decline in V{sub cmax} was gradual in midsummer, however, despite extremely low predawn leaf water potentials ({Psi}{sub pd}, {approx} -4.0 MPa). Overall, temporal changes in V{sub cmax} were well correlated with changes in leaf nitrogen content. During spring leaf development, high rates of leaf dark respiration (R{sub d}, 5-6 {micro}mol m{sup -2} s{sup -1}) were observed. Once a leaf reached maturity, R{sub d} remained low, around 0.5 {micro}mol m{sup -2} s{sup -1}. In contrast to the strong seasonality of V{sub cmax}, m and marginal water cost per unit carbon gain ({partial_derivative}E/{partial_derivative}A) were relatively constant over the season, even when leaf {Psi}{sub pd} dropped to -6.8 MPa. The constancy of {partial_derivative}E/{partial_derivative}A suggests that stomata behaved optimally under severe water-stress conditions. We discuss the implications of our findings in the context of modeling carbon and water vapor exchange between ecosystems and the atmosphere.« less

  10. Carbonate chemistry in a Kennebec Estuary softshell clam flat: Seasonal variability and implications for blue carbon mitigation

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Jurcic, B.; Indrick, R.; LaVigne, M.

    2016-12-01

    Maine's softshell clam (Mya arenaria) industry brings $20 million to the state annually. Reduced clam flat sediments aragonite saturation state (Ω), a predicted effect of ocean acidification, has been shown to negatively impact shell development in M. arenaria's early life stages. Seagrass restoration has been proposed to benefit Maine clam flats. However, the Gulf of Maine experiences seasonal changes in temperature and freshwater input, and the impacts on the carbonate chemistry of intertidal ecosystems have yet to be quantified. We measured overlying water and surface ( upper 1cm) porewater temperature (T), salinity (S), pH, and alkalinity (TA) biweekly from March to August, 2016 to quantify spatial and seasonal sediment Ω variability in a Kennebec Estuary clam flat (Wyman Bay, Maine). Reduced freshwater flow from spring into summer caused an increase in overlying water S (5-25ppt), TA (400-1800ueq/L), and W (0.09-1.20). Surface sediment pore water S (15-29ppt) and TA (1100-2100ueq/L) also increased in summer; however, Ω was variable and remained well below saturation (<0.40). Overlying water pH (7.38-7.96) and sediment pore water pH (6.85-7.47) showed no seasonal trend. Contrary to the predicted impact of seagrass on clam flat carbonate chemistry, preliminary data show sediment Ω is significantly lower in a site located within S. alterniflora (0.150.05) compared to sites lacking alterniflora (0.210.1) within Wyman Bay. Elevated sediment organic matter concentrations found with grasses (4.6%0.5) vs. without (2.9%0.4) may be produced by the grasses and organisms attracted to the ecosystem, and may result in greater respiration driving pH and Ω down rather than up. The strong correlation between TA and S (R2=0.78-0.99) suggests freshwater flow with spring melt during M. arenaria's planktonic larval stage and rain events (predicted to increase with climate change) can reduce Ω, with potentially negative implications for early M. arenaria life stages.

  11. Seasonal greening of an Arctic ecosystem in response to early snowmelt and climate warming: do plant community responses differ from species responses?

    NASA Astrophysics Data System (ADS)

    Steltzer, H.; Weintraub, M. N.; Sullivan, P.; Wallenstein, M. D.; Schimel, J.; Darrouzet-Nardi, A.; Shory, R.; Livensperger, C.; Melle, C.; Segal, A. D.; Daly, K.; Tsosie, T.

    2011-12-01

    In the Arctic and around the world, earlier plant growth and a longer growing season are indications that warmer temperatures or other global changes are changing the seasonality of the Earth's ecosystems. These changes in plant life histories have multi-trophic level consequences that affect food webs and biogeochemical cycles. Both the response of the plant community and of individual species can affect food and habitat resources for animals or nutrient resources for microbes. Our aim was to determine if the response of an Arctic plant community differs from individual species responses to climate change. For two years in an early snowmelt and climate warming experiment in moist acidic tussock tundra, we observed the seasonal greening of the ecosystem through near-surface measurements of surface greenness and through direct observations of the timing of plant life history events for five to eight common species that differ in growth form. In 2010 when snowmelt was accelerated by 4 days, earlier snowmelt alone or in combination with climate warming extended the life history of the dominant graminoids (E. vaginatum and C. bigelowii) and willow (S. pulchra) by 3 to 4 days. For these species, new leaf production began earlier, while the timing of senescence was similar to the controls. The effect of earlier snowmelt on the life histories of birch (B. nana) and cranberry (V. vitis-idaea) was less, but warming alone tended to increase life history duration. Warming led to earlier leaf expansion for birch and delayed senescence for cranberry. We found that the onset of greening for the plant community began four days earlier, due to the earlier loss of snow cover, and that warming accelerated the rate of greening. Peak season ended 4 days earlier in response to earlier snowmelt and climate warming, due to earlier senescence by birch. In 2011, our manipulation of the snowpack by increasing energy absorption accelerated snowmelt by 15 days and control plots were snowfree

  12. The Benchmark Farm Program : a method for estimating irrigation water use in southwest Florida

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1982-01-01

    Irrigation water-use data are summarized in this report for 74 farms in the Southwest Florida Water Management District. Most data are for 1978-90, but 18 farms have data extending back to the early 1970's. Data include site number and location, season and year, crop type, irrigation system, monitoring method, and inches of water applied per acre. Crop types include citrus, cucumbers, pasture, peanuts, sod, strawberries, and tropical fish farms are also included. Water-application rates per growing season ranged from 0 inches per acre for several citrus and pasture sites to 239.7 inches per acre for a nursery site. The report also includes rainfall data for 12 stations throughout the study area. (USGS)

  13. Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season.

    PubMed

    Rantakari, Miitta; Heiskanen, Jouni; Mammarella, Ivan; Tulonen, Tiina; Linnaluoma, Jessica; Kankaala, Paula; Ojala, Anne

    2015-10-06

    The air-water exchange of carbon dioxide (CO2) and methane (CH4) is a central process during attempts to establish carbon budgets for lakes and landscapes containing lakes. Lake-atmosphere diffusive gas exchange is dependent on the concentration gradient between air and surface water and also on the gas transfer velocity, often described with the gas transfer coefficient k. We used the floating-chamber method in connection with surface water gas concentration measurements to estimate the gas transfer velocity of CO2 (kCO2) and CH4 (kCH4) weekly throughout the entire growing season in two contrasting boreal lakes, a humic oligotrophic lake and a clear-water productive lake, in order to investigate the earlier observed differences between kCO2 and kCH4. We found that the seasonally averaged gas transfer velocity of CH4 was the same for both lakes. When the lakes were sources of CO2, the gas transfer velocity of CO2 was also similar between the two study lakes. The gas transfer velocity of CH4 was constantly higher than that of CO2 in both lakes, a result also found in other studies but for reasons not yet fully understood. We found no differences between the lakes, demonstrating that the difference between kCO2 and kCH4 is not dependent on season or the characteristics of the lake.

  14. Effects of flood duration and season on germination of black, cherrybark, northern red, and water oak acorns

    Treesearch

    Yanfei Guo; Michael G. Shelton; Brian R. Lockhart

    1998-01-01

    Effects of flood duration (0, 10, 20, and 30 days) and season (winter and spring) on acorn germination were tested for two upland oaks [black and northern red oak (Quercus velutina Lam. and Q. rubra L.)] and two bottomland oaks [cherrybark and water oak (Q. pagoda Raf. and Q. nigra L.)]. Acorns...

  15. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-01-01

    Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if they were homogeneous instead, resulting in aggregation errors that are rarely explored and almost never quantified. Here I use simple benchmark tests to explore this general problem in one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) to estimate timescales of storage in catchments. Timescales of catchment storage are typically quantified by the mean transit time, meaning the average time that elapses between parcels of water entering as precipitation and leaving again as streamflow. Longer mean transit times imply greater damping of seasonal tracer cycles. Thus, the amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate catchment mean transit times. Here I show that these calculations will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. I propose an alternative storage metric, the young water fraction in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that this young water fraction (not to be confused with event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer cycles within a precision of a few percent, across the entire range of mean transit times from almost zero to almost infinity. Importantly, this relationship is also virtually free from aggregation error. That is, seasonal tracer cycles also accurately predict the young water fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly contrasting transit-time distributions. Thus, although tracer cycle amplitudes yield biased and unreliable estimates of catchment mean travel times in heterogeneous

  16. Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.

    PubMed

    Zhou, Hai; Zhao, Wenzhi; Zheng, Xinjun; Li, Shoujuan

    2015-07-01

    In water-limited environments, the water sources used by desert shrubs are critical to understanding hydrological processes. Here we studied the oxygen stable isotope ratios (δ (18)O) of stem water of Nitraria sibirica as well as those of precipitation, groundwater and soil water from different layers to identify the possible water sources for the shrub. The results showed that the shrub used a mixture of soil water, recent precipitation and groundwater, with shallow lateral roots and deeply penetrating tap (sinker) roots, in different seasons. During the wet period (in spring), a large proportion of stem water in N. sibirica was from snow melt and recent precipitation, but use of these sources declined sharply with the decreasing summer rain at the site. At the height of summer, N. sibirica mainly utilized deep soil water from its tap roots, not only supporting the growth of shoots but also keeping the shallow lateral roots well-hydrated. This flexibility allowed the plants to maintain normal metabolic processes during prolonged periods when little precipitation occurs and upper soil layers become extremely dry. With the increase in precipitation that occurs as winter approaches, the percentage of water in the stem base of a plant derived from the tap roots (deep soil water or ground water) decreased again. These results suggested that the shrub's root distribution and morphology were the most important determinants of its ability to utilize different water sources, and that its adjustment to water availability was significant for acclimation to the desert habitat.

  17. Influence of water temperature and salinity on seasonal occurrences of Vibrio cholerae and enteric bacteria in oyster-producing areas of Veracruz, México.

    PubMed

    Castañeda Chávez, Maria del Refugio; Pardio Sedas, Violeta; Orrantia Borunda, Erasmo; Lango Reynoso, Fabiola

    2005-12-01

    The influence of temperature and salinity on the occurrence of Vibrio cholerae, Escherichia coli and Salmonella spp. associated with water and oyster samples was investigated in two lagoons on the Atlantic Coast of Veracruz, Mexico over a 1-year period. The results indicated that seasonal salinity variability and warm temperatures, as well as nutrient influx, may influence the occurrence of V. cholera. non-O1 and O1. The conditions found in the Alvarado (31.12 degrees C, 6.27 per thousand, pH=8.74) and La Mancha lagoons (31.38 degrees C, 24.18 per thousand, pH=9.15) during the rainy season 2002 favored the occurrence of V. cholera O1 Inaba enterotoxin positive traced in oysters. Vibrio alginolyticus was detected in Alvarado lagoon water samples during the winter season. E. coli and Salmonella spp. were isolated from water samples from the La Mancha (90-96.7% and 86.7-96.7%) and Alvarado (88.6-97.1% and 88.6-100%) lagoons. Occurrence of bacteria may be due to effluents from urban, agricultural and industrial areas.

  18. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil).

    PubMed

    Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E

    2018-05-01

    Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes).

    PubMed

    Archana, G; Dhodapkar, Rita; Kumar, Anupama

    2017-08-10

    This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 μg L -1 in the surface water bodies, 12-373 μg L -1 in the influent and 11-233 μg L -1 in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be < 1 indicating no adverse effect on the targeted organism.

  20. An introduction to mid-Atlantic seasonal pools

    USGS Publications Warehouse

    Brown, L.J.; Jung, R.E.

    2005-01-01

    Seasonal pools, also known as vernal ponds, provide important ecological services to the mid-Atlantic region. This publication serves as an introduction to seasonal pool ecology and management; it also provides tools for exploring seasonal pools, including a full-color field guide to wildlife. Seasonal pools are defined as having four distinctive features: surface water isolation, periodic drying, small size and shallow depth, and support of a characteristic biological community. Seasonal pools experience regular drying that excludes populations of predatory fish. Thus, pools in the mid-Atlantic region provide critical breeding habitat for amphibian and invertebrate species (e.g., spotted salamander (Ambystoma maculatum), wood frog (Rana sylvatica), and fairy shrimp (Order Anostraca)) that would be at increased risk of predation in more permanent waters. The distinctive features of seasonal pools also make them vulnerable to human disturbance. In the mid-Atlantic region, land-use changes pose the greatest challenges to seasonal pool conservation. Seasonal pools are threatened by direct loss (e.g., filling or draining of the pool) as well as by destruction and fragmentation of adjoining terrestrial habitat. Many of the species that depend on seasonal pools for breeding spend the majority of their lives in the surrounding lands that extend a radius of 1000 feet or more from the pools; these vital habitats are being transected by roads and converted to other land uses. Other threats to seasonal pools include biological introductions and removals, mosquito control practices, amphibian diseases, atmospheric deposition, and climate change. The authors recommend a three-pronged strategy for seasonal pool conservation and management in the mid-Atlantic region: education and research, inventory and monitoring of seasonal pools, and landscape-level planning and management.